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Abstract
Within the scope of this effort, our goal is to integrate all aspects of cinema

restoration into a unified conceptual framework, within which we will carry out the
Spatio-temporal restoration. The most important realization is that the majority of
degradations in older films, particularly structured defects, are temporally variant.
This means that structured artifacts that covered up information in a region in one
frame may disclose their content in subsequent frames even if they were covered up
in the previous frame. Therefore, rather than depending on the illusion, we suggest
repairing the damage by utilizing the Spatio-temporal environment instead of
relying on it. We present a Multi-scale Attention Residual Block based Decoupled
Spatio-Temporal Transformer (DSTT-MARB) for the purpose of restoring old film
while resolving typical old film artifacts. The DSTT-MARB is split up into two
sub-task: The first sub-task involves attending to temporal content flow on multiple
frames at the same spatial locations. This is accomplished by using a temporal
transformer block that is responsible for temporal information analysis. The second
sub-task involves the flow of content on the frame at all spatial positions. This
is accomplished by using another spatial transformer block that analyses spatial
features. The layering of the two transformer blocks interacting with one another
enables our proposed model to pay closer attention to both moving content and
texture information, and as a result, the convincing, as well as temporarily plausible
content that is attended can be conveyed to reconstruct the defect region. Also, a
hierarchical encoder is used prior to the spatial and temporal transformer blocks to
discover hierarchical features that preserve multi-level spatial patterns, which leads
to more delegate tokens for the transformers. When these two new designs are put
together, they do a prominent spatial-temporal attention module. The encoder
part also includes a Multi-scale Attention Residual Block (MARB) that extracts
features in multiple scales and combines them to obtain more robust features that
are fed into the hierarchical encoder.

The proposed DSTT-MARB model is trained in two different manners: video
inpainting and video denoising. The main objective is to figure out which one is
a more reliable approach to follow in the old film restoration task. Both video
inpainting and denoising approaches are evaluated in both reference and non-
reference image quality assessment metrics PSNR, SSIM, LPIPS and BRISQUE.
Along with the quantitative analysis, a qualitative evaluation is also conducted on
old film, which validates the effectiveness of the proposed methodology in the real-
world scenario. Current state-of-the-art models are also subject to the evaluation
process for a quantitative and visual comparison with the proposed DSTT-MARB
model.
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1 Introduction

Classic movies from decades ago still have the ability to evoke strong emotions
and stir up audience members’ imaginations. Unfortunately, we have experienced
a reduction in popularity due to the fact that viewers are no longer accustomed
to the poor resolution and unpleasant artifacts that are generated by the aging
of photographic film. Despite the fact that film restoration methods have been
created, the process of bringing such older movies back to life is still laborious
and time-consuming because of the analog nature of the format. The initial task
is to restore the film’s physical integrity. This is followed by a digital remaking
step in which distortion and artifacts are removed. Because such operations need a
considerable investment of time and resources that might have a range of millions
of dollars, they are presently done manually by professionals. As a result, large
sectors like publishing, television, and print have a pressing need for high-quality
restoring procedures to use on their massive amounts of old, damaged video content.
However, modern restoration is done digitally, which also requires the professionals
to inspect individual frames carefully, painstakingly retouch the imperfections, cure
the flickering, and so the costs associated with fixing an entire vintage film are
daunting. As a result, people have a strong need for a technology that is capable of
doing all of these laborious processes mechanically, making it possible to resuscitate
old films while giving them a contemporary appearance.

In general, older films are plagued by a variety of degradations, which, as far as
we are aware, there is not much research made that attempts to remedy. While it
is possible to use specialized frameworks for restoration in a step-by-step process,
one might not expect specialized systems to be generalized to the degradations that
occur in the actual world. In recent times, several degradations approach (61)(73)
have already been recommended to analyze real-world degradations. However,
these works primarily take into account the photometric deteriorations, including
graininess, haziness or blurriness, and global noise/distortions, instead of the struc-
tured flaws like scratches, cracks and so on that disrupt the most in older films.
(60) seeks to define complicated deteriorations in historical photographs; however,
its frame-wise operation on ancient movies does not maintain temporally stable
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Chapter 1 INTRODUCTION

Figure 1.1: Two scenes from a Norwegian film ’Den-forsvundne-polsemaker
(4)’ where yellow circles point to the typical old film artifacts

outputs.

Dust, scratches, blotches, flicks, and so on are just some of the elements that
can degrade an old film over time. Scratches and blotches are the most typical
examples of these types of factors. Scratches are typically caused by mechanical
rubbings that occur during the process of film duplication. Since scratches show up
in the position of the film strip on subsequent images over the film, The inclusion
of granules on the surface of the film, such as small hairs, dust, fingerprints, and so
on, is what causes blotches to appear. They are easily identifiable as bright or dark
spots of arbitrary form and structure, and they only show up in a single frame of
the movie film. This is their defining characteristic. Some examples of damaged
areas caused by scratches and blotches can be seen in Fig 1.1.

The content of the article is organized as follows: In chapter 1, the research
questions and contributions and some background knowledge related to the research
will be discussed. Following that, chapter 2 discusses some research works related
to video inpainting, video denoising, and old film restoration (both traditional and
deep learning approaches). After that, the proposed methodology of this research
will be explained along with some details about several components of the proposed
model. Then, the experiment part (chapter 4) comes into discussion, where dataset
collection, preprocessing, ablation study and a brief description of the training
setup are included. The representation of both quantitative and qualitative result
analysis and discussion take place in chapter 5. And finally, the article ends with a
discussion on the limitation and conclusion.
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Research questions and Contribution 1.1

1.1 Research questions and Contribution
According to the Figure 1.1, old film degradation is not similar at all to the tra-
ditional global image/video degradation like gaussian noise (37), blocky artifacts
due to jpeg compression (38), blur (43), and so on. This kind of dust or scratches
can be visible in any region of the image or video in an inconsistent manner. The
occurrence of these kinds of artifacts can not be predefined with an exact region
throughout the frames. It is highly possible that old film artifacts that are seen
in a region of a frame would not be visible at the exact location in the successive
frames of a video. And also, if we analyze the nature of these kinds of artifacts,
the degradation of the frame comes with missing valid or contextual pixels in the
affected region. Observing this nature, the solving approach may be formulated
as a video inpainting task. Inpainting is the process of recreating replacement
contents in missing portions of a frame in such a way that the alteration is both
aesthetically pleasing and semantically appropriate (29). However, this problem
might also be solved by a denoising approach where the main objective is to restore
the noisy image by removing physical degradation, keeping as many details as
possible compared to the clean true image (56).

In addition, video inpainting or denoising is a tough subject to solve because of
the challenges posed by complicated movements and the high emphasis placed on
temporal consistency. The inpainting and denoising techniques may be applied to
each frame separately for a basic method of doing video inpainting and denoising.
However, this disregards the motion constancy resulting from the video mechanics
and is thus unable to estimate changes in appearance that are not just minor
throughout the course of time in frame space. In addition to this, the implementa-
tion of this approach will always result in temporal discrepancies and significant
flickering artifacts. Most of the recent approaches use an optical flow estimation
sub-network that is used to maintain the temporal consistency in the output frames
(68) (63). The purpose of optical flow prediction is to derive an estimation of
the motion space based on the changing visual intensity over a time period. This
additional flow estimation network results in more computational latency in the
old film restoration process.

Considering the discussion above, the research questions can be formulated as
follows:

• Which approach is more feasible to follow for old film restoration tasks in
between Video inpainting or video denoising?

• How to maintain temporal consistency of the restored video sequences without

3



Chapter 1 INTRODUCTION

involving an optical flow estimation network?

These are the main research questions that are targeted to be resolved in this
research. However, apart from that, this research is aimed to achieve the following
objectives, which can be addressed as the research contribution:

• Developing a model been able to remove artifacts that the old films mostly
suffered from and produce a plausible restored video.

• Preserving temporal consistency of the restored video without involving a
separate network for optical flow estimation.

1.2 Background Study

1.2.1 Inpainting
The act of reconstructing a missing portion of an image or video in a manner that is
designed to be undetectable to the human eye is referred to as "inpainting." There
are two distinct aspects of inpainting, which are image and video inpainting. Image
inpainting is a technique that is used on older, more expensive images in order to
repair damaged areas of the image, remove scratches, and eliminate objects from the
image. The image inpainting technique has a wide range of applications the defect
restoration of images/videos, multimedia editing, the replacement of regions in an
image for the purpose of protecting a person’s privacy. Since the beginning of image
processing, scientists have been searching for a method to automatically guide
the process of inpainting. This notion of image inpainting dates back a very long
time ago. Image Inpainting is a process that restructures damaged areas or pieces
that have been misplaced in an image by exploiting the spatial information of the
adjacent regions (51). It is a procedure that involves performing operations on an
image with the purpose of either improving the image’s quality or removing an item
from the image. In other words, it is the process of attempting, on the basis of the
background information, to fill in any damaged or missing data in an image. Some
techniques focus on the application of structural inpainting, while others concen-
trate on the application of textural inpainting. Consequently, it is essential to pick
the appropriate method in accordance with the requirements. In general, method-
ologies for inpainting may be grouped into two distinct approaches: those based on
diffusion and those based on Exemplar. A method based on diffusion works very
well for images that lack texture (76). The origins of the Exemplar-based technique
may be traced back to the Exemplar-based texture synthesis (11). In comparison
to the Diffusion-based inpainting method, the Exemplar-based technique yields
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Background Study 1.2

superior results even in the circumstance of a significant amount of missing territory.

Videos communicate more effectively than voice, written words, or still pictures.
Several educational and industrial sectors are now using video as a medium for
learning as well as communication. Anyway, a video is a succession of frames, and
the end product of video inpainting should keep the spatial and temporal link intact.
While compared to image inpainting, the number of pixels that need to be filled in
when doing video inpainting is quite high. Surveillance video, cinematography, the
production of entertainment, and a variety of other instruments all contribute to
the creation of many videos that are used in everyday life. The vast majority of
the time, these videos are edited by hand, which requires both time and financial
investment. Therefore, it is important to provide an automated restoration system
for the old film, as well as automatic removal of objects from a series of frames
while maintaining a visually believable result. Therefore, the Video Inpainting
technique could make it practicable.

1.2.2 Image Noise
The term "noise" refers to an unexpected change in the content’s brightness or
color, and it is commonly caused by the technical limitations of the photograph
collecting sensor or by inappropriate environmental conditions. These challenges are
usually unavoidable in real-world situations, which makes picture noise a widespread
problem that has to be dealt with proper denoising strategies.

It is a challenging process to remove noise from a picture since the noise is
linked to the high-frequency information of the image, also known as the details.
As a consequence of this, the objective is to find a solution that minimizes the
amount of background noise while minimizing the amount of information that is
lost.

The existence of noise in an image may have an additive, multiplicative effect
on the overall quality of the image. The production of a distorted signal using an
additive noise follows the following rule

C(x, y) = I(x, y) +N(x, y) (1.1)

Here, I(x, y) is the intensity of the source image, and N(x, y) is the noise that is
added to form the distorted signal C(x, y) at the (x, y) pixel location. In a similar
manner, the Multiplicative Noise Model works by multiplying the initial signal
by the noise signal. It’s possible for noise to be introduced into the image at any
point throughout the process of acquiring or transmitting the photograph. There
is a possibility that noise is introduced into the picture as a result of a number
of different circumstances. The quantity of pixels in an image that is incorrectly
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Chapter 1 INTRODUCTION

colored is one of the factors that is used to quantify the amount of noise.

The most common contributors of noise in digital photographs:

• There is a possibility that the optical sensor will be affected by environmental
conditions.

• Image noise may be caused by low light levels and high sensor temperatures.

• Noise in the digital image might be caused by dust particles that are present
in the scanner.

The form of the noise and the statistical qualities it has are what set it apart
from other types of noise. There is a diverse assortment of different kinds of
noise. Gaussian noise, salt-and-pepper noise, poison noise etc. are by far the most
significant types.

1.2.3 Old Film Noise
The widespread use of digital imaging is inspiring many people who are passionate
about photography to convert their picture collection into digital format. The
scanning of negatives and positives, both transmissive media, are favored over the
printing of reflected images because these media have a wider variety of tonalities.
However, both the negatives and the positives are somewhat tiny, so they need
to be scanned at a high resolution in order to be watched on display or printed.
The picture scanned at a high quality also made it easier to see dust grains and
scratches on the surface of the photograph. In contrast, consumers are becoming
more concerned about these aesthetically objectionable flaws. These kinds of flaws
also exist in the film industry; the damage is one of the most recognizable aspects
of film footage. It’s become something of a visual cliché that for a video to resemble
actual film, particularly antique film, it must be covered with dust, glitter, and
scratches. Cinema, even contemporary film, does, in fact, suffer from these forms
of artifacts, although to a lesser extent. Film pictures are literally extremely small
bits of material, but when they are projected, they are magnified many times over,
which causes degradation. Because of the significant extent of magnification that
takes place, even a tiny piece of hair may appear as a noticeable length of rope
when watched in a projector. After the film has been scanned and converted into a
digital format, any degradation of this sort has already been a part of the picture
and, as a result, been converted into pixels, so there is no longer any sign of the
image content that is underlying.
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1.2.3.1 Categories of old film artifacts

• A major problem with vintage films is the accumulation of dust and filth.
They show as either dark or light patches in the image, depending on their
color. Every sort of old photograph has some amount of dust which is most
often seen on photographs that have been digitized from slides or negatives.
Image artifacts such as dust may be seen as either bright or dark areas. Dust
may show up in an image as relatively small proportion particles, and they
can occasionally seem to be rather thin and lengthy. Any particles of dust
that occur on the surface of each frame of film before it is scanned will be
permanently incorporated into the picture. Each individual particle of dust
is represented in the digital picture by a size that is just a few pixels wide,
and they are scattered in a manner that is completely random. Inadequate
storage conditions or contamination during the duplicating process are the
most common causes of dust (32).

• In more than one frame of the picture, scratches seems to be moving in the
direction of the film. If the vendor’s system has particles, this is the most
common source of the problem. According to the authors of the 1999 study
(52), Film line scratches, according to Kim and Kim (2009) (30), may be seen
as bright or dark vertical lines. In order to identify a scratch, there are three
things to look for: a lower or higher brightness than the surrounding pixels,
a vertically long thin line, and the ability to occur in consecutive frames.
Vertical line scratches on preserved film are a regular occurrence, according
to Kuiper and Sigmund (2005) (32).

• A humid storage environment is what leads to the growth of mold, mildew,
and fungus. In most cases, these biological organisms begin their assault on
the film roll from the outer edge and work their way inside. The emulsion
is susceptible to suffering severe harm at the hands of mold, mildew, and
fungus. At first, the growth seems like a series of matte-white patches, but
as it continues to spread, it transforms into a lacy pattern that resembles a
web (14).

• Image vibrations are caused by the film-transportation mechanisms of movie
cameras and duplicating equipment, which have a limited degree of mechanical
precision. It’s also possible that the shaky camera connection during the
shooting was the source of the problem. Regular movements of the camera,
such as tilting, panning, zooming, or rotating, might have image vibrations
layered on top of them. Image vibrations, often known as jitter, may be
attributed to the frequent loading, unloading, winding, and rewinding of the
film strips, as stated by Chambah (8). This causes damage to the film holes,

7



Chapter 1 INTRODUCTION

which compromises their ability to maintain a steady and repeated alignment
of the pictures while the film is being projected.

• Fluctuation in hue or global brightness that is noticeable from one frame to
the next is referred to as flicker. When we talk about variations being "global,"
we imply that they are consistent within a certain frame. According to Zhang
et al. (75), flicker is defined as changes in perceived picture intensity that are
not natural and do not come from the source scene. The old black-and-white
film is characterized by a flickering effect, which is said to have been generated
by the early cinema cameras’ erratic exposure times. Flicker is a phenomenon
that may occur in contemporary cameras as a result of interferences between
the exposure and the illumination when the footage is being recorded. Ohuchi,
Seto et al. (44) state that visual flickers are caused by a number of different
things, including unstable chemical synthesis, duplicating, the natural aging
phase of the film, and inaccurate post-processing. Dust and aliasing have
been added to the list of potential causes by Van Roosmalen et al. (58).

1.2.4 Old Film Restoration
There are several choices available to a user for cleaning up dust and scratch marks
on a digital photograph. Adobe Photoshop (1) provides users with a variety of
choices to choose from. A dust and scratch filter is one of the choices that may
be made, and it can be found in the "Filter/Noise" menu. The whole picture or a
specific section may be blurred with this method. There is no detection of any kind
carried out by it. It produces a hazy image when applied to the whole picture all at
once. The user may apply the filter on a regional scale by picking areas that have
flaws, although doing so involves a significant amount of human labor on their part.
In the event that a flaw manifests itself in a textured region, the filter will smooth
out the texture. The use of Photoshop’s stamp tool is yet another solution to the
problem of removing imperfections. Using this tool, faults in textured regions may
be repaired. However, using this program properly takes a significant amount of
effort and requires some prior experience.

In old film restoration, all available source content is analyzed and patched
together into the sequence recommended by exhibition history and production
documents in film restoration efforts to produce a particular version of the movie.
In order to make up for previous harm, picture and sound quality must often be
improved. Usually, the major goal is to recreate how the movie seemed when
it first came out. According to Haas et al. (52), the essential factors why film
restoration is necessary are as follows: Since the beginning of the 20th century,
the whole content that can be found in cinema and television archives serves as a
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record of the historical progression of cultural and creative expression throughout
all spheres of life. It is essential that it be protected. A restoration step is required
in order to maintain a copy in a state that is as similar to the original as is humanly
feasible. The economic benefit of restoring old films is the second motivation for
doing so. This increase paves the way for the formation of a new sector for film and
television archives as a result of the rapid development of communication mediums
such as multi-media, satellite, and cable TV. The fact that these records are only
partially usable without the restoration step, however, makes it vital for film and
television archives to undergo both maintenance and restoration.

9
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2 Literature Review

This chapter comprises of section-wise analysis of some previous research works
that are conducted on video inpainting, video denoising and old film restoration
field. It should be mentioned that both traditional and deep learning approaches
are presented in the old film restoration section.

2.1 Image denoising

2.1.1 Comprehensive Solutions for Removal of Dust
and Scratches from Images

According to Bergman et al. (39) image reconstruction can be thought of as a
challenge that has to be overcome when damaged pixels need to be fixed. Because
of this issue, the pixel that is being fixed, along with a significant number of the
pixels that are immediately next to it, may be damaged. This means that the
values of these pixels are only tangentially connected to their respective initial
values. Because of this, the reconstruction process should not take into account
the values found at these pixels. The faulty zones are simply smoothed out using
simple reconstruction techniques, such as the one described in (48). For instance, a
median filter or another kind of averaging may be used. The median reconstruction
is quite effective in terms of the amount of time it takes to do computations, but it
does not provide particularly high-quality images. An example of median correction
is shown in Figure 2.1 3(d). The flawed pixels have been corrected, but the huge
scratch may still be seen since the repair is too smooth and does not correspond to
the texture in that region.

One of the techniques that are used for local reconstruction is an extension of
the bilateral filter (57), which is a filter that reduces noise. When the nature of noise
follows a Gaussian distribution, the bilateral filter is able to differentiate between
the noise and the image features; in this case, it will get rid of the noise while
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Chapter 2 LITERATURE REVIEW

Figure 2.1: The results of the comparison of the reconstructions. (a) displays
the original photograph, and (b) provides a more comprehensive review of the
dust (b). (c) illustrates the defect location (d) median reconstruction. The figure
is taken from (39)
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keeping the features. The bilateral filter distinguishes noise, which holds a local
contrast that is comparatively lower, from features that have a local contrast that
is considerably large. This occurs when the noise follows a Gaussian distribution
having a known variance. When an image’s noise does not match a Gaussian
distribution, the bilateral filter may perceive substantial local differences as image
characteristics rather than flaws that need to be smoothed out. This occurs when
the noise does not have a Gaussian distribution. Consequently, the dust and scratch
issues would be exacerbated by the use of the bilateral filter.

For the purpose of cleaning dust and scratches from digital photos, (39) offered
a complete collection of algorithms. The work of removal was broken down into two
stages: the first stage was detection, and the second stage was rebuilding. Their
algorithms have been updated to include a number of new and improved features.
The software-only local detection stage makes use of differences in local contrast,
which allows the algorithm to differentiate between picture defects and preserve
image edges better than the more traditional gray level differences could. Their
research has led them to the conclusion that, in the absence of surrounding informa-
tion, regional features are required in order to distinguish between dust and scratch
defects and picture features that share comparable characteristics. Through the use
of simple yet perceptive heuristics, the phase of regional categorization successfully
eliminates any erroneous detections. To illustrate, the heuristic for identifying
texture is absolutely necessary in order to prevent blurry results. Glint removal
should be avoided at all costs since faces appear in the vast majority of photographs.

As part of the reconstruction process, the authors also take into account regional
factors in order to fix the texture. The contextual reconstruction is successful
in producing a restoration of the faulty pixels that is extremely convincing. The
repair performs better than local algorithms when applied to textures. The directed
reconstruction, which is their local method for mending from a defect map, is
effective at fixing damaged pixels, and it can often compensate for incorrect
detections by recreating the features. Due to the fact that it is a local technique,
it works best for situations in which performance is of the utmost importance.
They presented a four-tiered system of dust and scratch removal techniques that
are adaptable to a variety of contexts. They demonstrate that improved picture
quality may be achieved by either increasing the amount of side information or
relaxing the performance restrictions. The outcomes of the solution at each tier
match well with those of similar solutions offered by competitors.
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2.1.2 A Generative Adversarial Approach with Resid-
ual Learning for Dust and Scratches Artifacts
Removal

Following Mironică (40), it has been demonstrated that Generative Adversarial
Networks, more commonly referred to as GANs, achieve superior performance
in a wide range of automated image restoration tasks when compared to other
methods (33)(22). Because of this, the author decides to look into how GANs can
be used in the post-production system of movies. In this work, the author presents
a GAN-based approach to removing dust and scratches from film. The training
process is sped up with the help of residual learning, and the potency of denoising
can also be significantly improved. In this research, the authors present a method
that has been developed specifically for the purpose of repairing dust and scratch
defects that are present in older film pictures. It is possible to make use of the
multi-scale redundancy of natural image artifacts with the help of a novel approach
that is based on adversarial learning and is developed. The method can be broken
down into two components: a generator that is analogous to a feed-forward CNN
network and a discriminator that is analogous to the PatchGAN framework. The
author uses pixel loss, gradient loss, and perceptual loss in order to get the predicted
image closer to the reference image so that there is less of a difference between the
two. The author also aims to increase the perceived quality of the picture that
has been repaired, which is why we have added the adversarial loss in our algorithm.

According to the author, the state-of-the-art pix2pix algorithm (25) that is
integrated with Photoshop is also capable of removing the majority of artifacts;
however, this results in the resulting picture being fuzzy, and many crucial features
are lost in the process. This issue is solved in this research as the proposed architec-
ture is capable of capturing all the image details. However, the model evaluation is
conducted on the basis of the Peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM), which does not take into account the human
visual system or the perceptual aspect the image.
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Figure 2.2: (a) image with missing region of arbitrary shapes (b) inpainted
result of Iizuka et al. (24) (c) Yu et al. (69) (d) Partial Convolution (34)(e)
Ground truth. The figure is taken from (34)

2.2 Inpainting

2.2.1 Image Inpainting for Irregular Holes Using
Partial Convolutions

Recent image inpainting attempts have made use of deep neural networks, which
train contextual and relevant latent representations in an end-to-end way. This has
been done in order to improve accuracy. Images are processed using convolutional
filters by these networks, which replace any material that is filtered out with
a constant value. As a consequence of this, these methods are subject to the
drawback of being dependent on the initial hole values. This frequently takes the
form of a loss of texture in the hole areas, evident color contrasts, or false edge
reactions encircling the hole. When the output is conditioned on the hole values, it
finally produces a variety of visual artifacts, the removal of which requires costly
post-processing. These refinements, however, are not capable of resolving all of the
artifacts that are depicted as 2.2(b) and 2.2(c). Liu et al. (34) attempt to create
well-incorporated hole estimations that are irrespective of the hole initialization
parameters and do not require any further post-processing.

Another shortcoming of many contemporary methods is that they concentrate
on producing holes of the rectangular shape, which are typically presumed to be
centered in the picture. According to their findings, these restrictions may result in
overfitting the rectangle holes, which, in the end, reduces the value of these models
when they are applied. The authors collect a large baseline of images with irregular
masks of varied shapes so that we may concentrate on the more realistic irregular
hole use case. Within the scope of our study, they investigate not only the impact
of the hole’s shape but also the question of whether or not the holes make contact
with the image border.
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To sum up, the typical approaches to image inpainting relying on deep learning
employ a conventional convolutional network over the damaged image. These
techniques employ convolutional filter outputs that are convoluted on valid pixels
and the replaced values in the holes. In most cases, the substitution is done
with mean values. This frequently results in artifacts like color inconsistency
and blurriness in the image. Post-processing is typically utilized to lessen the
appearance of such artifacts. However, this method is costly and there is a chance
that it may fail. The authors recommend making use of partial convolutions, in
which the feature extraction is masked and renormalized such that it is conditioned
on just pixels that are valid. As an additional component of the forward pass, they
have included a system that will automatically create an updated mask for the
subsequent layer. When it comes to irregular masks, their model performs better
than previous techniques. In order to validate their technique, they provide both
qualitative and quantitative assessments with many different methodologies.

2.2.2 Decoupled Spatial-Temporal Transformer for
Video Inpainting

Even with successful deep learning algorithms, video inpainting is still a difficult
challenge since it seeks to fill the supplied Spatio-temporal holes with a natural
look. Recent efforts have been successful in achieving greater performance and
have introduced the prospective transformer framework into deep video inpainting.
However, it continues to have the issue of generating a fuzzy texture in addition
to having a very high computational burden. To this aim, Liu et al. present a
unique Decoupled Spatial-Temporal Transformer (DSTT) (35) for the purpose of
optimizing the video inpainting process while maintaining an exceptionally high
level of effectiveness. The task of learning spatial-temporal attention is separated
into two parts. The first sub-task involves attention to temporal object movement
patterns on multiple frames at the same spatial locations. This is accomplished
by using a transformer block that is temporally decoupled. The second sub-task
involves attention to similar background textures in the same frame at all spatial
positions. This is accomplished by using a transformer block that is spatially
decoupled. The pile of such two blocks interacting with one another enables the
proposed model to pay closer attention to background textures and moving objects,
and as a result, the convincing and temporally consistent appearance that is
attended may be transmitted to fill in the gaps. In addition, a hierarchical encoder
is used before the stacking of transformer units. This is done for the purpose
of learning resilient and hierarchical features that retain multi-level local spatial
structure, which ultimately leads to the production of more representative token
vectors. Their suggested model delivers superior performance to state-of-the-art
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video inpainting techniques with considerably increased efficiency, and the flawless
merging of these two innovative designs produces a superior spatial-temporal
attention framework.

2.3 Old Film Restoration

2.3.1 Digital Image Processing Techniques for Restor-
ing Old Damaged Films and Their Applications
to Korean Film Restoration

Kim et al. (28) chose frames that were temporarily nearby in order to clean up
any dust or blemishes. A motion estimator analyzes difference maps between
chronologically consecutive frames in order to account for the fact that motion
pictures feature dynamic frames. Estimating a motion vector requires reducing the
mean absolute error (MAE) between each pair of frames, and a specified region-of-
interest (ROI) is used in this process. In order to minimize the appearance of block
artifacts, the difference maps are then improved in the area around an object’s
border. In the end, defects are found by contrasting the motion-compensated areas
of two different frames and imposing topological connections. Figure 2.3 depicts
the algorithm that follows five steps: (i) motion map adjustment on the existence
of a defect, (ii) the assessment of inter-frame intensity correspondence, (iii) the
spatial restoration of the missing pixels, (iv) the frame restoration with respect
to the time domain, and (v) restoration in the remaining regions is done by the
distribution of texture.

The inaccuracy of the disparity map is due to the fact that flaws, such as Dust
and scratches, distort the image’s geometrical structure. In order to guarantee the
accuracy of the map, they first repeatedly propagate the area orientation toward
the border of the defects, and then they replace each displaced component with the
one that is considered to be the most indicative of its surrounding area, that is still
valid. In the third stage, they spatially restore an estimated picture pattern using
the same frame by iterative propagating from valid defect boundaries. This allows
them to use this structure as a starting point for further processing. After taking
advantage of the temporal neighborhood, the authors mix them together using a
filter with three taps. The last step in the process involves extracting a textured
pattern from a spatial region and inserting it into areas that have inadequate
temporal restoration.

17



Chapter 2 LITERATURE REVIEW

Figure 2.3: Dust and scratch removing algorithm proposed by Kim et al. (28).

2.3.2 Image Processing for Restoration of Heavily-
Corrupted Old Film Sequences

Saito et al. (50) describe several effective image processing algorithms that are used
for the flicker repair and scratch and blotch elimination activities. These activities
are also involved in the process of restoring ancient films. They provide a restoration
approach that, in order to correct flickering, first assesses the characteristics of the
restoration model based on an input of an older film sequence and then adjusts
the flickering based on the estimated model. Scratch and blotches are corrected
by filters that are of the blending kind. They make use of morphological image
processing for the purpose of scratch detecting, while for blotch identification,
they make use of the spatial-temporal continuity evaluation. The simulations have
shown that their methods are virtually flawless in removing flickers, scratches, and
blotches from images.

2.3.3 DeepRemaster
DeepRemaster (23) is one of the state-of-the-art technologies in the domain of
old film restoration. However, this restoration framework includes both artifact
removal as well as colorization steps. According to the authors (Satoshi Iizuka
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Figure 2.4: A series of b/w photos are fed into the model, and after being
restored using a preprocessing network, the authors utilize those as the luminance
channels for the colorization network. Figure is collected from (23)

and Edgar Simo-Serra), it is not as easy as applying a noise reduction technique
accompanied by a colorization technique in a pipeline form to remaster an ancient
video. The noise filtering operation and the colorization method are interconnected
and impact each other. In addition, the majority of older films are blurry and have
poor resolution; hence, improving the sharpness is essential in order to compensate
for these issues. The authors propose a comprehensive pipeline for remastering
black-and-white videos. This pipeline comprised numerous trainable components,
all of which are trained within a single end-to-end framework. The authors are
able to train the model to remaster videos with noise removal and introduce color,
as well as increase the resolution and sharpness and enhance the contrast with
temporal consistency. This is made possible by employing a data creation and
augmentation strategy that is both meticulous and comprehensive. The initial part
of their work is more relevant to our work, which they address as the preprocessing
network shown in Fig 3.2. This preprocessing network is responsible for dust and
scratch removal.

The preprocessing network is composed entirely of layers of 3D convolution
addressed as temporal convolution. A long skip connection is utilized between the
input and output of the network. Half reduces the frame dimension in the model’s
encoder-decoder framework before being restored to its original dimension using
trilinear upsampling at the very end of the process. The majority of the refining
is carried out at a low resolution to lessen the burden placed on the workstation.
The end result of the preprocessing network is considered the frame’s luminance
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Figure 2.5: The design of the network proposed in (60) for restoration. (I.)
For pictures in real photographs, the authors train VAE1 and VAE2 using an
adversarial discriminator; VAE1 is trained for both real and synthetic images,
while VAE2 is trained for clean images. Images are compressed into a smaller
latent space using VAEs. (II.) Afterward, they discover the mapping that returns
corrupted pictures in the latent space to their original form. Figure is taken from
(60)

channel for further colorization.

The limitation of the work is that the suggested method is based on learning that
is completely supervised, and as a result, it is unable to fill in missing frames or deal
with high deterioration, which causes a major portion of the image to be missing
for many frames. In some instances, there is an insufficient amount of information
present, which renders the process of remastering difficult. Remaking new plausible
portions of the video would need picture completion-based methodologies, which
are beyond the purview of this particular piece of work.

2.3.4 Bringing old photos back to life
Wan et al. (60) propose a deep learning technique to rebuild old photographs
that have suffered from significant deterioration over the years. The deterioration
in photographs is intricate, and the domain disparity between synthetic images
and real-world old photos makes it impossible for the network to generalize its
results. Traditional reconstruction tasks, on the other hand, can be fixed through
supervised learning. They propose an innovative triplet domain translation network
that makes use of both real images and a massive number of artificial image pairs.
In particular, they train two variational autoencoders (VAEs) to translate old and
clean images into two distinct latent spaces, one for each type of image. In addition,
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the transformation between two latent spaces is something that can be learned with
the help of synthetic paired data. The disparity between the compact latent space
has been closed, which allows this transformation to generalize to real photographs.

In addition, branches with partial non-local blocks are designed to pay attention
to the structured and unstructured artifacts, including scratches and dust, noises,
blurriness, and so on. When it comes to restoring severely aged and deteriorated
photographs, their approach shows promising results. However, their method is
incapable of dealing with intricate shading. This is due to the fact that their
dataset only contains a small number of older photos that have such flaws.

2.3.5 Bringing Old Films Back to Life
The goal of Wan et al. (59) is to integrate all aspects of cinema restoration into a
unified conceptual framework, within which they carry out the spatial-temporal
restoration. They recommend a bi-directional recurrent neural network that does
the following: it accumulates the information from the picture over subsequent
frames, which successfully reduces the intensity fluctuation (flickering) of the video.
The description of the scene’s information is embedded deep inside the concealed
state of the recurrent component. After the alignment is complete, the restoration
process for a particular frame fuses the hidden representation, providing valuable
insight into the content information behind the faults. A strategy like this one
that repeats itself has three distinct advantages. To begin with, it is possible to
completely recover the film even if it has been damaged, regardless of how serious
the damage can be, provided that the information is still legible in other frames.
Second, the preservation of the hidden information in an explicit form guarantees
that the restoration of the frames will be chronologically stable over an extended
duration. A significant disparity can be seen between the content of the frame and
the hidden state in certain places, which makes it possible for the structural faults
to be targeted in an unsupervised approach. This is the most crucial point. In
contrast to (60), which necessitates the use of a defect segmentation network, such
defect localization is more generally applicable to the old film degradations that
occur in the actual world.

During the frame alignment, the authors require a component that can take into
consideration the tiny discrepancy that exists spatially. As a result, they suggest
making use of the Swin Transformer (36); this means that even when the hidden
depiction is not properly aligned, the association of the relevant pixels can still be
replicated via the use of self-attention. In point of fact, they witness more stable
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Figure 2.6: The architecture of the once-recurrent forward propagation, which
consists of the temporal aggregation component F and the spatial restoration
transformer R. The same model applies to the process of backward propagation.
Figure is taken from (59)

training of the recurrent component as a result of the utilization of attention. In
addition, the transformer blocks provide greater restoration capacity for combined
degradations, which would be difficult to deal with using a dedicated ConvNet
(54). This is made possible by the higher expressivity of the transformer blocks.
Therefore, the proposed framework allows the most of both the recurrent component
and the transformers, which are the essence of preserving past information. The
recurrent components stand to benefit from the temporal consistency. Meanwhile,
the protracted modeling potential of transformers enables spatial reconstruction.
This surpasses state-of-the-art frameworks on synthetic datasets, and it generates
extraordinary efficiency when rebuilding old movies.
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3 Methodology

This chapter is dedicated for explaining the proposed approach for the old film
restoration task. However, before diving into the actual methodology description,
some insight about the several components of the proposed Methodology is pre-
sented at the beginning of the chapter.

The old film restoration section of Chapter 02 discusses both the traditional
and deep learning approaches. However, similar to other problem domains, deep
learning approaches are dominating the old film restoration field nowadays. There
are a handful of reasons for adopting data-driven approaches rather than algorithmic
strategies.

• Traditional or algorithmic approaches are developed to target predefined
types of old film artifacts because (e.g. 2.3.1 deals with dust, scratches; 2.3.2
resolves flickering, scratch and blotch) So, it is not feasible to expect an
algorithmic approach to present a generalized model that is able to take into
account all sorts of old film artifacts without prior knowledge. However, on
the other hand, the restoration capabilities of the data-driven approach deep
learning are not restricted to artifact categories. The model is normally well
generalized to any sort of old film artifact until the training dataset includes
sufficient artifact samples.

• In the case of human intervention, the question that has to be answered is
how well the experts can replicate the original. There is a possibility that
they may discover certain inconsistencies when viewing the sequence of the
corrected film. Two potential pitfalls: first, it takes a significant amount of
time, and we all know that time equals money; second, it may result in an
inconsistent appearance when applied to many sequences.

Due to the reasons mentioned above, this research is highly motivated to work
with deep learning approach for old film restoration. The individual components of
the proposed model are explained as follow:
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Figure 3.1: A typical Generative Adversarial Network (GAN) consisting of a
Generator and a Discriminator

3.1 Generative Adversarial Network (GAN)
The term "Generative Adversarial Networks," more commonly abbreviated as
"GANs," refers to a framework that makes use of two convolution neural networks
that are opposed to each other (hence the name "adversarial") in order to produce
synthesized examples of data that are convincing enough to be mistaken for real
data. It is first introduced by Goodfellow et al. (17). The field of image restoration,
video and audio formation all make extensive applications of GANs. It has been
said that adversarial training and GANs are two of the most exciting concepts
to come out of the field of machine learning in recent years. Because GANs may
learn to imitate any distribution based on and derived from the data, they have
a significant potential to be both a benefit and a scourge in the future. GANs
have the potential to be trained to dynamically produce a wide variety of things,
including pictures, audio, voice, and even written text (20)(65).

GANs are comprised of two components: a generator, which may be concep-
tualized as a convolutional neural network and contributes to the generation of
new data samples; and a discriminator, which examines the newly generated data
samples to determine whether or not they are real. The discriminator evaluates
each example of data that it looks at and chooses whether or not that data sample
belongs to the real training dataset. The discriminator will also provide a penalty
to the generator if it produces results that are improbable. It is also possible to
think of it as an adversarial process in which the generator attempts to fool the
discriminator by producing data that is comparable to that which is found in the
training set. They both operate concurrently to learn and train complicated data
like audio, video, or picture files.
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The following is a condensed version of the stages that a GAN takes:

• An image is produced by a generator after it has been fed a series of arbitrary
integers.

• After that, the generated image is included in the sequence of images that
are put into the discriminator, which also includes images collected from the
real dataset.

• The discriminator examines both the genuine and the false images and then
delivers probability in the form of an integer between zero and one. A
probability of one indicates that the item is legitimate, while a probability of
zero indicates that the image is fake.

Generative models have emerged as a dynamic and fast significant reform, bringing
on their pledge of modeling and analysis instances across many application domains,
most prominently in the image-to-image translation tasks.

3.2 Encoder-decoder
In this part, we are going to discuss an encoder-decoder network, in general, which
is used in the generator part of a GAN architecture. The encoder’s job is to reduce
the amount of original data to a form that the decoder can interpret while still
retaining the most important characteristics. The best way to remember a long
sequence is to break it down into smaller chunks that are easier to recall, such as
whole numbers, and then reconstruct the entire sequence from those smaller chunks.
So, the encoder is responsible for downsampling the data into a lower dimension,
preserving as many significant features as possible that represent most of the image
information for reconstruction.

However, the decoder operates in a manner that is similar to that of the
encoder but in the opposite direction. It is taught to read these compressed data
representations rather than produce them, and then it generates images depending
on the information it has learned. Obviously, it tries to reduce the amount of
damage done during reconstruction. The generator loss is used to assess the outputs
by evaluating the restored image against the reference one; the lower the difference
is, the more identical the restored image is to the original.

At this point, all of the parameters in the encoder are going to be updated
by propagating backward via the decoder. As a result, the decoder and the
encoder both have their performance in their respective duties reviewed and their
parameter settings updated depending on the discrepancies that are found between
the reference and the predicted image.
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Figure 3.2: An example of an Encoder-Decoder architecture where the input
RGB image is downsampled by the encoder while the decoder brings it back to its
initial dimension through upsampling. Figure is collected from (7)

3.3 Multi-scale Attention Residual Block (MARB)
In order to improve a model’s understanding of its surroundings and the context,
multi-scale feature extraction, proposed by Chen et al. (10), has become an increas-
ingly popular technique. This multi-scale feature extraction technique combines
features of varying scales in an efficient manner. Mathematical expressions can be
used to provide a comprehensive description of the Multi-scale Attention Residual
Block (MARB). With reference to Figure 3.5, the MSARB is configured to receive
the feature F0 as its input. This feature then travels through the two convolutional
layers with kernel dimensions of 3 x 3 and 5 x 5 separately and concatenated after
feature extraction.

F 3x3
1 = k3x3(F0);F

5x5
1 = k5x5(F0) (3.1)

In equation 3.1, F 3x3
1 and F 5x5

1 refers to the extracted feature obtained from
convolution filters with kernel (k) shape 3x3 and 5x5 respectively. The visual
characteristics are retrieved even further using convolution filters with a kernel size
of either 3 x 3 or 5 x 5.

F 3x3
2 = k3x3(F

3x3
1 + F 5x5

1 );F 5x5
2 = k5x5(F

3x3
1 + F 5x5

1 ) (3.2)

Equation 3.3 shows the concatenation of multi-scale features exacted using a
kernel with dimensions 3 x 3 and 5 x 5. So, in order to increase the robustness of
the model, the authors propose multi-scale feature fusion within the layers. This
kind of feature fusion is capable of integrating multi-scale information with the
characteristics of various levels. This framework ensures that the feature infor-
mation can be transmitted across all of the layers. As a result, the MARB is
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Figure 3.3: (a) The multi-scale residual blocks and the feature attention module
make up the architecture of the Multi-scale Attention Residual Block (MARB).
The channel-wise attention (CA) block (b) and the spatial attention (SA) block
are both consecutive sub-modules that are included inside the feature module (c).
Figure is collected from (10)

able to learn the key image characteristics by using a variety of scales. In order
to hasten the training process, a global skip connection has been implemented
between the various residual block schemes. This connection makes it possible to
back-propagate gradients and change parameters. Because this skip link is able to
additionally immediately disseminate uncompressed information across the whole
network, it is helpful for predicting the final output.

The study presented by Yingjun Du et al. (16) reveals that using a channel-wise
attention technique may assist the network in better preserving the pixel intensity
information than earlier methods, which handle various channels in an equivalent
fashion. As a result, the channel attention may be able to detect the artifact zone
and contribute to the feature extraction process. Until then, the patterns of dust
are unequal and vary greatly throughout a wide range of geographical regions.
As a result, paying attention to space could also be necessary while dealing with
artifact regions. Convolution layers with sizes of 1x1 and 3x3 are used to produce
multi-scale feature fusion. Channel and spatial attention sub-units are incorporated
to elevate feature fusion. The final equation can be formulated as follows:

Fout = SA(CA(k3x3(k1x1(Concat(F 3x3
2 , F 5x5

2 ))))))))) + F0 (3.3)
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In equation 3.3, SA() and CA refer to the spatial and channel attention blocks,
respectively and Fout is the output refined features after applying the multi-scale
attention residual block.

3.4 Hierarchical Encoder and Transformers
The model that we have presented contains a stack of transformer blocks that have
been built expressly for the purpose of transmitting spatial-temporal information
from known pixels that are located outside the dust or artifact region at each
frame. However, owing to the need to preserve the picture’s spatial arrangement,
an ineffective method for dealing with low-level vision problems is to crudely split
the image into a large number of patches and then compress those patches into
token sets like Vision Transformer (ViT) (15). The self-attention mechanism that
is applied to the patches provides an overall spatial arrangement relying upon this
relative position among the patches. However, the local spatial structure within a
patch is not preserved, which is undesirable for frame formation. This is due to
the fact that the self-attention technique on the patches depends on the relative
location among the patches. Consequently, in order to obtain accurate and credible
token sets, we need an encoder that is both sophisticated and in-depth. The feature
maps obtained from the earlier stages are passed through a hierarchical encoder
(HE), proposed by Rui Liu et al. (35) which thus combines extracted features
across multiple phases to generate tokens that have more representable information.
If we pass a frame f of h (height), w (width), and c (channel) through our model,
until the hierarchical encoder part, the frame is downsampled and we obtain a
feature map F with the dimension of h/4 * w/4 * c. We formulate a hierarchical
framework for multi-level channels by combining generated feature maps.

Initially, let’s consider the feature map as the first stage feature F1. In the
beginning, it goes into a convolution layer that has a kernel size of 3x3 in order
to get the second stage feature map. The spatial form of this map is the same as
the shape of the first stage feature map, but it has a bigger receptive field. Then
the first stage and second stage convoluted features are concatenated together,
preserving the spatial features of both stages. As the features are concatenated
along the channel dimension, we get the feature dimension of h/4 * w/4 * 2c. After
that, features from several stages are passed to the next stage of the hierarchical
encoder. This time, the receptive field becomes wider and the first stage feature
is always combined with the feature map of the current stage. This procedure is
outlined in detail:

F̂i+1 = ReLU(Conv(F i
k))), F̂

i
k+1 ∈ Rh/4×w/4×c (3.4)
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Figure 3.4: The depiction of components of the Transformer block. The parts
of a transformer block are multi-headed attention module and an feed-forward
net. Figure is inspired by (35)

F̂i+1 = Concat(F i
k+1, F̂

i
k), k = 1, ..., N − 1 (3.5)

In equation 3.4, Conv refers to the convolution layer and ReLU indicates the
non-linear activation function. Channel-wise concatenation and hierarchical layers
are denoted by Concat and N respectively in equation . A resilient and informative
feature map will be produced, which is useful for further patch-level spatial and
temporal accumulation since the final feature map will comprise multi-stage local
spatial features from the input frame. We use a group convolution in every layer
to handle feature refining at different stages in order to preserve the local spatial
information. In this research, five encoder layers with a group number of 1, 2, 4, 8,
and 1 are included in the hierarchical encoder. Setting up groups in such a way
prevents the intervening layers from fusing features and so preserves the actual
local spatial information of each layer’s features.

Both the spatial and temporal transformer blocks follow the architecture of
Vision Transformer (15) where each block that makes up the transformer encoder is
made up of three key processing units: the Layer Norm, the Multi-head Attention
Network, and the Multi-Layer Perceptrons. The encoder is composed of many
blocks (MLP). Layer Norm ensures that the training process stays on track and
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enables the model to adjust to the differences present in the training pictures.
Multi-head Attention Network is a network that is accountable for the development
of attention maps based on the embedded visual tokens that are provided. These
attention maps assist networks in concentrating their attention on the most vital
parts of a picture, such as artifacts.

3.5 Discriminator: Temporal PatchGan
Artifacts might appear in arbitrary locations within a frame in an old film. Thus,
It is important to take into account both global and local features within the
same frame, along with the temporal stability of the features. Introducing a loss
function to each of the three factors separately would not be a proper approach
to follow. Observationally, Chang et al. (9) discovered that it is challenging to
regulate the weights of various loss functions, particularly when they involve GAN
losses. Including GAN loss is a highly popular technique to improve the realism of
image restoration results. In substituting the usage of global and local GAN, Yu et
al. suggested an effective SN-PatchGAN (70). This architecture applies GAN loss
on extracted features of the discriminator. Their method addresses the loss weight
adjustment problem and resolves the unrestricted image artifacts issue. However,
it does not take into account temporal stability, which is essential for high-quality
video restoration. They provided inspiration for (9) to further incorporate the
temporal aspect and create a unique Temporal PathGAN discriminator that em-
phasizes various spatial-time aspects in order to analyze both the global and local
spatial as well as temporal features.

The temporal patchGan discriminator has six three-dimensional convolutional
layers, each with a filter shape of 3x5x5 and a stride of 1x2 pixels. To improve
training constancy, spectral normalization (42), newly suggested, is used in GAN
(generator, discriminator) training. Additionally, we employ the hinge loss as the loss
function to determine whether the frame is real or not. Because each 3D convolution
layer in the discriminator has a filter dimension of 3x5x5, each extracted feature’s
receptive field spans the entirety of the input video, negating the requirement for a
global discriminator like that found in (69). The Temporal PatchGAN is limited
to focusing on high-frequency feature information since it only discourages the size
of patches after learning to recognize each spatial-temporal patch as real or fake.
T-PatchGAN might effectively enhance the output frame quality since the l1 loss
function already concentrates on low-frequency characteristics.
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3.6 Activation Functions

3.6.1 LeakyReLU
The ReLU activation function has been considerably upgraded because of the
introduction of the LeakyReLU function. In the case of ReLU, the gradient is
zero for all input parameters that have a value less than zero, the neurons in that
area will become inactive, which may lead to a decaying ReLU issue. In order to
solve this issue, Leaky ReLU has been proposed (66). Instead of specifying the
ReLU activation function as a value of 0 when inputs(x) have a negative value, it
is defined as a linear element of x that has a very minimal fraction of amplitude.
The equation for the leaky ReLU activation function can be found as follows:

f(x) = max(0.01 ∗ x, x) (3.6)

This operation will yield x if it is given any positive input. However, if x is
provided with a negative value, it will instead return an extremely small number
that is equal to 0.01 times x. As a result, it provides an output even for numbers
that are negative. After making this one simple adjustment, the gradient that runs
down the left side of the graph is transformed into a value that is not zero. As a
result, we would no longer come across neurons that had died in that place.

3.6.2 Sigmoid
There is another name for the sigmoid activation function, and that name is the
logistic function. It is the same function that is involved in the method for the
categorization of logistic regression data. Any real number can be used as an input
for the function, and it will return output in the range from 0 to 1. If the value of
the input is greater, then the value of the output will be nearer to 1. On the other
hand, if the value of the input is lower, then the value of the output will be nearer
to 0.0.

The following formula is used to derive the sigmoid activation function:

s(x) =
1

1 + exp−x
(3.7)

Where exp stands for the theoretical constant that serves as the foundation of
the natural logarithm.
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3.7 Proposed Methodology
So far, we have discussed the components of the proposed methodology. Figure 3.5
demonstrates how these components are organized in a single framework for old
film restoration tasks. Now, the generator part of our proposed GAN architecture
is going to be explained. A frame sequence consisting of 5 frames is collectively
passed as the input for the model. Each frame is grayscale and so has a single
channel and the input dimension is (120, 216). The frame restoration process is
described in the following steps:

• Initially, the model has a 2D convolution layer with a kernel size of 3x3. The
number of input channels is one since grayscale input frames are fed into
the model. Since this layer has 64 convolution filters, each filter generates
individual feature maps and so a total of 64 feature maps are produced in this
layer. The layer has a stride of 2 which means the input data is downsampled
with a kernel sliding of 2 steps at a time. As a result, the output features
have a dimension of 60x108 instead of 120x216. Anyway, the overall input
shape is (8, 5, 1, 120, 216), where each of the values represents the batch
size, number of frames per batch, number of input channels, frame height
and width, respectively.

• We have another 2D convolution layer with the same kernel size 3x3 as the
second layer of the proposed encoder-decoder. However, twice the number
of previous layers’ filters are included in this layer which generates 128
output feature maps. The stride value is also 2 in this layer to have more
downsampled features.

• After two consecutive convolution layers, a multi-scale attention residual block
is added to the framework. The objective of adding a multi-scale attention
block is to apply spatial and channel attention mechanisms on the feature
map extracted using multiple kernel size 3x3 and 5x5. In this layer, the input
and output feature dimensions and channel are the same.

• A 2D convolution layer is involved again with a kernel size of 3x3 and in this
case, the stride is set to 1. So, no downsampling is taken place in these layers.
However, the feature maps got increased from 128 to 256 in this layer.

• After a potential amount of feature extraction, the hierarchical encoder is
placed to facilitate the more meaningful token generation for the temporal
and spatial transformer blocks. A set of five convolution layers with identical
kernel size (3x3) and stride (1) is formed to extract features and combine
them hierarchically.
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Figure 3.5: The architecture of the proposed DSTT-MARB model that is
initiated with two traditional 2D convolution layers followed by a Multi-scale
Residual Block (MARB). Then just after another Conv2D block, a Hierarchical
Encoder is placed to obtain hierarchical features. Temporal and spatial feature
attention is applied by inclusion of temporal and spatially decouple transformer
blocks. The decoder part is comprised of convolution, deconvolution and MARB
block. Finally, a temporal patchgan is included that works as a discriminator in
the GAN architecture.

• Then, temporal and spatial transformer blocks with individual objectives
are stacked one after another to analyze the extracted hierarchy features in
both temporal and spatial domains. The refined features obtained from the
transformer blocks are concatenated with features generated from step 4 to
preserve enough feature information in the following image reconstruction
part performed by the decoder.

• The downsampled concatenated features are upsampled with a deconvolution
layer having kernel size 3x3 and padding equal to 1. The output feature
dimensions are upsampled from 30x54 to 60x108.

The Deconvolution unit represents a layer that executes a function that is
diametrically opposed to the convolution operation. In addition to this name, this
process is also known as transposed convolution, which more accurately describes
the underlying mathematical activity. Because convolution is not an invertible
technique in and of itself, we are unable to directly reverse the process and move
from the result to the input. Alternatively, the deconvolution units need to learn
their weights in the same manner that the convolution layers do. The functionality
of deconvolutional blocks is comparable to that of convolution blocks, but the
impact of stride is the reverse.
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• Again, for the second time in the architecture, we have a Multi-scale Attention
Residual Block (MARB) and the input and output feature maps are the same,
which is 128. This layer is followed by a 2D convolution layer that is used to
have more selective feature maps for the second upsample operation.

• The final upsampling is done with a deconvolution layer that has the same
parameter as the previous deconvolution layer. In this layer, the input features
with 60x108 dimensions are upsampled to the output features dimension of
120x216. The proposed model ends with a 2D convolution layer to get the
final output grayscale images.
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4 Experiments and Ablation Stud-
ies

At the beginning of the chapter, the whole data collection and data preprocessing
process will be demonstrated. Following that, a brief introduction on the several
candidate components in terms of model architecture that are included during
experiments is provided. This chapter also explains the loss functions and hyperpa-
rameters selection for the model training. Finally, the overall experiment process is
discussed in a chronological way to sum up the chapter.

4.1 Dataset Collection and Preprocessing

4.1.1 Frame collection
The acquisition of long-term spatial-temporal features is essential for the completion
of several video processing jobs. The investigation of spatial-temporal information
for video segmentation is typically confined by the range of accessible video segmen-
tation data sources; for example, the previous largest video segmentation dataset
just includes ninety short videos. This means that end-to-end sequential learning to
analyze spatial information for video segmentation is extremely difficult. In order
to find a solution to this issue, Xu et al. (67) construct a massive video object
segmentation dataset that is addressed as the YouTube Video Object Segmentation
dataset (YouTube-VOS).

In order to generate the dataset, the authors first identify a set of video categories
that include animals (including bears, dogs, camels, and people), vehicles (such as
buses, bicycles, trucks, and sharks), items (such as eyeglasses, hats, and bags), and
common objects (such as knives, signs, umbrellas), as well as humans engaging in
a range of activities (e.g., tennis, skateboarding). They also gather films about
humans using a list of action tags to improve the variety of human movements
and habits. Since the videos depicting human activities have a diverse range of
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Figure 4.1: A subset of the large-scale dataset YouTube-VOS (67) that includes
images with diverse objects, environment and lighting conditions

appearances and motions, they use this method. The majority of these videos show
engagements between a human and a related item. The whole group consists of
seventy-eight different categories that span a wide range of different things and
actions, and they are intended to be typical of daily situations. After that, they
acquire a wide variety of high-resolution clips from the large-scale video classification
dataset YouTube-8M proposed by Abu-El-Haija et al.(6) and categorize them using
the categories that they have chosen.

This dataset includes millions of videos hosted on YouTube that are connected
to over 4,700 different types of visual elements. They make use of the category
annotations that it provides in order to get potential clips that catch our attention.
Utilizing videos from YouTube to build the dataset has a number of beneficial
effects. To begin with, objects in YouTube videos may take a wide variety of forms
and move in various ways. YouTube videos often include a number of challenging
scenarios, including occlusions, rapid object movements and changing appearances.
These scenarios may be particularly difficult to analyze. Second, due to the fact
that videos on YouTube may be uploaded by both experts and hobbyists, varying
degrees of camera movement can be seen across the crawling clips. It is possible
that techniques that are trained on such data would be better able to manage
camera movement and, therefore, be much more effective. The last point to make,
but certainly not the least, is that modern smartphones capture many videos on
YouTube, and there is a large market for the ability to categorize items in such
videos for use in multimedia applications.

For this research, we are not taking into account the whole YouTube-VOS due
to the time constraints to conduct training on the whole dataset. Instead, a subset
of 103845 images is selected for this research while still maintaining the diversity
in the dataset in terms of image contents and environment.
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Figure 4.2: Samples from the noise dataset representing a subset of typical old
film artifacts.

4.1.2 Noise collection

Iizuka et al. (23) propose a old film noise dataset which we include in this research.
The authors model synthetic old film degradation to simulate film artifacts, in-
cluding varieties of old film artifacts. According to the authors, these instances
of degradation were painstakingly compiled by searching the web for "film noise"
and also created using programs like Adobe After Effects. The foundation noise
pattern for produced noise is created using fractal noise, which is then enhanced
by adjusting the contrast, sharpness, as well as brightness to produce film artifacts
such as scratches and dust.

In this research, we include the noise dataset and expand the dataset with more
noise images. These additional noise images are collected online and mostly from
the online streaming site YouTube (5). The keyword for noise video searching is
“old film dust and scratches." These noise frames are overlaid on the clean reference
frames to generate synthetic noisy frames. There are several blending techniques
that will be discussed later. After the data collection process, we gathered 5770
images of artifact/noise images. It should be mentioned that the noise dataset can
be divided into subcategories: black old film artifacts and white old film artifacts.
The reason is that in a typical old film, artifacts appear in both black and white
forms. During the noise collection process, noise images that produce black artifacts
are collected and a simple operation of those noise images contributes to the white
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Figure 4.3: An example of simulating white artifacts on the frame using white
masks

artifacts. The noise image samples that are shown in Figure 4.2 are responsible
for simulating black artifacts on the movie frames. The same amount of images
are produced by applying inverse transformation on the noise images that are used
to introduce white artifacts on the input frames. As a result, a total of 11540
images are considered as the initial dataset for the old film restoration task. This
number is raised more with the augmentation and noise fusion processes, which
are explained in the latter part of the section.

4.1.3 Data processing for video inpainting
The dataset processing for video inpainting tasks is slightly different than video
denoising. As the task of video inpainting seeks to patch up missing video seg-
ments, creating artificially generated missing regions on the clean frames is the
main objective of this preprocessing phase. Figure 4.3 depicts the overall data
preprocessing scheme for video inpainting tasks. Initially, all the collected frames
with RGB channels are converted to grayscale frames. In the case of noise images,
the intention is to generate masks from those noise images that help to mask out
arbitrary regions from the clean image.
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Figure 4.4: Black (first row) and white(second row) binary masks used for
masking out pixels from the clean images to simulate black and white artifacts,
respectively

The binary thresholding technique is employed as a tool for producing masks.
The condition for the thresholding process is that all pixels in the noise image
whose intensity values are greater than a certain threshold value are activated or
set to 255, while all other pixels are kept inactive or set to 0 (Figure 4.4 (a), (b),
(c). These binary images are used to simulate black artifacts on the clean images.
On the other hand, Figure 4.4 (d), (e), (f) that are the inverse transformation of
the Figure 4.4 (a), (b), (c) are applied to simulate white artifacts on the frames.
The threshold selection is also kind of tricky in this case because not all the noise
images have the same range of pixel intensity. So, after some trials, the threshold
value is set to 190. So, for each noise image, if the pixel value is greater than or
equal to 190, then it is set to 0 (for white mask) or 255 (for black mask) and vice
versa.

So, the white mask (Figure 4.4 (d), (e), (f)) is responsible for generating white
artifacts whereas the black masks (Figure 4.4 (a), (b), (c)) are created to produce
black artifacts on the frames.
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The blending of the black and white masks is conditioned on the clean frame in
the following way:

• If the pixel value in the white mask image is 0, the corresponding pixel in
the clean frame will not be affected elsewise it will be set to 255.

• And if the pixel value in the black mask image is 255, the corresponding pixel
in the clean frame will not be affected elsewise it will be set to 0.

Performing the blending technique, images with black and white holes (shown in
Figure 4.3 are developed for model training. Finally, we have a total of 11540 black
and white masked images before augmentation.

4.1.4 Data processing for video denoising
The data preprocessing phase for video denoising is straightforward compared to
video inpainting. As the aim is to remove the old movie artifacts, the dataset
must contain all sorts of typical old film noise patterns. It helps the model to
be robust towards a wide range of old film degradation. A subset of the noise
patterns, as well as their corresponding blending techniques, are demonstrated in
Figure 4.5. According to Figure 4.5, Initially, all the clean frames are converted
into grayscale images before the blending operations, as it is reasonable because of
the monochromatic nature of the typical old film. This research incorporates three
different blending modes: multiply, screen, and merge-grain.

Blend modes are a component of digital image processing and computer vision
that are used to decide the manner in which two images are blended together. There
are many more methods that exist to blend two images together. The standard
blend mode, in most cases, basically obscures the bottom layer by concealing it
with whatever is present in the upper layer. However, there are several diverse
approaches to combining two images. Several blending modes are considered that
are applied to the collected 103,845 images based on the noise categories. Three
categories of noise images are included in this research: noisy images with black
noise, noisy images with white noise (the inverse of black noise), and noisy images
with fused noise (noise fusion will be discussed later). For these three individual
artifact types, Multiply, Screen and Grain-merge blending modes are employed,
respectively.
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Figure 4.5: The data preprocessing steps for training the model in video denoising
approach. The process includes grayscale conversion and three separate blending
techniques for three old film noise categories

4.1.5 Data Augmentation

Deep learning methods typically require a significant amount of training data that
is not always readily accessible. This prevents the models from making accurate
predictions. As a result, the already available data is extended in order to provide
a more generalized model. The technique of producing additional data points from
previously collected data is known as data augmentation (46). This procedure is
used to artificially increase the quantity of data that is gathered. This may include
making insignificant adjustments to the data or employing machine learning models
in order to produce additional data points inside the latent space of the existing
data in order to expand the dataset.

Although data augmentation may be used in a number of other fields, the most
prevalent application for it is in computer vision. We apply a considerable number
of data augmentation parameters, which are provided in Table 5.1 to the synthetic
noisy/masked frames as well as the ground truth frames with the intention of
accomplishing the following goals: Firstly, we would like to significantly boost
the generalization of the proposed framework to a wider variety of video formats;
second, we want the model to be capable of restoring a variety of artifacts that are
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typically present in the video content, including blur, brightness fluctuation, etc.;
and finally, we want to ensure that the model is able to produce accurate results.

4.1.5.1 Noise-level Augmentation

Some data augmentation parameters in terms of the geometric transformation of
the images are considered to apply to the artifact images. The selection of these
parameters is decided carefully, taking into account the realistic aspect of the film
artifacts (e.g., old film scratches appear vertically with the variable lengths within
the frame). So, for example, applying rotation transformation on scratch images is
not feasible to consider as a noise-level data augmentation parameter. For artifact
or noise image augmentation, only geometrical transformation parameters are
applied. In the following Table 5.1, zoom with a range of 10%-30% and horizontal
and vertical flip are included as the augmentation parameters. These kinds of
geometric transformations help to augment the noise dataset while maintaining
the realism of the old film artifact pattern. So, five augmented noise images are
generated out of a single noise image, resulting in a total of 34,615 noise images
for simulating white old film artifacts on the clean frame. The same number of
noise images are generated to simulate black old film artifacts on the training
frames. Finally, at this point, we have 69,230 black and white old film artifacts
after applying noise augmentation.

4.1.5.2 Frame-level augmentation

These kinds of augmentation parameters are applied to the clean and blended
noisy/masked frames. The blended noisy frames (addressed as ‘c’ in Table 5.1)
and the corresponding clean frames (denoted as ‘f’ in Table 5.1) are subject to the
frame-level augmentation techniques. Most of the image augmentation parameters
are encountered in this phase. Most of the image augmentation parameters are
considered based on the state-of-the-art old film restoration research (23). Some
typical geometrical transformation parameters, like horizontal and vertical flip,
scaling, and rotation, are applied to both clean and noisy frames. Most of these
parameters cause spatial pixel location changes in the images. So that is why,
to maintain the pixel correspondence on both the clean and noisy frame, it is
required to apply these kinds of augmentation parameters in parallel on both
sets. However, as mentioned earlier, to be responsive to other pixel level frame
degradation like blurriness, gaussian noise, intensity and contrast variance, and
lower image quality, we have included a number of pixel level data augmentation
parameters. Jpeg compression, gaussian noise, and random changes in brightness
and contrast, gaussian blur are the pixel level augmentations considered in this
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Figure 4.6: (a) and (b) are the sample noise images to blend on clean frames
that simulate noisy frame with white and black old film artifacts. (c) is another
noise image that is produced by the fusion of (a) and (b) images. (c) includes
both black and white old film artifacts in it

research. Most of these augmentation parameters are applied only to the noisy
image so that during training, the model is able to learn to resolve these kinds of
distortions in the restored outputs.

4.1.6 Noise Fusion
We have discussed the collection and augmentation of the black and white artifact
image dataset. However, in addition to considering black and white artifacts
separately, the noise fusion technique is adopted to simulate combined black and
white artifacts in a single frame. In order to achieve it, two black and white noise
images are blended on each other to produce a combined noisy image like Figure
4.6. This image blending is applied to each of the 34,615 black and white noise
pairs that construct a fused noise dataset of another 34,615 images. Therefore, the
final noise dataset consists of 103,845 black, white, and combined noise images for
the proposed old film restoration model training.

4.2 Deformable Convolution
Traditional convolutions have a conventional fixed kernel size or predefined grid
sampling for feature extraction. However, deformable convolutions introduce a
two-dimensional offset/deviation to the kernel. It makes it possible to alter the
kernel dimensionality in a free-form manner. Additional convolutional layers are
used in order to learn the offsets based on the feature information that came before
them. Consequently, the deformation is constrained by the input characteristics
in a way that is both locally dense and adaptable. Traditional convolution and a
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Deformable Convolution 4.2

Figure 4.7: (a) Architecture of Deformable Convolution layer with a learnable
offset (b) visualization of the fixed and variable receptive field of the tradition
convolution layer and deformable convolution layer

second convolution layer that learns two-dimensional offsets for each input are the
two elements of deformable convolution. So, the two-dimensional convolution is
broken down into two stages:

• Subdivide the input feature space F into the small region (sampling) with
the help of a grid k.

• Summing up the values of the samples using a weighting factor w. The area
and dilatation of the receptive field are both defined by the grid K.

So, if we form that in an equation, the regular convolution can be expressed as
follows:

y(m0) =
∑
mn∈R

w(mn).k(m0 +mn) (4.1)

whereas the equation of the deformable convolution can be:

y(m0) =
∑
mn∈R

w(mn).k(m0 +mn +∆mn) (4.2)

In equation 4.1 and 4.2 m is a variable that iterates across the positions in R. In
the process of deformable convolution, the kernel k is modified by adding offsets
mn|n = 1, ..., N, whereN = |R|.

At this point, the sampling is being done at mn +∆mn positions, which are
erratic and off-center. The process of obtaining the offsets ∆mn is shown in Fig
4.7(a) and involves putting a convolutional layer on top of the original input feature
map. The spatial area, as well as dilation of the receptive field, are identical to
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those of the currently active convolutional layer (for example, likewise 3 x 3 kernel
dimension having dilation of 1 in Fig 4.7). It should be noted that the spatial
area of the resulting offset fields is the same as that of the input feature space. In
training, both the kernels for producing the output features as well as the offsets
are concurrently learned. Backpropagation of the gradients via bilinear processes
is done so that the offsets can be learned.

4.3 Dual Attention Block
In the field of computer vision, the phrases "spatial" and "channel" are likely the
ones that are used the most, particularly in reference to the convolutional layers.
Tensors are used as the input to all convolutional layers, and tensors are also used
as the output of these layers. This tensor is distinguished by the three-dimensional
notion, which is as follows: h, which stands for the height of each feature map; w,
which stands for the width of each feature map; and c, which stands for the total
number of channels. As a result of this, the typical notation for the dimensions of
the input is (cxhxw). The feature maps can be thought of as individual slices of the
cube-shaped tensor; alternatively, the feature maps can be thought of as layers on
top of one another. The number of convolution filters determines the value of the
channel dimension. Let’s become familiar with the meanings of these phrases before
delving into the particulars of spatial attention and channel attention, respectively,
so that we can understand why it’s important to keep them in mind.

Zamir et al.(72) introduced the Dual Attention Unit (DAU) in order to obtain
significant features from convolutional layers. Figure 4.8 presents the DAU archi-
tecture in its schematic form. The DAU eliminates elements that are not as helpful
and only focuses on the more relevant ones that go to the next stage. This feature
adjustment is accomplished via the use of processes such as channel attention (21)
and spatial attention (64).
The Channel Attention (CA) branch makes use of the squeeze and excitation

procedures in order to take advantage of the inter-channel linkages that are present
in the convolutional feature maps. The squeeze operation employs "Global Average
Pooling" (GAP) over spatial dimensions to capture a global perspective. As a
result, it produces a feature descriptor that has a feature dimension of 1x1xC when
assigned to a feature map with the input dimensions M (HxWxC). The activations
are produced by the excitation operator after it processes features by way of two
convolutional layers, and then the sigmoid function comes into play. When all is
said and done, the output of the channel attention block can be derived by the
activation. Rescaling the input features with the activation outputs provides the
final refined features.
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Figure 4.8: Architecture of the channel and spatial combined attention unit
proposed by Zamir et al.(72)

The Spatial Attention (SA) branch is built with the intention of making use of
the spatial relationships that are present in the extracted features. The purpose of
spatial attention is to produce a map of spatial attention and make use of it to refine
the features. The SA branch must first separately apply two pooling techniques,
which are the global average pooling (GAP) operation and the global max pooling
(GMP) operation on the input feature maps along the channel dimensions, before
concatenating the refined features to construct a feature map with the dimensions
HxWx2. This allows the SA block to produce the spatial attention map. After
performing a convolution followed by a sigmoid activation function, the spatial
attention map is obtained, which can be utilized to rescale the input feature.

4.4 Fused MBConv
An Inverted Residual Block is a sort of residual block that is used for image models
that use an inverted structure for the sake of efficiency. This type of residual block
is also known as an MBConv Block. The MobileNetV2 CNN architecture was the
target of the first proposal for it. Since then, it has been recycled for use in a few
other CNNs that are tailored for mobile devices.

The number of channels in a conventional residual block is organized in a
framework that goes from broad to narrow to wide. The input has a large number
of channels, each of which is subjected to a 1x1 convolution in order to achieve
compression. After that, the number of channels is raised once again using a 1x1
convolution in order to accommodate the addition of input and output.
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Figure 4.9: Structure of MBConv and Fused-MBConv. The Figure is collected
from (55)

In comparison, an Inverted Residual Block has a technique that goes from nar-
row to broad to narrow, which is where the term "inversion" comes from. We begin
by widening the image with a 1x1 convolution, then a 3x3 depthwise convolution is
included (which significantly decreases the number of parameters), and last, we
have a 1x1 convolution to cut down the number of channels such that input and
output can be combined.

However, due to the depthwise convolution, the model suffers from high com-
putational costs. However, combining the depthwise convolution along with the
expansion convolution into a single typical 3x3 convolution is the answer to the
slowing that is caused by depthwise convolutions. Fused MBConv is introduced
to substitute the early layers of the EfficientNetV1 designs, which had previously
been composed of the MBConv layers. In (55) research, the authors discovered
that changing layers 1-3 in the EfficientNet design improved training time with
just a modest rise in the size of parameters. Both layers make use of "squeeze and
excite" (SE) blocks as a means of dynamically re-calibrating channel-wise feature
outputs by modeling interrelations across channels.
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Figure 4.10: An overview of the perceptual loss calculation technique. To
convert input pictures into output images, Johnson et al. (26) build an image
transformation network. Perceptual loss functions are constructed using a loss
network that has been trained to classify pictures based on their content and style.
During training, the loss network does not change.

4.5 Loss Functions

4.5.1 Perceptual Loss
Calculating the difference between two similar images based on each pixel’s value
is the working principle of the traditional per-pixel loss function. However, if the
images are conceptually similar yet differ from one another by even one pixel, they
will be highly dissimilar from one another according to per-pixel loss functions like
L1, L2. Per-pixel loss does not take into account the perceptual similarity between
the reconstructed and target image. That’s because the viewpoint of the image
could be identical, but the per-pixel difference might be distinct. This is the reason
why it is not always feasible to consider a per-pixel loss function where perceptually
refined output is desirable. Recent research has demonstrated that perceptually
refined images may be produced by utilizing perceptual loss functions that are
modeled by assessing the differences among the feature information (high-level)
extracted from pre-trained CNN rather than disparities between pixels. Compared
to per-pixel losses, perceptual losses more accurately measure image similarity.
Johnson et al. (26) introduced the concept of perceptual loss utilizing two use
cases: style transfer and image super-resolution.

The proposed approach consists of two networks where each network accounts
for a separate responsibility. According to Figure 4.10, the image transformation
network is trainable and trained to predict restored or transformed output images.
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This trainable network learns its weight by calculating and backpropagating the
loss between the predicted and ground truth image. This disparity is assessed by
the loss network, which is basically a pretrained vgg-16 network (53) that is trained
on the ImageNet dataset (12). Convolutional neural networks that are trained
to classify images have already mastered the art of encoding the perceptual and
contextual data that the loss function will assess. That will, of course, rely on the
loss network. This pre-trained VGG-16 network is incorporated to formulate feature
reconstruction loss by calculating the euclidean distance between the intermediate
high-level feature representations. Let us assume ϕk(ŷ) and ϕk(y) are the feature
maps with ch*H*W dimension in the kth convolution layer. So, the euclidean
distance between the feature maps formalized the image reconstruction loss:

lossperp(ŷ, y) =
1

chkHkWk

∥ϕk(ŷ)− ϕk(y)∥22 (4.3)

Reconstruct an image ŷ that reduces the feature reconstruction loss frequently
results in images that are identical to the ground truth image y in appearance.

4.5.2 Deep Image Structure and Texture Similarity
(DISTS) Loss

Ding et al. (13) propose a perceptual image quality metrics titled "Deep Image
Structure and Texture Similarity (DISTS)". The objective is to create a noble
full-reference image quality assessment system that includes responsiveness to
structural distortions/artifacts caused by, e.g., blur, noise, and so on, with the
distribution of the texture. Using a CNN, as is standard practice for perceptual
Image Quality Assessment (IQA) approaches, the authors begin by first trans-
forming both the reference and the damaged image into a representation in the
feature space. In this feature representation, they build a set of measures that are
enough to describe the style of a range of discrete visual patterns. This allows
us to more accurately describe the data. Finally, they create an IQA measure by
combining the aforementioned texture properties with global structural measures.
Unlike the perceptual loss calculation, the DISTS loss calculation is also conducted
with the VGG-16 network that is responsible for feature extraction. However, in
order to improve texture resampling, the authors bring about some modifications
in the vgg net: The authors intend for the preliminary conversion of the images
to be aliasing-free so that it could offer a strong platform for the invariances that
are required for texture resampling. According to the Nyquist theorem, in order
to prevent aliasing when sampling with a factor of 2, it is necessary to blur the
signal using a filter whose cutoff frequency is lower than π

2
radians/sample. In

accordance with this guiding concept, the author modified the VGG net such that
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all max-pooling layers are now weighted l2 pooling.

In addition, the injective property is a quality that the authors want their
transformation to have. This means that different inputs should correspond to
different outputs. This step is essential for ensuring that the final quality measure
is a valid metric (in the context that the term is used in mathematics) because,
if the interpretation of an image is not distinctive, then equality of the output
interpretations will not indicate equality of the corresponding input images, even if
those representations are identical. This characteristic has been shown to be helpful
in perceptual optimization, despite the fact that it is absent from many of the more
current approaches. At each level of transformation, the VGG algorithm, like other
CNNs, throws away information. In order to guarantee an injective mapping, the
authors just involve the input image into the vgg net as an extra feature map at
the "zeroth" level of the structure. After that, the representation is made up of the
input image, which has been merged with the convolution outputs of five different
VGG layers.

4.5.3 Hole and Valid Loss

In the case of the old video inpainting task, mask-based loss functions: hole loss and
valid loss are introduced by Liu et al. (35) are applied for this research. Although
these hole and valid losses are nothing but L1 losses, the method involved in the
frame reconstruction task is kind of tricky. A typical pixel-wise L1 loss function
is applied to the whole predicted and ground truth images. So, in that case, the
loss function calculates the pixel-wise Mean Absolute Error (MAE) over all the
pixel values in the image. However, in both hole and valid loss calculations, the
whole predicted and ground truth image are not considered at the same time. As
we mentioned in the data preprocessing step for video inpainting, artificial holes
have been generated in the frames using mask based approach. The objective of
the video inpainting technique is to fill these holes with the contextual/relevant
pixel information that maintains the perceptual coherence of the overall frame.
Instead of considering the whole region, it is more feasible for an inpainting task to
pay attention only to the hole regions which are needed to be filled. Figure 4.11
(a), (b) represent a frame and mask randomly selected from the dataset. Using the
mask m, we can derive the hole region by multiplying the mask m with the frame
y. Figure 4.11 (c) demonstrates only the missing pixels, which are subtracted from
the clean frame in order to obtain the masked frame shown in Figure 4.11 (d).

Now, in order to calculate the hole loss, the mask is applied to both the restored
and ground truth images. The formula for calculating hole loss is given below:
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Figure 4.11: (a) and (b) represent the randomly selected frame and mask from
the dataset. (c) and (d) refer to the hole and valid regions of the frame respectively

Lhole =
∥mt ⊙ (ŷt − yt)∥1

∥mt∥1
(4.4)

In equation 4.4 Lhole, m, ŷ and y refers to the hole loss, mask, restored image
by the model and ground truth image respectively.

On the other hand, the equation for estimating valid loss (Lvalid) is as follows:

Lvalid =
∥(1−mt)⊙ (ŷt − yt)∥1

∥(1−m)t∥1
(4.5)

From both equations, we can observe that the loss values are divided by m
and (1-m), respectively. The reason behind this division is quite tricky because,
in the reconstruction process for video inpainting, more focus should be paid to
reconstructing the hole region. And most of the pixel values of m are zero, so its
mean is also close to 0. That is why the division with m results in adding more
weight to the hole loss. The reverse technique goes for valid loss, where valid loss
ends up being divided by a higher value close to 1, which ultimately scales down
the weight of the valid loss.
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4.6 Training Hyperparameters
In machine learning, hyperparameters are variables whose values have a great
impact on the learning process. "hyper" signifies that these parameters are at
the "highest level" in the process of learning and as a consequence, govern the
model parameters which are generated by it. As machine learning researchers who
are tasked with developing a model, we select and configure the settings for the
hyperparameters that our proposed model will utilize before even beginning the
process of training the model. In this context, hyperparameters are considered
to exist outside of the model, which is attributed to the reason that the model’s
properties cannot be altered during the training process (71).

The training process makes use of hyperparameters while learning. However,
these hyperparameters are not included in the model that is produced as a con-
sequence of this learning. At the termination of the model training, we will have
the trained weights of the model, which are, in a practical sense, what we mean
when we talk about the model. The model does not include the hyperparameters
that were adjusted throughout the training process. We are only aware of the
model parameters that are learned; we are unable to determine, for example, the
hyperparameter values that are adapted to train a model based on the model prop-
erties. The examples of some common hyperparameters that will be discussed in
the following section are optimizer, activation function, loss function, learning rate,
batch size, number of training iterations, and model training platform description.

4.6.1 Optimizer: Adam
One way to think of Adam is as a mix of RMSprop and Stochastic Gradient Descent
(SGD) that also takes momentum into account (31). It scales the learning rate based
on the squared gradients, much as RMSprop does, and it makes use of momentum
by calculating the moving average of the gradient rather than the gradient itself,
just like SGD with momentum does. As an adaptive learning rate approach, Adam
evaluates independent learning rates based on a variety of variables. Adam employs
estimation of the first and second moments of the gradient to change the learning
rate for every weight in the neural network, thus its name, "adaptive moment
estimation." Adam makes use of exponentially moving averages, which are produced
based on the gradient that is assessed on a current mini-batch, in order to calculate
the moments:

mt = β1mt−1 + (1− β1)gt (4.6)

53



Chapter 4 EXPERIMENTS AND ABLATION STUDIES

vt = β2vt−1 + (1− β2)g
2
t (4.7)

Where m and v represent the moving averages while g indicates the gradient on
the current mini-batch and betas are the hyper-parameters that are incorporated
into the method. They come with incredibly helpful default values, which are 0.9
and 0.999, respectively. These principles are almost never subject to revision. At
the beginning of the first iteration, the values of the moving average vectors are all
set to zero.

Some significant properties of the Adam optimizer are given below:

• The step size hyper-parameter provides an approximation of the actual value
taken by the Adam algorithm throughout each iteration of the process. This
characteristic gives previously unintuitive learning rate hyper-parameters a
more intuitive grasp than they had before.

• The fact that the step size of the Adam updating algorithm is not dependent
on the degree of the gradient is very helpful when traveling through regions
with very little gradients (such as saddle points or ravines). In these regions,
it is difficult for SGD to traverse them swiftly.

Adam was developed in order to combine the beneficial aspects of Adagrad and
RMSprop (49), both of which perform very well in on-line contexts and with sparse
gradients, respectively. Adam is also comparable to the combo of RMSprop and
SGD when momentum is added to the mix.

4.6.2 Loss Function
As mentioned before, two approaches are adopted in old film restoration tasks,
which are video inpainting and video denoising. The loss functions used in both
approaches are discussed down below:

4.6.2.1 Video Inpainting

As discussed in section 4.5.3, two loss functions named hole and valid loss is
incorporated for training the proposed architecture (section 3.7). These hole and
valid loss functions are responsible for reconstructing hole and valid regions of the
input frames during video restoration. So, the total loss function for the video
inpainting approach can be formulated as follows:

Ltotal = λhole · Lhole + λvalid · Lvalid + λperp · Lperp + λadv · Ladv (4.8)
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In equation 4.8, Lhole, Lvalid,Lperp, Ladv refers to the hole loss, valid loss, per-
ceptual loss and adversarial loss respectively. λ indicates the weight value that
regulates the relative importance of the loss function during model training. We
empirically set λhole to 1, λvalid to 1, λperp to 1 and λadv to 0.01 for experiments.

4.6.2.2 Video Denoising

In the video denoising part, the L1 loss function is used for pixel reconstruction and
the perceptual loss function is included to improve the perceptual quality of the
video reconstruction during the experiment. The total loss for old film restoration
tasks using the video denoising approach can be formulated as follows:

Ltotal = λL1 · L1 + λperp · Lperp + λadv · Ladv (4.9)

In equation 4.9, L1, Lperp, Ladv refers to the L1 loss, Perceptual loss and
adversarial loss respectively. Again, λ indicates the weight value that regulates the
relative importance of the loss function during model training. The weight λL1 and
λperp are set to 1 and λadv to 0.01 during experiment process.

4.7 Evaluation Metrics
Image Quality Assessment (also known as IQA) is a trait that is regarded to be
distinctive of an image. Image quality evaluation is used to quantify the deterio-
ration of images as they are viewed. In most cases, deterioration is measured in
relation to a "reference image," which is an image that is considered to be pristine.
The quality of an image can be characterized technically and also subjectively in
order to demonstrate how much it deviates from a reference. In addition to this,
it refers to a person’s own interpretation or anticipation of a picture, such as an
image depicting a human face. The presence of noise in an image might result in a
degradation of the image’s quality. The significance of this noise is determined by
how well it coincides with the content that the observer is trying to extract from
the image.

The processing of visual data can be broken down into several different stages,
such as the capture, augmentation, compression, or transmission of the data. After
the processing is done, there is a possibility that some of the information that was
supplied by the characteristics of an image may be altered. For this reason, human
vision perception needs to be used in the evaluation of quality. In everyday life,
there are essentially two categories of image quality assessment: subjective and ob-
jective assessment. Implementing a subjective review takes a lot of effort and often
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results in additional costs. After that, the objective image quality measurements
are generated by taking into account a variety of factors.

The objective evaluation of an image’s quality may be accomplished via the
use of a number of different methods and measurements. These methods are
divided into three distinct groups according to whether or not a reference picture
is available. These are the types that are in image quality assessment:

• Full-Reference methods: The primary objective of this technique is to
evaluate the quality of an input image in relation to a reference/ground truth
image. This image serves as a point of reference and is regarded to be of
the highest possible quality. Take, for instance, a comparison of the original
image and the noisy version of the image (47).

• No-Reference method: The metrics place their primary emphasis on the
evaluation of the quality of a single test image. In this procedure, a reference
picture is not utilized at any point (47).

• Reduced-reference method: This image quality metric is developed in
order to analyze the perceptual quality of a distorted picture using just limited
information from the ground truth image (47).

MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), SSIM (Struc-
tured Similarity Index Method), LPIPS (Perceptual Image quality metric), etc.
are a few of the image quality techniques that are widely applied to measure and
analyze the quality of images. In this study, SSIM, PSNR and LPIPS methodologies
are used to determine the reference-based assessment of the restored test images.

4.7.1 Peak Signal-to-Noise Ratio (PSNR)
PSNR is used as a quality measuring tool in a significant amount of research that
is connected to image and signal processing (19). PSNR is determined by taking
the logarithm of the mean square error (MSE). MSE conventionally employs the
summing-up process as the primary focus of its analysis. Assessment of grayscale
images is performed in MSE according to the HxW dimensions.

MSE =
1

HW

W−1∑
i=0

H−1∑
j=0

[E(j, i)]2 (4.10)

In equation 4.10 H and W refers to the height and width of an image. The
Mean Squared Error formula is derived from the aggregation of the square of the
reference and distorted image subtraction. This can be understood by examining
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Figure 4.12: Diagram of the structural similarity (SSIM) measurement system.
Figure is collected from (62)

the equation. PSNR and MSE have a close association with one another due to the
fact that the MSE value is utilized in the process of calculating the PSNR value
(27).

PSNR = 20 log10(
max√
MSE

) (4.11)

In this context, "max" refers to the highest possible scale value in the 8-bit
grayscale. It is clear, based on the equations used to compute the PSNR (equation
4.10 and 4.11), that the MSE is the primary constituent of the PSNR, and that the
PSNR is made of this value. The disparity in the gray levels that are measured at
the same locations is what gives rise to the error value. PSNR will provide a value
of infinity and will also not modify the pixel value; on the other hand, if there are
more variances in per location gray-level values between the two pictures, PSNR
will generate a value that is lower.

4.7.2 Structural Similarity Index Measure (SSIM)
The vast majority of methods for evaluating picture quality include assessing the
disparity between a reference and a test image. Quantifying the degree to which
the test image and the reference image vary in terms of the values of each of the
associated pixels is a typical kind of measurement (MSE, PSNR etc.). However, the
human visual sensory system is extremely able to distinguish spatial features from
a scene, and as a result, it is capable of identifying the variations in the information
derived from a reference and test image. As a result, a metric that successfully
imitates this pattern will do much better on tasks that require distinguishing
between the reference and test image. During image quality assessment, SSIM
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takes into account the three key features of an image: Luminance, Contrast, and
Structure (62). The structure and operation of the SSIM system are shown in
the following figure (Fig. 4.12): Both the reference image and the test image are
referred to as "Signal x" and "Signal x," respectively.

This method determines the Structural Similarity Index (SSI) between two
images that are provided, which is a number that ranges from minus one to plus
one. A score of +1 suggests that the two images provided are very identical to one
another, while a score of -1 denotes that the two images provided are highly unlike
one another. These values are often modified to fall somewhere in the range [0, 1],
in which both extremes have identical meanings.

4.7.3 Learned Perceptual Image Patch Similarity
(LPIPS)

PSNR and SSIM are two quality measures that are often employed in the quality
assessment of image reconstruction tasks; nevertheless, they frequently fail to
capture changes that are perceptually connected. It is possible for a picture to have
a high PSNR or SSIM score but a blurrier appearance than an image created by a
generative network but with a lower score. We have also utilized a framework called
"Learned Perceptual Image Patch Similarity" (LPIPS), which was offered by Zhang
et al. (74). This allowed us to analyze the performance of our technique statistically
and numerically evaluate it with other methods on the basis of perceptual attributes.
LPIPS makes use of extracted feature maps obtained from the convolutional layers
of deep neural networks that have been pre-trained on classification tasks. These
networks were then trained on a large dataset that comprised image patches along
with human opinion ratings for the purpose of perceptual distance measurement.
After that, it determines a perceptual distance between a reference picture and a
changed version of it by evaluating them separately in tiny areas and comparing
the results. The pre-trained AlexNet model and the default input parameters were
used in the computations, which were carried out using version 0.1 of the LPIPS
repository. The lower the LPIPS value, the better the test image is similar to the
reference image.

4.7.4 Image Spatial Quality Evaluator (BRISQUE)
In the following paragraphs, we will discuss the necessary procedures for the
BRISQUE method, which is used for No-Reference IQA. The computation of
BRISQUE is broken down into its component parts in Figure 4.13.

Natural and deformed pictures have different pixel intensity distributions. When
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Figure 4.13: The five steps involved in determining an image’s quality using
the BRISQUE model. (3)

we standardize intensity values and determine the distribution across these intensi-
ties, the discrepancy is more evident. After standardization, natural image intensity
values resemble a Gaussian distribution, whereas damaged image intensities do not.
Departure from an ideal bell curve measures visual distortion. Image normalization
may be accomplished in a number of distinct methods. One example of this kind
of normalization is known as Mean Subtracted Contrast Normalization (MSCN).
To extract local relationships, Mittal et al. (41) employ pairwise MSCN image
and MSCN image shift products. The pairwise product is determined using the
following four viewpoints: horizontal, vertical, left-diagonal and right-diagonal
(RD).

Up to this point, a total of 5 pictures from the initial image are produced.
These include one MSCN image and four pairwise product images that represent
neighbor connections. Afterward, a feature vector with a dimension of 36 by 1 by
using these five images is computed. The width and height of the source picture
might be arbitrary, but the feature vector will always be 36 by 1. After fitting the
MSCN images to a Simplified Gaussian Distribution, the first two components of
the 36-by-1 feature vector are determined. After that, every one of the four pair-
wise product pictures is given a new shape by having an Asymmetric Generalized
Gaussian Distribution (AGGD) fitted to it. An asymmetric version of Generalized
Gaussian Fitting is referred to as AGGD (GGD).

As a result, a feature vector that has 18 elements is found. The picture is then
shrunk to one-half its initial dimensions, and the same steps are replicated in order
to generate 18 more numbers, giving a total quantity of 36 values.

An image is initially transformed into a feature vector in the majority of
applications that make use of machine learning. After that, an educational program
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such as Support Vector Machine is provided with the feature vectors and outputs
of each picture that is included in the training dataset.

4.8 Experiments
In this research, several loss functions are taken into account during experiments.
The loss functions are chosen based on their individual aspect of contributing to
the overall video restoration process. For instance, L1 loss focuses on the pixel-wise
difference between the restored and ground truth image, while perceptual or DISTS
loss is responsible for maintaining the perceptual consistency of the restored image.
All the experiments in this research are conducted on the same dataset and training
settings for fare comparison. The whole experiment process is explained in the
following steps:

• The experiment starts with retraining of the model proposed by Liu et al.
(35) which is addressed as the DSTT in the following discussion. This is the
current state-of-the-art model for video inpainting tasks. It is also interesting
to explore how well it performs in the case of old film restoration.

• Then, a single-scale attention block combined with channel and spatial atten-
tion modules, which is denoted as the Dual Attention Unit (DAU) discussed in
section 4.3, are included in both the encoder and decoder structures of DSTT.
The reason is to observe if the inclusion of an attention scheme improves the
performance of DSTT.

• In addition to applying a single-scale attention module, this research incorpo-
rates a Multi-scale Attentive Residual Block (MARB) discussed in section
3.3. In the multi-scale attention block, the attention is applied to the fea-
tures that are extracted in multiple scales (using multiple kernel sizes to be
specific), which helps to obtain better feature representation (able to consider
even tiny objects in the image). On the other hand, the features that are
gleaned through filters of a single size are inadequate for the construction of
discriminative representations of videos.

• Another kind of residual block named fused inverted residuals, explained in
section 4.4 is included in both encoder-decoder parts of the DSTT model
during the experiments.

• Convolutional neural networks have the intrinsic limitation of only being
able to mimic geometric changes since their construction modules consist of
fixed geometric shapes. Section 4.2 demonstrates a new mechanism to boost
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the transformation modeling capabilities of CNNs. This module is called
deformable convolution, which replaces all the convolution layers in DSTT.

The Adam optimizer (31) with the parameters β1 = 0.9 and β2 = 0.999 is
incorporated in this research. The learning rate of this optimizer begins at 0.0001
and decays once with the factor of 0.1. As mentioned before, a total of 103,845
images are used in the model training. The batch size is set to 8, and in each batch,
the training module processes five frames at a time. So, each iteration consists
of 40 frame-processing. The proposed old film restoration model is trained for
200,000 iterations. In addition, the learning rate is decayed with a factor of 0.1
after 120,000 iterations by observing the oscillation state of the model. A learning
rate that is too high will produce weight updates that are excessively high, and the
performance of the model (such as its loss) will fluctuate over the course of the
training iteration if the learning rate is set high. It is believed that weights that
are diverging are the reason for oscillating performance.

4.9 Implementation platform and Hardware
Requirements

The implementation of the model training scheme is done using PyTorch as the
backend. PyTorch is a scientific computing tool written in Python that takes
advantage of the processing power provided by graphics processing units (GPU)
(45). It is also one of the most popular platforms for deep learning research, and
it was developed to give the highest possible level of flexibility and speed. It is
well-known for delivering two of the most significant advantages, namely, developing
neural networks on a tape-based autograd mechanism and tensor operations with
significant GPU acceleration support. This library is one of the many current
Python libraries that have the ability to transform the way machine learning model
training is carried out. There are numerous more existing Python libraries with
similar potential as well. PyTorch’s popularity may be attributed, in large part, to
the fact that it is written entirely in Python and allows users to easily construct
models of neural networks. When compared to its other rivals, it is still a relatively
new player, yet it is making significant headway in a very short amount of time.

Part of the model training is conducted on the Amazon cloud service platform
using an Amazon EC2 P3 instance (2). Amazon EC2 P3 instances provide high-
performance computation in the cloud for machine learning applications. These
instances are equipped with up to 8 NVIDIA® V100 Tensor Core GPUs and up
to 100 Gbps of networking speed. It has been shown that using Amazon EC2
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P3 instances may reduce the amount of time needed for model training from
days to minutes and also increase the number of simulations that can be run for
high-performance computing by a factor of three to four. The specific instance type
that is employed for model training is p3.2xlarge which has one GPU, eight virtual
CPUs, 61 gigabytes of memory, and a network capability of up to 10 gigabits per
second.

Another GPU machine from NTNU ColorLab named GPU-6-A014 is employed
in the model training. The GPU configuration of GPU-6-A014 is: Alienware Aurora
r8 Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz 32 GB RAM GPU : GeForce
GTX 2080 , 11GB. In addition to that, for parallel model training, the NTNU
GPU cluster is also incorporated. The cluster GPU configuration is NVIDIA Tesla
V100 16Gb.

62



5 Result and Discussion

In this section, we explain and analyze the obtained results from several experiments
from both quantitative and visual point of view. In addition, limitation of the
proposed model is also discussed in this chapter.

5.1 Quantitative Analysis

5.1.1 Video Denoising Approach
The quantitative analysis part is broken into sub-parts where we will discuss the
performance of the proposed methodology in comparison with the current state-of-
the-art methods, several network modifications, and experiments with loss functions.
Initially, the proposed model is compared to the recent works on video inpainting
and old film restoration. The evaluation is done based on the 200 test images each
for black and white artifacts. Figure 5.1 represents a subset of the test images that
are used during the evaluation. It is worth mentioning that these images are not
used during the model training and so are completely unseen images for the models.
Anyway, we have a separate evaluation process for black and white artifacts so
that it can be demonstrated how these models perform in both black and white
artifacts removal.

In this research, progressive modifications of Decoupled Spatial-Temporal Trans-
former (DSTT) (35) are made in this research in the task of old film restoration.
As a result of that, Table 5.1 demonstrates the restoration performance of the
several additions to DSTT model in terms of three image quality evaluation metrics:
PSNR, SSIM, LPIPS

As an initial state of the upgradation of the DSTT model, a single-scale Dual
Attention (channel and spatial) Unit is included. The inclusion of the single scale
attention improves the restoring performance by a mentionable margin in all metrics
according to table 5.1 for both artifact categories (black and white). In the case of
both black and white artifacts removal, the restored images by the single scale dual
attention-based DSTT model have higher PSNR values which are 34.362 (black)
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Figure 5.1: A set of sample images from the test image dataset depicting both
black and white artifacts

Table 5.1: A performance comparison among several versions of DSTT (35)
model in terms of three reference-based image quality metrics PSNR, SSIM,
LPIPS

PSNR SSIM LPIPS

Black White Black White Black White

DSTT 31.631 29.908 0.944 0.940 0.0316 0.0352

DSTT + DAU 34.362 33.778 0.967 0.969 0.0166 0.0166

DSTT + Fused

MBConv

33.281 33.564 0.972 0.971 0.0115 0.0142

DSTT + MARB 35.279 34.285 0.982 0.975 0.0072 0.0115

and 33.778 (white). For the DSTT model without the attention module the values
are 31.631 (black) and 29.908 (white), respectively. If we also observe the other two
evaluation metrics SSIM and LPIPS, the DSTT+DAU network achieves significant
improvements. It obtains higher SSIM values 0.967 (black), 0.969 (white) and
lower LPIPS values which are 0.0166 for both black and white artifacts removal
whereas the SSIM and LPIPS values for DSTT model are in 0.944 (black), 0.940
(white) and 0.0316 (black), 0.0352 (white) accordingly. However, the integration
of the Fuse Inverted Residual (Fused MBConv) block achieves a slightly lesser
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Figure 5.2: Violin plots depicting the performance of the candidate models on
the 200 test images with black artifacts with respect to PSNR, SSIM and LPIPS
Image Quality Assessment (IQA) metrics. X-axis indicates the models’ name
and Y-axis refers to the IQA metrics

performance in terms of PSNR, which are 33.281 (black) and 33.564 (white). It
is not the case for SSIM and LPIPS performance metrics, as the DSTT+MBFuse
model overcomes the DSTT+DAU model with a narrow margin by SSIM values of
0.972 (black), 0.971 (white) and LPIPS values of 0.0115 (black) and 0.0142 (white).
The Multi-Scale Attention Residual Block (MARB) continues improvement in

the old film artifacts restoration task by achieving superior performance compared
to the DSTT, DSTT + DAU and DSTT + Fused MBConv. Following table
5.1, the DSTT + MARB block performs the restoration process on the 400 test
images and restored with the PSNR, SSIM and LPIPS values of 35.279 (black) and
34.285 (white), 0.982 (black) and 0.975 (white), 0.0072 (black) and 0.0115 (white)
respectively.

To have a clear understanding of restoration performance of the candidate
models mentioned in table 5.1, a violin plot is shown in Figure 5.2. A violin plot
is used to illustrate the distribution of statistical information for one or more
categories. The breadth of each curve is approximately proportional to the number
of data points that are located in each area (18). So, Fig 5.2 represents the models’
performance comparison mentioned in Table 5.1 in terms of PSNR, SSIM and
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Table 5.2: A performance comparison between ConV2D and Deformable ConV2d
layers in terms of three reference-based image quality metrics PSNR, SSIM, LPIPS

PSNR SSIM LPIPS

Black White Black White Black White

DSTT+MARB 35.279 34.285 0.982 0.975 0.0072 0.0115

DSTT+Deform.

Conv.+MARB

38.087 36.599 0.988 0.984 0.0048 0.0081

LPIPS values in the restoration of the 200 test images with black artifacts (violin
plots for white artifacts in provided in the appendix). It should be mentioned
that the Violin Plot in Figure 5.2 also provides a brief insight of the standard
deviation of restored images’ PSNR, SSIM and LPIPS. So, we can observe that
the DSTT+MARB model has higher PSNR, SSIM and LPIPS values compared to
the other models.

Now, the DSTT+MARB model is reformed by replacing all the 2D convolution
layers with the 2D Deformable convolution layer, followed by the LeakyReLU
activation function. As mentioned before, deformable convolution layers extract
features using a kernel with variable dimensions, whereas a traditional convolution
layer uses a kernel with a fixed shape. Quantitative analysis of the test images
restored by DSTT+DeformConv+MARB model demonstrated in Table 5.2, reveals
that the model achieves higher psnr (38.087, 36.599), ssim (0.988, 0.984) and lpips
(0.0048, 0.0081) values compared to DSTT+MARB model which gains (35.279,
34.285), (0.982, 0.975) and (0.0072, 0.0115) values in psnr, ssim and lpips evaluation
metrics in (black, white) artifacts removal task. As we can also observe from the
violin plot in Figure 5.3 that the presence of the deformable convolution layer
boosts the performance of the proposed approach in terms of quantitative analysis.
However, the visual results during the real-time evaluation are not as promising
as the matric values. The DSTT+DeformConv+MARB model produces some
unexpected texture distribution inefficiency in the restored frames which will be
discussed in the following section. So, we proceed with the experiments with the
DSTT+MARB model.

A loss function-based evaluation of the proposed model is drawn in Table 5.3.
As mentioned before L1 loss function is experimented with combined with two
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Figure 5.3: Violin plots depicting the performance of the ConV2D and Deform-
ConV2D on the 200 test images with black artifacts with respect to PSNR, SSIM
and LPIPS Image Quality Assessment (IQA) metrics. The X-axis indicates the
models’ name and Y-axis refers to the IQA metrics

other loss functions, which are perceptual and DISTS loss functions. Initially, the
proposed model is trained with only L1 loss function and then it is trained with
L1+Perceptual loss and L1+DISTS loss. Table 5.3 represents the values of the
performance evaluation metrics psnr, ssim and lpips for corresponding loss functions.
It can be visible that the involvement of the DISTS loss function with L1 loss in the
video reconstruction reduces the restoration efficiency of the model. L1+DISTS loss
function has the mean psnr, ssim and lpips value of (33.043, 32.645), (0.958, 0.956)
and (0.0248, 0.0263) as (black, white) artifacts removal. While the proposed model
(DSTT+MARB) involving only L1 loss function during model training results has
better psnr (35.279, 34.285), ssim (0.982, 0.975) and lpips (0.007, 0.0115) values in
(black, white) artifacts removal. However, a significant improvement in the result is
obtained by replacing dists loss function with perceptual loss where the mean psnr,
ssim and lpips values reach (37.728, 36.456), (0.984, 0.982) and (0.0067, 0.0085) for
(black, white).

From the violin plot in Figure 5.4, a clear performance difference among the
proposed model trained with several training losses is visible. The combined loss
function of L1 and perceptual loss has superior results compared to the L1 and
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Table 5.3: A performance comparison of the proposed model trained with L1,
L1+DISTS and L1+Perceptual loss functions in terms of three reference-based
image quality metrics PSNR, SSIM, LPIPS

PSNR SSIM LPIPS

Black White Black White Black White

DSTT+MARB+

L1+DISTS loss

33.043 32.645 0.958 0.956 0.0248 0.0263

DSTT+MARB+L1 35.279 34.285 0.982 0.975 0.007 0.0115

DSTT+MARB+

L1+Perceptual loss

37.728 36.456 0.984 0.982 0.0067 0.0085

Table 5.4: A performance comparison among the DeepRemaster (23), DSTT
(35) and proposed DSTT+MARB model in terms of three reference based image
quality metrics PSNR, SSIM, LPIPS

PSNR SSIM LPIPS

Black White Black White Black White

Deep Remaster 28.114 27.497 0.912 0.910 0.0578 0.0698

DSTT 31.631 29.908 0.944 0.940 0.0316 0.0352

DSTT + MARB 37.728 36.456 0.984 0.982 0.0067 0.0085

L1+DISTS loss.

And finally, as mentioned in the literature part, DeepRemaster 2.3.3 proposed
two networks responsible for two separate tasks: artifact removal and colorization.
For old film artifacts removal tasks, they employed a preprocessing network and
for colorization tasks, they introduced a source-reference attention module. Due to
the fact that in this research, we aim for old film noise removal, we only consider
the preprocessing network for training from scratch on the YouTube-VOS dataset.

According to Table 5.4 the DeepRemaster (23) model achieves (28.114, 27.497),
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Figure 5.4: Violin plots depicting the performance of the proposed model trained
with L1, L1+DISTS and L1+Perceptual loss functions on the 200 test images with
black artifacts with respect to PSNR, SSIM and LPIPS Image Quality Assessment
(IQA) metrics. X-axis indicates to the models’ name and Y-axis refers to the
IQA metrics

(0.912, 0.910) and (0.0578, 0.0698) in psnr (black, white), ssim (black, white) and
lpips (black, white) metrics respectively in the task of artifacts removal. These
values are the lowest among the candidate models considered. For DSTT (35) which
performs way better than the DeepRemaster model by achieving psnr (31.631),
ssim (0.944), lpips (0.0316) in black artifact removal and psnr (29.908), ssim (0.940),
lpips (0.0352) in white artifact handling. However, it should be mentioned that
DeepRemaster itself is a simple encoder-decoder architecture with 3D convolution
involved, and DSTT is a more complex architecture form that is an encoder-
transform-decoder-like architecture. On the other hand, the proposed model, which
can be considered the improved version of DSTT, outplayed all the models in terms
of the three evaluation metrics psnr, ssim and lpips by gaining 37.728, 0.984, 0.0067
and 36.456, 0.982, 0.0085 in the restoration task of test images with black and
white artifacts respectively.

Again, the violin plot in Fig 5.5 demonstrates the distribution of psnr, ssim and
lpips values of the restored test images by the models in Table 5.4. The restoration
performance of the DSTT+MARB has higher performance over the state-of-the-art
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Figure 5.5: Violin plots depicting the performance of the DeepRemaster (23),
DSTT (35) and proposed DSTT+MARB model on the 200 test images with black
artifacts with respect to PSNR, SSIM and LPIPS Image Quality Assessment
(IQA) metrics. The X-axis indicates the models’ name and Y-axis refers to the
IQA metrics

models DeepRemaster (23) and DSTT (35).

5.1.2 Video Inpainting Approach
Similar to the testing of the denoising algorithm, a test image set with 400 test
images is targeted to the video inpainting evaluation process of the proposed model.
However, the process of generating test images is non-identical to the denoising
algorithm. Along with the 400 test clean frames, a set of 400 mask images are
selected to apply to the clean frames to simulate masked frames with missing
regions. Figure 5.7 first row depicts the artificially generated masked frames that
are required to be restored by the proposed model trained in a video inpainting
manner. It should be mentioned that 200 test images and masks are selected for
generating each of the black and white masked frames. Anyway, Table 5.5 and
Figure 5.6 demonstrate the psnr, ssim and lpips values of the restored images by
the model. It can be observed that the video inpainting model achieves respectively
30.339 (black) and 33.969 (white) in psnr, 0.934 (black) and 0.959 (white) in ssim,
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Table 5.5: A performance of proposed DSTT+MARB model trained as video
inpainting approach in terms of three reference-based image quality metrics PSNR,
SSIM, LPIPS

PSNR SSIM LPIPS

Black White Black White Black White

DSTT+MARB

+hole-valid+

Perceptual loss

30.339 33.969 0.934 0.959 0.0437 0.0249

Figure 5.6: Violin plots depicting the performance of the proposed
DSTT+MARB model trained as video inpainting approach with respect to PSNR,
SSIM and LPIPS Image Quality Assessment (IQA) metrics. The X-axis indicates
the type of artifacts and the Y-axis refers to the IQA metrics

0.0437 (black) and 0.0249 (white) in the lpips image quality metrics.
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Figure 5.7: The first row represents the masked frames that are artificially
generated and the second row refers to the corresponding restored frames by the
proposed model trained using the video inpainting approach. The last row depicts
the SSIM difference map among the masked and restored frames

5.2 Qualitative Analysis
In this section, the performance of Figure 5.8 demonstrates the input frame (a)
from an old film ’Den-forsvundne-polsemaker’, the restored frame by the proposed
model trained in video inpainting manner (b) and another restoration of the same
frame by the same model trained as a denoising algorithm (c). Along with that, a
small rectangular frame region is cropped out to have a better visualization. Finally
in the last row of Figure 5.8 represents the structural similarity index measure
(SSIM) difference map between (a), (b) and (a), (c). These difference maps help
us to visualize the artifacts removal location in the restored frame. Although
the video inpainting approach works well on the simulated test images, it is not
effective on real-world old film, as we can observe from Figure 5.8 (b). Basically,
the trained model is not paying attention to the artifacts. One of the reasons that
the inpainting model is not capable of removing artifacts could be:

• The nature of the old film artifacts: Inpainting model is objective to fill
up the missing pixel of the target frame. By ‘missing pixel’, it means that
the region does not contain any information; thus, the pixel values are either
set to 0 (black) or 1 (white). So, the model is trained to restore those missing
values. However, real-world old film noise is non-identical to the artifacts
seen in the case of video inpainting. If we can observe Figure 4.2, typical
film noise is not confined to a specific region. In fact, the noise is distributed
throughout the frame. Dust and scratches have a higher and lower intensity
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Figure 5.8: A scene from the film ’Den-forsvundne-polsemaker’ where the first
row of (a) refers to the input frame and (b), (c) are the restored frames by the
proposed model trained in video inpainting and denoising manner, respectively.
The third row of the figure indicates the SSIM difference map of the restored
frames with respect to the input frame

compared to the other noise part, causing them to be more visible to the
observer.

The restored frame obtained by the proposed model trained as a denoising
algorithm depicts that the denoising approach is effective in the case of old film
restoration as it removes most of the old film artifacts. Apart from that, if we can
observe the difference map, the resolve of the old film artifacts is spotted noticeably.
So, here we can have a clear understanding that the denoising method is a more
feasible approach to follow in the case of the old film restoration task.

Table 5.2 demonstrates that DSTT+DeformConv+MARB shows higher psnr,
ssim and lpips values compared to the DSTT+MARB model where Conv2D layers
are used instead of deformable Conv2D. However, the reason for not proceeding
further with DSTT+DeformConv+MARB is shown in Figure 5.9. Here, Figure
5.9(a) represents the a input frame from a old film and Figure 5.9(b) and Figure 5.9
(c) depict the the restored frames produced by the DSTT+DeformConv+MARB and
DSTT+MARB models respectively. As we can observe from the reconstructed frame
with the deformable convolution, DSTT+DeformConv+MARB produces unpleasant
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Figure 5.9: (a) refers to the input frame and (b), (c) are the restored frames by
the DSTT+DeformConv+MARB and DSTT+MARB models, respectively. The
third row of the figure indicates the SSIM difference map of the restored frames
with respect to the input frame

additional artifacts in the restored frame, although it achieves better visual results
in the other part of the frame (green region) compared to DTT+MARB. The
DSTT+DeformConv+MARB model is unable to preserve the texture information
in the restored frame. One of the reasons could be:

• As it is mentioned that deformable convolution employs a deformed kernel
feature extractor shaped by learnable offsets, the kernel shape adjusts more
or narrows down to the more identical artifact regions. Due to that, it is
unable to extract global contextual information and so performs inferior when
we have a high-frequency region in the frame.

The limitation of the DSTT+DeformConv+MARB is visible in the ssim differ-
ence map where high disparity appears in the non-artifacts region Figure 5.9 (b).
On the other side, the DSTT+MARB model is able to preserve texture information
and also restore the artifacts region by removing them. From the ssim difference
map Figure 5.9 (c) also, it is clear that high differences exist only in the artifacts
regions.
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Figure 5.10: (a), (b), (c) are the restored frames by the DeepRemaster (23),
DSTT (35) and proposed DSTT+MARB models respectively. The third row of
the figure indicates SSIM difference map of the restored frames with respect to
the input frame

Figure 5.10 demonstrates a visual comparison of the proposed model with the
current state-of-the-art model, DeepRemaster (23) and DSTT (35), in the old film
restoration task. If we analyze the restored frames by the DeepRemaster and DSTT
models, the DSTT has better restoration than the DeepRemaster model, which is
observable from Figure 5.10 (a) and Figure 5.10 (b). However, any of the models
are able to completely remove the artifacts. On the other hand, the proposed model
successfully achieves superior performance among the models as it attempts all the
artifacts in the frame and restores the underline information.

The real-world old film ’Den-forsvundne-polsemaker’ that the model is evaluated
on, does not have any clean reference frames to assess PSNR, SSIM or LPIPS. Due
to that reason, a no-reference image quality assessment metrics Brisque (discussed
in 4.7.4) is included for model evaluation. Table 5.6 and Figure 5.11 demonstrate a
comparison of the proposed model against the state-of-the-art models DeepRemaster
(23) and DSTT (35) model on the basis of brisque image quality matrics. It is
undoubtedly visible that the proposed model, which is DSTT+MARB trained in
a denoising manner, has a lower mean brisque value (42.871) than the other two
models. It should be mentioned that the brisque value range is [0, 100], where the
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Table 5.6:
Models’ com-
parison based
on Brisque
IQA matrics

Brisque
Deep-

Remaster (23) 56.552

DSTT (35) 56.546
Ours 42.871

Figure 5.11: Violin plot depicting the models’
performance comparison in terms of Brisque val-
ues of the restored frames

lower values indicate better human perceptuality.

5.3 Limitation
Despite having a remarkable performance of the proposed MSARB-SST model in
the old film restoration task, it has a limitation which we discuss in this section.
The model is trained on varieties of old film degradations (e.g., dust). So, during
the restoration process of the train, it targets the dust in the input frame and
removes those artifacts. The exception happens when the model misjudges a frame
content as artifacts and removes that content in the restored frame. That means
in the restored frames, some information is disappeared, which is not supposed
to be removed. Figure 5.12 is a good example of this kind of scenario. Here,
we can observe that the proposed model removed the reflection of the light in
the background since it is misjudged as dust by the model. As a result, the light
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Figure 5.12: The use case when the model fails to preserve the frame content
misjudging light reflection as artifact

reflection does not exist in the restored frame. This can be addressed as a limitation
of the model. Wan et al. (59) recommend a solution to this kind of limitation that
is to include more images in the dataset so that a more generalized and well-trained
model can be obtained that have a better understanding of the old film artifacts.

5.4 Conclusion
Among the research questions that are presented in section 1.1, one is to find
out an effective approach to follow between the video inpainting and denoising
techniques. Although video inpainting is a well-established method to reconstruct
missing information in a video, it is not impactful in the case of old film restoration.
The real-world old film artifacts are more diverse than the reconstruction of the
missing portion of the image. Because the old film noise patterns are not confined
to a particular region, they are distributed over the whole frame region without
following a uniform distribution. So, old film restoration tasks can be identified as
more relatable to the video denoising algorithm. However, old film degradation
is also dissimilar to the typical image noise like gaussian noise, blurriness, and
compression that follows a certain statistical distribution. Old film noise patterns
are completely random in nature as the appearance of these kinds of artifacts (for
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example, dust, scratches) on a frame can not be predefined spatially and temporally.
In this research, both spatial and temporal coherence is preserved during video
reconstruction by involving two transformer blocks, taking into account both spatial
and temporal aspects of the video. That is how the temporal consistency of the
restored video sequences is preserved without involving optical flow estimation,
which answers the second research question of this research. This work is highly
inspired by the Decoupled Spatial-Temporal Transformer for Video Inpainting
(DSTT) model proposed in (35) which is basically a GAN architecture, and it is
developed for the video inpainting context. We suggest an improvement to the
DSTT model by introducing Multi-scale Attention Residual Block (MARB) in
both encoder-decoder parts of the generator. The advantage of the inclusion of
MARB lies in having more comprehensive features that help models understand
content at various scales.

For the quantitative evaluation of the proposed methodology tested on the arti-
ficially generated noisy test images, reference-based image quality metrics PSNR,
SSIM, LPIPS are incorporated. A separate but similar evaluation process is done
for both black and white artifacts. The experiments are conducted among the
several versions of the DSTT where the single-scale channel and spatial attention
residual block, fused MBConv block, deformable convolution, and MARB are
the candidate components. In addition to that, loss-based experiments are also
included, where perceptual loss and DISTS loss are combined separately with the
L1 loss function.

Apart from the quantitative analysis of the model, a visual output analysis of
the proposed method is also included in the evaluation process. State-of-the-art
models DeepRemaster (23), DSTT (35) and DSTT-MARB model are tested on
a Norwegian comedy film named “Den-forsvundne-polsemaker” released in 1941.
The proposed DSTT-MARB model achieves superior performance in no-reference
image quality assessment metrics (BRISQUE) than the other models. However,
as mentioned earlier, the proposed model still has the limitation that sometimes
fails to distinguish the video content from artifacts, and as a result, it removes
the content when it is not supposed to be removed. One solution to that could be
to include more diverse videos in the dataset during training so that the model
overcomes this kind of shortcoming and it can be addressed as one of the future
research objectives to improve the old film restoration system.
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Figure A.1: Violin plots depicting the performance of the candidate models on
the 200 test images with white artifacts with respect to PSNR, SSIM and LPIPS
Image Quality Assessment (IQA) matrices. X-axis indicates to the models’ name
and Y-axis refers to the IQA matrices
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Figure A.2: Violin plots depicting the performance of the ConV2D and De-
formConV2D on the 200 test images with white artifacts with respect to PSNR,
SSIM and LPIPS Image Quality Assessment (IQA) matrices. X-axis indicates
to the models’ name and Y-axis refers to the IQA matrices
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Figure A.3: Violin plots depicting the performance of the proposed model trained
with L1, L1+DISTS and L1+Perceptual loss functions on the 200 test images
with white artifacts with respect to PSNR, SSIM and LPIPS Image Quality
Assessment (IQA) matrices. X-axis indicates to the models’ name and Y-axis
refers to the IQA matrices
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Figure A.4: Violin plots depicting the performance of the DeepRemaster (23),
DSTT (35) and proposed DSTT+MARB model on the 200 test images with white
artifacts with respect to PSNR, SSIM and LPIPS Image Quality Assessment
(IQA) matrices. X-axis indicates to the models’ name and Y-axis refers to the
IQA matrices
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