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Abstract

Lighting is fundamentally crucial for numerous useful applications. The extended
reality system is capable of simulating realistic scenes with precise illumination
data. However, it is difficult to consistently obtain the scene’s actual lighting SPD.
Instead of predicting the entire spectrum of illumination SPD, the majority of
known approaches for estimating illumination focus on recovering the illumination’s
color using spectral images. This work explores the problem of illumination SPD
estimation from sRGB images. By discarding global spatial information, we convert
the problem into a vector-to-vector regression task. The deep learning model is
proposed to predict the illumination SPD using only the pixel values from sRGB
images. In order to alleviate the lack of training SPD data, a large sRGB image
dataset along with the corresponding lighting SPD is proposed in our work. The
various unique illuminations are generated by the advanced 24-channel LED lighting
system, which is the first one in Europe. In order to tackle the time-consuming
capturing, the virtual camera model is implemented as the data-generation tool to
simulate images with a variety of lighting conditions. As a result, the proposed
datasets include both real-world and synthetic data for training and evaluating the
model. The results of both datasets show consistent performance across a wide
range of spectra according to the different numerical evaluation metrics. In the end,
the sensor-independent prediction is explored by integrating the transfer learning
technique when working on data from the different cameras.
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Acronyms

XR Extended Reality

VR Virtual Reality

MR Mixed Reality

NDT Neutral digital transformation
DSLR Digital single-lens reflex

SPD Spectral power distribution

ISP Image Signal Processing

DSCs  Digital still color cameras

CFA Color filter array

CCD Charge-coupled device

CMOS Complementary metal-oxide—semiconductor
WB White Balance

HVS Human vision system

SVR Support vector regression

DOCC Double-opponency color constancy
SVR Support vector regression

CNN  Convolutional neural network
DNN  Deep neural network

ADU  Analog-to-digital unit

QE Quantum efficiency

CST Color space transformation



HDR
RMSE
GFC
SAM
SID
FWHM
FC
PCA
MSE
ROI
TL

Vi

High dynamic range

Root Mean Square Error
Goodness-of-fit coefficient
Spectral angle mapper

Spectral information divergence
Full width at half maximum
Fully connected

Principal component analysis
Mean square error

Region Of Interest

Transfer learning
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1 ‘ Introduction
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Lighting conditions vary spatially and temporally in real life and it significantly
influences the real-time perception of people, especially for low-vision patients. The
objective of the work is to carry out research to understand how light affects or
can change the visual perception of visually impaired people. The main scientific
challenge that needs to be addressed is to have a chance to develop adaptive



Chapter 1 | INTRODUCTION

and smart lighting systems to assist the visually impaired. To overcome such an
obstacle in the medium term, extended reality (XR) technologies and the modern
multiple-channel lighting system give the possibility for the digital simulation of
low vision in order to investigate the impact of different lighting conditions. Such
an approach would make it possible to dynamically create visual deformations
corresponding to well-identified pathologies likely to evolve over time.

Digitally simulating low vision needs to tackle the question of the observer
experience, i.e., how to set up an XR system to transform the perceived scene
while preserving its realistic dimension. The selected device must be sufficiently
immersive to be able to efficiently deceive the observer’s brain. As smartphones are
not able to provide such a characteristic, the virtual reality (VR) headset associated
with an external stereoscopic camera positioned at eye level is a good option to
explore. The main advantage of such a technological choice is that this type of
device already exists and is already used to simulate mixed reality (MR) glasses.

Then, instead of using the standard imaging process: Light+objects > Eyes
> Brain, the selected device will be set up to have the process: Light+objects
> Stereoscopic Camera > VR Headset > Eyes > Brain. It will be possible to
digitally modify, in real time, the images provided by the stereoscopic camera
before displaying them in the immersive VR headset. The demonstration of those
two processes is shown in Figure Here, the ColorChecker is used as the object
for illustration. Due to distinct imaging processes, there exists a visual distinction
in perceived object images.

Perceived Object

-
s Eyes
( .
Light Object
© | i

Stereoscopic VR Headset Brain Perceived Object
Camera

Figure 1.2: Standard and MR imaging process.

The first important task that needs to be solved is to ensure the visual similarity
between the scene observed by human eyes and the same scene captured and
displayed by the stereoscopic camera as well as the VR headset in any lighting
condition. This can be achieved by developing a neutral digital transformation
(NDT) that processes the image pixels obtained from the stereoscopic camera sensor
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and transfers them to the VR headset.

For the implementation of NDT and the processing that will be implemented,
the illumination spectrum of each lighting condition is more important to know
than just the illumination color. The spectrum of illumination can be measured by
the lighting measurement device. However, it is not practical and time-consuming
when there are a large number of them. Specifically, we will use the 24-channel LED
lighting system. Even though only the 17 channels are in the visible range, it can
still produce an infinite variety of lighting by adjusting each channel individually.
Therefore, we are searching for a method that recovers the current illumination
information only based on pixel value from the captured image to avoid doing the
measurement using any extra device. However, the stereoscopic camera dedicated
to the VR headset is a “black box”, which means that the camera image signal
processing (ISP) pipeline is not available. In the meantime, the sensor quality is
not that high compared with digital single-lens reflex (DSLR) cameras. Therefore,
the simulation of this black box is a good way to understand how the image is
computed and how the illumination information is presented in the image.

Based on the above discussion, the entire workflow is proposed in Figure [1.1],
the virtual camera model can be implemented in order to approximate the ISP
which includes basic image processing modules. The input elements of the virtual
camera are illumination, camera sensitivity and sample spectral reflectance, while
the output is the SRGB image. The illumination can be simulated as virtual lighting
in combination with spectral power distribution (SPD) from each LED channel
provided by Telelumen company. The camera sensitivity is acquired from well-
known academic open sources. The ColorChecker with pre-measured reflectance is
selected as the object sample. By using the virtual camera, we are able to generate
synthetic SRGB images in a variety of simulated lighting conditions. One of the
advantages of the virtual camera is the ability to produce enormous images within
a short period of time. Those images and corresponding illuminations can be
organized as a virtual dataset. The deep learning model can learn the relationship
between sRGB image and lighting conditions in the form of SPD by training on this
virtual dataset. Furthermore, the deep learning model can provide us with a way
to predict and estimate the SPD of illumination from the sRGB image captured
under unknown lighting conditions. After verifying the estimation model with the
virtual camera on the virtual dataset, we can also use the spectrocolorimeter to
measure the light directly generated by the lighting system and capture the real
image by using the professional camera to acquire the measured dataset. Then,
the illumination estimate model can be evaluated in a more practical scenario.

The main objective of this work is to solve the lighting SPD estimation problem
only based on sRGB information. The goal is achieved through the three main
parts including virtual camera simulation, dataset generation and illumination SPD
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Chapter 1 | INTRODUCTION

estimation as depicted in Figure (1.1, The virtual camera model is implemented
to generate the synthetic images. The virtual dataset and measured dataset are
generated as SPD database. The 24-channel LED lighting system is utilized to
generate diverse natural and artificial illuminations. The deep learning approach is
developed for estimating illumination SPD and assessed using several quantitative
measures. It is also used to perform some initial tests with transfer learning
techniques.

All the ISP pipeline fundamentals, illumination color and SPD estimation are
introduced in chapter 2] The implementation details of the virtual camera model
based on ISP are explained in chapter [3] In chapter [4, the illumination estimation
workflow is proposed after the testing of the different deep learning models on
several datasets. Chapter [5| describes the captured dataset configuration and
the capturing procedure. Then, several experiments are conducted based on the
proposed datasets and the results are presented in chapter [6] The final conclusion
part is provided in chapter [7]



2 | Background

This chapter discusses the traditional ISP pipeline that is frequently used in
the commercial camera and the current illumination estimation approaches for
illumination color and SPD. In contrast to traditional machine learning, the
requirements for vast amounts of data are particularly crucial in deep learning.
Synthetic data becomes an important element of the training process when real
data is expensive and time-consuming to generate. The synthetic images under
different illumination conditions can be simulated through the ISP pipeline and
used for training the illumination estimation model.

2.1 Camera Image Signal Processing (ISP)
Pipeline

The original simple camera model implies that the image is a quantitative lighting
measurement representing scene radiance, and that the camera itself is a light-
measuring instrument. Modern commercial digital cameras can no longer be seen
as devices for measuring illumination because they are intended to capture and
produce aesthetically pleasing images. With the assistance of the ISP, a number
of image processing steps can be performed in real time |Fukushima et al.| (1983]).
The ISP pipeline seen in Figure 2.1]is a crucial component of a digital camera that
performs image processing from the sensor’s raw data to a final rendered image.

2.1.1 Image Formation

For generic imaging aspects in terms of sensor, aperture and lens for digital still
color cameras (DSCs), at least three bands need to be measured for each pixel
position in order to have color image in the final. One common solution is to places
a color filter array (CFA) on top of camera sensor instead of using multiple sensors.
There are different CFA patterns such as Bayer CFA Bayer| (1976), Yamanaka CFA
Yamanaka| (1977) and HVS-based CFA |Parmar and Reeves| (2004). However the
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Figure 2.1: Typical ISP pipeline.

Bayer CFA and its variants are the most used so far. The CFA affects the control
of each pixel’s exposure time when changing aperture size, shutter speed and focus
of the lens. Besides the CFA, normally an infrared cut filter is also mounted on
the surface of sensor to exclude infrared light for avoiding extra heating. The
exposure control is based on captured energy of the sensor to adjust the aperture
size or shutter speed to make the image well exposed. The focus control needs
the information of the object distance which typically measured by infrared light
with an extra device or derived from estimation algorithm [Krotkov| (1988) such as
spatial frequency analysis (Choi et al.| (1999) and phase detection Hamada; (2015)).
The initial recorded image through sensor with CFA is actually the electrical energy
converted from lighting falling on the sensor. The Figure shows how the sensor
with CFA “saw” the image. Theoretically, for each pixel in CFA has one filter
which only allows one type of light to pass. Therefore, for each pixel in the CFA
raw image, there is only one single value from one of the RGB filters. On the other
hand, the sensor receives only a gray-level image before any further steps.

2.1.2 Preprocessing

The raw image captured from the camera sensor includes noise and other artifacts,
which may cause the certain image defects that affect the image quality after further
color processing. The defective pixel correction is one of the common preprocessing
steps. The defective pixels result from defective photo-elements in sensor. Those
defective pixels are eliminated by averaging with defective pixels Smith| (2005))
or interpolating green pixels with known the red and blue values Rashkovskiy
and Macy| (2001) among the surrounding pixels. The dark current compensation
is important step for CCD and CMOS camera sensors since the dynamic range
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CFA CFA raw image

Figure 2.2: What sensor “saw” ?

and sensitivity of the sensor are significantly affected by the dark current noise,
especially for low-light imaging use cases. The simple way to reduce dark current
effect is to substract the dark image value from the captured image or design the
specific scheme based on hardware working principle of photodetector Beaudoin
et al.| (2009). When the light source is too bright, the flare might be observed
in the image which is caused by strong scattering and reflecting light. The flare
compensation is to reduce the nonuniformity contributed by flare light. The naive
approach is to substract the mean signal energy from the captured image. Since
the flare also affects the colorfulness and contrast of image, the adaptive approach
Kim et al. (2006) is able to use the measured flare to compensate for the flare and
chroma at the same time.

2.1.3 Demosaicing

After obtaining the CFA image, the process of estimating other channel values is
needed for computing the RGB color image. The demosaicing operation interpolates
the missing channel information based on the neighbor pixel information. The
demosaicing performance will affect the image quality in other process steps later.
Some image artifacts might be introduced depending on how the demosaicing
algorithm performs. The classical demosaicing methods are based on color difference
interpolation. The nearest neighbor interpolation |Adams Jr| (1995)), cubic splines
interpolation Hou and Andrews| (1978). The color difference interpolation method
is simple and easy to implement, but it ignores the correlation among channels and
the details of edge structure. The reconstruction results often have defects such as
color artifacts, zipper effects and blurring. It is suitable for reconstructing relatively
smooth image types. Compared with traditional methods, the reconstructed image
quality of the learning-based methods is further improved. CNN-based two-stage

7



Chapter2 | BACKGROUND

demosaicing network |Tan et al.| (2017)), CNN-based three-stage demosaicing network
Cui et al.| (2018), end-to-end residual network Zhang et al.| (2019) and pyramid
attention networks (PANet) Mei et al.| (2020). The learning-based methods have
surpassed most traditional methods in terms of reconstruction accuracy, but the
high computational cost and long running time is still a problem. Therefore,
the classical interpolation approaches are still mainly used due to their good
performance and simplicity to being integrated with sensor systems.

The demosaicing artifacts are observed after demosaicing the CFA image. The
most common two are the zipper effect which indicates the color changing along
the edge and false color which results in noticeable color errors. Those two artifacts
are mainly due to the incorrect interpolation direction. Normally, the interpolation
artifacts still exist because of the limitations of interpolation itself even if the
interpolation direction is correct. There are several approaches to reduce the
artifacts such as spectral correlation |Gunturk et al| (2002)), spatial correlation
Cok| (1987), and green-plane-first rule Adams Jr| (1997). The trade-off between
the complexity of demosaicing algorithm and the quality of the demosaiced image
depends on the application.

2.1.4 White Balance (WB)

Color constancy is the ability to accommodate different light spectral content to
perceive the same or similar color when the illumination changes. Human vision
has the ability to recognize the same object’s colors under different illumination
conditions due to color constancy. However, the camera sensors do not have this
ability. Therefore, the computational color constancy is achieved by the WB. The
WB algorithm estimates illumination color and then compensates RGB gain to
correct images by discarding the effect of illumination. In general, for traditional
methods, the WB correction operation is based on a linear diagonal matrix (with
size 3 x 3). The WB is carried out early in the ISP pipeline. It can be done before
or after the demosaicing process. The image after WB is still in linear sensor raw
space.

The process of estimating the global illumination has received a lot of attention
from researchers. The traditional WB methods are based on statistics like Grey-
World Buchsbaum| (1980), White-Patch Funt and Shi (2010), Shades of Grey
Finlayson and Trezzi| (2004) and Grey-Edge (Gijsenij et al.| (2007). The learning-
based methods offer more accurate results by relying on training examples like
end-to-end deep learning network [Stanikunas et al.| (2004), shallow CNN for end-
to-end illumination estimation Hernandez-Juarez et al. (2020) and contrastive
learning on raw image Lo et al| (2021). The idea of a single global illuminant
is an oversimplification, as many settings contain many light sources. There are
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some works focus on deal with multi-illuminant scenes such as CNN-based network
for outdoor daytime illumination |Domislovi¢ et al.| (2021)), pixel-wise DNN-based
WB algorithm Kim et al.| (2021]), DNN-based network learning from different WB
setting images |[Afifi et al.| (2022).

2.1.5 Color Transformation

The color transformation includes the transformation from the camera raw image to
device-independent space and the rendered image is computed after converting into
device-dependent space. The device-independent color spaces are so named because
they are not intended for output but rather for storage or conversion medium.
The sensor captures data in the camera’s color space, which has little to do with
colorimetric values. In order to attain colorimetric precision while capturing the
image, it may be necessary to convert the image from the sensor’s spectral space to
the CIEXYZ color space (Ohno (2000) which is a device-independent space. This
can be done with a linear transformation to approximate the mapping function
from camera raw color value to the CIEXYZ value.

From CIEXYZ color space, the visually appealing image that is eventually
encoded in a standard RGB color space can be obtained from the colorimetric
conversion and further photofinishing techniques. However, it is a lossy process
since the rendered image is limited to the 8 bit dynamic range required by most
displaying media. sRGB |Commission et al. (1999) is one of most popular used
rendered space. It is defined as a transformation from device-independent color
space (mostly from CIEXYZ color space), the final sSRGB is transformed from this
perceptual color space. sSRGB value obtained after the matrix mapping operation,
it is still in linear space. The gamma correction adds the nonlinearity to the final
sRGB.

2.1.6 Post Processing

After all of the above-mentioned image processing steps, various camera manu-
facturers employ a variety of unique methods to improve the image look from an
aesthetic perspective or for specific usage. Each of the above stages may introduce
undesirable artifacts, making postprocessing required. For example, the demosaic-
ing procedure may generate a zipper artifact along strong intensity edges. Removal
of color artifacts, improvement of edges, reduction of noise and enhancement of con-
trast are frequent postprocessing processes. These strategies are mostly dependent
on heuristics and need extensive adjustment.
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2.2 Illumination Estimation

Estimating illumination from a color image of an object is a challenging task
since there is an ambiguous nonlinear relationship between illumination spectrum
and pixel value. And it is an ill-posed problem due to the color constancy effect,
the same color might resulting from different illuminations. The illumination
information of a image is incorporated in spatial layout and color distribution
Lombardi and Nishino| (2012)). In terms of illumination information, it can be
represented as illumination color or SPD.

2.2.1 Illumination Color Estimation

To recover the illumination color, it is usually related to color constancy since
the crucial part of the algorithm is to estimate the illumination color. Illuminant
color estimation methods can be categorized into two classes: statistics-based
and learning-based methods. Statistics-based methods estimate the illuminant
based on the statistical properties (e.g., reflectance distributions) of the image.
Learning-based methods learn a model from training images and then estimate
the illuminant using the model. Statistics-based methods include Grey-World
Buchsbaum/ (1980)), White-Patch Land (1977)), Shades-of-Grey Finlayson and
Trezzi| (2004)), Grey-Edge |[Van De Weijer et al.| (2007)) based on image grayscale and
Grey-Pixels [Yang et al.| (2015) and other methods like local reflectance based |Gao
et al.| (2014)), double-opponency color constancy (DOCC) [Yang et al.| (2015)) and
Retinal-Mechanism based Zhang et al.| (2016). This kind of method estimates the
light source through the assumption of statistical invariance of scene reflectance or
human vision system (HVS). The light source is estimated through a predetermined
parameter configuration in fast computation without training data. Among them,
the method of simulating HVS has more sufficient theoretical basis, better accuracy
and more practical in other applications. Learning-based methods include support
vector regression (SVR) Xiong and Funt| (2006), Gamut-Mapping |Gijsenij et al.
(2010), nearest neighbor method Joze and Drew| (2013) and other methods that
build the machine learning models mainly based on key features such as the number
of colors, brightness and chromaticity distribution, and texture of images to achieve
light source color estimation. With the amount of dataset available, the neural
networks based model has high accuracy Cardei et al.| (2002)) such as deep CNN
model Lou et al.| (2015), Deep Specialized Network (DS-Net) [Shi et al.| (2016) and
bounding illumination solution Koscevic et al.| (2019).
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2.2.2 IMlumination SPD Estimation

However, the color constancy algorithm is not able to recover the SPD of illumina-
tion but rendered illumination color. For SPD estimation, the existing proposed
methods also have two different types: statistics-based and learning-based. The
statistics-based methods include basis functions modeling optimization for projector
Hidaka et al.| (2020), spectral gray-world, max-spectral, spectral shades of gray and
spectral gray edge by extending classical computational color constancy methods
for multispectral imaging Khan et al. (2017) and Wiener filter estimators based
on sensor-space value from multispectral camera [Kitanovski et al.| (2021)). Most
learning-based methods are based on spectral reflectance information and measured
SPD of light coming from white reference. The unsupervised learning method
proposed in |[Nieves et al.| (2008]) directly estimates the SPD of illumination from
the camera digital counts that selected from bright areas of natural scenery images
by using a three-sensor camera. The CNN-based method for pixelwise illumination
estimation Robles-Kelly and Wei| (2018) predicts the illumination of the center
position of image and obtains the whole spectra by bicubic interpolation. In order
to solve the multiple illuminants problem, a DNN-based method is presented in |Li
et al.| (2021)), the model is trained on synthesized dataset with single and multiple
illumination. For the most current methods mentioned above, the used SPD data
is normally measured from the light source of the lamp or the natural daylight.
Even though most lighting conditions exist in real life, those acquired SPD have
low diversity due to the channel number limitation of the light source device.

11
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3 | Virtual Camera Simulation

In this chapter, the implementation of virtual camera simulation as proposed in
Figure [1.1] is presented. Based on traditional ISP pipeline, the modified virtual
camera is proposed. The implementation of different core components of virtual
camera are mainly discussed. From the sensor imaging where the sensor raw image
computed, the simulated noise is added before the demosaicing and white balance
processing. The optical aberration is then recreated to replicate the defect of a
real camera. In the last section, the color correction process is proposed to achieve
fast color transformation and the final rendered ColorChecker is also presented in
sRGB image.

The virtual camera model is necessary because deep learning approaches typi-
cally demand large datasets for training. This is one of the difficulties for our aim
since SPDs estimation model needs to be trained on various images with different
illuminations. Even though it is possible to produce illuminations by using the
24-channel LED lighting system, the capturing of images and the measurement of
SPDs under a number of different lighting scenarios are tedious and time-consuming
work. Meanwhile, by employing virtual illumination, the spectrocolorimeter can be
omitted because the SPD data is modeled rather than measured. According to the
ISP pipeline, the virtual camera model can be implemented to take advantage of
virtual lighting to simulate the images with the object reflectance. In this case, the
real camera is also can be avoided. The virtual lights and simulated corresponding
sRGB images can be used as a synthetic dataset to train the deep learning model
for estimating the SPD of lighting. At this simulation stage, we are able to verify
the estimation model without using any measurement or imaging devices.

3.1 Virtual Camera Implementation

3.1.1 Sensor Imaging

For general image formation model:

13



Chapter 3 VIRTUAL CAMERA SIMULATION

P(i,j) = / 16,4, N R(i, . NS (i, 4, A)d(N) (3.1)

Each sensor raw pixel value P for an image is resulting from scene illumination 7,
object spectral reflectance R and camera sensitivity S within whole spectrum A. For
capturing the three-channel RGB, there are two types of sensor imaging techniques:
three-sensor imaging and single-sensor imaging. For three-sensor imaging, three
sensors are dedicated for red, green and blue channels, respectively, which has
high expense and a limitation in system size. Therefore, the most color cameras
usually use single-sensor imaging scheme. Normally, there is a color filter on top
of the sensor surface to select the desired wavelength of light spatially in order to
generate the color image later on. The main difference between single-sensor and
three-sensor imaging is that the demosaicing algorithm is mandatory for the former
one.

According to the matrix camera image modeling from Karaimer and Brown
(2018)), the three-sensor imaging model can be represented by formula:

Cam = S(i, 7, \)diag(I(i, 7, \))R(i, j, \) (3.2)

The camera sensitivity can be formed as matrix S = [Cr, Cg, Cb]" which denotes
the R,G,B channel spectral response. The illumination information can be organised
into a NxN (N bands) diagonal matrix where the illumination spectral is in diagonal
position and zero anywhere else. Since the ColorChecker is used as an object,
the color information is more interesting than spatial information. The spectral
reflectance of the object can be reshaped to NxP (P patches).

However, considering singe sensor, the extra CFA selection matrix should be
integrated into the general image formation model. Inspired from multispectral
image, the optimized image formation equation is proposed in [Sadeghipoor et al.
(2012). The camera sensitivity matrix S can be seen as CFA filter spectral sensitvity.
In order to incorporate the CFA selection matrix, the Kronecker product operation
is done between CFA filter spectral sensitvity and identity matrix. However, the
computational cost is high for the large image since the size of identity matrix
depends on the total number of pixels within image. Besides, there is another
limitation is that they did not include illumination spectrum in final computing
but assuming the lighting power is uniform for every pixel.

Therefore, in order to reduce computational cost and include the illumination
spectrum inside the single-sensor imaging in the formation model, the CFA selection
matrix is proposed according to the bayer pattern. The ColorChecker will be mainly
used to contain the illumination information in following experiment. Assuming
each color patch has number of pixels m, firstly the bayer pattern is organized
as BP™™ = [rg...gb...], by using the bayer elements rg and gb. Then the CFA

14



Virtual Camera Implementation 3.1
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Figure 3.1: Sensor imaging pipline.

selection matrix A™*" where each row represent one CFA filter, is computed
according to the bayer pattern. In the end, the single-sensor imaging model is
proposed as the following:

CamCFA™F = A™Ndiaqq(I)N*N RN*P (3.3)

In the output matrix CamCF A, each column stores the CFA value for each
color patch. Therefore, each column vector can be reshaped into size of /m X \/m
and P patches in total. The final CFA image can be concatenated with those
patches. The test CFA raw image is shown in Figure[3.2l For the visual comparison
of two different sensor imaging methods, the three-sensor imaging process addressed
in the paper Karaimer and Brown| (2018)) is also implemented, and the result image
is shown in Figure [3.3|
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Figure 3.2: CFA raw image computed with proposed method.

Figure 3.3: Sensor raw image computed with the three-sensor imaging method
following equation . The image shows in RGB for visulization.

As previously stated, the single-sensor imaging technique is more commonly
employed; hence, the subsequent steps will all be based on single-sensor imaging.

3.1.2 Noise Simulation

During the imaging procedure of the camera, noise is almost unavoidable. It is also
not feasible to create a noise model for the camera. The input signal is obviously
already noisy. The quantity of photons striking a pixel throughout the exposure
duration varies statistically. The probability is Poisson distributed according to
quantum mechanics rules . As a result, the variance of the fluctuations
equals the mean number of photons. This noise, which is commonly referred to
as shot noise (or photon noise Hasinoff| (2014))), is determined by the fundamental
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principles of physics and is the same for all different kinds of cameras. According
to Figure [3.4] the camera sensor receives a number of photons and converts them
into a number of analog-to-digital unit (ADU) as output. Unlike the shot noise (s),
the dark noise (k) and quantization noise happen inside of the camera sensor.

Dark noise

Shot noise Camera Quantization noise
Input photons > »| Output ADU

o sensor o

Figure 3.4: Noise transformation

Dark noise refers to the noise in the pixels when there is no light on the camera.
There are mainly two sources of dark noise: readout noise and dark current. The
dark current is not very significant in microscopy or machine vision. However, it
is significant in astronomy due to the extremely long exposure lengths of several
seconds or more, which allow large dark current electron accumulation during
exposure. Therefore, when dark noise is primarily read noise, it can be modeled as
a Gaussian distribution Boncelet| (2009)). Quantization noise indicates the raw value
rounded to a nearby integer value when the analog voltage signal is digitalized. This
rounding error is known as quantization noise or quantization error. In practice,
this form of noise has a relatively minor impact on total noise.

In order to simulate the shot noise and dark noise, the number of input photons
of each pixels are necessary Standard (2010). The CFA raw image that is computed
by using a single-sensor imaging process can be seen as ADU. The electrons can be
obtained by dividing each pixel in the CFA raw image by the conversion gain of
the camera sensor (which is associated to camera sensitivity function). The next
step is to convert the electrons to photons by dividing the electrons of each pixel
by the quantum efficiency (QE) of the associated camera sensor. The photon to
ADU formula can be summarized as:

ADU = Gaussian(k) + Poisson(s) (3.4)

The terms Gaussian(k), Poisson(s) denote the dark noise that followed Gaus-
sian distribution and shot noise in form of Poisson distribution. The total noise
added to the ADU is in the form of a linear combination. The output ADU might
need clipping since some value might be out of the final bit range.
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(a) CFA raw in 8bit (b) CFA raw in 10bit

(c) CFA raw in 12bit (d) CFA raw in 16bit

Figure 3.5: CFA raw image after adding the noise.

The Figure shows four different CFA raw noise images, each with a different
bit range. The noise effect is strongly dependent on the precision (dynamic range)
of the camera sensor. When applied to a range with 8 bits, the same quantity of
noise has a relatively greater influence than when applied to a range with 16 bits.
The quality of the image is adversely damaged by noise, particularly in situations
in which the noise values are relatively significant in comparison with the pixel
values.

3.1.3 Demosaicing Implementation

Since our main goal is not intended to propose a new demosaicing approach, the
existing public demosaicing algorithm is enough for our implementation of tentative
virtual camera simulation. Three different public well-used methods
(2010), Malvar et al.| (2004), Menon et al| (2006]) are chosen. They are all linear
demosaicing methods, Menon approach is selected as one part of the virtual camera
model since it can reduce the visible artifacts to some extent, specifically for edge
region. In Figure 3.6 the sensor raw image computed by three-sensor imaging
can be seen as a ground truth demosaiced image [3.6dl The quite obvious zipper
effect along with the edge of color patches is observed in [3.6a] and [3.6b] The test
illumination is fixed to D65 for the comparison.
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(a) Demosaiced with Bilinear (b) Demosaiced with Malvar
(c) Demosaiced with Menon (d) Ground truth

Figure 3.6: Demosaiced image with different methods.

(a) Demosaiced with Bilinear (b) Demosaiced with Malvar

(¢) Demosaiced with Menon (d) Ground truth

Figure 3.7: Demosaiced single color patch with different methods.

When running the demosaicing algorithms on a single color patch from the
ColorChecker, the demosaicing artifact is readily apparent and easy to spot. In
Figure [3.7 the certain edge effect are appeared in [3.64) and also in [3.75]
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3.1.4 White Balance Implementation

For simplicity and robustness, statistical methods like Grey World, Shades of Grey
and White Patch are used for our implementation. Since there is no strict order
of demosaicing and WB, we conducted WB operation on demosaiced image. The
appearance of WB raw images computed from different WB approaches shown in
Figure [3.8| are quite different due to the properties of the used algorithm. The most
noticeable effect of WB is shown in the hue of the white patch in ColorChecker.
The bluish white and yellowish white is noticeable in white patches from Figure
and Figure [3.8d, respectively.

(a) Grey world WB (b) Shades of gray WB

(¢) White patch WB

Figure 3.8: White balanced image with different methods.

The shades of gray algorithm (Minkowski norm p = 6) is selected as the
main WB step for the virtual camera model since the competitive performance
among other advanced colour constancy algorithm. Notably, the shades of gray
algorithm uses the Minkowski norm p and the best results are obtained with p =
6 in paper Finlayson and Trezzi (2004). Therefore, in the virtual camera model
implementation, the same value of p is maintained as the paper specified.
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3.1.5 Optical Aberration Simulation

Besides the noise, camera sensors and lens systems have various optical distortions
and aberrations which degrade the final rendered image. There are different types of
optical aberrations such as spherical aberration Koomen et al. (1949), astigmatism
Harris (2000)), coma, vignetting Zheng et al| (2008), chromatic aberration
and Farid| (2006), distortion, and etc. However, we only focus on chromatic
aberration by considering the feasibility of implementation without specifying the
structure of the lens system of virtual camera.

Chromatic aberration is due to unequal magnifying of all image points across
the whole spectrum. It is related to dispersion and the light near to blue spectral
range is refracted more than the ones near to red spectral range, therefore the
shift between them is noticeable. It has two kinds, longitudinal and lateral. The
simulating longitudinal chromatic aberration of RGB image needs specific point
spread function of lens to be applied to each color channel which is complex and
has high computational cost while the simulating lateral chromatic aberration can
be simulated by scaling each color channel to produce an increasing offset along the
distance from the image center. Therefore, mainly the lateral chromatic aberration
is simulated for our virtual camera model.

(a) 20 strength (b) 40 strength
(c) 80 strength (d) Without aberration applied

Figure 3.9: Chromatic aberration images with different strength.
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The figure |3.9| shows the effect which is brought by different levels of lateral
chromatic aberration. Zooming in on the left bottom corner of the image, observing
from the center, the white color patch shows red fringes at the side pointing to the
image center and violet or blue fringes at the opposite side. Similar visual changes
also happened at the edges of other color patches.

3.1.6 Color Transformation Implementation

For white-balanced raw RGB, the CIEXYZ can be computed as CIEXY 7 =
T x RGB, T is 3 x 3 matrix. This matrix is not fixed since the illumination condi-
tion is not always the same and not always in standard illumination. Therefore,
from an academic viewpoint, each illumination condition has one unique transfer
matrix. There are some optimization methods to solve this matrix. For example, re-
searcher in paper |[Rowlands| (2020) uses least square optimization to get preliminary
solution then further minimizes the color difference by using nonlinear optimization
technique to compute refined T'. And they declare that the demosaiced raw RGB
is needed instead of using white-balanced raw RGB. Therefore, the data used is
the illumination SPD, demosaiced raw RGB and corresponding CIEXYZ value.
The CIEXYZ value can be measured by a colorimeter or computed by using color
matching function. However this is not practical, since the illumination condition
always changes, the algorithm needs to be executed on each illumination. And
CIEXYZ value is not always available. For most commercial cameras and smart-
phone cameras, the two characterized matrices are predefined by calibration in
two certain standard CIE illuminants (A and D65, respectively). Once computing
those matrices, any matrix 7' can be interpolated by them according to different
illumination conditions. After getting the CIEXYZ from the sensor raw RGB,
sRGB can be easily acquired.

In order to avoid the complex computing color space transformation (CST)
matrix for each single illumination condition as we mentioned above, color correction
is proposed and it has two phases shown in Figure |3.10} Firstly, the CST matrix
is predetermined under standard D65 illumination by using the white balanced
image and CIEXYZ values computed from the spectral reflectance of ColorChecker
in the CST matrix computation process. Afterwards, the CST matrix is used for
arbitrary illumination in the CST matrix applying process in order to generate the
final output in sSRGB space. The advantage of this method is that the CST matrix
only needs to be calculated once for each sample and it is convenient to compute
the image when there are a large number of different SPDs.
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CST matrix computation

Raw image under
standard D65

Spectral reflectance

White balanced image CIEXYZ image

CST matrix

Raw image under
arbitrary illumination

White balanced image CIEXYZ image sRGB image

CST matrix applying

Figure 3.10: Color correction process.
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4 | Illumination Estimation in Deep
Learning

In this chapter, the illumination SPD estimation part as stated in Figure [I.1] is
mainly discussed. In specific, starting from the problem formulation section [4.1]
two different potential deep learning models are presented in methodology section
[4.2] As the final output result is the spectrum of the SPD, the different numerical
metrics to evaluate the similarity of spectrum are introduced in the evaluation
metrics section [£.3] The way to generate different lighting conditions and the
content of synthetic images are in sections virtual lighting [4.4] and ColorChecker
[4.5] respectively. Then, different deep learning models are tested and evaluated by
conducting experiments based on synthesized image datasets in the model selection
section [£.6] In the last section [4.7] the proposed framework for illumination
estimation with a comprehensive deep learning network topology is presented.

4.1 Problem Formulation

As our goal is to reconstruct the whole illumination spectrum with only the sRGB
image of ColorChecker, the spatial information of ColorChecker is not very relevant
to illumination information due to the same spatial layout of all the images (the
position and the order of each color patch remain the same all the time). For the
purpose of the lighting estimation, the global spatial information is irrelevant, even
for the training images with various contents |Laakom et al.| (2020). In addition,
excluding global spatial information allows the network to extract illumination
without global spatial inference, hence enhancing model resilience and ensuring
illumination assumption adherence. Therefore, the color values of the ColoChecker
have more contribution to containing the illumination information. The average
pixel values of each color patch can be arranged as one single vector instead of all
pixels because there is only a tiny variance within each color patch. It is obvious
that the SPD is also in the form of a 1D vector with a relatively high dimension by
considering the whole range of the spectrum and the small interval. In the end,
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the problem can be regarded as a nonlinear vector-to-vector regression task.

4.2 Methodology

The vector-to-vector regression problem is becoming more and more popular in the
machine learning domain. The classical regression methods such as linear regression
Pearson| (1896)), support vector regression (SVR) Smola and Scholkopf] (2004) and
random forest have lower performance or fail when dealing with multi-output and
nonlinear regression problems. The illumination estimation task can be considered
as a regression problem since the output is the color values or the SPD of lighting.
With the advance of neural networks, it is possible to represent an efficient mapping
function in relation to a regression problem. Inspired by traditional universal
approximation theory, the DNN-based vector-to-vector regression is proposed inside
a machine learning framework, where DNN parameters may be modified using
machine learning optimization methods. It is an efficient method for determining
the underlying connections between vector inputs and their corresponding outputs
and outperforms other approaches. There are illumination related works such as
illumination color vector estimation from raw-RGB images based on DNN |Afifi
and Brown| (2019); outdoor high dynamic range (HDR) illumination estimation
from CNN Hold-Geoffroy et al. (2017)) and lighting estimation with CNN for mixed
reality [Marques et al.| (2022).

Moreover, the 1D CNNs have been proposed and achieved significant perfor-
mance in many applications such as data classification tasks and detection tasks
Kiranyaz et al. (2021)). 1D CNNs can also be used for solving nonlinear regression
problems and 1D signals are inherently compatible with 1D CNNs without any
reshaping operation. On the contrary, when the data is in 2D format as for images,
a 2D-to-1D conversion can be achieved in order to be compatible with 1D CNNs if
the spatial information is not relevant for the task.

In the following experiments, the DNN and 1D CNNs deep learning models
are mainly explored and compared for solving high-dimensional SPD estimation
problem.

4.3 Evaluation Metrics

To quantitatively evaluate the performance of a model, four distinct types of metrics
are utilized: root mean square error (RMSE) in Eq. the goodness-of-fit coefficient
(GFC), spectral angle mapper (SAM), and spectral information divergence (SID).
The ground-truth illumination SPD is normalized by using the maximum to divide
each value so that the range is kept within [0-1]. The predicted illumination SPD
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also has the same range in order to evaluate the relative errors. Parameters n, f;(\)
and f,(\) denote the number of data points, the measured SPD and the predicted
SPD for equations in this section.

RMSE = \/ %EA(fp()\) — ) (4.1)

GFC is defined as the cosine of the angle between the ground truth spectrum
and predicted spectrum in Eq[4.2]

According to the interpretation of GFC in Romero et al.| (1997): GFC >
0.995 indicates the colorimetrically accurate illumination estimation; GFC > 0.999
represents good spectral fit; GFC > 0.9999 almost exact matching.

SUAAW
CEC = S ROV, f V)2 42)

In some applications, researchers are more concerned with spectral shape
differences than spectral amplitude differences. The spectral similarity measurement
method based on projection can reflect the spectral shape difference to a certain
extent, which is very important for the analysis of spectral data. SAM as in
Eq[4.3]is one of the most typical projection-based spectral similarity measurement
methods |[Kruse et al. (1993)). The SAM value goes from 0 (very similar) to 1 (highly
dissimilar).

2o il f(A)
SAM = arccos 4.
S O S OF 4

Another typical spectral similarity measurement method is based on information
measures and the representative approach is the SID as in Eq[d.4 The SID
method was proposed in (Chang| (1999)). This method transforms the spectral
similarity evaluation problem into the redundancy evaluation problem between
the probabilities of two spectral vectors. The higher SID value indicates the high
dissimilarity of the spectrum. The D(f;(A)||f,(\)) is the relative entropy Lindley
(1959) of f;(A) with respect to f,(\).

SID = D(fi(MI[f,(N) + DM £i(N) (4.4)

4.4 Virtual Lighting

In order to generate the different lighting conditions without any real measurement,
the SPD data of each LED channel provided along with the lighting system is used
instead of producing the illumination by the lighting device itself. By assuming that
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the output SPD from the lighting system can be approximated as an accumulation
of the SPD from all LED channels, in this way, we can manipulate the weight for
each LED and compute the simulated SPD by using a linear combination according

to Bq[5|

SPDs = i w; * I(N); (4.5)

i=1

where w; (range from 0 to 1) and I(\); are the weight and SPD of each individual
light channel, and n is the number of channels used to compute SPDs. The SPDs
can be simulated by using multiple Gaussian distributions or by modifying the
power distribution of each light channel from the existing lighting system to obtain
various SPDs.

In Figure the 4~6 dimension Gaussian curves show here for demonstration.
The wavelength range corresponds to the camera sensitivity which does not response
after 700 nm and peak of each channel is set to one. The center wavelength of
each channel and its full width at half maximum (FWHM) are adjusted to spread
equally throughout the validated wavelength range. It is also possible to generate
SPD with an even higher dimension Gaussian curve. The generated SPDs in Figure
[4.1dl are based on a 4-channel Gaussian distribution for illustration.
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Figure 4.1: Simulated illumination from Gaussian modeling.
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Figure 4.2: Simulated illumination from Telelumen LED light system.

Although the generated SPDs by Gaussian can be a good approximation of
simple lighting conditions, the SPDs that are generated from the SPD data of
the 24-channel LED lighting system are more closed to the lighting SPD in real
cases. It means that not all of the channels have the same shapes or peaks (show
in Figure and the generated SPDs (show in Figure is not very smooth
but with sharp peaks. The generated SPDs by Gaussian and by lighting system
LED SPD data are all computed by assigning random weight (from zero to one) to
each channel following the equation 4.5| as mentioned before.

4.5 ColorChecker

For the experiment samples, the Macbeth ColorChecker and the X-Rite Col-
orChecker Digital SG are chosen in order to make comparison as in Figure .3} For
the latter, only the 96 out of 140 patches in the center are selected since the color
patches contribute more information instead of gray-scale patches for illumination
estimation. Generally, the more different color patches in the ColorChecker, the
more illumination information can be stored. The Macbeth ColorChecker is mostly
employed for generating simulated datasets for evaluating the tentative illumination
estimating model. The ColorChecker Digital SG is mainly used as the object for
real lighting capturing later.

The sRGB images of ColorChecker computed by the virtual camera under the
different illumination conditions show in Figure[£.4] In this case, all the 24 channels
are included.
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Macbeth ColorChecker X-Rite ColorChecker Digital SG

Figure 4.3: Rendered ColorCheckers by virtual camera under D65 illumination.
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30 Figure 4.4: Simulated sRGB images with various random SPDs based on 24
channels.
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The difference among illuminations reflects quite small visual differences in
sRGB images since the SPD gets contributions from all the channels. The white
balance algorithm is able to tackle those types of illumination properly.

However, it is important to notice that not all the center wavelength of 24 LED
channels are in visible wavelength range. We can disable the UV and IR LED
channels by setting corresponding weights equal to zero when those channels are
not interested for the purpose. The Figure [£.5] shows the SPDs which only consist
of 7 activated LED channels within visible wavelength range to make a comparison
with Figure [4.4]
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Figure 4.5: Simulated sRGB images with various random SPDs based on 7
channels.
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The images are quite visually different to each other due to the characteristics
of lighting SPD, especially when the high intensity of SPD only appears within a
short wavelength range. E.g, the simulated illuminations in the first row of Figure
all have a relative high intensity from 400 nm to 500 nm but nearly zero
response after 600 nm. This might be the reason why the corresponding simulated
sRGB in shows bluish and greenish colors. In those cases, the white balance
is not working very well on those monochromatic-like illuminations.

4.6 Model Selection

In this part, several different experiments are carried out to test DNN and 1D
CNNs methods on generated SPDs datasets from Gaussian and Telelumen LED
data. The datasets are generated by the method introduced in section [4.4 In
following experiments, the weight vector [w;]| of each generated SPD is chosen as
the model target variable instead of SPD itself due to the low dimension. And it is
straightforward to recover the whole lighting spectrum with the predicted weight
vector by Eq[4.5] Therefore, simulated sRGB images and the weight vectors can
be used as the input-output pairs for training the deep learning model.

The width of the hidden layer of models are tuned on various simulated datasets
in Table The size of the input and output layers depend on the used dataset.
The fully connected (FC) layer with 512 neurons are stacked at the last hidden layer
in 1D CNNs model. The tentative models are mainly for the purpose of investigation
about the performance of different models and the impact of the output dimension.
The detailed information is presented in the following subsections.

Table 4.1: Tentative model structures.

Model Structure (Input — hidden layers — Output)
DNN Input-32-32-64-64-128-128-256-256-512-512-Output
1D CNNs | Input-32-32-64-64-FC-Output

4.6.1 The choice between DNN and 1D CNNs

For the generated SPD by Gaussian, the different number of channels can be
selected. The used channels determine the dimension of the weight vector. E.g, the
weight vector of the four-channel Gaussian has four dimensions. The dimension of
the weight vector can affect the accuracy of the model prediction since it is difficult
to predict high-dimensional variables than the lower ones.
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In order to investigate the performance of DNN model and 1D CNNs model
in terms of illumination SPD estimation, models are tested on several datasets
which are generated by different numbers of channels. In this case, the Macbeth
ColorChecker is chosen as the sample for this experiment. GI1, G2, G3 and
G4 datasets are generated from 4, 5, 6 and 7-channel Gaussian distributions,
respectively, and each dataset has 10000 input-output pairs.

Table 4.2: RMSE, GFC, SAM, SID values of prediction results with DNN model

on Gaussian datasets with different channel numbers.

Dataset RMSE GFC SAM SID
Mean | Std Mean | Std Mean | Std Mean | Std
G1 0.0205 | 0.0089 | 0.9989 | 0.0009 | 0.0436 | 0.0174 | 0.0049 | 0.0097
G2 0.0235 | 0.0097 | 0.9988 | 0.001 | 0.0455 | 0.0175 | 0.005 | 0.0061
G3 0.0314 | 0.0151 | 0.9982 | 0.0049 | 0.0537 | 0.0266 | 0.007 | 0.0224
G4 0.0431 | 0.0203 | 0.9972 | 0.0027 | 0.0688 | 0.029 | 0.0087 | 0.0094

Table 4.3: RMSE, GFC, SAM, SID values of prediction results with 1D CNNs

model on Gaussian datasets with different channel numbers.

Dataset RMSE GFC SAM SID
Mean | Std Mean | Std Mean | Std Mean | Std
G1 0.0094 | 0.0054 | 0.9997 | 0.0003 | 0.0203 | 0.0105 | 0.0021 | 0.0071
G2 0.0155 | 0.0069 | 0.9994 | 0.0011 | 0.0313 | 0.016 | 0.0033 | 0.008
G3 0.0195 | 0.0099 | 0.9992 | 0.0028 | 0.0344 | 0.0216 | 0.0036 | 0.0166
G4 0.0243 | 0.0108 | 0.9990 | 0.0012 | 0.037 | 0.0175 | 0.0039 | 0.0048

The prediction performance is shown in Table[4.2]and Table[4.3] It is noticed that
the RMSE increases when more channels are used for simulating the illumination.
It is reasonable since the output dimension adds the complexity to the regression
problem. In terms of GFC performance, the results from the 1D CNNs model all
exceed 0.999 (indicates good spectral fit), which means the prediction spectrum
from 1D CNNs model has better spectral approximation than the DNN model. The
1D CNNs model has overall better regression performance across different kinds of
datasets according to the numerical metrics.
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Figure 4.6: Illumination SPDs prediction results on 7 channel dataset.

The predicted illumination SPDs are shown together with ground truth SPDs
in Figure [4.6, Those results are based on model trained from 7-channel dataset.
The 1D CNNs model can predict better in terms of the shape of SPD.

4.6.2 The effect of regression dimension

After experiments with the DNN and 1D CNNs on Gaussian datasets, the 1D CNNs
model is selected to test on generated SPDs from Telelumen LED data Figure [4.2al
The experimental ColorChecker is X-Rite ColorChecker Digital SG. The generated
SPDs data are more similar to the scenario that an actual lighting system can
produce. In order to test the effect of the regression target dimension on model
performance, datasets H1 and H2 are generated from the 7 channel (randomly
select 7 channels) and 24 channel of Telelumen SPD. In this case, the dimension
of weight vectors for datasets H1 and H2 are 7 and 24, respectively. And the H1
and H2 both have 10000 input-output pairs. The images and SPDs in those two
datasets are like Figure [4.4] and Figure [4.5]
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Table 4.4: RMSE, GFC, SAM, SID values of prediction results with 1D CNNs
model on simulated Telelumen datasets.

Dataset RMSE GFC SAM SID
Mean | Std Mean | Std Mean | Std Mean | Std

H1 0.064 | 0.0224 | 0.9858 | 0.0103 | 0.1595 | 0.0561 | 0.1039 | 0.111

H2 0.1143 | 0.0532 | 0.9318 | 0.0586 | 0.3428 | 0.1472 | 0.2533 | 0.216

In Table according to the model performance on RMSE, GFC, SAM, and
SID, the model that trained on high dimension output variable has higher error
regarding to the ones that trained on low dimension output variable.

4.6.3 Principal component analysis (PCA) on SPD

Considering the model needs to be compatible with real lighting SPD produced
directly from the lighting system, the relationship between the real lighting SPD
and each LED SPD is unknown. The real lighting can not be computed as a linear
combination by using the weighted LED SPD of each channel. Therefore, the
lighting SPD instead of the weight vector should be chosen as the output target
variable of the model for the real lighting scenario. However, from the previous
experiments, the high-dimensional target variable brings more errors for the model
prediction. Due to the high dimension of the original SPD data, if it is directly
used as the output of the machine learning model, it will cause slow convergence
and a long training time. At the same time, redundant spectral data of SPD also
reduces the prediction accuracy of the model. PCA is commonly used as a pattern
classification-oriented data dimensionality reduction method. In the study Howley
et al.| (2005)), it is utilized for the processing of the high-dimensional spectral data
in order to increase the accuracy prior to the application of the machine learning
algorithms. On the basis of reflecting more original information as much as possible,
PCA replaces the original data with fewer principal components, so as to achieve
the purpose of simplifying the data. Therefore, the PCA can be as the preprocessing
step of illumination SPD data.

4.7 Illumination Estimation Framework

After choosing 1D CNNs model as the based regression model and integrating the
PCA as one of necessary step to process the SPD data. The proposed workflow
is shown in Fig[4.7] the virtual lighting SPDs generated by assigning the random
weights and the simulated sRGB image based on those SPDs are the synthetic
dataset for the neural network 1D CNNs model. Moreover, the average pixel values
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of each patch from the ColorChecker are computed as the representation of the image
to discard global spatial information. To consider the high dimensionality property
of SPD spectral data, several PCA features are chosen as SPD’s approximation. In
the model training stage, the average pixel value and PCA features are constructed
into 1D vectors, respectively, as the input and target dataset. After training
the model with the synthetic dataset, for a given SRGB image illuminated under
unknown lighting, the model output is the predicted PCA features and the whole
spectrum of SPD can be recovered directly from those features with linear PCA
reverse operation. It is noticed that the proposed scheme is not only compatible
with virtual lighting but also with real lighting. For consistency, all the experiments
later will be based on PCA processed SPD data.

Simulated SPD

300 400 500 600 700 800 900 1000 Weights
Wavelength (nm)

Original SPDs decomposition

Data pair

A

Neural network

400 450 500 550 600 650 700 750 800
/avelength (nm)

SPD prediction

Figure 4.7: SPD estimation scheme.

The proposed 1D CNNs model detailed information are shown in Table [4.5
The input layer is 1D vector with a size 2881 since 96 RGB pixels when using
X-Rite ColorChecker Digital SG. The size of the output layer depends on how
many PCA components are computed from SPD data. In general, the number of
PCA components is determined based on the explained variance ratio that exceeds
99.0%. The Adam optimizer Kingma and Ba (2014) with a learning rate 0.001 and
the mean square error (MSE) loss function are chosen as the model configuration.
The bath size and the total epoch number are set to 64 and 200, respectively.
The hyperparameters and structures are further tuned by exhaustive testing on
different simulated datasets. The network is implemented based on Tensorflow and
Keras using the NVIDIA GeForce RTX 3090 GPU. The model with the proposed
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Table 4.5: Neural network structure.

Layer The number of units | Activation function
Input 288x1

Conv1D 282x32 ReLLU

Conv1D 278x64 ReLLU

MaxPooling1D | 139x64

Dropout 139x64

Flatten 8896

Dense 64 ReLLU

Output 14 Sigmoid

configuration, the training time on dataset with 10000 samples is around 2 minutes.

Any database and sensor can be utilized as long as the testing is performed on
data that was obtained from the same surface and illuminant databases and by
utilizing the same sensor sensitivities. Nevertheless, our ultimate objective is to
evaluate the deep learning model using real image data captured with a digital
camera of a real ColorChecker object. If a deep learning model that was trained
on synthetic data is going to be evaluated on actual images, the sensor sensitivity
functions that were used to train it need to be as similar as the real sensors that
were being utilized in the tests. Any departure of the actual camera from the
trained model will result in discrepancies in the RGB values observed by the camera
and, as a consequence, the accuracy of illumination estimation provided by the
model is reduced.

In this context, the camera sensitivity used for the virtual camera model should
be similar to the camera that used for capturing the real image. Since the Canon
5D Mark II camera sensitivity function is used for the virtual camera model
implementation, the Canon 5D Mark IV (which has the similar image sensor to
the Canon 5D Mark II) is selected as the camera for the real image capturing. The
detailed discussion about how to generate real image datasets is discussed in the
next chapter [o}
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In this chapter, the datasets for training the proposed illumination SPD estimation
framework [4.7] are generated. As mentioned in the data generation part in Figure
the measured dataset is captured in real scenarios with a camera and spectro-
colorimeter while virtual dataset is simulated by the virtual camera model. In order
to maintain data consistency for the measured dataset, the data collection tools are
developed to ensure the automatic acquisition. The captured image preprocessing
and the time cost for the generation of both datasets are compared in the last
section.

5.1 Real Lighting Dataset

Compared with the virtual lighting generated by LED SPD data, the lighting
produced by the lighting system is measured directly using a spectrocolorimeter.
The illumination estimation model is necessary to be validated under different real
lighting conditions since they are directly associated with the lighting system itself.
For generating various lightings, the software equipped with the lighting system
enables us to control the intensity of each LED channel. After excluding the UV
and IR channels, there are 17 channels left. We can assign the weights for all other
channels to generate arbitrary lighting. Unlike the simulated SPD, the way that
the lighting system combining LED channels is not clear. However, based on the
previous system testing, the lighting system has power limitations such that it is
impossible to turn all the channels to the maximum intensity at the same time.
The software of lighting system allows the user to adjust the intensity of each LED
channel from 0 to 1. Since the each LED consumes different amount of power, it is
difficult to ensure the valid weight before sending to the lighting system. Due to
the invalid weight, all channels are turned off after being received by the lighting
system. Based on previous tests, the lighting system hardly emits any light when
the number of selected channels is increased to 10 (with random intensity of each
channel).

Taking into account the technical constraints of the lighting system and previous
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testing, several experiments were conducted to investigate the optimal configuration:

e Experiment 1: randomly selecting 7, 8 or 9 channels (from 17) and assigning
the random weight (0~1) to each channel by considering that the turning
10 channels on will shut down the system as mentioned before and in the
meanwhile we want to keep turn on as many channels as possible. The weight
of other non-selected channels is set to zero. By repeating this process, a
number of sample weights can be generated. If there is no lighting after
sending the weight to system, the weight is referred to as an invalid weight;
otherwise, it is referred to as a valid weight. The valid ratio is derived by
dividing the number of valid weights by the total number of sample weights.
The optimal number of channels can be determined based on the valid ratio.

e Experiment 2: randomly selecting 9 channels (from 17) and limiting the
maximum intensity from 0 to 1 with an interval of 0.15 since even 9 channels
can sometimes exceed the power limitation without limiting the maximum
intensity. As in experiment 1, the sample weights are generated and tested in
the lighting system. The highest optimal maximum intensity can be selected
by checking the valid ratio of different cases.

e Experiment 3: Turning on all 17 channels of the visible range instead of only
choosing a few of them in order to take advantage of the full ability of the
lighting system in terms of generating complex high-dimension lighting. The
optimal maximum intensity can be determined with the same procedure as
in experiment 2.

After exhaustive testing, the optimal configuration according to each experiment
mentioned above is determined as following:

e Configuration 1: randomly selecting 7 channels (from 17) without limiting
the maximum intensity.

e Configuration 2: randomly selecting 9 channels (from 17) with maximum set
to 0.75.

e Configuration 3: turning on all 17 channels with maximum set to 0.4.

The three different datasets can be generated according to each configuration.
The proposed dataset information is shown in Table 5.1 The dataset includes
the SRGB images and the corresponding illumination SPDs. The obtaining of the
sRGB image will be discussed later in last section of this chapter. The total number
of sample weights for each configuration is set to 3170 by considering the long
time of capturing and potential overheating problems of the devices. The time for
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Table 5.1: Proposed datasets.

Dataset | Total number | Valid number | Channel Size
D1 3170 2167 7

D2 3170 2395 9 1709x 1212
D3 3170 2631 17

capturing one image and measuring the corresponding SPD is around 7.5 seconds.
Therefore, D1, D2, D3 three datasets cost more than 15 hours. After feeding the
sample weights to the lighting system, the valid number of lighting SPD in each
dataset are 2167, 2395 and 2631 respectively. The each corresponding sRGB image
is cropped to the same size with 1709x1212.

5.2 Virtual Lighting Dataset

After generating the measured dataset according to the configuration in Table
5.1} The valid weights from the sample weights that produce the real lighting can
be used for generating corresponding virtual lighting. Afterwards, the synthetic
sRGB images are easily computed by our virtual camera model. In this way, the
certain similarity between the measured dataset and virtual dataset is ensured by
the similar distribution of real lighting and virtual lighting.

5.3 Captured Dataset (Generation

There are several existing datasets for the usage of illumination color estimation
purposes like Gelher-Shi Gehler et al.| (2008), NUS |Cheng et al.| (2014) and Cube++
Ershov et al|(2020). Even though the image content is various and the ground
truth illumination color is provided, the illumination type is still limited to indoor,
outdoor natural lighting or artificial lighting from low-end light source device. The
lack of illumination types (e.g., non-existing lighting) and the SPD information is
still the problem for the illumination SPD estimation task. We decided to do long
capture using a professional camera (Canon 5D Mark IV) by taking the advantage
of the powerful 24-channel LED Telelumen lighting system which is able to produce
infinite unique lighting. In order to achieve the automatic image capturing to
obtain the datasets as mentioned in Table [5.1], the implementation of two different
data collection tools in charge of driving the three devices is required:

e The 24-band spectral lighting from Telelumen company, allowing to produce
our lights (with a Python SDK).
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e An [1Photo Pro 2 spectrocolorimeter from X-Rite allowing to measure the
SPD of the light sources as well as the reflectance of the patches of our color
chart (with a C++ SDK).

e A Canon EOS 5D Mark IV camera used to capture the RGB images of the
color chart (with a C++ SDK).

The first tool, named ReflectenceMeasure, allows to measure the reflectances of
the patches with the help of the x-rite I1Photo Pro2 spectrocolorimeter. Each of
the reflectances obtained is the result of the average of 4 measurements and takes
the form of a 36-dimensional vector with a wavelength from 380 nm to 740 nm and
10 nm steps.

The second tool, named MultiCapture, was much more complex to implement
because it allows a list of 24-dimensional vectors (corresponding to the activation
values of our spectral lighting system) to activate and measure the light produced
and then shoot and download the chart from our camera.

For all the captures, our camera was set in Automatic Shooting (Scene Intelligent
Auto) mode where the camera analyzes the scene and sets the optimum settings
automatically. It makes images in the JPEG format with a high quality setting so
that data loss from compression is kept to a minimum.

(c) (d)

Figure 5.1: Captured sRGB images under Telelumen lighting.
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The whole capturing process takes place in a room without windows and with
all the other lights off. Several captured images are shown in Figure [5.1

. ROl selection [
transformation o

[
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&
]

Captured image Transformed image Selected pixels

Figure 5.2: Captured image preprocessing.

The camera angle is not perfectly perpendicular to the ColorChecker the image
is distorted as shown in Figure [5.2] the further image processing steps are needed
to correct and acquire the useful information. Since the only ColorChecker is
our interesting object in image, the perspective transformation [Szeliski (2010)
is applied to exclude outliers and get the perspective view image. Perspective
transformation requires that the perspective center, the image point, and the target
point be collinear. According to the law of perspective rotation, the perspective
surface is rotated around the perspective axis by a certain angle, destroying the
original image. It projects an object to a new imaging plane based on the law of
object imaging projection. After that, the average pixel values from each center of
the color patch are computed. The ROI (Region Of Interest) is shown as green
square in the image and the size of ROI can be adjusted depending on the original
captured image resolution. It is noticed that the neutral color patches where locate
in outermost layer of ColorChecker are excluded during ROI selection since the
colorful area is brighter and has various degree of saturation.

All the collected data used for this work are available from this address: https:
//www.couleur.org/articles/SITIS2022-WAI.

The time consumed by generating the measured datasets and the virtual datasets
is shown in Table [5.2] The advantage of the virtual camera model is reflected in
the dataset acquisition time.

Table 5.2: Dataset acquisition time comparison.

Dataset Number of images | Total time spend
Measured dataset | 7193 15 hours
Virtual dataset 7193 55 minutes
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6 ‘ Experiments, Results Analysis and
Transfer Learning Tests

6.1 Model Verifying
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Figure 6.1: Simulated virtual lighting through the equation @ by using the
same valid weights according to configuration in Table for generating the real
lighting, first row is 7 channel, middle row is 9 channel and last row is 17 channel
SPD.
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According to the configurations mentioned in section [5.1] the measured datasets
are generated by using the data collection tools introduced in the previous Section
.3 according to the Table [5.1} The corresponding virtual datasets can also be
easily computed by virtual camera model using the same weights that were sent
to the lighting system when generating measured datasets. Several simulation
examples are shown in Figure [6.1], the simulated virtual lighting and measured real
lighting are not identical to each other since the light measurement device accuracy
is restricted to a 10 nm interval and the power limitation of the light system as
mentioned before. This indicates that the lighting system produces the lighting
from LED channels not in a purely linear-like combination mechanism.

In order to test the illumination estimation model on proposed datasets. Several
different dataset combinations are designed to verify the performance.

Table 6.1: Model verifying scenarios.

Scenario Training dataset Prediction dataset
Measured Virtual Measured | Virtual
V1 D1 S1 D1 S1
V2 D1 S1 D2 S2
V3 D1 S1 D3 S3
V4 D2 S2 D1 S1
Vb5 D2 S2 D2 S2
V6 D2 S2 D3 S3
\A4 D3 S3 D1 S1
V8 D3 S3 D2 S2
V9 D3 S3 D3 S3
V10 D1+D2+D3 | S1+S2+S3 | D1 S1
V11 D1+D2+4D3 | S1+S2+S3 | D2 S2
V12 D1+D2+D3 | S1+S2+S3 | D3 S3

Table shows all the experiments conducted on proposed datasets. The model
is trained and validated on different dataset settings. The same verifying scenarios
are also applied to the virtual datasets. The virtual datasets are denoted as S1, S2
and S3 to make a comparison with measured datasets.

From Table [6.2) and Table [6.3], for the scenarios with the same training dataset
GFC, SAM, and SID indicate better results when on a high-channel prediction
dataset. E.g., the V1, V2 and V3 are all trained on D1 dataset, the better
performance observed on prediction dataset D3 which represents 17 channel case.
Based on the model performance on RMSE, the mixed D1+D2+D3 is the best
training dataset among all the scenarios. The overall better performance is observed
in Table than Table [6.2] since the synthetic image can contain more information
from the illumination than captured ones.
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Table 6.2: RMSE, GFC, SAM and SID of prediction results with 1D CNNs
model on proposed measured datasets.
Scenario RMSE GFC SAM SID
Mean Std Mean Std Mean Std Mean Std
V1 0.1106 | 0.0367 | 0.9561 | 0.028 | 0.2833 | 0.0918 | 0.3498 | 0.2581
V2 0.1112 | 0.0381 | 0.9625 | 0.0234 | 0.2628 | 0.0812 | 0.3192 | 0.3486
V3 0.1514 | 0.0454 | 0.9772 | 0.0116 | 0.2072 | 0.0529 | 0.1757 | 0.3094
V4 0.1202 | 0.035 | 0.9505 | 0.0265 | 0.3056 | 0.0824 | 0.3642 | 0.2558
Vb 0.1081 | 0.0327 | 0.963 0.0194 | 0.264 0.0704 | 0.2839 | 0.3377
Vo6 0.1162 | 0.0403 | 0.9828 | 0.0093 | 0.1793 | 0.0489 | 0.0625 | 0.066
A\ 0.1833 | 0.0486 | 0.9065 | 0.049 | 0.4223 | 0.1122 | 0.5286 | 0.3438
V8 0.1588 | 0.0452 | 0.9365 | 0.035 | 0.3466 | 0.0933 | 0.3316 | 0.2239
V9 0.889 0.0279 | 0.9825 | 0.0101 | 0.1802 | 0.0513 | 0.0602 | 0.038
V10 0.1036 | 0.0312 | 0.9624 | 0.0208 | 0.265 0.0748 | 0.3348 | 0.2898
V11 0.0998 | 0.0325 | 0.97 0.016 | 0.2363 | 0.068 | 0.2236 | 0.205
V12 0.0808 | 0.028 | 0.9868 | 0.0076 | 0.1561 | 0.0449 | 0.048 | 0.0301
Table 6.3: RMSE, GFC, SAM and SID of prediction results with 1D CNNs
model on virtual datasets.
Scenario RMSE GFC SAM SID
Mean Std Mean Std Mean Std Mean Std
V1 0.0822 | 0.0258 | 0.9643 | 0.022 | 0.2573 | 0.076 0.4314 | 0.4091
V2 0.0859 | 0.0314 | 0.9688 | 0.0182 | 0.2416 | 0.0669 | 0.3035 | 0.2689
V3 0.1428 | 0.0428 | 0.982 | 0.0107 | 0.183 | 0.052 0.0857 | 0.126
V4 0.0889 | 0.026 | 0.9584 | 0.0348 | 0.2751 | 0.0919 | 0.3665 | 0.2579
V5 0.0814 | 0.0254 | 0.9692 | 0.0173 | 0.2392 | 0.0689 | 0.226 0.1884
Vo6 0.1009 | 0.0365 | 0.9871 | 0.0083 | 0.1531 | 0.0492 | 0.039 | 0.0311
V7 0.169 0.0525 | 0.9029 | 0.0741 | 0.4216 | 0.1476 | 0.6109 | 0.9404
V8 0.143 0.044 | 0.939 0.0445 | 0.3357 | 0.1063 | 0.3581 | 0.5429
V9 0.0679 | 0.0228 | 0.9871 | 0.0088 | 0.1526 | 0.0499 | 0.0405 | 0.0463
V10 0.0837 | 0.024 | 0.9656 | 0.0189 | 0.2545 | 70.0675 | 0.3874 | 0.3063
V11 0.0827 | 0.028 | 0.9716 | 0.0149 | 0.2304 | 0.0635 | 0.2529 | 0.2154
V12 0.0698 | 0.0243 | 0.988 | 0.0074 | 0.1483 | 0.0453 | 0.035 | 0.0229
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Figure 6.2: GFC mean values between measured and virtual dataset.

The Figure [6.2] shows the GFC mean values throughout all scenarios for the
model that trained on measured and datasets. The difference in each scenario
is quite small, which means the simulated virtual dataset can approximate the
measured dataset to some extent since the model configuration is the same for both
cases.
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Figure 6.3: Bozx plots of the SPD estimation for the four evaluated cases under
measured and virtual datasets. The median values are shown with orange lines,
the mean values with green dots, and the 25%-75% percentile range with black
rectangles.
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The metric values in 12 scenarios (V1 to V12) of measured and virtual datasets
are presented in Fig [6.3] The model has overall better performance on virtual
datasets than measured datasets according to those four metrics. However, the
performance of each metric between measured and virtual datasets is similar in
terms of median and mean values. This is an important observation because
we might have insight about the model performance on measured dataset ahead
(without having measured dataset). After determining the lights that need to
be produced by using the light system, the corresponding virtual lights can be
simulated by virtual camera model quickly. The model performance based on
virtual lights can indicate how much performance the model can achieve when
using the measured dataset that we are going to capture. In this way, the measured
dataset can be optimized before conducting the real capturing process.

6.2 Camera Sensitivity Restriction
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Figure 6.4: Absolute average error.

The absolute average error is computed between ground truth and predicted
SPD at each band for different datasets, as shown in Figure [6.4 The high error is
present at around 400 nm and 700 nm both in the measured and virtual datasets.
The possible reason for that could be the valid range of camera sensitivity function.
For the virtual camera, the spectral response is from the camera Canon EOS 5D
Mark II, the data can be found in |[EPFL| (2022)). It is noticed that the response
is quite low near 400 nm and 700 nm in Figure 6.5, The sensor is relatively
limited to acquiring the SPD information at the edge of the response range. The
lack of information around and beyond this wavelength range can deteriorate the
prediction accuracy of the illumination estimation model. Due to the similarity
of the real camera (EOS 5D Mark IV) and the virtual camera, we can assume
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that their camera sensitivity functions are also related, which can explain the
relative identical performance on both the measured and virtual dataset in terms
of absolute average error.
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Figure 6.5: Camera sensitivity function.

By considering the model performance in RMSE, GFC, SAM, SID and absolute
average error on measured as well as virtual datasets, it seems that the proposed
illumination estimation model has nearly the same error pattern on those datasets.
This kind of tendency gives the possibility to approximately predetermine the error
results of measured datasets that are to be acquired by using corresponding virtual
datasets.
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6.3 Worst-Case Prediction
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Figure 6.6: The prediction SPD with maximum prediction error with respect to
GFC, first row is based on measured dataset and second row is based on virtual
dataset.

The prediction results in Figure [6.6) are based on measured and virtual datasets.
From left to right, the predicted SPD and ground-truth SPD with maximum GFC
error for 7, 9 and 17 channel cases are presented. The relatively high prediction
error can be visually observed at the beginning and end of the wavelength range,
which corresponds to the main finding from the Figure [6.4]

With predicted SPD from the illumination estimation model, it is possible
to simulate the corresponding predicted sRGB images by applying the virtual
camera model. The influence of the SPD difference can be represented by the
images of ColorChecker. In Figure [6.7], the predicted SPD with the same GFC
value (0.9598) compared with ground truth for 7, 9, 17 channel cases are selected.
In each case, the predicted sSRGB image is generated with the virtual camera
model by applying predicted SPD. The visual difference can be observed from the
color patches between the ground-truth and predicted ColorChecker images. The
pixel-wise differences are also computed by subtraction of the ground-truth images
from the predicted ones. It is noticeable that the pixel difference in 7-channel case
is more than the other two cases even though the GFC value is the same. The
potential reason can be the low uniformity of SPD across the wavelength range.
There are three main peaks in predicted SPD in 7-channel case and the other parts
are all nearly zero intensity.
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Figure 6.7: Simulated images by virtual camera with predicted SPDs and the
visual differences versus the ground-truth images. From top to bottom are the
predicted and ground-truth SPDs, ground-truth tmages, simulated images and
pizel-wise difference images.

(d)

(g)

§)

6.4 Transfer Learning Experimentation: Sensor-

independent Performance

The previous experiments are all based on datasets that are associated with the
specific camera sensor. The illumination estimation model needs to be retrained
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when working on the new dataset that is produced by the new camera sensor.
Thus, the model has sensor-dependent performance. In general, it is hard to find
or capture the large amount of datasets with desired camera devices. The transfer
learning (TL) Torrey and Shavlik (2010)) can assist the model training when working
on similar task or similar datasets but there is only a small amount of available
data captured by an unknown camera sensor.

In order to verify the basic transfer learning technique, the two new testing
datasets are captured with different lighting sources and imaging devices. The
capturing procedure follows the steps mentioned in the previous chapter[5l Datasets
T1 and T2 in Table[6.4] contain sSRGB images and also the corresponding SPDs. The
image content is the same ColorChecker Digital SG as used in proposed datasets
D1~D3. The light source in T1 is the RGB lamp which can change the lighting
by adjusting the R,G,B values by the software. Since the lightness of the lamp
is quite weak, the two lamps positioned in two directions are used during the
capturing. The same camera Canon 5D Mark IV is used as an imaging device.
Besides, the SPDs of the lighting from the lamps are not very diverse since it is
only a three-channel light source. The imaging device in T2 is the tablet Galaxy
Tab S7 and the associated camera sensor is low quality compared with the Canon
5D Mark IV.

Table 6.4: Testing datasets for transfer learning.

Dataset | Total number Light source Imaging device
T1 1000 Philips hue E27 color Canon 5D Mark IV
T2 70 Telelumen lighting system | Galaxy Tab S7

The pre-trained 1D CNNs model (with same configuration as described in is
based on a virtual dataset (with 24 channels in order to include different illumination
SPD as many as possible to avoid an unbalanced dataset) that has 10000 samples.
T1 dataset is used for testing the transfer learning performance when the lighting
source device is changed. T2 dataset is desired to test the situation when only a
few data samples are available and the images are captured by a low-quality and
high-dissimilar camera sensor as the ones that used in pre-trained model. The
model performance results on different metrics with and without transfer learning
applied are shown in Table [6.5]

The transfer learning improves the performance on both testing datasets. Specif-
ically, the GFC mean value exceeds 0.999 on dataset T1. There is also around 6.7%
improvement according to GFC mean value on dataset T2 when applying transfer
learning.

The ground-truth SPD and predicted SPD with and without transfer learning
are in Figure and Figure [6.90 The black, red, and green color curves indicate
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Table 6.5: RMSE, GFC, SAM and SID of prediction results of 1D CNNs model

with and without transfer learning on testing datasets.

Dataset RMSE GFC SAM SID
Mean | Std Mean Std Mean | Std Mean | Std
T1 0.2065 | 0.0953 | 0.9479 | 0.0423 | 0.2998 | 0.1258 | 0.1002 | 0.0817
T1(TL) | 0.0535 | 0.033 | 0.9991 | 0.0009 | 0.0385 | 0.0185 | 0.0032 | 0.0036
T2 2.4884 | 0.5853 | 0.8518 | 0.0686 | 0.539 | 0.1237 | 0.5225 | 0.24
T2(TL) 1.9888 | 0.7153 | 0.9091 | 0.0682 | 0.404 | 0.1523 | 0.4535 | 0.6042
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Figure 6.8: Illumination SPDs prediction results with transfer learning on
dataset T1.
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Figure 6.9: Illlumination SPDs prediction results with transfer learning on
dataset T2.

ground-truth SPD, prediction without transfer learning and prediction with transfer
learning. The predicted SPD with transfer learning on both T1 and T2 datasets
is closer to the shape of ground-truth SPD. The potential reason that transfer
learning improves the performance on both datasets might be due to the complexity
and similarity of the lighting SPDs. For dataset T1, the lighting source device is a
low-end lamp which can only produce three-channel lighting. Thus, the complexity
and diversity of this dataset is much lower than the simulated 24-channel dataset.
For dataset T2, although only few data and the low-end imaging device, the lighting
SPD is similar to the ones that pre-trained model learned.

According to the foregoing trials, the illumination estimate model can learn
sensor-independent characteristics via data generation and transfer learning tech-
niques.
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7 | Conclusion and Perspectives

In this work, the virtual camera model is implemented according to the ISP pipeline
including sensor imaging, demosaicing, white balance, color transformation parts
with additional noise and optical aberration simulation adding certain non-linearity
to approximate defects of the real cameras. The virtual camera model can be
viewed as a data-generation tool that aids the training process for deep learning.
The illumination SPD comprises both the virtual lighting simulated by the linear
combination equation and the real lighting measured by the lighting measurement
device. The 24-channel LED lighting system is utilized as the primary light source
for the real lighting case. There are two proposed datasets, including virtual
datasets and measured datasets. The virtual datasets are created using a virtual
camera model and virtual lighting, whereas the measured datasets are captured
using a commercial camera in real lighting. With those proposed datasets, the
deep learning model 1D CNNs is trained on input-output pairs of PCA components
that are derived from illumination SPD data and average pixel values that are
computed from each color patch of the ColorChecker sSRGB images. In the end, the
proposed illumination estimation framework is assessed on synthetic images and
also on real captured images by using different numerical metrics. The consistent
prediction performance between the measured dataset and the virtual dataset is
observed, which indicates the data validity of the synthetic image that is simulated
by the virtual camera model. This gives the opportunity to optimize the real
lighting dataset setting based on the performance from the virtual dataset, hence
preventing random long-duration captures. Furthermore, simulated datasets and
transfer learning enable sensor-independent prediction, i.e., predicting lighting SPD
when images are acquired by a different camera.

Unquestionably, the quality of the images obtained by a high-end camera
contributed to the performance of the proposed lighting SPD estimate model. To
make the model more practical, instead of a professional camera, a phone camera
might be utilized as an image capturing device. Meanwhile, a tiny and portable
ColorChecker could be adopted to cut computing costs and improve usability.
Even though the precision of the SPD estimation may be lowered to some extent,
the simpler configuration allows for future real-time applications such as cosmetic
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rendering, which renders the human face with the approximate SPD of the real scene
illumination. For XR applications where illumination is critical for the display of
virtual objects, several ColorCheckers could be placed and automatically identified
using ArUco markers. This would enable real-time prediction of the SPD of multiple
lighting sources from any desired location, allowing realistic representations to be
entirely coherent with the real lighting in the area.
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