
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r b

yg
g-

 o
g

m
ilj

øt
ek

ni
kk

Magnus Totland

Detection of leakages in a water
distribution network using an
autoencoder

Hovedoppgave i Bygg og Miljøteknikk
Veileder: Franz Tscheikner-Gratl
Medveileder: David Steffelbauer
Juni 2022H

ov
ed

op
pg

av
e

Magnus Totland

Detection of leakages in a water
distribution network using an
autoencoder

Hovedoppgave i Bygg og Miljøteknikk
Veileder: Franz Tscheikner-Gratl
Medveileder: David Steffelbauer
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for ingeniørvitenskap
Institutt for bygg- og miljøteknikk

i

Detection of leakages in a water distribution network
using an autoencoder.

Abstrakt:

Lekkasje fra ledningsnett er et problem i en rekke byer i verden og vannmangel er forventet å bli et stadig

økende problem på verdensbasis grunnet klimaendringer. Ett eksempel på et ledningsnett som sliter med

høye lekkasjetall er i Oslo.

I denne oppgaven testes en autoenkoder på ett datasett som inneholder trykkverdier fra sensorer

plassert i et ledningsnett, med mål om å avgjøre når en lekkasje oppstår. Det testes på 14 forskjellige

lekkasjescenarioer. For å håndtere dette problemet med avviksdeteksjon brukes en autoenkoder. En

autoenkoder brukes på grunn av dens evne til å rekonstruere sin inngangsdata, slik at den kan brukes til

avviksdeteksjon når inngang- og utgangsdata sammenlignes. Rekonstruksjonsfeilen som brukes til å

utlede avvik er da forskjellen mellom inngang og utgang for hver sensor, og en topp i

rekonstruksjonsfeilen antyder at det har oppstått en lekkasje.

Ett hovedspørsmål og en rekke mindre spørsmål vil bli besvart i denne oppgaven. Det første og viktigste

spørsmålet er å avgjøre om autoenkoderen kan oppdage lekkasjer i det hele tatt. Etter det, ble to

alternative fremgangsmåter for trening av autoenkoderen undersøkt. For det tredje, ettersom ett nevron

tilsvarer en sensor, og en sensors plassering er kjent, ble det også gjort en undersøkelse om hvorvidt

autoenkoderen kan utføre lekkasjelokalisering. For det fjerde, testing på varierende trenings-, validerings-

og testtidsintervaller for autoenkoderen for å utlede hvor mye data som er tilstrekkelig for at

autoenkoderen fortsatt lykkes med å oppdage lekkasjene. Til slutt, etter å ha funnet lekkasjene, ble det

gjort et forsøk på å redusere antall nevroner i autoenkoderen, noe som vil tilsvare å ha færre sensorer i et

ledningsnett, for så å undersøke om pålitelig lekkasjedeteksjon fortsatt ville være mulig.

Autoenkoderen lykkes med å oppdage alle 6 rørene som sprekker mellom en halvtime og 18 timer. For de

lekkasjene som vokser kontinuerlig, lykkes autoenkoderen med å finne lekkasjen når den når omtrentlig

4.5
𝑚3

ℎ
. Autoenkoderen lykkes ikke med å finne de aller minste lekkasjene i ledningsnettet. Videre,

autoenkoderen presterte litt verre med en reduksjon i inngangsdata og sensorer, men likevel bedre enn

forventet i utgangspunktet.

ii

Abstract:

Leakage of drinking water from distribution networks is a problem for several in the world and water

scarcity which is expected to increase worldwide because of climate changes. One example of a water

distribution network struggling with excessive leakage is found in Oslo, Norway.

In this thesis, an autoencoder is tested on an artificial dataset containing pressure values from a variety of

different leakage scenarios from a water distribution network with the goal of detecting when those leaks

occur. Finding those leaks is in practice an anomaly detection problem and an autoencoder can be used

for this purpose, because of its ability to reconstruct its own input, allowing it to be used for anomaly

detection when input and output is compared. The reconstruction error used to deduce anomalies is

then the difference between the input and output for each given sensor, and a spike in the

reconstruction error implies a leak has occurred.

One primary, and several secondary research questions relating to the usage of and how well the

autoencoder performs are addressed in this thesis. The first and most important question was whether

the autoencoder can indeed detect leaks at all, and to deduce which configuration of the autoencoder

and its hyperparameters worked well for this task. Secondly, an investigation of different training

approaches to the autoencoder was carried out. Thirdly, inspecting whether the autoencoder can

perform leak localization as one neuron corresponds to one sensor with a known location. Fourth, testing

on varying training, validation, and testing time intervals for the autoencoder to deduce how many

samples are required until the autoencoder fails at detecting the leaks. Finally, after finding the leaks, an

attempt was made to reduce the number of neurons in the autoencoder, which would be akin to have

fewer sensors in the water distribution network, to investigate whether reliable leak detection would still

be possible.

The dataset used in this project, is one created artificially, based on the hypothetical L-Town, from the

BattLeDIM competition. It contains 14 different leaks of varying flow.

The 6 pipe bursts were all detected within about 18 hours of the pipe breaking, the shortest being within

30 minutes. The 3 of the 4 leaks with a continuous volume increase were discovered once they reached a

volume of about 4.5
𝑚3

ℎ
. The 4 incipient leaks of a small size and slow growth remained undiscovered. The

autoencoder’s performance deteriorated slightly as the number of training samples and neuron-count

was reduced, but at a slower rate than initially expected.

iii

Tables:

Table 1 shows the different autoencoder architectures typically tested. ..10

Table 2 Overview of different optimizers, loss and activation functions tested in this project.10

Table 3 The various values tested for the different hyperparameters ...10

Table 4 Results ..15

Table 5 The autoencoder architecture and hyperparameters associated with the best performing

configuration. ..17

Table 6 Overview of quick burst leaks ..18

Table 7 Overview of slow increase leaks ..19

Table 8 Overview of incipient leaks ..21

Table 9 Results from 7-and 5-day time intervals, and 10- and 15-minute resampling26

Table 10 Initial results from area A with 28 sensors, with standard deviation multiplier set to 2.5.29

Table 11 Performance of smallest autoencoder with 5 sensors. ...30

Table 12 Brief overview of some ML terminology .. 1

Table 13 Brief overview of the purpose of different hyperparameters ... 2

Figures:

Figure 1 Generic illustration of an autoencoder ... 3

Figure 2 Schematic of the script used in this project. ... 5

Figure 3 Flowchart for the threshold function used. .. 7

Figure 4 An illustration of a frequently used autoencoder during initial development. 9

Figure 5 Illustration of L-Town. ...11

Figure 6 The different leak classifications: quick burst, slow increase, and incipient leak12

Figure 7 The location of pipes with leaks found in L-Town..13

Figure 8 Shows all the different leaks in L-Town for the year 2018. ..13

Figure 9 Red dots indicate pressure sensors in L-Town. Green dots are reservoirs, and the teal dot is a

pump. ..14

Figure 10 Rolling mean on a per day basis for the reconstruction error from sensors n469, n722, n726 and

n752 with the leak in pipe 183. ..18

Figure 11 Rolling mean on a per day basis for the reconstruction error from sensors n105, n114, n616 and

n726 with the leak in pipe 461. ..19

Figure 12 A comparison between sensors with a rolling mean on a per day basis for an incipient leak in

pipe 810. ...21

Figure 13 Accumulated and shifted training approach comparison for a burst leak in pipe 183.22

Figure 14 Comparison between shifted and accumulated training for a slow increase pipe leak in pipe

461. ...23

Figure 15 Shows all the sensors’ reconstruction errors together on a rolling mean per day basis for leak in

pipe 866. ...24

file:///C:/Users/m-tot/Desktop/Master%20thesis%20(Automatisk%20gjenopprettet)%20_06_06.docx%23_Toc105587703
file:///C:/Users/m-tot/Desktop/Master%20thesis%20(Automatisk%20gjenopprettet)%20_06_06.docx%23_Toc105587705
file:///C:/Users/m-tot/Desktop/Master%20thesis%20(Automatisk%20gjenopprettet)%20_06_06.docx%23_Toc105587712
file:///C:/Users/m-tot/Desktop/Master%20thesis%20(Automatisk%20gjenopprettet)%20_06_06.docx%23_Toc105587712

iv

Figure 16 Rolling mean on a per day basis for the reconstruction error from sensors n286, n469, and n740

with the leak in pipe 866. ...24

Figure 17 Detected leak on a two-week training interval with 10-minute resampling in pipe 369.26

Figure 18 Shows leak in pipe 673, produced with a 7-day run, with a one-day rolling mean.27

Figure 19 Shows an undetected leak in pipe 369. ..30

Figure 20 shows a false positive detected in pipe 538 at the first red x, the second cross shows when the

leak actually does happen. ...31

Figure 21 Shows a successful detection of a slow increase leak in pipe 628..31

Figure 22 Comparison between close and far away sensors for leak in pipe 810. First cross when it starts,

second when peak is reached. ..33

Figure 23 Comparison between close and far away sensors for leak in pipe 654. First cross when it starts,

second when peak is reached. ..34

Abbreviations:

ANN. …… Artificial neural network

CPU. ……… Central processing unit

DMA. ……….…… District metered area

GPU. ……….. Graphics processing unit

ML. ……… Machine learning

MSE. ……… Mean square error

MNF. …….……….. Minimum night flow

WDN. ……….. Water distribution network

1

1. Introduction:

When cracks appear in water distribution pipes, water starts leaking, compromising the water

distribution network (WDN) in several ways. For one, treated water is being wasted during leaks.

Secondly, excessive leakage will reduce the pressure within the system, increasing pumping and energy

demand to transport the same amount of water to the customer. Thirdly, in low pressure zones there is a

risk of contamination of the water supply if a leak has occurred. The estimated cost for water loss

through leakage is about 39 billion USD annually, on a worldwide scale, not accounting for the related

damage to roads and other infrastructure associated with water leakages (Liemberger & Wyatt, 2018).

Worldwide, water scarcity is expected to increase, further underlining the importance of avoiding water

loss due to leakages (Unicef, 2022).

To address this problem, leak detection is routinely done to search for the sources of water loss in WDNs

and is currently done in a variety of ways by water utilities. For example, acoustic based leak detection

methods include noise loggers that are placed in manholes, handheld listening devices such as acoustic

correlators to detect and pinpoint exact location of leaks, and mobile acoustic loggers to be placed in a

network for a short period of time to listen for leaks if one is expected in the area (Puust, et al., 2010).

Feedback from consumers is also relied on. Despite these efforts, municipalities in Norway continue to

see a worryingly high amount of water loss percentage. One example being Oslo’s estimated 37 % water

loss (Hult, 2022), which is in stark contrast to Denmark’s 7 % (Fisher, 2016).

In the research literature regarding leak detection in WDNs, there is a distinction in approaches as to how

to find the leaks more effectively. One is model based, and the other is data driven (Hu, et al., 2021)

(Romero-Ben, et al., 2022). In short, model based implies that there is some model of the water

distribution network that is reliable and a divergence between the expected pressures or flows and the

actual measured pressures and flows are indications of a leak. A data-driven leak detection approach

relies on large quantities of data. The data can be pressures, acoustics, flows, tank levels or pumping

volumes and frequencies. The data is then investigated for anomalies or particular patterns indicating an

abnormality of some kind, which would indicate a leak. It should also be noted that there have been

studies in which the methodology utilizes a dual or mixed leak detection approach (Soldevila, et al., 2016)

(Daniel, et al., 2022).

Each approach has their respective advantages and disadvantages. For one, the model-based approach

requires a well-calibrated hydraulic model of a distribution system to accurately predict what reasonable

values for pressures and flows are across the system. Creating such a model is challenging, and the larger

the water distribution system, the more challenging it is to develop such a model. The benefit of the

model-based approach is that it is a straightforward method of detecting leaks, assuming the necessary

calibrated model is available. The drawback is then of course that the creation of such a calibrated model

is challenging, and it would need updating whenever the WDN changes. As such, the model-based

approach is believed to be better suited for smaller water distribution networks.

As for data-driven leak detection methods, one is not dependent on a well-calibrated WDN model or very

intricate knowledge of the functioning of the WDN of interest. Rather, as the name implies, one is

dependent on data. The data collected from sensors scattered around the network will also, in a real-

world scenario, include excessive noise and sensor malfunctions. As such, the quality of the data and/or

2

the data preprocessing is an important aspect to consider before feeding the data into any type of

algorithm as is typically done in the data-driven leak detection. Overall, a rule of thumb is that the data-

driven leak detection approach is better suited for larger distribution networks, as it does not require any

calibration or detailed model of the WDN. Although, where to draw the boundary between small and

large is unclear in this context, nevertheless the larger the network, the stronger benefit one would

presumably see if choosing to adapt the data-driven approach.

Machine learning (ML) is a research field that is a central part of many data-driven leak detection

methods. With the help of data-collection efforts done by water utilities, flow and pressure data can

allow the utilization of various algorithms that are able to detect anomalies. An autoencoder is one such

ML algorithm that can be used for this purpose. The anomaly detection occurs when new data is supplied

as input to a trained algorithm and a breach of the normalcy of the system is detected, indicating that a

leak has appeared in the most recently processed input. ML for anomaly detection has shown itself useful

in other industries, such as finance and medicine, and there is hope that it can be implemented

successfully in the detection of leakages in WDNs as well (Anandakrishnan, et al., 2017). Furthermore, ML

has been used in the context of WDNs already. In 2012, a team of researchers tested an artificial neural

network (ANN) for the detection of real simulated (by opening fire hydrants) pipe bursts in a city in UK

(Romano, et al., 2012). They showed that such a system could be used to identify these abnormal events

in a fast and reliable manner with a low false positive rate. Another case study, with an online AI data

analysis component searching for anomalies at the district meter area (DMA) level, was tested for one

year. 36 % of alerts were shown to correspond to repairs done by the municipality or customer alerts

(Mounce & Boxall, 2010). Furthermore, researchers have succeeded in detecting small leaks in a testbed

setting, with the help of an autoencoder, showing the potential promise of this ML algorithm for this

purpose (Cody, et al., 2020). A review paper of data driven approaches to detection of pipe bursts by (Wu

& Liu, 2016) show that a common challenge across data-driven approaches to leak detection is a high

false positive rate in a real-world setting. In addition, there is a need to further improve the lowest

detectable size of a leak. In the context of burst detection, detecting the leaks as soon as possible is

paramount. Furthermore, as with any ML algorithm, the rule of thumb that the more data the better

holds true, and as mentioned, sensor- or data transmittance failure exist as a potential pitfall for data-

driven leak detection methods. In this project, these problems are largely circumvented by the use of

artificial data, which is appropriate as this is a preliminary investigation as to whether an autoencoder

can function as a leak detection tool.

An artificial neural network (ANN) is an integral part of an autoencoder and is often considered the most

well-known type of ML algorithm. An ANN consists of a network of neurons with a web of links between

them. The network has an input layer, a number of hidden layers and an output layer in the end.

Colloquially one can say that the network learns, during the training stage, when its values shift through

the network and depending on the degree the model’s output matches the training data, the internal

parameters of each neuron within the network is finetuned in order to predict the correct output more

accurately. The technicalities of this learning process are beyond the scope of this thesis, and the curious

reader is advised to consult the necessary literature. One recommendation is Deep Learning by Ian

Goodfellow, available online for free at https://www.deeplearningbook.org/ (Goodfellow, et al., 2016).

An autoencoder consists of two such ANNs. One ANN is known as the encoder, and the other as the

decoder. The defining characteristic of the autoencoder configuration is the bottle-neck layer in between

https://www.deeplearningbook.org/

3

the encoder and decoder. The bottle-neck layer has substantially fewer neurons than both input and

output layers. Conceptually, the idea is that the bottle-neck layer functions to condense the information

from the input layer, and from there, have the decoder try to reconstruct it, only working with the most

important aspects of the input. In essence, the autoencoder is being trained to recreate its own input. A

generic schematic of an autoencoder can be seen in figure 1.

Figure 1 Generic illustration of an autoencoder

As mentioned, the ability to recreate its own input allows an autoencoder to be used for anomaly

detection. Anomaly detection is the practice of utilizing various techniques and methods to detect

occurrences that breach the perceived normalcy of a dataset. An anomaly can be a wide range of

incidents such as abnormal values within a dataset, an image that doesn’t match other images, credit

card fraud or a leak in a water distribution system. The reconstruction error is then the difference, or

mean square error (MSE), between a model’s output and its input, after the training and validation stage

is complete. If no leak had occurred, a model would predict the same as what has been given as input,

resulting in a low reconstruction error. Subsequently, when a leak does occur, one would expect to see a

spike in the reconstruction error which implies that an anomaly has occurred.

A benefit compared to other ML algorithms is that the autoencoder is an unsupervised ML algorithm,

meaning that it works without the need of labelled data, as opposed to supervised ML algorithms. This is

a necessity due to the fact that the accessibility of datasets containing leaks which are labelled for the

training are often rather scarce.

Due to the fact the detection of leaks boils down to the aforementioned anomaly problem, in which the

normal state of the WDN needs to be perceived, before a breach of this normalcy can occur, an

autoencoder can be a fitting tool for the job. Autoencoders have been used for anomaly detection in a

variety of different settings, beyond the aforementioned finance and medicine uses for ML in general.

One example is the detection of abnormal radiation patterns done by (Ghawaly, et al., 2022), from the

Oak Ridge National Laboratory in the US. Another example is the use of an autoencoder to detect the

occurrences of seizures in patients with epilepsy (You, et al., 2021). The wide range of applications in

which autoencoders could be used for anomaly detection prompted the need to also investigate their

4

performance in the context of WDNs. Still, it was not known how much data would be necessary before

any adequate detection of leaks could be done by an autoencoder. As such, there was a need to first use

artificial data for three reasons. Firstly, to ensure that the data was reliable and high quality, meaning the

circumstances in which the data was retrieved was known and accounted for. Second, to have some

more leeway in the number of sensors to employ and the possibility of resampling to a larger timestep-

size if needed. Third, as most data-driven leak detection methods struggle with a high false positive rate,

the use of artificial data allows for the circumvention of data-preprocessing that would perhaps

obfuscate the autoencoders performance at leak detection. Then, the aforementioned research

questions followed naturally. The primary one being whether an autoencoder can indeed work for leak

detection at all. The secondary research questions being to investigate how large of an influence the

number of sensors employed in the autoencoder has, and to deduce the influence of training interval size

and resampling at the autoencoder’s ability at leak detection.

In this thesis, after the methodology, the results of the main research question as to how well an

autoencoder worked for the detection of leaks will be presented. Next, a number of smaller quirks and

features of the autoencoder are laid out. First, a comparison between two different approaches to the

training of the autoencoder. Second, leak localization. Third, the influence of training interval size and

resampling, before ending with the results obtained when reducing the number of sensors in the

autoencoder. After the results, a discussion as to different ways one might improve the results further is

presented in 3.6 and 3.7. Towards the end, limitations of this project and recommendations for future

work is presented.

5

2 Methodology:

In the following few sections, an overview of the methodology and the design of the associated threshold

function used to evaluate whether a leak had indeed occurred or not is presented. In addition, the

different autoencoder architectures attempted throughout are shown, as well as a description of what

other hyperparameter changes were made throughout.

To do this project, PyTorch was used for the ML components, as well as other commonly used python

packages used in an engineering setting (PyTorch, 2016). A simple schematic of the method is displayed

in figure 2.

Figure 2 Schematic of the script used in this project.

The general idea of the method is to iteratively feed the data through the model and evaluate whether a

leak has occurred. If none is found, the time interval used for testing is added to the training-interval

before the next testing-interval is evaluated. If a leak has occurred, it is stopped and the timestep in

which a leak was detected is logged. Throughout development, the time interval for each of training,

validation and testing was typically set to two weeks. As mentioned, occasionally changes were made,

before running to see what influence a given tweak has had on the outcome. Examples of changes

include the following:

• Adjusting and customizing time intervals for training, validation, and testing.

6

• Resampling the data to a larger timestep.

• Different autoencoder architectures.

• Different hyperparameter settings.

• Inspection of individual sensors’ reconstruction error plots.

• Finetuning of threshold function, to attempt to pinpoint leaks more accurately.

• Adjusting the number of sensors to be used in the autoencoder.

Furthermore, there is a need for a function to conclude based on the output from the autoencoder,

whether a leak has occurred or not. This can be done by a simple visual inspection of the reconstruction

plot, but it is necessary to create a function to automate this task.

How accurately one is able to detect the leak, meaning how far from it first occurring one first detects it,

is largely dependent on the design of the threshold function in which one determines something

abnormal has happened. If the criteria set for abnormality is too loose, one risks an increase in false

positives, if it is too strict, one risks not the detecting the leak at all, despite it being apparent visually.

Automating this aspect of the leak detection problem is necessary due to the fact it would allow a larger

number of iterations with different autoencoder architectures and hyperparameter configurations to be

tested without human interaction.

2.1 Threshold function

Ideally, you’d be able to detect the exact timestep in which a leak first occurs, but that would also entail a

challenging design problem as to how to structure the threshold function. One attempt to do such a task

has been done, but it is not unreasonable to think that different threshold function designs could

potentially improve the accuracy of the leak detection done in this project.

The autoencoder has 36 neurons as input and output. One of the neurons include the tank level, one for

the water demand seen in area A of L-Town, one for the pump and the remaining for pressure sensors. If

the pressure sensors are in the same area of L-Town, they typically follow a somewhat similar pattern.

Therefore, while all the neurons are included in the training of the autoencoder, only the pressure

sensors are considered for the threshold-function. Furthermore, there was an insistence to make the

threshold function rather robust as to not include unnecessary amounts of false positives if it was too

loosely designed. Handling preliminary false positives and attempt to verify them before concluding

whether a leak actually occurred or not, would needlessly add complexion to the task at hand. In

addition, with 33 sensors, one would only need a few sensors to detect a leak at a given timestep within a

certain timespan to indicate an occurrence of a leak, so there was some leeway in that regard as well.

Figure 3 shows a flowchart of how the threshold function was structured in this project. As water demand

follows a specific pattern throughout the day, pressure values fluctuate accordingly, therefore the first

thing that happens is that the average reconstruction error seen each hour of the day is kept track of and

updated on a weekly basis. Then, a dummy variable is created that consists of the average value for a

given hour, and some multiple of the standard deviation. This multiple will be referred to later on as the

standard deviation multiplier and was typically in the range between 2 and 3. Each sample is then

compared to this dummy variable in the preliminary check. If a simple is larger than the dummy variable,

it will move to the second check, in which the next samples for a few hours ahead are investigated to see

7

if they also exceed the reconstruction error seen at the same time of the day for a number of days prior.

The purpose of this is to reduce the likelihood of letting through a fluke value the preliminary checks.

Next, a check if the given sample also exceed the corresponding value for a few weeks prior. Seeing as

false positives is a reoccurring danger when working with data-driven leak detection, the threshold

function’s perhaps excessive checks and comparisons was an attempt to reduce the number of false

positives detected.

After each sensor’s reconstruction error had been run through the threshold-function, the timestep in

which each sensor would detect a leak would be available. These timesteps were then grouped together

if they occurred within a day of each other, and it was assumed that the largest group contained the leak.

If the group size exceeded or was equal to three (meaning three positive sensors were required), it was

considered a valid group and a leak was detected. From there, the earliest sample of positive detection

was chosen as the sample in which a leak occurred.

It should be noted and will be elaborated upon more at a later stage, that during the testing phase, the

model is first trained and validated on about one to two months prior to the leak occurring, and then

tested on the timeframe in which the leak is occurring, leaving little possible time in which false positives

can occur. While working with this project, minor tweaks were made to various components of this

overall process, but the general design has remained similar throughout.

Figure 3 Flowchart for the threshold function used.

8

As mentioned, there are a number of different ways to design such a threshold function. In this project it

functions roughly as seen in figure 3. Minor tweaks may be apparent in the final rendition of the script,

which can be seen in appendix E.

Before a sample is run through the procedure displayed in figure 3, a rolling average is computed to

reduce the degree the reconstruction error fluctuates. This rolling average is set to a step-size of 288

samples, which corresponds to one day with 5-minute samples. Attempts were initially made to reduce

the step-size and finetune the threshold function to a larger degree to find the leaks more accurately, but

it was later decided that the effort was spent more wisely working on different aspects of this overall

project.

2.2 Autoencoder and hyperparameter tuning

ML algorithms such as an autoencoder, have hyperparameters and various components intended to

make the algorithm more robust, less dependent on initialization and to increase reliability. Throughout

conducting this thesis work, attempts have been made in order to find a more ideal configuration of

these hyperparameters for the autoencoder, meaning one in which performance is found to be decent,

without requiring excessive time spent during the training of the model. As the final configuration of the

autoencoder will be presented later on, a brief introduction to the necessary background information is

necessary.

In appendix A, ML terminology is presented. Furthermore, the purpose of the various hyperparameters is

presented in appendix B. It is underlined that the following table only includes brief explanations, but the

technicalities concerning the various ML concepts are beyond the scope of this thesis. The curious reader

is advised to consult the aforementioned textbook or other learning resources if one wishes to see more

elaborative explanations or a more general introduction to ML.

A number of different autoencoder architectures were prepared to shift through, to see if the number of

layers, neurons in hidden layers or a variety of other factors had a noticeable difference in the

performance. Figure 4 shows a simple illustration of an autoencoder frequently used for testing purposes

during the development of this project. Technically the neurons for tank level, pump and area A’s

demand are also included in the training of the autoencoders, but not in the illustration.

9

Figure 4 An illustration of a frequently used autoencoder during initial development.

When developing this project, and initially attempting to figure out a more optimal configuration of the

autoencoder and hyperparameters, a shortcut was taken to increase the number of iterations of the

script that could be done. The threshold function was ignored, and instead the mean square error across

all the sensors was used, and the training was set for the first two weeks, and testing for the remainder of

the year instead of iterating through, as previously explained. The assumption made here was that

whatever configuration found to work best under these circumstances, would also perform best under

the regular circumstances, when the threshold function is involved and a comparison on a per sensor

basis is done. This change increased the number of configurations that could be tested drastically as

there was no threshold function to evaluate the performance at this stage and there was only one

training interval. The reconstruction error plots were saved and evaluated visually in the morning after

running overnight.

The different autoencoder architectures consisted of 6 different alternatives, which can be seen in table

1. The autoencoders numbered between 7 and including 12 were used during the attempt at reducing

the sensor count, which will be elaborated on later. Attempts with more than 5 layers showed no

meaningful improvement.

10

Table 1 shows the different autoencoder architectures typically tested.

Autoencoder
number

Layers and neurons per layer Batch normalization Drop out

1 4 𝑙𝑎𝑦𝑒𝑟𝑠;
 [36, 24, 12, 6 6, 12, 24, 36]

Yes, between every
layer

No

2 4 𝑙𝑎𝑦𝑒𝑟𝑠;
[36, 20, 8, 4, 4, 8, 20, 36]

Yes, between every
layer

No

3 4 𝑙𝑎𝑦𝑒𝑟𝑠;
[36, 24, 12, 6, 6 12, 24, 36]

Yes, but only between
every other layer

No

4 4 𝑙𝑎𝑦𝑒𝑟𝑠;
[36, 24, 12, 6, 6, 12 24, 36]

Yes, between every
layer

Yes

5 4 𝑙𝑎𝑦𝑒𝑟𝑠;
[36, 24, 12, 6, 6, 12, 24, 36]

None No

6 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[36, 26, 12, 8, 4, 4, 8, 12, 26, 36]

Yes No

7 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[31, 20, 10, 6, 4, 4, 6, 10, 20, 31]

Yes No

8 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[22, 12, 8, 6, 4, 4, 6, 8, 12, 22]

Yes No

9 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[14, 8, 6, 4, 3 ,3, 4, 6, 8, 14]

Yes No

10 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[10, 6, 4, 3, 2, 2, 3, 4, 6 ,10]

Yes No

11 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[8, 4, 3, 3, 2, 2, 3, 3, 4, 8]

Yes No

12 5 𝑙𝑎𝑦𝑒𝑟𝑠;
[5, 4, 3, 3, 2, 2, 3, 3, 4, 5]

Yes No

13 6 𝑙𝑎𝑦𝑒𝑟𝑠:
[36, 26, 12, 8, 6, 4, 4, 6, 8, 12, 26, 36]

Yes No

The different optimizers, activation and loss functions tested in the aforementioned autoencoders are

shown in table 2. Furthermore, the hyperparameters and their respective spans utilized during the large-

scale iterations can be seen in table 3.

Table 2 Overview of different optimizers, loss and activation functions tested in this project.

Optimizers Adam AdamW Nadam adamax SGD

Loss
functions

Mean
square
error

Mean
absolute

error

- - -

Activation
functions

Tanh Relu LeakyRelu Sigmoid -

As for learning rates, epochs, and batch sizes, they were randomly chosen among the values below each

time the script iterates through the datasets with a particular autoencoder configuration.

Table 3 The various values tested for the different hyperparameters

Learning rates [0.001, 0.0001, 0.00001, 0.005, 0.0005, 0.0025, 0.00025]

Epochs [750, 1000, 1500, 2000, 2500, 3000, 3500, 4000]

Batch sizes [500, 750, 1000, 1500, 2000, 2500, 3000, 3500]

11

Before deciding on the span of learning rates, epochs and batch sizes, a wider selection was tested, but

the general ballpark displayed by the values in table 3 proved to be a consistently well-performing

compromise between performance and necessary training time.

2.2 The datasets

The dataset being used is as mentioned, the dataset supplied from the organizers of the BattLeDIM

competition. It is derived from an EPAnet model with the help of the python package WNTR. The EPAnet

model is based on the hypothetical town called L-Town (BattLeDIM, 2020). An illustration of L-Town is

shown in figure 5.

Figure 5 Illustration of L-Town.

L-Town consists of three different areas. Its population is about 10,000 people with a total length of pipes

of about 42.6 kilometers. The network is supplied from two different reservoirs, and they can be seen as

the small red squares in figure 5. Pressure reduction valves are installed downstream from the reservoirs

to maintain a pressure head of at least 20 meters consistently for every consumer throughout the day.

Another pressure reduction valve is placed between area A and B. It is installed with the goal of reducing

background leakages. Between area A and area C, there is a pump and water tank installed, seeing as

area C is at a higher elevation than the remaining network. The pump is set to be refilling during the night

and emptying during the day to area C.

During weekdays the water consumption in L-town follows a regular pattern, but the weekend is more

random due to increased consumption during nighttime to accommodate for the city’s nightlife. There

are no differences between holidays and regular days in terms of water consumption in L-Town. It is also

12

presumed to be placed in northern Europe, meaning there is a higher water consumption in the summer

months compared to the winter months.

To collect data from their network, the water utilities in L-town has installed the following types of

sensors: 1 sensor for the tank’s water level, 3 flow sensors and 33 pressure sensors. The values for the

pressure sensors is the average on a per 5-minute basis.

The leaks found in L-town typically are of three different types, as can be seen in figure 6. The type that

found in pipe 158 belongs to can be seen as a pipe bursting abruptly, which then floods a street and is

quickly noticed and fixed by the water utilities. This is a type of leak that is typically easier to detect by an

algorithm, but also would’ve likely been detected by the responsible water utilities quickly, since it may

be visible at the surface level. Leak p461 sees a continuous increase in size, but due to its large size, it is

found and repaired by traditional means. Leak p257 is a leak which grows gradually until it reaches its

peak. It is substantially smaller in terms of volume per hour than the other leaks, but due to its small size

it is presumed to be more difficult to detect, and in this dataset, this leak remains unfixed through the

whole year. Incipient leaks also typically occur in pipes with smaller diameter. The challenge is then to

detect these types of leaks, as quickly as possible.

Throughout this thesis, the leaks that follows the pattern seen in pipe 158 will be referred to as abrupt

bursts or bursts, pipe 461 as a slowly increasing leak, and pipe 257 as an incipient leak.

In total, there are 14 leaks in L-Town occurring during 2018. There are 6 abrupt bursts, 4 slowly increasing

ones, and 4 incipient ones scattered throughout the year. They’re also spread across the city of L-Town,

figure 7 shows the location of each of the pipes containing a leak. Figure 8 displays all the leak volumes

and when they occur throughout the year.

Figure 6 The different leak classifications: quick burst, slow increase, and incipient leak

13

Figure 7 The location of pipes with leaks found in L-Town

Figure 8 Shows all the different leaks in L-Town for the year 2018.

14

In L-town there are 33 pressure sensors. Their location is shown in figure 9. One pressure sensor will

function as one neuron in the autoencoder. In addition, the demand for zone A, and the tank level, and

the pump flow will also be used as neurons in the autoencoder. In total there will then be 36 features

with 5-minute samples throughout the year of 2018, meaning there will be 105 120 samples in total.

Figure 9 Red dots indicate pressure sensors in L-Town. Green dots are reservoirs, and the teal dot is a pump.

15

3 Results and discussion

The results can be seen in table 4. The best performance across autoencoder architecture and

hyperparameter configuration is deduced based on the accumulation of time difference across datasets,

assuming all the bursts and slow increase type of leaks were found. Seeing as the quick bursts were

largely found faster compared to the slow increase type of leak, whichever configuration that managed

to adequately detect the quick bursts while also excelling at the slow increase were more likely to be

deemed the winner. This might not be an optimal metric to pick best performance by, as in a real system

the consequences of having a burst unattended for some period of time is perhaps higher than having a

slow increase leak grow slightly larger without sounding the alarm immediately.

One alternative could be to investigate the net volume of water lost through the leakages and rank the

different autoencoder architectures and hyperparameter configurations by that but developing such a

metric has not been done in this project.

Table 4 Results

Leak Timestep
leak detected

Timestep
leak occurs

Timestep
difference

Classification Leak flow volume at
detection

Pipe
31

56,892 51,573 5,319 Slow increase 4.48
𝑚3

ℎ

Pipe
158

80,315 80,097 218 burst 24.31
𝑚3

ℎ

Pipe
183

62,964 62,817 147 burst 16.21
𝑚3

ℎ

Pipe
232

10,048 8,687 1,361 Slow increase 25.64
𝑚3

ℎ

Pipe
257

Not found Not found Not found Incipient Not found

Pipe
369

86,039 85,851 188 burst 20.32
𝑚3

ℎ

Pipe
427

Not found Not found Not found Incipient Not found

Pipe
461

13,248 6,625 6,623 Slow increase 4.28
𝑚3

ℎ

Pipe
538

39,662 39,561 101 burst 32.22
𝑚3

ℎ

Pipe
628

36,492 35,076 1,416 Slow increase 4.82
𝑚3

ℎ

Pipe
654

Not found Not found Not found Incipient Not found

Pipe
673

18,341 18,335 6 burst 28.4
𝑚3

ℎ

Pipe
810

Not found Not found Not found Incipient Not found

Pipe
866

43,638 43,600 38 burst 20.35
𝑚3

ℎ

16

As can be seen in table 4, finding incipient leaks has proven itself to be a challenge. They typically grow

too slowly for the autoencoder to be able to create a reconstruction error. This will be elaborated upon

more at a later stage. However, the pipe bursts are all found within less than a day. The slow increase

leaks are typically found when they reach around 4.5
𝑚3

ℎ
, the exception being pipe 232, which is a leak

that grows very rapidly in the beginning of the year, making it more challenging to detect. In addition,

due to its rapid, but still gradual growth, which can be seen in figure 8, whether to classify it as a slow

increase or a burst is debatable.

Furthermore, the locations of the leaks in the system have an impact in how reliably they’re detected.

Leaks found in area C and B are typically more challenging to detect. This is due to the fact that there is

somewhat of a hydraulic disconnect when a pump or pressure reducing valve is involved in connecting

the different areas together. The leak in pipe 673 is particularly sensitive and has been a source of

consistent false positives throughout working with this project. It is found in area B and a closer

description of this problem will be presented at a later stage.

When visually inspecting the reconstruction plots to investigate whether the threshold function did

indeed sound the alarm at the time in which the leaks start to appear, it was found that there is small (a

few hours perhaps) room for improvement with some of the burst leaks, but not all of them. However,

loosening up the threshold function in its current state runs the risk of running into false positives at a

larger rate. Perhaps a different threshold function design could allow for both.

Although, the purpose of this project is not to compare with the results from the BattLeDIM competition,

as the circumstances differ between the two settings. In the BattLeDIM competition, the information

about the leaks were not made available, whereas they have been throughout the development in this

project. Nevertheless, an interesting quirk is that one of the winning teams managed to detect leaks

between 4.8
𝑚3

ℎ
 and 35

𝑚3

ℎ
, meaning the autoencoder performed more or less just as well in that regard,

due to the detection of the slow increase leaks. In the original BattLeDIM competition, the problem

statement, and resources available were both larger than in this thesis, so the results aren’t directly

comparable to this project. Primarily the pressure values from the sensors were relied on in this project,

and the EPAnet-file of L-Town that was made available during the BattLeDIM competition was not used

at all in this project.

The top performing hyper parameters and autoencoder configuration found is the following seen in table

5. This configuration of the autoencoder will henceforth be referred to as standard settings and will be

used in the next subsections unless otherwise stated. As mentioned, the standard deviation multiplier

was set between 2.5 and 3 generally, for this final iteration it was set to 2.75. It was trained, validated,

and tested with two weeks increments.

17

Table 5 The autoencoder architecture and hyperparameters associated with the best performing
configuration.

Autoencoder architecture Autoencoder 6

Loss function Mean square error

Activation function Tanh

Optimizer Adam

Learning rate 0.025

Epochs 2500

Batch size 750

Training interval 14 days

Validation interval 14 days

Testing interval 14 days

The autoencoder reached a training loss somewhere between 0.08 and 0.2 depending on which leak

dataset it was trained on. Validation error around between 0.15 and 0.3. This is after normalizing the

input data.

When training the autoencoder with settings different from the ones seen in table 8, but a randomized

selection of the ones seen in table 1,2 and 3, the results did not change drastically, and only minor

changes were noticed, suggesting that a larger span of possible configurations would see a similar

performance. Adding another layer to the autoencoder, or drastically increasing the batch size or epoch

number did not create any meaningful difference. It is believed that the aforementioned configuration is

a decent compromise between performance and the amount of time necessary for training.

3.1 Results for different leak classifications

To showcase visually what the different leak classifications look like when detected by the autoencoder

the following plots are presented. The different classifications of leaks typically have similar looking plots,

therefore one of each will be shown. The plots display the leaks from the start, until the end, when the L-

Town municipality fixed them. It is used a shifted 2-week window for training, validation, and testing of

the autoencoder for all the following plots, with standard settings.

As some time has been spent testing various configurations to attempt to find specific leaks, a few tables

are presented with a short comment on the features associated with each leak. Some are more

challenging to detect than others, and some are more prone to false positives and so on. One example

being leaks found at the tail-end of summer, as the reconstruction error is compared with the larger

reconstruction errors typically seen throughout summer due to increase in pressure fluctuations as the

demand changes.

3.1.1 Quick burst
In figure 10, four sensors are compared to see their respective reconstruction errors. Three of the sensors

chosen are the ones closest to the leak, as the size of the reconstruction error is seen to be correlated to

the proximity of the pipe with the leak. The remaining sensor is the one furthest away, to show that it is

indeed less affected by the pipe bursting. Although, it should be noted that it is important to compare

with the sensors that are within the same area of L-town. The pump to area C function as disconnection

18

point hydraulically and the sensors found in sector C therefore do not function as well as a baseline,

despite being further away in terms of distance. For figure 10, the leak in pipe 183 peaks at 16
𝑚3

ℎ
.

Figure 10 Rolling mean on a per day basis for the reconstruction error from sensors n469, n722, n726 and
n752 with the leak in pipe 183.

Table 6 has a brief description of the quick burst leaks found in L-Town.

Table 6 Overview of quick burst leaks

Pipe Number Area of L-Town Comment

158 A This leak is fairly easy to detect without any issues.

183 A This leak is typically fairly easy to detect, without any major
issues. Occasionally a false positive due to the fact that it occurs
in late summer and the reconstruction error typically increases
due to higher water demand in summer, and larger pressure
fluctuations leading to larger reconstruction error fluctuations.

369 A This leak is fairly easy to detect without any issues.

538 A This leak is fairly easy to detect without any major issues.
Occasionally a false positive, but not very frequently.

673 B This leak is an outlier. Generally, roughly every sensor detects
this leak, and it is not uncommon that false positives occur. The
reconstruction error seen is typically abnormally large, especially
for sensors also found in area B. Figure 18 shows the detection of
a leak in pipe 673 and a larger elaboration as to why the
detection of this leak is more unreliable than others is included.

866 A This leak is fairly easy to detect without any issues.

3.1.2 Slow increase
On figure 11 a leak of type of the slow increase classification is shown. It can be seen that the

reconstruction error is increasing more slowly compared to the quick burst variety. Furthermore, it can

19

be seen to be a bit noisier, and likely slightly more challenging to trigger a threshold-function reliably at

an early stage of leak development. For the record, in a generic run of the model, the leak in p461 were

detected when it reached a flow of 4.28
𝑚3

ℎ
 at the date 15.02.2018, and the leak started on 24.01.2018.

As with the previous plot, the sensors shown are the ones in closest proximity and one further away to

display the baseline reconstruction error of the system in comparison. For figure 11, the leak in pipe 461

peaked at 30
𝑚3

ℎ
. Typically, it is seen that larger leaks create larger reconstruction errors as one might

expect. Table 7 has a brief description of the different leaks of the slow increase classification.

Figure 11 Rolling mean on a per day basis for the reconstruction error from sensors n105, n114, n616 and
n726 with the leak in pipe 461.

Table 7 Overview of slow increase leaks

Pipe Number Area of L-Town Comment

232 A This leak occurs early in the year, making it challenging to detect
reliably with a 2-week training interval which was the norm for the
majority of this project. It is therefore often only detected when it
reaches its peak volume. It also grows significantly faster than the
other slow increase leaks, as seen in figure 8. As can be seen in table
9, a shorter time interval outperforms the final results seen in table
4.

461 A This leak is occasionally not detected at all, likely due to the fact that
it occurs so early in the year, similar to the p232. This makes it more
challenging to pick up on with a two-week training interval. If
training data for the year prior existed, both of these leaks would
likely not pose the same challenge.

628 A This leak is typically found without any issues.

31 C This leak is typically found without any issues, as there exists 3
sensors in area C, and the threshold function requires 3 positive
sensors within a certain timespan. It can also turn sensors outside of
area C positive, but typically with a delay compared to ones found
within area C.

20

3.1.3 Incipient
As for the incipient type of leak, the autoencoder is unable to detect the occurrence presumably due to

its low volume and the slow growth of the leak. When the leak’s growth is occurring over multiple

training and test cycles, the leak loses its prominence among the other datapoints and fails to create a

sufficiently large reconstruction error for it to be detected visually in the plot or by the threshold

function.

There are a number of data processing methods that can be utilized in an attempt to pinpoint the leak,

such as looking at middle night flow (MNF) only, removing seasonality, noise, or a rolling 25th- percentile

minimum or maximum window, subtracting a leak-free year’s reconstruction error (should such a thing

be available or estimated) or something else entirely. These implementations may prove to be somewhat

more successful than what is shown here, and the problem will be discussed further at a later stage.

Despite of attempting a number of different ways to make the incipient leak more prominent, they have

all been largely unsuccessful.

In figure 12 can be seen that the leak is not apparent in the reconstruction error at the start, and still not

later on as it reaches its peak flow of 6.9
𝑚3

ℎ
. It is not known what exactly causes the divergence between

the sensors at the end of the year. One possible explanation is that water demand and subsequent

pressure fluctuations typically decline in the wintertime for cities placed on the northern hemisphere,

and one would therefore expect the magnitude of the reconstruction error to decline as well or stabilize

(as can be seen in the beginning of the plot, at the tail-end of the summer), as it does with n469, which is

farthest away. However, the closest sensors to the leak do not follow that pattern. This is a type of

reconstruction error that can perhaps be detected by a threshold-function, as such the leak is detectable,

but nowhere near in time of which when the leak first occurs. However, it should be pointed out that the

incipient type of leaks were never found by the L-Town municipalities, and as it is with most things, it is

always better to find your leaks late than never. In addition, due to the lower flow from this leak, the

necessity to find it quickly is not as essential as for the larger flow quick burst leaks. Still, the confidence

in figure 12 is not complete and could be a coincidence, as the similar pattern is not seen with the

different incipient leaks, at least not as prominently.

21

Figure 12 A comparison between sensors with a rolling mean on a per day basis for an incipient leak in pipe
810.

Table 8 has a brief description of the incipient leaks found in L-Town.

Table 8 Overview of incipient leaks

Pipe Number Area of L-Town Comment

257 C Can sometimes be detected but may also simply be a false positive
as no apparent leak is seen when visually inspecting the
reconstruction plot. The leak occurs very early in the year, so there
is loads of time available to detect false positives, meaning there is
low confidence in the reliability of the results the few times it is
detected. Occurs early in the year, which may make detection
more challenging.

427 A Not detected. Occurs early in the year, which may make detection
more challenging.

654 A Not detected, although interesting pattern seen, will be elaborated
more at a later stage.

810 A Not detected, although interesting pattern seen, will be elaborated
more at a later stage.

3.2 Comparison between an accumulated- and shifted training phase.

One possible distinction in the use of the autoencoder is whether to choose to accumulate the training

phase or have it shifted along through the year. Accumulated training phase means that the data that the

autoencoder processed without a leak detection is added to the training data for the next iteration,

meaning the training period continuously increases. This follows the ML mantra of “the more training

data, the better the outcome”. The drawback is that it requires more computational power to train the

model on a larger amount of data. The alternative being the shifted training phase, in which one

22

continuously trains on a say, 2-week basis, for a couple of iterations, then test the autoencoder, which

would not be as computationally demanding, and perhaps reduce the increased error due to the higher

summer water demand and subsequent pressure fluctuations which could potentially overshadow a leak.

No matter the approach, the detection of the incipient leaks could not be done, and as such, figures of an

incipient leaks are not included among the following figures.

To illustrate how large of a difference these two types of approaches make, the following plots were

produced. They’re based on the same standard autoencoder architecture with the same hyper parameter

configuration. The only difference is the accumulated and shifted training periods. Standard settings were

used for all attempts.

As for sample-count when training, there is about 4000 samples of 5-minute timesteps per 2 weeks,

meaning that the shifted training autoencoder trains on the 4000 samples. The number of samples for

the accumulated training autoencoder is roughly 4000 per 2 weeks, so if the autoencoder is trained until

it reaches a leak in late summer, as it is in figure 13 for the quick burst instance, then it will be trained on

about 4,000 · 14 = 56,000 samples, as it starts around week 28.

3.2.1 For quick burst:
In figure 13, a comparison of between accumulated and shifted training period is done. It seen that the

two alternatives follow each other closely, but the accumulated training shown in red appears to be

slightly more stable during the period in which the leak is active. Although, it should be noted that the

difference is marginal. Furthermore, the initial spike appears to be quite similar which is what the

threshold-function is aiming to detect, meaning it is suspected to not be a noticeable difference between

the two for the quick burst type of leak.

Figure 13 Accumulated and shifted training approach comparison for a burst leak in pipe 183.

23

3.2.2 For slow increase:
As with the prior plot, an accumulated training phase didn’t create a meaningful difference between the

two options. In figure 14 It is seen that the peak of the accumulated plot is more apparent, but the

shifted starts diverging from the baseline n769 sensor at a slightly earlier stage. This divergence is the

more influential part of the plot, as that’s what would trigger whatever type of threshold algorithm is

implemented in a system.

As for incipient leaks, a lack of difference between the two approaches were found and there is no

obvious leak, as such a figure is not included.

Figure 14 Comparison between shifted and accumulated training for a slow increase pipe leak in pipe 461.

The impact of this is that it could potentially reduce computational demand with a simple shifted training

approach instead, as the results do not improve in a very meaningful way, despite the significantly longer

training time needed. However, it is important to underline that this is a very simple preliminary test, and

as such, one should be wary in justifying any choice made in an operational real-time leak detection

system based on this alone. In such a case, more research would be needed.

3.3 Leak localization
The autoencoder’s ability of being able to create a reconstruction error on a per sensor basis allows it to

do some rudimentary leak localization analysis as well. In the literature regarding leaks in WDNs, leak

localization and leak detection are separate problems, and as this project’s focus is on the leak detection,

it largely remains outside the scope of this project. Nevertheless, it is an interesting feature of the

autoencoder, so it will be mentioned briefly. Figure 15 shows the different reconstruction errors for all

the sensors for the leak in pipe 866, and most follow a similar trend before the leak occurs. The few that

24

don’t belong to the sensors found in area B and C

In figure 16, it is seen that the sensors n286 and n740, which are the ones closest to pipe 866 has the

largest reconstruction errors. As for the aforementioned plots, the sensor n469 is included for

comparison and is the one furthest away from the pipe 866 leak and does not show any noticeable

deviation from the norm when the leak first occurs. The aforementioned figure 7 and figure 9 show the

pipe and sensor locations in L-Town respectively.

Figure 16 Rolling mean on a per day basis for the reconstruction error from sensors n286, n469, and n740
with the leak in pipe 866.

This rudimentary leak localization is shown to illustrate that if a WDN were to implement a real system,

the localization benefits would be increasingly more accurate as the number of sensors in the system

increased. This would presumably also reduce the manual labor cost and time spent searching associated

with any subsequent in-person leak localization to a larger extent. It could perhaps also function as a

starting point for some more advanced leak localization methodology.

Figure 15 Shows all the sensors’ reconstruction errors together on a rolling mean per day basis for leak in pipe 866.

25

3.4 Influence of training interval and resampling on the performance
of the autoencoder

Due to the fact that it was not known how much of an influence the size of the time interval had on the

training of the autoencoder, a few attempts were made in which this was adjusted. The first choice of the

two-week time interval was largely chosen at random, so there was an interest in seeing whether this

adjustment would make a meaningful difference. The shorter the time interval, the fewer samples the

autoencoder will be trained on during the training stage. This may pose a problem on the quality of the

training. The incipient leaks were excluded from this test due to the fact it was presumed they’d be too

difficult to detect and including them would increase script’s running time significantly.

Similarly, increasing the resampling of the from 5 minutes, which it has been originally, to 10, 30 or 1

hour, will also decrease the samples for the autoencoder to train on, assuming the overall time interval is

kept the same. Ideally, one would be able to reach the same quality of training with a high resampling as

the sensor’s battery life is increased when the data is transmitted more infrequently. However, the old

ML mantra of “the more training data the better” still holds true, so the question remains of short can

you reduce the time interval for training or how high can you resample the data, and still be able to make

reconstruction errors detectable for the threshold function? Is there a limit of how many samples the

model needs until it is not able to create prominent reconstruction errors when leaks do occur?

For this test, the autoencoder architecture and hyper parameter settings were kept the same throughout,

with the standard settings, only the time interval for training and resampling of the data was changed. All

33 sensors were being used, as well as the tank level, demand in area A, and pump flows, similar to

previous tests. As in most other tests, the batch size was set to 750 and the epochs to 2500.

Initially, with two-week training intervals and timestamps on a 5-minute interval, the model is fed 12 ·

24 · 14 = 4032 samples per training cycle. Then another 4032 samples for validation and 4032 samples

for testing. When the training time is halved or the timesteps doubled with a per 10 minutes resampling,

the number of samples for the autoencoder to process is also halved. For both of these changes it is seen

that the model’s training and validation losses stabilizes at a higher level compared the original

configuration with standard settings. This implies that the baseline reconstruction error will be higher

with more variance and subsequently a messier plot in which the occurrence of a leak will be less

prominent.

It was hoped that due to the fact that say, for a 5-day training interval, the autoencoder would go

through almost 3 training cycles, compared to 1 training cycle for the 14-day interval autoencoder, that

the extra training cycles would compensate for the initially higher training loss seen. Unfortunately, that

is not the case and despite several more training cycles, the training and validation losses stabilize at a

higher value compared to the original configuration. As one would expect, a similar trend is seen when

the resampling is doubled from the standard 5-minute timesteps to 10 minutes.

26

Figure 17 Detected leak on a two-week training interval with 10-minute resampling in pipe 369.

Figure 17 shows an example of leak detected with a two-week training interval, but a resampling to 10

minutes samples. The first red x is when the leak occurs, and the second is when it is detected. It is

detected at a later stage than normal, and the reconstruction error is not as large as better trained

autoencoders. The outlying light green line is from sensor n215, which is largely independent from the

others as it belongs to the corner of area B in L-Town. The smaller reconstruction error makes it more

difficult to detect a leak under these circumstances and increases the likelihood of encountering false

positives.

The experiment was stopped at a 5-day training interval, as anything below saw too high reconstruction

errors and false positives were more frequent. It was therefore not considered a useful endeavor to

attempt to improve the results beyond this by adjusting the threshold function. The results from a 5-day,

7-day, and 10-minute resampling and 15-minute resampling can be seen in table 9. The 5-day and 15-

minute resampling have roughly the same number of samples, and the 7-day and 10-minute resampling

should have the same.

Table 9 Results from 7-and 5-day time intervals, and 10- and 15-minute resampling

Pipe 7-day 5-day 10-minute 15-minute Timestep
leak occurs

Leak
classification

Pipe 31 57,448 57,454 57,454 60,120 51,573 Slow increase

Pipe 158 80,314 76,637 80,470 81,684 80,097 Burst

Pipe 183 57,467 57,472 63,188 63,324 62,817 Burst

Pipe 232 10,021 10,031 -9,999 -9,999 8,687 Slow increase

Pipe 369 86,037 86,047 82,316 88,128 85,851 Burst

Pipe 461 -9,999 10,931 18,676 15,144 6,625 Slow increase

Pipe 538 39,634 39,647 39,676 39,027 39,561 Burst

Pipe 628 37,310 37,139 36,572 36,798 35,076 Slow increase

Pipe 673 18,285 18,338 16,368 18,141 18,335 Burst

Pipe 866 43,646 29,147 43,660 38,880 43,600 Burst

Correct leaks 7 7 7 6 - -

False positives 2 3 2 3 - -

Missed leaks 1 0 1 1 - -

27

It can be seen that the results are not optimal, but also not completely unreliable. For the 15-minute

resampling, even the correctly detected leaks are detected so late, and the training loss was continuously

larger, that any further testing was not deemed as a useful endeavor. Similar results were seen in a 4-day

run too. Unfortunately, a normal sampling rate seen the UK is set to 15-minutes, but the problem of the

higher sampling rate can perhaps be compensated for by increasing the number of sensors (Mounce &

Boxall, 2010).

However, it is possible that more accurately finetuning of the threshold function could avoid some of the

false positives, and thereby improve the results seen in table 9. An example of a leak that is often

declared as a false positive is the one found in pipe 673. The reconstruction error at the time of the leak

can be seen in figure 18, the red x indicates when the pipe bursts. Throughout the testing of various

configurations of the overall script, it has been considered a peculiar leak, as it is sometimes detected as

a false positive. It is an abrupt burst that happens in area B. There are two nearby sensors in the same

area, both of which show abnormally large reconstruction errors, larger than seen anywhere else while

working with this project. The light green line going vertically ends at a remarkable reconstruction error,

with a rolling mean on a one-day basis, of about 250 which belongs to the sensor n215. The light blue

vertical line at a slight angle belongs to sensor n229 and peaks at a reconstruction error of 8. For

reference, other reconstruction errors from sensors that do detect leaks are typically between 0.8 and 2.

Another important feature seen in figure 18 are the three lines: orange, blue and green, which starts to

increase before the leak actually does occur. Why this increase occurs is not known, it can perhaps be a

random fluctuation. These lines belong to the sensors n1, n4 and n31, all of which are found in area C,

meaning they tend to behave more independent compared to the sensors found in area A. The fact that

there is three of them means that it is enough for the threshold function to trigger before the leak

actually does occur and a false positive will be detected. This is likely the reason why the leak found in

pipe 673 sometimes is detected some hours before it actually does occur, or why it is detected only

minutes after it does occur. Still, due to the fact that all the sensors are able to detect the leak, a slightly

stricter finetuning of the threshold function would likely make the leak consistently detectable.

Figure 18 Shows leak in pipe 673, produced with a 7-day run, with a one-day rolling mean.

Here it is assumed that when the results deviate too far from the results seen in table 4 a line was drawn,

and testing was stopped. However, it is not unreasonable to think that others would disagree as to what

28

constitutes “too far” and would advice to keep the testing going with even smaller sample-counts.

Nevertheless, this was not done here.

Thereby the boundary of sample-count needed before the autoencoder fails will be set at about 5 · 12 ·

24 = 1440, for a 5-day run. However, it is important to underline that anything below or above this

number will not result in a binary, either functional or non-functional autoencoder for leak detection, it is

a gradual change. As the training loss will likely gradually decrease with a larger sample size and

subsequently the reconstruction error will increase, making any threshold function’s job easier.

The importance of this information is that it gives a rough estimation as to what is the lower end of the

number of samples one would require in order to do leak detection. Although, it is important to

underline more research is needed in this direction. Nevertheless, it can perhaps pinpoint the number of

data samples from a leak-free WDN one would need to gather before the data can be utilized for the

training of an autoencoder for later leak detection.

Still, it is important to underline that this minor test is not extensive enough to conclude anything with

complete confidence. More work is needed, and it is not unreasonable to think further adjustment to the

batch size and number of epochs should be done when the sample-count is changed. In this test those

two parameters remained stable throughout.

3.5 Performance with reduced number of sensors.

Seeing as 33 pressure sensors for L-Town’s 10,000 inhabitant, 42.6-kilometer pipe length WDN is on the

higher end, an effort was made to deduce the number of sensors required in order to still be able to have

a functioning autoencoder for leak detection. Therefore, a gradual reduction of the number of sensors

employed in the autoencoder was done. A number of smaller autoencoder architectures were created,

with a batch normalization layer between each layer. The autoencoders were similar to the standard

settings, but with a reduced size. The autoencoder architectures tested are numbered between and

including 7 through 12 in table 1.

Due to the fact that the area B and C in L-Town are somewhat hydraulically separated from the larger

area A, both the sensors and the leaks found in these areas were dropped first. So, in essence the focus is

solely on area A of L-Town’s WDN. In the original configuration of the autoencoder, before any sensor-

reduction, there are 33 sensors in L-Town. In areas B and C, there are a total of 5 sensors, leaving 28

sensors in area A. In addition, the incipient leaks were dropped from the search, as they have proven

themselves to be difficult to detect regardless of circumstance. With incipient leaks and area B- and C-

leaks dropped, 8 leaks remain with 5 being abrupt bursts, and 3 of the slow increase type of leak.

Beyond the first 5 sensors that were dropped from area B and C, the remainder were picked somewhat at

random. It was assumed that pipes numbered close to one another were in close proximity in L-Town,

and a rough attempt was made to remove sensors in such a way that the remaining ones would be evenly

distributed across the WDN. No effort was made to intelligently pick the remaining sensors’ location

beyond the aforementioned description. As the reconstruction error was seen to decrease across the

different leak datasets, the standard deviation multiplier was reduced from 2.75 with standard settings,

to 2.5 used here.

29

Table 10 Initial results from area A with 28 sensors, with standard deviation multiplier set to 2.5.

Leak Timestep
detected

Timestep leak
occurs

Timestep
difference

Classification Flow volume at detection

Pipe
158

80,313 80,097 216 burst 24.31
𝑚3

ℎ

Pipe
183

62,959 62,817 142 burst 16.19
𝑚3

ℎ

Pipe
232

10,926 8,687 2,239 Slow increase 25.67
𝑚3

ℎ

Pipe
369

86,045 85,851 194 burst 20.38
𝑚3

ℎ

Pipe
461

13,238 6,625 6,612 Slow increase 4.25
𝑚3

ℎ

Pipe
538

39,648 39,561 87 burst 32.26
𝑚3

ℎ

Pipe
628

36,576 35,076 1,500 Slow increase 5.42
𝑚3

ℎ

Pipe
866

43,637 43,600 37 burst 20.38
𝑚3

ℎ

These results found in table 10 largely match the results found in the full 33 sensor-based autoencoder

presented in table 4 and will be kept as a benchmark to compare the following autoencoder architectures

with a lower sensor-count with.

Before conducting this small experiment, it was assumed that the autoencoder’s performance would

deteriorate in both its ability to detect leaks at all, and the accuracy timewise in which the leaks were first

detected. However, after iteratively removing more and more sensors from the autoencoder, what was

found is that the number of sensors were not as influential as initially thought in the detection of the

leaks. For the leaks in area A, both the accuracy and the leak detection were found to be largely similar to

the results seen in table 10, when sensors were removed. Therefore, only the final autoencoder’s

architecture, hyperparameters and performance will be presented. The results achieved with the smallest

autoencoder can be seen in table 11.

Furthermore, the threshold function was slightly altered, with a reduction of the standard deviation

multiplier from 2.5 to 2.2, and the number of sensors needed for a positive detection was reduced from 3

to 2. The specific sensors employed in the smallest autoencoder were also switched to another set of

sensors roughly evenly scattered throughout the WDN in order to reduce the chance of the initial set of

sensors resulting in a fluke performance. The result of this change was more or less the same, but the

timesteps in which leaks were detected changed slightly, some to the model’s benefit and some to the

model’s detriment.

The results of the smallest autoencoder, without any tank, pump or area A’s demand data utilized for

training and only 5 pressure sensors can be seen in table 11. Its architecture is the autoencoder number

12, in table 1. The sensors used were n150, n332, n644, n342 and n769, and their locations can be seen in

figure 9.

30

Table 11 Performance of smallest autoencoder with 5 sensors.

Leak Timestep
detected

Timestep
leak occurs

Time difference Classification Flow volume at
detection

Pipe 158 80,311 80,097 214 burst 24.31
𝑚3

ℎ

Pipe 183 62,965 62,817 148 Burst 16.20
𝑚3

ℎ

Pipe 232 9,863 8,687 1,176 Slow increase 26.02
𝑚3

ℎ

Pipe 369 Not found Not found Not found burst Not found

Pipe 461 13,168 6,625 6,543 Slow increase 4.16
𝑚3

ℎ

Pipe 538 35,424 39,561 -4,137 Burst 0
𝑚3

ℎ

Pipe 628 36,437 35,076 1,361 Slow increase 4.49
𝑚3

ℎ

Pipe 866 43,679 43,600 79 burst 20.28
𝑚3

ℎ

The two leaks which proved most challenging to detect are the p369 and the p538. The p369 was not

detected at all unfortunately, and the p538 had a tendency of being a false positive. However, on closer

inspection it is seen that the autoencoder manages to create reconstruction errors when the leaks occur,

but there is a failure of the threshold function to detect them in time.

In figure 19 and 20, the reconstruction plots for the missed leaks, p369 and p538 are shown.

Figure 19 Shows an undetected leak in pipe 369.

In figure 19 the red x indicates when the leak in pipe p369 actually does occur, and the reconstruction

plot shows that there is abnormal activity going on after this point. One sensor did indeed detect the

abnormality, but due to the fact two positive sensors within a similar timespan were needed for a

positive leak detection, it went by without the announcement of any leak.

31

Figure 20 shows a false positive detected in pipe 538 at the first red x, the second cross shows when the leak
actually does happen.

In figure 20 the reconstruction error plot of the false positive leak is shown. The first red x indicates when

the false positive detection occurs, and the second red x shows when the leak actually does occur. The

small peaks that repeat on a weekly basis are a consequence of L-Town’s nightlife during the weekends in

which water consumption was more randomly distributed throughout the day.

Seeing as both p538 and p369 are abrupt bursts, figure 21 is also included. It shows the successful

detection of a slow increase leak in pipe 628. In figure 21, the first x indicates when the leak starts and

the second when it is detected by the threshold function. The leak’s volume is about 4.5
𝑚3

ℎ
 at this point.

Figure 21 Shows a successful detection of a slow increase leak in pipe 628.

Figures 19 and 20 show that the failure of the smallest autoencoder was not due to the autoencoder

itself, but rather the threshold function not being able to pick the leak occurrences adequately. It is

32

possible that further finetuning of the threshold function would be able to circumvent this issue, but any

further work down this path was not done due to time constraints primarily.

This is an indication that the number of sensors employed in the autoencoder may not be as important as

initially expected for the detection of leaks. However, the accuracy of any rudimentary localization is

reduced to a larger extent due to the fact that there are simply fewer sensors in the proximity of any

broken pipe. It is reasonable to believe that the robustness of the whole system is likely to increase with

more sensors, as the likelihood that the distance between a leak and a sensor is to be smaller. The

sensitivity change appears to be real when implementing the aforementioned change of employing

different sensors than the original 5 for the smallest autoencoder, as most leaks are detected at different

timesteps.

Furthermore, as will be discussed further in 3.7, the implementation of a larger number of sensors in a

WDN would allow for the creation of more elaborate threshold function designs that could perhaps

reduce the likelihood of false positives compared to what is used here. One option could be to include

the sensors’ location and the rate of change in reconstruction error for each sensor in order to hopefully

reduce the false positives and perhaps in turn allow for a rolling average on a lower time interval than the

one-day basis throughout this project. It is possible that such a threshold function would reduce the

detection times seen in here and its performance would likely increase as the number of sensors found in

the system also increased.

3.6 On the detection of incipient leaks:

The detection of incipient leaks has turned out to be difficult with the current configuration of the model

and threshold function. The incipient leaks are suspected to be too small and grow too slowly in terms of

flow for the autoencoder to be able to detect the features associated with that given type of leak. That is

unfortunate, and a number of attempts have been made to rectify that, all of which have been

unsuccessful. At one point, it was believed that the incipient leaks would be detectable, seeing as the

slow increase type is typically detected at around 4.5
𝑚3

ℎ
, and the incipient leaks peak in the range

between 5 and 7
𝑚3

ℎ
.

As mentioned, a suspicion is that this is due to the fact that the leaks grow so slowly, the training data will

become tainted with the leak itself, and subsequently a reconstruction error of notable size will not be

created. A simple test was done to investigate this. The model was trained with standard settings,

meaning the same configuration to what achieved the final results, and then trained on the leak-free

start of the year and tested on a time-window later in the year, when the incipient leak had reached its

peak. Nothing was detected, and upon closer inspection of the reconstruction plot, no sign of a leak was

a seen, so it is not likely that the threshold function was the culprit that simply failed to detect it.

The inspection consisted of analyzing the reconstruction error and its plot in a number of ways.

Oftentimes, the middle night flow (MNF), meaning the time between 02:00:00 and 04:00:00, is used for

data analysis in the context of WDNs. This is due to the fact that the water consumption is lowest at this

time, and whatever leaks exist, exist at all times of the day, meaning their share of the consumption is

larger during the night, making them more noticeable. It is here assumed that a low water consumption

33

during the night influence the pressure values within the WDN, which then would lead to a larger

reconstruction error. Unfortunately, the reconstruction error was not sufficiently large as to be detected

either by a threshold function or visually. This was the case for all the different incipient leaks.

However, and this is somewhat speculative, the assumption that a leak will create a prominent

reconstruction error may hold true for bursts and slow increase leaks. Perhaps that is not the case for the

incipient type. A different threshold function design could perhaps be necessary, assuming there is some

feature or pattern of the reconstruction error associated with an incipient leak that could be detectable.

Although, the following can perhaps be simply due to a coincidence, or a part of the pattern typically

seen in the reconstruction error towards the end of any year. It is nevertheless shown here, as the

pattern is seen in two of the four incipient leaks, and the two in which the pattern is not seen both occur

early on in the year, which may perhaps influence the autoencoder’s ability to reach an adequate training

loss before the leak starts tainting subsequent training data. In addition, for the two that do not follow

the pattern, one is in area C, and the expectation that the pattern will exist there as well may not be

reasonable due the hydraulic independency associated with that area.

Figures 23 and 24 both show the somewhat vague pattern of interest. Both the plots are created by using

the MNF-values of the reconstruction error from an autoencoder with standard settings and the rolling

mean on a half-day basis. Attempts in which seasonality and/or noise was removed obfuscated the

pattern slightly, so this is not the case for the plots below. As mentioned initially, the pattern is rather

vague and quite speculative, but still, it is chosen to be included as it is the closest approximation to an

incipient leak found. What is seen is the following: as with other plots, it is a comparison between a

sensor close to the leak, and one further away as the assumption is that the reconstruction difference

between the two would be the largest. As for figure 22, the sensor n769 is closest, and for figure 23,

sensors n613 are closest. Before the leaks does occur, the difference in reconstruction error is slightly

smaller between the two sensors, but then gradually grows until the peak is reached at the second red x.

At that point the reconstruction error stabilizes and continues with the same discrepancy between the

two sensors.

Figure 22 Comparison between close and far away sensors for leak in pipe 810. First cross when it starts,
second when peak is reached.

34

Figure 23 Comparison between close and far away sensors for leak in pipe 654. First cross when it starts,
second when peak is reached.

A different threshold function design could rely on this pattern for detection. The discrepancy between

all the sensors, or the rate of change in discrepancy between sensors could be used as a metric for leak

detection. There likely exists other alternatives too for threshold function design, assuming this pattern is

indeed an indication of a real leak. However, due to the small difference in reconstruction error it is not

unlikely that such a function would also struggle with a large number of false positives. In the end, it

should again be noted that this is a somewhat speculative endeavor utilizing artificial data to begin with,

so in the context of a real system the likelihood of recreating and detecting the pattern is presumably

rather low unfortunately.

Another strategy for the detection of the incipient leaks that unfortunately went by untested due to time

constraints is to train the autoencoder specifically on the MNF-values, instead of the entire day.

Although, this reduces the number of samples quite drastically, so the MNF-time interval would probably

benefit from an increase to the hours between midnight and 6 in the morning perhaps, and 4 or 6 weeks

rather than 2. It would then follow that the autoencoder is trained on MNF-values as well. It is believed

that the autoencoder would then become more sensitive to the patterns found specifically during night-

time, and perhaps a reconstruction error would become more noticeable.

3.7 On threshold function design and the number of sensors

In hindsight, a number of different possible of threshold function designs should probably have been

implemented and tested in order to improve the detection times further, but the available time did not

allow. There are many different threshold function design opportunities, such as a simple flat X-%

increase compared to the average and a couple of standard deviations to trigger an alarm, or a design in

which the change of reconstruction error per sensors is kept track of, and an alarm is triggered when a

certain number of sensors deviates from some number of sensors by a large enough degree. Many more

different designs could be used as well.

35

In order to achieve the best possible result in this project, there exists two key bottlenecks. The first

being to find an autoencoder architecture and configuration that works well at creating large

reconstruction errors with a short enough training time. The second, being how early the threshold

function is able to detect an abnormal occurrence. In this project, a rolling average on a one-day basis

have been utilized more or less throughout, unless otherwise stated. The influence of this is that

fluctuations in the reconstruction error gets evened out before the threshold function does any

evaluation as to whether it is able to detect a leak or not. If this was done on a shorter basis, such as half

a day or six hours, the reconstruction error would fluctuate more, but if a more elaborate threshold

function existed, this fluctuation could be handled, and an earlier detection time could be accomplished.

An early detection time may not be that important for an incipient leak due to the low volume to begin

with, but bursts and larger leaks risk compromising surrounding infrastructure if they remain undetected

for a longer period of time, making an early detection time paramount.

As noted earlier, the number of sensors also play a role in how reliable a threshold function can become.

Typically, the training loss decreases the more sensors are being used, and as such the reconstruction

error becomes larger when abnormal occurrences happen, which is an obvious benefit. The second

benefit is that the possibility of different threshold function designs increases when there are more

sensors involved as there is more leeway as to when to declare a leak has occurred. In addition,

comparison of the rate of change of the reconstruction error between sensors is also something that is

likely a potential feature to be utilized in the design of a better-performing threshold function.

Furthermore, knowing the locations of the sensors is also valuable information. The cojoining of the

change in reconstruction error per sensor metric together with physical location of the sensor would

allow for a more thorough threshold function than what is utilized in this project. It is shown that sensors

in close proximity to the leak do detect it sooner, and it then follows if multiple sensors, majority of which

are in close proximity together, detect a leak at the same time, the likelihood of a false positive declines.

When spurious increases in reconstruction error occur, it is suspected that they generally do not group

together based on the location within the WDN to the same extent that actual leaks do. It then follows

that increasing the number of sensors in the water distribution network would reduce the likelihood of

false positives. Assuming the aforementioned benefits is seen, it would allow for a reduction in the size of

the rolling average used, which would increase the accuracy of the threshold function.

The design function design problem boils down to pattern recognition and signal analysis conducted on

the reconstruction error. This is a more general problem that is likely seen across industries and fields of

research similar as to how anomaly detection boils down to a more general problem. As such, it is not

unreasonable to believe that there exist more elaborate techniques than the aforementioned that may

also be beneficial for a project like this. This small feature of the overall project is a niche problem in itself

and is not something typically emphasized during standard civil engineering curriculum, so it is not

unreasonable that techniques or approaches not mentioned here, but routinely utilized in other

industries, also would outperform the current threshold function design.

36

3.8 Limitations and future work.

For one, this is a preliminary investigation on whether the autoencoder can be used for leak detection,

there are many obstacles before one can implement a real system, and the purpose of this project is only

to function as a preliminary test to evaluate the validity of the autoencoder for such a purpose. Due to

this, a variety of choices have been made throughout this project, some of which are perhaps not that

realistic in a real-world setting. The motivation for these choices has been to find the leaks with the

somewhat limited available resources. In addition, initially, the motivation has been to check if the

autoencoder can work at all, and as such testing on artificial data is a common first-step, to exclude

inadequate data preprocessing as a potential reason as to not be able to detect any leaks.

First, the entire project has been done on a computer with a CPU and not a GPU. It was initially assumed

that due to the fact that the dataset is a timeseries, rather than images or some other complex type of

data, a CPU would suffice. However, the training of the model takes a while, depending on the

configuration at hand, and each search for a leak typically requires multiple training stages, as the time

interval tested on in which a leak is not found in, is added to the training for the next iteration. The

training times slowed down the overall project occasionally, and more time would’ve been available for

testing if this was not the case. However, a sizeable chunk of this problem was circumvented by the over-

night running of the script. Towards the end, it was made apparent that online resources such as Kaggle

or Google Collaboratory can supply free online GPU usage. Unfortunately, Kaggle has a time limitation,

and the Google Collaboratory would require moving the script from the IDE to a notebook-format, and

this was chosen against due to time constraints.

As a consequence of this, it was decided that the algorithm would start training, validating, and testing on

the data about one or two months prior to the leak occurring, and not the whole year. This reduces the

duration in which potential false positive leak detections can occur and is not something that would be

seen in a real network. But it allowed to greatly reduce the time needed to iterate through the leak

datasets with different configurations of the autoencoder in order to test a variety of different settings.

Furthermore, seeing as all aspects of the leaks were known, such as size of the leak, start date, location,

growth rate etc., it was possible to adjust the threshold function in such a way that it was finetuned to

detect the leaks and not false positives, rather to blindly set it a certain configuration and attempt to

start detecting. By and large, this finetuning was done by adjusting the standard deviation multiplier. But

seeing as one type of leak may be triggered by one configuration of the threshold function, and a

different type of leak by another, it was challenging to find a middle-point to fit all types of leaks and

doing so in a real system is not realistic. It is not unreasonable to believe that a different threshold

function design would outcompete the current design also. Perhaps multiple different threshold

functions, and an overarching one to determine if there is a match of a timespan in which a leak occurs

across multiple threshold functions would be a more optimal design.

One minor shortcut implemented in the threshold function is found in the check in which a sample of

interest is compared with a sample occurring a few hours ahead, and the corresponding sample found 24

hours prior. The motivation was to reduce the likelihood of false positives, but it influences the earliest

timestep a leak would be able to be detected in a real life. Such a threshold design could not be

37

implemented in a real-world setting, as whatever leak was detected would always be delayed by a few

hours.

As mentioned, a number of different possible of threshold function designs should probably have been

implemented and tested, but the time did not allow. Due to the ability to do such finetuning of the

standard deviation multiplier, one should be wary of comparing the results of this project with others, on

the numerical basis of the results alone. As they have been obtained under one set of circumstances in

this project, and some other project was done under a different set of circumstances. This is a common

occurrence noted in the review article by (Hu, et al., 2021), that some studies use artificial or real data,

high or low sampling rate, the detection of only bursts or transients too, and a host of other differences,

making comparisons between studies more difficult. This was partially the motivation for the BattLeDIM

competition to begin with, to have researchers attempt to tackle the same problem under the same set

of circumstances.

It is suspected that the use of artificial data is the most impactful shortcut in this project overall. By using

artificial data from a model of a WDN, one is able to circumvent problems that are likely to be seen in a

real system. Pressure data is notoriously quite noisy. The input data used in this project also fluctuates

somewhat, but any comparison between the variance found in the input data and a real dataset is not

done. Although, the datasets have been vetted by a number of researchers, so this is likely not a large

problem if a problem at all. Furthermore, the seasonality in the pressure data that is utilized in this

project is on a one-week basis, with an increase towards the weekend, without any holidays or special

events. This might also not be completely reflective of a real WDN but is a close approximation. Some

WDNs belong to cities that receive a substantial number of tourists or visitors during the summer or

winter months, which would drive up water consumption, which would reduce pressure in the WDN.

Different minor peculiarities such as these are also not considered in the model of L-Town and the

pressure data used as input. In addition, the use of artificial data allowed the search for only one leak

occurring at the same time. If several did occur, one could perhaps obfuscate the other.

In a real system, one would likely experience sensor failures of some kind, whether that be the sensor

itself or a failure to reliable transmit the data. To overcome these issues the typical approach is to

implement a number of different data preprocessing steps, before the training of the autoencoder. These

data preprocessing steps add further uncertainty to the data, and the model’s accuracy after it has

subsequently been trained on this data will suffer. Potential data preprocessing steps could be to

interpolate missing data, scale some known leak-free data into a missing section in the timeseries or a

variety of other more complex measures. Reliable data preprocessing may also not be possible depending

on the quality of the remaining sensor data that is received. Seeing as the purpose for this project was a

preliminary examination of the autoencoder, it was deemed reasonable to first test on artificial data. If a

shortcoming was later encountered, it would then be known that it was due to the autoencoder and not

inadequate data preprocessing.

Regardless of the aforementioned shortcuts, the overall goal was never to make a direct comparison with

a real system or attempt to outcompete some other study. The goal was to conduct a preliminary

investigation into whether an autoencoder could be used for leak detection. Later the goal grew, and a

series of minor tests where conducted, as seen noted in 3.2 through 3.5.

38

As mentioned introductorily, (Romano, et al., 2012), have implemented a ML algorithm in a real system.

They used an ANN and were able to detect simulated pipe bursts by opening fire hydrants. Since the final

results show that the detection of pipe bursts can also be done with the autoencoder, while also

detecting slowly increasing leaks, it is reasonable to think that an autoencoder could be used in a real

system. In addition, as previously noted, the results can perhaps be improved further by re-designing the

threshold function. There are however some caveats, the most meaningful of which is aforementioned

use of artificial data. Yet there still is a number of other precautions or aspects to keep in mind to take

before implementation in a real system. In addition, a few recommendations of different avenues to

investigate further at a later stage. Some of which will be briefly discussed in the following.

When the autoencoder is trained in this project, it is trained on data that is known to be leak-free. Due to

the high-water loss seen in Norwegian cities, procuring such data that one is confident is leak-free can be

a challenge. It then follows that there would be a large benefit to be seen, if testing of the autoencoder

on tainted data also showed promise. To the author’s knowledge, such a test has not been done. In such

a system, the autoencoder would be trained on the leaks up until a certain data, with the assumption

that these leaks are endemic to the system, but any subsequent leak would still appear to be an anomaly,

which can perhaps be detected. Presumably the endemic leaks would cause some sort of noise or

unreliability to the overarching system, but the size of this problem is not known. As such, an

investigation into finding how well an autoencoder can handle training and testing on tainted data would

also be beneficial. An attempt at quantifying to what the degree the WDN training data can be tainted by

other leaks, while still being able to detect subsequent leaks would be interesting to see and would have

large implications to the real-world implementation of a system for leak detection based on an

autoencoder.

In a real WDN changes are made to the system occasionally as the city develops or routine pipe

rehabilitation is done. The WDN used to retrieve the pressure data in this project is kept stable

throughout the year. In a real system, pipes are occasionally taken out of service and rehabilitated, new

neighborhoods are created or some other activity is done that changes the network hydraulically. If one

were to train an autoencoder across such changes, how impactful they would be on the final results is

not known. As long as the pressure levels remain stable throughout, the change is presumably small, but

it remains as something that one should perhaps be cautious of if false positives are detected in the

proximity of on-going WDN rehabilitation. Presumably, creating WDN models in which such a change is

made is at some point in a year should not be too challenging, so it would be interesting to see the

outcome of such a project. Although, this problem could perhaps be circumvented to some degree with

strong communicational connections within the different sections of a water utility.

Furthermore, as noted in 3.3, a sensor’s location in the WDN have had an influence on the reliability of

the sensors. In this project, the sensors n1, n4, n31 for area C, and n215 and n228 for area B have been

significantly more prone than others when false positives were detected. As is noted in figure 15 and 16,

the sensors in area C follow each other closely. The two in area B are not as closely linked, but the

reconstruction error is continuously larger for n215. Based on this, in conjunction with the results from

3.5, which showed that one could achieve fairly good results with substantially fewer sensors too, it

would perhaps be reasonable to have, in a real operational network, one autoencoder for each area of

the overall network or DMA that is somehow separated from one another hydraulically. Such a change

39

would perhaps also benefit the rudimentary leak localization that could be done by the autoencoder

itself.

Seeing as somewhat adequate results can be obtained with a substantially smaller sensor number, it then

follows that for the municipality, the entry cost to such a system is slightly lower. However, this assumes

that the sensor cost is a sizeable portion of the overall cost of such a system which may not actually be

the case. Still, with a lower entry cost, it would be easier for a municipality to justify the initial

investment, and the performance of the whole system would then gradually increase as more sensors are

purchased at a later stage. The data analysis aspect of such a system would presumably remain

somewhat similar cost-wise regardless of the number of sensors implemented in the WDN and is likely a

service the municipality would have to purchase, perhaps jointly with other municipalities, from a

consultancy firm of some kind that offers such a service. Close communication and record-keeping of

both the data analysis and the daily use and maintenance of the WDN would be a necessity between the

different actors in such an ecosystem, in order to reduce the occurrences of false positives.

4 Conclusion

To conclude, and to answer the main research question: the autoencoder can indeed work for leak

detection. It has shown itself reliable at detecting bursts and leaks of the slow increase classification at an

early stage. It failed at detecting incipient leaks, but more research is needed to conclude whether the

detection of incipient leaks with an autoencoder is an impossibility. The two different approaches to

training the autoencoder were not as impactful as initially expected and the structure of the autoencoder

allows it to do some basic leak localization as well. Furthermore, it was showed that the amount of data

needed for leak detection was not as large as initially expected, as most leaks were found when only five

days with 5-minute samples were used. The number of sensors could also be greatly reduced, assuming

they are not placed in such a way they’re hydraulically disconnected. Although, it should be noted that

both the reduction of sensors and the different training intervals resulted in a gradually worse

performance of the autoencoder. In a real-world system, after a leak is detected, a quick visual inspection

of the reconstruction plot for the sensors of interest can easily be done, circumventing this problem to

some degree.

For future projects there is still some work that would be interesting to see the outcome of, which can be

done with artificial data as used in this project. One of which is the aforementioned training of the

autoencoder on pressure values retrieved from a WDN with a number of on-going leaks, to see if the

autoencoder is still able to detect any newly formed leaks. Another challenge is to tackle the problem of

incipient leaks, which remained undetectable throughout this project. Besides this, the largest limitation

of this project was the use of artificial data, as such the natural next step and recommendation for future

work is to implement an autoencoder for leak detection without the use of artificial data. As shown, the

number of sensors necessary to detect a leak isn’t particularly large before a somewhat functional system

is established, then any later investments would simply further improve the system further.

40

5 References

Anandakrishnan, A. et al., 2017. Anomaly Detection in Finance: Editors’ Introduction. Halifax, Nova Scotia,

s.n.

BattLeDIM, 2020. BattLeDIM. [Online]

Available at: https://battledim.ucy.ac.cy/

[Accessed May 2022].

BattLeDIM, 2020. BattLeDIM Problem Statement. [Online]

Available at: https://battledim.ucy.ac.cy/wp-

content/uploads/2020/02/BattLeDIM_Problem_Description_and_Rules-v1.3.1.pdf

[Accessed May 2022].

Cody, A. R., Tolson, A. B. & Orchard, J., 2020. Detecting Leaks in Water Distribution Pipes Using a Deep

Autoencoder and Hydroacoustic Spectrograms. American Socity of Civil Engineers, May.

Daniel, I. et al., 2022. A Sequential Pressure Based Algorithm for Data-Driven Leakage Identification and

Model-Based Localization in Water Distribution Networks. Journal of water resources planning and

management, June.

Fisher, S., 2016. Waterworld. [Online]

Available at: https://www.waterworld.com/water-utility-management/article/16202027/addressing-the-

water-leakage-challenge-in-copenhagen

[Accessed May 2022].

Ghawaly, M. J., Nicholson, D. A., Archer, E. D. & Michael, W. J., 2022. Characterization of the Autoencoder

Radiation Anomaly Detection (ARAD) model. Engineering Applications of Artifical Intelligence, 24

February.

Goodfellow, I., Bengio, Y. & Courville, A., 2016. Deep Learning. In: Autoencoder. s.l.:MIT Press.

Hult, F., 2022. Vg.no. [Online]

Available at: https://www.vg.no/nyheter/innenriks/i/BjK9jl/naa-er-det-saa-toert-at-oslo-maa-faa-vann-

fra-nabokommunene

[Accessed Mai 2022].

Hu, Z. et al., 2021. Review of model-based and data-driven approaches for leak detection and location in

water distribution systems. Water Supply, November.

Ioffe, S. & Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. Arxiv, February.

Lalle, Y., Fourati, M., Fourati, L. & Barraca, J., 2021. Communication technologies for smart water grid

applications: Overview, opportunities, and research directions. Computer Networks.

Liemberger, R. & Wyatt, A., 2018. Quantifying the global non-revenue water problem. Water Science &

Technology Water supply, July.

41

Mounce, S. & Boxall, J., 2010. Implementation of an on-line artificial intelligence district meter area flow

meter data analysis system for abnormality detection: A case study. Water Science and Technology Water

Supply, July.

Puust, R., Kapelan, Z., Savic, D. A. & Koppel, T., 2010. A review of methods for leak management in pipe

networks. Urban Water Journal, 24 Febuary.

PyTorch, 2016. PyTorch. [Online]

Available at: PyTorch.org

[Accessed January 2022].

Romano, M., Kapelan, Z. & Savic, D., 2012. Automated Detection of Pipe Bursts and other Events in Water

Distribution Systems. Journal of Water Resources Planning and Management, May.

Romano, M., K. Z. & Savic, D., 2012. Testing of the system for detection of pipe bursts and other events in

a UK water distribution system. 14th Water Distribution Systems Analysis Conference, September.

Romano, M. K. Z. S. D., 2010. Real-time leak detection in water distribution systems. 12th Water

Distribution Systems Analysis Conference, September.

Romero-Ben, L. et al., 2022. Leak Localization in Water Distribution Networks Using Data-Driven and

Model-Based Approaches. Journal of water resources planning and management, May.

Soldevila, A. et al., 2016. Leak localization in water distribution networks using a mixed model-

based/data-driven approach. Control engineering practice, October.

Srivastava, N. et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal

of Machine Learning Research .

Unicef, 2022. Unicef. [Online]

Available at: https://www.unicef.org/stories/water-and-climate-change-10-things-you-should-know

[Accessed May 2022].

Wu, Y. & Liu, S., 2016. A review of data-driven approaches for burst detection in water distribution

systems. Urban Water Journal, December.

You, S. et al., 2021. Semi-supervised automatic seizure detection using personalized anomaly detecting

variational autoencoder with behind-the-ear EEG. Computer Methods and Programs in Biomedicine, 14

November.

1

6 Appendix

Appendix number Description

A Table of ML terminology

B Table of hyperparameter explanations

C Main script

D Autoencoder example

E Data import and threshold function

A:

Table 12 Brief overview of some ML terminology

Term Explanation

Number of
layers

By adding multiple layers to the model, one increases the number of internal
parameters to be finetuned which in turn allows for the learning of more complex
functions. More colloquially, on an image dataset with handwritten numbers such as
MNIST, one could expect to see the first layer’s output be able to pick up the edges
of the number, second pick up loops, and third put them together into a number.

The number of neurons often is decided by the particular problem one is trying to
solve. In addition, for an autoencoder, how steep the encoder and decoder ought to
be is typically solved by trial and error.

Sample A sample in the dataset is one row of data. If the data is a timeseries, one sample
would then be a timestep, and the corresponding measurements or values
associated with that given timestep.

Feature A feature in the dataset is one column of data. If the data is a timeseries, the number
of features would correspond to the number of different types of measurements.
The number of neurons in an input and output layer for autoencoders generally
correspond to the number of features in the dataset one intends to feed the model.

Training,
validation, and
testing split
ratios

The split ratio concerns at which sections of the overall dataset should be used for
training, validation, and testing. In the case of an anomaly detection, one can
continuously increase the training and validation data if an anomaly is not found,
allowing for an accumulative training phase.

Training and
validation loss

When training and validating the model, it is common to keep track of training and
validation loss. Ideally these numbers are rapidly decreasing in the beginning and
become as low as possible. Iterations with models that have continuously larger
training loss generally show smaller reconstruction errors and are more likely to
detect false positives.

B:
Table 13 Brief overview of the purpose of different hyperparameters

Name Purpose

Batch size Batch size is the number of samples the model sees before updating the model’s
internal parameters such as weights and biases. When choosing the size of batch, it
depends on the problem one is trying to solve. Typical values range from one to
several thousand, depending on the type of problem and type of data one is working
with.

Epochs The number of epochs is the number of times the model with work through the entire
training dataset. Meaning with 1000 epochs, a dataset with 100 000 values, the model
will see a total of 108 samples. If the batch size is 100, the model’s internal parameters
will be updated 106 times. As with the batch size, the choice of number of epochs
depends on the problem at hand, but typically it is a higher value than the batch size,
ranging from tens to several thousands.

Learning rate The learning rate is the increment of change for each iteration of an optimization
algorithm as it attempts to minimize the loss function. Typically, a learning rate is set
somewhere between 0.01 and 0.00001 in machine learning algorithms, and it is a
hyperparameter that needs finetuning for the model and problem at hand.

Loss function The purpose of the loss function is to compute the difference between the expected
value and the output value during the training phase. The size of discrepancy between
the expected and output value determines how heavily the weights and biases, which
are internal model parameters, in the backpropagation algorithm should be shifted
during the learning stage for the autoencoder. A wide variety of possible functions
exist for this purpose, a well-known one is known as the Mean Square Error (MSE).

Optimizer The purpose of an optimizer algorithm is to minimize the loss function in a neural
network. There are several different algorithms to be used for this purpose. Stochastic
gradient descent is a widely used option, but alternatives in which the learning rate is
altered is also available. The choice of optimizer is largely dependent on what
performs best through trial and error and the operator’s experience (Goodfellow, et
al., 2016).

Activation
function

The activation function’s purpose is to transform the weights and biases of a neuron
to a single number, typically between 0 and 1. There are number of functions that are
used for this purpose. Examples being Tanh, ReLU, Leaky-ReLU and the Sigmoid
function. The output from the activation punction determines the degree in which the
neuron is active for subsequent passes through the neural network.

Batch
normalization

Batch normalization normalizes the internal inputs from one layer of the model to the
next, resulting in a more robust model architecture. Generally, by utilizing batch
normalization one can utilize higher learning rates and be less careful with the
initialization, making the model more robust (Ioffe & Szegedy, 2015).

Drop out To avoid overfitting (when the model excels at training data, but fails at testing,
indicating a failure to generalize), drop out is a feature developed to reduce such
troubles. It works by randomly dropping a neuron in a layer and its connections, so the
others have to accommodate for it, and in doing so, making the model more robust
and reduces the chance of overfitting (Srivastava, et al., 2014).

C:
import pandas as pd

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import collections

import torch

import torch.nn as nn

from torch.autograd import Variable as V

from torch.utils.data import DataLoader

from random import randrange

from datetime import datetime

from statsmodels.tsa.seasonal import STL

from autoencoders_and_more import AutoEncoder_1, AutoEncoder_10,

AutoEncoder_11, AutoEncoder_12, AutoEncoder_13, AutoEncoder_14, AutoEncoder_2,

AutoEncoder_3, AutoEncoder_4, AutoEncoder_5, AutoEncoder_6, AutoEncoder_7,

AutoEncoder_8, AutoEncoder_9

from rolling_AE_functions import create_folders, import_data,

plot_reconstruction, leak_location_plot, threshold_function_v3

def train(epochs, model, model_loss):

 try:

 c = model_loss.epoch[-1]

 except:

 c = 0

 for epoch in range(epochs):

 losses = []

 dl = iter(xdl)

 for t in range(len(dl)):

 xt = next(dl)

 y_pred = model(V(xt))

 l = loss(y_pred, V(xt))

 losses.append(l)

 optimizer.zero_grad()

 l.backward()

 optimizer.step()

 val_dl = iter(tdl)

 val_scores = [score(next(val_dl)) for i in range(len(val_dl))]

 model_loss.epoch.append(c + epoch)

 model_loss.loss.append(l.item())

 model_loss.val_loss.append(np.mean(val_scores))

 if epoch%500==0 or epoch == epochs:

 print(f'Epoch: {epoch} Loss: {l.item():.5f} Val_Loss:

{np.mean(val_scores):.5f}')

def score(x): #score function across all sensors, only useful for evaluation

of AE's to save time.

 y_pred = model(V(x))

 x1 = V(x)

 return loss(y_pred, x1).item()

def score_v2(xt, df):

 """"

 Output from this function is a dataframe in which each cell is the MSE

between

 input cell and model's predicition for the given input cell

 """

 y_pred = model(V(xt))

 x1 = V(xt)

 n, m = np.shape(y_pred)

 for i in range (n):

 df.iloc[i] = (x1[i].detach().numpy()-y_pred[i].detach().numpy())**2/2

 return df

if __name__ == '__main__':

 time_2018 = pd.date_range(start = '2018-01-01 00:00:00', end = '2018-12-31

23:55:00', freq = '5min')

 time_2018 = {'Timesteps': time_2018}

 time_df = pd.DataFrame(data = time_2018)

 leak_flows = pd.read_csv('2018_leakages_dot.csv', delimiter = ';')

 leak_data = [{'leak':'p232', 'start': 8687, 'stop': 11634, 'h_number':

1, 'h_stop': 3},

 {'leak': 'p461', 'start': 6625, 'stop': 26530, 'h_number':

1, 'h_stop': 4},

 {'leak': 'p538', 'start': 39561, 'stop': 43851, 'h_number':

7, 'h_stop': 11},

 {'leak': 'p628', 'start': 35076, 'stop': 42883, 'h_number':

6, 'h_stop': 10},

 {'leak': 'p673', 'start': 18335, 'stop': 23455, 'h_number':

2, 'h_stop': 6},

 {'leak': 'p866', 'start': 43600, 'stop': 46694, 'h_number':

6, 'h_stop': 10},

 {'leak': 'p158', 'start': 80097, 'stop': 85125, 'h_number':

17, 'h_stop': 20},

 {'leak': 'p183', 'start': 62817, 'stop': 70192, 'h_number':

12, 'h_stop': 16},

 {'leak': 'p369', 'start': 85851, 'stop': 89815, 'h_number':

18, 'h_stop': 21},

 {'leak': 'p31', 'start': 51573, 'stop': 64437, 'h_number':

9, 'h_stop': 20},

 {'leak': 'p654', 'start': 73715, 'stop': -9999, 'h_number':

10, 'h_stop': 24},

 {'leak': 'p257', 'start': 2312, 'stop': -9999, 'h_number':

1, 'h_stop': 24},

 {'leak': 'p810', 'start': 61254, 'stop': -9999, 'h_number':

13, 'h_stop': 24},

 {'leak': 'p427', 'start': 13301, 'stop': -9999, 'h_number':

1, 'h_stop': 24},]

 leak_df = pd.DataFrame(data = leak_data)

 #dataframe to keep the total results, the preliminary results are

concatenated for each iteration

 super_results = pd.DataFrame(index = [':)'], columns = ['Model

iteration','Dataset','Time detected leak', 'Time true leak',

'Difference','Accum. difference'], data = 0)

 all_datasets = ['p538','p183','p158', 'p369', 'p673',

'p866','p232','p461','p628','p31','p257', 'p427', 'p654', 'p810']

 models = [AutoEncoder_1, AutoEncoder_2, AutoEncoder_3, AutoEncoder_4,

AutoEncoder_5, AutoEncoder_6, AutoEncoder_7, AutoEncoder_12]

 #chosen_model = models[randrange(len(models))]

 models_container = [AutoEncoder_6 for i in range (150)]

 #models_container = [chosen_model for i in range(150)]

 for kk in range(150):

 startTime = datetime.now()

 folders = create_folders()

 loss = nn.MSELoss()

 possible_batch_sizes = [500, 750, 1000, 1500, 2000, 2500, 3000, 3500]

 batch_size = 750

 possible_epochs = [1000, 1500, 2000, 2500, 3000, 3500, 4000, 750]

 epochs = 2500

 possible_learning_rates = [0.001, 0.0001, 0.00001, 0.005, 0.0005,

0.0025, 0.00025]

 learning_rate = 0.0025

 number_of_neurons = 36 #original

 #number_of_neurons = 31 #for first iteration

 #number_of_neurons = 22 #for second iteration

 #number_of_neurons = 14 #for third iteration

 #number_of_neurons = 10 #for fourth iteration

 #number_of_neurons = 8 #fith

 #number_of_neurons = 5 #fifth, but with no tank, pump and demand,

 accumulated_diff = 0

 comparison_number_multiplier = 1

 comparison_number_multiplier_v2 = 2.75

 #time_intervals = [14, 10, 7, 5, 3, 2, 1]

 #time_intervals = [5, 1]

 time_intervals = [14] #1 day did not work, couldn't detect anything

 #time_intervals = [2]

 #h_time_multiplier = [1, 2, 2, 3, 6, 9, 14] #rough estimates

 #h_time_multiplier = [3, 12] #rough estimates

 h_time_multiplier = [1]

 for dataset_number, dataset in enumerate(all_datasets):

 model = models_container[dataset_number](number_of_neurons)

 print(model)

 adam = torch.optim.Adam(model.parameters(), lr = learning_rate)

 adamW = torch.optim.AdamW(model.parameters(), lr = learning_rate)

 nadam = torch.optim.NAdam(model.parameters(), lr = learning_rate)

 adamax = torch.optim.Adamax(model.parameters(), lr =

learning_rate)

 possible_optimizers = [adam, adamW, nadam, adamax]

 optimizer =

possible_optimizers[randrange(len(possible_optimizers))]

 res = np.array([])

 leak_found = False

 no_leak_found = False

 timesteps_in_day = 288

 num_days_tv = time_intervals[kk]

 freq_t_v = str(num_days_tv) + 'D'

 num_days = time_intervals[kk]

 freq = str(num_days)+'D'

 #timestep frequency in which the training, validation changed,

currently 2 weeks

 every_second_week = pd.bdate_range('2018-01-01','2018-12-31

23:55:00', freq = freq_t_v)

 #Empty dataframe in which to concatenate output from score-

functions later on

 Y = import_data('p232') #import any dataset, to extract columns

for dataframe-formatting

 X_per_sensor = pd.DataFrame(columns = Y.columns)

 for iii, leak in enumerate(leak_df['leak']):

 if leak == dataset:

 dataset_nr = iii

 h = leak_df.loc[dataset_nr]['h_number']

 h = h*h_time_multiplier[kk] #for tidsjustering

 while leak_found == False:

 #updates training and validation time each iteration of the

while-loop,

 start_train_time = every_second_week[h-1]

 train_time = every_second_week[h]

 vald_time = every_second_week[h+1]

 if h >

leak_df.loc[dataset_nr]['h_stop']*h_time_multiplier[kk]:

 leak_found = True

 leak_timestep = -9999

 break

 print(f'Start training time: {start_train_time}, training

until: {train_time}, validation until: {vald_time}')

 #if end of year and leak still not found.

 if vald_time >= pd.to_datetime("2018-12-31 00:00:00"):

 no_leak_found = True

 break

 #separate timeframe-variable to keep track of training times,

freq is also 14 days.

 test_timeframe = pd.bdate_range(vald_time,'2018-12-31

23:55:00', freq = freq)

 time2 = test_timeframe[0]

 time3 = test_timeframe[1]

 print(f'Testing from {time2} until {time3}')

 #keep track of valid_time timestep in numerical value for

later

 vald_time_int = time_df.loc[time_df['Timesteps'] == vald_time]

 vald_time_int = int(vald_time_int.index.values)

 #import the dataframe with the given dataset, and normalize

 X = import_data(dataset)

 X = X[:'2018-12-31'] #only use year 2018

 X = (X - X[:train_time].mean())/X[:train_time].std()

 #training and validation data is extracted from X

 X_train = X[start_train_time:train_time]

 #X_train = X[:train_time]

 X_val = X[train_time:vald_time]

 xtr = torch.FloatTensor(X_train.values)

 xtv = torch.FloatTensor(X_val.values)

 #testing the AE between time2 and time3

 X_test = X[time2:time3]

 xt = torch.FloatTensor(X_test.values)

 #creating the dataloader for validation and training

 xdl = DataLoader(xtr, batch_size=batch_size)

 tdl = DataLoader(xtv, batch_size=batch_size)

 #Utilize a named tuple to keep track of scores at each epoch

 model_hist = collections.namedtuple('Model', 'epoch loss

val_loss')

 model_loss = model_hist(epoch=[], loss=[], val_loss=[])

 #training the AE

 train(model=model, epochs=epochs, model_loss=model_loss)

 #makes a copy of the X_test dataframe to have all the values

set to zero, before later filling it from score functions

 X_test_copy = X_test.copy()

 for col in X_test_copy.columns:

 X_test_copy[col].values[:] = 0

 iter_res = []

 xt = torch.FloatTensor(X_test.values)

 for i in range(len(xt)-2):

 b = xt[(i):(i+2)]

 iter_res.append(score(b))

 #fills up the aforementioned dataframe with the MSE per sensor

 X_test_copy_filled = score_v2(xt, X_test_copy)

 X_per_sensor = pd.concat([X_per_sensor, X_test_copy_filled])

 res = np.concatenate([res, np.array(iter_res)])

 #X_per_sensor.to_csv(f'e{epochs}_bs{batch_size}_lr{learning_ra

te}_dataset{dataset}_.csv')

 if h > 1:

 thres_results_df, leak_found, leak_timestep =

threshold_function_v3(X_per_sensor, dataset, vald_time_int,

comparison_number_multiplier, comparison_number_multiplier_v2)

 print(f'Leak found: {leak_found}')

 if leak_found:

 print(f'Leak is found : -), {dataset}')

 print(thres_results_df)

 else:

 leak_timestep = 0

 h = h + 1

 #various model configuration information

 modeltxt = (f'Epochs: {epochs}, Learning rate: {learning_rate},

Batch_size: {batch_size}, Optimizer: {optimizer}, Loss function: {loss},

Dataset = {dataset} \n\n Model: {model}')

 modeltxt2 = (f'Training time ended at: {train_time}, validation

time ended at: {vald_time}')

 modeltxt_total = modeltxt + modeltxt2

 print(modeltxt_total)

 # txt_file = open(folders[3]+'_'+str(kk)+'_12_04.txt', "w")

 # txt_file.write(modeltxt_total)

 # txt_file.close()

 #creates a dataframe in which to save results

 super_results_holder = pd.DataFrame(index = [':)'], columns =

['Model iteration','Dataset','Time detected leak', 'Time true leak',

'Difference','Accum. difference'], data = 0)

 super_results_holder['Model iteration'] = kk

 super_results_holder['Dataset'] = dataset

 super_results_holder['Time detected leak'] = leak_timestep

 if leak_timestep != 0:

 super_results_holder['Volume'] =

leak_flows.iloc[leak_timestep][dataset]

 else:

 super_results_holder['Volume'] = -9999

 #super_results_holder['Threshold'] = threshold_number

 if no_leak_found:

 super_results_holder['Time detected leak'] == -9999

 super_results_holder['Time true leak'] =

leak_df['start'][dataset_nr]

 if no_leak_found == False:

 accumulated_diff = abs(leak_timestep -

leak_df['start'][dataset_nr]) + accumulated_diff

 super_results_holder['Difference'] = (abs(leak_timestep -

leak_df['start'][dataset_nr]))

 super_results_holder['Accum. difference'] = accumulated_diff

 super_results_holder['Running time 1 DS'] = str(datetime.now()-

startTime)

 super_results_holder['cmp_1'] = comparison_number_multiplier #for

averages

 super_results_holder['cmp_2'] = comparison_number_multiplier_v2

#for STDs

 super_results = pd.concat([super_results, super_results_holder])

 print(super_results)

 #super_results.to_csv(folders[2] +'_21_may_timeinterval_testing_'

+ (str(kk)) + '.csv')

D:
import torch

import torch.nn as nn

class AutoEncoder_6(nn.Module):

 def __init__(self, length):

 super().__init__()

 self.lin1 = nn.Linear(length, 26)

 self.lin2_bn = nn.BatchNorm1d(26)

 self.lin2 = nn.Linear(26, 12)

 self.lin3_bn = nn.BatchNorm1d(12)

 self.lin3 = nn.Linear(12, 8)

 self.lin4_bn = nn.BatchNorm1d(8)

 self.lin4 = nn.Linear(8, 4)

 self.lin5 = nn.Linear(4, 8)

 self.lin6_bn = nn.BatchNorm1d(8)

 self.lin6 = nn.Linear(8, 12)

 self.lin7_bn = nn.BatchNorm1d(12)

 self.lin7 = nn.Linear(12, 26)

 self.lin8_bn = nn.BatchNorm1d(26)

 self.lin8 = nn.Linear(26, length)

 def forward(self, data):

 x = torch.tanh(self.lin1(data))

 x = torch.tanh(self.lin2(self.lin2_bn(x)))

 x = torch.tanh(self.lin3(self.lin3_bn(x)))

 x = torch.tanh(self.lin4(self.lin4_bn(x)))

 x = torch.tanh(self.lin5(x))

 x = torch.tanh(self.lin6(self.lin6_bn(x)))

 x = torch.tanh(self.lin7(self.lin7_bn(x)))

 x = torch.tanh(self.lin8(self.lin8_bn(x)))

 return x

E:
import pandas as pd

import numpy as np

from datetime import datetime

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

import seaborn as sns

import os

import os.path

import math

from statsmodels.tsa.seasonal import STL

def import_data(dataset):

 file_path = f'data/{dataset}/'

 print(dataset)

 sensor_columns = ['n1', 'n4', 'n31', 'n54', 'n469', 'n415', 'n519',

'n495', 'n105', 'n114', 'n516', 'n549',

 'n332', 'n506', 'n188', 'n410', 'n429', 'n458', 'n613',

'n342', 'n163', 'n215', 'n229',

 'n644', 'n636', 'n679', 'n288', 'n726', 'n296', 'n722',

'n752', 'n769', 'n740']

 X = pd.read_csv(file_path + 'Levels.csv', index_col=0, parse_dates=[0])

 pressure = pd.read_csv(file_path +'Pressures.csv', index_col=0,

parse_dates=[0], usecols=sensor_columns)

 pump_flows = pd.read_csv(file_path + 'Flows.csv', index_col=0,

parse_dates=[0]).squeeze()

 X = X.reset_index()

 pressure = pressure.reset_index()

 X = pd.concat([X, pressure], axis = 1)

 X = X.set_index('index')

 #X = X.drop('T1', axis = 1)

 X['PUMP_1'] = pump_flows['PUMP_1']

 X['Demand'] = pump_flows['p227']+pump_flows['p235']-pump_flows['PUMP_1']

 #X = X.resample('15T').sum()

 #X = X.between_time('00:00:00','06:00:00')

 return X

def cluster(data, maxgap):

 data.sort()

 groups = [[data[0]]]

 for x in data[1:]:

 if abs(x - groups[-1][-1]) <= maxgap:

 groups[-1].append(x)

 else:

 groups.append([x])

 return groups

def threshold_function_v3(X_per_sensor, dataset, vald_time_int,

comparison_number_multiplier, comparison_number_multiplier_v2):

 time_2018 = pd.date_range(start = '2018-01-01 00:00:00', end = '2018-12-31

23:55:00', freq = '5min')

 time_df = pd.DataFrame(columns = ['Timesteps'] ,data = time_2018)

 hour_time = pd.timedelta_range(start = '00:00:00', end='23:59:00',freq =

'1H')

 leak_data_modified = [{'leak': 'p654', 'start': 20690, 'stop': 45000,

'leak time': time_df.iloc[20690], 'leak time numeric': 20690

 {'leak': 'p628', 'start': 35076, 'stop': 42883,

'leak time': time_df.iloc[35076], 'leak time numeric': 35076},

 {'leak': 'p866', 'start': 43600, 'stop': 46694,

'leak time': time_df.iloc[43600], 'leak time numeric': 43600},

 {'leak': 'p183', 'start': 62817, 'stop': 70192,

'leak time': time_df.iloc[62817], 'leak time numeric': 62817},

 {'leak': 'p369', 'start': 80000, 'stop': 89815,

'leak time': time_df.iloc[85851], 'leak time numeric': 85851},

 {'leak': 'p538', 'start': 39561, 'stop': 43851,

'leak time': time_df.iloc[39561], 'leak time numeric': 39561},

 {'leak': 'p158', 'start': 80097, 'stop': 85125,

'leak time': time_df.iloc[80097], 'leak time numeric': 80097},

 {'leak': 'p232', 'start': 8687, 'stop': 11634,

'leak time': time_df.iloc[8687], 'leak time numeric': 8687},

 {'leak': 'p461', 'start': 6625, 'stop': 26530,

'leak time': time_df.iloc[6625], 'leak time numeric': 6625},

 {'leak': 'p31' , 'start': 51573, 'stop': 64437,

'leak time': time_df.iloc[51573], 'leak time numeric': 51573},

 {'leak': 'p673', 'start': 18335, 'stop': 23455,

'leak time': time_df.iloc[18335], 'leak time numeric': 18335},

 {'leak': 'p257', 'start': 2312, 'stop': 105120,

'leak time': time_df.iloc[2312], 'leak time numeric': 2312},

 {'leak': 'p427', 'start': 13301, 'stop': 105120,

'leak time': time_df.iloc[13301], 'leak time numeric': 13301},

 {'leak': 'p654', 'start': 53968, 'stop': 105120,

'leak time': time_df.iloc[53968], 'leak time numeric': 53968},

 {'leak': 'p810', 'start': 60706, 'stop': 105120,

'leak time': time_df.iloc[60706], 'leak time numeric': 60706}]

 leak_df_modified = pd.DataFrame(data = leak_data_modified)

 leak_df_modified = leak_df_modified.set_index('leak')

 leak_timestep = 0

 numb_end_sensors = 34

 prelim_results_dataframe = pd.DataFrame(index = ['Detected', 'Timestep'],

columns = [X_per_sensor.columns[1:numb_end_sensors]], data = 0)

 threshold_time = datetime.now()

 number = float()

 for col in X_per_sensor.columns[1:numb_end_sensors]:

 print(f'{col}, {datetime.now()-threshold_time}')

 res_df = X_per_sensor[col].copy()

 res_df = res_df[~res_df.index.duplicated()]

 time_rolling = 288

 res_df = res_df.rolling(time_rolling).mean()

 stds, avgs = np.zeros(shape = (len(hour_time)+1, 1)), np.zeros(shape =

(len(hour_time)+1, 1))

 number_of_days = 5

 for j, ind in enumerate(res_df.index[time_rolling:]):

 possible_leak_detected = False

 number = res_df.loc[ind].copy()

 if (j % (288*number_of_days) == 0 and j != 0):

 h = [res_df[(j-

(288*number_of_days)):j].between_time(str(hour_time[i-1])[7:],

str(hour_time[i])[7:]) for i in range (1, len(hour_time))]

 stds, avgs = list(), list()

 for hh in h:

 stds.append(hh.std(axis=0))

 avgs.append(hh.mean(axis=0))

 stds.append(res_df[(j-

(288*number_of_days)):j].between_time(str(hour_time[-1])[7:],

str(hour_time[0])[7:]).std(axis=0))

 avgs.append(res_df[(j-

(288*number_of_days)):j].between_time(str(hour_time[-1])[7:],

str(hour_time[0])[7:]).mean(axis=0))

 comparison_number =

(comparison_number_multiplier*float(stds[ind.hour])+comparison_number_multipli

er_v2*float(avgs[ind.hour]))

 if float(number) >= float(comparison_number) and

float(comparison_number) != 0:

 for k in range (3):

 try:

 next_check_number_ts = ind + pd.DateOffset(hours = k)

 back_check_num_ts = ind - pd.DateOffset(hours =

abs(24-k))

 next_check_number = res_df.loc[next_check_number_ts]

 back_check_num = res_df.loc[back_check_num_ts]

 except:

 pass

 if float(next_check_number) > float(back_check_num) and

[float(next_check_number) > float(res_df.loc[ind-pd.DateOffset(days = 2*i)])

for i in range(2)] and float(back_check_num) != 0.0:

 prelim_results_dataframe.loc['Detected'][col] = 1

 leak_timestep_int =

int(np.where([time_df['Timesteps']==ind])[1])

 prelim_results_dataframe.loc['Timestep'][col] =

leak_timestep_int

 print(prelim_results_dataframe)

 possible_leak_detected = True

 break

 if possible_leak_detected:

 print(f'possible leak detected, {datetime.now()-

threshold_time}')

 break

 ts_values =

prelim_results_dataframe.loc['Timestep'].copy()

 clusters = cluster(ts_values.values, maxgap = 288*2)

 empty_sensors = np.zeros([1, numb_end_sensors-1])

 try:

 if len(clusters)==0:

 leak_found = False

 return prelim_results_dataframe, leak_found, leak_timestep

 except:

 pass

 if (len(np.array(clusters[0])) > 0) and

(np.array_equal(np.array(clusters[0]), empty_sensors[0]) == False):

 max_length_cluster = max([len(clusters[i]) for i in

range(len(clusters))])

 for jj in range (len(clusters)):

 if len(clusters[jj]) == max_length_cluster:

 max_length_cluster_nr = jj

 if (clusters[max_length_cluster_nr][0]==0):

 if len(clusters) >=1:

 clusters.pop(max_length_cluster_nr)

 max_length_cluster = max([len(clusters[ii]) for ii in

range(len(clusters))])

 for hh in range (len(clusters)):

 if len(clusters[hh]) == max_length_cluster:

 max_length_cluster_nr = hh

 biggest_cluster = clusters[max_length_cluster_nr]

 leak_timestep = np.min(biggest_cluster)

 if math.isclose(leak_timestep, leak_df_modified.loc[dataset]['leak time

numeric'], abs_tol=105120) and len(biggest_cluster) >= 3:

 leak_found = True

 else:

 leak_found = False

 return prelim_results_dataframe, leak_found, leak_timestep

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

ge
ni

ør
vi

te
ns

ka
p

In
st

itu
tt

 fo
r b

yg
g-

 o
g

m
ilj

øt
ek

ni
kk

Magnus Totland

Detection of leakages in a water
distribution network using an
autoencoder

Hovedoppgave i Bygg og Miljøteknikk
Veileder: Franz Tscheikner-Gratl
Medveileder: David Steffelbauer
Juni 2022H

ov
ed

op
pg

av
e

