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Project Description

The CV32E40-family of CPU cores are a set of open-source CPU cores originally spawned
from the RI5CY project, and as with any modern computing system, security is considered
paramount.

No proprietary code and no personal information is safe from prying eyes in the absence
of cryptographic protection, but the cryptographic algorithms themselves are not sufficient
to prevent disclosure of confidential information.

As cryptanalysists are facing difficulties in breaking the algorithms, much of the research
focus has shifted from the algorithms themselves to potential weaknesses in the cryptographic
implementations.

The goal of this master thesis is to design and implement a secure accelerator for AES,
implementing countermeasures for common classes of exploits, for use with the CV32E40
family of Risc-V CPU cores.

This accelerator should adher to the recently ratified Zkne (AES encryption) and Zknd
(AES decryption) extensions as defined by the RISC-V scalar cryptography specification.
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Abstract

Technology has become a significant part of our daily lives, and it is expected to be trust-
worthy and secure. Security in new technologies has become a critical element in every
design step for both hardware and software. High-level security techniques attempt to
make information inaccessible, and lower levels try to keep information secure even if it
is accessed by, for example, obfuscating it. Obfuscation is typically done using cryptographic
algorithms such as the Advanced Encryption Standard (AES), which has become one of
the most widely used ciphers since the endorsement from National Institute of Standards
and Technology (NIST). Its operations are simple and can be performed in software and
hardware, where software implementations require less specialized resources and hardware
accelerators are typically faster. However, researchers uncovered that hardware could leak
information through side-channels such as power consumption. It is possible to deduce critical
information from these leakages through statistical analysis referred to as side-channel attacks
(SCA). Several countermeasures have since been developed against such attacks, where the
typical ones for AES are threshold implementations and variants of it.

In this work, a first-order Side-Channel Attack (SCA) secure Advanced Encryption Stan-
dard (AES) accelerator has been implemented. The design is based on the instructions from
the official RISC-V scalar-crypto instruction set extension (ISE). A 2-share Domain-Oriented
Masking (DOM) scheme is implemented to secure the accelerator against first-order SCAs.
The adversary must acquire information from all shares to get any meaningful data, which
is a consequence of splitting the input into multiple shares. It is simple to implement
share-splitting for linear operations but not for non-linear operations such as the AES SBox.
The DOM scheme was selected to make the Substitution-Box (SBox) secure against first-order
SCAs. The accelerator has two parallel paths for linear operations and shares the DOM SBox
for all parallels. The accelerator is connected to the RISC-V CV32E40X core by the OpenHW
group through their novel eXtension Interface (XIF). A wrapper integrates the accelerator
and logic required to accept incoming instructions and write back results.

The area of the complete accelerator is 2.6 times larger compared to the unprotected im-
plementation available in the scalar-crypto Instruction Set Extension (ISE). The throughput
is also decreased by a factor of 6 due to the pipeline. All the designs in this work are available
on GitHub.
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Sammendrag

Teknologi har blitt en viktig del av hverdagen, og det forventes at det er sikkert å bruke
det. Sikkerhet er dermed en kritisk faktor i hvert steg under utviklingen. Konfidensiell
informasjon blir ofte skjult ved bruk av en kryptografiskalgoritme som kan konvertere data
til en uforståelig kryptert form. En dekrypteringsprosedyre kan konvertere den tilbake til
sin opprinnelige form når det trengs. Avansert krypteringsstandard (AES) har blitt en av
de mest brukte krypteringsalgoritmene siden den ble standardisert av Nasjonalt Institutt for
Standard og Teknologi (NIST) i år 2000. AES består av flere enkle operasjoner som kan bli
utført i både programvare og i maskinvare. En akselerator implementert i maskinvare er typisk
raskere enn å eksekvere instruksene i programvare, men krever spesialdesignede komponenter.
Det ble i senere tid oppdaget at maskinvare lekker informasjon gjennom sidekanaler som
strømforbruket. Strømforbruket til en krets er sterk korrelert til hvor aktiv kretsen er,
som kan føre til tydlige og observerbare karakteristikker. Sidekanalsangrep bruker statistisk
analyse til å avdekke hemmlig informasjon fra disse lekkasjene. Det finnes i dag flere tiltak
for å beskytte mot slike angrep, hvor de mest typiske tiltakene er terskelimplementeringer og
varianter av dem.

I denne oppgaven har en AES akselerator, som er beskyttet mot første-ordens sidekanal-
sangrep, blitt utviklet. Akseleratordesignet er basert på den forventede oppførselen definert
i RISC-V scalar-crypto instruksjonssetutvidelsen. Den tilførte verdien blir splittet i to deler,
hvor den ene delen er summen av inngangsverdien og en tilfeldig verdi, og den andre delen
er den tilfeldige verdien. Dette fører til at en motpart må kombinere informasjon fra begge
disse signalene for å avdekke noen brukbare data. Designprosessen ble delt inn i tre deler.
Først var fokuset å implementere den ikke-lineære DOM SBoksen, siden den er den største
og mest kompliserte komponenten for AES. Denne SBoksen ble så brukt i den komplette
akseleratoren som ble utviklet etterpå. Tilslutt ble akseleratoren pakket inn i en modul som
kobler den til CV32E40X kjernen gjennom utvidelsesgrensesnittet.

Arealet på akseleratoren sammen med innpakningen er 2,6 ganger større enn eksempe-
limplementasjonen gitt i scalar-crypto instruksjonssetutvidelsen. Gjennomstrømningen av
data er også 6 ganger saktere for en ikke optimalisert applikasjon på grunn av pipeline-
designet.
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Chapter 1

Introduction

With technology becoming such a quintessential part of everyday life, it is critical that it
is trustworthy. On one side, researchers and developers are creating better, faster, and
more complex technologies to improve upon previous versions. While on the other side, the
designs are thoroughly scrutinized for weaknesses that are abusable by adversaries. When
developing new technologies, it is critical to consider security at every step. One of the
techniques used to secure information is by obfuscating and hiding it in plain sight. A
cipher can be used to encrypt information using a secret key and can be reversed through
a decryption procedure to recover the original information. Ciphers are either asymmetric
or symmetric; asymmetric ciphers use different secret keys for encryption and decryption,
while symmetric ciphers use the same key for both procedures. Two well-known ciphers
are the Rivest-Shamir-Adleman (RSA) [1] asymmetric cipher and the Advanced Encryption
Standard (AES) [2] symmetric cipher. Some ciphers can be implemented in both software
and hardware; software implementations use typical processor instructions, while hardware
implementations require specialized units. However, implementing it in hardware typically
results in a significant faster implementation [3].

Modern ciphers are typically sound against statistical attacks on their data [4]. At-
tempting to guess the secret key, referred to as a brute-force attack, is infeasible with the
large secret key sizes. In 1998, Paul Kocher et al. [5] found that hardware implementa-
tions leak information through physical parameters such as power consumption, also called
side-channels. This article also presented two Side-Channel Attack (SCA) that could be
used to deduce critical information from this leakage. Today, simple SCAs have become
ubiquitous, with resources on how to perform them and special hardware being available
online [6], and the maturity of higher-order attacks is increasing. As a consequence, it is
critical to be aware of state-of-the-art attack vectors and the direction the development is
heading towards when developing new technologies. The level of security should be defined
during the initial requirements phase to be able to get a good balance of cost and security.
A straightforward RSA or AES hardware implementation can be vulnerable to side-channel
leakages [5][7]. Various means have been employed as countermeasures against such attacks,
where those that are mathematically proven to be sound have become the norm for modern
implementations, which includes schemes such as masking [8], Threshold Implementation (TI)
[9], and variations of TI [10][11][12]. In 2019 National Institute of Standards and Technology
(NIST) announced a project to standardize threshold implementations for ciphers [13].

RISC-V is an open-source Instruction Set Architecture (ISA), which has increased in
popularity since the establishment of the RISC-V foundation. An increasing number of
companies and developers are adopting and contributing to the development, which results
in a more mature ISA. The OpenHW group, whose mission is to develop free and high-quality
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1.1. OBJECTIVES AND LIMITATIONS 2

open-source technology [14], has adopted RISC-V. One of their projects is the CVE4 family,
where Silicon Labs have been a major contributor, consisting of four RISC-V cores for various
embedded applications [15]. CV32E40X is one of the cores in this family that is aimed at
compute-intensive applications. It implements a novel eXtension Interface (XIF) that allows
custom instructions or additional Instruction Set Extension (ISE)s to be connected to the
core pipeline as coprocessors.

One of the key strengths of RISC-V is its modularity. There are five official base
instruction sets containing the minimum number of instructions required in a core design,
which can be further extended by custom or official ISE. One newly ratified ISEs is the
scalar-crypto extension that defines instructions and their corresponding behavior for various
cryptographic algorithms such as AES. The AES implementation available online [16] is small
and efficient but it does not implement any countermeasures against side-channel leakages
and could be vulnerable to SCAs.

1.1 Objectives and Limitations
The objective of this work is to implement a secure AES accelerator. The approach for
achieving this goal is split into multiple phases. The first phase consists of researching the
standard AES to understand how it works and can be implemented in hardware. A high-level
model was developed in python to help deepen the understanding of it and is available in [17].
In parallel, information leakage, side-channel attacks, and countermeasures were studied. A
simple XIF wrapper, using the accelerator from the scalar-crypto ISE, was first designed to
get started with the core-v-verification environment [18] and develop a C application using
the AES instructions. After selecting the masking scheme, the protected accelerator and
Substitution-Box (SBox) were designed, behaviorally verified with a high-level model, and
implemented in Hardware-Descriptive Language (HDL).

The masking scheme in this work requires a Random Number Generator (RNG) in order
to protect against side-channel attacks. Implementing a secure RNG is complex and has not
been done in this work. One of the topics in NIST’s roadmap for standardizing threshold
implementations [19] is the RNG. Hopefully, a standard will be freely available online soon,
but this work assumes that the accelerator is connected to an RNG that can deliver fresh
randomness at the expected bandwidth.

1.2 Contributions
This work implements a first-order SCA secure AES accelerator for the CV32E40X core from
the OpenHW group. The accelerator connects to the core using their novel XIF, which
means that any core implementing this core can use the accelerator. The behavior of the
accelerator follows the standardized behavior of the scalar-crypto ISE for RISC-V. The design
process in this work consists of three stages: microarchitecture, high-level model, and HDL
implementation. The microarchitecture can be found in Chapter 5, while the high-level
models and HDL-implementations are available in the GitHub repositories presented in
Appendix B. The implementation uses a 2-share Domain-Oriented Masking (DOM) scheme
to protect against first-order SCA. The area of the resulting design is almost a factor of three
larger and has a reduced throughput. However, the accelerator behavior complies with the
scalar-crypto ISE standard, which means that there is no change in how the instructions are
used. On the other hand, there is a reduction in throughput due to the implemented pipeline.
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1.3 Structure of the Thesis
Before presenting the implementation of this work, a comprehensive background is given in
Chapters 2, 3, and 4 with what is needed to understand the design and discussion. This also
includes some descriptions of state-of-the-art technologies and their current developments.
Afterward the design and implementations are presented in Chapter 5. The complete design
is split into three stages: the accelerator, the SBox, and the XIF wrapper. Each of these
stages are described in detail using their microarchitecture. In the end, an application
using the implemented AES instructions is presented. Chapter 6 presents and compares
the designs, and discusses various security issues that must be considered when integrating
this accelerator.





Chapter 2

Advanced Encryption Standard

The Data Encryption Standard (DES) was the officially endorsed block cipher by the US
government in 1977. Researchers scrutinized DES in a thorough research period, in which
they found it to be vulnerable to analytical attacks [20]. One of the major criticisms by
researchers was the small key size of only 56-bits. To prove that this was a significant
weakness, RSA Laboratories launched three challenges where the goal of each challenge was
to bypass DES encryption. The first challenge was solved after 140 days, and the cipher in
the last challenge was solved in just 22 hours and 15 minutes [21]. At the same time, the US
National Institute of Standards and Technology (NIST) called out for symmetric key block
cipher candidates that they could declare as the new Advanced Encryption Standard (AES)
[22].

2.1 The New Standard
NIST proposed a list of requirements that cipher candidates had to satisfy [23]:

– Mathematical proof of security for the cipher

– The developers must release the cipher without any license because the chosen cipher
will be available worldwide and royalty-free.

– Algorithm should be efficient and able to run on an 8-bit Central Processing Unit
(CPU).

– Should be suited for both software and hardware implementation.

NIST officially chose the Rijndael algorithm in October 2000 and expressed their mo-
tivation for this choice through a 116-page report [24]. It has since become one of the
most widely used symmetric-key ciphers. To become AES, Rijndael had to undergo a
rigorous standardization process, which reduced its flexibility by constraining the size of
input parameters to limit the number of configurations. Figure 2.1 shows the standardized
inputs and outputs. AES is an iterative block cipher operating on input blocks of 128-bits or
16-bytes. The secret key size is configurable to 128-, 192-, or 256-bits and is coupled to the
number of iterations Nr, where a larger key requires more iterations.

5
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Figure 2.1: Input and output parameters of AES

2.2 Design of AES
Setting out to develop a new cipher is a large and complex challenge. It should be secure
against known attack techniques, such as statistical analysis, while still having an efficient area
and throughput. The developers of Rijndael used the wide trail strategy [4], a block cipher
design strategy created by themselves when developing Rijndael. This strategy describes how
to design and prove the security of new ciphers adequately.

2.2.1 Confusion and Diffusion

Claude Shannon presented in 1945 two essential properties in cryptography: confusion and
diffusion [25]. Integrating these properties hardens a cipher against statistical attacks on its
data. Confusion and diffusion are also further elaborated on in the Wide Trail Strategy for
block ciphers and heavily impacted the design of Rijndael [22].

Confusion implies that the relation between the secret key and input ciphertext is com-
plex. This property makes it difficult to deduce the secret key from a large set of encryption
operations using the same key. Each bit in the ciphertext should depend on the whole secret
key, meaning that changing a single bit in the key would result in a completely different
output [25]. The second property, diffusion, implies there is a complex relationship between
the input and output. A single bit flip in the input would result in an entirely different
output. This property follows the strict avalanche criterion, which says that flipping any bit
i in the input/output has a 50% probability of flipping bit j on the output/input [25]. In
other words, diffusion eliminates any correlation between input and output data.

2.2.2 Number of Iterations

AES consists of multiple operations that introduce confusion and diffusion into the state. AES
iterates over these operations 10, 12, or 14 rounds to provide sufficient security depending
on if the input secret-key is 128-, 192-, or 256-bits, respectively. The developers of AES had
to choose the round numbers to give an optimal performance while still providing sufficient
security through diffusion and confusion [26]. There have been found shortcut attacks that
are more efficient than exhaustive key-search attacks for AES with a key size of 128-bits for
six rounds [27]. Using this as a baseline with the fact that two iterations of AES provide
full-diffusion, the number of rounds was set to 10 for a 128-bit key [26]. Two additional
iterations were added for each additional 32-bits in the secret key.
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2.2.3 Finite Fields
The following section is based on [22].

A finite field is a constant set of elements. Operations in the field are constrained by
certain properties [22], some of which are listed below. One of the important properties for
cryptography is closure where the result of any operation is constrained within the field.

1 Closure: ∀a, b ∈ F : a+ b ∈ F and a· b ∈ F
For all elements a and b in field F, the sum and product of the terms are constrained

within the field

2 Distributivity: ∀a, b, c ∈ F : (a+ b) · c = (a· c) + (b· c)
For all elements a, b, and c in field F, the term outside the parenthesis can be

multiplied by each factor.

3 Commutative: ∀a, b ∈ F : a+ b = b+ a

For all elements a and b in field F, the order of addition is trivial

4 Neutral element: ∃1 ∈ F, a ∈ F : a× 1 = a

There exists a multiplicative neutral element 1 in field F that when multiplied by a
gives the same element a

5 Multiplicative inverse: ∀a 6= 0 ∈ F,∃a−1 ∈ F : a· a−1 = 1
For all elements a that are not 0 in field F, there exists an inverse of a in the field

that results in the neutral element when multiplied by a

Finite fields are also called Galois Fields (GF) and are denoted as GF(pn), where p is a
prime number called the prime characteristic, and pn is the field order. There are two types
of finite fields: prime fields, where n = 1, and extension fields, where n > 1. Elements in
a prime field are represented by integers, e.g., GF(2) that holds the elements {0, 1}. All
operations in a prime field must follow the properties introduced above, which for a prime
field means using modular arithmetic with the prime characteristic as the modulo. Table 2.1
shows the results from addition, subtraction, and multiplication in GF(2). It is observable
that addition and subtraction give the same result, and their calculation is the same as an
Exclusive-Or (XOR) operation. While multiplication is the same as an AND-operation.

+- 0 1 x 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Table 2.1: Addition results(left) and multiplication results(right) in GF(2)

Straightforward modular arithmetic for extension fields does not follow the required
properties for finite fields. Instead, different representations, or bases, are utilized. A typical
representation for extension fields is polynomial representation, shown in Equation (2.1)
where the coefficients bi are in the prime field GF(p) and the polynomial degree is n. Thus,
the Galois Field GF(22) contains the elements {0, 1, x, x+1}. Operations on extension fields
still use modular arithmetic, but now the modulo is an irreducible polynomial p(x). There
can be multiple irreducible polynomials for a finite field, and it must be specified for a given
field since operations are dependent on the irreducible polynomial. Hence, the operations
can differ from one field to another if the irreducible polynomial is different.
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b(x) =
n−1∑
i=0

bix
i = bn−1x

n−1 + ...+ b2x
2 + b1x+ b0 (2.1)

Addition and multiplication using polynomial basis follow straightforward standard poly-
nomial operations, but the coefficients are in the prime field. Thus, operations on individual
coefficients of a polynomial in a field GF(pn) follow the properties of the prime field GF(p).
Addition or subtraction of polynomials for an extension field with the prime characteristic 2
is modeled by XORing the coefficients of the same order as was shown in Table 2.1. Examples
of addition and multiplication is given in Equations (2.2a) and (2.2b), respectively, for the
field GF(22) with the irreducible polynomial p(x) = x2 + x+ 1, a = x+ 1, and b = x+ 1

c = a+ b mod p(x)
= (x+ 1) + (x+ 1) mod x2 + x+ 1
= (x+ x) + (1 + 1) mod x2 + x+ 1
= 0

(a)

c = a× b mod p(x)
= (x+ 1)× (x+ 1) mod x2 + x+ 1
= x2 + (x+ x) + 1 mod x2 + x+ 1
= x2 + 1 mod x2 + x+ 1
= x mod x2 + x+ 1

(b)

Equation 2.2: Polynomial addition (a) and multiplication (b)

Any element represented with a polynomial basis for an extension field using prime
characteristic p = 2 is a bit-vector. The elements in GF(28) represent a byte, as represented
in Equation (2.3). The finite field used in AES if GF (28) with the irreducible polynomial
p(x) = x8 + x4 + x3 + x+ 1.

b(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 (2.3)

Another widely used representation is the Normal basis. The coefficients in a Normal basis
still represent the bits of the element, but the terms follow the form {β, βp, β2p, ..., β(n−1)p}
[28]. A normal basis representation in GF(28) is shown in Equation 2.4.

b(x) = b7β
128 + b6β

64 + b5β
32 + b4β

16 + b3β
8 + b2β

4 + b1β + b0 (2.4)

As was shown in Table 2.1, operations in GF(2) can be represented by boolean circuitry.
Operations in lower-order fields are typically more straightforward than in fields with higher
orders. An extension field can be converted to a composite field, in which an element can be
split into smaller elements and utilize subfield operations. The conversion is possible since
finite fields are isomorphic, meaning that finite fields have a linear mapping that can be used
for such a conversion [22]. E.g., there exists a linear mapping that maps a value in GF(28)
to GF(((24)2), where an 8-bit element can be represented as two 4-bit nibbles. The equation
below shows how a composite field element is represented with a polynomial in Equation
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(2.5a) and normal basis in Equation (2.5b), where A is the isomorphically transformed 8-bit
value, ah is the higher nibble, and al is the lower nibble.

A = ahx+ al (2.5a)

A = ahβ
16 + alβ (2.5b)

Elements in GF(28) can also be mapped to the composite field GF ((((22)2)2); wherein an
8-bit element can be split into elements in the prime field [29]. I.e., operations on an 8-bit
element can utilize the simple operations in GF(2). Each level of decomposition requires its
own irreducible polynomial. Equation 2.6 shows a generic irreducible polynomial, where τ is
called the Trace, and µ is called the Norm.

p(x) = x2 + τx+ µ (2.6)

The irreducible polynomials for the composite field GF (((22)2)2) are shown in Equation
(2.7), where (T, τ) are the Traces and (N, v) are the Norms. In GF(2), there is only one
irreducible polynomial where both the Trace and Norm are 1. Thus, the other polynomials
can not have 1 for both the Trace and Norm. Traces are usually set to 1 for efficient
implementations in hardware [30]. Then the Norm must be chosen so that the resulting
polynomial is irreducible for the composite field.

GF (22)/GF (2) : p(w) = w2 + w + 1
GF (24)/GF (22) : s(z) = z2 + Tz +N

GF (28)/GF (24) : p(y) = y2 + τy + v (2.7)
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2.3 AES Algorithm
The AES encryption and decryption algorithm are shown in Figure 2.2. AES consists of
four operations: AddRoundKey, Byte Substitution, ShiftRow, and MixColumns, all of which
have an inverse used for decryption. The colored area in the figures indicates the operations
executed iteratively for Nr rounds, where Nr is 10, 12, or 14 rounds, which is configured
through the key size. As observable in the figure, decryption is the reversal of encryption.
The MixColumns operation must be skipped in the last encryption iteration to make the
structures similar for both procedures. Each iteration requires a 128-bit round key, which is
generated from the secret key using the KeyScheduler algorithm described in Section 2.3.5

Figure 2.2: AES encryption and decryption algorithms

The 128-bit input block, plaintext or ciphertext, is split into 16-bytes B0B1B...B15 and
placed in a column-major order in a matrix as shown in Figure 2.3. This matrix is referred to
as the state matrix when input into the algorithm. The various operations in the algorithm
operate on individual bytes, rows, or columns.


B0 B4 B8 B12
B1 B5 B9 B13
B2 B6 B10 B14
B3 B7 B11 B15



Figure 2.3: Byte order in state matrix for input and output
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2.3.1 AddRoundKey

In the AddRoundKey operation, a round key of 128-bits is added to the state matrix as
shown in Equation (2.8). Each iteration of this operation uses a different round key; thus,
each procedure requires Nr + 1 round keys. The inverse operation for AddRoundKey is to
subtract the round keys from the state in the reverse order of encryption. As described in
Section 2.2.3, addition and subtraction for an extension field with prime characteristic 2 is
the same as an XOR operation. This characteristic means that AddRoundKey is the same
operation for encryption and decryption [22].


B0 B4 B8 B12
B1 B5 B9 B13
B2 B6 B10 B14
B3 B7 B11 B15

⊕

RK0 RK4 RK8 RK12
RK1 RK5 RK9 RK13
RK2 RK6 RK10 RK14
RK3 RK7 RK11 RK15

 (2.8)

2.3.2 Substitution-Box

One of the more complex operations of AES is the Substitution-Box (SBox) transformation.
This step operates on individual bytes and adds diffusion through non-linearity [22]. The
non-linearity dissipates statistical correlations in the input and output to protect against
linear cryptanalysis. The SBox transformation of AES consists of two operations: an inversion
in GF(28) and an affine transformation, as shown in Figure 2.4.

Figure 2.4: AES SBox split into two sub operations

The inversion alone has a simple algebraic expression, which statistical attacks could
abuse. In combination with the inversion, the affine transformation results in a more com-
plicated expression while still keeping the non-linear properties introduced by inversion. An
affine transformation is a geometric transformation that maps the input onto itself, such as
scaling, rotations, and translation. Hence, an affine transformation modifies the input while
keeping the geometric structure [31]. The affine transformation used in AES encryption is
defined in Equation 2.9a where an and bn are the bits of the input and output byte. The
inverse, which is used in decryption, is shown in Equation 2.9b.



2.3. AES ALGORITHM 12

aff =



b7
b6
b5
b4
b3
b2
b1
b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
1
1
0
0
0
1
1


(a)

aff−1 =



b7
b6
b5
b4
b3
b2
b1
b0


=



0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
0
0
0
0
1
0
1


(b)

Equation 2.9: AES Forward affine transformation (a) and inverse affine transformation (b)

Since GF(28) is a finite set of 256 elements and the affine transformation follows the
constant multiplication and addition in Equation 2.9a, it is feasible to create a precalculated
lookup table as seen in Table 2.2. Using a lookup table is fast and simple in software, but this
would require 256x2 bytes of memory and additional circuitry for addressing and fetching
memory elements in hardware. These demands are too high for some applications, such as
smart cards, and in those cases, it might be more efficient to implement the transformation
itself [29][30].
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00 10 20 30 40 50 60 70 80 90 a0 b0 c0 d0 e0 f0
00 63 ca b7 04 09 53 d0 51 cd 60 e0 e7 ba 70 e1 8c
01 7c 82 fd c7 83 d1 ef a3 0c 81 32 c8 78 3e f8 a1
02 77 c9 93 23 2c 00 aa 40 13 4f 3a 37 25 b5 98 89
03 7b 7d 26 c3 1a ed fb 8f ec dc 0a 6d 2e 66 11 0d
04 f2 fa 36 18 1b 20 43 92 5f 22 49 8d 1c 48 69 bf
05 6b 59 3f 96 6e fc 4d 9d 97 2a 06 d5 a6 03 d9 e6
06 6f 47 f7 05 5a b1 33 38 44 90 24 4e b4 f6 8e 42
07 c5 f0 cc 9a a0 5b 85 f5 17 88 5c a9 c6 0e 94 68
08 30 ad 34 07 52 6a 45 bc c4 46 c2 6c e8 61 9b 41
09 01 d4 a5 12 3b cb f9 b6 a7 ee d3 56 dd 35 1e 99
0a 67 a2 e5 80 d6 be 02 da 7e b8 ac f4 74 57 87 2d
0b 2b af f1 e2 b3 39 7f 21 3d 14 62 ea 1f b9 e9 0f
0c fe 9c 71 eb 29 4a 50 10 64 de 91 65 4b 86 ce b0
0d d7 a4 d8 27 e3 4c 3c ff 5d 5e 95 7a bd c1 55 54
0e ab 72 31 b2 2f 58 9f f3 19 0b e4 ae 8b 1d 28 bb
0f 76 c0 15 75 84 cf a8 d2 73 db 79 08 8a 9e df 16

Table 2.2: Precalculated SBox lookup where the leftmost column represents the lower nibble
and the uppermost row represents the higher nibble

Canright presented a highly optimized implementation using a tower of fields approach
[30]. He found that using a normal basis resulted in one of the more area-efficient imple-
mentations for hardware. Furthermore, he found that composite field operations were more
efficient for the inversion but not linear operations such as the affine transformation or the
rest of AES. Hence, his paper focuses on an optimized version of the inversion operation
in GF (28). The inversion starts with an initial isomorphic transformation that converts an
element into the composite field GF (((22)2)2), after which subfield operations are used to
perform the inversion. In the end, the result is mapped back into GF(28) and outputs the
inverted value. Joan Boyar and Rene Peralta also used the tower field approach to implement
one of the smallest SBoxes using only 127 gates at a depth of 16 in [32].

Figure 2.5 depicts the inversion in the composite field GF ((24)2) using a normal basis.
Each operation can be converted further down to a lower subfield, which is done for area-
efficient hardware implementations. As observable in the figure, this inversion consists of
two additions, one square-and-scale, three GF (24) multiplications, and a GF (24) inversion.
The proof for this inversion is derived in Equation A.3 in Appendix A. Additionally, the
derivations for each subcomponent down to the lowest composite field can also be found in
Appendix A.
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Figure 2.5: GF (28)/GF (24) composite field inversion

2.3.3 ShiftRows

As implied by the name, this step shifts the rows in the state matrix. It is one of the steps
used to create diffusion in the algorithm [22]. Each row of the state matrix is left-shifted by
the index of its respective row, starting at the top with index zero. Elements that extend
outside the matrix are inserted back on the right side, as shown in Equation (2.10). During
decryption, the rows are right-shifted, reversing the operation from encryption.


B0 B4 B8 B12
B1 B5 B9 B13
B2 B6 B10 B14
B3 B7 B11 B15

→

B0 B4 B8 B12
B5 B9 B13 B1
B10 B14 B2 B6
B15 B3 B7 B11

 (2.10)

2.3.4 MixColumns

MixColumns is another simple linear operation implemented to introduce more diffusion [22].
This operation inputs the four bytes of a column and outputs another four bytes, following
matrix multiplication in Equation 2.11a. Each output byte of this step consists of four scalar
multiplications and three additions, which are still in GF(28). The inverse operation for
decryption is shown in Equation 2.11b.

MC =


A0
A1
A2
A3

 =


3 1 1 2
1 1 2 3
1 2 3 1
2 3 1 1

×

B0
B1
B2
B3


(a)

MC−1 =


A0
A1
A2
A3

 =


0B 0D 09 0E
0D 09 0E 0B
09 0E 0B 0D
0E 0B 0D 09

×

B0
B1
B2
B3


(b)

Equation 2.11: AES MixColumns(a) and inverse MixColumns(b)

One of the typical approaches to calculating the scalar multiplication is by using the xtime
function [2], as shown in Listing 1. The xtime function creates an addition chain of xtime2,
which accumulates into the scaled input. The xtime2 function doubles the input byte. If the
input byte’s most significant bit is 1, the doubling will increase the value outside the field.
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Thus, a modular reduction using the irreducible polynomial x8 + x4 + x3 + x + 1, 0x11b in
hex, keeps the result within the field.

uint8_t xtime2(uint8_t byte){
bool = (byte&0x80) > 0;
return (byte << 1) ^ (msb ? 0x1b : 0);

}

void xtime(uint8_t byte, uint8_t scalar){
return ( scalar&0x1 ? byte : 0 )) ^ \

( scalar&0x2 ? xtime2(byte) : 0 ) ^ \
( scalar&0x4 ? xtime2(xtime2(byte)) : 0 ^ \
( scalar&0x8 ? xtime2(xtime2(xtime2(byte))) : 0);

}

Listing 1: xtime function in C for performing scalar multiplication in GF(28)

2.3.5 KeyScheduler

As previously mentioned, Nr + 1 round keys of 128-bits are needed for each encryption or
decryption. However, the input key for AES is a single key of 128-, 192-, or 256-bits. A
Key Schedule algorithm uses the secret key to derive the correct number of round keys. This
algorithm operates on 32-bit words W. The number of input blocks N is the number of 32-bit
words in the input key. Using these parameters, the words Wi are generated using Equation
2.12. A visual presentation is shown in Figure 2.6 for the first 16-bytes of an AES 256-bit
key.

Wi =


Ki, if i < N.

Wi−N ⊕ SubWord(RotWord(Wi−1))⊕ rconi/N , if i ≥ N and i = 0 mod N

Wi−N ⊕ SubWord(Wi−1), i ≥ N,N > 6, and i = 4 mod N

Wi−N ⊕Wi−1, otherwise

Equation 2.12: KeyScheduler word algorithm

Three operations transform every N word: SubWord, RotWord, and rcon. SubWord is
the same operations as the SBox for encryption, where each byte in the word is transformed
by taking the inverse in GF(28) and then performing the affine transformation. RotWord
left shifts the bytes in the word by one, where the byte that falls off is inserted as the least
significant byte, just as in ShiftRows. In the end, a round constant is added to the word. The
round constant, rcon, is generated using Equation 2.13 and shifted up by three bytes before
it is added to the key. The (Nr + 1)× 4 generated words are sequentially split into groups of
four or 128-bits as is the required round key length.
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rci =


1, if i = 1
2 · rci−1, if > 1 and rci−1 < 0x80
(2 · rci−1)⊕ 0x11B, if > 1 and rci−1 > 0x80

Equation 2.13: Generation of round constants for round keys

A visual example is given for AES-256 in Figure 2.6, where the first 16-words are generated
from the input key. For a 256-bit key there are N = 8 words; hence, every eight word propagate
through the three operations, and very four words after the first eight, go through the SBox.

Figure 2.6: Key Schedule algorithm for a 256-bit input key

2.3.6 Equivalent Decryption

Reversing the encryption procedure, and using the inverse operations, results in the decryp-
tion algorithm. However, AES’s properties also enable an equivalent decryption procedure
that could be more efficient for certain implementations [2]. By first performing the Inverse
MixColumns on all round-keys, except for the first and last, it is possible to swap the order
of the Inverse MixColumns and AddRoundKey in the decryption process, as shown on the
right side in Figure 2.7. Comparing this to the encryption process on the left side shows how
this equivalent procedure implements an identical path to the encryption path, making it
possible to share most of the resources for both processes, which is area efficient for hardware
implementations. However, this reduces the overall efficiency due to the additional work to
create new decryption round keys.
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Figure 2.7: AES encryption(left), decryption (middle), and equivalent AES decryption
(right) where AddRoundKey requires round keys that have gone through Inverse
MixColumns.





Chapter 3

Information leakage and
countermeasures

The smallest key for Advanced Encryption Standard (AES) is 128-bits, which gives more
than 1038 combinations for a single key. With modern ciphers utilizing such large keys,
exhaustive key-search, also known as a brute-force attack, is infeasible even with modern
computers. Instead, researchers started investigating the hardware of cipher implementations.
The research discovered information leakage through physically measurable parameters such
as power consumption [5], timing [33], temperature [34], and electromagnetic emissions [35].
These physical parameters are referred to as side-channels. An attack that collects side-
channel data and analysis it to deduce secret information is called a Side-Channel Attack
(SCA). In 1999 Paul Kocher and al. presented a simple and differential power analysis
technique that could be used to acquire secret data from physical attacks on hardware [5].
More complex techniques have since been developed. Consequently, an effort had to be put
into creating countermeasures against these powerful attack vectors.

3.1 Preliminaries
The most prominent SCAs utilize data from power consumption. This section will present
some preliminaries needed to understand the attack techniques and countermeasures against
them.

3.1.1 Power-Consumption

The following paragraphs are based on [36].
The total power consumption of a device can be split into two contributions: static and

dynamic. Static power consumption is a constant power consumption caused by leakages,
while dynamic power consumption is the power consumed by device activity. The consump-
tion is dependent on the technology that the circuit is built on. One of the more typical
technologies uses Complementary Metal-Oxide Semiconductors (CMOS) to build logic gates.
CMOS logic gates are designed using a pMOS pull-up network and an nMOS pull-down
network. The total power consumption of a digital circuit is the accumulated static and
dynamic power of all the CMOS gates. The static power of a CMOS gate is induced by a
leakage current through the transistors and the voltage amplitude of the power supply, as
seen in Equation 3.1. The resulting product is a small contribution at an individual gate
level; however, since modern circuits can consist of millions of these gates, the contribution
accumulates to a significant factor

19



3.2. PHYSICAL ATTACKS 20

Pstatic = VDD × Ileak (3.1)

In a CMOS logic gate, the pull-up network charges the capacitive load on the output
when enabled, while the pull-down network discharges the load. The gate only sources power
when the output changes from ’0’ to ’1’. Thus, a gate must undergo a complete transition
to consume power. The dynamic power consumption of a CMOS gate is defined in Equation
3.2, where α is the activity factor of the gate, f is the clock frequency, Cload is the capacitive
load, and VDD is the power supply. The activity factor describes how often the output of the
gate toggles from low to high on average per clock tick. Thus, a computationally heavy unit
with a high activity requires significantly more power than a unit with less activity.

Pdyn = αfCloadV
2

DD (3.2)

3.1.2 Glitching
Imperfections in physical implementations can often lead to behaviors unexpected by the
designer. Signals propagating through digital circuitry can be delayed by the length of a
path and the number and type of logic gate it must propagate through. For a logic gate
dependent on two inputs, one signal arriving before the other could cause an unwanted change
in the output until the second input arrives. The unwanted change is called a glitch and is
a prevalent behavior in digital circuitry. So much that it contributes a total of 20%-70% of
overall power consumption [37]. Figure 3.1 depicts how a glitch could be produced for an
AND-gate, where Signal 1 is initially low and signal 2 high. Signal 2 arrives shortly after
signal 1, but the output of the gate has already toggled, resulting in a glitch propagating
through the rest of the circuitry.

Figure 3.1: How a glitch is produced for an AND-gate

3.2 Physical Attacks
Having physical access to a device enables more attack techniques. Physical attacks are
usually split into two categories: active and passive. In active attacks, an adversary attempts
to affect the behavior of a circuit by directly tampering with it. Fault injection is a typical
example in which an adversary could modify the clock frequency or source voltage in a
processor to make it "skip" instructions [38]. Passive attacks measure the side-channels of a
device and do not require any modifications to the hardware. SCAs have become prominent,
and the most straightforward analysis techniques have online guides and purchasable devices
that can be used for that purpose [6].
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3.2.1 Side-channel Attacks
The power consumption of a device is strongly correlated to the activity in a circuit. The
analysis techniques presented by Kocher et Al. in 1998 use this to deduce information about
the underlying algorithm implemented in hardware or use the statistical correlation between
a guess and the power consumption to deduce secret values. Three of the most known
approaches are simple, differential, and correlation power analysis.

3.2.2 Simple Power Analysis
The most straightforward analysis approach is the Simple Power Analysis (SPA). In this
approach, a single trace of the power consumption is used to deduce information about
the algorithm that is executed. The power consumption reflects how active the circuit
is, as described by the dynamic power from Section 3.1.1. In a hardware implementation
consisting of multiple stages with different complexities, the power consumption will outline
a characteristic of the operation executed in the stage. If there are 10, 12, or 14 successive
peaks or intervals in the power consumption, one could confidently guess that the underlying
algorithm is AES [39]. Figure 3.2 shows the power consumption for a device executing AES
with a 128-bit key. There are nine similar intervals with a shorter one at the end. These
intervals represent the first nine rounds of AES-128, with the last round being shorter due to
skipping MixColumns.

Figure 3.2: Power consumption of a device encrypting using AES-128. The figure is a modified
version from [40].

3.2.3 Differential Power Analysis
Differential Power Analysis (DPA) uses the principle that flipping a bit from low to high
has a higher power consumption than the opposite [5], which is the case for the CMOS logic
gates. CMOS gates source power when the output is high and drain power when low. The
variation for flipping a single bit is tiny and overshadowed by noise. However, this noise could
be reduced by averaging a large set of traces [5].

In the difference of means DPA, one attempts to guess the constant secret key one byte
at a time [39]. In short, this is done by correlating the power consumption and self-generated
key guesses. First, one would collect a large set of traces Ti coupled with the corresponding
output cipher Ci. These traces are split into two groups by a selection function D(Kn, Ci),
where Kn is a one-byte key-guess, and Ci is one of the collected output ciphertexts. The
selection function reverses the operations in the last round of AES using key-guess Kn back to
the output of the Substitution-Box (SBox) using the inverse operations. One of the bits in the
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SBox output guess is selected and used to group the traces. Typically, the least significant
bit is chosen, which gives the groupings: Group0 that contains all traces where the least
significant bit is zero and Group1 that contains the traces where the least significant bit is
one.

For each key-guess a trace for the difference ∆Dn between the average of Group1 and
Group0 is calculated, as seen in Equation (3.3).

∆Dn =
∑iD(Kn, Ci)× Ti∑iD(Kn, Ci)

−
∑i(1−D(Kn, Ci))× Ti∑i(1−D(Kn, Ci))

(3.3)

The trace with the correct Kn will have a significant peak in the corresponding ∆Dn trace
since the bit that was used in the selection function will be correct for all traces, meaning
that there is a strong correlation between the traces. Figure 3.3 gives an example of how the
traces for ∆Dn could be. The uppermost two lines have no significant correlation, while the
lowermost one has a significant peak. Thus, the key guess for this trace is probably correct.

Figure 3.3: Example correlation plot for an arbitrary difference of means DPA where each
trace represent the correlation at time/sample x for key guess n.

3.2.4 Correlation Power Analysis

Correlation Power Analysis (CPA) uses the same basis as DPA, but instead of using a selection
function, it uses a power model to find correlation [41]. The most typical model is a hamming
weight model, where the power consumption of a bit-vector increases proportionally to the
number of high bits. E.g., the integer 63 is 0011 1111 in binary with a hamming weight of 6,
while the integer 64 is 0100 0000 in binary with a hamming weight of 1.

This approach is often used for implementations that operate on a single byte at a
time, such as accelerators implemented in Central Processing Unit (CPU). CPA is typically
used when the adversary can control the input. The procedure for CPA is that for each
power trace Ti the algorithm receives a known random input byte PTi. The adversary
computes the AddRoundKey with a key-guess Kn and applies the SBox transformation. The
hamming weight of the SBox output is coupled to the corresponding trace and key-guess.
This computation is done for all 256 key guesses. An extensive set of traces and hamming
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weights are collected, and in the end, the correlation coefficient for each key-guess and the
traces are found [39]. Since there is a linear relation between the power consumption and the
hamming weight, there should be a point in the traces where one of the hamming weight sets
has a strong correlation [41].

Equation (3.4) shows how to calculate the correlation between the measured power traces
Tiand the hamming weights Hi, where T̄ and H̄ are mean values. Figure 3.4 gives a visual
representation of the data used in a CPA. The plot on the left depicts five plotted power
consumption over time x, and the matrix on the right consists of arbitrary hamming weights
for key guess k. A correlation coefficient ri,k is found for the set of hamming weights for each
key guess k at each trace point j. If any correlation is found, one of the correlation traces rk

will have a significant peak at a point i.

ri,k =
∑

i(Ti,j − T̄ )(Hi,k − H̄)√∑
i(Ti,j − T̄ )2 ∑

i(Hi,k − H̄)2
(3.4)

Figure 3.4: Visual representation of an arbitrary CPA attack, where the plot depicts the
collected power traces over time x, and the matrix represent the hamming weight for the
corresponding key guess

3.2.5 Higher-Order Attacks

First-order SCA attacks are, in essence, simple because they only operate on one data point
per trace at a time. However, a typical countermeasure is a share-splitting scheme where the
input data is split into multiple parts called shares, where all shares are required to get the
unshared value. This is further described in Section 3.3.1.

Higher-order attacks combine data from multiple data points to determine the unshared
value [5], which increases the complexity significantly. These attacks were first proposed
by Kocher et al. in their original SCA article [5], and since then DPA has been extended
to Higher-Order Power Analysis (HO-DPA) with some successful practical usecases [42]. A
further development of HO-DPA is Multivariate Information Analysis (MMIA) [43], which
is a more generic approach compared to HO-DPA. Higher-order attacks attempt to find
correlations in a combination of multiple data points, but finding the correct data points is
one of the major challenges in these techniques. The state-of-the-art techniques are adopting
machine learning technologies to perform SCAs [44] or to deduce the value of the mask [45].
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3.3 Countermeasures
As a consequence of side-channel attacks, straightforward hardware implementations of ci-
phers cannot be considered secure. Researchers have since attempted to develop various
countermeasures against such physical attacks. Countermeasures that gain popularity are
thoroughly scrutinized by the research community to make sure that they are sound.

Some of the initial novel measures included adding random delays or noise in the execu-
tion, making the alignment of the sets difficult. However, this was deemed to be unsuitable
countermeasures since signal processing techniques could reduce their impact [46], [8], [47].
Instead, researchers started developing measures that could be mathematically proven to be
sound.

3.3.1 Share-Splitting and Masking

Two of the base concepts used as counters for AES are the secret-sharing scheme and masking.
In the secret-sharing scheme, a secret value is split into multiple shares. Combining the shares
results in the original secret value, but a single share, or any other combination of shares,
does not give enough information to deduce the original value [48]. Operating on a single
share does not leak any information through side-channels. For AES, the shares are created
by adding a random number to the input; one share is the sum of the random number(s) and
the input, and the other share(s) are the random number. Equation 3.5 shows how the shares
are created and the generic idea on how to extend it for more shares. The values mask0 and
mask1 are randomly generated numbers. Adding a random number to the original input is a
technique called masking. Intermediate values are randomized when operating on a masked
value, removing the correlation on the side-channels. This random value is added at the
beginning and removed at the end to reveal the correct result.

Share0 = input+mask0 +mask1

Share1 = mask0

Share2 = mask1

Equation 3.5: Share splitting scheme for three shares

Algorithms with only linear operations can operate on the shares in parallel and get the
correct result when recombining them. However, non-linear operations, such as the SBox
transformation of AES, are more complicated. The SBox has, as a consequence, been one of
the main focus areas for researchers. Multiple techniques have been developed, where some
were proven to be insecure later.

Additive and multiplicative masking techniques are two of the more straightforward
approaches early developed for the SBox. In additive masking, a mask is added to the value
and removed at the end. This masking technique is simple for linear operations but not for
non-linear operations. Instead, multiplicative masking was used for non-linear operations.
Algorithms integrating both types can use a combination of additive and multiplicative
masking. During the transition from one type of masking to another, it is important to
make sure that the signal is not unmasked at any step. Equation 3.6 shows a modified flow
of AES’ inversion using multiplicative masking [49].



3.3. COUNTERMEASURES 25

(x+m) | ×m′

(x+m)m′ | + (m×m′)
x+m′

(x+m′)−1

x−1m′−1 | + (m×m′−1)
(x−1 +m)×m′−1 | ×m′

x−1 +m

Equation 3.6: The transition from additive masking at the input to multiplicative masking
resulting in an additive mask

These masking schemes were developed with the assumption that gates only switch once
per clock tick. However, glitches are prevalent in digital circuitry and contribute significantly
to the dynamic power consumption. Stefan M. et al. investigated the current masked
implementations and proved how they were all susceptible to first-order DPA attacks due
to glitches [50].

3.3.2 Threshold implementation

Nikova et al presented a Threshold Implementation (TI) scheme for AES that does not leak
information, even in the presence of glitches [9]. Their initial observation was that, in a
shared implementation, linear operations do not leak information because each operation
only depend on a single share. On the other hand, non-linear operations must combine
shares to get a correct result when recombining them. Intermediate signals depending on all
shares can cause leakages through glitches. In their proposal, they formalized three properties
that must be fulfilled for a secure implementation:

1. Correctness

2. Non-completeness

3. Uniformity

The first property entails that the result of recombining the shares must give the same
result as if the original implementation was not shared at all.

The second property means that each function should be independent of at least one input
share. A linear operation fulfills this property, as it operates on a single share. However,
making a non-linear operation, such as multiplication, non-complete, requires additional
effort. A non-complete implementation of multiplying factors A and B requires a minimum
of three shares since it is impossible to derive two functions for the operations that fulfill
both correctness and non-completeness. Equation 3.7 shows a possible derivation of three
non-complete functions for a three share multiplication with the terms A and B. The functions
F0, F1, and F2 are all independent on one of the input shares. Combining the three functions
result in F = A×B.
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F0 = A1B1 +A2B1 +A1B2

F1 = A2B2 +A2B0 +A0B2

F2 = A0B0 +A0B1 +A1B0

Equation 3.7: Three share multiplication for threshold implementation

The last property implies that the input and output of a function must have a uniform
distribution. In a non-uniform distribution, there is a higher probability of getting one value
at the output than another, and if a signal propagates through a chain of these functions
with a non-uniform distribution, the peak of the skewed distribution will increase. No generic
functions have been found to give uniformity. Hence, the functions presented in Equation
3.7, which fulfill both properties one and two, are not secure implementations. A remasking
scheme adds fresh randomness to each of the functions to make them uniform [51]. A remasked
uniform version of the multiplier is shown in Equation 3.8 where Mn are randomly generated
values.

F0 = A1B1 +A2B1 +A1B2 +M0

F1 = A2B2 +A2B0 +A0B2 +M1

F2 = A0B0 +A0B1 +A1B0 +M0 +M1

Equation 3.8: A uniform three share multiplication for threshold implementation

Since the first research paper about TI by Nikova et al., a handful of variations have been
developed, some optimizing for speed, area, or the number of required fresh random bits.
Due to the importance of using masking schemes to protect against powerful side-channel
attacks, National Institute of Standards and Technology (NIST) announced a new project to
standardize threshold schemes for ciphers [13]. In July 2020, NIST released a roadmap with
requirements for the schemes [19].

3.3.3 Domain Oriented Masking

Another TI variation is the Domain-Oriented Masking (DOM) scheme presented by Hannes
Groß in [10]. A DOM implementation requires d + 1 shares to be secure against d-th order
SCAs. Each share forms its own domain. While TI schemes usually focus on the different
functions that make up the non-linear operations, DOM focuses on not combining shares of
different domains. As in a standard TI implementation, linear operations are not problematic,
and non-linear operations such as multiplications are more complicated. Multiplying the
shares of the two terms A and B, where A0 and A1 are the shares for A and B0 and B1 are
the shares for B, gives the product terms: A0B0, A0B1, A1B0, and A1B1. These terms are
split into two groups: inner-domain terms and cross-domain terms. Inner-domain terms only
have shares within one domain, i.e., A0B0 and A1B1. These terms do not cause any leakages
as they are not dependent on shares from other domains. Cross-domain terms combine
shares from different domains, i.e., A0B1 and A1B0. These are critical terms and can cause
leakages when combined with other terms. In DOM, a resharing step adds fresh randomness
to these terms to make the sum statistically independent. Figure 3.5 shows the first-order
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DOM multiplier [10]. The fresh random share r0 is added to both of the cross-domain terms,
meaning that the term is canceled when the shares are recombined. Furthermore, a register
follows the addition of the random share to ensure r0 has been added to the cross-domain
terms before it is recombined with the inner-terms. This register secures the output against
leakages through glitches when combining inner- and cross-domain terms.

Figure 3.5: A generic depiction of a first-order DOM multiplier [10]

The first-order DOM multiplier can easily be extended for higher-orders. Figure 3.6
shows a second order-secure DOM multiplier. As for the first-order secure multiplier, fresh
randomness is added to the cross-domain terms and followed by a register to prevent leakages
due to glitching. Two fresh random shares are required for a second-order secure multiplier,
which are canceled when recombining the output shares.

Figure 3.6: A second-order secure DOM multiplier [10]
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Most of the sub-components of a composite field SBox are linear; only the multiplications
and inversion in GF (24), as shown in Figure 2.5 are non-linear. This subfield inversion can
be further decomposed into three more non-linear multiplications in GF (22), as shown in
Figure A.2 in Appendix A. Thus, a hardened SBox using DOM utilize the DOM multipliers
and some additional registers to protect against glitches.

Equation (3.9) shows the calculation of how much fresh randomness is required per SBox
operation. There are three GF (24) multiplications and three more GF (22) multiplications
that require four and two bits of fresh randomness per execution. The input byte must also be
masked at the start by the additional shares. The bandwidth for fresh randomness required
by the accelerator is the number of shares in the system subtracted by one and multiplied by
26. Hence, a two-share implementation requires 26 bits- and a three-share implementation
would require 52 bits of fresh randomness for every SBox execution.

randombits =
= (NrShares− 1)× (DataSize+MultsGF (24) × 4 +MultsGF (22) × 2)
= (NrShares− 1)× (8 + 3× 4 + 3× 2)
= (NrShares− 1)× 26 (3.9)



Chapter 4

RISC-V

RISC-V is an open-source Instruction Set Architecture (ISA) [52]. The development of RISC-
V has been ongoing since 2010 and has seen an increase in popularity since establishing the
RISC-V foundation. More and more developers and companies are adopting the technology
and contributing to its development, which helps strengthen its maturity.

4.1 RISC-V Modularity
One of the key strengths of RISC-V is its modularity, which enables the development of more
specialized cores without an abundance of unused instructions. When developing a RISC-V
core, one can start by selecting one of the five base instruction sets that contain the minimum
number of instructions required for an operable core. Afterward, one can either extend this
by adding custom instructions or using the official RISC-V Instruction Set Extensions (ISEs).
There are five base instruction sets and 21 official ISEs for RISC-V, where some are still under
development [53]. Table 4.1 lists some of the standard base and extension instruction sets.

Name Description
Base Integer
RV32I 32-bit Instruction Set
RV32E 32-bit with 16 registers Instruction Set for embedded
RV64I 64-bit Instruction Set
RV128I 128-bit Instruction Set
Standard Extension
M Integer Multiplication and Division
A Atomic Instructions
F Single-Precision Floating-Point
D Double-Precision Floating-Point
C Compressed Instructions
B Bit Manipulation
K Scalar Cryptography

Table 4.1: Some of the standard RISC-V base and extension instruction sets

4.1.1 Scalar-Cryptography Extension
The open-source scalar cryptography extension is one of the newly ratified extensions, which
is available in [16]. This extension defines instructions and their behaviors for the two-

29
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block ciphers AES and ShangMi, the hash algorithm SHA2, a handful of bit manipulation
instructions, and entropy that can be used to generate cryptographic secrets [54].

The technology used for security applications requires a thorough design process. Modern
ciphers use large secret key sizes, making brute-force attacks infeasible with today’s technol-
ogy. Instead, researchers have turned their eyes to the hardware where they are implemented.
As presented in Chapter 3, physical devices can leak information that is advantageous to
an adversary. The design policies In the proposal for the scalar-cryptography extension
for RISC-V, the developers present a set of policies that were used during development.
They specify that the proposed instructions must not be timing-dependent to prevent timing
side-channel attacks, but they do not apply any countermeasures against electromagnetic
or power side channels. Instead, recommendations are given in the proposal where deemed
relevant [54].

AES Instructions

The crypto extension defines four 32-bit instructions for Advanced Encryption Standard
(AES): two for encryption (AES32ESI and AES32ESMI) and two for decryption (AES32DSI
and AES32DSMI). There are two instructions per encryption/decryption in order to differ-
entiate between the last round where MixColumns is not executed. The three or four letters
at the end of the instruction names are abbreviations where d is decryption, e is encryption,
s is sub-bytes, m is mix-columns, and i is immediate [55]. Figure 4.1 shows the format of an
encrypt middle-round instruction, where bits [29:25] are used to define the type of instruction.
Each instruction contains four variables: the immediate value byte-select (bs), source register
addresses in rs1 and rs2, and destination register address in rd. Additionally, the first seven
bits declare the opcode for AES instructions. The expected behavior for this instruction is
described in pseudo-code in Listing 2.

Figure 4.1: Format of AES32ESMI instruction which is a encrypt middle-round instruction
[54]

function clause execute (AES32ESMI (bs,rs2,rs1,rd)) = {
let shamt : bits(5) = bs @ 0b000; /* shamt = bs*8 */
let si : bits(8) = (X(rs2)[31..0] >> shamt)[7..0]; /* SBox Input */
let so : bits(8) = aes_sbox_fwd(si);
let mixed : bits(32) = aes_mixcolumn_byte_fwd(so);
let result : bits(32) = X(rs1)[31..0] ^ rol32(mixed, unsigned(shamt));
X(rd) = EXTS(result); RETIRE_SUCCESS
}

Listing 2: Expected behavior of AES crypto instructions [54]
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Figure 4.2: Microarchitecture of
single byte AES implementation

One of the criteria by National Institute of
Standards and Technology (NIST) when selecting
AES was that it had to be able to run on an
8-bit Central Processing Unit (CPU) [23]. The AES
behavior specified by the Scalar-crypto extension uses
a combination of 8-bit logic and 32-bit logic. Figure
4.2 gives a visual representation of the behavior
described in Listing 2. The 16-byte state matrix
is stored by columns in four 32-bit variables and
input through source register rs2. One of the
four bytes of each column is selected using the
immediate bs variable. For each column of the
new state matrix, the bytes in the previous state
matrix must be input in the column order as if a
ShiftRow operation has been executed, as was shown
in Equation (2.10). The selected byte propagates
through the Substitution-Box (SBox) and then the
MixColumns, where it is multiplied by the vector [3,
1, 1, 2]. As shown in Chapter 2.3.4, each input byte
is multiplied by a shifted version of the same vector.
The last operation ShiftBytes shifts the four-byte
output of MixColumns to match the corresponding
shifted vector for the input byte. Four instructions
are required for each column, totaling 16 instructions
per round, which is one for each byte in the state
matrix. The result of the three first instructions is
input back through rs1, which accumulates a correct
column result. Initially, the first input rs1 contains
the corresponding column of the round key.

Listing 3 shows how the instructions are called
for one column in the input matrix; K0 contains
4-bytes of a round key column, while Tn contains the
column values of the state. The diagonal is chosen from the matrix, which creates the
row-shifting transformation of AES. These four instruction-calls modify the value of K0,
which accumulates to the result of an entire column. Because of the commutative property
of finite fields, the order of these instructions is not critical.

/* AES32ESMI rd, rs1, rs2, bs */
AES32ESMI K0, K0, T0, 0
AES32ESMI K0, K0, T1, 1
AES32ESMI K0, K0, T2, 2
AES32ESMI K0, K0, T3, 3

Listing 3: Instruction calls for a column in the state in a round

The scalar-crypto ISE includes an Hardware-Descriptive Language (HDL) implementation
for the AES functional unit and an assembly application for encryption, decryption, and the
key scheduler. The hardware implementation uses an unprotected Boyar SBox [32], which
results in an implementation that may leak information through its side-channels.
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4.2 Core-V Family
From the official RISC-V website, there are, at the time of writing this, 111 open-source
cores that are available online, and more are under development [56]. Some of these cores
belong to the Core-V family developed by the OpenHW group. The OpenHW group is a
collaboration of individual developers and organizations who develop open-source Intellectual
Property (IP), tools, cores, etc [14]. The Core-V family is a set of seven cores developed
for various applications such as Internet-of-Things (IoT) and Unix Operating systems [15].
Silicon Labs have been a significant contributor to the RISC-V project, especially in the
CVE4 subgroup. CVE4 is a group of small and efficient cores designed for IoT applications.
The CVE4 cores started as a continuation of the RI5CY core from PULP with CV32E40P
but were further extended with two new cores: CV32E40S for more secure applications [57]
and CV32E40X for more compute-intensive applications [58].

4.2.1 CV32E40X Core

The CV32E40X is an open-source four-stage in-order 32-bit core with the four pipeline stages:
Instruction Fetch (IF), Instruction Decode (ID), execute (EX), and write-back (WB) [59].
All components used in the various pipeline stages can be seen in Figure 4.3. Instructions
are fetched from memory to the core by the IF stage. The IF stage implements a prefetcher
that fetches instructions even when the preceding stages are halted in an attempt to reduce
the delay of fetching instructions from memory. The fetched instructions are decoded in the
ID stage, where control signals are set, data is acquired from the instruction itself and from
the register file, and prepared for the EX stage. What control signals are set and information
acquired is dependent on the opcode and other control bits of the instructions. The execution
stage implements four functional units for the various instructions: a load-store unit (LSU),
control and status registers (CSR), Arithmetic Logic Unit (ALU), and multiplication/division
unit (MUL/DIV). The result from EX is passed to the WB stage, where it is written back
to the register file. The results from EX and WB can also be fed back to EX if the following
instruction requires this result.
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Figure 4.3: Block diagram for the CV32E40X core [59]

4.2.2 eXtension Interface

One of the more innovative technologies implemented in CV32E40X is the eXtension Interface
(XIF), where coprocessors or accelerators can be connected to the core without modifying the
design directly [60]. This enables developers to create accelerators in an isolated development
and verification environment before connecting them to the more complex core pipeline. The
XIF innovation is a consequence of the extendability of the RISC-V ISA. Figure 4.4 gives a
visual representation of how the custom coprocessor is connected to the core pipeline.

Figure 4.4: A coprocessor connected to a core using the XIF.



4.2. CORE-V FAMILY 34

The XIF is split into six sub-interfaces: compressed, issue, commit, memory, memory
result, and result. When the ID stage receives an instruction with an unknown opcode, the
core attempts to offload it through the issue interface. The coprocessor must, in turn, reply
with whether the instruction is accepted. The issue interface will pass on the instruction,
register file values rs1, rs2, rs3 from addresses defined at instruction index [19:15], [24:20],
[31:27], and an identifier for the instruction. If the instruction is compressed, it will first be
offloaded to the coprocessor to be uncompressed, and then returned to the core, before it is
posted back on the issue interface as a regular instruction.

Instructions that are offloaded to a coprocessor are speculative and there is a chance that
it is invalid and must be flushed. For example, the ID stage must be flushed if the EX stage
executes a branch instruction that is accepted. Since the instruction is already offloaded to
a coprocessor at this point, the XIF must invalidate the instruction, which is done through
the commit interface. Each instruction must be validated before the coprocessor writes back
the results.

All load and store operations are requested through the memory interface. The copro-
cessor posts a request with the id of the instruction, the virtual address of the memory,
the privilege level, the data to write (if it is a store), and information such as if it is the
last memory transaction of the instruction and if it is speculative. The core can execute
these operations as standard load/store instructions, and responds using the memory result
interface with the data for a load operation and various information such as if it caused a
bus error or if it caused a debug trigger.

When the coprocessor has finished its execution, and the commit interface has validated
the instruction, the result can be written back through the result interface. The return packet
includes the id of the instruction, the resulting data and its register file address, various status
values, and exception codes.



Chapter 5

Design and implementation

5.1 Introduction
This chapter describes the practical design and implementation of this work. The task at
hand is to implement a first-order Side-Channel Attack (SCA) secure Advanced Encryption
Standard (AES) accelerator for the CV32E40X core [61] in the OpenHW Core-V family [15]
using V1.0.1 of the scalar cryptography ISE [54]. CV32E40X implements a novel generic
coprocessor interface eXtension Interface (XIF) [60], meaning that the accelerator can be
developed without having to alter the internal Hardware-Descriptive Language (HDL) of the
core. However, this also means a wrapper must be developed to connect it to the core. A
thorough verification and simulation environment is available for the CV32E40X [18] where C
or assembly applications are compiled and used as stimuli for simulation. An AES encryption
and decryption application have also been developed using the implemented instructions to
verify the behavior of the accelerator after a thorough development process. All the designs
are available on GitHub and the structure of each repository is described in Appendix B.

Three main designs are developed in this work: the Substitution-Box (SBox), the complete
accelerator, and the XIF wrapper. An overview of the complete system is shown in Figure
5.1. The CV32E40X pipeline is shown in the lower half of the figure in blue and gray, while
the three levels of depth of the AES implementation are shown in varying shades of orange
in the upper half.

35
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Figure 5.1: An overview of the CV32E40X core and how the AES accelerator will be connected
to it.

5.1.1 Approach

The design process consists of three steps to facilitate the complex system’s precise and
thorough development: logic design using microarchitectures, behavioral verification through
high-level models, and HDL implementation and verification in SystemVerilog.

The microarchitecture is a block diagram that illustrates all subcomponents and their
connections. Large and complex designs consist of many components and connections that
are hard to keep track of manually. A microarchitecture is a visual aid to keep track of the
entire system, and it is a great tool for describing the design.

Debugging hardware implementations is a time-consuming and challenging task. The
high-level code is a step to verify functional behavior before implementation in hardware.
By verifying that functions produce the expected result, a developer can trust that the
implementation should work. This model can also be used to acquire intermediate values for
further debugging or verification.

After developing the design and verifying its behavior through the high-level model, the
design is implemented in hardware using SystemVerilog and verified through the verification
environment.

5.1.2 Chapter Structure

The rest of this chapter is structured as follows: firstly, the SBox design is presented and
discussed in Section 5.2 since it is such a central component in the AES accelerator and one
of the more complex components in the system. Afterward, the complete accelerator design
is presented and discussed in Section 5.3, followed by the XIF wrapper in Section 5.4. In the
end, a C application is presented, which uses the instructions in functions for key-scheduler,
encryption, and decryption.
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5.2 SBox Implementation
The principle of the Substitution-Box (SBox) was presented in section 2.3.2; in short, the SBox
is a non-linear operation that consists of an inversion in GF (28) and an affine transformation.
Only the affine transformation is different from the encryption and decryption processes. This
operation is typically implemented directly in hardware using the tower-field approach rather
than storing a lookup table in Read-Only-Memory (ROM) for a more area-efficient design
[29].

5.2.1 Masking Scheme

As described in Section 2.3.2, Canright’s composite field inversion is area-efficient in hardware,
but a straightforward implementation is not secure against SCAs. Since the non-linear
component of the SBox, the GF (28) inversion, is the most complex component and hardest
to protect, it has received a lot of attention from researchers wanting to secure it. Some of the
countermeasures against SCAs were presented in Section 3.3. One of the presented techniques
is the Domain Oriented Masking scheme by Hannes Groß [10], which will be used in this work.
This technique was chosen because of the thorough groundwork that was put into proving its
hardness, in addition to its simplicity. It is similar to a standard threshold implementation
scheme, but it requires less fresh randomness due to its composite field multiplier design, as
shown in Figure 3.5. A generic version for higher-order implementations was also presented in
[10], highlighting the simplicity of extending the scheme to higher-orders since the composite
field multiplier the only non-linear component that require special attention in the protection
scheme.

5.2.2 Microarchitecture

Implementing a Domain-Oriented Masking (DOM) scheme for the Canright inversion con-
sists of two steps: share-splitting and protecting cross-domain terms. The complete AES
accelerator will input two shares into the SBox, one for each domain. The linear operations
of the SBox can be duplicated and operated on the inputs in parallel, while the non-linear
operations must be modified. The first line in Equation 5.1 describes the composite field
operations for the uppermost nibble of an inversion in GF ((24)2), where Xh and Xl are the
upper and lower nibble of the isomorphically transformed input, v is a constant from the
irreducible polynomial, and Yh is the higher nibble of the inverted result. To implement a
two-share version of this operation, the input and output variables, X and Y, are split into
(Xa and Xb) and (Ya and Yb). Equation 5.1 shows the implementation of share-splitting in
the second line and the operations for the individual share domains in the following two lines.
The lower nibble result equations are similar, except that the first multiplication uses the
higher input nibbles instead of the lower nibbles.
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Yh = Xl[XhXl + (Xh +Xl)2v]−1

⇓
Yah + Ybh = (Xal +Xbl)[(Xah +Xbh)(Xal +Xbl) + (Xal +Xah)2v + (Xbh +Xbl)2v]−1

⇓
Yah = Xal[(Xah +Xbh)(Xal +Xbl) + (Xal +Xah)2v+(Xbh +Xbl)2v]−1

Ybh = Xbl[(Xah +Xbh)(Xal +Xbl) + (Xal +Xah)2v+(Xbh +Xbl)2v]−1

Equation 5.1: A two share split for the higher nibble of GF (28) composite field inversion

The non-linear components of the inversion are the multipliers and the second inversion,
which also consists of three subfield multiplications. The second step is to swap the multipliers
with the DOMmultipliers in both GF (24) and in GF (22). Figure 5.2 shows a shared inversion
implementation using the DOM SBoxes. Parts of the figure are implemented following
Equation 5.1. The higher nibble for each of the shares are output from the last multiplication,
wherein the lower nibbles of the input are multiplied by the inverted result of the intermediate
values. The GF (24) inversion combines intermediate values of Share A and B. Both shares
go through the square-and-scale stage where the sum of the higher and lower nibbles are
squared and multiplied by a chosen parameter v. The result of this is added to the result of
the multiplication and then inverted. A similar path is given for the lower output nibbles,
but these are multiplied by the higher input nibbles.

Figure 5.2: Non-pipelined version of DOM SBox. Differing colors represent the domains:
blue for domain A and green for domain B.
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The input to the SBox is originally in GF(28), and an isomorphic mapping must be
used to convert to a value in the composite field GF(((22)2)2) and reversed after finishing
the inversion. The linear isomorphic transformation and its inverse used in this work were
derived by Canright in [30] and are shown in matrix format and by their respective XOR
chains in Equation 5.2a and Equation 5.2b.

δ × i =



io7
io6
io5
io4
io3
io2
io1
io0


=



1 1 1 0 0 1 1 0
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


×



i7
i6
i5
i4
i3
i2
i1
i0


=



i7 ⊕ i6 ⊕ i5 ⊕ i3 ⊕ i1 ⊕ i0
i6 ⊕ i5 ⊕ i4 ⊕ i0
i6 ⊕ i5 ⊕ i1 ⊕ i0
i7 ⊕ i6 ⊕ i5 ⊕ i0

i7 ⊕ i4 ⊕ i3 ⊕ i1 ⊕ i0
i0

i6 ⊕ i5 ⊕ i0
i6 ⊕ i3 ⊕ i2 ⊕ i1 ⊕ i0


(a)

(δ × i)−1 =



io7
io6
io5
io4
io3
io2
io1
io0


=



0 0 0 0 1 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 1 1 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0


×



i7
i6
i5
i4
i3
i2
i1
i0


=



i4 ⊕ i1
i7 ⊕ i6 ⊕ i5 ⊕ i3 ⊕ i1 ⊕ i0
i7 ⊕ i6 ⊕ i5 ⊕ i3 ⊕ i2 ⊕ i0

i6 ⊕ i1
i6 ⊕ i5 ⊕ i4 ⊕ i3 ⊕ i2 ⊕ i1

i7 ⊕ i5 ⊕ i4 ⊕ i1
i5 ⊕ i1
i2


(b)

Equation 5.2: Forward isomorphic transformation (a) and inverse isomorphic transformation
(b)
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The inversion that has been presented so far is only one of the two steps in the SBox
operation. The second step is the affine transformation, which is different for encryption and
decryption. It is a simple matrix multiplication and addition, as was shown in Section 2.3.2.
Similar to the isomorphic transformation, this operations also converts into eight chains of
XOR-gates as shown in Equation 5.3a and Equation 5.3b, where an are the bits of the input
byte and bn are the bits of the output.



b7
b6
b5
b4
b3
b2
b1
b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
1
1
0
0
0
1
1


=



a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a3 ⊕ 0
a6 ⊕ a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ 1
a5 ⊕ a4 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ 1
a4 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0 ⊕ 0
a7 ⊕ a3 ⊕ a2 ⊕ a1 ⊕ a0 ⊕ 0
a7 ⊕ a6 ⊕ a2 ⊕ a1 ⊕ a0 ⊕ 0
a7 ⊕ a6 ⊕ a5 ⊕ a1 ⊕ a0 ⊕ 1
a7 ⊕ a6 ⊕ a5 ⊕ a4 ⊕ a0 ⊕ 1


(a)

b7
b6
b5
b4
b3
b2
b1
b0


=



0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
0
0
0
0
1
0
1


=



a6 ⊕ a4 ⊕ a1 ⊕ 0
a5 ⊕ a3 ⊕ a0 ⊕ 0
a7 ⊕ a4 ⊕ a2 ⊕ 0
a6 ⊕ a3 ⊕ a1 ⊕ 0
a5 ⊕ a2 ⊕ a0 ⊕ 0
a7 ⊕ a4 ⊕ a1 ⊕ 1
a6 ⊕ a3 ⊕ a0 ⊕ 0
a7 ⊕ a5 ⊕ a2 ⊕ 1


(b)

Equation 5.3: Forward affine transformation (a) and inverse affine transformation (b)

The complete SBox implementation is depicted in Figure 5.3. This pipelined version
includes the isomorphic transformation before the inversion and the inverse transformation
afterward; and the forward and inverse affine transformation used for encryption or decryp-
tion, respectively. One thing to remark in this implementation is how the vector addition of
the affine transformation is only added to one of the shares. Since addition and subtraction
is the same operation in extension fields with the prime characteristic p=2, as was presented
in Section 2.2.3, adding the same element to an even number of shares would be canceled
when recombining the shares. Thus, elements that should not be canceled out at the end
must be added an odd number of times.
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Figure 5.3: A complete implementation of a pipelined DOM SBox using two shares.
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The pipeline stages are marked using red and stippled lines; five registers split the design
into six pipeline stages. For data to pass from one stage to another, the following stage must
be empty, or the stage ahead of that one must be ready to receive new data. Thus, data
will not overwrite data when passing through the pipeline. The implementation follows a
modified version of a valid/ready handshake protocol; when stage 2 is ready to receive, data
is stored in the stage 2 registers, and new data can be input into stage 1. The valid signal
on the input is also passed through the pipeline to enable or disable all operations of each
stage and validate the output. Data can be overwritten in a pipeline stage if the valid signal
is not high. An external ready signal is also input to the output stage, stage six, where data
is passed out from stage six only when it is ready to receive.

5.2.3 Pipeline Discussion

The five pipeline registers splitting the SBox into six stages are required to provide security
against glitching. Additionally, this reduces the critical path, which increases the maximum
possible frequency.

The first stage implements the isomorphic transformations, where the length of the XOR
chains used for this transformation, as seen in Equation 5.2a, have a variable number of gates
per bit. Thus, signals combining data from various bits would arrive at different times in the
second stage if the pipeline registers were not placed beforehand.

The DOM multiplier was described in Section 3.3.3. The stage three register is placed
before the inner- and cross-domain products are combined to make sure that the fresh
randomness is added to the cross-domain product first. Otherwise, if the inner- and cross-
domain products were combined before the fresh randomness arrived, the glitch would have
dependencies in both domains. The last three registers, stages four, five, and six, all follow
the same logic as the stage three registers as they are used in the DOM multiplier.

5.2.4 Implementations

The DOM SBox has been implemented both in python as a high-level model [17] and in
SystemVerilog [62]. The high-level model was first developed to verify the behavior and
correctness of the implementation. After verifying the correctness of the high-level model, it
was converted into SystemVerilog to be used in the AES accelerator.

5.3 AES Accelerator
The scalar crypto ISE has ratified a standard for developing AES accelerators for RISC-V
[54]. In the publicly available repository, one can find detailed documentation of the standard,
an example implementation of an AES accelerator, and complete encryption and decryption
application written in assembly. The microarchitecture of this example implementation was
presented in Figure 4.2, which has been used as a base to develop a first-order SCA secure
AES accelerator. The following sections will elaborate on the chosen design, and in the end,
there will be a discussion of the design choices that resulted in the current design.

5.3.1 Microarchitecture

The operational principle of the single-byte implementation was described in Section 4.1.1.
Figure 5.4 illustrates a 2-share pipelined version of the AES accelerator. The design is split
into four sections:



5.3. AES ACCELERATOR 43

1 The original unprotected single-share AES flow in the green section

2 A duplicate flow for the second share in the orange section

3 Control and data signals in the purple section

4 Output stage in the yellow section

Simple linear operations such as addition, MixColumns, and byte shifting can be executed
in parallel for both shares, so the green and orange are almost duplicates. The non-linear
SBox is more complex and cannot be duplicated for each share. Instead, the DOM SBox
presented in Section 5.2 has been used. There are two key differences between the green and
orange flows: Share2 is added to Share1 at the start to mask the input data, and the key,
input in rs1, is only added to one of the shares in the end. Which of the shares the key is
added to is not significant, but the key must be added to only one of the shares not to cancel
it out when the shares are recombined. A Random Number Generator (RNG) must feed the
accelerator with 26 random bits for each instruction, where 8-bits are used to split the input
into two shares, and the remaining bits are used in the SBox DOM multipliers.

The SBox must be pipelined to remove correlations that glitches can cause. Pipelining
adds complexity to control the data propagation. The purple section of the figure shows
the control signals used to input and output data without overwriting anything in any of
the stages. Some signals are used after the SBox and must, therefore, follow along in the
pipeline. This includes the byte-select and the instruction id used to identify the result at
the accelerator’s output. Other signals, such as decrypt and whether it is a middle round
where MixColumns is executed or not, are also input but not depicted on the figure.

An initial pipeline register must be placed before the SBox to prevent leakage through
glitches. If the selected input byte arrives at the XOR-gate of the second share, an unmasked
version of the selected byte could propagate through the initial linear stage of the SBox. This
glitch is prevented by placing a register after the share-splitting. Furthermore, the output of
the byte-select mux is only enabled when there is a valid input, where both the random bits
and input values must be valid. Again, this is to prevent operations from using unmasked
values.
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Figure 5.4: A 2-share AES accelerator implemented with a DOM SBox.
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5.3.2 Design Discussion

An implementation utilizing share-splitting requires more data to create the shares and
provide fresh randomness to the SBox. There are multiple approaches to supply this data
depending on if the shares are created in hardware or software. During the design of the AES
accelerator in this work, four different versions for supplying data were evaluated.

A core with an integrated RNG could fetch the required fresh randomness from this and
create the shares in software. This means that the application is responsible for masking the
input. All intermediate values for both shares are available and can be used as needed, but
this also means that more data must be input to the accelerator through the instructions.
The AES instructions defined by the Instruction Set Extension (ISE) standard only use two
out of the three registers that XIF can forward. By moving and compressing the uppermost
functional bits [29:25] to [14:12] and bs to [26:25], one could fit the third and last register to
input more data in [31:27]. The instruction format would then be as illustrated in Figure 5.5
instead of the original in Figure 4.1.

Figure 5.5: A modified version of the AES instructions considered to input more data into
the accelerator.

Modifying the instructions would change the implementation to add custom instructions
rather than following the official standard. The AES instructions are already implemented in
the Embecosm compiler available at [63]. Changing the instructions would require a modified
compiler that includes the custom instructions. There are plenty of resources online showing
how to add custom instructions to compilers, such as [64]. When using standard ISEs,
compilers and toolchains are typically maintained, while modifying a custom compiler adds
the additional work of maintaining the compiler.

Instead of inputting the two shares using two registers, it would be possible to split one of
the input registers into two 16-bit halves. The accelerator only needs to access one input byte
at a time, freeing the other three bytes. Placing the shares in the correct register locations
can be done using simple Arithmetic Logic Unit (ALU) instructions. A significant overhead
would be incurred for such an application in order to move data into the correct locations.

A slightly modified wrapper could also be designed to collect data from multiple instruc-
tions before passing it on to the accelerator. This version would require a more complex XIF
wrapper that can receive and prepare data from multiple instructions and then input this
to the accelerator when it has received all it needs. Multiple instructions would be needed
to insert the data, which would scale the application’s size. Such an implementation would
be easy to expand for higher-orders as another instruction could be used to input even more
data.

The shares could also be created directly in hardware if the accelerator is connected to
an RNG and can fetch the required random bits as they are needed. This means that the
applications do not have access to any intermediate values during the masked execution, which
could be considered a plus to minimize the information available for a hardened encryption
accelerator. This approach was chosen for this work because it complies with the standard
and requires no knowledge of non-standard instructions or behavior.

Table 5.1 summarizes the the four AES accelerator variations presented in the previous
paragraphs. The implementation where share-splitting happens in hardware was chosen
because it complies with the scalar-crypto ISE standard.
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Description Complies with
standard

Modified
wrapper Additional Work

1 Modify instructions
to add a third register No Yes Custom compiler

2 Split source register
in 2x16-bits No Yes Additional instructions for

moving data into source register

3 Input data using
multiple instructions No Yes Additional instructions for

inputting enough data

4 Share-splitting in
hardware Yes No RNG connected directly to

accelerator

Table 5.1: Summary of evaluated approaches for supplying the accelerator with enough data

5.3.3 Implentations

The hardened AES accelerator has been implemented in both python as a high-level model
[17] and in SystemVerilog [62]. The high-level model used the test vectors found in Federal
Information Processing Standards (FIPS) [2] to verify its correctness. Once the correct
behavior was achieved, the code could be manually converted into SystemVerilog. There are
many similarities in the written code due to the high-level model being implemented as it
would be in hardware. However, pipelining the design led to a more complex digital hardware
design.

5.4 Extension Interface Wrapper
The AES accelerator described in the preceding chapters will be connected to the CV32E40X
core using the extension interface. The interface works by attempting to offload an instruc-
tion if the Instruction Decode (ID) stage receives an unknown instruction. If successful, a
coprocessor executes the instruction accordingly and returns the result. Further details can
be found in Section 4.2.2.

A consequence of XIF being state-of-the-art is that there are few example implementations
using it that are available online. In an attempt to contribute to the open-source development
of RISC-V cores, one of the goals for the AES XIF wrapper is to develop a generic pipelined
implementation, in the sense that it can handle n instructions simultaneously in its pipeline.

5.4.1 Microarchitecture

Figure 5.6 depicts the microarchitecture for the XIF wrapper. It consists of three sections:
accept in green, commit in orange, and output in yellow. The first step of the wrapper is to
check for a match in the instruction opcode; in other words, check if it is a known instruction
for the accelerator. This check is done in the green accept section, where a valid signal is
activated if there is a match, the XIF issue is valid, the accelerator is ready to receive, and
the input source registers are valid. The accelerator must sample its inputs on the following
clock cycle when the valid and ready signals are high. The wrapper is ready to receive a new
input through the XIF if the accelerator is ready or there is no valid data on the input.

Since the core offloads instruction in its ID stage, the instructions are speculative. Hence,
the core must verify each instruction before the implementation can write back its results.
This validation is done through the commit interface whose logic is in the orange commit
section. The instruction id and destination address rd for each accepted instruction are
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stored in an accept First-in-First-Out (FIFO) buffer. When the core attempts to validate or
invalidate an instruction, the wrapper will compare the instruction id from the accept FIFO
output to the incoming commit id. If there is a match, the kill information is added to the
instruction id and rd address packet, and moved to the commit FIFO. When the accelerator
has a valid output, the coupled output id is compared to the commit FIFO output id. The
interface output result becomes valid if there is an id match, the output of the accelerator
is valid, and the instruction was not killed by the core. The output stage of the wrapper is
ready to receive new data if the XIF result ready signal is activated or if there is no valid
output from the accelerator.

Figure 5.6: eXtension interface wrapper with its three sections: accept in green, commit in
orange, and output in yellow.

If a purely combinatoric accelerator were implemented using this wrapper, a set of registers
would have to be placed before the accelerator to store the input data, or the accelerator itself
would have to implement input registers. Furthermore, the FIFOs could be replaced by some
additional logic to slightly reduce the area.

The number of entries in, or depth of, the FIFOs depends on the design. The commit
FIFO should have a depth according to the max number of instructions that can be executed
sequentially at the same time in the accelerator. For the AES wrapper, the commit FIFO
has a depth of four, which will be discussed in Section 6.1.3.

5.5 AES Application
The design in this work has, up to this point, been verified using the high-level model
developed for each stage. Nevertheless, the correctness of the hardware implementation
must also be verified. The OpenHW group has developed a large verification environment for
each of the cores in the Core-V family [18]. This environment uses a state-of-the-art compiler
from Embecosm [63] developed for the Core-V family, where instructions for all relevant ISEs
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are embedded. Instructions from the RISC-V scalar-crypto ISE are implemented and can be
enabled using the flags "zkne1p00" and "zknd1p00" for the "march" compile flag.

The scalar-crypto ISE provides an example assembly application for their implementation.
For this work, a new application has been developed in C using inline assembly instead to
provide a more comprehensible and readable application. Inline assembly enables the use
of assembly instructions directly in C. Listing 4 shows an example with an AES encryption
instruction with inline assembly. The volatile keyword at the start notifies the compiler to
not optimize this call, bs is the byte-select constant, while %0, %1, and %2 are the input and
output variables or registers.

asm volatile("aes32esi %0, %1, %2, bs": "=r"(out): "0"(in0), "r"(in1));

Listing 4: Example of an AES instruction call in c using inline assembly

There are four main functions included in the AES application, which are further elabo-
rated in the following sections.

1 KeyScheduler

2 Encrypt

3 Decrypt

4 Equivalent Decryption RoundKeys

A complete application implementing all these functions and an example of encryption
and decryption can be found in [65]. This application can be used for both the protected
AES implementation developed in this work and for the unprotected example available in the
scalar-crypto ISE [54]

5.5.1 KeyScheduler

The KeyScheduler algorithm was described in Section 2.3.5. For each N-word, the KeySched-
uler must do a word rotation, a Byte Substitution for the four bytes in the word, and add a
round constant to the result. Furthermore, if the input round key has more than six words,
each fourth block must run through the Byte Substitution.

Adding a round constant and rotating the bytes in a word are simple ALU operations.
Listing 5 shows the entire process executed for each N-th word, where ROTATE_32_LEFT
is a macro function that shifts the bytes in a 32-bit word to the right by one and inserts the
byte that falls of as the most significant byte; rcon is an array of round constants calculated
following Equation 2.13; and N is the number of 32-bit words in the secret key. Using the
encryption instruction AES32ESI, only the SBox is executed. The listing shows how four
instructions are used to substitute each byte in a word, where each individual byte is selected
from the variable word using byte-select 0-3. The result of each instruction accumulates in
the round_keys variable, which is why it is input through source register rs1 and destination
register rd.
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round_keys[i] = 0;
uint32_t prev_key_word_rotated = ROTATE_32_LEFT(round_keys[i - 1]);

asm volatile("aes32esi %0, %1, %2, 0":"=r"(round_keys[i]):
"0"(round_keys[i]), "r"(prev_key_word_rotated));↪→

asm volatile("aes32esi %0, %1, %2, 1":"=r"(round_keys[i]):
"0"(round_keys[i]), "r"(prev_key_word_rotated));↪→

asm volatile("aes32esi %0, %1, %2, 2":"=r"(round_keys[i]):
"0"(round_keys[i]), "r"(prev_key_word_rotated));↪→

asm volatile("aes32esi %0, %1, %2, 3":"=r"(round_keys[i]):
"0"(round_keys[i]), "r"(prev_key_word_rotated));↪→

round_keys[i] = round_keys[i] ^ (rcon[i/N - 1] << 24);
round_keys[i] = round_keys[i] ^ round_keys[i - N];

Listing 5: Procedure executed for each N-word in the KeyScheduler algorithm.

5.5.2 Encryption

Encryption, as described in Chapter 2.3, consists of three main steps: a lone AddRoundKey
at the start, Nr-1 rounds with MixColumns, and the last round without MixColumns. The
initial AddRoundKey is a simple XOR operation that can be performed by the ALU, while the
other two steps use the instructions AES32ESMI and AES32ESI, respectively. The procedure
is the same for a middle round and the last round, but the instructions change. Listing 6 shows
a middle-round encryption implemented in C. As observable in the listing, 16 instructions
must be used for each round, reflecting the 16-bytes or 128-bits block size. The instructions
execute the byte substitution, mix columns, and AddRoundKey, but the shift rows operation
is done by selecting bytes from the words as if they were rotated. The last instruction for
each column writes the column result back to the state matrix.
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uint32_t key_tmp[4] = {round_keys[i*4+0], round_keys[i*4+1],
round_keys[i*4+2], round_keys[i*4+3]};↪→

uint32_t cipher_tmp[4] = {cipher[0], cipher[1], cipher[2], cipher[3]};

asm volatile("aes32esmi %0, %1, %2, 0": "=r"(key_tmp[0]) : "0"(key_tmp[0]),
"r"(cipher_tmp[0]));↪→

asm volatile("aes32esmi %0, %1, %2, 1": "=r"(key_tmp[0]) : "0"(key_tmp[0]),
"r"(cipher_tmp[1]));↪→

asm volatile("aes32esmi %0, %1, %2, 2": "=r"(key_tmp[0]) : "0"(key_tmp[0]),
"r"(cipher_tmp[2]));↪→

asm volatile("aes32esmi %0, %1, %2, 3": "=r"(cipher[0] ) : "0"(key_tmp[0]),
"r"(cipher_tmp[3]));↪→

asm volatile("aes32esmi %0, %1, %2, 0": "=r"(key_tmp[1]) : "0"(key_tmp[1]),
"r"(cipher_tmp[1]));↪→

asm volatile("aes32esmi %0, %1, %2, 1": "=r"(key_tmp[1]) : "0"(key_tmp[1]),
"r"(cipher_tmp[2]));↪→

asm volatile("aes32esmi %0, %1, %2, 2": "=r"(key_tmp[1]) : "0"(key_tmp[1]),
"r"(cipher_tmp[3]));↪→

asm volatile("aes32esmi %0, %1, %2, 3": "=r"(cipher[1] ) : "0"(key_tmp[1]),
"r"(cipher_tmp[0]));↪→

asm volatile("aes32esmi %0, %1, %2, 0": "=r"(key_tmp[2]) : "0"(key_tmp[2]),
"r"(cipher_tmp[2]));↪→

asm volatile("aes32esmi %0, %1, %2, 1": "=r"(key_tmp[2]) : "0"(key_tmp[2]),
"r"(cipher_tmp[3]));↪→

asm volatile("aes32esmi %0, %1, %2, 2": "=r"(key_tmp[2]) : "0"(key_tmp[2]),
"r"(cipher_tmp[0]));↪→

asm volatile("aes32esmi %0, %1, %2, 3": "=r"(cipher[2] ) : "0"(key_tmp[2]),
"r"(cipher_tmp[1]));↪→

asm volatile("aes32esmi %0, %1, %2, 0": "=r"(key_tmp[3]) : "0"(key_tmp[3]),
"r"(cipher_tmp[3]));↪→

asm volatile("aes32esmi %0, %1, %2, 1": "=r"(key_tmp[3]) : "0"(key_tmp[3]),
"r"(cipher_tmp[0]));↪→

asm volatile("aes32esmi %0, %1, %2, 2": "=r"(key_tmp[3]) : "0"(key_tmp[3]),
"r"(cipher_tmp[1]));↪→

asm volatile("aes32esmi %0, %1, %2, 3": "=r"(cipher[3] ) : "0"(key_tmp[3]),
"r"(cipher_tmp[2]));↪→

Listing 6: A middle-round of AES encryption using the scalar-crypto instructions

Figure 5.7 depicts an example signal flow from when the core offloads and instruction
through XIF to when the wrapper writes the result back to the core. The XIF couples an id to
the instruction before offloading it on the issue interface and expects to see the corresponding
id when the wrapper writes the result back if the instruction has been committed. Once the
wrapper accepts the instruction, data from the source registers are input to the accelerator,
and data from the instruction, such as bs and instruction type, are decoded and also sent to
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the accelerator. After the data has propagated through the pipeline, the wrapper checks if
the id has been committed and, if so, validates the data on the XIF result interface. New
data can be passed to the output stage once the core has accepted the output from the result
interface.

Figure 5.7: Signal flow from when an instruction is offloaded to when it is written back to
the core.

5.5.3 Decryption

Decryption is identical to the encryption algorithm, except that it uses the AES32DSMI and
AES32DSI instructions, and the round keys are used in the reverse order, starting with the
last key. Furthermore, since the hardware implementation uses the same order of operations
for encryption and decryption, the equivalent decryption procedure must be used. This
means that the round keys must go through the inverse MixColumns before they are used in
decryption as described in 2.3.6.

5.5.4 Equivalent Decryption Round Keys

Using the round keys in the decryption algorithm must first go through the inverse Mix-
Columns operation. There is no direct way to perform the inverse MixColums operations
alone, but a combination of instructions can be used. Using an AES32ESI and then an
AES32DSMI, the byte substitution is canceled, and only the inverse MixColumns is left.
This is not done for the first and last four key words. Listing 7 shows the instructions used
to create the decryption round keys.
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uint32_t tmp = 0;
asm volatile("aes32esi %0, %1, %2, 0": "=r"(tmp) : "0"(tmp),

"r"(key_words[i]));↪→

asm volatile("aes32esi %0, %1, %2, 1": "=r"(tmp) : "0"(tmp),
"r"(key_words[i]));↪→

asm volatile("aes32esi %0, %1, %2, 2": "=r"(tmp) : "0"(tmp),
"r"(key_words[i]));↪→

asm volatile("aes32esi %0, %1, %2, 3": "=r"(tmp) : "0"(tmp),
"r"(key_words[i]));↪→

uint32_t tmp2 = 0;
asm volatile("aes32dsmi %0, %1, %2, 0": "=r"(tmp2) : "0"(tmp2), "r"(tmp));
asm volatile("aes32dsmi %0, %1, %2, 1": "=r"(tmp2) : "0"(tmp2), "r"(tmp));
asm volatile("aes32dsmi %0, %1, %2, 2": "=r"(tmp2) : "0"(tmp2), "r"(tmp));
asm volatile("aes32dsmi %0, %1, %2, 3": "=r"(tmp2) : "0"(tmp2), "r"(tmp));

decryption_key_words[i] = tmp2;

Listing 7: Algorithm that creates decryption round-keys for the equivalent procedure



Chapter 6

Results and Discussion

The implementations themselves are the main contributions of this work. In this chapter,
the size and performance of the various designs are compared to discuss the cost of security.
Furthermore, the security of the hardened implementation is evaluated and discussed.

6.1 The Cost of Security
Area and throughput are typically used to quantize a digital design. The more components,
the larger the area and the higher the cost. An area comparison before and after implementing
the countermeasure will clearly present the cost of increased security. The area is defined
using the unit Gate Equivalent (GE), which is the total area over the area of a 2-input NAND
gate. To give basis for others when comparing designs, the area of an XOR-gate is 2.33 GE,
and an AND-gate is 1.33 GE for the library used in this work.

The first-order Side-Channel Attack (SCA) secure Advanced Encryption Standard (AES)
accelerator will be compared to the baseline design that was developed for the scalar-crypto
Instruction Set Extension (ISE) [16] to present the area and throughput overhead caused by
the additional security.

6.1.1 Area of Implementations

Table 6.1 decomposes the total area for the baseline on the left and Domain-Oriented Masking
(DOM) pipelined on the right into their respective subcomponents, giving a clear picture of
what the more costly components are. The 2-share pipelined design is significantly larger
than the baseline, wherein the Substitution-Box (SBox) has the most significant contribution.
Within the SBox, pipeline registers are the most significant contribution, taking up 65% of the
area. The SBox in the scalar-crypto example implementation also significantly contributes
to their implementation area, but the overall area is small since they utilized the Boyar SBox
implementation.

There is also a significant difference in the area of the eXtension Interface (XIF) wrap-
pers. The baseline version requires input registers before the accelerator since it is purely
combinational, while the input registers are moved into the accelerator for the protected
implementation. As will be discussed in Section 6.1.3, the accelerator needs to hold at most
four instructions at a time. Hence, the second First-in-First-Out (FIFO) must have a depth
of four instructions. The FIFOs contribute to most of the area in the pipelined wrapper.

53
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Baseline DOM pipelined
Component Area [kGE] % of total Component Area [kGE] % of total
XIF wrapper 814.9 34.7% XIF Wrapper 1469.9 21.4%

FIFOs (2+4 depth) 1230.91 18.4%
Accelerator
with SBox 1535.6 65.3% Accelerator

With SBox 5254.6 78.6%

MixColumns 252.2 10.7% MixColumns 504.4 8.9%
SBox 720.82 30.7% SBox 3763.7 56.3%
Total 2350.2 100% Total 6687.7 100%

Table 6.1: Table decomposing the areas of the baseline and DOM pipelined implementations
into their respective subcomponents

The EX stage of a core typically implements some of the more complex components. The
areas of the Arithmetic Logic Unit (ALU) and multiplication unit from the CV32E40X core
are given in Table 6.2 with the area of the pipelined DOM implementation. Comparing the
core components area and the protected AES accelerator area, it is clear that the hardened
AES design is comparable to the other EX-stage components. On the other hand, the AES
accelerator can only execute four specific instructions, while the generic ALU can execute
more than 40 instructions. Hence, the cost per instruction is on the higher side for this AES
implementation.

Component Name Area [kGE]]
ALU 6772
MULT/DIV 4859
Protected AES 6688

Table 6.2: Area of CV32E40X core EX stage components in comparison to the area of the
AES accelerator

6.1.2 Critical Path

The protected implementation requires the use of registers in order to hinder leakage caused
by glitches. The additional pipeline registers significantly increase the implementation area;
furthermore, the maximum frequency of the design can increase if the critical path has been
shortened. The highest clock frequency a design can use is inversely proportional to the delay
through the critical path. Table 6.3 summarizes the critical path and the maximum frequency
for the baseline and pipelined implementations. The critical path delay was given through
the synthesis of the implementations. The baseline and the pipelined implementations have
a short critical path and, therefore, a high max frequency.

Version Critical Path [ns] Frequency [MHz]
Baseline 2.0 500
DOM Pipelined 1.5 667

Table 6.3: Critical path and maximum frequency for baseline and DOM AES accelerator
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6.1.3 Throughput Performance

The pipeline increases the maximum allowed frequency due to decreasing the critical path,
but it will also significantly impact the data throughput. Similar to the pipelined flow of
a core, the AES pipeline is split into stages that can execute their operations individually.
Thus, if the core and application are optimized and able to take full advantage of the pipelined
structure, the impact on throughput in the protected implementation should, in theory, be
insignificant.

Table 6.4 present the generic equations for approximating the number of clock cycles
required for a full encryption or decryption procedure. These approximations are based
on the assumption that all instructions are input sequentially, with no other instructions
in-between. In a more practical example, there would be additional instructions for moving
data and controlling the flow. The throughput of the pipelined implementation is split into
the best and worst approximations. The best is if the pipelined is fully taken advantage of,
and the worst is if instructions must propagate fully through the pipeline before the following
instruction can start.

Generic Equation AES-128 AES-256
Baseline 16×Rounds 160 224
Pipelinedbest baseline+ 2× pipeline_stages 172 236
Pipelinedworst baseline× pipeline_stages 960 1344

Table 6.4: Throughput comparison of AES accelerator implementations in clock-cycles, where
the pipelined implementation has 6-stages

The implemented AES design executes instructions sequentially like a standard pipeline.
However, the functions written for the application in Section 5.5 cannot utilize the pipeline
fully as that would cause a Write-Wfter-Read (WAR) hazard [3]. A WAR hazard is when
one instruction loads a value before it is updated by an instruction executed before it. Four
instructions are executed for each column in the AES encryption and decryption functions,
whose results are accumulated in a single 32-bit register. The first instruction must write
back its result before the next instruction can get the correct input. Some of the functions
could be optimized to enable one instruction call from each column to execute sequentially,
i.e., increasing the throughput of the worst result by a factor of four. In summary, a
straightforward AES application cannot take full advantage of the pipeline, but it is possible
to optimize the instructions to improve the worst-case throughput presented in Table 6.4,
resulting in throughput between the best and the worst.

6.1.4 Additional Costs

One of the strengths of the design used in this work is that the behavior of the accelerator
follows the description of the Scalar-Crypto ISE. The area and performance are significantly
impacted, but the original application can be used without modification. Thus, no additional
knowledge is required, and the application size stays the same. The accelerator must be
connected directly to an Random Number Generator (RNG) to achieve the desired behavior,
which adds to the cost. Since RNG is a critical component for masking, its design must be
thorough and secure. The RNG is one of the topics in National Institute of Standards and
Technology (NIST)’s roadmap for standardizing threshold implementations for cryptography
[19]
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6.2 Security Evaluation of the Implementation
The security of the accelerator in this work has not yet been verified by formal verification
nor by performing a physical SCA. The implementations have been based on the thorough
foundational work from various state-of-the-art countermeasures, creating a reasonable basis.
However, other leakages may have been overlooked during development, and the security of
the design must be formally verified and physically tested against SCAs to verify that it is
sound. Furthermore, only SCAs have been considered in this work. Injecting faults into
the design to induce faulty behavior can lead to further leakages that must be considered.
This chapter will attempt to elaborate on some security issues that should be discussed and
considered beforehand.

6.2.1 8-Bit Implementation

One of the criteria from NIST when selecting AES was that the cipher should be able to run
on an 8-bit Central Processing Unit (CPU) [13]. The scalar-crypto ISE takes advantage of this
behavior in their example implementation. In such an implementation, the instructions are
executed sequentially, while operations are typically executed in parallel for larger accelerators
that operate on full state columns. Performing SCAs on implementations doing parallel
operations is more difficult than sequential ones since the power consumption will overlap
information from all the parallel operations [44]. The baseline implementation used in this
work is both sequential and unprotected, but the protected implementation uses the share-
splitting scheme, which increases the number of operations executed in parallel and, thus,
adding additional noise by overlapping operations.

6.2.2 Expanding the Perspective

Taking a step back and changing the perspective to a CPU that implements the AES accel-
erator, opens for various security questions and considerations. The input to the accelerator,
the round keys, and state-matrix columns, are stored in external memory or in registers in
the CPU. The accelerator masks the input value with fresh randomness fetched from an
RNG. Hence, the inputs are untouched and contain secret values. The debug interface
is used during development to debug and verify the hardware. It implements powerful
debug features such as stepping through instructions, reading registers, and downloading
the firmware. This interface is typically disabled once the debugging phase of development
has finished. Suppose the interface is disabled during startup by setting a bit in the registers.
In that case, fault-injection attacks such as clock- or voltage glitching can skip instructions
that disable the interface [66]. Acquiring access to the debug interface would circumvent the
security of the cipher since its secret values could be read in plaintext.

Instead of hardcoding critical values such as the secret key directly into the firmware, a
secure and inaccessible memory could be used to store critical values. Some Internet-of-Things
(IoT) systems integrating a high level of security already do this, such as the local company
Disruptive Technologies [67]. Storing critical values in a secure and inaccessible memory
would make these safe initially. However, the critical values are still stored in the core
registers when using the scalar-crypto AES algorithm. A complete AES accelerator could
be implemented in order to remove this threat by directly accessing secure memory and
being input blocks from the core. Implementing a complete accelerator would disregard the
standard behavior but could potentially be more secure with a significant increase in area.
Table 6.5 presents the area of three complete AES-128 accelerators. The areas of the first
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two are significantly larger than the accelerator in this work, but the area of the first-order
secure DOM accelerator is comparable.

Complete AES-128 Accelerator Area [kGE]
Compact Threshold implementation [68] 11.1
Nimble Threshold Implementation [69] 8.1
First-order SCA secure DOM [10] 6.0

Table 6.5: The area of complete AES-128 accelerators from research papers and theses

Attempting to get access to the debug interface is often the place one starts for fault-
injection attacks. Other fault-injections techniques attempt to corrupt data that is used
during encryption and compare the corrupted result with the unmodified result. Differ-
ences between a corrupted and non-corrupted result could leak information such as the
secret key [70]. Side-channels could also be advertently integrated by an adversary during
chip-production as a trojan [71]. Hardware trojans are defined as malicious modifications
by untrusted third parties and may open back-door access to devices [72]. Depending
on the security level of the applications, these attack vectors should be considered during
development.

6.2.3 Extending Design for Higher-Order Protection

As discussed in Section 5.2.1, the DOM scheme was selected because of its generic design that
can easily be extended for protection against higher-orders. Hence, extending the accelerator
in this work to a higher-order is not a monumental task. A DOM implementation is secure
against d-th order attacks when using d + 1 shares, and so, three shares are required to
make the accelerator secure against second-order SCAs. Another duplicate flow similar to
the orange one in Figure 5.4 would be created for the third share, which would also be
added to the first share. The SBox would also have another similar flow to either of the
domains in Figure 5.3, but the multiplier must be swapped for the second-order multiplier
shown in Figure 3.6. These changes would make the implementation second-order secure
with a significant area increase. Additionally, the number of random bits required for each
instruction would increase as described in Section 3.3.3. A three-share implementation would
require 52 bits of fresh randomness for each instruction call.

The required security of an implementation is heavily dependent on the application.
First-order attacks have freely available resources online that reduce cost of getting started
with SCAs. Higher-order attacks are significantly more complex, but with the development
of moderns techniques and employment of machine learning algorithms, the complexity of
higher-order attacks could be abstracted away in the near future. In the end, the application
security must be evaluated against the cost to find a good balance.





Chapter 7

Conclusion

Since National Institute of Standards and Technology (NIST)’s endorsement, Advanced
Encryption Standard (AES) has become one of the most widely used ciphers. Its sim-
ple operations allow for efficient implementation in both software and hardware. Software
implementation can take advantage of standard instructions in processors, while hardware
accelerators are typically faster but require specialized hardware units. Information leakage
through power consumption was discovered in 1999 by Paul Kocher et al. [5], which resulted
in side-channel attacks that can deduce secret information through statistical analysis. A
straightforward implementation of AES is vulnerable to side-channel leakages. The typical
countermeasures for AES are threshold implementations and other variants of it.

In this work, a first-order Side-Channel Attack (SCA) secure AES accelerator was de-
veloped using the domain-oriented masking scheme for the CV32E40X RISC-V core by the
OpenHW group. The Domain-Oriented Masking (DOM) scheme was selected because of its
strong foundational basis, the low requirements of randomness, and the generic design that
is easy to expand to protect against higher-order SCAs. The accelerator is connected to an
Random Number Generator (RNG) that feeds it with the 26 bits of fresh randomness required
for each instruction. Eight random bits are used to mask the input and as the second share,
and the rest are used to mask the cross-domain products in the Substitution-Box (SBox)
multipliers. The simple linear operations of AES are duplicated for each share, while the
non-linear SBox must be modified. Some of the subcomponents of the SBox combine data
from both shares, such as the multipliers. The result of a function must be non-complete,
meaning that it is independent of at least one of the input shares, otherwise leakages could be
cause by glitches. Hence, the multipliers must be swapped with the DOM multipliers where
cross-domain products are masked by adding fresh-randomness. In the end, the shares are
combined to produce the expected result, which means that the inputs and outputs of this
accelerator follow the standard defined by the scalar-crypto Instruction Set Extension (ISE).

The accelerator is packed in a wrapper that connects to the CV32E40X core through the
extension interface. The wrapper implements logic to accept AES instructions, check if the
core has validated the instruction, and write the result back to the core.

The complete accelerator with the wrapper is 2.6 times larger than the unprotected
accelerator available in the scalar-crypto ISE repository. Furthermore, the throughput is
at most decreased by a factor of 6 for an unoptimized application that cannot take full
advantage of the pipeline.

It is crucial that security is considered in every step of the design process. This work fo-
cused on passive side-channel attacks, while more invasive attack vectors were not considered.
Security measures to mask leakages do not make a difference if an adversary gets access to
memory or internal debug features. Furthermore, for security critical components, the chips
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should be investigated after production to ensure that no malicious modifications have been
made. And as reflected in the area and throughput results, adding security is not free.
However, simple hardware attacks are becoming ubiquitous, and advances in higher-order
attacks result in sound and feasible approaches. It is critical to consider and discuss the level
of security required for new technologies because it can be challenging, or even impossible,
to protect a device after it has been produced.

7.1 Future Work
The security of the implementation in this work has not been verified due to the limited
time aspect. A formal verification method could be performed to test the security of the
accelerator by checking if any signals or glitches could leak information. Furthermore, the
design could be implemented in an Field-Programmable Gate Array (FPGA) to execute
first- and second-order side-channel attacks. The implementation in this work should be
secure against first-order and not against second-order attacks. The accelerator could also be
extended to be second-order secure to present the ease of extending the design and to discuss
the additional cost of securing against higher-orders, since one of the reasons that the DOM
scheme was selected in this work was its generic design that is simple to expand.

Additionally, the instruction flow for the AES application could be optimized to improve
pipeline utilization.



Appendix A

Composite Field Subcomponents

The irreducible polynomials used in each sub-field were presented in Equation (2.7). The
components in composite fields are dependent on the values chosen for the traces and norms
in the irreducible polynomials. For a more optimal hardware implementation, the traces are
usually set to 1 [30]. Since the irreducible polynomials can not be the same for any subfields,
the Norms cannot be set to 1 for

A.1 Operations in GF(28)/GF(24)
In normal basis, an element in GF(28) can be represented in GF((24)2) using (Y 16, Y ) as
A = ahY

16 + alY , with the irreducible polynomial as shown in Equation (A.1).

p(Y ) = y2 + τy + v = (y + Y )(y + Y 16) = y2 + (Y + Y 16)y + Y Y 16 (A.1)

This gives that the norm v = (Y )(Y 16) and trace τ = y+y16 → 1 = τ−1(Y +Y 16). Other
useful equations are given in Equation (A.2).

Y 2 = τY + v = (Y + Y 16)Y + Y Y 16 = Y 2

Y 32 = τY 16 + v = (Y + Y 16)Y 16 + Y Y 16 = Y 32 (A.2)

A.1.1 Inversion

The derivation of GF (28)/GF (24) inversion is shown in Equation A.3. The inversion property
given in Section 2.2.3 has been used as a starting point.
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p = (phY
16 + plY )

q = p−1 = (qhY
16 + qlY )

k = pq = 1 = (phY
16 + plY )(qhY

16 + qlY )
= phqhY

32 + phqlY
16Y + plqhY

16Y + plqlY
2 | Y 2 = τY + v and Y 32 = τY 16 + v

= phqh(τY 16 + v) + (phqlY + plqh)v + plql(τY + v)
= phqhτY

16 + (phqh + phql + plqh + plql)v + plqlτY

= phqhτY
16 + plqlτY + (ph + pl)(qh + ql)vτ−1(Y 16 + Y ) | 1 = τ−1(Y + Y 16)

= (phqhτ + (ph + pl)(qh + ql)vτ−1)Y 16 + (plqlτ(ph + pl)(qh + ql)vτ−1)Y
1 = τ−1(Y 16 + Y )
⇓

(1): τ−1 = (phqhτ + (ph + pl)(qh + ql)vτ−1)
(2): τ−1 = (plqlτ + (ph + pl)(qh + ql)vτ−1)
(1)− (2)→ phqh = plql

↓
(ph + pl)(qh + ql)vτ−1 = (phql + plqh)vτ−1

(1) : 1 = phqhτ
2 + (plqh + phql)v | × pl

pl = phplqhτ
2 + (p2

l qh + phplql)v | plql = phqh

pl = phplqhτ
2 + (p2

l qh + p2
hqh)v

pl = qh(phplτ
2 + (p2

l + p2
h)v)

qh = pl[phplτ
2 + (pl + ph)2v]−1

ql = ph[phplτ
2 + (pl + ph)2v]−1

Equation A.3: Derivation of inversion in composite field GF (28)/GF (24) for a normal basis

In block three of the equation, the identity, characterized by the Trace, is used to show
how the coefficient in front of the normal basis terms (Y 16, Y ) should be equal to the inverse
of the Trace constant.

The resulting two equations consist of five operations in GF(24) each, where four out of
the five operations can be shared since only the last multiplication differs. There are two
multiplications, two additions, and a square-and-scale. Where the last squares the sum and
scales the result by the constant Norm v.

Figure 2.5 visualizes the components and connections for the inversion described by
Equation A.3. Setting the Trace to 1 is more efficient for hardware implementations; thus,
the Trace variable is removed in the figure.

A.2 Operations in GF(24)/GF(22)
The finite-field GF (28) could also be transformed into the composite field GF ((((2)2)2)2).
An element B from GF (24) can be represented in GF (22) using (Z4, Z) as B = bhZ

4 + blZ,
while the irreducible polynomial as shown in Equation (A.4)

s(Z) = z2 + Tz +N = (z + Z)(z + Z4) (A.4)
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Z2 = TZ2 +N = (Z + Z4)Z + ZZ4 = Z2

Z8 = TZ4 +N = (Z + Z4)Z4 + ZZ4 = Z8 (A.5)

k = khZ
4 + klZ

k = pq = (phZ
4 + plZ)(qhZ

4 + qlZ)
= phqhZ

8 + (phql + plqh)Z5 + plqlZ
2 | Z8 = TZ4 +N and Z2 = TZ2 +N

= phqh(TZ4 +N) + (phql + plqh)N + plql(TZ +N)
= phqhTZ

4 + phqhN + (phql + plqh)N + plqlTZ + plqlN

= phqhTZ
4 + plqlTZ + (phqhN + phql + plqh + plql)N

= phqhTZ
4 + plqlTZ + (ph + pl)(qh + ql)N(Z4 + Z)

= (phqhT + (ph + pl)(qh + ql)N)Z4 + (plqlT + (ph + pl)(qh + ql)N)Z
⇓

kh = phqhT + (ph + pl)(qh + ql)N
kl = plqlT + (ph + pl)(qh + ql)N

Equation A.6: Derivation of multiplication in composite field GF (24)/GF (22) for a normal
basis

This gives that the norm N = (Z)(Z4) and trace T = Z+Z4 → 1 = T−1(Z+Z4). Other
useful equations are given in Equation (A.5).

A.2.1 Multiplier

In a multiplication two terms p and q are multiplied to create the product k. To do this, each
of the input terms are split into the subfield GF (22). Equation A.6 shows the calculation for
this operation.

Figure A.1 shows the multiplicator assuming that Trace T is 1. This multiplication can
be implemented using eight subcomponents in GF (22): three multiplications, four additions,
and one scale by constant N.
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Figure A.1: Multiplicator in composite field GF (24)/GF (22).

A.2.2 Inversion

The derivation of inversion in GF (24)/GF (22) is identical to inversion in GF (28)/GF (24)
as shown in Section A.1.1. The only difference is the use of trace T and norm N. Figure
A.2 visualizes the inversion in GF (24)/GF (22). One can quickly see that it has the same
structure and components as inversion in GF (28)/GF (24) just with components of a different
subfield.

Figure A.2: Composite field inversion for GF (24)

A.2.3 Square and Scale

The Square-and-Scale is a set of two sequential operations: square and multiply, or scale, by
a constant term. In this composite field the squared result is scaled by the constant Norm v.
Equation A.8 shows the computation of these two operations.
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k = khZ
4 + klZ

k = q2v = (qhZ
4 + qlZ)2(vhZ

4 + vlZ)
= (q2

hZ
8 + q2

l Z
2)v | Z8 = TZ4 +N and Z2 = TZ +N

= (q2
h(TZ4 +N) + q2

l (TZ +N))v
= (q2

hTZ
4 + q2

l TZ + (qh + ql)2N(Z4 + Z))v
= (q2

hT + (qh + ql)2N)Z4 + (q2
l T + (qh + ql)2N)Z)v

A = q2
hT + (qh + ql)2N

B = q2
l T + (qh + ql)2N

= (AZ4 +BZ)(vhZ
4 + vlZ)

= AvhZ
8 +AvlZ

5 +BvhZ
5 + bvlZ

2

= Avh(TZ4 +N) + (Avl +Bvh)N + bvl(TZ +N)
= AvhTZ

4 + (Avh +Avl +Bvh +Bvl)N + bvlTZ

= AvhTZ
4 + (A+B)(vh + vl)N(Z4 + Z) + bvlTZ

= (AvhT + (A+B)(vh + vl)N)Z4 + (bvlT + (A+B)(vh + vl)N)Z
Z4 ⇒

kh = (q2
hT + (qh + ql)2N)vhT + (q2

h + q2
l )(vh + vl)N

T = 1
= q2

hvh + q2
hvhN + q2

l vhN + q2
hvhN + q2

hvlN + q2
l vhN + q2

l vlN

= q2
hvh + q2

hvlN + q2
l vlN

= q2
hvh + q2

hvlN + q2
l vlN

kh = q2
hvh + (qh + ql)2vlN

Z ⇒
kl =(q2

l T + (qh + ql)2N)vlT + (q2
h + q2

l )(vh + vl)N
T = 1

= q2
l vl + q2

hvlN + q2
l vlN + q2

hvhN + q2
hvlN + q2

l vhN + q2
l vlN

= q2
l vl + q2

hvlN + q2
l vlN

= q2
l vl + q2

hvlN + q2
l vlN

kl = q2
l vl + (qh + ql)2vhN

kh = q2
hvh + (qh + ql)2vlN

kl = q2
l vl + (qh + ql)2vhN (A.8)

Equation A.8: Derivation of square-and-scale in GF (24)/GF (22)

The design of this square-and-scale operation is heavily dependent on the constant norms
v and N , and a generic figure will, therefore, not be shown given.

A.3 Operations in GF(22)/GF(2)
The lowest subfield of the composite field is GF(2), where the two-bit input is split into
two single bits. An element in GF (22) can be represented in GF (2) using (W 2,W ) as
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C = chW
2 + clW with the irreducible polynomial as shown in Equation (A.9). The Trace

and Norm for the prime field are both 1, which gives the equations shown in Equation (A.10)

p(w) = w2 + w + 1 = (w +W )(w +W 2) = w2 + (W +W 2)w +WW 2 (A.9)

N = 1 = W +W 2

T = 1 = W 2W

W 4 = TW 2 +N = (W +W 2)W 2 +WW 2 = W 4 (A.10)

A.3.1 Multiplier

Multiplication follows the same calculation as was shown for the multiplier inGF (24)/GF (22),
but the addition operation in multiplication for a field using the prime two can be executed
using the Exclusive-OR (XOR) and AND boolean gates, respectively. Figure A.3 shows how
the multiplication is built using boolean gates.

k = (khW
2 + klW )

k = pq = (phW
2 + plW )(qhW

2 + qlW )
= (phqhW

4 + phqlW
3 + plqhW

3 + plqlW
2 | W 4 = W and W 3 = (W 2 +W )

= phqhW + phql(W 2 +W ) + plqh(W 2 +W ) + plqlW
2

= (plql + phql + plqh)W 2 + (phqh + phql + plqh)W
kh = plql + phql + plqh

kl = phqh + phql + plqh

Equation A.11: Derivation of multiplication in composite field GF (22)/GF (2) for a normal
basis

Figure A.3: Multiplication in composite field GF (22)/GF (2) using boolean gates



A.3. OPERATIONS IN GF(22)/GF(2) 67

A.3.2 Inversion/Square

There are four elements in GF (22): {0, 1, x, x+1}, where there is no multiplicative inverse
for the zero element, and the multiplicative inverse for 1 is itself. That means that the last
two elements must be each others multiplicative inverse. Thus, inversion and square is the
same operation.

k = khW
2 + klW

k = q2 = (qhW
2 + qlW )2

= q2
hW

4 + q2
l W

2 | W 4 = W and W 2 = W

= q2
hW + q2

l W
2 | q2

h = qh and q2
l = ql

= qlW
2 + qhW

kh = ql

kl = qh

Equation A.12: Derivation of square in GF (22)/GF (2)

A.3.3 Square and Scale

The square-and-scale operation forGF (22)/GF (2) is identical to the one fromGF (24)/GF (22),
except for the different constant norm N instead of v. Equation A.14 shows the calculation
for this. It is observable that the resulting output vectors are strongly dependent on the
constant norm N. Therefore, a figure is not given for the generic implementation.

k = khW
2 + klW

N = NhW
2 +NlW

k = q2N = (qhW
2 + qlW )2N

= (qhW
4 + qlW

2)N
= (qlW

2 + qhW )(NhW
2 +NlW )

= qlNhW
4 + qlNlW

3 + qhNhW
3 + qhNlW

2 | W 4 = W and W 3 = W 2 +W

= qlNhW + (qlNl + qhNh)(W 2 +W ) + qhNlW
2

= (qhNl + qlNl + qhNh)W 2 + (qlNh + qlNl + qhNh)W (A.14)
kh = qhNl + qlNl + qhNh

kl = qlNh + qlNl + qhNh

Equation A.14: Derivation of square-and-scale in GF (22)/GF (2)
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Repository Structures

The designs in this work are available in four repositories:

1. Highlevel Model in Python [17]

2. Complete-Accelerator with Wrapper [62]

3. C-Application for AES [65]

4. eXtension Interface Wrapper [73]

B.1 Highlevel Model
The highlevel model [17] was developed in python and includes three implementations:

1 Standard AES

2 Scalar-crypto AES implementation

3 2-share DOM AES implementation

The standard Advanced Encryption Standard (AES) is a straightforward highlevel im-
plementation of AES as it could be implemented in software. The Scalar-crypto AES im-
plementation follows the design described in Section 4.1.1. It includes a composite field
Substitution-Box (SBox) as described in Section 2.3.2. The last implementation extends the
Scalar-crypto implementation to a two share version, which includes a DOM SBox.

B.2 Complete Accelerator With Wrapper
There are four HDL files in the src folder in this repository [62]

1 AES_protected

2 DOM_sbox

3 XIF_AES_wrapper

4 FIFO

The AES_protected contains the 2-share accelerator logic as shown in Section 5.3. The
DOM_SBox implements a pipelined domain oriented masking SBox as was described in
Section 5.2. The XIF_AES_wrapper contains the eXtension Interface described in Section
5.4, which includes the FIFO.
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B.3 C-Application
There is one AES file in this repository [65] that implements the four main functions described
in Section 5.5.

B.4 eXtension Interface
A standalone repository [73] has been made for the eXtension interface wrapper. The generic
design could easily be adapted for other accelerators that want to connect to the XIF.
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