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Abstract

Recent development has revealed that deep neural networks used in image clas-
sification systems are vulnerable to adversarial attacks. In this thesis, we design
an untargeted query-efficient decision-based black-box attack against robust im-
age classification models that produce imperceptible adversarial examples. The
proposed attack method, Magnitude Adversarial Spectrum Search-based Attack
(MASSA), includes two novel components to generate the initial noise and reduce
the noise in the frequency domain. Our experiments show that MASSA requires
significantly fewer queries than the state-of-the-art HopSkipJumpAttack (HSJA).
In addition, MASSA can create adversarial examples with 74, 16% lower l2 dis-
tance than HSJA after only 250 queries. Finally, we demonstrate that MASSA by-
passes two defense mechanisms and should be used to evaluate the robustness of
future defenses.
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Sammendrag

De siste årene har forskning vist at dype nevrale nettverk som brukes i bildeklas-
sifiseringssystemer er sårbare mot fiendtlige angrep. I denne oppgaven utformer
vi et umålrettet søkeeffektivt beslutningsbasert svart-boks angrep mot robuste
bildeklassifiseringsmodeller som produserer skjulte endringer i bilder. Den utviklede
angrepsmetoden, Magnitude Adversarial Spectrum Search-based Attack (MASSA),
inkluderer blant annet to nyskapende komponenter for å generere den initielle
støyen og redusere støyen i frekvensdomenet. Eksperimentene våre viser at MASSA
krever betydlig færre spørringer enn dagens ledende angrep HopSkipJumpAttack
(HSJA). I tillegg er MASSA i stand til å produsere fiendtlige bilder med 74, 16%
lavere avstand enn HSJA etter kun 250 spørringer. Til slutt demonstrerer vi at
MASSA slår to forsvarsmekanismer og bør brukes til å evaluere robustheten til
fremtidige forsvar.
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Chapter 1

Introduction

In recent years computing power has become more and more powerful, paving
the way for Deep Neural Networks (DNNs) to be used in computer vision tasks
such as image classification. The remarkable results of DNNs have led to their
use in various safety-critical tasks such as autonomous driving [1–5] and facial
biometric systems, including surveillance and access control [6, 7]. These safety-
critical systems require certain robustness from the DNNs, where failure can lead
to severe consequences.

Despite their exceptional performance, Goodfellow et al. [8] have demon-
strated that DNNs are vulnerable to adversarial attacks. They present Fast Gradi-
ent Sign Method (FGSM), which can generate imperceptible adversarial examples
to impact the predictions of image classification models. Since then, the research
community has published more adversarial attacks to shed light on the vulnerab-
ilities of DNNs to evaluate the robustness of image classification models. Further
development of new attack methods is vital to evaluate and strengthen the ro-
bustness of these models, which can be implemented in safety-critical systems.

Adversarial attacks are conducted under a particular threat model. The white-
box threat model assumes internal knowledge of the target model, while the black-
box assumes no knowledge. In real-world applications, an adversary cannot ex-
pect to obtain knowledge of the target model, making the black-box setting more
realistic [9]. The most realistic black-box setting is when the adversary only has
access to the output labels alone, known as decision-based attacks. Decision-based
attacks are usually iterative and query the target model repeatedly to gradually
lower the perceptibility of the adversarial example.

The first proposed decision-based attack methods required hundreds of thou-
sands of model queries to create imperceptible adversarial examples [10], i.e.,
with a minimal l2 distance to the original image. Even though the current state-of-
the-art decision-based attack methods are more query-efficient, they still require
thousands of model queries to achieve imperceptibility. Hence, robust classifica-
tion systems can detect a large number of queries to the target model and expose
the adversary [11]. The main challenge of the decision-based attack field is to
lower the query budget for adversarial attacks.

1
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In this thesis, we aim to construct a query-efficient attack method that gener-
ates imperceptible adversarial examples in just hundreds of queries. Additionally,
we investigate how models with implemented defense mechanisms are robust
against our attacks. We want to answer the following research question:

RQ: How to create an untargeted state-of-the-art query-efficient decision-based
black-box attack against robust image classification models to produce less perceptible
adversarial examples?

The main contribution of this thesis is Magnitude Adversarial Spectrum Search-
based Attack (MASSA), a novel decision-based black-box adversarial attack method.
To the best of our knowledge, we are the first to design an attack method that
addresses query-efficiency and imperceptibility by modifying all frequency com-
ponents in the magnitude spectrum. First, we generate noise in low, medium, and
high frequencies instead of sampling noise in the spatial domain. Then we reduce
the size of the perturbation by minimizing the frequency noise through a binary
search in each frequency component. Finally, we increase the imperceptibility by
conducting a patch-wise removal of redundant noise. In summary, our contribu-
tions are as follows:

• Our attack method contains two novel parts. The first part creates initial
noise in the frequency domain. The second minimizes the distance between
the original and adversarial magnitude spectrums through a binary search
in each frequency component.
• We design an attack method, MASSA, based on the proposed initiation method

and Frequency Spectrum Binary Search.
• We demonstrate empirically that MASSA achieves superior query-efficiency

and imperceptibility over a state-of-the-art decision-based attack through
extensive experiments with an unprecedented low number of model quer-
ies.
• We evaluate defense mechanisms against our attack method and propose

that our attack method can be used to assess the robustness of defense
mechanisms.

The structure of the thesis is as follows: First, in chapter 2, we introduce the
background theory necessary to understand the concepts for our proposed attack
method. Second, in chapter 3, we discuss the related work and state-of-the-art
decision-based attack methods, where we highlight the current limitations. In
chapter 4, we propose our novel attack method and how we mitigate the lim-
itations of the related work. In chapter 5, we detail our evaluation procedure
followed by the results from our comprehensive experiments. Furthermore, the
results are discussed regarding related work, academia, and industry in chapter 6.
Finally, we conclude our work and propose directions for future work in chapter 7.



Chapter 2

Background

The following chapter introduces the basis for the thesis. First, computer vision
and image classification are detailed to understand the application fields for ad-
versarial attacks that target image classifiers. To know how adversarial attacks
are generated and executed, their taxonomy is denoted, and a high-level explan-
ation of adversarial examples is detailed. Then, the threat models are introduced
to explain the differences between conditions adversarial attacks require to be
executed. Lastly, an overview of the different image domains is given.

2.1 Computer Vision and Image Classification

Computer vision is the field of artificial intelligence where systems can extract
information from visual inputs, e.g., images, and videos, to perform tasks based
on the information. Computer vision is implemented in industries such as energy,
utilities, healthcare, manufacturing, and transportation [12]. For example, a com-
puter vision system could be a form of intelligent image processing of the outputs
from cameras and other sensors of self-driving vehicles. Then the goal of the sys-
tem would be to identify the surroundings, such as other cars, traffic signs, and
pedestrians, based on the visual inputs.

A sub-domain of computer vision is the task of classifying images. Image classi-
fication consists of assigning an input image to a specific label [13]. The advance-
ments of DNNs have enabled the development of state-of-the-art image classifiers
[14, 15]. The image classifiers utilize a sub-group of DNNs known as Convolu-
tional Neural Networks (CNNs) to perform the task of recognizing images. We
denote an image as an array comprised of three dimensions wid th ⇥ height ⇥
channels where wid th and height is the size of the image in pixels, and channels
often refer to the values in the red, green, and blue channel of a colored image.
The image format is complex for a DNN, but a CNN reduces the complexity and
structures the information into feature maps. The feature maps are the extracted
features of the image and are computed by a filter applied to pixel blocks of the
image. The feature extraction is shown in Figure 2.1 as the first part of the CNN
architecture.

3
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Source: Avalos and Ortiz [16]

Figure 2.1: CNN architecture showing the feature extraction and classification.

After the feature extraction, an artificial neural network combines the features
into attributes. Then, both features and attributes are used to predict the labels of
the input images. During training, the CNN will calculate its error through a loss
function and use backpropagation [17] to adjust its internal weights and biases
to minimize the error.

2.2 Adversarial Attacks targeting Image Classification

Image classification unravels large opportunities for the industries with grounds
for computer vision. As more and more systems implement image classifiers, it is
essential to have robust models against adversarial attacks. The following section
introduces the taxonomy and details how adversarial examples can be generated.

2.2.1 Taxonomy

To understand the context of adversarial attacks, the following terms are denoted.
Target model: The target model is the system that performs image classifica-

tion. The system consists of a discriminant function F : RD ! Rm that produces
the output y = [0,1]m such that

Pm
c=1 yc = 1 given an input image x 2 [0,1]D,

where D = (width⇥height⇥channels) is the dimensions of the image. Intuitively,
y can be interpreted as a probability distribution over the set of labels [m] =
{1, . . . , m}, where yi is the probability of input x belonging to class i 2 [1, m]. The
target model then uses a classifier C(x) := argmaxc2[m] Fc(x) which allocates x
to the maximum probability in y . The target model is the victim of the attack. A
target model can be based on any given architecture, and target models can vary
from system to system.

Adversarial example: An adversarial example x 0 2 [0,1]D is a modified ver-
sion of the original image x that the target model misclassifies. The adversarial
example is commonly the output of the attack method.

Perturbation: A perturbation � is a change to the original image x 0 = x + �.
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To generate an adversarial example, the adversary adds a large enough perturb-
ation to the original image such that the target model misclassifies it. How this
perturbation is generated and modified depends on the attack method. Gener-
ally, an attack method aims to minimize the size of the perturbation � while still
keeping the modified image x 0 adversarial.

Adversary: An adversary is an entity that executes an attack to generate the
adversarial example x 0 and achieve the attack goal. The adversary chooses which
attack method to use and which goal to achieve.

Untargeted Attack: Untargeted attack is a type of attack that aims to change
the original classifier decision c := C(x) into any other decision c0 2 [m] \ {c}.
This can be formulated as Sx(x 0) := maxc0 6=c Fc0(x 0)� Fc(x 0), which tells us that
the untargeted attack is successful if and only if Sx(x 0)> 0. Simply put, the attack
goal is to change the originally predicted class of the target model into any other
class.

Targeted Attack: Targeted attack is a type of attack that aims to change the ori-
ginal classifier decision c := C(x) into a pre-determined other decision ct 2 [m] \
{c}. As with untargeted attacks, this can be formulated as Tx(x 0) :=maxct 6=c Fct

(x 0)�
Fc(x 0), which tells us that the targeted attack is successful if and only if Tx(x 0)> 0.
The attack goal is to change the originally predicted class into a chosen target class
determined by the adversary.

Query: A query is the action of asking the target model to classify an image.
The adversary uses queries to gain information about the target model which can
improve the adversarial example x 0. A query consists of an input-output pair: the
input x is an image to be classified by the target model. The output is usually a
probability distribution y over the set of labels, or just the maximum probability
depending on the threat model, as explained later in section 2.3.

Transferability: The transferability of an attack method is the ability to achieve
the attack goal on several target models with different architectures. Usually, an
identical adversarial example is given to each of the target models. The ability
to attack a higher number of target models implies higher transferability of the
attack method.

2.2.2 Generating Adversarial Perturbations

A generic attack method starts by obtaining the input denoted original image.
How the input is obtained is beyond the scope of the thesis, but we give two
examples of attack contexts in subsection 2.2.5. Given an original image x and
initial perturbation �, the attack method can construct an adversarial example
x 0 = x + �, i.e. the perturbation appended to the original image. Attack meth-
ods have different approaches, and some rely on iteratively querying the target
model to optimize the perturbation and construct the final adversarial example.
Figure 2.2 illustrates how a generic attack method can query the target model to
optimize the perturbation and minimize perceptibility.

Since each attack method uses a different approach, we used Boundary At-
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tack [10] to explain how an attack method can be constructed. Brendel et al.
[10] presents an iterative attack algorithm that gradually lowers the impercept-
ibility of the initial perturbation. The attack method performs random sampling
of adversarial and non-adversarial images to calculate the direction towards the
original image. The method relies on querying the target model to conduct the
sampling. Figure 2.3 shows the adversarial perturbations created by Boundary
Attack during an untargeted attack. The adversarial input is created after 200
667 queries to the target model.

Figure 2.2: The query loop for a generic attack method.

Source: Brendel et al. [10]

Figure 2.3: Adversarial example generation by Boundary Attack.
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2.2.3 Distance Metrics

An adversary wants the adversarial input to be similar to the original image. To
quantify this similarity, generally, three common distance metrics are used [18,
19]. The common distance metrics are based on lp norms where p 2 {0,2,1}.
l0 distance quantifies the total number of perturbed pixels in an image. l2 is the
most common distance metric and measures the Euclidean distance between two
images. Given many small perturbations, the l2 distance metric can be small even
if the number of perturbed pixels is high. l1 measures the largest perturbation to
a single pixel among all pixels in the image.

2.2.4 Decision Boundary

The decision boundary is the border where an image on one side is classified
correctly and on the other side misclassified. The misclassified side is referred to
as adversarial. Attack methods aim to lower the perceptibility of the adversarial
perturbation, i.e., be as close as possible to the original image while staying on
the adversarial side of the boundary. Ideally, the final adversarial example has the
minimum distance to the original image x while still adversarial. Figure 2.4 shows
the steps along the decision boundary of Boundary Attack [10] to reach the ideal
perturbation.

Source: Brendel et al. [10]

Figure 2.4: Illustration of the steps along the decision boundary of Boundary
Attack [10].

When an attack method is at the decision boundary, the direction for the next
step has to be decided. Usually, information about the boundary is obtained by
random sampling near the image on the boundary [10, 19–23]. This is done by
querying a set of random samples around the image, where one subset is ad-
versarial, and the other is not adversarial. By calculating the distance to the ran-
dom samples, the shape of the boundary in that area can be estimated. The attack
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method can move closer to the original image while remaining adversarial based
on the estimated boundary.

2.2.5 Attack Context

The attack context explains how the adversary conducts the attack against the
target model in a real-world use case. We discuss two relevant attack contexts
and describe how they could be performed from an adversarial viewpoint.

One attack context can be a man-in-the-middle attack, where an entity inter-
cepts the input and adjusts it before delivering it to the final destination. Figure 2.5
illustrates the man-in-the-middle attack context for a generic untargeted attack
method. An attack method can be executed against a system where an adversary
has access to the input before it is delivered to the target model. An attack can
be conducted if the adversary has access to the camera sensors, e.g., autonomous
vehicles or facial biometric systems.

Figure 2.5: The attack context for a generic untargeted attack method. The de-
gree of perturbation illustrates the adjustment to the original image and does not
represent the actual output of the attack method.

Another real-world use case for adversarial attacks against image classification
models is a Not-Safe-For-Work (NSFW) filter [24]. NSFW filters use image classi-
fication to detect and filter out explicit images and NSFW content. An adversary
may bypass the NSFW filter, making the image classifier misclassify explicit con-
tent as safe-for-work, thus displaying NSFW content for users. To achieve this, an
adversary starts with a random initial perturbation classified as safe-for-work. The
goal of the adversary will be to get the initial perturbation as close to a NSFW im-
age as possible while keeping the classification safe-for-work by not crossing the
decision boundary. The attack method used by the adversary will iteratively move
the adversarial example closer to the explicit image by reducing the perturbation
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based on the query information. In a real-life scenario, a query could be to upload
an adversarial example and see if it is classified as NSFW or not. Based on this
information the attack method would ideally reduce the perturbation iteratively
until it is imperceptible to human beings. This final adversarial example would
bypass the NSFW filter while still appearing as explicit content for humans.

2.3 Threat Model

The threat model can be viewed as the setting surrounding the attack and the
restrictions which are imposed on the adversary. The setting refers to informa-
tion known to the adversary, while the restrictions refer to possible actions of
the adversary. The literature mainly divide the threat models into white-box and
black-box. These two high-level threat models can be defined in greater detail
by focusing on what information is accessible to the adversary. This section first
explains the high-level white-box and black-box threat models before diving into
the additional threat models.

2.3.1 White-box and Black-box Settings

White-box Attacks

White-box attacks assume an adversary has access to any information about the
target model and datasets used during the training of the target model. Existing
white-box attack methods such as Goodfellow et al. [8] are based on gradient des-
cent which requires information about the model weights and internals. With this
information Goodfellow et al. [8] can generate efficient adversarial examples with
a high success rate. Computer vision systems may use different hyperparameters,
datasets, and model architectures to fit their specific application needs. There-
fore internal information about the target model is not available to an adversary,
making white-box attacks impractical in real-world applications.

Black-box Attacks

Black-box attacks assume no information about the target model, which aligns
better with real-world applications than white-box attacks [9]. Black-box attacks
only assume the ability to observe the output of the target model for a given
input. Figure 2.6 illustrates the difference between white-box attacks and black-
box attacks where the latter does not have access to anything inside the target
model.
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Figure 2.6: A visual representation of white-box and black-box threat model.
The black-box model cannot access internal information about the target model
(inside the black-box).

2.3.2 Another approach to classifying threat models

Gradient-based

The gradient-based threat model includes attacks that assume knowledge of the
internal gradients of the target model. The knowledge is similar to the white-
box threat model. Based on the gradient knowledge, the adversary can use attack
methods that backpropagate the target model weights to generate adversarial per-
turbations [8].

Transfer-based

The transfer-based threat model includes attacks that assume the knowledge of
transferability [23]. Often the attack methods generate a surrogate model sim-
ilar to the target model. Then the adversary can use attack methods with high
transferability to attack the surrogate model and transfer the attack to the tar-
get model. Even though the attack method does not require internal information
about the target model, the attack method needs to make some assumptions about
the target model to generate a similar surrogate model.

Universal Adversarial Perturbations (UAP) aims to create a single perturbation
that can be applied universally, i.e., to different images, and still fool the target
model [25]. To generate a universal perturbation, most UAP methods rely on the
training data, model architecture, and target model parameters. They add various
perturbations to the training data to determine an optimal universal perturbation.
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Score-based

The score-based threat model includes attacks that assume no internal knowledge
about the target model [26], but can access the output probability as shown in
Figure 2.6. The scores are denoted as the output probabilities and allow the ad-
versary to use attack methods that modify the perturbation based on the scores of
other classes. The modification can then be determined based on the changes in
the probability scores.

Decision-based

The decision-based threat model includes attacks that only assume the output
label [27], as shown in Figure 2.6. Different from score-based attacks, decision-
based will not have the information about other classes but solely rely on whether
the input is adversarial or not. This is the most restricted threat model. An ad-
versary has to use attack methods that navigate the decision boundary of the
target model to find the optimal adversarial perturbation. The decision-based at-
tack methods require the initial perturbation to be adversarial to find the decision
boundary. From this point, the attack method always keeps the perturbation on
the adversarial side of the boundary.

2.4 Image Domains

There are multiple ways to represent an image digitally. This section briefly intro-
duces the two domains related to the thesis. First, we present the spatial domain,
which is the most common way to represent an image, then we introduce the
frequency domain.

2.4.1 Spatial Domain

Digitally, an image is represented in the form of pixel values. For grayscale images
each pixel has an intensity value associated with it, usually in the range [0, 255].
This value indicates how bright the pixel is: 0 is entirely black, 255 is completely
white, and everything in between is some shade of gray. For colored images, this
intensity value is represented as a vector [R, G, B]. Each pixel in the image has
its own RGB vector. The first element in the vector represents the contribution of
red in the given pixel, the second element represents green, and the last element
represents blue. Figure 2.7 illustrates this concept. The colored image can thus be
represented as a 3D vector of 2D matrices, resulting in a shape of (w, h, c) where
w and h are the width and height of the image, and c is the number of channels
(3 for RGB images). This representation of an image is called the spatial domain.
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Figure 2.7: A visual representation of a 2x2 colored image. A colored pixel can
be split into red, green, and blue channel contributions.

2.4.2 Frequency Domain

Another image representation method is through the Fourier domain, which we
denote as the frequency domain. In this domain each point represents a specific
frequency contained in the spatial image. We can think of the frequency domain
as a set of components consisting of sine and cosine waves. Each point in the fre-
quency domain F(u, v) represents a certain combination of magnitude and phase
of these sinusoidal components, making it possible to represent any image. In this
subsection, we give a detailed explanation of the frequency domain based on the
description provided by Fisher et al. [28].

Going from the spatial domain into the frequency domain is known as decom-
posing, and going back to the spatial domain from the frequency domain is known
as synthesizing. Both decomposing and synthesizing are straightforward processes
using Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform
(IDFT), respectively. DFT is a sampled Fourier Transform which means it uses a
large enough set of samples to represent a spatial image but does not contain all
frequencies in the image. In our approach, we use a fast implementation of DFT
known as Fast Fourier Transform (FFT), and we use these terms interchangeably
throughout the thesis. For a given image of size d ⇥ d, the two-dimensional DFT
is given by

F(u, v) =
d�1X

u=0

d�1X

v=0

f (x , y)e2⇡ ux+v y
d j . (2.1)

Here, f (x , y) represents the pixel value at position (x , y) in the spatial image,
and the exponential term is the sinusoidal component corresponding to each point
(u, v) in the frequency spectrum. This means that each point F(u, v) in the fre-
quency spectrum is obtained by summing the product between the spatial image
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and the correlated sinusoidal component. The synthesizing process is performed
using IDFT. This two-dimensional inverse transformation is given by

f (x , y) =
1
d2

d�1X

x=0

d�1X

y=0

F(u, v)e�2⇡ ux+v y
d j , (2.2)

which is very similar to Equation 2.1. The only difference between the two
is that IDFT introduces a normalization term 1

d2
1 and changes the sign of the

sinusoidal components.
Figure 2.8 intuitively illustrate the decomposing and synthesizing processes

2. Notice how FFT produces two images: one for the magnitude and one for the
phase. This results from FFT producing a complex number at each point F(u, v). A
complex number z = x+ i y can be written in the polar form z = r(cos✓ + i sin✓ ).
Since the complex number can be split into its real and imaginary parts we can
view the log-scaled magnitude r and phase ✓ images separately, as illustrated in
Figure 2.8. We apply a logarithmic transformation [30] to log-scale the values in
the frequency domain as their value range is too large to visualize. As explained
by Fisher et al. [28], the magnitude spectrum contains most of the geometry in the
spatial image, while the phase does not contribute much new information. Hence,
we only talk about the magnitude spectrum when referring to the frequency do-
main from this point on. Still, IFFT requires the phase in the synthesizing process
from the frequency domain back to the spatial domain, so we cannot completely
discard the phase spectrum.

,PDJH�
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Figure 2.8: Visualization of decomposing (FFT) and synthesizing (IFFT). The
original image is split into its RGB channels, and FFT is used channel-wise to
obtain the phase and magnitude spectrum (log-scaled for visualization purposes).
IFFT combines these spectrums back into the original image.

1The normalization term can be applied to the decomposition process instead, but should not
be used in both decomposing and synthesizing.

2For visualization purposes, the Fourier transform is only applied to a single channel of the
colored image. Shukla et al. [29] illustrates that FFT and IFFT can be independently applied channel-
wise.
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(a) (b) (c) (d)

Figure 2.9: Each column represents a magnitude spectrum and its corresponding
spatial image. Observe how most of the spatial information is contained in the
low-frequency band. (a) The original image. (b) Only low-frequency band. (c)
Only medium-frequency band. (d) Only high-frequency band.

As we can see from the magnitude spectrum in Figure 2.8 the largest values
(light) are concentrated in the center of the image. The center point is known
as the Direct Current (DC) component and is by far the largest component in
the magnitude spectrum. The DC-component got its name from signal analysis
in electrical engineering and represents an average brightness of the spatial in-
formation, which means that a small change to this value has major effects on the
corresponding spatial image obtained from synthesizing. Other high-valued com-
ponents in the frequency domain also demonstrate this property. From Figure 2.8,
we can see that these components are located in the center of the magnitude spec-
trum. These components in the center of the image make up the low frequencies
of the frequency domain. As we saw with the DC-component, the low frequencies
contain most of the spatial information. As we move away from the center in the
magnitude spectrum, the component values decrease, meaning less and less spa-
tial image information is contained in these points. Outside the low frequencies,
we find the medium frequencies, and outside that, we get to the high frequencies.
Throughout this thesis, we use the term frequency band to refer to the areas of
different frequencies.

We demonstrate how the different frequency bands relate to the spatial image
information through Figure 2.9 where each column represents a magnitude spec-
trum and spatial image pair. The magnitude spectrums in Figure 2.9 have certain
frequency bands masked (black) to show what spatial information is contained
in the remaining band. From Figure 2.9b we see that the low frequencies are still
able to recover most of the spatial image even without the medium and high fre-
quencies, only losing some color intensity and sharpness. The medium and high
frequencies do not contain as much spatial information as the low frequencies.
We can see this from Figure 2.9c and Figure 2.9d, where the spatial image of the
medium and high frequencies look very different from the original image.
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Related Work

In this chapter, we discuss related work in the field of decision-based black-box
adversarial attacks. The chapter is divided into attacks in the spatial and frequency
domain. First, we address the spatial domain with a brief summary of the state-
of-the-art before two attack methods are detailed. Then a state-of-the-art sum-
mary and one attack method in the frequency domain are described. We denote
decision-based attacks on the spatial and frequency domain as Spatial Attacks and
Frequency Attacks respectively. This chapter highlights the limitations of the cur-
rent attack methods.

3.1 Decision-based Attacks in Spatial Domain

The general approach of spatial attacks [20–23] is to traverse the decision bound-
ary of the target model to minimize the distance between the original image and
the adversarial example. The traversal of the decision boundary is mainly ap-
proached in a geometric manner, as illustrated in Figure 3.1. We see how different
methods move the adversarial example towards the original image without cross-
ing the decision boundary. The spatial attacks are initiated with an adversarial
noise sampled from a spatial distribution, i.e., random noise values from a given
distribution in the spatial domain. Then, a binary search is usually performed to
approach the decision boundary. At the boundary, the methods differ in ways to
calculate the next step closer to the original image. They all have individual geo-
metrical approaches for moving towards the original image. Still, it is common to
perform random sampling, i.e., sample a set of random perturbations in the local
area. The number of sampled perturbations varies from method to method but
usually consists of hundreds of samples due to a high number of search dimen-
sions in images. The spatial attacks end when the query budget is reached, or the
distance metric is below a set threshold.

A limitation of spatial attacks is the number of queries required at the bound-
ary for random sampling. This leads to a larger number of queries needed to pro-
duce the final adversarial examples. The high amount of queries is a result of

15
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the large image dimensions. An RGB image of size (224⇥ 224⇥ 3) has 150 528
dimensions, resulting in a large search space.

(a) CAB [23] performs random
sampling on a customized distribu-
tion to form a spherical direction.

(b) SurFree [20] uses coordinate
descent on a random basis to refine
a boundary point.

(c) GeoDA [21] estimates the nor-
mal vector w to the decision bound-
ary hyperplane.

(d) RayS [22] directly search for
the closest point decision boundary
along a discrete set of ray direc-
tions.

Figure 3.1: The geometric approaches of spatial attacks.

3.1.1 HopSkipJumpAttack (HSJA)

As preliminary work for this thesis, we performed an Structured Literature Review
(SLR) that compared black-box attacks against computer vision models. The SLR
covers 29 distinct state-of-the-art attacks and can be found in Appendix A. Among
these attacks, we find the work of Chen et al. [19] known as HSJA. HSJA is a re-
cently published (2020) attack method in the decision-based threat model. Based
on their state-of-the-art performance, up-to-date results, relevance, and publicly
available code, we chose HSJA as a baseline for our results.

Chen et al. [19] presents HSJA, a hyperparameter-free and query-efficient
decision-based black-box attack for both targeted and untargeted attack settings.
The proposed algorithm is iteration-based with three components to an itera-
tion and is intuitively explained in Figure 3.2. Because the attack method op-
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(a) (b) (c) (d)

Source: Chen et al. [19]

Figure 3.2: Intuitive explanation of a single iteration t of the HSJA algorithm. (a)
Binary search to approach the decision boundary. (b) Gradient direction estim-
ation. (c) Geometric progression to produce a valid step size. (d) Binary search
back to the decision boundary.

erates in the decision-based threat model the attackers only have access to the
output label. From this information, Chen et al. [19] defines a boolean function
�x⇤ : [0,1]d ! {�1,1} where �x⇤(x) = 1 if and only if x is adversarial. The over-
all goal of the attack method can then be summarized as generating an adversarial
example x 0 such that �x⇤(x 0) = 1 while minimizing the distance between x 0 and
the original image.

As with other decision-based attacks, HSJA requires an initial adversarial ex-
ample x̃ t usually sampled from a Gaussian distribution such that�x⇤( x̃ t) = 1. The
first component in HSJA (Figure 3.2a) moves the initial adversarial example x̃ t to
the decision boundary, resulting in the image xt . This operation is done through a
binary search between the original image x⇤ and the adversarial example x̃ t . The
binary search is performed over a blending factor ↵ 2 [0,1] to determine how
much the initial adversarial example x̃ t can be blended with the original image
x⇤ while still satisfying �x⇤( x̃ t) = 1. When the binary search reaches a predeter-
mined threshold HSJA updates the adversarial example x̃ t ! xt .

The second component of HSJA (Figure 3.2b) uses a novel approach to estim-
ate the gradient direction at the decision boundary by using binary information
acquired from unbiased sampling. The gradient estimation is done by sampling B
independent and identically distributed vectors {ub}Bb=1 from a uniform distribu-
tion over the d-dimensional sphere. Then, the direction of the gradient rSx⇤(xt)
is approximated via the Monte Carlo estimate

›rS(xt ,�) :=
1
B

BX

b=1

�x⇤(xt +�ub)ub (3.1)

where � is a small positive parameter. The novel gradient direction estimation
makes HSJA require significantly fewer model queries than previous state-of-the-
art methods [10, 31, 32], and Chen et al. [19] also demonstrates lower l2 and l1
distances compared to other methods across multiple datasets and models.
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The third component in HSJA (Figure 3.2c) uses geometric progression of a
step size ⇠t := kxt � x⇤k2/

p
t to identify a valid step size along the gradient

direction. ⇠t is decreased by half until it satisfies �x⇤( x̃ t) = 1. The geometric
progression gives us the adversarial image x̃ t+1 which then can be moved to the
decision boundary again using a binary search as illustrated in Figure 3.2d. This
binary search concludes the t-th iteration of HSJA and prepares the attack method
for another iteration.

Despite its novelty, the bulk of model queries used in HSJA comes from gradi-
ent direction estimation. The gradient estimation is performed in the spatial do-
main which requires more samples in order to produce a gradient estimate, due
to its high dimensionality. HSJA performs this step because the algorithm requires
evaluation of the target model when near the decision boundary. In fact, Chen et
al. [19]mentions this as a limitation of all decision-based attack methods, and that
decision-based attacks may not be effective when limiting the number of queries
used at the boundary.

3.1.2 Patch-wise Adversarial Removal (PAR)

Shi and Han [33] presents Patch-wise Adversarial Removal (PAR), an attack method
that removes redundant noise of adversarial examples. Rather than traversing the
decision boundary, PAR divides the input image into coarse-to-fine patches. Shi
and Han [33] explore how sensitivity and magnitude on each patch can be used
to remove redundant noise, thus reducing the overall degree of the perturbation.
The authors state that initial noise can be compressed due to different noise sens-
itivities in the image. As shown in Figure 3.3, PAR compresses the initial noise to
a lower l2 distance than Boundary Attack [10] in the same amount of queries.

Original image Initial noise
l2 = 99.60

Boundary noise
l2 = 72.60

PAR noise
l2 = 12.62

Source: Shi and Han [33]

Figure 3.3: Noise comparison between Boundary Attack by Brendel et al. [10] and
PAR by Shi and Han [33] after 100 model queries from the same initial noise.

PAR works by iteratively querying the target model to see if a certain part of
the initial noise is redundant or necessary. First, the attack method divides the
initial noise into coarse patches of size PS = PS0 ⇥ PS0, which defines the initial
patch size based on a hyperparameter PS0. Then, the noise magnitude of each
patch is recorded in a noise magnitude mask MN as the l2 distance between the
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original image and the adversarial example in that particular patch. In addition
to the noise magnitude mask, PAR also keeps track of a noise sensitivity mask MS .
This mask is a binary mask where 1 indicates that the noise in this patch has been
successfully removed or has not yet tried to remove the noise. A 0 indicates that
the noise removal failed for this patch, meaning the noise in this patch is essential
for keeping the image adversarial. PAR combines MN and MS through an element-
wise product to obtain a query-value mask MQ = MN �MS . Due to the properties
of the element-wise product operator and the binary nature of MS , PAR can sort
the values of MQ in descending order and remove the noise in the patch with the
highest value in MQ. This patch will have the highest noise magnitude and has
not yet been queried to the target model. If the query result of the updated ad-
versarial example is adversarial, it indicates that the noise sensitivity in that patch
is low and that the noise is redundant and can be removed. If it is not adversarial,
the corresponding value in MS is set to 0. Preferably, the attack method should
first remove noise in the patches with low noise sensitivity and high noise mag-
nitude. Sorting MQ in a descending order ensures that this happens, which can
significantly reduce the overall l2 distance between the original image and the ad-
versarial example if successful. If all patches of patch size PS have removed their
noise or performed an unsuccessful query, the sum of MQ reaches 0. When this
happens PAR halves the patch size PSi+1 = PSi/2. The two masks MN and MS are
then reinitialized before a new iteration of the attack method is conducted on the
patches that still contain noise. PAR stops when it reaches one of two predefined
values: the query budget or the minimum patch size.

The noise compression of PAR greatly reduces the initial noise, which can
speed up the process of a subsequent attack method [23]. This property makes
PAR particularly suitable as an initialization method for other attack methods. Shi
and Han [33] illustrate this through their results, which show that other attack
methods achieve better results if initiated with PAR in the same amount of queries.
Even though Shi and Han [33] presents a query-efficient method to compress
initial noise, PAR is more powerful in combination with existing decision-based
attack methods. Additionally, Shi and Han [33]mainly targets Vision Transformers
(ViTs) [34] which can be a limitation to attack methods against CNN based image
classifiers.
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3.2 Decision-based Attacks in Frequency Domain

The general approach of frequency attacks [27, 29, 35–38] addresses a limitation
of spatial attacks, which is to reduce the search space of adversarial perturbations.
Most frequency attacks initiate, traverse the decision-boundary, and finish similar
to spatial attacks. The main difference between the spatial and frequency attacks
lies in the dimensionality of the space used for sampling random perturbations. In
the high-dimensional spatial domain, an attack method can sample many unne-
cessary non-adversarial directions causing a higher number of required queries.
Guo et al. [37] shows that adversarial examples exist abundantly in a very low-
dimensional low-frequency subspace, meaning that adversarial directions occur
much more often than in the high-dimensional spatial domain. Thus, adversarial
perturbations sampled from the low-frequency subspace have a significantly lower
number of required queries. This property allows for more query-efficient attack
methods by sampling from the low dimensional frequency domain.

3.2.1 F-mixup

Li et al. [39] differentiate themselves from general frequency attacks mentioned
previously by introducing a novel attack method F-mixup in the high frequencies
of the magnitude spectrum, as opposed to performing random sampling in the
low frequencies. Therefore F-mixup introduces a new idea for adversarial attacks
— to explore how modification of frequency components can create adversarial
examples.

F-mixup is a targeted attack that consists of mixing up the low-frequency com-
ponent of an image x and the high-frequency component of the target image x⇤.
The result of the mixup is a new example x 0 which looks like x to a human, but
is classified as x⇤ by the target model. The attack algorithm is illustrated in Fig-
ure 3.4, where the magnitude spectrums of x and x 0 are obtained with FFT.

Source: Li et al. [39]

Figure 3.4: F-mixup algorithm. Frequency spectrums are obtained through FFT
and combined through IFFT to produce an adversarial example.



Chapter 3: Related Work 21

The magnitude spectrums are combined with the band stop filter from x and
band pass filter from x 0 with parameters Rl and fixed Rh. To find the optimal band
pass and stop filter, the algorithm performs a sampling of m random values Rl ,
where m is the query budget. The combined magnitude spectrums are converted
back to spatial domain with IFFT, and queried to the target model for evaluation.
The m adversarial examples are evaluated on the l2 distance to the original image
x . If an adversarial example is found, the example with the lowest l2 distance is
chosen.

Even though Li et al. [39] does not claim state-of-the-art performance with
F-mixup, their contributions reveal a large potential to create imperceptible ad-
versarial examples in the magnitude spectrum. They show that adversarial ex-
amples can lie in the high-frequency component of natural images. The main lim-
itation of F-mixup is the exclusion of medium and low-frequency components.
Chen et al. [40] argue that CNNs extract features from different frequencies and
Guo et al. [37] show that adversarial perturbations also lie in the low frequen-
cies. Additionally, F-mixup does not implement untargeted attacks but can only
perform targeted attacks. Another limitation is the static Rh variable in the al-
gorithm, which forces the method to sample in the high frequencies. A dynamic
approach to selecting Rh and Rl could improve the ability to search in all frequency
components.





Chapter 4

Methodology

In this chapter, we explain our methodology. We first discuss our motivation for
producing a novel black-box attack by contextualizing the limitations of current
black-box attacks. Then we propose a research question based on the discussed
motivation, before explaining our novel attack method and how it will answer the
research question.

4.1 Motivation

The necessity to query hundreds of perturbations at the decision boundary re-
mains the main limitation for all decision-based attack methods [19], both spatial
and frequency attacks. For that reason, state-of-the-art attack methods require
thousands of queries to create imperceptible adversarial examples. The queries
needed could significantly be reduced by circumventing the need for sampling at
the decision boundary.

Li et al. [39] reveals a new idea for targeted adversarial attack methods by
proposing to utilize the magnitude spectrum to create imperceptible adversarial
examples. F-mixup inserts the high frequencies of one image into another image,
demonstrating the potential of adversarial perturbations in the high-frequency
components. However, Li et al. [39] do not investigate the potential of other fre-
quency bands, even though Guo et al. [37] shows that adversarial perturbations
also exist in the low frequencies. A limitation of all existing untargeted attack
methods is the sampling of initial noise. The initial noise is normally sampled
from a Gaussian distribution in the spatial domain [19], but could benefit from
being sampled from the low-dimensional frequency domain [37].

To fill these gaps in decision-based attacks, we perform novel research explor-
ing query-efficiency and imperceptibility in generating adversarial examples. This
research aims to circumvent the need for sampling at the decision boundary and
utilizes the frequency domain to produce a query-efficient attack method.

23
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4.2 Research Questions

To create a clear goal for the thesis and to summarize our motivation, we propose
the following research question as presented in chapter 1:

RQ: How to create an untargeted state-of-the-art query-efficient decision-based
black-box attack against robust image classification models to produce less perceptible
adversarial examples?

The following section describes our contribution through our proposed at-
tack method. Our contribution consists of various novel methods utilizing the
frequency domain information to form a novel decision-based black-box attack
method addressing the current limitations of the state-of-the-art.

4.3 Attack Design

We propose an answer to our research question through Magnitude Adversarial
Spectrum Search-based Attack (MASSA), a novel untargeted decision-based black-
box attack that directly modifies the entire frequency spectrum of an image to
produce adversarial examples efficiently. The following points can characterize
the proposed attack method:

1. The attack samples initial noise in the frequency domain.
2. The attack reduces the perturbation size in each frequency band.
3. The attack removes redundant noise.

These points categorize MASSA into three main components: noise genera-
tion, noise reduction, and removal of redundant noise. An illustration of these
components and the high-level attack pipeline is found in Figure 4.1. This sec-
tion first describes how we divide the frequency spectrum into separate frequency
bands before explaining each part of the attack pipeline in detail.

0$66$
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Figure 4.1: The overall attack pipeline of the proposed MASSA attack.
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4.3.1 Creating frequency bands

We recall from subsection 2.4.2 that the frequency spectrum can be divided into
three bands: low-, medium-, and high frequencies. We also recall that each fre-
quency band affects the spatial image differently and that, ideally, we want to
modify each band separately. Therefore, we separate the frequency spectrum into
these three bands. Each spatial image decomposes into a different frequency spec-
trum with different frequency bands, which means finding the thresholds dividing
the frequency spectrum into different bands is not a straightforward task. We use
statistical analysis of the frequency spectrum for each image channel to calcu-
late r1 and r2, the two radiuses which divide the frequency spectrum into low-,
medium-, and high-frequency bands. Exactly how r1 and r2 divide the frequency
spectrum is illustrated in Figure 4.2, where the innermost circle with radius r1
contains most of the low frequencies, the annulus between r1 and r2 contains
mostly medium frequencies, and everything outside the circle with radius r2 con-
tains high frequencies.

U�

U�

Figure 4.2: Illustration of the different frequency bands. Most low frequencies are
located in the circle with radius r1, the medium frequencies are mostly located in
the circle with radius r2, while the high frequencies are mostly contained outside
this circle.

To determine r1 and r2, we study the value range of the logarithmically scaled
frequency spectrum of an image. Recall from subsection 2.4.2 that we log-scale the
values for visualization because of their large value range. Figure 4.3a illustrates
the frequency spectrum of an image and Figure 4.3b its corresponding histogram
of values. We can see from the histogram that most of the values in the frequency
spectrum range between 0-3. Additionally, we have some smaller values towards
-3 and some larger ones towards 10. The histogram in Figure 4.3b somewhat
resembles a normal distribution with a mean of about µ= 1.5 and standard devi-
ation � = 1. The values for µ and � depend on the frequency spectrum, but the
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key takeaway is that the frequency spectrum values loosely resemble a normal
distribution. Because of this property, we continue our statistical analysis based
on the assumption that the values in the frequency spectrum follow the described
normal distribution, with the exception of a longer right tail than a left tail.

(a) Frequency spectrum (b) Distribution of values in the frequency
spectrum. µ= 1.5

Figure 4.3: Frequency spectrum and its value distribution

From subsection 2.4.2, we know that the high-frequency band contains the
smallest values in the frequency spectrum, represented by the left tail in Fig-
ure 4.3b. Similarly, the low-frequency band is represented by the right tail, with
the medium frequencies between the two tails. In order to decide on values for r1
and r2 we first need to identify two tail-values tl and tr that divide the histogram
into three parts, one for each frequency band. We define the left tl and right tail
tr as

tl = µ�↵l� and tr = µ+↵r�, (4.1)

where µ is the mean, � is the standard deviation, and ↵l and ↵r are scaling
factors for the left and right tails respectively. To translate the tail-values of the
histogram to the 2D frequency domain we define a mask for each frequency band:

Mh = Fi, j < tl

Mm = tl < Fi, j < tr

Ml = Fi, j > tr

where Fi, j is the value of the frequency spectrum at position (i, j), tl and tr
are the left and right tail values respectively. Each 2D mask M will contain all
values in the frequency domain belonging to that band, i.e. Ml will contain all low-
frequency values, given the threshold-value tr . Then, for each mask, we calculate
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the euclidean distance between each value Fi, j in the mask and the center as
di, j =
p

i2 + j2. We can then use the average euclidean distance to calculate r1
and r2 like so:

r1 =
1
|Ml |
X

i, j

∆
i2 + j2, r2 =

1
|Mm|
X

i, j

∆
i2 + j2,

where |Ml | and |Mm| denote the number of values in the low-frequency mask
and medium-frequency mask respectively. In summary, the radiuses used to cre-
ate the frequency bands are dependent on the tail-values used to divide the his-
togram in Figure 4.3b. Recalling that the distribution of magnitude values loosely
resembles a normal distribution, we chose a scaling factor of ↵l = 2 for tl , and a
factor of ↵r = 3 for tr in order to compensate for the longer right side tail.

In summary, we use tl = µ � 2� and tr = µ + 3� as tail values, which are
then used to calculate appropriate values for r1 and r2, allowing us to split the
frequency spectrum into a low, medium, and high frequency band for separate
modification at a later stage. µ and � depend on the value distribution of the fre-
quency spectrum, meaning we get unique tail values for each spatial image while
also compensating for the long right tail with the ↵ scaling values. These calcu-
lations are performed for each image channel to produce as accurate frequency
bands as possible.

4.3.2 Initial Noise Generation

All decision-based attack methods in our related work sample the initial perturb-
ation from the spatial domain. We propose to sample the initial perturbation from
the frequency domain instead, such that we can generate an initial perturbation
with noise in all frequency components.

Our method includes a novel initiation method to generate the initial per-
turbation. The goal is to create an adversarial perturbation as required by the
subsequent Noise Reduction component. For simplicity, we only describe the pro-
cess for a single channel, but it is easily extended to three-dimensional images
channel-wise. Figure 4.4 illustrates each step in the noise generation component.
We consider the original image x of size d⇥d and its frequency spectrum F of the
same size. As performed by Li et al. [39], we shift the low frequencies of the fre-
quency spectrum to the center and scale the values logarithmically, which results
in Figure 4.4b. We use Fi, j to index the magnitude values at position (i, j).

Unlike Chen et al. [19] which samples the noise from the normal distribution
N(0, 1)D in the spatial domain, we directly perturb the frequency spectrum of x .
To perturb the frequency spectrum, we divide the spectrum into three frequency
bands: high, medium, and low. As explained in subsection 4.3.1, we use r1 and r2
to divide the frequency spectrum into three frequency bands. The low-frequency
band given by r1 covers a centered circle, the medium frequency band given by
r2 covers an annulus around the low-frequency band, and the high frequencies
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(a) Original image (b) Frequency
spectrum

(c) Modified
frequency
spectrum

(d) Adversarial
example

Figure 4.4: Visualization of the initiation process. (a) The original image in the
spatial domain. (b) The frequency spectrum of the original image. (c) The fre-
quency spectrum after insertion of noise in the frequency bands. (d) The per-
turbed image in the spatial domain.

cover everything else. Figure 4.4c illustrate these frequency bands. Based on r1
and r2 we can determine which band Fi, j belongs to.

To create the perturbation seen in Figure 4.4d, we directly modify the val-
ues in the frequency spectrum. First, we use the mean µ and standard deviation
�Figure 4.3b to replicate the distribution based on the assumption that it re-
sembles a normal distribution. We use N ⇤ to denote this replicated distribution.
Then, for each band, we replace each value Fi, j with a sample from N ⇤. For the
low frequency band, we only sample values in the range [Fmin, tl], where Fmin is
the lowest value in the frequency spectrum and tl is the left tail value calculated
by Equation 4.1 with ↵ = 2. Values in the medium frequency band are replaced
with values sampled from N ⇤ in the range [tl , tr]. Lastly, the values in the high-
frequency band are replaced with values from N ⇤ in the range [tr , Fmax] where
Fmax is the largest value in the frequency spectrum. This process results in a per-
turbed frequency spectrum F 0, illustrated in Figure 4.4c, which consists of random
values for all Fi, j where the values in each band remain in their original range and
with a similar distribution. Lastly, IFFT transforms the perturbed frequency spec-
trum back to the spatial domain resulting in Figure 4.4d. This adversarial example
serves as the input to the noise reduction component of our attack method.

4.3.3 Noise Reduction

To circumvent the need to sample at the boundary, we design a novel reduction
method to minimize the distance between the frequency spectrum F of the ori-
ginal image and the frequency spectrum F 0 of the initial perturbation. We call this
method Frequency Spectrum Binary Search. Inspired by the use of binary search to
efficiently minimize the distance between two images in the spatial domain, we
redesign the binary search to minimize the distance between two frequency spec-
trums while only modifying values in a given band. This binary search method
is then conducted separately for each frequency band. Since the most important
features of an image is located in the low frequencies [41], we perform the first
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(a) l2 = 0.0 (b) l2 = 92.76 (c) l2 = 27.00 (d) l2 = 21.40 (e) l2 = 21.39

Figure 4.5: Visualization of the reduction process. The top row is the frequency
spectrum in each step, and the bottom row is the corresponding image in the
spatial domain. (a) The original frequency spectrum F and image x . (b) The
initial perturbation before the reduction method. (c) After binary search in the
low-frequency band. (d) After binary search in the medium-frequency band. (e)
After binary search in the high-frequency band.

binary search in this band. This allows the low-frequency values to move closer to
their original values because the noise in the medium and high frequencies helps
keep the image adversarial. We then move to the medium-frequency band for the
same reason, and finally, binary search in the high-frequency band. The overall re-
duction process is illustrated in Figure 4.5 and shows how drastically the distance
to the original image is reduced through binary searches in the low, medium, and
high-frequency bands.

Chen et al. [19] propose a traditional binary search to approach the decision
boundary as Algorithm 1 in their paper. We apply this algorithm in the frequency
spectrum and modify it to only adjust values for the given band b, either the
low, medium, or high-frequency band. Our modified version aims to reduce the
frequencies across bands proportionally, allowing each frequency band to stay
in its original value range. Keeping the value ranges consistent is essential since
each frequency band has a different impact on the spatial image. Our redesigned
algorithm used for noise reduction is detailed in Algorithm 1.

4.3.4 Removal of Redundant Noise

The last component of our attack method is the removal of redundant noise. Shi
and Han [33] reveals that most noise in the initial adversarial example is redund-
ant, and one can speed up subsequent decision-based attacks by removing the
redundant noise [23]. Based on this discovery, we propose to remove redundant
noise as the final step of our attack method. Similar to Shi and Han [33], we
perform this removal through a coarse-to-fine patch-wise manner.

Our redundant noise removal process is based on a trial-and-error approach.
Given an adversarial example x 0 of size d ⇥ d we first divide the image into four
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Algorithm 1 Frequency Spectrum Binary Search

Require: Original frequency spectrum F and adversarial frequency spectrum F 0.
Binary function �, such that �(F 0) = 1 and �(F) = 0. Threshold ✓ , and band
b.

Ensure: An adversarial frequency spectrum F 00 closer to F in band b
↵l  0
↵u 1
while |↵u �↵l |> ✓ do

↵m ↵l+↵u
2

F 00 = ⇧b
F,↵m
(F 0) . Average frequencies between F and F 0 in band b

if �(F 00) = 1 then . Check if F 00 is adversarial
↵u ↵m

else

↵l  ↵m
end if

end while

Output F 00 = ⇧b
F,↵u
(F 0).

coarse patches of size d
2 ⇥ d

2 . We then iteratively remove the noise in each patch
and query the model to see if that noise patch is necessary for misclassification.
In this way, we are able to remove large parts of unnecessary noise, which fur-
ther decreases the l2 distance. After performing this on each patch, we recursively
perform the same steps on each patch where the noise was not removed. This
gradually moves from coarse patches to finer patches as the size of each patch de-
creases in each iteration. The iterative process is visualized in Figure 4.6, which
shows how the redundant noise is removed from the adversarial perturbation. For
visualization purposes, we subtracted the original image from the adversarial ex-
amples after the noise reduction component, meaning Figure 4.6a depicts only the
changes made to the original image. Each step after that removes patches of dif-
ferent sizes, clearly illustrating that a lot of noise is redundant. The noise removal
process ends when the minimum patch size is reached. To finish of this process
we perform a binary search to ensure that the final adversarial example is close to
the decision boundary. The result of this component gives us the final adversarial
example, which contains minimal redundant noise, i.e., a low l2 distance.
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(a) l2 = 21.39 (b) l2 = 18.62 (c) l2 = 17.27 (d) l2 = 12.58

(e) l2 = 11.45 (f) l2 = 8.39 (g) l2 = 6.92 (h) Adversarial
example

Figure 4.6: Visualization of the noise removal process. For each image, the unne-
cessary noise patches have been removed, here replaced by gray for visualization
purposes. Between each image, the patch size is halved as we move from coarse to
fine patches. (a) The noise appended to the original image. (b-g) Noise removed
with patch sizes 112⇥112 to 7⇥7 respectively. (h) The final adversarial example.





Chapter 5

Evaluation & Results

This section presents the evaluation of MASSA. First, we describe the evaluation
procedure for our experimental analysis. Then, we present the results for evalu-
ating efficiency and defense mechanisms compared to HSJA, as previously intro-
duced in subsection 3.1.1.

5.1 Evaluation Procedure

The evaluation procedure is used to ensure the quality of the results to compare
our attack method to the state-of-the-art. The following section describes the eval-
uation methods used consistently throughout our experiments. First, we introduce
how we evaluate the efficiency of MASSA against a carefully chosen baseline. Then
we detail the evaluation procedure of MASSA against target models which have
implemented a defense mechanism.

We compare the evaluation procedures of our related work from chapter 3 in
order to design our own evaluation procedure. A summary of the evaluation pro-
cedures of our related work is shown in Table 5.1, which describes the included
datasets, models, and metrics. The related work has overlapping evaluation pro-
cedures but differs mainly in the datasets and models used in the experiments.

Among the related work in chapter 3, we chose HSJA by Chen et al. [19]
as a baseline for our evaluations. PAR introduces a powerful redundant noise re-
moval approach but achieves the best performance as an initiation method instead
of a standalone attack method. Additionally, PAR mainly focuses on attacking
ViTs, even though some CNN models are included in their experiments. Therefore
we chose to exclude PAR from our baseline. F-mixup is another powerful attack
method, but it is only evaluated on the CIFAR-10 dataset. The fact that F-mixup
is a targeted attack makes it incompatible for comparison with our untargeted
attack method. F-mixup is not an iterative attack method because it samples a
given amount of queries and chooses the best candidate. This makes the number
of queries needed and l2 distance metrics challenging to compare to an iterative
attack method. Hence, F-mixup is also excluded from our baseline. Since HSJA
is our only baseline, we mainly design our evaluation procedure around theirs in

33
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terms of Table 5.1, in order to make a reasonable performance comparison of the
two attack methods.

HSJA [19] PAR [33] f-mixup [39]

Dataset

ILSVRC-2012 ÿ ÿ
ImageNet-21k ÿ
Tiny-Imagenet ÿ

MNIST ÿ
CIFAR10 ÿ ÿ
CIFAR100 ÿ

Models

AlexNet ÿ
ResNet-32 ÿ
ResNet-50 ÿ ÿ
ResNet-101 ÿ

DenseNet-121 ÿ ÿ
Simple CNN ÿ

VGG16 ÿ
VGG19 ÿ
SeNet ÿ
ViTs ÿ

Metrics

Number of Queries ÿ ÿ ÿ
Success Rate ÿ ÿ

Median l2 distance ÿ ÿ
Average l2 distance ÿ ÿ
Median l1 distance ÿ

Table 5.1: Summarized evaluation procedures of related work. ViTs are various
Vision Transformers different from CNN based target models.

5.1.1 Dataset

ImageNet [42] is an image database consisting of 14 197 122 images, where 21
841 classes are indexed. The data is available for free to researchers for non-
commercial use. A subset of ImageNet is the ILSVRC2012 Challenge, which in-
cludes 1000 classes and consists of 1.28 million images for training, 50 000 images
for validation, and 100 000 images for testing. The validation set has 50 images for
each class. The first ten classes and corresponding labels are shown in Table 5.2.
We use the ILSVRC2012 Challenge validation dataset for all our experiments as
it was used for evaluation by Chen et al. [19] and Shi and Han [33]. ImageNet
images are considered large with respect to other common datasets such as the
CIFAR family and MNIST. In comparison, ImageNet offers images of varying sizes
with an average size of 469⇥ 387, while the CIFAR datasets offer 32⇥ 32 images
and MNIST 28⇥ 28 images. Larger image size makes the ImageNet dataset more
relevant to real-world applications [43], while the CIFAR and MNIST datasets can
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be left out. Due to the varying image sizes of ImageNet, the classification mod-
els apply a preprocessing step for input images [14, 15]. The images are scaled
to 256 pixels on the shortest side and then center-cropped to 224 ⇥ 224. The
preprocessing guarantees a consistent image size of 224 ⇥ 224 and comparable
results between attack methods. Figure 5.1 shows three images before and after
the preprocessing step.

Class ID Labels
0 tench, Tinca tinca
1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-

eating shark, Carcharodon carcharias
3 tiger shark, Galeocerdo cuvieri
4 hammerhead, hammerhead shark
5 electric ray, crampfish, numbfish, torpedo
6 stingray
7 cock
8 hen
9 ostrich, Struthio camelus

Table 5.2: Class ID and labels of the first 10 ILSVRC2012 classes.

5.1.2 Classification Models

Ideally, a comprehensive evaluation consists of various models to ensure the res-
ults. In order to compare the results to the baseline, the experimental setup re-
quired models from the Tensorflow library version 1.2.1 [44]. Therefore, we in-
clude three different image classification models available in this library, which
all achieve state-of-the-art performance on the ImageNet dataset. Each model is
pre-trained on the ImageNet training dataset and requires image input of size
224⇥ 224.

ResNet-50

ResNet-50 was introduced by He et al. [14] and presented a residual learning
framework to train deep neural networks. The ResNet-50 version of the model
uses a 50-layer deep architecture and achieves an accuracy of 77.15% on the
ImageNet test dataset.

VGG16

VGG16 was introduced by Simonyan and Zisserman [15] who investigated the
increasing depth of CNNs. VGG16 uses a 16-layer deep architecture and achieves
an accuracy of 72.7% on the ImageNet test dataset.
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(a) pineapple, ananas

(b) water buffalo, water ox, Asiatic buffalo, Bubalus
bubalis

(c) killer whale, killer, orca, grampus, sea wolf, Or-
cinus orca

Figure 5.1: Three images and corresponding classes from ImageNet. Left: Ori-
ginal size. Right: Scaled and center-cropped.

VGG19

VGG19 was also introduced by Simonyan and Zisserman [15]. In addition to in-
vestigating a 16-layer deep architecture, they also evaluated a 19-layer deep ar-
chitecture which achieved an accuracy of 74.5% on the ImageNet test dataset.

5.1.3 Metrics

In our research question in section 4.2 we stated our focus on query-efficiency and
less perceptible adversarial examples. We use four different metrics to evaluate
these metrics properly: number of queries, l2 distance, success rate, and query
finish rate, which we present in this subsection. With the exception of query finish
rate, all these metrics are also used by Chen et al. [19].

Number of queries

The number of queries represents how many times the attack method has to query
the target model. The optimal attack method would require as few as possible
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queries to execute the attack. The more queries used during the attack, the larger
possibility of detection by a defence mechanism as mentioned in Appendix A. We
limit the maximum number of queries to 1000, in difference to Chen et al. [19]
which limits to 25 000 queries.

l2 distance

We use the l2 distance metric to measure the imperceptibility of the adversarial
perturbation. We described the l2 distance more in detail in subsection 2.2.3.
An ideal attack method should create a perturbation with a minimal l2 distance
between the original image and the adversarial example. We see from Table 5.1
how l2 distance is more common between the related work, both as a median and
average distance across multiple images. We chose to leave out the l1 metric as
it is not as widely used among our related work.

Success rate

Another metric we use to evaluate attack efficiency is the success rate. We know
from section 2.3.2 that most of all decision-based attack methods traverse the
decision boundary on the adversarial side, meaning all perturbations during the
attack are adversarial. Because of this, the success rate is measured at various l2
distance thresholds where the attack methods are given a maximum query budget.
The definition of success is that the l2 distance does not exceed a given distance
threshold. For example, the success rate can tell us how many of the adversarial
examples produced by the attack method under a maximum query limit are below
a certain l2 distance.

Query finish rate

Lastly, we introduce a new metric separately from Table 5.1: Query Finish Rate.
HSJA is an iterative algorithm that converges, i.e., it can run infinitely if it is not
stopped by a query limit or target l2 distance. Our attack method, MASSA, has
a ceiling on its number of queries. Both the initial noise generation described in
subsection 4.3.2 and the noise reduction step described in subsection 4.3.3 only
use a (small) finite number of queries. And, given a fixed image input size of
224⇥224 and a minimum patch size of 7, the redundant noise removal described
in subsection 4.3.4 also has an upper limit on its number of queries. In the worst
case scenario where no noise is redundant it uses a maximum of

P5
i=1 4i = 1364

queries. If there is any redundant noise, the algorithm will use fewer queries.
Depending on how much noise is redundant, we get the number of queries ⇢
used to create an adversarial example by MASSA. The distribution of ⇢ over a set
of images is what we define as Query Finish Rate.
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5.1.4 Defense mechanisms

We want to investigate the robustness of various defense mechanisms under our
proposed attack method. As a specialization project for this thesis, we performed
an Structured Literature Review (SLR) on black-box attacks which can be found
in Appendix A. From this work, we identified the following defense mechanisms:

• Input Transformations
• Adversarial Training
• Adversarial Detection
• Adversarial Distillation
• Region-based classification
• Rounded output probabilities
• Query-access prevention

Input Transformations cover multiple defense mechanisms such as clipping,
median filtering, and JPEG compression. Dziugaite et al. [45] propose to use JPEG
compression as a defense method. Their experiments show that JPEG compression
can reverse adversarial perturbation on images modified by a small magnitude.
Wallace [46] details the compression method with a transformation to the fre-
quency domain. JPEG compression uses the properties of the frequency domain to
remove irrelevant data from the image. The nature of JPEG compression in terms
of perturbation reversal in the frequency domain has the potential to work as a
resistant defense mechanism. It is interesting to explore whether the input trans-
formation with JPEG compression can defend against our attack method since we
rely heavily on the frequency domain. The other input transformations are not
included since they are less relevant to our attack method, and we chose to focus
on JPEG compression as an input transformation.

Adversarial training [47] increases robustness by including adversarial ex-
amples in the training data. To the best of our efforts, we could only find one
adversarially trained model compatible with our chosen classification models.
Engstrom et al. [48] presents a robustness library that provides available weights
for ResNet-50 adversarially trained on the CIFAR-10 and ImageNet dataset. The
adversarial examples are generated with PGD [49], a state-of-the-art white-box
attack method. These robust models are trained on different degrees of perturba-
tions denoted by ✏. A model without defense has a robustness level ✏= 0. On the
other hand, a highly robust model has a robustness level ✏ = 3. The benefits of
adversarial training come at the cost of accuracy. The adversarial trained ResNet-
50 with ✏ = 3 has accuracy 57.90%, compared to ResNet-50 with ✏ = 0 which
has accuracy 77.15%. Even though black-box attacks have previously been shown
to evade adversarial training [9], we want to investigate how adversarial training
affects our frequency-based attack MASSA.

Adversarial detection [50], such as feature squeezing [51] and MagNet [52],
uses statistical testing to detect adversarial examples based on their properties.
They train a model with an additional outlier class to detect the adversarial ex-
amples based on the fact that the distribution of adversarial examples are different
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to training examples. Similarly, adversarial distillation [53] is a training procedure
that uses transferred knowledge from a different model for gradient masking. To
the best of our efforts, we could not find trained models for detection or distillation
for the ImageNet dataset. Therefore, evaluating these defense mechanisms would
require us to train a model ourselves on the ImageNet dataset. This would directly
influence our results as the experiments would only depict data which directly de-
pend on the performance of our trained model. In other words, our evaluation of
the defense mechanism would only be as good as our trained model. To avoid this
pitfall, we chose not to include adversarial detection and adversarial distillation.

Region-based classification [54] samples points from a hypercube with side-
length r centered at the input image. Then it predicts based on which label appears
most frequently among the sampled points. The defense mechanism estimates the
hyperparameter r based on a validation dataset and is only calculated for MNIST
and CIFAR-10. We chose to exclude this defense mechanism as it would require
us to calculate a new r for the ImageNet validation dataset, which gives us the
same problem as adversarial detection and distillation.

Our research question clearly defines the threat model we assume for our at-
tack method, namely a decision-based attack. Rounded output probabilities only
affect score-based attacks since they rely directly on the output probabilities. In
our case, this defense mechanism would not affect our results. The same argu-
ment can be used for query-access prevention, as the decision-based threat model
already assumes query-access. Based on this, we chose to exclude these defense
mechanisms.

5.2 Efficiency Evaluation

We ran multiple experiments following the evaluation procedure as described in
section 5.1 to evaluate our approach. We implemented a system to carry out ad-
versarial attacks on different image classification models. As a baseline for com-
parison, we use the implementation of HSJA from their publicly available code
[55]. All experiments were carried out on a Intel(R) Core(TM) i7-8700 CPU @
3.20 GHz with 32.0GB of RAM. Each experiment uses a set of 500 correctly classi-
fied random images from the ILSVRC2012 Challenge validation dataset. Our code
is publicly available online on GitHub [56].

In this section, we present our results from the evaluation process. First, we
discuss the Query Finish Rate before comparing the median and average l2 dis-
tances of our approach with HSJA. Then we present the success rates, and finally,
we demonstrate how the defense mechanisms affect the performance of the attack
methods.

5.2.1 Query Finish Rate

Our first experiment explores the Query Finish Rate for MASSA. Table 5.3 illus-
trate how many of the 500 adversarial examples our approach produced were
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Models
Model Queries

< 250 < 500 < 750 < 1000

ResNet-50 38.20% 75.40% 93.80% 99.40%

VGG16 49.48% 87.21% 97.48% 99.58%

VGG19 52.68% 87.58% 98.32% 99.66%

Table 5.3: The Query Finish Rate for each target model. It shows the percentage
of how many MASSA executions finish with less than 250, 500, 750, and 1000
queries, respectively.

(a) Target Model: ResNet-50 (b) Target Model: VGG16

(c) Target Model: VGG19

Figure 5.2: Histogram of query finish rate for each target model.
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created using less than a given query interval. For example, 75.4% of our ad-
versarial examples were created using less than 500 queries on the ResNet-50
target model. Additionally, the Query Finish Rate is illustrated as a histogram in
Figure 5.2. Each bin has a size of 100, where the ranges are [0, 100), [100, 200),
and so on.

The results show that MASSA easily generates adversarial examples in less
than 1000 queries. In fact, 50% of the adversarial examples are created using
less than 250 queries for VGG16 and VGG19. This shows how MASSA is able to
conduct a powerful attack under a very limited query budget. To further support
this result, more than 90% of adversarial examples are created using less than
750 queries for all models. This demonstrates that there is no need to push a
query budget of over 1000 queries. We see the same trends in Figure 5.2, where
very few adversarial examples require 1000 queries. It is also interesting to notice
how MASSA is able to produce a significant amount of adversarial examples in less
than 100 queries. For instance, MASSA generates more than 40 adversarial images
against ResNet-50 in less than 100 queries, demonstrating the effectiveness of our
approach. From the high query usage in Table 5.3 and Figure 5.2 we observe that
ResNet-50 is more challenging to create adversarial examples against compared
to the VGG models. Although this is the case for small query budgets, we notice
the difference between the models becomes negligible when approaching a query
budget of 1000. In subsection 5.1.3 we mentioned the worst-case scenario for
MASSA in terms of the number of queries. The results show that this is a rare
occurrence as less than 1% of adversarial examples produced by MASSA require
1000 queries or more.

5.2.2 l2 Distance

In the next experiment, we investigate the performance of MASSA in terms of l2
distance compared to the baseline. Table B.1 in Appendix B contains a summary of
all l2 distance experiments for comparison across all experiments. Table 5.4 sum-
marizes the median and average l2 distances for both attack methods with query
budgets of 250, 500, 750, and 1000 queries. We also illustrate the median distance
results in Figure 5.3. The spikes for HSJA in Figure 5.3 comes from the geomet-
ric progression, as explained in subsection 3.1.1, where the adversarial example is
moved away from the decision boundary. This step causes the adversarial example
to move away from the original image, hence the sudden spikes. The plateaus for
HSJA come from the gradient direction estimation step, also explained in sub-
section 3.1.1. Here, HSJA samples and queries hundreds of adversarial examples
around the boundary, where all samples have approximately the same l2 distance
to the original image. For simplicity, we plot this as a straight line since the dif-
ferences are insignificant. The HSJA plot in Figure 5.3 also helps visualize each
iteration of the attack method. For MASSA in Figure 5.3 we see some plateaus in
the first 50 queries. These come from the noise reduction component of our at-
tack method, as explained in subsection 4.3.3, where each plateau corresponds to
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a different frequency band being moved closer to its original values. As mentioned
in subsection 5.2.1 our attack method rarely uses 1000 queries, so in Figure 5.3
we have padded each result from their stopping point with their respective end l2
distance up to 1000 queries in order to compute the median.

Table 5.4 clearly shows that MASSA can create adversarial examples with a
significantly smaller l2 distance than the corresponding adversarial examples cre-
ated by HSJA. For all comparisons made in Table 5.4, MASSA beats HSJA across
all models and query budgets. The decrease in l2 distance is given in percentages
for each comparison between the two attacks. The differences are most apparent
on ResNet-50 and VGG16 at a query budget of 250, where MASSA achieves ap-
proximately 74% lower median l2 distance than HSJA. Even after 1000 queries
MASSA still beats HSJA with a 41,77% lower median l2 distance on ResNet-50.
On top of that, we see MASSA, on a query budget of 250, beats HSJA on a 1000
query budget with a 33,18% lower median l2 distance. This demonstrates the ef-
ficiency of MASSA under a very limited query budget. Both attacks show better
performance against the VGG models than ResNet-50, which may be caused by
ResNet-50 having a higher accuracy score on the ImageNet test dataset.

Models l2 distance

Model Queries

250 500 750 1000

HSJA MASSA HSJA MASSA HSJA MASSA HSJA MASSA

ResNet50
Median 39.33

10.19

(-74.09%) 29.85
9.06

(-69.65%) 18.23
8.88

(-51.29%) 15.25
8.88

(-41.77%)

Average 40.24
12.66

(-68.54%) 32.29
11.07

(-65.72%) 22.04
10.66

(-51.63%) 18.54
10.58

(-33.21%)

VGG16
Median 27.09

7.00

(-74.16%) 18.37
6.12

(-66.68%) 11.60
6.12

(-47.24%) 9.77
6.12

(-37.36%)

Average 31.87
9.66

(-69.69%) 23.91
8.56

(-64.20%) 15.91
8.35

(-47.52%) 13.71
8.32

(-39.31%)

VGG19
Median 25.69

7.00

(-72.75%) 18.37
6.05

(-67.07%) 11.26
6.05

(-46.27%) 9.10
6.05

(-33.52%)

Average 29.61
9.10

(-69.27%) 21.85
8.08

(-63.02%) 14.40
7.86

(-45.42%) 12.25
7.84

(-36.00%)

Table 5.4: Median and average distance at various model queries for each target
model. The smaller distance at a given model query is bold-faced.

Figure 5.3 shows that MASSA achieves a steeper decrease in l2 distance than
HSJA, where MASSA descend to an l2 distance of 20-30 in the first 50 queries.
This demonstrates the effectiveness of the frequency binary search explained in
subsection 4.3.3. Although MASSA ends on a lower l2 distance than HSJA for all
target models, we can see a sign of HSJA catching up. If we let the experiments run
past a query budget of 1000, HSJA may beat MASSA in l2 distance, due to its con-
vergence property. We still argue that this scenario is irrelevant, as a query budget
of more than 1000 queries moves the attack outside the range of state-of-the-art
performance and is less realistic in real-world situations. All-in-all, we observe
that MASSA achieves better results than HSJA by generating more imperceptible
adversarial examples with a significantly lower query budget.

We include visualized trajectories of MASSA in Figure 5.4. The trajectories
are selected randomly from correctly classified images from the ILSVRC2012 val-
idation set. The first column displays the initial perturbation generated by Initial



Chapter 5: Evaluation & Results 43

Noise Generation described in subsection 4.3.2. Columns 2 - 5 display perturba-
tions at 25, 50, 100 and 200 queries, respectively. Lastly, column 6 displays the
original image. We observe from column 5 that the final adversarial examples are
similar to the original image.

(a) Target Model: ResNet-50 (b) Target Model: VGG16

(c) Target Model: VGG19

Figure 5.3: Median l2 distances versus number of queries for each target model.
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Initial
perturbation

25 50 100 200 Original
image

Figure 5.4: Visualized trajectories of MASSA for 5 images from ILSVRC2012 val-
idation dataset. 1st column: initial perturbation. Columns 2-5: adversarial ex-
amples at 25, 50, 100, and 200 queries, respectively. Last column: Original image.
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5.2.3 Success Rate

We also evaluate the success rate of MASSA compared to HSJA. Figure 5.5 illus-
trates the success rate at various thresholds between [0,30] in l2 distance. We
study each attack method under four different query budgets: 250, 500, 750, and
1000. The legend indicates the name of the attack method and the size of the query
budget, e.g., MASSA with a budget of 750 queries is denoted MASSA-750. Fig-
ure 5.5 shows the superior performance of MASSA compared to HSJA. All query
budgets of MASSA achieve a consistently higher success rate than the respective
HSJA attack. It is also worth noting that MASSA-250 achieves a significantly higher
success rate than HSJA-1000, exemplifying how MASSA is a more query-efficient
attack than HSJA. Additionally, all MASSA attacks are similar across models than
HSJA, which might support that MASSA has higher transferability between mod-
els and is a more generalizable attack.

(a) Target Model: ResNet-50 (b) Target Model: VGG16

(c) Target Model: VGG19

Figure 5.5: Success rate for various l2 distance thresholds for each target model.
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5.2.4 Evaluation Under JPEG Compression

To evaluate our attack method under defense mechanisms, we use l2 distance and
success rate as metrics, These metrics clearly illustrate how the performances of
the attack methods are affected by a defense mechanism. We evaluate attack ef-
ficiency using JPEG compression as a defense mechanism where the adversarial
example is compressed right before querying the target model. Table 5.5 summar-
izes the results of median and average l2 distance for HSJA and MASSA across
target models with JPEG compression. As shown in Table 5.4, we see that MASSA
still beats HSJA in all comparisons, even with a defense mechanism implemented.
Furthermore, MASSA under a 250 query budget still outperforms HSJA on a 1000
query budget across all models, although the improvement is slightly reduced un-
der JPEG compression. Table 5.5 also reveals a slight increase in l2 distance for
MASSA, e.g. under a query budget of 500 we see a 19,2% increase in median l2
distance on ResNet-50. Thus, JPEG compression slightly affects MASSA. Although
the l2 distances have slightly increased, MASSA still beats HSJA in all comparisons.
It is also worth noting here that JPEG compression improves the results for HSJA.
This is because JPEG compression removes the high frequencies in an image where
noise is already located, meaning JPEG compression can further reduce the l2 dis-
tance of adversarial examples from HSJA. This is not the case for MASSA, as we
actively modify and use the values in the high frequencies to create an adversarial
example. However, since we also modify the medium and low frequencies, the
defense mechanism has small impact on the performance of MASSA.

Models l2 distance

Model Queries

250 500 750 1000

HSJA MASSA HSJA MASSA HSJA MASSA HSJA MASSA

ResNet50
Median 33.56 12.16 25.34 10.80 15.78 10.77 13.32 10.77

Average 35.90 14.08 28.88 12.69 19.87 12.37 17.21 12.31

VGG16
Median 23.42 9.67 16.99 9.04 11.68 8.96 10.58 8.96

Average 27.92 11.80 21.37 10.89 15.12 10.71 13.51 10.70

VGG19
Median 24.20 9.51 16.97 9.08 12.02 9.08 10.81 9.08

Average 27.78 11.90 21.12 10.94 14.73 10.76 13.08 10.75

Table 5.5: Median and average distance at various model queries for each target
model with JPEG compression. The smaller distance at a given model query is
bold-faced.

We show the median l2 distance and success rate under JPEG-compression in
Figure 5.6 and Figure 5.7, respectively. In Figure 5.6, we show each attack method
both with JPEG compression (denoted with DEFENCE) and without JPEG com-
pression for ease of comparison. Figure 5.7 only includes the attack methods under
JPEG compression. In Figure 5.6 we see that the early decrease in l2 distance for
MASSA remains unchanged after JPEG compression. The noise reduction step in
subsection 4.3.3 first modifies the low and medium frequencies, which JPEG com-
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pression never modifies. After about 50 queries we start to see the impact of JPEG
compression on MASSA. We also see how HSJA improves during its first iterations
but evens out towards 1000 queries because JPEG compression increases the l2
distance HSJA converges to.

(a) Target Model: ResNet-50 (b) Target Model: VGG16

(c) Target Model: VGG19

Figure 5.6: Median l2 distances versus number of queries for each target model
with JPEG compression.

Figure 5.7 shows that MASSA achieves a higher success rate than HSJA un-
der JPEG compression. We observe that even MASSA-250 still outperforms HSJA-
1000. In difference to the success rate without JPEG compression, both attack
methods struggle to generate adversarial examples with a l2 distance below 5 in
this case. An explanation for this could be that adversarial examples with l2 < 5
already have a very small perturbation, which will be mostly located in the high
frequencies of the frequency spectrum. Since JPEG compression removes high
frequencies, the defense mechanism can convert the adversarial examples into
non-adversarial images, resulting in a low success rate. In adversarial examples
with distances l2 > 5, the perturbations are located in the high frequencies and
in the medium and low frequencies. Since JPEG compression never touches these
frequencies, the attack methods can still produce powerful results against the de-
fense mechanism.
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(a) Target Model: ResNet-50 (b) Target Model: VGG16

(c) Target Model: VGG19

Figure 5.7: Success rate for various thresholds of l2 distance for each target model
with JPEG compression.

5.2.5 Evaluation Under Adversarial Training

We conduct experiments to evaluate MASSA and HSJA under adversarial training.
Table 5.6 summarizes the results of median and average l2 distance for the attack
methods against an adversarial trained ResNet-50 with ✏ = 3. MASSA still beats
HSJA in every comparison. At most MASSA beats HSJA by 61.97% at 500 model
queries. Compared to the results without any defense mechanisms in Table 5.4,
for median distance at 500 queries, we see an increase of 89.53% for MASSA and
172.98% for HSJA. This indicates that adversarial training is a valid defense mech-
anism against adversarial attacks. However, we see that the results for MASSA un-
der adversarial training are still comparable to HSJA without any defense mech-
anisms.

We illustrate the median distance and success rate for adversarial trained
ResNet-50 in Figure 5.8. We include both MASSA and HSJA with and without
defense for comparison in Figure 5.8a, where the adversarial model is denoted
with DEFENCE. Figure 5.8b shows the success rate of each attack method under
various query budgets. We observe both attack methods achieve similar median
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l2 distance in the first 50-100 queries, but HSJA struggles to decrease the l2 dis-
tance throughout the attack. MASSA is able to decrease the l2 distance, but ends
with a slightly higher l2 distance. Figure 5.8b clearly shows how HSJA is affected
by adversarial training. The success rate is significantly lower under adversarial
training, in contrast to MASSA, which remains at a similar performance despite
adversarial training.

Models l2 distance

Model Queries

250 500 750 1000

HSJA MASSA HSJA MASSA HSJA MASSA HSJA MASSA

ResNet50
Median 47.55 18.70 45.70 17.38 42.65 16.91 41.63 16.83

Average 48.22 20.60 46.83 19.21 44.73 18.69 43.80 18.53

Table 5.6: Median and average distance at various model queries for adversarial
trained ResNet-50 model with ✏= 3. The smaller distance at a given model query
is bold-faced.

(a) Median Distance (b) Success Rate

Figure 5.8: Median distance and success rate for ResNet-50 under adversarial
training.





Chapter 6

Discussion

The following chapter discusses the results presented in chapter 5, and outlines
how the results answer the research question proposed in section 4.2. First, we re-
flect on the position of our work regarding the related work presented in chapter 3.
Then we consider the implications our work has for academia and industry. Lastly,
we discuss the threats to the validity of the thesis.

6.1 Comparison to Related Work

Our thesis aims to create a query-efficient untargeted attack method that gener-
ates imperceptible adversarial examples. Li et al. [39] presents a targeted attack
method in the frequency domain, but no study has explored an untargeted ap-
proach in the frequency domain to generate imperceptible perturbations. Shi and
Han [33] argues that adversarial perturbations consist of redundant noise. Instead
of using PAR as an initiation method, we implement the removal of redundant
noise inspired by PAR as the final part of our attack method to reduce the imper-
ceptibility. Unlike F-mixup, MASSA directly modifies all frequency components
through the proposed Frequency Spectrum Binary Search to create imperceptible
adversarial examples.

A binary search that moves the adversarial example closer to the original im-
age is quite often used to approach the decision boundary [19]. The binary search
itself is cheap to perform in terms of queries used. What is usually expensive is
sampling at the decision boundary. HSJA and related work use hundreds of quer-
ies at this step to determine the gradient direction of the boundary. We circumvent
the need to sample at the boundary and utilize only the cheap binary search to
produce our adversarial example. We can see the effectiveness of this approach in
our results, demonstrated by the steep decrease in l2 distance in Figure 5.3. This
makes our approach far more query-efficient than any related work. While other
state-of-the-art attack methods operate with thousands of queries, we only need
a few hundred. Additionally, the results show that the low query number does not
affect the performance of our approach. We still achieve a significantly lower l2
distance than HSJA, translating to less perceptible adversarial perturbations.
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From our related work, only Chen et al. [19] includes evaluation under defense
mechanisms. HSJA evaluates adversarial distillation and training on the MNIST
dataset but does not include an evaluation on the ImageNet dataset. Our experi-
ments evaluate both MASSA and HSJA against JPEG compression and adversarial
training on the ImageNet dataset. Our results show that MASSA mitigates the de-
fense mechanisms to a certain degree and outperforms HSJA in all experiments.
Chen et al. [19] claims that HSJA bypasses adversarial training on MNIST, but we
see from our results that HSJA struggles significantly under adversarial training
on ImageNet.

To summarize, we propose an attack method that creates adversarial examples
with higher imperceptibility and better query-efficiency than state-of-the-art HSJA.
The results also show that MASSA bypasses the defense mechanisms and outper-
forms HSJA.

6.2 Academic Implications

Our approach operates under a significantly lower query budget than current
state-of-the-art decision-based methods, representing a new effective attack type.
It might not be sufficient to examine and defend against attacks with a scope of
thousands of queries anymore. Defenses based on thousands of queries are easily
bypassed by our new attack. Future attacks should aim to use this limited query
budget to push the robustness of computer vision systems further.

We are also the first to directly modify all frequency components of an image
to create adversarial examples. This demonstrates another gap in the community
where the frequency domain may not be getting enough focus. We clearly illustrate
the potential of frequency-based attacks for future research with our promising
results.

Our method uses a redundant noise removal step inspired by PAR [33] which
clearly shows how much of the generated noise is redundant. Other attacks might
benefit from the same noise removal process, so further research into noise re-
moval might be a smart approach moving forward. Noise removal processes have
the potential to become add-ons which further reduces the l2 distance of ad-
versarial examples.

Based on our results on JPEG compression, we see the unrealized possibilities
in other defense mechanisms targeting the frequency domain. As illustrated in
Figure 4.5 and in F-mixup by Li et al. [39], the frequency-based attacks result
in unnatural frequency spectrums. New defense mechanisms might detect these
abnormal spectrums, making computer vision systems more robust against future
attacks.

The evaluation results under adversarial training show the effectiveness of
the defense mechanism against HSJA. It also indicates that frequency-based at-
tack methods can bypass mitigate adversarial training. Therefore, we argue that
research should focus on adversarial training with adversarial examples from the
frequency domain to further increase robustness.
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6.3 Implications for Industry

Our results also have some practical implications for the industry. We have demon-
strated the potential to craft imperceptible adversarial examples in just hundreds
of queries. This poses a more significant threat to the industry than current state-
of-the-art attack methods because it is a more realistic approach. As we push the
query budget lower, it might become more challenging for defense mechanisms
to detect an attack. From the perspective of the target model, this might seem like
a standard request, meaning a small enough query budget can make it difficult
to separate an attack from normal behavior. Consequently, this can have severe
implications for safety-critical computer vision systems.

6.4 Threats to Validity

For the purpose of integrity, we highlight some threats to the validity of our thesis.
First, the removal of redundant noise step of our approach inspired by [33] greatly
contributes to our results. This might indicate that there is a more optimal method
for reducing the l2 distance before removing redundant noise. Second, the exper-
iments could include a more extensive set of images. Due to limited time and
resources, we only included 500 images for each experiment. Third, the experi-
ments could include a larger variety of classification models and datasets. Even
though we included three models with state-of-the-art performance, many mod-
els with different architecture remain untested. A larger variety in model archi-
tectures could strengthen our results and demonstrate the attack transferability
more clearly. More datasets would also benefit our experiments. Datasets with
higher resolution than ImageNet could validate whether the frequency domain
is favorable over the spatial domain regarding their large search space. Fourth,
our baseline for comparison consists only of HSJA, which we argued in subsec-
tion 3.1.1. The results would be more comprehensive if we compared MASSA
against several attack methods with state-of-the-art performance. Lastly, we have
based the similarity of images on the l2 distance. Other metrics which measure
the similarity of images could be included in the experiments. For example, a sim-
ilarity metric between images that favors human perceptibility over mathematical
perceptibility could affect our results differently.





Chapter 7

Conclusion and Future Work

Inspired by the potential of frequency components, we propose a new decision-
based black-box attack method, MASSA, which generates imperceptible adversarial
examples under a strict query budget. The method includes two novel compon-
ents, an initiation method that samples noise from the frequency domain and a
Frequency Spectrum Binary Search to minimize the distance between two mag-
nitude spectrums. We conduct a comprehensive evaluation of the efficiency under
various defense mechanisms. The results demonstrate that MASSA achieves su-
perior performance over the state-of-the-art attack HSJA across all classification
models and defense settings. Furthermore, we show that MASSA can generate ad-
versarial examples in less than a hundred queries and usually only require a few
hundred queries. This demonstrates a significant leap from previous state-of-the-
art attacks, which required thousands of queries. Additionally, MASSA bypasses
two defense mechanisms with comparable results to HSJA without defense mech-
anisms.

Future work should focus on expanding the proposed attack method to the
targeted attack setting by inserting different frequency components of the target
image into the original image. This would no longer limit the attack to a single
purpose but allow for a broader attack purpose. The attack method could be tested
against unexplored defense mechanisms to evaluate their robustness. Future de-
fense mechanisms should also explore the frequency domain to better understand
adversarial examples and strengthen their overall robustness.
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Abstract. Due to recent developments in object detection systems, and
the realistic threat of black-box adversarial attacks on object detector
models, we argue the need for a contextual understanding of the at-
tacks from the users’ perspective. Existing literature reviews either do
not provide complete and up-to-date summaries of such attacks or fo-
cus on the knowledge from the researchers’ perspective. In this research,
we conducted a systematic literature review to identify state-of-the-art
black-box attacks and extract the information to help users evaluate and
mitigate the risks. The literature review resulted in 29 black-box attack
methods. We analyzed each attack from the following main aspects: at-
tackers’ knowledge needed to perform the attack, attack consequences,
attack generalizability, and strategies to mitigate the attacks. Our results
demonstrate an emerging increase in highly generalizable attacks, which
now make up more than 50% of the landscape. We also reveal that more
than 50% of recent attacks remain untested against mitigation strategies.

Keywords: artificial intelligence · object detection · image classification
· adversarial attacks

1 Introduction

As Deep Neural Networks (DNNs) becomes more and more pertinent in im-
age recognition and object detection tasks, their robustness also becomes more
of a concern. Goodfellow et al. [14] have shown that the robustness of these
models is susceptible to adversarial attacks. Such vulnerabilities have motivated
researchers to develop adversarial attacks to exploit the object detection systems
and contribute to improving their robustness. White-box attacks that assume
knowledge about the target model continue to dominate the adversarial attack
landscape, but there is an increase in black-box attacks. Black-box attacks as-
sume no or very limited knowledge about the target model and are, therefore,
more realistic approaches to adversarial attacks [34]. We argue that the increase
in black-box attacks should be followed by a contextual understanding of the
attacks from a user perspective. We define a user as a person who wants to
know the risk and impact of adversarial attacks and how to defend against these
attacks without knowing specific attack implementation details. Therefore, this
paper omit the technical properties of the attacks for the traditional researcher
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perspective. Existing surveys and reviews of adversarial attacks on image clas-
sification and object detection, e.g., [6, 20], focus mostly on the information
needed by researchers and do not cover su�cient up-to-date black-box attacks.
Our research motivation is to summarize the state-of-the-art black-box attacks
targeting object detection models to help users evaluate and mitigate the risks.
We focus on answering the following research questions.

– RQ1: What does the attacker need to know about the target model?
– RQ2: How generalizable is the attack?
– RQ3: What are the consequences of the attack?
– RQ4: Which mitigation strategies have been tested against the attack?

We performed a systematic literature review on articles published between
2017 and 2021 to collect state-of-the-art black-box attacks. Through the system-
atic literature review and snowballing, we uncovered 29 state-of-the-art attack
methods, which we analyze and present in this paper. Our study benefits indus-
trial practitioners and scientists. The contributions of the study are twofold.

– We provide comprehensive and up-to-date consolidated knowledge about
black-box attacks targeting object detection models to help users to evaluate
the risks and choose e↵ective mitigation solutions.

– We identify the trends and weaknesses of existing studies in this field, which
may inspire researchers’ future work.

The rest of the paper is organized as follows: Section 2 introduces the back-
ground. Section 3 presents the related work. Section 4 explains our research
methods, and Section 5 presents the results. We then discuss our results in Sec-
tion 6. Conclusions and future work are in Section 7.

2 Background

Object detection is the field of Artificial Intelligence (AI) that uses deep learning
to extract high-dimensional information from images and videos. An autonomous
car with camera sensors uses image processing to navigate the road and detect
obstacles.

2.1 Object Detection and Image Classification

Image classification is the task of classifying an input image by assigning it to a
specific label [42], while object detection is the task of localizing and classifying
distinct objects in an image or video. Current object detectors can be split into
two main categories: two-stage and one-stage detectors. Two-stage detectors con-
sist of two main parts. First, the detector uses a Region Proposal Network (RPN)
to calculate proposed regions for objects. The RPN uses a set of predefined an-
chor boxes uniformly placed over the image to calculate proposed regions before
outputting a predefined number of proposed bounding boxes with a correspond-
ing objectiveness score. The objectiveness score indicates whether the proposed
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region belongs to an object class or the background. These proposed regions sig-
nificantly reduce the computational complexity needed to localize and classify
an object. In the second stage, the proposed regions from the RPN are passed to
a high-quality image classifier to recognize objects. One-stage detectors aim to
improve the inference speed while still achieving acceptable accuracy. One-stage
detectors achieve this goal by removing the region proposal stage required by
the two-stage detectors. Instead, they run detection on a dense sampling of pre-
defined default boxes. The ability to skip the region proposal step significantly
decreases inference time and has led to the development of many one-stage de-
tectors, e.g., [30, 38].

2.2 Threat Models

The threat model of an attack is based on what the adversary knows about the
target model, thus we can categorize the attacks into three threat models.White-
box attacks, e.g., FGSM [14], assume the adversary has complete knowledge of
the target model , which include the model’s internal structure, such as weights
and parameters of the target model, and knowledge of the output given an input.
In some cases, the adversary knows the training data distribution. This allows
the adversary to construct attack methods specific to the given model. Black-
box attacks, assume no internal information of the target model, but the ability
to observe the output for a given input. Usually, black-box attack methods are
constructed based on querying the target model [5, 8, 9]. Han Xu et al. [46] in-
troduce grey-box attacks as a hybrid of white-box attacks and black-box attacks,
where the attacker trains a generative model to create adversarial examples in
white-box setting. Then the target model is attacked in the black-box setting
with adversarial examples from the trained generative model.

3 Related Work

Bhambri et al. [6] performed a survey focusing on adversarial black-box attacks.
The paper aims to conduct a comparative study of both adversarial attacks and
defenses. Nineteen black-box attacks were compared on the number of queries,
success rate, and perturbation norm. The survey categorizes the attacks based on
gradient estimation, transferability, local search and combinatorics. Shilin Qiu
et al. [37] presents a comprehensive study of the research of adversarial attack
and defenses. The paper details white-box and black-box attack methods but
mainly focuses on defense strategies. Kong et al. [25] reviewed adversarial attack
literature in the di↵erent application fields of AI security. The fields include
images, texts and malicious code. The paper presents attack algorithms for the
di↵erent application domains and includes 13 attacks for the image domain, five
of which are black-box attacks. The survey further elaborates on defense methods
and how they a↵ect the presented attacks. In order to help new researchers in
the field, the paper introduces and discusses the di↵erent datasets and tools
available. There are other surveys and articles, i.e., [1, 27, 46, 48], which discuss
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adversarial attacks and defenses. The common limitation of these studies are
the low number of included black-box attacks. In addition, the studies focus on
consolidating information from the researchers’ perspective.

4 Research Design and Implementation

We performed a Systematic Literature Review (SLR) and followed the SLR
guidelines proposed by Kitchenham and Charters [24]. After analyzing the terms
related to our research questions and their synonyms, we chose to use the search
query: Adversarial AND Attack AND (“Object detection” OR “Object detec-
tor”).

We chose oria.no, a search engine that covers many scientific databases,
including IEEE Xplore, Springer, ACM Digital library, and Scopus. To include
only recent literature and to reduce the scope, we used the advanced search
functionality in oria.no, and included only peer-reviewed and published scien-
tific papers from the last 5 years back from 2021. The identified articles were
filtered mainly based on their relevance to the research questions by reading
their abstract, introduction, and, in some cases, methodology. After filtering, we
identified 11 relevant primary studies. Then, we performed a snowballing search
following the process proposed by [45], with the exception that forward and back-
ward snowballing searches were limited to a single iteration each. The forward
snowballing was performed using Google Scholar. The snowballing identified 16
more papers, resulting in 27 primary studies.

5 Research Results

In this section, we present our answers to each research question. Attack names
preceded by asterisks (*) were not presented with a name in their corresponding
paper. Therefore, a descriptive name is given based on the attack method.

5.1 RQ1—Attacker’s Knowledge

How much information the attacker requires from the output labels varies across
the identified papers but can be split into three categories: Soft-labels refer
to the threat model where an attacker accesses the output probabilities P (y|x)
for y in the top k classes. Soft-labels also might include the label for each of
the output probabilities. For object detectors, information about the bounding
boxes indicates soft-labels. Hard-labels refer to a more restricted threat model
where an attacker only has access to a list of k 2 Z+ output labels. Di↵erent
attacks make di↵erent assumptions about k. For k = 1, the attacker only has
access to the single predicted class. In the case of k > 1, the list of classes is
often ordered by decreasing probabilities but does not include the probabilities.
For object detectors, the hard-label category signifies no information about the
bounding boxes. Some attacks assume the target model outputs k = 1 or k > 1
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Table 1: Attacks grouped by attacker knowledge

Attack Name Year Knowledge

NRDM [33] 2018 No-labels

DaST [51] 2020 Hard-labels and Soft-labels

HopSkipJumpAttack [9] 2020 Hard-labels

*Partial-retraining [36] 2020 Hard-labels

*Evolutionary Attack [13] 2019 Hard-labels

Label-Only Attack [20] 2018 Hard-labels

Opt-Attack [11] 2018 Hard-labels

Boundary Attack [8] 2017 Hard-labels

CMA-ES [19] 2021 Soft-labels

Simple Transparent Adversarial Examples [7] 2021 Soft-labels

*Discrete Cosine Transform Attack [26] 2021 Soft-labels

*Di↵erential Evolution Attack [44] 2021 Soft-labels

BMI-FGSM [29] 2020 Soft-labels

*Transferable Universal Perturbation Attack [49] 2020 Soft-labels

Adv-watermark [23] 2020 Soft-labels

Evaporate Attack [43] 2020 Soft-labels

Daedalus [41] 2019 Soft-labels

One-Pixel-Attack [39] 2019 Soft-labels

Single Scratch attack [22] 2019 Soft-labels

GenAttack [2] 2019 Soft-labels

Universal perturbation attack [50] 2019 Soft-labels

Query-Limited Attack [20] 2018 Soft-labels

Partial-Info Attack [20] 2018 Soft-labels

Bandits [21] 2018 Soft-labels

Gradient Estimation Attacks [5] 2018 Soft-labels

R-AP [28] 2018 Soft-labels

ZOO [10] 2017 Soft-labels

LocSearchAdv [32] 2016 Soft-labels

*Substitute Attack [34] 2016 Soft-labels

labels. No-labels refer to the most restricted threat model, where an attacker
requires no access to the output of the target model.

Table 1 presents the attacks grouped by the required attacker knowledge. We
notice that more than 75% of the discussed attacks use the soft-labels approach.
Table 1 also illustrates that about 25% of the discussed attacks use hard-labels
as part of their method. We can also see that the number of hard-label attacks
has tripled from 2017 to 2020, which might indicate that hard-label attacks are
becoming more popular. The new trend might suggest that hard-label attacks
have room for improvement in the coming years and should be investigated
further. It is also worth noting DaST [51], which can be used in both a soft-
and hard-label scenario because the attack is customizable. This might be an
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indication of a new type of attack that can be modified based on the target model.
NRDM [33] requires no labels at all. These two attacks illustrate a possibility
in the landscape, as attacks can become more applicable to any target model
and more independent of the attacker’s knowledge.

5.2 RQ2—Attack Generalizability

The generalization of adversarial black-box attacks examines the number of dif-
ferent types of object detection models which are claimed to have been suc-
cessfully attacked. We have defined four categories of generalization and present
the results in Table 2. The categories are None, Low, High and Very High. The
presented attack is tested on and successful against either one, two, three to
five or six or more target models respectively. The term generalizability is only
determined based on the number of attacked target models, and do not include
datasets, model accuracy, attack hyperparameters and model hyperparameters.
It is important to note that the generalizability is derived from the number of
models claimed by the authors of the primary studies. Therefore an attack with
None may be generalizable, but the authors only includes experiments against
one target model.

Most of the attacks only target image classifiers, but the focus could be
on one-stage models, two-stage models, or a combination of both for object
detectors. An attack targeting both types of object detectors poses a significant
threat, as it generalizes to most model architectures. This aspect is captured
in the target architecture column in Table 2. Attacks targeting object detectors
are labeled with one-stage, two-stage, or both, while attacks targeting image
classifiers are labeled correspondingly.

From Table 2, we observe a balanced distribution between high and low
generalizability. Both attack types show promising results, but the ones with
high generalizability might be more interesting to be studied further, as they
are successful across a broader range of object detectors. The number of highly
generalizable attacks has increased from 2019, as shown in Figure 1. From Ta-
ble 2, we also notice that R-AP [28] and NRDM [33] stand out. They are both
classified as very high, meaning they have been tested and exhibited promising
performance on six or more di↵erent models. Additionally, NRDM has been
tested against both image classifiers and object detectors, demonstrating notable
generalizability . It is also worth noting that [28] and [9] mention the possibil-
ity of combining R-AP and HopSkipJumpAttack, respectively, with other
adversarial attacks as areas for future work. This combination demonstrates a
potential to improve attacks through amalgamation, which is worth considering
in future research. Many of the discussed attacks have also been tested on real-
world APIs, which are listed in Table 3. From a user perspective, this illustrates
a potential area of focus and risks to consider in the future.
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Table 2: Attacks grouped by their level of generalizability

Attack Name Year Generalization Target Architecture

NRDM [33] 2018 Very High Image classifiers

R-AP [28] 2018 Very High Two-stage

CMA-ES [19] 2021 High One-stage and two-stage

*Di↵erential Evolution Attack [44] 2021 High Image classifiers

Adv-watermark [23] 2020 High Image classifiers

Evaporate Attack [43] 2020 High One-stage and two-stage

HopSkipJumpAttack [9] 2020 High Image classifiers

*Partial-retraining [36] 2020 High Image classifiers

*Transferable Universal Perturbation Attack [49] 2020 High One-stage and two-stage

Daedalus [41] 2019 High One-stage

One-Pixel-Attack [39] 2019 High Image classifiers

Universal perturbation attack [50] 2019 High Image classifiers

Single Scratch attack [22] 2019 High Image classifiers

Bandits [21] 2018 High Image classifiers

Gradient Estimation Attacks [5] 2018 High Image classifiers

Boundary Attack [8] 2017 High Image classifiers

*Substitute Attack [34] 2016 High Image classifiers

*Discrete Cosine Transform Attack [26] 2021 Low Image classifiers

BMI-FGSM [29] 2020 Low Image classifiers

DaST [51] 2020 Low Image classifiers

*Evolutionary Attack [13] 2019 Low Image classifiers

GenAttack [2] 2019 Low Image classifiers

Opt-Attack [11] 2018 Low Image classifiers

Query-Limited Attack [20] 2018 Low Image classifiers

Partial-Info Attack [20] 2018 Low Image classifiers

Label-Only Attack [20] 2018 Low Image classifiers

LocSearchAdv [32] 2016 Low Image classifiers

Simple Transparent Adversarial Examples [7] 2021 None Image classifiers

ZOO [10] 2017 None Image classifiers

Table 3: Attacks against real-world APIs

Attack Name Year Real-World API

*Discrete Cosine Transform Attack [26] 2021 AWS Rekognition [4]

*Partial retraining [36] 2020 Google AutoML Vision [15]

Partial-Info Attack [20] 2018 Google Cloud Vision [16]

Gradient Estimation Attacks [5] 2018 Clarifai [12]

Boundary Attack [8] 2017 Clarifai [12]

*Substitute Attack [34] 2016 Amazon and Google Oracles [3, 16]
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Fig. 1: The ratio of generalization levels for each year

5.3 RQ3—Attack Consequences

Classification attack is divided into targeted and untargeted attacks. Targeted
attacks aim to misclassify a adversarial input image i0 of class c0, where the
the target model would have classified input image i in to class c. In other
words, the attacker wants to force the target model to predict a chosen class.
Untargeted attacks aim to misclassify an adversarial input image i0 in to any
class c0, where c0 6= c. Object detection attack can lead to object vanishing
and object population. An object vanishing attack aims to suppress all object
detection in a input image, while an object population attack aims to fabricate
false objects in a predicted image.

Table 4 shows the consequences of each attack. Untargeted attacks are the
most common, making up more than 75% of the discussed attacks. Even though
these attacks make up the majority and pose a significant threat, targeted at-
tacks might be more dangerous from a defender’s perspective. Targeted attacks
still make up about 65% of discussed attacks, and it is worth noting that most
image classification attacks provide both targeted and untargeted versions. This
trend suggests that attacks are not limited to a single purpose but can achieve
multiple goals. In the realm of object detection attacks, we have looked at five
attacks. Four of them exploit the object vanishing vulnerability, while only one
focuses on object population. CMA-ES [19] stands out because it combines
object detection and image classification attacks. CMA-ES is a very recently
developed attack that could hint at a change of focus in the landscape. Addi-
tionally, Daedalus [41] is the only attack that can execute object population.
Results in Table 4 also shows the emerging focus on attacks against object de-
tectors from 2018.

5.4 RQ4—Mitigation Strategies

Table 5 contains a summary of all the mitigation strategies an attack is claimed
to have been tested against. The Vulnerable Mitigations column lists all tested
mitigation strategies where the attack is still able to reduce the overall accu-
racy of the system significantly. The definition of a significant drop in accuracy
is claimed by each paper. The Robust Mitigations column lists all mitigation
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Table 4: Attacks grouped by their consequences

Attack Name Year Target Architec-
ture

Consequenses

CMA-ES [19] 2021 One-stage and two-
stage

Vanishing, Targeted, and
Untargeted

Evaporate Attack [43] 2020 One-stage and two-
stage

Vanishing

*Transferable Universal Perturbation At-
tack [49]

2020 One-stage and two-
stage

Vanishing

R-AP [28] 2018 Two-stage Vanishing

Daedalus [41] 2019 One-stage Population

*Di↵erential Evolution Attack [44] 2021 Image classifiers Targeted and Untargeted

BMI-FGSM [29] 2020 Image classifiers Targeted and Untargeted

DaST [51] 2020 Image classifiers Targeted and Untargeted

HopSkipJumpAttack [9] 2020 Image classifiers Targeted and Untargeted

One-Pixel-Attack [39] 2019 Image classifiers Targeted and Untargeted

Single Scratch attack [22] 2019 Image classifiers Targeted and Untargeted

Gradient Estimation Attacks [5] 2018 Image classifiers Targeted and Untargeted

Query-Limited Attack [20] 2018 Image classifiers Targeted and Untargeted

Partial-Info Attack [20] 2018 Image classifiers Targeted and Untargeted

Label-Only Attack [20] 2018 Image classifiers Targeted and Untargeted

Bandits [21] 2018 Image classifiers Targeted and Untargeted

Opt-Attack [11] 2018 Image classifiers Targeted and Untargeted

Boundary Attack [8] 2017 Image classifiers Targeted and Untargeted

ZOO [10] 2017 Image classifiers Targeted and Untargeted

LocSearchAdv [32] 2016 Image classifiers Targeted and Untargeted

*Discrete Cosine Transform Attack [26] 2021 Image classifiers Targeted

*Partial-retraining [36] 2020 Image classifiers Targeted

GenAttack [2] 2019 Image classifiers Targeted

Simple Transparent Adversarial Exam-
ples [7]

2021 Image classifiers Untargeted

Adv-watermark [23] 2020 Image classifiers Untargeted

*Evolutionary Attack [13] 2019 Image classifiers Untargeted

Universal perturbation attack [50] 2019 Image classifiers Untargeted

NRDM [33] 2018 Image classifiers Untargeted

*Substitute Attack [34] 2016 Image classifiers Untargeted

strategies where the attack cannot reduce the overall accuracy of the system sig-
nificantly. It is worth noting that None tested in the Robust Mitigations column
only means that the attack has not been tested on any mitigation strategy. It
does not mean that the attack is able to bypass all defense strategies. This also
applies to the Vulnerable Mitigations column. A cell with ”-” means that none
of the tested mitigation strategies applies to that column. A list of defenses in
the Vulnerable Mitigations column and ”-” in the Robust Mitigations column
means that none of the tested defenses successfully defended against the attack.
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From Table 5, we notice that more than half of the discussed attacks have not
been tested against any mitigation strategies. This illustrates that mitigation
strategies have not been given enough attention. We also notice that Adversar-
ial Training and Input Transformations repeat across di↵erent attacks in the
Vulnerable Mitigations column. The repetition indicates that no single mitiga-
tion strategy works for all attacks, and that most modern mitigation strategies
struggle to defend against the discussed attacks. It is worth noting that many
of the mitigation strategies listed are umbrella terms, covering multiple defense
implementations. For example, input transformations [18] cover multiple defense
mechanisms such as JPEG-compression, clipping and median filtering. Although
Figure 2 shows an increase in the number of mitigation strategies evaluated, we
can also see a large emerging ratio of untested attacks from 2018.

Fig. 2: The ratio of mitigation strategies each year

6 Discussion

The aim of our work is to summarize the state-of-the-art black-box attacks tar-
geting object detectors to help users evaluate and mitigate the risks. No related
work outlined in Section 3 takes the user’s perspective but rather explains black-
box attacks from a researcher’s perspective and focuses on explaining the attack
methods. For example, Kong et al. [25] and Bhambri et al. [6] provide categories
of black-box attacks, but the categorization is based on the attack method. Un-
derstanding a black-box attack method requires a high level of competence in a
user. Our study does not focus on the attack methods because they are not the
most relevant information for a user. The main focuses from a user perspective
are covered in our research questions. Results of RQ1 (Knowledge) can inform
a user of the attacks which can and cannot be executed on a system. Results of
RQ2 (Generalization) warns the user of which attacks have a large impact area
and could a↵ect the system. Results of RQ3 (Consequences) give the user in-
sight into the attacks’ results. Results of RQ4 (Mitigation strategies) are highly
important to the user because they contain information that can help the user
implement relevant defenses to the system.
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Table 5: Attacks grouped by mitigation strategies they have been tested against

Attack Year Vulnerable Mitigations Robust Miti-
gations

*Di↵erential Evolution Attack [44] 2021 Feature squeezing [47]
Input Transformations [18]

-

Adv-watermark [23] 2020 Adversarial Training [40]
Input Transformations [18]

-

HopSkipJumpAttack [9] 2020 Adversarial Distillation [35],
Region-based classification

Adversarial
Training [40]

*Partial-retraining [36] 2020 Adversarial Detection [17]
Adversarial Distillation [35]
Adversarial Training [40]
Feature squeezing [47]

-

GenAttack [2] 2019 Adversarial Training [40],
Input Transformations [18]

-

One-Pixel-Attack [39] 2019 - Adversarial De-
tection [17]

Daedalus [41] 2019 MagNet [31]
Minimize bounding box size

-

Single Scratch attack [22] 2019 Input Transformations (JPEG-
compression) [18]
Input Transformations (Clip-
ping) [18]

Input Trans-
formations
(Median Filter-
ing) [18]

Gradient Estimation Attacks [5] 2018 Adversarial Training [40] Rounded output
probabilities

NRDM [33] 2018 Input Transformations [18] -

Boundary Attack [8] 2017 Adversarial Distillation [35] -

ZOO [10] 2017 Adversarial Detection [17]
Adversarial Distillation [35]

Adversarial
Training [40]

LocSearchAdv [32] 2016 Adversarial Training [40] Query-access
prevention

*Substitute Attack [34] 2016 Adversarial Distillation [35]
Adversarial Training [40]

-

CMA-ES [19] 2021 None tested None tested

*Discrete Cosine Transform Attack
[26]

2021 None tested None tested

Simple Transparent Adversarial Ex-
amples [7]

2021 None tested None tested

DaST [51] 2020 None tested None tested

Evaporate Attack [43] 2020 None tested None tested

BMI-FGSM [29] 2020 None tested None tested

*Transferable Universal Perturba-
tion Attack [49]

2020 None tested None tested

*Evolutionary Attack [13] 2019 None tested None tested

Universal perturbation attack [50] 2019 None tested None tested

Bandits [21] 2018 None tested None tested

Label-Only Attack [20] 2018 None tested None tested

Opt-Attack [11] 2018 None tested None tested

R-AP [28] 2018 None tested None tested

Query-Limited Attack [20] 2018 None tested None tested

Partial-Info Attack [20] 2018 None tested None tested
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The results of the survey show that many modern adversarial attack studies
have not focused on testing mitigation strategies, as shown in Table 5. Eighty
percent of the discussed attacks against object detectors have not been tested
against any mitigation strategies. Our study shows that the generalizability of
recent attacks is increasing, which poses a more significant threat to the in-
dustry. No longer do the attacks focus on a single objective or target model,
but rather, they combine all these goals into broader attacks. This means that
modern attacks can bypass more defenses and achieve multiple attack objectives.

7 Conclusion and Future Work

We conducted a systematic literature review in order to summarize state-of-the-
art black-box attacks targeting object detection models to help users evaluate
and mitigate the risks. The literature review resulted in 29 unique black-box
attack methods from 27 papers. Our analyses summarized the status and trends
regarding attackers’ knowledge needed to perform the attack, consequences, gen-
eralizability, and current mitigation strategies for each attack. We acknowledge
that the SLR may have left out some papers due to missing search queries and
limited database coverage. One finding from our study is that mitigation strate-
gies should be comprehensively tested on the identified black-box attacks to find
out which defenses are robust and which could be improved. We plan to focus
on evaluating and improving di↵erent mitigation strategies as our future work.
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Table B.1: Median and average distance at various model queries for each target
model. The smaller distance at a given model query is bold-faced.
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