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Abstract
A key topic in the field of computer vision is image classification, which involves

predicting one class for each input image. Additionally, one of its tasks is the
categorization of materials from images, which is difficult for both human and
computer systems since materials might appear differently based on their surface
characteristics, lighting geometry, viewing geometry, camera settings, etc. The
revolutionary image classification architecture, deep convolutional neural networks
(CNN) has shown promising results as compared to hand-crafted computer vision
methods in recent studies for material classification. However, the number of
material datasets that mimic the behavior of the real-world material is limited.
To this end, our two contributions are reported. We proposed a new material
dataset where images were acquired with larger acquisition settings. The dataset
is developed in such a way that convolutional neural networks used to train on this
dataset can produce features that can be adjusted with the varying appearance
changes found in real-world material images. In order to integrate key features
extracted from multiple perspectives of a same material sample, we proposed a
distinct architecture that takes advantage of the current developments in multi-view
learning techniques. We show that the proposed multi-view network can be used
for both feature extraction and classification while significantly outperforming the
traditional single-view network for material classification.
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1 Introduction

Material classification can be defined as a computer vision task that involves catego-
rizing images of a material into class like wool, linen, brown bread etc. based on the
available visual information. It has great importance in the field of object tracking,
robotics, waste management, automatic sorting of textile samples etc. For instances
material recognition can be implemented into robotic visual systems which allow
product search, object manipulation or autonomous navigation on a surface made of
specific material. Classification of a material using an image is challenging because
the visual appearance of the material can be vary depending on a number of factors
such as illumination conditions, viewing angle, texture properties of the material etc.

Material classification has gained the attraction of the researchers in 1960’s (Julesz,
1962) aiming on describing material with expert defined features. Julesz introduced
his pioneering work on texton theory (Julesz, 1981; Julesz and Bergen, 1983) where
elementary local features such as edges or corners are used to define the texture or
material’s descriptors, called textons. After that, a number of researchers began
to work on designing efficient filter banks to extract texture features (Bovik et al.,
1990; Jain and Farrokhnia, 1991; Malik and Perona, 1990; Turner, 1986; Manju-
nath and Ma, 1996; Zhu, 2003) . Besides the study of local features extraction, a
number of approaches like bags of textons (Leung and Malik, 2001) were proposed
to aggregate local features into global representation which can more effectively
depicts material images. At physical level materials appearances were collected
under control conditions which means the parameters such as lighting color, or di-
rection and viewing condition were strictly set and recorded. With these controlled
conditions and appearances some models such as BRTF (Bi-directional Reflection
Transmittance Function ) and BTF ( Bidirectional Texture Function ) can be
built to characterize the appearance of material instances. These models provide
instance level features which are more useful to identify material instances rather
than material categories. A key characteristic for material images is that target ma-
terial occupied the whole region of an image and no clutter background was involved.

Deep learning-based approaches have become more popular as processing power
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Chapter 1 INTRODUCTION

and access to large datasets have increased, making them an attractive solution
to solve many problems in society. After the AlexNet (Krizhevsky et al., 2012) a
deep convolutional neural network broke the image classification accuracy record in
2012 in the ImageNet ILSVRC (Russakovsky et al., 2015) on a very large dataset,
deep learning methods have become the spotlight for the researchers to solve many
unsolved problems. These problems were not possible to solve before because of
the lack of appropriate computing power and large datasets were not also available
to train the deep learning models.Recent research has demonstrated that deep
learning-based approaches significantly outperform the various material classifica-
tion methods(Xu, 2021; Trémeau et al., 2020; Sticlaru, 2017). It is also true that the
performances of these methods are highly dependent on the data they are trained
and tested. Deep neural networks trained on a material dataset that has small
variation across its viewing and illumination directions, in such scenario relevant
features from the material dataset can be easily learn by the neural network and
achieve high classification accuracy. On the other hand, we demonstrate in this
thesis that accuracy can drastically decrease when the networks are trained on a
material where there is great variability in the image acquisition settings.

Wood Wool Wool Aluminium

Figure 1.1: Variation in appearance across different acquisition settings. Each
column shows the same images sample captured under various (illumination or
viewing) conditions. These images were taken from UJM-TIV dataset. Image
from (Sumon et al., 2022)
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Our Contributions 1.1

1.1 Our Contributions
The goal of this thesis is to improve the material classification performance using
deep learning methods and real world datasets. The first contribution is we con-
structed a new material dataset consisting of 11 different classes such as aluminum
foil, lettuce leaf, brown bread, wood, wool etc. The dataset is constructed in such a
way that there remains large intra class variability across the images of the samples.
We named the dataset as UJM-TIV where (UJM is the abbreviation of University
Jean Monnet, where this thesis was conducted and TIV stands for Texture under
varying Illumination, pose and Viewing). Figure 1.1 shows the images of samples of
four different category from newly created UJM TIV dataset where each column con-
tains the images of same sample under varying viewing and lighting conditions.With
the use of this newly developed dataset, we demonstrate that traditional neural
networks do not adapt well to datasets including real-world material data with
significant intraclass variability. We believe that learning the material characteris-
tics more effectively will be made possible by such a diversified dataset in the future.

We propose a Multiview solution for material classification in order to better
generalize the deep learning features. In most of the existing material classification
solutions, only one image is used to classify the material, however in this thesis,
we demonstrate how classification accuracy could be improved significantly if we
provide a collection of images for each material sample. Humans frequently try
to modify their head position or manipulate objects in order to compensate for
changing lighting conditions and viewpoints to determine the material of an object.
In order to imitate this natural behavior, we suggest employing multiview learning
to extract image features across a number of images and integrate those features
into an appropriate representation. We believe that, this is the first instance of
using a multi-view learning technique to for material classification in order to
solve the problem of appearance variations caused by viewing conditions. Our
contributions are the following:

• We demonstrate that there is insufficient intra-class variability for material
classification tasks by analyzing the existing material dataset,

• We propose a new dataset with large variation across different acquisition
settings (illumination and viewing) for better representation of various real-
world material sample appearances. The first two contributions led to a
publication in the journal of imaging in June 2022 (see (Sumon et al., 2022))

• Using a multi-view learning strategy, we propose combining features from
several images of the same material sample into an accurate representation
of the material,
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Chapter 1 INTRODUCTION

• Extensive testing on KTH-TIPS2 and our new material datasets demonstrate
that using several images of the identical sample outperforms the traditional
single view solution by a significant margin.

1.2 Organization of the Thesis
The second chapter describes the related works from using handcrafted features
based approach to deep learning approaches for material classification. Chapter
3 introduces existing material datasets used for previous experiments. Chapter
4 is devoted to the construction of proposed material dataset and methodologies
applied in this thesis. Discussion and presentation of the results obtained through
various experiments in this thesis is described in chapter 5. Finally, conclusion
and future research directions are proposed in chapter 6.
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2 Related Works

In this chapter we explore and present the most remarkable works in the context
of material classification, starting from hand-crafted features to deep learning
solutions.It will allow us to discover the limitations of the current state of the art
approach for material classification. These remarks will be the starting points of
our original solutions detailed in the upcoming chapters.

2.1 Handcrafted Features
The earliest work in 60’s about material analysis reveals that material or texture
can be perceived spontaneously if proximate pixels of uniform brightness form
a specific connectivity (Julesz, 1962). To further explain human perception of
material, Jules introduced texton theory (Julesz, 1981; Julesz and Bergen, 1983)
in 80’s. He argued that textures can be perceived if elementary local conspicuous
features, called textons, are present, such as crossing, corners, etc. Additionally,
he claimed that these texton’s first-order statistics are the only ones that are
meaningful. In other words, spontaneous perception cannot be triggered if the
probability of every texton in one material region is equal.

To produce local features from the input material images Gabor filter (Bovik
et al., 1990; Jain and Farrokhnia, 1991; Turner, 1986; Zhu, 2003), Gabor wavelets
(Manjunath and Ma, 1996), Differences of Gaussians (Malik and Perona, 1990)
serving as sliding wiondows are proposed as expert design filter banks for local
conspicuous features extractions. A series of works (Wu et al., 2000; Xie et al.,
2015; Zhu et al., 1998, 2000, 2005) based on texton theory tried to mathematically
model textons and consequently Bags-of-textons (Leung and Malik, 2001) and
Bags-of-words (Csurka et al., 2004) were proposed to accumulate features into
a histogram representation over a given texton dictionary.By the end of the last
century, researchers concentrate on the extraction of invariant feature representation.
Some types of features are more robust than others to certain variations, such as
background illumination or object size. The most notable invariant features include

5



Chapter 2 RELATED WORKS

Local Binary Pattern (LBP) (Ojala et al., 2002), Speeded Up Robust Feature
(SURF) (Bay et al., 2006) and Scale Invariant Feature Transform (SIFT) (Lowe,
2004). Besides material classification, they dominated visual recognition field before
the deep learning era.

2.2 Deep Learning Based Features
Image classification is one of the most fundamental research fields in the computer
vision community, and its spur progress always influences greatly not only itself but
also other visual recognition tasks, like video classification, image segmentation,
medical image analysis. And it even has impact on other domains, such as natural
language processing or brain-computer interface. Convolutional Neural Networks
(CNN) represent a breakthrough in computer vision, since AlexNet (Krizhevsky
et al., 2012) clearly outperformed the state-of-the-art in ImageNet ILSVRC com-
petition (Russakovsky et al., 2015). This achievement is considered as one of the
milestones both for deep learning and computer vision.

Indeed, it appeared that knowledge learned from a large image dataset for classi-
fication task can be helpful for other related task and dataset. This approach is
known as transfer learning and has been widely used in the context of material
classification. In (Wieschollek and Lensch, 2016) Wieschollek and Lensch used a
network pretrained on Imagenet dataset to extract material features and trained a
classifier with those features which outperforms alternatives based on handcrafted
features with an evident margin. It clearly indicate that generic deep features
are transferable to material classification. A typical convolutional neural network
usually applies three operations to the input data. First, A number of convolutions
by means of linear filters, second, introducing non-linearity by using activation
functions such as sigmoid or Rectified linear unit, Third, pool the local features
using different pooling methods (average pooling, Max pooling, etc.). All these
operations are quite related to the filter banks used in (Randen and Husoy, 1999)
for analyzing the textures materials.

As input goes through the network layer by layer, features extracted from different
levels also contain complementary and rich information. For material classification
both primitive and semantic information could be combined together in a more
discriminative representation.Cerezo et al. show (Bello-Cerezo et al., 2019) how
deep neural networks and pre-trained CNN-based features outperform conventional,
hand-crafted descriptors, especially when dealing with textures like non-stationary
spatial patterns and when the acquisition parameters have been changed repeatedly.
The authors used 68 image descriptors both from hand-crafted (35 descriptors) and
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CNN-based (33 descriptors) utilizing 23 different textures dataset over 10 different
experiments. Cimpoi et al. not only proposed to pool local features of the last
convolutional layer of VGG-19 to remove global spatial information, but also found
that after combining these representation with penultimate Fully Connected layer’s
output, there is an obvious increase of the classification accuracy (Cimpoi et al.,
2015). The authors explained that the FC layer can be considered as a pooling
method which is able to capture the overall shape of the object present in the
image. Napoletano (Napoletano, 2017) compared the CNN based features with
hand crafted features where he considered five color texture datasets. The datasets
contain images under varying lighting directions, viewing conditions and scales
where the results achieved by the CNN based features outperforms the results from
hand crafted features with a significant margin. Andrearczyk and Whelan designed
a network architecture called Texture CNN (T-CNN) where features from different
layers are respectively average pooled into a compact feature vector and then all
the compact vectors are concatenated into a global one (Andrearczyk and Whelan,
2016).

Inspired by the findings in the work (Cimpoi et al., 2015), Xue et al. extended the
Deep Texture module (Zhang et al., 2017) to the Deep Encoding Pooling Network
(DEP) that feeds the output of the last convolutional layer of ResNet into two
branches: Deep Texture module and global average pooling layer (Xue et al., 2018).
The outputs from the two branches are then fused with a bilinear operation. Hu
et al. encapsulated the two-branch structure of the work (Xue et al., 2018) into
a Learnable Encoding Module (LEM) and plugged it to the end of basic blocks
in the ResNet-50 in order to encode multi-level texture representations (Hu et al.,
2019). In the bilinear pooling community, Dai et al. combined first-order features
computed by average pooling and second order features computed by compact
bilinear pooling with a simple concatenation (Dai et al., 2017). They also tried to
fuse multi-level features to get a better performance. Herarchical Bilinear Pooling
(Yu et al., 2018) runs bilinear pooling on local features across different layers and
thus enhances bilinear representation by capturing inter-part feature relations.

In (Ghose et al., 2021) the authors explicitly modeled the extent-of-texture (EOT)
and extent-of-shape (EOS) on a local group of feature vectors. According to the
EOT (resp. EOS), feature vectors are split into two groups and are encoded
separately into a global representation for each group. In the end, with the guide of
EOT (resp. EOS), two global representations are combined and finally aggregated
into an image-wise representation with bilinear pooling. Unlike these previous
methods which concatenate pooled features from several layers, Zhai et al. propose
to concatenate multi-layer feature maps (Zhai et al., 2019, 2020).
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Then, in (Zhai et al., 2019), they applied a module with a cascade structure,
in which global image representation at actual level should guide the next level
representation. At the end, a fusion module is introduced to jointly exploit each
level’s global representation and to make strong classification prediction. In the
work (Zhai et al., 2020), they designed a different encoding module that, first
generates multiple texture primitives and then encodes texture primitives at one
position by its correlations to other local neighbors. Note that, at the end, the
output is an orderless pooled representation and it is finally integrated with spatial
ordered information.

Most material classification techniques until recently relied solely on single-view
images or incorporated a limited number of single view image attributes. Using
close-range high-resolution texture imaging and near-infrared spectroscopy, for
instance, the authors of (Erickson et al., 2020) performed material classification
using a multi-modal sensing method. The authors in (Gorpas et al., 2013; Kam-
pouris et al., 2016a) illustrated how the use of photometric stereo acquisition
may boost the performance of material classification techniques. The authors
demonstrated how a surface’s microgeometry and reflectance characteristics may be
utilized to determine its material.In a similar vein, Maximov et al. (Maximov et al.,
2019) and Vrancken et al. (Vrancken et al., 2019) showed that integrating differ-
ent illumination and viewing conditions might considerably enhance the material
classification performance. One would like to be able to anticipate how a material
would seem in the best-case scenario, regardless of the direction in which it is being
viewed or any other elements that may affect the way it is being captured.This
problem is difficult to solve in the general situation (Xu et al., 2019) because it is
poorly formulated and has too few constraints.

2.3 Multi-view Learning
With the improvement of imaging technology and popularity of social media the
amount of multiview data has been increased exponentially in recent decades in
the field of social network (Fan et al., 2020), medical imaging (Wei et al., 2019;
Xu et al., 2020), video surveillance (Guo et al., 2015; Feichtenhofer et al., 2016;
Deepak et al., 2021) and entertainment industry (Srivastava and Salakhutdinov,
2012; Mao et al., 2014; Karpathy and Fei-Fei, 2015). Multiview data refers to
the data that have same meaning but captured from different views, modalities
and sources. Multiview learning aims at extracting precise characteristics from
several data sources or modalities in order to aggregate the common features across
various types of data. Because of the increasing amount of Multiview data it has
gained the attraction of the researches in computer vision community in recent
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years. Convolutional neural networks (CNN) are capable of extracting very precise
features from images, and several methods have included multi-view learning in
the CNN (Yan et al., 2021; Feichtenhofer et al., 2016; Andrearczyk and Whelan,
2016; Dou et al., 2016). The objective of multiview CNN is to aggregate features
from many views to get more generalize features from the objects. Two main mul-
tiview CNN based approaches exists namely one-view-one-net mechanism and
multi-view-one-net mechanism. In one-view-one-net mechanism a dedicated
CNN is used for each view to extract distinct features of that view and in the
end all the features from different views are fused together using a fusion method
(Feichtenhofer et al., 2016; Yang et al., 2018). In contrast, a single network is fed
with all of the views in a multi-view-one-net technique in order to extract features
(Dou et al., 2016). Su et al. proposed a multiview convolutional neural network
for recognition of 3D shape where multiple 2D views are used to aggregate the
multiview information (Su et al., 2015).

In one-view-one-net approach to reduce the amount of learnt weights, the network
used to extract features often shares its weights. Feature fusion process used is
critical in such approaches. The main challenge with a multi-view-one-net strategy
is aggregating the input features before feeding it to the network. One way could be
applying the convolution after these images are concatenated into a multi-channel
image. By doing this, it is ensured that local features are pulled from these images
at the same regions. In addition to that, to get consistent features, it requires a
coarse registration between the images One disadvantage of such concatenation
is that pre-trained networks cannot be used because usually those pre-trained
networks are fed with 3 channels images. This is the rationale for our decision
to choose a one-view-one-net strategy in this thesis over a multi-view-one-net
method. Finally, in some research people used Siamese network where they
used Multiview data for person re-identification (Varga and Szirányi, 2017). image
quality assessments (Liang et al., 2016) for instance, Liang et al.(Liang et al., 2016)
also suggest feeding a Siamese network using sub-patches taken from RGB images,
whereas Varga et al. (Varga and Szirányi, 2017) suggest to extract a collection
of overlapping sub-windows from a single image. Guo et al. proposed a dynamic
Siamese network for tracking of moving object from video data with a rapid general
transformation learning model that allows for efficient online learning of target
appearance variation and background suppression from prior frames.(Guo et al.,
2017). Whereas authors in (Zhang et al., 2018) proposed a siamese network based
on local structure learning that takes into account both the target’s local patterns
and its structural relationships for more precise target tracking. By incorporating
into the Siamese network in place of pairwise loss for training, an unique triplet loss
is presented in (Dong and Shen, 2018) to extract meaningful deep features for object
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tracking. Khvedchenya et al. employed satellite imagery with siamese network
for the purpose of assessing the damage of building before and after the disaster
(Khvedchenya and Gabruseva, 2021). With experimental results the authors have
shown that concatenation of output features from the branches of siamese network
leads to better performance of the model. The authors in (Fatima et al., 2021)
developed a system to detect the adulteration of papaya seed through the use of a
siamese network. Moreover, in (Wang and Wang, 2019) siamese network is used
for classification of plant leaves

The construction of a novel architecture for a multiview CNN is not the main goal
of this thesis, even if the design of our network has been thoroughly explored. The
primary goal is instead to show how multi-view learning can be utilized
to classify materials. As far as we know, this is the first attempt for material
classification a multi-view CNN has been utilized. It’s also true for many other
computer vision tasks, multi-view learning is a very recent research area.

10



3 Material Datasets

To study and validate material recognition methods described in the previous
chapter, material databases are always needed and we investigate them thoroughly
in this chapter. In our opinion, they can be roughly grouped into three types and
we consider their past, their present and their future. In the next three subsections,
the three types will be presented according to this timeline.

3.1 Datasets under Controlled Environment

Before the deep learning era, when deep neural networks weren’t used to perform
large scale image classification, the first group of material datasets were created
with the goal of characterizing the appearance of material instances. BRTF (Bi-
directional Reflection Transmittance Function) and BTF (Bidirectional Texture
Function) are widely used models to output parameterized visual appearance with
lighting and viewing condition inputs. In order to build BRTF/BTF models for
real-world material instances, images in these kinds of datasets were collected
under controlled conditions in labs, and the parameters of these conditions were
provided.Because these datasets focus on the study of material instances, for one
instance, images with different visual appearance need to be extremely collected.
Hence, the resulting BRTF/BTF model is able to perfectly describe this material
instance and enables to produce synthesized images. On the other hand, in each
category, the number of instances is rather limited and instances were carefully
chosen by the dataset creators. In one words, this type of datasets can be well
exploited to build instance-level features, that are invariant to different conditions,
but these features may be less transferable to other instances of the same category
which are not included in the dataset.In the next subsequent section we will describe
the representative datasets.
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Chapter 3 MATERIAL DATASETS

3.1.1 Columbia-Utrecht Reflectance and Texture (CUReT)
Dataset

Researchers at at Columbia University and Utrecht University created this dataset
(Dana et al., 1999) which includes 61 material samples from 10 different types of
surface materials ranges from natural surface to man-made surfaces. These samples
are taken under 205 different lighting and viewing conditions. Figure 3.1
shows some example images from CUReT database. Only one image per class is
provided in this dataset which leads to lack of intra-class variability across the
categories of the dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Example images of a sample of h wood, b cork, c cotton, d leather,
e lettuce, f straw, g velvet and a aluminium foil from CUReT dataset.

3.1.2 KTH-TIPS2 Dataset
KTH-TIPS2 dataset (Mallikarjuna et al., 2006) is an extension of KTH-TIPS
dataset where all the categories of KTH-TIPS2 dataset is also included into CUReT
database.The images of the samples are captured under 3 viewing direction and
4 illumination conditions. It contains images of 11 material categories with 9
different scales for each image.For each sample there are 108 images are captured
under varying illumination, pose and scales. Images of a sample of aluminium
foil, brown bread,corduroy, cotton, lettuce leaf, cork, cracker and wool is shown
in figure 3.2. Four image samples for each category is provided in this dataset.
Because fewer samples are offered, the intra-class variety of materials encountered
in real-world situations cannot be as accurately represented. We also found that
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Datasets under Controlled Environment 3.1

the variation in the viewing and illumination direction is not significant for some
classes (such as cork, brown bread and white bread) that’s why the images from
this classes suffer from lower intra-class variability.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Example images of a aluminium foil, b cork, c cotton, d corduroy,
e lettuce leaf, f brown bread, g cracker and h wool from KTH-TIP2 dataset.

3.1.3 RawFooT Database
RawFooT (Cusano et al., 2016) dataset is constructed by the researchers of imaging
and vision laboratory from University of Milan-Bicocca which contains images of
68 raw food samples. Images of these food samples are captured with 46 different
illumination conditions. The authors simulate natural daylight(D65, D45,..,D95)
and artificial lights(L27,L30,..,L65) under different color temperatures and captured
images under those illuminant. Some example images from the dataset is shown in
figure 3.3 The category includes a whole ranges of food sample from meat to rice,
cookies, fruits etc.

3.1.4 UBO 2014 Dataset
A larger dataset (Michael et al., 2014) taken under controlled conditions , which
consists of seven different material categories (carpet, fabric, felt, leather, stone,
wallpaper, and wood), each one has 12 material samples that may be used to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Example images of a sample of a candy, b carrot, c cookie, d corn,
e mango, f basmati rice, g steak and h swordfish from RawFooT dataset.

Figure 3.4: Images of different samples from UBO2014 dataset

14
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illustrate the associated intra-class variations. The dataset contains total 84
different samples. Figure 3.4 shows some sample images from the dataset. The
dataset contains 22,801 images taken under 151 illumination directions and
151 viewing conditions using a bi-directional sampling method which combines
series of images captured under different lighting and viewing conditions.

3.2 Real-world Datasets
In contrast to datasets taken under controlled conditions, in real-world datasets,
images are captured in the natural world, which results in a wider range of visual
looks. It is based on unobserved material details, sunlight, random pose, etc.
Besides, images no longer necessarily show only the material but context information
surrounding the target. Based on the fact that material images are collected from
multiple online sources and images are taken under random conditions, it
becomes possible to exploit invariant features of material categories. With these
datasets, the majority of current research that uses deep learning networks to
retrieve invariant characteristics may produce good classification results.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.5: Representative images of a sample of a fabric, b foliage, c glass,
d leather, e metal, f paper, g plasctic, h stone, i water, and j wood from Flickr
material database.

3.2.1 Flickr Material Database (FMD)
Flickr Material Dataset (FMD) (Sharan et al., 2014) is a small but popular real-
world material dataset, containing 10 categories. Each category contains 100
images. Representative images of FMD database is shown in figure 3.5. Images
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were downloaded from flickr.com and they were carefully chosen to cover a
wide range of visual appearance in one category. Masks, locating material region,
are also provided for every image. They are helpful for studies where masking
out clutter background is needed (e.g. when the influence of background context
impacts the classification performance).

3.2.2 MINC 2500 (Materials in Context Database)
MINC 2500 (Bell et al., 2015) is a subset of MINC database. Its large size makes it
very suitable for training a deep CNN material classification task. Image patches
were manually cropped from the material samples. Abundant background context
appearing around target material makes this dataset quite challenging, see Fig 3.6.
It contains 23 commonly-seen material categories and 2500 images per category.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.6: Representative images of a sample of a fabric, b foliage, c glass,
d leather, e metal, f paper, g plasctic, h stone, i water, and j wood from MINC
2500 database.

3.2.3 Ground Terrain in Outdoor Scenes (GTOS)
This dataset contains images of ground terrain captured under 19 viewing di-
rections and varying weather and lighting conditions(different time of the day)
(Xue et al., 2017).It can be used to study of the ground terrain recognition, which
can be implemented into autonomous driving systems to detect current ground
terrain’s condition. This dataset is challenging because some inter-class boundaries
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Figure 3.7: Images of different samples from GTOS dataset

are ambiguous. Some images from GTOS dataset is shown in 3.7. The dataset
comprises of 30,000 pictures from 40 classes of outdoor scenes.

3.2.4 4D Light Dataset
4D-Light dataset (Wang et al., 2016) consists of 12 categories where each category
contain 100 images. It is the first medium-size dataset for light-field images. In
addition to 2D projections of the scene, light field images additionally includes
the angle of the light beams that reach the projection as a third dimension. A
special camera known as plennoptic camera is used to capture the amount of
light present in a scene as well as the precise direction in which the light rays are
moving across space. Different from RGB images, light-field images are taken with
plenoptic camera, which not only captures light intensity and color in a scene, as a
conventional camera does, but also records light directions with multi-view
points. Light-field images can be seen as an alternative way to determine materials
when it is difficult to determine a material with its surface reflectance or BTF. As
in our study case we limited our investigations to RGB input images, light-field
information was not investigated in our experiments.

3.2.5 Describable Textures Dataset (DTD)
Describable Textures Dataset (Cimpoi et al., 2014) is constructed by collection of
images from Google and Flickr. It consists of 47 categories where each category
contains 120 images.Instead of defining categories by material name, like wood,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.8: Representative images of a sample of a banded, b bubbly, c chequered,
d cracked, e crystalline, f dotted, g flecked, h grid, i lined, and j meshed category
from DTD database.

water, a collection of images having the same texture attributes (e.g: dotted) is
viewed as a category inspired by the human perception. See fig. 3.8 for illustration.
The dataset contains a total of 5,640 images, most of them have limited surrounding
background.

Figure 3.9: Example images from COCO dataset
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3.2.6 Common Objects in Context (COCO) dataset
A large sacale dataset (Lin et al., 2014)which contains more than 200 thousands
labeled images composed of 80 objects categories and 91 stuff categories. Figure
3.9 shows some example images from COCO dataset. It has a variety of material
categories, many of which are subdivided into more precise classes, such as water,
whose examples exist in words like "see" and "river," etc. The dataset is partioned
into train (118K image), test (41K images) and validation(5K images) along with
annotations for 91 stuff classes.

3.3 Synthesized dataset
In computer graphics, material or texture rendering is the process of generating a
photorealistic image of an object. Since there are not plenty of material datasets
available, one way could be to generate synthesized images of the material objects
and use those synthesized databases for the experiment. An advantage of the
synthesized dataset is one can generate as many images as one wants very quickly
and without setting up any physical arrangement for the acquisition of the images.
It is an alternative way to enrich the existing dataset.
Targhi et al. used photometric stereo to rendered synthesized images (Targhi

Table 3.1: Summary of different material datasets.

Dataset Multi-
lighting

condition

Multi-
viewing

conditions

Multi-pose Acquisition
environ-
ment

CUReT 205 - controlled
KTH-TIPS2 4 3 3 controlled
RawFooT 46 - - controlled
UBO2014 151 151 - controlled

UJM-TIV 4 4 2 controlled
FMD - - - uncontrolled

MINC 2500 - - - uncontrolled
GTOS - 19 - uncontrolled

4D Light - - - uncontrolled
DTD - - - uncontrolled

COCO - - - uncontrolled

et al., 2008) and showed that by including these synthesized images in the existing
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training data can improve the classification accuracy. In (Weinmann et al., 2014)
Weinmann et al. used synthesized images to conducted some experiments . A
classifier was trained and applied to a test dataset containing also real world images.
Thanks to its large scale, a synthesized training dataset can achieve a comparable
performance to a small dataset containing real-world images only. Combining these
two dataset together can consistently boost the classification accuracy. Synthesized
images can be considered as a good complementary training data if the size of the
real-world images training dataset is too small.

As we discussed in subsection 3.1.4 UBO 2014 dataset also contains BTF mea-
surements for all the 84 samples (7 category x 12 samples per category). Combined
with 30 environment lighting maps (5 directions x 6 natural lights) from (De-
bevec, 2008), a virtual camera can take 1260 synthesized images while considering
42 viewing points. Therefore, the total number of generated images is 105,840 (7
category x 12 samples per category x 1260 images per sample).

This chapter was devoted to the different material datasets, which we have
proposed to classify according to their characteristics that meet different demands
in each epoch of material classification’s history. Table 3.1 summarises the different
acquisition settings used in the datasets discussed in this chapter as well as acquisi-
tion settings of our newly created UJM-TIV dataset. Because some datasets (for
instance MINC-2500, FMD, DTD, COCO) were constructed by gathering images
from internet source e.g. google search, Flickr.com acquisition conditions are not
available for these kind of datasets. We propose a new material dataset named UJM
TIV where images are taken under controlled conditions. Then, we decided to use
the dataset for experiments, considering its suitability for CNN-based approaches.
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4 Methodology

This chapter is devoted to the materials and methods used in this thesis. In the first
section of the chapter we describe about the newly created UJM TIV dataset, the
acquisition setup, as well as comparison with other existing datasets. In the next
section we will discuss about the use of siamese network for material classification.

4.1 UJM TIV: Our newly created material
dataset

The newly created UJM-TIV material dataset consists of 11 different classes: images
of aluminium foil, brown bread, corduroy, cork, cotton, lettuce leaf, linen, white
bread, wood, crackers and wool illustrated in figure 4.1. Controlled viewing
and illumination conditions were used to acquire these images. KTH-TIPS2
(Mallikarjuna et al., 2006) dataset also includes each of these 11 categories of images.
In KTH-TIPS2 dataset for each category four physical samples are provided where
images were taken under varying pose, illumination and viewing conditions. In
some classes (such as wool and cracker samples), intra-class variation is stronger
from one physical sample to another. On the other hand, in some other classes,
the variation within the class is small (for example, in a wood or cork sample).
Because of small inter-class variance some similarities is also observed between
linen and cotton classes. Changes in visual appearances in KTH-TIPS2 dataset
due to changes in illumination and viewing directions are illustrated in figure 4.2
and 4.4. Given the variety of acquisition conditions, the samples in the UJM-TIV
dataset do not have the same visual look as the KTH-TIPS2 samples. At lower
viewing angles or lower lighting angles, significant visual variations from figure 4.1
are visible in figure 4.3.

Most of the material datasets have well-controlled lighting, viewing, and camera
settings. A technician (photographer) performs image capture, paying attention to
take the best images while attempting to reduce blur and specularity by utilizing
the setup system at their disposal.It is very difficult to capture images without
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.1: Image samples from UJM TIV dataset observed under viewing
direction 90°and lighting condition 65°. Sample a aluminium foil, b brown bread,
c corduroy, d cork, e cotton, f cracker, g lettuce leaf, h linen, i white bread, j, k
wool respectively. Images from (Sumon et al., 2022).

specularity for some reflective materials such as aluminum foil. Therefore, our
objective was to create a new dataset that would enable users to obtain images
in a flexible ways, instead of relatively strict and carefully monitored viewing and
lighting conditions our primary aim was to accomplish image capturing under a
variety of illuminations and viewing directions. Depending on the direction of
viewing we presume that , the sample’s average brightness may change as shown in
figure 4.5f in comparison with 4.5h. One of the invariant features that a material
classifier should have is lightness/color invariance. We also suppose that depending
on the material’s thickness and degree of roughness, the sample’s contrast can
change depending on the viewing angle as shown in figure 4.5a in comparison with
4.5e. One of the invariant features that material classifiers also require is contrast
invariance.

The fabric dataset presented in (Kampouris et al., 2016b) shows different types
of shift in illumination due to a spatially non-uniform lighting field (consist of 12
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Changes in the appearance of a wool and white bread sample
from the KTH-TIPS2 dataset observed with different illumination and viewing
conditions.Images a to c were taken with frontal lighting condition and frontal,
22.5° right and 22.5° left viewing conditions respectively for a wool sample.
Likewise, for a white bread sample mages d to f were taken with frontal lighting
condition and frontal, 22.5° right and 22.5° left viewing conditions, respectively.
Images from (Sumon et al., 2022).

LEDs forming an array) on the sample surface. The 1266 samples in this dataset
are made up of different fabric class such as cotton, denim, corduroy, wool, silk
,polyster terrycloth etc. The amount of samples for each class is very imbalanced
for example there are only 32 samples in terrycloth class whereas 588 samples are
available in cotton class. Samples were taken only under grazing light from the
front. Photometric reconstruction was carried out using a geometrically calibrated
system. We can increase the variation in a material sample’s visual appearance by
experimenting with illumination and viewing directions. In this research, we argue
that to maximize classifier performance, the final feature vector should take
into consideration the variety of visual appearances of a material sample
across different acquisition settings.Because larger viewing and illumination
angles were taken into account in UJM TIV dataset as compared to KTH-TIPS2
dataset, for instance, the differences between the images seen in Figure 4.6 are more
substantial than those seen in Figure 4.7. The UJM-TIV dataset’s sample diversity
is noticeably greater than KTH-for TIPS2 for several categories (such as wood and
wool). Additionally, in UJM-TIV, white bread, cork, and brown bread show the
least intra-class variances whereas cotton and wool have the largest appearance
changes . See, for instance, the visual differences in figures 1.1 and 4.8.
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Table 4.1: As shown in figure 4.7 viewing and lighting directions of all the
selected views from KTH-TIPS2 dataset. Table from (Sumon et al., 2022).

View Viewing condition Illumination
condition

View1 Frontal Frontal
View2 22.5° left Ambient
View3 Frontal 45° from top
View4 22.5° right Ambient
View5 Frontal 45° from side
View6 Frontal Ambient
View7 22.5° right Frontal
View8 22.5° left 45° from side
View9 22.5° right 45° from top
View10 22.5° left 45° from top
view11 22.5° right 45° from side
view12 22.5° left Frontal

Table 4.2: As shown in Figure 4.6, Viewing and illumination directions for
selected views from UJM-TIV dataset. Table from (Sumon et al., 2022).

View Viewing condition Illumination
condition

View1 90° 90°
View2 90° 45°
View3 90° 20°
View4 60° 65°
View5 60° 20°
View6 30° 90°
View7 90° 65°
View8 60° 45°
View9 60° 90°
View10 30° 20°
View11 30° 45°
View12 30° 65°
View13 10° 90°
View14 10° 20°
View15 10° 45°
View16 10° 65°
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.3: Image samples from UJM TIV dataset observed under viewing
direction 35°and lighting condition 65°. Sample a aluminium foil, b brown bread,
c corduroy, d cork, e cotton, f cracker, g lettuce leaf, h linen, i white bread, j
wood, k wool respectively. Images from (Sumon et al., 2022).

4.1.1 Configurations for Acquisition and Image Pro-
cessing

A Canon EOS 5D Mark IV digital camera was used to acquire the images for UJM-
TIV dataset. The camera resolution is 6720x4480 pixels. Most of the images contain
background along with the sample, which were removed in the post processing step.
Two object poses were taken into account for each object sample, with each object
pose being rotated by 90 degrees along the surface normal N of the angle shown
θS in fig 4.9. Figure 4.10’s example demonstrates how such a modification might
affect the material’s looks for a particular material sample. The acquisition settings
utilized to acquire the photos under controlled lighting and viewing conditions
are shown in Figure 4.9. In the illustration, the sample is denoted by S, light
source by I, and viewing direction by V. The vectors N and V define a plane that
is perpendicular to the plane formed by the vectors surface normal N and light
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Changes in the appearance of a wool and white bread sample from
KTH-TIPS2 dataset observed with different illumination and viewing condi-
tions.Images a to d were taken with frontal viewing condition and frontal, 45°
from top, 45° from side and ambient illumination directions, respectively for a
wool sample. Likewise, for a white bread sample images e to h were taken with
frontal viewing condition and frontal, 45° from top, 45° from side and ambient
illumination directions, respectively. Images from (Sumon et al., 2022).

source I. Each of the 4 illumination directions θI (frontal, approximately 20°,
approximately 45°, and approximately 65°) was illuminated by a single conventional
light source (a tungsten light bulb of 60 W). For each object orientation, four
viewing angles (frontal, approximately 60°, approximately 30°, and approximately
10°) were employed. As a result, for each material sample total 16 images were
obtained (4 lighting conditions x 4 viewing conditions). Total 32 images were taken
for each sample in two positions. Image acquisition was carried out in a room that
with no ambient light. 200 x 200 pixel image patches were extracted from the
samples using the Patchify (Weiyuan Wu, 2020) library. All extracted patches had
backgrounds and portions of the images that were too blurry removed manually.
From one sample to another, different numbers of patches were extracted. Following
the removal of all blurry and out-of-focus regions from the collected patches, the
dataset comprises about 75,000 image patches.

4.1.2 Comparison with KTH-TIPS2 dataset
Compared to KTH-TIPS2, which employed frontal, rotated 22.5°left and 22.5°right
viewing conditions, UJM-TIV uses viewing directions that are more broad and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Changes in the appearance of a sample of white bread from UJM
TIV dataset observed under various illumination and viewing conditions. The
illumination direction is same (90°) for images a to d where viewing conditions are
90°, 60°, 35°, and 10°, respectively. Viewing condition is fixed at 90°for images e
to h where illumination conditions are 90°, 65°, 45°, and 20°, respectively. Images
from (Sumon et al., 2022).

have a wider range.Additionally, UJM-TIV’s illumination directions are differ from
KTH-TIPS2 .Unlike the UJM-TIV dataset, the KTH-TIPS2 dataset’s samples were
all obtained with a combination of 4 lighting conditions and 3 viewing conditions.
Moreover, in KTH-TIPS2 dataset images were also acquired with 9 different scales,
on the other hand for UJM-TIV scaling was considered while capturing the images.

Similar to KTH-TIPS2, UJM-TIV suffers from perspective effects and material
roughness, which causes a small number of images of fine structured materials to
seem blurry at working distances.As illustrated in figure 4.11 where all the images
were taken at a viewing angle of roughly 10°and 20°illumination angle. Unlike
those setting described in (Kampouris et al., 2016b) and (Kapeller et al., 2020) our
objective wasn’t to develop an optimal illumination system that modifies the light
source settings in accordance with specific materials.

4.2 Multiview learning with Siamese net-
work

Since multiview learning enables the extraction of features from several views
and their fusion into appropriate global representations, multi-view learning is
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Figure 4.6: A cotton sample’s images from the UJM TIV dataset used for
different views. Images from (Sumon et al., 2022).

attracting the attention of many researchers nowadays (Xiaoqiang et al., 2021).A
one-view-one-net technique is more suited for classification of material, as we
stated previously. Here,images from each view are used in this case to feed a deep
network that serves as the branch for feature extraction. The aggregated features
from each view are then utilized as inputs to a classification model to predict
the class of the sample under consideration. Once more, our intention here
is not to define the optimum architecture for the job, but rather take
advantages of multiview learning to demonstrate how it may considerably
enhance material classification performance. As a consequence, we picked a
straightforward one-view-one-net design employing a pre-trained neural network,
allowing any improvements related to the architectural selection for future studies.
Sharing the parameters between the branches that each view receives would help to
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Figure 4.7: A cotton sample’s images from the KTH-TIPS2 dataset used for
different views. Images from (Sumon et al., 2022).

reduce the set of learned weights and thus help prevent overfitting. Because each
branches must extract precise information from a variety of views that represent
images of varying looks, sharing the parameters between the branches could also
assist to boost the model’s generalization ability. As we want the backbone to
share weights, siamese network is an appropriate choice for us. A siamese network
is a kind of neural network composed of two or more branches where each branch
is basically share the same network architecture, parameters and weights between
themselves (Koch et al., 2015; Wiggers et al., 2019; Melekhov et al., 2016). In
other words these two branches are not different network instead two copies of
same network. Each branch of the network is a convolutional neural network. Lets
say two input images x1 and x2 denotes two different views passed through the
branches of siamese network, each branch generates a fixed length feature vectors
for each input view. These feature vectors are then compared to each other to
determine whether the images belongs to same class or not assuming the model
is trained properly.The similarity is computed by using the difference between
the feature vectors. If two images belongs to the same class the feature vectors
difference will be small, on the other hand if they belong to different classes the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8: Differences in a wool sample’s visual appearance caused by varied
lighting conditions and viewing angles. The same lighting angle (90°) was used
to capture the images (a – d). Images (e - h) were taken at a 90°angle from the
viewing direction. For images (a - d), the viewing angles are 90°, 60°, 35°, and
10°, respectively, with the illumination direction set at 90°. The viewing angle is
set at 90 degrees for images from ( e to h ), while the illumination angles are 90
degrees, 65 degrees, 45 degrees, and 20 degrees, respectively. Images from (Sumon
et al., 2022).

difference will be large. Figure 4.12 depicts the proposed network’s architecture.
The branches of the Siamese network receives a couple of images from two different
viewpoints. We used a ResNet50 pretrained on imagenet dataset as the backbone
of the network. The architecture details of resnet50 network is illustrated in figure
4.13. Resnet is the winner of ILSVRC in 2015 classification competition.Resnet
introduced residual block. The first difference we notice with traditional CNN is
that there is a direct connection, skipping certain levels (which may change in
different models), in between. The center of residual blocks is a connection known
as the skip connection. The output of the layer has changed as a result of this skip
connection. The input matrix is multiplied by the layer weights and then a bias is
added if skip connection is not used. The idea of skip connection is to skip a number
of layers and connect the output of layer directly to its input.There are 4 stages
in the ResNet-50 network as shown in diagram 4.13, each having a convolution
and an identity block. Each of the identity block and convolution block contains
three convolutional layers. The number of trainable parameters of resnet-50 is
around 23 million. As mentioned before preatrined resnet50 is used as a branch
of the proposed siamese network. Every branch of the siamese network learns the
distinct features from the images of distinct views passed to that branch as input.
The fully connected layer is then provided with the combined features from both
views for classification. In fact this design can be learned end-to-end since all of
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Figure 4.9: The configuration for image acquisition is shown schematically.
For the sake of our studies, the plane bounded by vectors N and I was positioned
perpendicular to the plane bounded by vectors N and V.

(a) (b)

Figure 4.10: Images from UJM TIV cotton sample (a) where the illumination
direction is at 20°angle and the viewing direction is frontal (b) when the sample
orientation is perpendicular and under the identical viewing and illumination
conditions. Images from (Sumon et al., 2022).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Out of focus image samples from UJM TIV dataset for class a
brown bread, b corduroy, c cork, d cotton, e lettuce leaf, f linen, g wood, and h
wool. Images from (Sumon et al., 2022).

Figure 4.12: Schemetic of proposed siamese network architecture. Image from
(Sumon et al., 2022).
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Figure 4.13: Architecture of ResNet50 (He et al., 2016)

the building components are trainable with just one classification loss. In order to
go a step further, positive and negative pairs of images is created where positive
pairs consist of images from same material category and same view. Similarly for
creating negative pairs images from different category and different views is chosen.
Figure 4.14 shows an example of positive and negative pair of images, where in
4.14a both samples of lettuce leaf is taken from same view. In 4.14b the images on
left is an image of wood sample and image of right is taken from category linen
but from different views.

The first FC layer of the architecture’s design uses a global average pooling
(GAP) layer to minimize the amount of inputs before the concatenation of features
from each view. Such pooling is believed to aid in preventing overfitting issues
as described in (He et al., 2016). Each channel receives an average of all local
neuron features from this GAP layer. A global max pooling layer keeps the largest
values only from associated feature maps. GMP could be used as an alternate
strategy to GAP in the FC layer. In contrast to GMP, which is intended to gather
the most crucial information from each feature map, GAP is logically constructed
to work with recurring patterns, in which the mean of resulted features bears a
significance while eliminating the noise. We think that GAP is better suitable than
GMP in this situation for texture images because most of the texture contains
repetitive patterns. Additionally, dropout is used in the FC layers to regularize the
classifier. Being easily adaptable to more than two views is one of the benefits of
such a network design. In fact, any new views may be analyzed for features using
the pre-trained backbone; just the fully connected layers need to be modified and
retrained to accomplish classification. Only a two-branch architecture has been
taught and tested in this study.
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(a) Positive pair

(b) Negative pair

Figure 4.14: Example of positive and negative pairs of image from UJM TIV.

4.3 Training with Constructive Loss

As mentioned before siamese network accepts two images as input and each branch
generates a fixed length features from the images. These output features are then
compared to determine the similarity of the input images. These comparison can be
performed in a number of ways such as triplet loss(Schroff et al., 2015), quadruplet
loss(Chen et al., 2017), and constructive loss(Hadsell et al., 2006). If triplet loss is
used as the loss function in siamese network, at each time step it will take three
input samples to compare. The first sample is known as anchor object which is
used as a point of comparison with two other data samples. Second one is positive
object that is similar to the anchor object. Finally, the third object is negative
object which is dissimilar to the anchor object. As the name suggest quadruplet
loss consider four data objects at each time step for comparison. In addition to
anchor, positive and negative object it requires another negative object which
is dissimilar to every other of the 3 data objects (anchor,positive, and negative).
On the other hand constructive loss consider two data samples at each step to
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compare the distance between the feature vectors. This data samples could be
either similar(positive) or dissimilar(negative). If the two samples are drawn from
the same class the calculated distance will be lower, similarly if they belongs to
negative pair the distance will be higher. This scenario is illustrated in figure 4.15.
The constructive loss is defined by the following equation

loss(d, Y ) =
1

2
∗ Y ∗ d2 + (1− Y ) ∗ 1

2
∗max(0,m− d)2 (4.1)

In the equation 4.1 d is the distance between the out embedding vectors which
could be Euclidean distance or Manhattan distance or any other distance metrics.
Y is the label of provided input to the model which could be either 1 (if similar)
or 0(if dissimilar). Finally, m is the margin which usually set to 1. Margin ensures
that the observations were properly spaced, i.e. their contribution to error is zero
if the distance is greater than margin. As a result, the optimization algorithm
may focus on separating challenging Data Point. Hence, margin helps optimization
algorithm to separate difficult embedded features in the vector space.

(a) Positive pair distance (b) Negative pair distance

Figure 4.15: Distance measurements on positive and negative image pairs into
a vector space.

4.4 Classification of features using KNN
K Nearest Neighbour is one of the most simple yet useful supervised machine
learning algorithm for classification. Based on the characteristics of nearby data
points in the training dataset, it produces predictions.By comparing the input
sample and the k training instances that are closest to it, the algorithm determines
the class to which the test data is most likely to be assigned. It is presumed that
similar data points exists close to each other. KNN is effective when is little or
no information available about the data distribution. Furthermore, because the
method is non-parametric in design, it makes no assumption about the general
distribution of the data points. Hence, the KNN algorithm doesn’t need any
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training time. However, finding the appropriate value for K is critical which refers
to the number of data points to be considered while making the decision for new
data points. This is the key factor since the class to which the majority of these
neighboring points belongs determines the classifier output. To show that the
proposed model can be trained end to end we take the branch from trained siamese
network and used that trained branch to extract the features from the training
data. These extracted features are then used with KNN for the classification. KNN
calculate the distance between the nearest features with the test features and assign
the test features to that class that has the majority votes.
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5 Experimental Results and Discus-
sion

We have performed several experiments on two datasets to evaluate the benefits of
proposed UJM-TIV dataset and the effectiveness of the suggested multi-view model.
This chapter is devoted to the discussion and presentation of results obtained from
all these experiments. It is important to note that results shown in subsections
5.3.1, 5.3.2 and 5.3.3 come from paper (Sumon et al., 2022) (officially published in
the end of June 2022).

5.1 Experimental Settings
Two architectural designs have been used for the experiments. The first one is a
traditional convolutional neural network which extracts the features from the input
images, following a FC layer block for the classification of the images. We called this
a single branch architecture and accuracy achieved by this network is single view
accuracy. The second one is a siamese network with two identical branches where
weights are being shared between the branches. As mentioned before pretrained
ResNet-50 on imagenet dataset is used as the branch of the siamese network.While
the other layers of this network are frozen, the final convolutional layer is tweaked
based on the data under consideration. The total number of parameters and
fully connected layers are cross validated to ensure fair comparison between two
architecture design. We employ the Adam optimization algorithm with a 0.001
learning rate in the beginning for both single-branch and multi-view CNN. If the
loss reduction does not take place for several successive epochs, the learning rate
dynamically reduced by a factor of 0.2. Input images were resized to 224 x 224
pixels before passing to the network. For all the tests we used batch size 16 and
maximum numbers of epochs is 300. Python programming language with version
3.9.5 and Keras deep learning framework with TensorFlow 2.8.0 as backend are
used to developed the models. All the experiments were performed on an NVIDIA
RTX 8000 high performance GPU with CUDA toolkit version 11.2.
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Two configurations were used for the experiments, the first one was using the whole
dataset for training and testing. 70% of the data was randomly selected as train
set and the rest 30% was used as test set for both KTH-TIPS2 and UJM-TIV
dataset. In the second configuration, we evaluate the multi-view learning strategy
by choosing a number of views from KTH-TIPS2 and UJM-TIV datasets. Note
that there are 16 views in UJM TIV dataset and KTH-TIPS2 has 12 different
views (see table 4.2 and 4.1 for detailts). Images from all the views are also splitted
into 70-30 for training and testing for both dataset. Figure 4.7 illustrates how
viewing and lighting conditions changes effect the general appearance of a sample
of cotton that is being observed (blurry, low-contrast), although the variations are
not particularly remarkable..

5.2 Evaluation Matrices

5.2.1 Accuracy
Accuracy is a commonly used metric to evaluate the performance of a deep learning
model. When all classes are equally important, it is helpful. The number of
accurate prediction divided by the total number of predictions is used to compute
it. Mathematically this can be written as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

A model can make four types of prediction namely True Positive(TP), True nega-
tive(TN), False Positive(FP) and False negative(FN). True positive means positive
samples are correctly predicted as positive class. Similarly true negative means
negative samples are correctly predicted as negative class. On the other hand false
positive means the model predicted test sample as positive class but actually the
samples belongs to the negative class. Likewise, false negative denoted as actual
test samples belongs to positive class while the model predicted as negative. TP
and TN predictions are desired to get a good classification accuracy.

5.2.2 Confusion Matrix
If the dataset has more than two classes or if each class has an uneven amount of
observations, classification accuracy alone may be confusing. Confusion matrix is a
popular way of summarizing and visualizing the performance of a neural network.
For each class, count values are utilized to express the proportion of accurate and
inaccurate predictions. One can obtain a better understanding of classification
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results and helps to identify where the model is getting right and wrong. Confusion
matrix not only reveal the mistakes of the classifier is making, but more crucially,
it reveals the specific mistakes that are being done.

5.3 Results
Depending on the type of data used to train and test the networks, the findings
are divided into two sections. The results of the test on the entire dataset are
presented first, followed by the results on the chosen views.

5.3.1 Results from single-view network
In this section performance of a single-branch network is discussed across all data.
Table 5.1 lists the outcomes for both datasets.The accuracy achieved by the single
view network on KTH-TIPS2 dataset is 80% which is similar to the accuracy of
traditional deep neural network used in (Sixiang et al., 2020).On the other hand
as we observe from the table, the accuracy on UJM-TIV dataset while using the
same network configuration as on KTH-TIPS2, is substantially worse. We believe
that because of higher intra class variability in UJM TIV dataset as compared to
KTH-TIPS2, the single-view network obtained significant accuracy improvement
on KTH-TIPS2.

Table 5.1: Single branch model’s accuracy on KTH-TIP2 and UJM TIV dataset
when all the views are considered. Table from (Sumon et al., 2022)

Train data Test data Val. accuracy

KTH-TIPS2 Train KTH-TIPS2 Test 80.00
UJM-TIV Train UJM-TIV Test 55.26

5.3.2 Results from multi-view network
This section is devoted to the discussion about the results obtained from multi-view
network. Selected distinct views are used to train and test the multi-view network.
From the chosen views we train the model using the training set and evaluate the
model using the test set from same selected views. Performance of the multi-view
CNN on KTH-TIPS2 dataset is reported in table 5.2. Similarly obtained results
on UJM-TIV dataset is presented in 5.3.
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Table 5.2: Model performance of single-view and multi-view network on KTH-
TIPS2 dataset.Table from (Sumon et al., 2022)

Train data Test data Single-view
accuracy

Multi-view
accuracy

Improvement
(%)

view1,view2 view1, view2 56.90 68.53 +29.76
view3,view4 view3, view4 60.34 67.24 +10.26
view5,view6 view5, view6 56.91 71.98 +20.94
view7,view8 view7, view8 39.66 47.41 +16.35
view9,view10 view9, view10 34.48 64.22 +46.31
view11,view12 view11,view12 37.93 67.24 +43.59

From these tables we can see that accuracy of single view model for both
dataset is decreased when the model is trained on only two views as compared
to the results when it was trained with all the views. This is expected because
the single view network is trained on less data when considering only two views.
Another observation is for all the pair of selected views multi-view learning approach

Table 5.3: Model performance of single-view and multi-view network on UJM-
TIV dataset. Table from (Sumon et al., 2022)

Train data Test data Single-view
accuracy

Multi-view
accuracy

Improvement
(%)

view1,view2 view1, view2 50.28 79.52 +36.77
view3,view4 view3, view4 60.00 75.29 +20.31
view5,view6 view5, view6 44.48 95.71 +53.52
view7,view8 view7, view8 51.32 96.52 +46.83
view9,view10 view9, view10 65.59 95.29 +31.17
view11,view12 view11,view12 66.63 94.56 +29.54
view13,view14 view13,view14 80.33 89.34 +10.08
view15,view16 view15,view16 53.91 83.78 +35.65

outperform the single-view network with a significant margin. These results clearly
demonstrate the superiority of multi-view CNN over the traditional single view CNN
for material classification. Additionally, when the two views are noticeably different,
multi-view learning works better than the single-view strategy. It is evident from
the result (46% improvement) of view9 and view10 pair from KTH-TIP2 where
there is larger viewing differences (45°) between the samples of view9 and view10.
Because there exists higher variation in appearances accross the samples of different
views in our proposed UJM-TIV dataset, multi-view learning approach achieved
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better results for all the views over the single view CNN as shown in table 5.3. The
performance of multi-view learning on UJM-TIV dataset strongly demonstrates the
usefulness of our dataset for classification of material as well as the suitability of our
proposed siamese network for two-view learning. To summarize and visualize the
performance confusion matrix of both single and multi-view network on view5, and
view6 pair which achieved the highest relative improvement (+53.5%) on multi-view
approach over single view network is depicted in figure 5.1. The confusion matrix
clearly shows the reason why single view network perform worse than the multi-view
network in view5, and view6. As shown in figure 5.1a except for linen, the single
view network fails to correctly classify the test samples from most of the categories.
On the other hand, multi-view network is able to correctly predict the almost all
the test samples to their corresponding categories (see figure 5.1b).

(a) Single view (b) Multi-view

Figure 5.1: Confusion matrix of a Single-view CNN and b Multi-view CNN
when considering the view5 and view6 pairs from UJM-TIV dataset. Image from
(Sumon et al., 2022)

5.3.3 Experiments with State-of-the-Art Solution
The results on previous sections illustrated that by employing multi-view approach
on a simple deep neural network can boost the classification accuracy even if the
network is not specially designed for the purpose of material classification.We also
wanted to check if our multi-view approach can be applied to the state-of-the-art
solution specifically designed for material classification task based on Fisher score
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(Xu et al., 2021). This technique involves a training phase made up of three
sequential phases and makes use of orderless pooling and sparse coding. The
network is also trained and tested for all the selected views from both KTH-TIPS2
and UJM-TIV datasets. The results on KTH-TIPS2 and UJM-TIV dataset are
reported in table 5.4 and 5.5 respectively.

Table 5.4: Accuracy of single-view and multi-view learning models when using
State-of-the-art Xu et al. (2021) approach on KTH-TIPS2 dataset. Table from
(Sumon et al., 2022)

Train data Test data Single-view
accuracy

Multi-view
accuracy

Improvement
(%)

view1,view2 view1, view2 94.7 97.5 +3.0
view3,view4 view3, view4 90.0 96.67 +6.90
view5,view6 view5, view6 90.83 95.83 +5.22
view7,view8 view7, view8 92.50 98.33 +5.93
view9,view10 view9, view10 92.50 95.83 +3.47
view11,view12 view11,view12 90.00 94.17 +4.40

Table 5.5: Accuracy of single-view and multi-view learning models when using
State-of-the-art Xu et al. (2021) approach on UJM-TIV dataset. Table from
(Sumon et al., 2022).

Train data Test data Single-view
accuracy

Multi-view
accuracy

Improvement
(%)

view1,view2 view1, view2 100 98.99 -1.02
view3,view4 view3, view4 99.44 100 +0.56
view5,view6 view5, view6 99.85 100 +0.15
view7,view8 view7, view8 99.88 100 +0.12
view9,view10 view9, view10 99.56 100 +0.44
view11,view12 view11,view12 99.88 100 +0.12
view13,view14 view13,view14 99.80 100 +0.20
view15,view16 view15,view16 98.31 99.58 +1.28

Given that the tested network surpasses every result from Tables 5.2 and
5.3, the above findings show the network’s applicability to material classification.
Results show that despite having such a good results on single view network,
multi-view learning approach helped to improve the accuracy for almost all the
views. The relative improvement of multi-view approach over single-view is not very
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high as compared to the results from previous tests since the single-view network
already achieved quite good classification accuracy on the both material datasets.
Meanwhile the mean accuracy improvement is about 4.8% on KTH-TIPS2 dataset.
The results on UJM-TIV with the tested network is nearly perfect when multi-view
learning technique combined with the state-of-the-art solution (Xu et al., 2021).
Undoubtedly, the most recent experiments demonstrated how our contributions
may be utilized to enhance the performance of any state of the art system for
classifying materials.

5.3.4 Experiments with KNN
In this section the experiment results obtained with KNN classifier is reported.
Our proposed siamese network is end to end trainable which means that the branch
from siamese network can be used for feature extraction and consequently these
extracted features can be used for classification purpose. Several experiments are
performed on UJM-TIV dataset which proved the above statement. The siamese
network generate d-dimensional features or embedding from the input images. The
KNN algorithm take those features and classify them by calculating the distances
between the test features and considered nearest neighbors features. Figure 5.2

Figure 5.2: Embedding locations before (left) and after (right) 300 training
epochs. Using PCA, projected down to two dimensions.

shows the location of generated embedding before and after a the model trained
with 300 epochs. It can be observed from the plot that how the model is already
producing similar embeddings for images belonging to the same class after only
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(a) view5, view6 (b) View5

(c) View6

Figure 5.3: Confusion matrix obtained using KNN when considering neighbors
samples from a view5 and view6, b view5, and c view6 from UJM-TIV dataset.
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300 training epochs. The clusters of identically colored dots in the graph of figures
5.2 demonstrate this; some clusters are seen stacked on top of one another in the
plot as a result of the reduction of hyperspace to 2-D by the PCA. This embedding
clustering is what gives siamese network their strength. If we want to test the
model on new class data we don’t need to retrain the model with that new class
again. If the new class data is plotted it should be far from the current clusters, but
if more samples of the new class are added, the samples from new class should begin
to cluster with one another. With just a small amount of data, we may start to get
reasonable classifications results for both seen and unseen classes by exploiting this
embedding similarity. Results from different experiments with different views is
reported on table 5.6. We performed two types of tests using KNN algorithm. First
,we train the KNN with features from a view pairs and tested on the test set belong
to same view pairs and compared with the results obtained using single view model.
The KNN algorithm checks nearest neighbors sample from both views in this case.
The accuracy obtained by KNN on UJM-TIV dataset significantly outperform the
single-view model accuracy with a large margin for all the considered view pairs.
The maximum accuracy improvement (48%) achieved for view5, view6 pair which
is also true when multi-view model (+53% improvement, see table 5.3) is used for
this view pair. These results shows that our model is well suited for classification
of such kind of material features where multiple view plays an important role.

As a second experiment we wanted to check how the KNN algorithm performs
on the test data when samples from only one view is checked while determining the
class for the test data. Samples are considered from both alternative samples with
separate experiments. Even if when KNN consider only one sample for determining
class for the test data points, the accuracy is still higher than the single-view
model for the same pair of views. From the table 5.6 it is clear that for all the
view pairs single-view model performed worse than the accuracy obtained by KNN
when considering samples from only one view as the neighbors of the test data
points. Because of there are higher changes in viewing (30°) and illumination
(70°) direction between view5 and view6 pair the model trained on these view pair
achieved maximum improvement on accuracy. Confusion matrices for the best
performing KNN classifier on view5 and view6 pair is shown in figure 5.3. 5.3a
shows the performance of KNN when nearest neighbors samples are considered
from both view5 and view6 pair while assigning the category for the test data
points. Similarly, figures 5.3b and 5.3c show the results when only images from
view5 and view6 are considered as neighboring samples respectively. All of the
findings point to multi-view learning as a promising material classification technique
which includes images captured under different viewing or lighting geometry. As
the final experiment we performed cross view test i.e train on one view pair and
test on another view pairs. We compared results from both multi-view learning
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approach with siamese network and KNN algorithm for classification of material
images from UJM-TIV dataset. Cross views experiments results are shown in table
5.7. Confusion matrices from the cross view tests for best performing models are
displayed in 5.4. It is clear from the results on all the view pairs, KNN classifier
achieved greater or at least similar accuracy as multi-view network. Results from
confusion matrices clearly show that KNN classifier got better accurate predictions
(see figure 5.4b) while multi-view model was struggling to correctly classify almost
all the test samples to their corresponding class (see figure 5.4a). Note that in this
case both the models were trained on images from view5 and view6 but tested on
view3, view4 images.

(a) Multi-view (b) KNN

Figure 5.4: Confusion matrix obtained using a Multi-view and b KNN from
cross view experiments when the model trained on view5 view6 and tested on
view3, view4 pair.

These results from KNN is expected because as mentioned before we take the
CNN branch of the trained siamese network to extract the d-dimensional features
from the selected train and test set. A KNN classifier is then trained using the
extracted train features and evaluated the results on the test features extracted
by the CNN siamese branch. As seen before the highest improvement in the
classification accuracy is observed for trained on view5, view6 and tested on view3,
view4 pairs. Siamese model achieved very low accuracy (27%) on test set (view3
and view4) on the other hand KNN classifier gained about 60% accuracy on the
same test set. All of these experimental results indicate that our proposed network
can be easily adapted for classification of material samples images from unseen
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Table 5.6: Accuracy of single-view network and KNN on different views from
UJM-TIV dataset.

Train data Test data Single-view
accuracy

KNN accu-
racy(k=3)

Nearest
Neighbors
from

view1,view2 view1,view2 50.28
86.36 view1,view2
86.00 view1 only
81.00 view2 only

view3,view4 view3,view4 60.00
83.89 view3,view4
80.00 view3 only
77.00 view4 only

view5,view6 view5,view6 44.48
93.07 view5,view6
85.69 view5 only
87.20 view6 only

view7,view8 view7,view8 51.32
91.5 view7,view8
83.26 view7 only
88.34 view8 only

view9,view10 view9,view10 65.59
94.48 view9,view10
90.7 view9 only
90.26 view10 only

view11,view12 view11,view12 66.63
90.95 view11,view12
87.78 view11 only
87.04 view12 only

view13,view14 view13,view14 80.33
95.16 view13,view14
91.53 view13 only
90.52 view14 only

view15,view16 view15,view16 53.91
84.75 view15,view16
81.78 view15 only
79.03 view16 only
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Table 5.7: Accuracy of multi-view model and KNN classifier for cross view
experiments from UJM-TIV dataset.

Train data Test data Multi-view
accuracy

KNN accuracy

view1,view2 view3, view4 52.94 73.89
view3,view4 view1, view2 74.30 74.24
view5,view6 view3, view4 27.65 60.56
view7,view8 view5, view6 57.36 74.55
view9,view10 view7, view8 40.71 57.04
view11,view12 view9,view10 70.00 69.19
view13,view14 view11,view12 56.49 59.54
view15,view16 view13,view14 60.66 74.40

views.
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Material image classification is one crucial task in computer vision because it is
involved in many real applications such as robotics or automatic waste sorting, and
because it can help in many other problems such as fine-grained image classification.
It consists in correctly classifying images with target material from one given cate-
gory. In the beginning of 2010s, thanks to their superior performances, the deep
convolutional neural networks (CNN) arise and become a promising tool to solve
many computer vision problems, including image classification. Deep networks
have also been introduced into material classification. By simply transferring a
network pretrained on a large-scale image classification task, better accuracy is
achieved than former state-of-the-arts. However, unlike object recognition, classify-
ing materials requires some specific processing.

In this thesis, a new material dataset is proposed with significant intra-class
variability across different material classes. The wide variety of illumination and
viewing conditions settings and the choice of varied material samples are responsible
for the variances in appearance throughout each class. With the help of a number
of experiments we have demonstrated that traditional deep learning networks are
not well capable of classification of material samples contain large variation in
visual appearances. This leads to an alternative proposed multi-view learning
solution which takes the advantages of discriminative features from images of
different views. For this we proposed a siamese network consisting of two branches
to extract features from different input views and combining these information to
achieve better performance. Experiment results show that the proposed multi-view
approach through siamese network surpasses the traditional single view solution.
One limitation of the proposed approach it can works with only a pair of views.
How the network could perform when more that two views are employed could
be a future research direction. Multi-view learning for material classification in-
volves tweaking a large number of acquisition parameters such as object pose,
viewing and illumination geometry which is a major challenge and it may not
be possible to consider all the parameters involved. In the proposed multi-view
learning we utilized one-view-one-net strategy. Another existing strategy namely
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multi-view-one-net could be used in future research to see how the changes in
architectural design affect the performance on the material classification task. We
performed cross view experiments i.e. train on a view pair and test on different
view pairs. This idea, and the corresponding results, will be submitted to a second
publication in September 2022. However cross dataset test i.e. train on one dataset
and test on another dataset could be an interesting future investing which may helps
to reveal the strength and limitations of the proposed multi-view solution. In the
future we plan to use the proposed multi-view learning approach to photomatrically
reconstruction of complex scene object having spatially varying surface reflectances
and which may helps to increase the effectiveness of SVBRDF-based single-image
rendering techniques(Deschaintre et al., 2018). In this situation, adding synthetic
data to the datasets may be used to modify the input BRDF, would be of interest
(Krishna et al., 2021; Zhang et al., 2022; Brochard et al., 2022).
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