
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Tommy Hellen

A multiple-resolution scheme for
DNS of scalar fields in turbulent
flows

Master’s thesis in Mechanical Engineering
Supervisor: Prof. Luca Brandt
June 2022

M
as

te
r’s

 th
es

is

Tommy Hellen

A multiple-resolution scheme for DNS
of scalar fields in turbulent flows

Master’s thesis in Mechanical Engineering
Supervisor: Prof. Luca Brandt
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

 5 av 8

Master`s Agreement / Main Thesis Agreement

Faculty Faculty of Engineering

Institute Department of Energy and Process Engineering

Programme Code MTPROD

Course Code TEP4925

Personal Information

Surname, First Name Hellen, Tommy

Date of Birth 16.02.1996

Email tommyhel@stud.ntnu.no

Supervision and Co-authors

Supervisor Luca Brandt

Co-supervisors (if applicable)

Co-authors (if applicable)

The Master`s thesis

Starting Date 15.01.2022

Submission Deadline 11.06.2022

Thesis Working Title Multi-resolution CFD for scalar turbulence

Problem Description
Try to develop a mulit-resolution scheme, using interpolation,
for scalar turbulence to make DNS a quicker method.

 8 av 8

This Master`s agreement must be signed when the guidelines have been reviewed.

Signatures

Tommy Hellen

Student

12.01.2022

Digitally approved

Luca Brandt

Supervisor

12.01.2022

Digitally approved

Anita Yttersian

Department

21.01.2022

Digitally approved

Abstract

For turbulent flows with the presence of an active or passive scalar field, similar
to the Kolmogorov scale η, the smallest scales where transport of scalar concen-
tration happens is defined as the Batchelor scale λB. When solving the momen-
tum and advection-diffusion equations for turbulent flows with direct numerical
simulation (DNS), with a high Schmidt (or Prandtl) number, the necessary grid
spacing increases as the Batchelor scale gets smaller and smaller. This implies
that the method might be over-resolving the momentum equations, making DNS
more computationally expensive than necessary. In this thesis, it’s presented and
implemented a method to reduce the computational time needed to resolve the
fine-scale scalar transport in turbulent flows, by interpolating the coarse velocity
field onto a finer grid, obtained by enforcing conservation of mass. This ensures
that the interpolated velocity field on the fine grid is divergence free, and the
advection-diffusion equation can be solved on a finer grid, while the momentum
and pressure equations can be solved on the base grid. For evaluating the proposed
method several simulations using the high-performance computing system Betzy
were carried out. The total divergence of the interpolated velocity field was esti-
mated to be on the order of O(10−10), and the maximum divergence on the order
of O(101), in the turbulent region. The large values for the divergence are likely
to be related to the MPI parallelization for the interpolation module developed.
The time evolution of the temperature field variance for different resolutions was
compared and found the multiple-resolution method to over-solve the temperature
variance. The inaccurate results suggest that possible sources of error are likely
due to the implementation of the transient linear interpolation, and possibly the
large divergence. The reduction of overall CPU time was found to be approximate
61.30 % when using a coarse grid for the turbulent velocity field, and a fine grid
for the scalar field.

i

Sammendrag

For turbulente strømninger med tilstedeværelse av et aktivt eller passivt skalarfelt,
tilsvarende Kolmogorov-skalaen η, er de minste skalaene hvor skalarkonsentrasjon
transporteres definert som Batchelor-skalaen λB. Når moment- og adveksjon-
diffusjonslikningene for turbulente strømninger løses med direkte numerisk simu-
lering (DNS), med et høyt Schmidt (eller Prandtl), øker den nødvendige rutenet-
tavstanden etter hvert som Batchelor-skalaen blir mindre og mindre. Dette in-
nebærer at metoden kan overløse moment-ligningene, noe som gjør DNS mer
beregningsmessig kostbart enn nødvendig. I denne oppgaven presenteres og imple-
menteres en metode for å redusere den numeriske beregningstiden som trengs for
å løse den finskalerte skalartransporten i turbulente strømninger, ved å interpolere
det grove hastighetsfeltet til et finere rutenett, gjennom bevaring av masse. Dette
sikrer at det interpolerte hastighetsfeltet på det fine rutenettet er divergensfritt,
og adveksjons-diffusjonsligningen kan løses på et finere rutenett, mens moment-
og trykkligningene kan løses på det grove rutenettet. For å evaluere den foreslåtte
metoden ble det utført flere simuleringer ved hjelp av høyytelses datasystemet
Betzy. Den totale divergensen til det interpolerte hastighetsfeltet ble estimert til
å være i størrelsesorden O(10−10), og maksimal divergens på orden O(101), i det
turbulente området. De store verdiene for divergensen er sannsynligvis relatert
til MPI-parallelliseringen for interpolasjonsmodulen utviklet. Tidsutviklingen av
temperaturfeltvariansen for forskjellige oppløsninger ble sammenlignet og funnet at
metoden med fler-oppløsning overestimerte temperaturvariansen. De unøyaktige
resultatene tyder på at mulige feilkilder skyldes sannsynligvis implementeringen av
transient lineær interpolasjon, og muligens den store divergensen. Reduksjonen av
samlet CPU-tid ble funnet å være omtrent 61.30 % ved bruk av et grovt rutenett
for det turbulente hastighetsfeltet, og et fint rutenett for det skalare feltet.

ii

Acknowledgment

I would like to give my thanks to Prof. Luca Brandt who has been very helpful in
supervising the work and for finding an interesting topic for this master thesis. It
has been both challenging and educational. Also a huge thanks to Marco Crialesi-
Esposito, together with Nicolò Scapin and Shahab Mirzareza for being patient, and
helping me along the way with developing the code and finding relevant research
literature. I would also like to show my appreciation to The Department of Energy
and Process Engineering (EPT) at NTNU for providing me with the necessary tools
and facilitating a great, inspirational and educational environment.

iii

Contents

1 Introduction 1

2 Background and Theory 3
2.1 Turbulence modelling . 3
2.2 Numerical methods . 5

2.2.1 DNS . 5
2.3 Scalar turbulence . 6
2.4 Multiphase flow . 7

2.4.1 Modelling multiphase flow 8

3 Method 9
3.1 Numerical solver . 9

3.1.1 Governing equations . 9
3.1.2 Heat transfer in flow . 10
3.1.3 Code structure . 11
3.1.4 Parallelization . 13

3.2 Flow configuration . 13
3.2.1 Governing equations . 13
3.2.2 Numerical and physical parameters 14
3.2.3 Assumptions . 16

3.3 Numerical interpolation method . 16
3.3.1 Staggered grid . 16
3.3.2 Interpolation . 17
3.3.3 Interior velocities . 19
3.3.4 Scalar extrapolation . 20
3.3.5 Transient interpolation . 20

3.4 Algorithm . 21
3.5 Verification . 23
3.6 Computing system . 24

4 Results 25
4.1 Divergence of the velocity field . 25
4.2 Simulations . 26

4.2.1 Turbulent properties . 26
4.2.2 Temperature field . 28

4.3 Computational time . 32

5 Discussion 33
5.1 Divergence of velocity field . 33

iv

5.2 Simulations . 34
5.2.1 Resolving the momentum equations 34
5.2.2 Resolving the temperature field 34

5.3 Computational performance . 36
5.4 Challenges . 36

6 Conclusions 38

7 Further work 39

A Interpolation scheme algorithm 43

v

List of Figures

1 A reproduction of the original experiment done in 1914 by Prandtl
[1]. 3

2 A comparison of the different numerical simulation in turbulent flow
[2]. 5

3 Shows the code structure of the multiphase solver with a passive
temperature field. 12

4 Illustrates how the parallelization works using the pencil decompo-
sition [3]. 13

5 The initial temperature distribution of the flow, where the temper-
ature of the dispersed "droplets" are Td,0 = 350 K and the carrier
phase is Tc,0 = 250 K . 15

6 Control volume for dense and coarse mesh, evaluating the velocity
at the surfaces and scalar value at the cell center. 17

7 Shows the interpolation using the neighbouring velocities and the
law of mass conservation. 18

8 Shows how the coarse cell can be divided into M = 3 sub-cells to
find the interior velocities. 19

9 Interpolation of remaining velocities at the fine cell center. 23
10 Comparison of the original velocity w to the interpolated velocity

Ws using M = 2. 25
11 Comparison of the divergence of the multi resolution velocity field

to original velocity field. 26
12 Ratio of turbulent kinetic energy dissipation ϵ to the production P

in the turbulent region. 27
13 The temperature variance σT for different resolutions and ∆t with

Pr = 10. 28
14 The temperature variance σT for different resolutions and ∆t with

Pr = 1. 29
15 The mean temperature T̄ after the initialization, for different reso-

lutions. 30
16 Shows the temperature field at t = 0.092τ after the initialization.

The upper plane is from SR 128 and bottom SR 256. 31
17 The CPU time for different resolutions, using the same configura-

tion, with a refinementM = 2. Correc is the correction term, Solver
is the Poisson eq. solver, and RK is the Runge-Kutta method used
when solving the momentum equations. Adv-diff is the total time
for both the interpolation and the Adams-Bashforth Eq. 12. 32

vi

List of Tables

1 Table shows parameters used for the different simulations. 14
2 Table of initial parameters for the droplet-like temperature distri-

bution. 16
3 Results for resolving the turbulence for the different resolutions.

The values are estimated for the same time-period as shown in Fig.
12. 27

4 Results related to the temperature field for Pr = 10 from the differ-
ent resolutions. 29

Nomenclature

Abbreviations

ABC Arnold-Beltrami-Childress

CFD Computational fluid dynamics

CFL Courant-Friedrichs-Lewy

DNS Direct numerical simulation

FFT Fast Fourier transform

FluTAS Fluid Transport Accelerated Solver

HIT Homogeneous isotropic turbulence

HPC High-performance computing

MPI Message Passing Interface

MTHINC Multi-dimensional tangent hyperbola interface capturing

VOF Volume of fluid

Symbols

α Thermal diffusivity

ϵ Kinetic energy dissipation rate

η Kolmogorov scale

κ Thermal conductivity

vii

λB The Batchelor scale

µ Dynamic viscosity

ν Kinematic viscosity

Φ Volume of Fluid function

ρ Density

σT Temperature variance

τ Turbulent characteristic time

V⃗s Interpolated velocity field

V⃗ Velocity field

C Courant number

Cp Specific heat capacity

H The color function

L Length of spatial domain

M Number of refinement

N Number of grid cells

p Pressure

Pr Prandtl number

Re Reynolds number

Sc The Schmidt number

Tc Carrier phase temperature

Td Disperse phase temperature

viii

1 Introduction

Scalar fields which are diffused and advected in turbulent flows are a phenomenon
that is all around in both nature and many different industries and is a crucial part
of how fluids interact with their surroundings and other fluids. Direct numerical
simulation (DNS) of scalar turbulent flow is becoming a more and more important
tool, with cases such as pollution of air and water [4], or turbulent convection
when heating and cooling devices [5]. This means that both the experimental
and numerical study of scalar transport in turbulence is important to understand
and model the underlying mechanisms and processes. This thesis will explain how
the numerical study of scalar turbulence can be computationally costly, and what
attempts can be done to reduce the necessary computational time it requires.

When using DNS on turbulent flows, the cascading energy down to the small-
est scales, the Kolmogorov scale η, needs to be captured. Equally, with the pres-
ence of either a passive or active scalar field, the grid spacing needs to be as small
as the Batchelor scale λB. In scalar turbulent flows with high Schmidt number
Sc (or Pr) the Batchelor scale becomes even smaller than the Kolmogorov scale.
This results in the need for even more grid points for DNS to be accurate and thus
making the computational cost even higher.

This research work attempts to create and implement an algorithm to reduce
the overall computation time for resolving a scalar turbulent flow. The method
proposed in this paper is to a large extent inspired by the work done by Chong et
al. (2018) and Ostilla-Mónico et al. (2015), and is a continuation of the project
work at NTNU (2021) [6–8]. The method consists of an interpolation scheme that
converts the divergence free velocity field to a finer grid, such that the scalar field
can be solved on a finer grid, but the pressure and momentum equations can be
solved on a coarser grid. Solving these equations on a coarser grid allows for less
computational time as these are the more costly equations to solve. This multiple-
resolution scheme makes it so that the need for high resolution in flows with high
Schmidt number Sc (or Pr) is reduced, while still preserving the accuracy of the
resolved scalar field.

To test the proposed method, the interpolation scheme was implemented in
the Fluid Transport Accelerated Solver (FluTAS), an existing DNS code developed
for multiphase flows [9]. Several simulations were done using the high-performance
computing system Betzy, to test and quantify potential computational savings,
while still resolving the scalar field accurately [10].

The flow that will be studied is a homogeneous isotropic turbulent (HIT) flow,
using the Arnold-Beltrami-Childress (ABC) conditions [11]. The initial aim was to

1

simulate emulsion in turbulent flow, however, due to time-limitation and technical
challenges, the flow studied is essentially a single-phase flow with a droplet-like
temperature distribution, to facilitate mixing and transport of a scalar field. In
other words, the properties of the flow are uniform, and the temperature distribu-
tion emulates an initial emulsion condition and secures heat transfer occurring, to
test the accuracy of resolving the scalar field for different resolutions.

This thesis contains 7 chapters. First, Section 2 presents relevant theory
and previous research work within the given topic. Section 3 gives a detailed
description of the methods used in this thesis work, and the numerical scheme
implemented. Further, Section 4 presents the obtained results, where the analysis
is discussed in Section 5. Lastly, Section 6 and Section 7 contains conclusions and
suggestions for further work.

2

2 Background and Theory

Understanding the physics and behaviour of turbulent flow interactions through
simulation is of great interest in various fields. In computational fluid dynamics
(CFD) there are several different numerical methods to simulate turbulence and
this section will give an overview of how turbulent flow can be modelled, DNS and
it’s governing equations, and lastly various work done within scalar turbulence and
multiphase flow. Several portions of this section (2.1 - 2.3) have been gathered
from what was presented in the project work [8].

2.1 Turbulence modelling

Turbulence or turbulent flow is of chaotic and irregular nature, and is character-
ized by the significant change in pressure and velocity. The highly unpredictable
behaviour of turbulent flow makes it a challenge to fully describe in detail and is
usually categorized in three different length scales in a cascading manner. The
larger scales affect the smaller scales, but the smaller scales can also impact the
larger scales [12].

In 1914 Ludwig Prandtl performed experiments with a sphere and a tripwire
around the sphere [1]. The experiment aims to show how the boundary layer at
the sphere surface affects the turbulence behind the sphere. As Figure 1 shows,
the presence of a small diameter around the sphere heavily affects the turbulence
occurring behind.

Figure 1: A reproduction of the original experiment done in 1914 by Prandtl [1].

This experiment shows how even the small turbulent scales, called the Kol-
mogorov scales η, can affect the larger scales.

3

Furthermore, looking at the Navier-Stokes equation describing turbulent flow
[13], the governing momentum equation reads:

ρ
DV⃗

Dt
= −∇p+ µ∇2V⃗ + ρg⃗ , (1)

where the first term is the material derivative of the velocity field V⃗ , ρ is the
density, p is the pressure and g⃗ is the gravitational acceleration acting on the fluid.
The third term is the viscous term, where µ is the dynamic viscosity, and can’t
be neglected in turbulent flow. When solving the momentum equation, assuming
the viscosity term to be neglected would mean that µ = 0. However by definition,
this means that there would be zero drag in the fluid, but this can not be the case
as shown in Figure 1. So that means that viscosity impacts the behaviour of the
flow, and it is necessary to calculate this term at every scale, even the smallest
ones:

η = (
ν3

ϵ
)1/4 , (2)

where η is the Kolmogorov scale, ν is the kinematic viscosity and ϵ is the
kinetic energy dissipation rate [14]. The dissipation rate of turbulent kinetic energy
can be described using Reynolds average equation [15]:

ϵ =
1

2
ν(
∂u ′

i

∂xj
+
∂u ′

j

∂xi
)2 , (3)

where u ′
i is the fluctuating velocity. As seen from Equation (3) the dissipation

rate is determined from the velocity gradients and the viscosity.

For statistically steady state and incompressible flows, where homogenous
isotropic turbulent (HIT) conditions are obtained, it can be shown that the tur-
bulent kinetic energy equation results in [16]:

−u ′
iu

′
j

∂Ui

∂xj
= ϵ = ν

∂u ′
i

∂xj

∂u ′
i

∂xj
, (4)

where Ūi is the mean velocity in each direction. The left side of the equation
is the production term P, and as the equation shows should be equal to dissipation
when statistical steady state is achieved.

4

2.2 Numerical methods

For turbulent flows, there are three main different ways to calculate the flow:
either by using large-eddies simulation (LES), Reynolds-averaged Navier-Stokes
model (RANS) or direct numerical simulation (DNS). Although experiments on
turbulence have given important insight, numerical simulation is also an impor-
tant tool in fluid mechanics, as it allows for studying the flow behavior only by
simulations.

The DNS directly solves the Navier-Stokes Equation (1), while the RANS
method models the flow. The difference in simulation can be seen in Figure 2,
where the difference in accuracy can be seen for a simulation of jet flow [2].

Figure 2: A comparison of the different numerical simulation in turbulent flow [2].

Although DNS is a costly method, the advancements of high-performance
computing (HPC) renders DNS a more and more viable option for studying tur-
bulence.

2.2.1 DNS

Compared to the two other main categories of simulating turbulent flow, DNS do
not model the flow in any way but tries to capture all of the flow properties at all
scales. Since the DNS method is a way to directly simulate the flow, the method
needs to resolve the Navier-Stokes equation for all scales in both time and space.
This means that the method must solve the Kolmogorov scales, with a spatial
increment ∆x ≤ η. Since the Kolmogorov scales are given by Equation (2), the
number of grid cells N3 that is necessary to properly resolve the flow depends on
the Reynolds number Re:

N3 = Re9/4 . (5)

5

From this relation, it can be observed that the the necessary number of grid
points increases substantially with increasing Reynolds number.

Considering the necessary increment in time ∆t, this must be small enough
such that the Courant-Friedrichs-Lewy (CFL) condition is satisfied [17]. For a
3-dimensional grid with velocities in all three directions, the condition yields as
follows:

C = ∆t

3∑
i=1

uxi
∆xi

< Cmax , (6)

where C is the Courant number and Cmax is a value depending in whether the
method used is explicit or implicit. This means when trying to solve the Navier-
Stokes equation for turbulence, it’s necessary to have both a high time and space
resolution. Consequently, this makes DNS is a costly method and usually only
simple flows are studied when using this numerical method.

2.3 Scalar turbulence

Although there have been extensive experimental work on the study of scalar
turbulence, DNS renders to be a more and more useful tool for studying these
types of flows [18, 19]. A comprehensive overview of the studies of simulations of
passive scalar field can be reviewed in the work done by Warhaft (2000) [20].

There are two different types of scalar fields in turbulent flows: either passive
or active. An active scalar field means that the scalar values are coupled with the
vector field. An example is the buoyancy force due to changes in temperature in
the fluid, which would affect the flow [21]. A passive scalar field is when the scalar
values are decoupled and thus do not affect the vector field [20]. In the method
put forth in this paper, both passive and active scalar fields can be solved.

As discussed in Section 2.1 the corresponding length scale to viscous dissi-
pation rate is the Kolmogorov scale η. Likewise, the Batchelor scale λB is the
corresponding scale to the scalar field [22]:

λB = (
µD2

ϵ
)1/4 =

η

Sc1/2
, (7)

where D is the mass diffusivity and Sc is the Schmidt number. For the time
evaluation of the scalar field, the governing equation is given by the advection-

6

diffusion equation [23]:
∂c

∂t
+ V⃗ · ∇c = α∇2c+ R , (8)

where c is the scalar value e.g temperature, R is a source/sink term, and α
is the diffusivity coefficient. In the case where the scalar field is a temperature
field, the Schmidt number translate to the Prandtl number Pr and α is the thermal
diffusivity.

From Equation (7) it’s possible to see that for large Schmidt numbers (or
Prandtl number), the Batchelor scale where the scalar transport happens, becomes
increasingly smaller than the Kolmogorov scale. For single-resolution methods, one
therefore needs a grid spacing ∆x small enough to solve the advection-diffusion
equation at the Bachelor scale λB, and as a result, the single-resolution method
tends to over resolve for momentum and pressure equations corresponding to the
Kolmogorov scale. This is the main reason why the computational resources to re-
solve scalar turbulent flow are such high, and a method to combat this is presented
Section 3.3.

Previous work on passive scalar fields have involved the use of LES-type filter
in the viscous-convective sub-range to filter the scalars in turbulent flow with high
Schmidt numbers [24]. Another study done by Ostilla-Mónico et al. (2015) uses
a multiple-resolution scheme to improve simulations with active scalar field [7].
This method uses the gradient to find the interpolated velocities at the finer grid,
and solves the coupled temperature and velocity for the coarse and dense grid
separately. However, this method can not readily be adopted to a finite-volume
algorithm. The method proposed by Chong et al. (2018) will be presented in
Section 3.3, and will work on both an active or passive scalar field for a finite-
volume code [6].

2.4 Multiphase flow

As mentioned in Section 1, the initial aim was to simulate a multiphase flow.
Though the flow is a single-phase, the simulation uses some parts of the multiphase
solver FluTAS regarding multiphase modelling, which will be explained further in
Section 3.1.3. The underlying modelling used in these portions of the code will
therefore be briefly explained.

In fluid mechanics a flow can be single-phase or multiphase, where multi-
phase flow have the presence of two or more thermodynamic phases. A separated
multiphase flow has the attributes of two or more continuous flowing fluids with
an interface, e.g. laminar flow of oil and water. A dispersed multiphase flow is a
case where it’s typically a carrier phase and a dispersed phase, where the latter is

7

occupying the former discontinuously throughout the fluid, e.g bubbles in water
[25].

One type of multiphase flow is called emulsion, which will be discussed fur-
ther, where there are two or more immiscible liquid phases, such as the case with oil
in water. Here the dispersed phase can either be partially or totally emulsified in
the carrier phase. These types of flow are highly relevant in industrial applications
such as food processing and oil production [26, 27]. One recent research study on
emulsion in turbulence is the work done by Crialesi-Esposito et al. (2022), which
is a numerical study on how different properties affect the HIT in emulsion [28].

2.4.1 Modelling multiphase flow

When modelling and discretizing multiphase flow the type of flow needs to be
considered. In the simulation done in this study the free-surface Volume of Fluid
(VOF) method has been used for the initialization of the scalar field. The VOF
method can track the advection of the interface in the flow, and along with solv-
ing the Navier-Stokes equation resolve the multiphase flow [29]. The advection
equation for the VOF method can be written as

∂tΦ+ ∂iuiH = Φ∂iui , (9)

where H is the color function with a value of either 1 or 0, depending on
which phase Ωi is occupying the cell:

H(⃗x, t) =

{
1 if x⃗ ∈ Ω1

0 if x⃗ ∈ Ω2

, (10)

The VOF function Φ is the cell-averaged of H and can track the interface
between the two phases in both time and space. Once Φ is known, the thermal
properties can be evaluated for each phase.

8

3 Method

In this section the governing equations, along with the multiphase flow solver will
be presented. The numerical methods used for this research work will also be
discussed. Lastly, the developed algorithm will also be presented.

As mentioned earlier the main idea behind this numerical scheme is gathered
from previous work done on active scalar fields in turbulence, with a finite-volume
method code [6]. This method was chosen because of the ability to compare results
to the work previously done. In order to test this, a code using modern Fortran 90
as programming language was developed, so that it could be incorporated into an
already existing Fluid Transport Accelerated Solver (FluTAS) for multiphase sim-
ulations [9]. This code was developed by the research group of Prof. Luca Brandt
and will also be briefly presented. Most of the figures and equations presented in
Section 3.3 have been gathered from the previous work done in the project work
[8].

3.1 Numerical solver

The numerical method and equations used in FluTAS will be briefly described in
the following section. For the full description of the numerical method for solving
the Poisson and momentum equations the detailed description can be reviewed in
the work done with FluTAS [9].

3.1.1 Governing equations

In this study, an incompressible Newtonian fluid was studied, meaning the gov-
erning equations are the Navier-Stokes equations (1) and the continuity equation
[30]:

∇ · V⃗ = 0. (11)

The momentum equations are solved with a second-order pressure correction
algorithm, and the resulting Poisson equation is solved with a FFT-based finite-
difference direct solver as presented in the work by P. Costa [31]. Lastly the
correction of the velocity field is done by imposing the divergence free constrain,
and the pressure is updated from the previous time-step.

As mentioned in section 2.4.1 the VOF method can be used for multiphase
flow. In the work done by Sugiyama et al. [29] its presented a Multi-dimensional
Tangent Hyperbola Interface Capturing (MTHINC) algorithm, which can be used

9

in conjunction with the advection Equation (9). The full description of the VOF
method will not be thoroughly discussed here, since the case study does not es-
sentially use the VOF function throughout the simulation. It is only used for the
initialization of the scalar field, in this case the temperature field, at the start of
the simulation. This is to emulate a multiphase flow and ensure scalar mixing
occurring, where the dispersed fluid has a different initial temperature. This was
done to make the code and the simulation as simple as possible, as one of the
objectives of this research work is to test if the interpolation scheme works well
when integrated with the multiphase solver.

3.1.2 Heat transfer in flow

In the presence of an active temperature field, the FluTAS code solves the energy
equation explicitly and coupled with the momentum equations using the Oberbeck-
Boussinesq approximation [32]. As previously stated, the method proposed works
for both active and passive scalar fields. Here, a passive temperature field was
chosen due to simplicity reasons.

The aim of the multiple-resolution scheme is to solve the advection-diffusion
Equation (8) for a scalar field in a turbulent flow as accurate as possible. Since
the scalar field in this case is a passive temperature field, the resulting convection-
diffusion equation can be evaluated separately on the fine grid. The temperature
field can be discretized using the explicit second-order Adams-Bashforth method
[33]:

Tn+1 = Tn + ∆tn+1(ft,1M
n
T − ft,2M

n−1
T) , (12)

where the coefficients of the Adams-Bashforth scheme is given by:

ft,1 = 1+ 0.5∆t
n+1/∆tn

ft,2 = 0.5∆t
n+1/∆tn.

The operator MT in Equation (12) equates to the advection and diffusion
terms and can be semi-discretized as:

Mn
T = −∇ · (u⃗nTn) + 1

ρn+1Cn+1p

∇ · (κn+1∇Tn) (13)

where Cp is the specific heat capacity, ρ is the density and κ is the thermal
diffusivity.

10

For estimating the accuracy of resolving the scalar field with Equation (12)
in regards to the spatial grid spacing, the variance of the temperature field was
studied. In the absence of a source or sink, the variance of a scalar field with
constant diffusion coefficient D can be evaluated as [34]:

∂Θ

∂t
= −D

∫
(∇c)2dxdydx , (14)

where Θ is the variance over the spatial domain. Equation (14) shows that
the variance of the temperature field can only decrease over time. The temperature
field was estimated throughout the simulation to check if this is the case:

σT =

√∑Nx

i=1

∑Ny

j=1

∑Nz

k=1(Ti,j,k − T̄)
2

NxNyNz

, (15)

where σT is the variance of the temperature field and T̄ is the mean value of
the temperature.

3.1.3 Code structure

As mentioned the multiphase solver used in the simulation is the module based
FluTAS code, which can be tailored to different physical scenarios. To incorporate
the interpolation scheme, an interpolation module in Fortran F90 was made so that
it either can be switch on or of depending on if it’s a single or multiple-resolution
grid.

The code uses different flags or switches such as turbulent forcing, VOF,
Boussinesq approximation, etc. These inputs are used for the preprocessor program
before the main code is run. Depending on what flow is studied, the different
features can be switch on or off.

The essential structure of the code can be seen in the flow chart below,
see Fig. 3. Since the temperature field in this case is a passive scalar field, the
momentum equations can be solved directly from the initial VOF and velocity
field. Then, the velocity field can be interpolated, and the convection-diffusion
equation can be solved using the VOF and the thermal diffusivity α on the finer
grid.

11

Figure 3: Shows the code structure of the multiphase solver with a passive temperature field.

As Figure 3 above shows, the code is structured for a passive scalar field,
however in the case of an active scalar field, the only change would be to extrapolate
the scalar field to the coarse field, before solving the momentum equation with the
Boussinesq approximation. This will be discussed further in Section 3.3.4.

12

3.1.4 Parallelization

The FluTAS code takes advantage of MPI task parallelization [35]. In short, the
spatial grid domain is divided in "sub-domains" by using 2-dimensional pencil de-
composition of the grid. More specifically, here the domain is decomposed in y- and
z-direction. Throughout the simulation, the different sub-domains communicate
via MPI tasks, and an all-to-all communication is required for the transposition
of the 2D decomposition.

Figure 4: Illustrates how the parallelization works using the pencil decomposition [3].

By decomposing the domain with the usage of MPI and an FFT interface,
illustrated in Fig. 4, the simulation can be done on n processor cores. This allows
for a more efficient code and a much faster simulation time.

3.2 Flow configuration

3.2.1 Governing equations

To sustain turbulence, a forcing term fTi is added to the Navier-Stokes Eq. (1). In
the simulations done in this research the Arnold-Beltrami-Childress (ABC) forcing
was chosen, to sustain homogeneous isotropic turbulence (HIT) [11]. The forcing
term is governed by:

fx = A sin k0z+ C cosk0y
fy = B sink0x+A cosk0z
fz = C sink0y+ B cosk0x

(16)

13

where {x, y, z ∈ [0, 2π]}, k0 is the forcing wavelength and A,B and C are
constants. Here the constants have been put to A = B = C = 1 and the wavelength
to k0 = 2. The velocity field V(x, y, z) subsequently is also governed by the ABC
equations, and tri-periodic boundary condition is used. This flow was chosen since
it both can sustain turbulence and satisfy the Navier-Stokes equation, and the
parameters were chosen such that the coarse grid spacing ∆x is able to capture
the dissipation rate ϵ at the Kolmogorov scale η.

3.2.2 Numerical and physical parameters

Below is an overview of the parameters used in all the simulations. Table 1 shows
both the numerical and physical parameters.

Table 1: Table shows parameters used for the different simulations.

Description Variable Value
Number of cells N3 1283 − 2563

Number of refinement M 2
CFL condition Cmax 0.25
Length L3 2π m
Density ρ 1 kg/m3

Dynamic viscosity µ 0.02 kgm−1s−1

Specific heat capacity CpP 4000 Jkg−1K−1

Case 1 Variable Value
Thermal conductivity κ 80 Wm−1K−1

Prandtl number Pr 1
Case 2 Variable Value
Thermal conductivity κ 8 Wm−1K−1

Prandtl number Pr 10

The parameters chosen for this study is purely based on comparing the res-
olutions for Pr = 1 and Pr = 10, and is not based on any physical data.

The characteristic time used for studying the different properties of the scalar
field and the turbulent flow can be evaluated as [36]:

τ =
L

Vrms
, where Vrms =

Urms + Vrms +Wrms

3
(17)

The Urms, Vrms,Wrms is the root mean square of the velocity field. Because
of the homogeneous condition, the root mean square velocities in each direction

14

should be equal.

The initial temperature distribution have been constructed as a droplet-like
field using nb number of "droplets" with a volume ratio β = 0.15, which can be seen
in Figure 5. This was done first off to create a scalar field that can be evaluated as
it advects and diffuses throughout the simulation, to see if the multiple-resolution
method is able to accurately resolve the scalar field. And secondly, to emulate
a multiphase flow where the carrier and dispersed phases have different initial
temperatures while keeping the condition as simple as possible.

Figure 5: The initial temperature distribution of the flow, where the temperature of the
dispersed "droplets" are Td,0 = 350 K and the carrier phase is Tc,0 = 250 K .

Depending on the parameters governing the ABC equations, the flow eventu-
ally reaches the turbulent region, and HIT conditions are reached. Some different
testing were done to find when the flow reaches turbulent conditions, and then the
initialization time tT0 of the temperature field was chosen. The different parame-
ters for the initialization of the temperature field can be seen in Table 2 below.

15

Table 2: Table of initial parameters for the droplet-like temperature distribution.

Description Variable Value
Volume fraction β 0.15
Droplet diameter db 0.7854 m
Cells per diameter ppd 32
Number of droplets nb 146
Initial temperature of carrier Tc,0 250 K
Initial temperature of dispersed Td,0 350 K
Initial time tT0 9.10τ

3.2.3 Assumptions

For this case study, there have been several assumptions regarding the flow. First
off, the field is essentially assumed a single-phase, where the initial temperature of
the dispersed phase are different from the carrier phase. The thermal properties
Cpp and κ together with the viscosity ν are assumed constant throughout the
simulation. Further, gravity is neglected and the only force sustaining the flow is
the ABC forcing. This is to create a simple flow study, with HIT conditions, to
see whether the multiple-resolution scheme is able to accurately resolve the scalar
field while minimizing the number of possible sources of error.

After the initialization of the temperature field, the VOF function is set to
ψ = 1 for the rest of the simulation. As can be seen from Eq. 13 the convection-
diffusion equation is dependent on the properties ρ, κ and Cpp. In the simulations
for the multiple-resolution method these properties have been assumed constant.
However, in a multiphase scenario the properties are decided based on ψ, and it is
therefore necessary to either solve the advecting VOF Eq. 9 or use interpolation
from coarse to fine grid.

3.3 Numerical interpolation method

3.3.1 Staggered grid

For codes that uses a finite-volume approach when solving the turbulent flow, the
domain is diveded into N control volumes or grid cells. The velocity is evaluated
at the cell surface, while the scalar values are assumed an average in the middle,
as can be seen in Figure 6 below.

16

Figure 6: Control volume for dense and coarse mesh, evaluating the velocity at the surfaces and
scalar value at the cell center.

This means that grid is a staggered grid with the pressure also evaluated in
the center. For the flow studied in this research work, the number of grid cells
have been assumed equal in every direction Nx = Ny = Nz for simplicity reasons,
but is not a necessary condition for the interpolation scheme.

3.3.2 Interpolation

As mentioned in Section 1, the method uses the velocity from the coarse grid to
interpolate new velocities on the finer grid. For the interpolation, a third order
interpolation scheme is used, where the distribution of velocity at the i, j, k surface
can be expressed as

f(x) =

3∑
n=1

ζnx
n−1 , (18)

where ζn is determined by applying mass-conservation at the cell surface, as
well as the neighbouring surfaces. This interpolation was chosen, because a first
order scheme cannot guarantee smoothness, and an even order tends to favour
neighbouring grid points [6]. This means that given the three coefficients, it is
necessary to evaluate three points. Looking at a velocity in a given direction gives
a set of three equations, where in the case of y-direction: ∆X = Xi−Xi−1, and the
only unknowns are the coefficients:

Vi−1,j,k∆X =
∑3

n=1 ζn
∫Xi−1

Xi−2
xn−1dx

Vi,j,k∆X =
∑3

n=1 ζn
∫Xi

Xi−1
xn−1dx

Vi+1,j,k∆X =
∑3

n=1 ζn
∫Xi+1

Xi
xn−1dx

(19)

Figure 7 below shows the velocity Vi,j,k in y-direction for the 2-dimensional
plane x− y.

17

Figure 7: Shows the interpolation using the neighbouring velocities and the law of mass
conservation.

Further, Eq. (19) can be reduced to a liner equation V⃗ = ζ⃗A where A is
only determined by the grid spacing:V1V2

V3

 =

ζ1ζ2
ζ3


1

1
2
(Xi−1 + Xi−2)

1
3
(X2i−1 + Xi−1Xi−2 + X

2
i−2)

1 1
2
(Xi + Xi−1)

1
3
(X2i + XiXi−1 + X

2
i−1)

1 1
2
(Xi+1 + Xi)

1
3
(X2i+1 + Xi+1Xi + X

2
i)

. (20)

This means that the coefficients can be found by ζ⃗ = A−1V⃗ . The obtained
velocity distribution f(x) will insure that the the velocity field is divergence free,
since mass conservation has already been applied as a condition.

Furthermore the refinement of the grid is determined by M, here the refine-
ment has been assumed equal in all direction for simplicity, i.e. Mx =My =Mz,
but it is not a necessary condition for the method to work [6]. The corresponding
velocities Vs can be determined in the same manner, applying mass conservation
over the refined surfaces. This yields (here M = 3):

Vs1∆Xs =
∑3

n=1 ζn
∫Xs2
Xs1
xn−1dx

Vs2∆Xs =
∑3

n=1 ζn
∫Xs3
Xs2
xn−1dx

Vs3∆Xs =
∑3

n=1 ζn
∫Xs4
Xs3
xn−1dx

...

(21)

where ∆Xs = Xs1−Xs0, and Vsi are the refined velocities for the Vi,j,k surface.
The number of equations are determined by M. From Eq. (21) the problem can

18

also be reduced to a linear equation V⃗s = ζ⃗As where As is only determined by
the refined grid spacing. However the size of V⃗s is [M× 1] and the corresponding
matrix As is [M× 3]. Similar to Eq. (20) this yields:


Vs1

Vs2

Vs3
...

 =


ζ1

ζ2

ζ3
...



1 1

2
(Xs1 + Xs2)

1
3
(Xs21 + Xs1Xs2 + Xs

2
2)

1 1
2
(Xs2 + Xs3)

1
3
(Xs22 + Xs2Xs3 + Xs

2
3)

1 1
2
(Xs3 + Xs4)

1
3
(Xs23 + Xs3Xs4 + Xs

2
4)

...

. (22)

Thus the new interpolated velocities V⃗s can be found from the linear equa-
tions (20) and Eq. (22):

V⃗s = Asζ⃗ = AsA−1V⃗ = RV⃗ , (23)

where R is a [M× 3] matrix, only determined by the coarse and refined grid
spacing. In other words the R matrix only needs to be calculated once, and is
independent of the time-evolution of the velocity field.

3.3.3 Interior velocities

Until now, only the refined surface velocities at the control volume has been calcu-
lated . To calculate the remaining interior velocities the following procedure can
be done: Defining an inner control volume for the coarse cell, where the cell is
dived into M sub-cells, as can be seen in Fig. 8 below.

Figure 8: Shows how the coarse cell can be divided into M = 3 sub-cells to find the interior
velocities.

19

Looking at the y-direction and applying conservation of mass to the top
sub-cell yields the following:

Vti,js,k = Vi,j,k + (Usis+1,js+1,k −Usis−1,js+1,k)
∆Ys

∆Y
, (24)

where Us is the surface velocities in the horizontal direction and Vt is an in-
termediate velocity. Then the same condition can be applied for Vti,js−1,k. Finally,
using the interpolation Equation (23), and V⃗t = [Vti−1,js,k, Vti,js,k, Vti+1,js,k]

T as the
new velocity vector, the new interpolated interior velocities can be obtain. This
procedure also secures the conservation of a divergence free field through mass
conservation.

3.3.4 Scalar extrapolation

As explained in Section 3.1.3 the temperature needs to be extrapolated to the
coarse field, in the case where there is an active scalar field. In finite-volume
method the temperature is just the average over the grid cell, meaning that the
extrapolation is purely a summation of the refined cells over the coarse grid cell.

Ti,j,k =

∑Mx

is=1

∑My

js=1

∑Mz

ks=1 Tsis,js,ks

MxMyMz

, (25)

where Ts represents the temperature field on the refined grid.

3.3.5 Transient interpolation

Since the scalar field is being resolved on a finer grid, the spacial increment ∆x
naturally has to decrease. This has a direct impact on the aforementioned CFL
condition from Eq. (6). In fact, this means that the incremental time-step ∆t must
decrease by the same factor as the number of refinement M. However by solving
the more expensive momentum and pressure equations with a larger ∆t, the scalar
equations can be solved separately with a smaller ∆t/M using an intermediate
interpolated velocity. The linear interpolation can be expressed as [7]:

V⃗s
n+l/M

=
L− l

L
V⃗s

n
+
l

L
V⃗s

n+1
, (26)

where L is the amount of sub-steps, l is the intermediate time level between tn

and tn+1 where the velocity V⃗s
n+l/M

is evaluated. By using the maximum possible
Cmax when solving the momentum equations and setting L ≥M, ensures that the

20

CFL condition is conserved. Since both V⃗s
n

and V⃗s
n+1

are divergence free, the
intermediate velocity V⃗s

n+l/M
should also be a divergence free field.

3.4 Algorithm

Since the multiphase solver is a module-based code, the algorithm developed in
this research work is a module that is called in the main-loop, as can be seen in
the flow chart of the code in Fig. 3. The input arguments are the 3-dimensional
velocity field V⃗s, number of refinements M, number of grid cells in each direction
N, length of the spatial domain L and the number of halo points nh.

The code developed takes on the assumption that the number of refinements
in each direction is equal. This has been done partially to make the algorithm less
complicated and also to shorten the number of necessary for-loops. However, this
is not a requirement for the method to work [7].

As mentioned earlier the R matrix only needs to be calculated at the start
of the simulation. This is done with input data from Table 1. Once the [M × 3]
matrix has been calculated, this can be used throughout the simulation without
being recalculated.

A pseudo-code of the developed algorithm can be seen below in Alg. 1.
Efforts have been made to shorten the number of needed for-loops, however the
iteration in one direction is needed to calculate the intermediate velocities V⃗t in
the same direction. Meaning the code needs at least 3 for-loops for every velocity
in each direction. The full code can be seen in Appendix A.

21

Algorithm 1 Interpolation module
1: Input data: M,u, v,w, L,N,nh
2: Calculate matrix R from matrix A and As
3: for i in range(NI) do
4: for j in range(NJ) do
5: for k in range(NK) do
6: Interpolate surface velocity for Us, Vs,Ws from Eq. (23)
7: end for
8: end for
9: end for

10: Impose boundary conditions
11: for k in range(NK) do
12: for j in range(NJ) do
13: for i in range(NI) do
14: Calculate the intermediate velocity Vt using Eq. (24)
15: end for
16: Impose boundary conditions
17: for i in range(NI) do
18: Interpolate remaining velocities for Vs
19: end for
20: end for
21: end for
22: Impose boundary conditions
23: Do the same for Us and Ws
24: for i in range(NI) do
25: for j in range(NJ) do
26: for k in range(NK) do
27: Interpolate Us, Vs,Ws with Eq. (23) for remaining refined grid cells
28: end for
29: end for
30: end for
31: Impose boundary conditions
32: return Us, Vs,Ws

The last for-loop in Alg. 1 refers to the velocities for the remaining refined
grid cells. E.g. in the case of calculating the vertical velocity Vs with a refinement
ofM = 2, the interpolated velocities are found in both y- and x-direction. However,
the velocity is only estimated at the coarse grid center line. Thus it is necessary
to interpolate to find the velocities at the fine grid cell center.

22

Figure 9: Interpolation of remaining velocities at the fine cell center.

Figure 9 shows how the velocities in y-direction are interpolated for every
coarse cell. Thus the remaining velocities for the refined grid cells can be interpo-
lated using the same Eq. (21) as before with the already interpolated velocities,
here the neighbouring velocities in z-direction.

3.5 Verification

As verification for the interpolation scheme, the divergence free constraint on the
original velocity field must also be satisfied for the new interpolated velocity field.
This means that both the total and the maximum divergence of the field must be
close to machine error.

When interpolating between different grids with regards to DNS it is crucial
not to lose any energy, as turbulent energy is based on cascading energy down
to the Kolmogorov scale η. As long as the coarse grid is able to capture the
momentum equation well enough, there will be close to no loss of energy when
applying interpolation. The sufficiency of the spatial grid spacing can be studied
by estimating the energy spectrum, however this was not done in this research work
[15]. Here, only the Kolmogorov scale was studied, by estimating the dissipation
rate, given in Eq. (3).

Regarding the temperature field, the grid spacing needs to be sufficient
enough to resolve the low thermal diffusivity, and thus Eq. (15) can be used
to evaluate how the different grids are able to capture the evolution of the tem-
perature field in time.

23

3.6 Computing system

For running the multiphase solver FluTAS, the High Perfomance Computing (HPC)
system Betzy was used [10]. This is a supercomputer provided by NTNU and main-
tained by the Norwegian Research Infrastructure Services (NRIS). In the simula-
tions done there were used 4 computing nodes with a total of n = 64 CPU cores
at a clock speed of 2.25 GHz. The CPU type is AMD® Epyc™ 7742.

When measuring the total computational time of the simulation, the CPU
time in this case, the MPI function MPI_Wtime() is called [37]. This function
evaluates the elapsed time or wall-clock time between the different subroutines
called inside the main-loop.

24

4 Results

In this section the results obtained from the code developed, using the method
described in section 3.3, are given. Further the results and visualization of the
different simulations are presented. Lastly the difference in computational time
using different resolutions will be shown.

For the simulations discussed in the next sections, the different resolutions
will be referred to as SR and MR, single and multiple-resolution respectively. For
the coarse grid a total of N3 = 1283 grid cells are used, and for the finer grid
N3 = 2563. The number of refinement used is in the simulations is M = 2. All the
results presented are from the simulations on the HPC system Betzy using n = 64
processors (see Sec. 3.6), if not otherwise explicitly stated.

4.1 Divergence of the velocity field

For the interpolation module created, the divergence of the interpolated velocity
V⃗s was compared to the original velocity field.

(a) w(x, y, z = Lz/2) (b) Ws(x, y, z = Lz/2)

Figure 10: Comparison of the original velocity w to the interpolated velocity Ws using M = 2.

Figure 10 shows the interpolated velocity in z-directionWs(x, y, z = Lz/2, t =
0) for the initial velocity field using the created algorithm proposed in Section 3.4.

For verifying the interpolation scheme, the divergence of the new interpo-
lated velocity field must be as close to zero as possible as well. Throughout the

25

simulation the divergence of both the coarse and fine velocity field was evaluated.

(a) SR 128 (b) MR 128

Figure 11: Comparison of the divergence of the multi resolution velocity field to original
velocity field.

Figure 11 shows the maximum and the total divergence of the original and
the interpolated velocity field for the total duration of the simulation.

4.2 Simulations

4.2.1 Turbulent properties

To see when the flow reaches steady state, the production to dissipation ratio was
estimated as an integral over the computational domain, for the turbulent region.

26

(a) ϵ/P(t) for SR 128 (b) ϵ/P(t) for SR 256

Figure 12: Ratio of turbulent kinetic energy dissipation ϵ to the production P in the turbulent
region.

Figure 12 above shows the turbulent kinetic energy dissipation rate ϵ to the
production P given by Eq. (4) for both the coarse and the fine grid.

Table 3: Results for resolving the turbulence for the different resolutions. The values are
estimated for the same time-period as shown in Fig. 12.

Properties SR 128 MR 128 SR 256
Average dissipation ϵ(t) 0.1303 m2/s3 - 0.1371 m2/s3

Average production P(t) 0.1316 m2/s3 - 0.1372 m2/s3

Average ϵ/P(t) 99.36 % - 99.86 %
Vrms 0.5964 m/s - 0.6082 m/s
Kolmogorov scale η 0.0885 m - 0.0874 m

Table 3 shows the different turbulent properties related to resolving the mo-
mentum equations properly, for different resolutions. The time average values are
from the turbulent region right after the temperature field is initialized. Efforts
were done to try to also calculate and study the energy spectrum using Fourier
transformation for the coarse and fine grid, however due to technical problems
with the code, this was not made possible as of now.

27

4.2.2 Temperature field

To see if the temperature field is resolved accurately, the variance of the temper-
ature have been plotted, as described in Section 3.1.2.

Figure 13: The temperature variance σT for different resolutions and ∆t with Pr = 10.

Figure 13 shows the temperature variance after the initialization of the
droplet-like temperature field. The simulations were done with the parameters
given in Table 1. The ∆t/M notation refers to which ∆t is used in Equation 12
for the multiple-resolution scheme. Figure 14 below shows σT(t) for Pr = 1.

28

Figure 14: The temperature variance σT for different resolutions and ∆t with Pr = 1.

The different results for when the temperature field reaches uniform temper-
ature with Pr = 10, can be seen in Table 4.

Table 4: Results related to the temperature field for Pr = 10 from the different resolutions.

Property SR 128 MR 128 SR 256
Batchelor scale λB 0.0280 m 0.0280 m 0.0276 m
tT0/τ 8.921 8.921 9.097
tTf/τ 13.033 13.195 13.203
∆tf/τ 4.113 4.275 4.107
Tf 265.313 K 265.976 K 265.092 K

Further, the average spatial temperature have been studied. Figure 15 shows
the different mean temperatures after the initialization of the temperature field,
with Pr = 1.

29

Figure 15: The mean temperature T̄ after the initialization, for different resolutions.

The visualization of the temperature field can be seen in Figure 16. The
2-dimensional temperature field for the coarse and fine single resolution grid is
compared right after the initialization of the temperature, t = 0.092τ after tT0 .
Efforts have been made to try to visualize the temperature field for the multiple-
resolution field as well, however due to problems with the post processing section
handling different grid sizes in the FluTAS code, this is not presented here.

30

Figure 16: Shows the temperature field at t = 0.092τ after the initialization. The upper plane
is from SR 128 and bottom SR 256.

31

4.3 Computational time

The computational time was measured for the different resolutions. Figure 17
shows the different CPU wall-clock times for different parts of the code.

Figure 17: The CPU time for different resolutions, using the same configuration, with a
refinement M = 2. Correc is the correction term, Solver is the Poisson eq. solver, and RK is
the Runge-Kutta method used when solving the momentum equations. Adv-diff is the total

time for both the interpolation and the Adams-Bashforth Eq. 12.

Here the total CPU time of both the interpolation module and the Adams-
Bashforth equation have been measured for the multiple-resolution, denoted as
Adv-diff.

32

5 Discussion

This section discusses the results found and presented in Section 4, and also some
indications to what could be done differently and potential further work.

5.1 Divergence of velocity field

As discussed in Section 4, the method requires that the interpolated velocity field
must also be divergence free. This is a way to verify that the interpolation method
is valid, and that the conservation properties of the velocity field are not lost when
interpolating from coarse to fine grid. The maximum divergence and the total
divergence of the coarse grid and the multiple-resolution can be seen in Figure 11.
For the coarse grid, with N3 = 1283, the integral of the divergence in the turbulent
region is on the order of O(10−13) and the maximum divergence is on the order of
O(10−14). In the region leading up to turbulent conditions, the total divergence is
on the order of O(10−16). This is what is expected, as it should be close to machine
error, and is expected to be somewhat larger in the turbulent region where the
velocity field is fluctuating.

When compared to the multiple-resolution method, the total divergence is
of slightly higher order O(10−10), and the maximum divergence is on the order
of O(101) in the turbulent region. First off, the maximum divergence is clearly
non-physical and is incorrect. The order should be close to machine error, as with
the single resolution. However, while trying to understand the cause of this issue,
the code was tested using only n = 1 processor. In this case, the total divergence
of the interpolated velocity field was found to be on the order of O(10−16) and
the maximum divergence of O(10−6) at the start of the simulation. Due to time-
limitation, the code was stopped before it could reach turbulent conditions.

It seems that the problem is partially connected to the parallelization of the
code. The order of magnitude for the divergence seems to be related to the number
of processors n the code utilises when simulating. Worth taking into consideration
is how the divergence is computed for the finer velocity field, and could also be
a potential source of error. However, the order of maximum divergence is still
substantially higher than what is expected, even when using only n = 1 proces-
sor. Previous work suggests that maximum divergence of order O(10−17) can be
achieved [6]. This suggests that there might be something incorrect with both the
implementation of the module, and the parallelization of the code. Efforts have
been made to try to investigate these errors, however, the time-limitation of this
work has restricted further investigations.

33

5.2 Simulations

5.2.1 Resolving the momentum equations

For evaluating the HIT conditions, the ratio of dissipation rate ϵ and production
P can be studied. At statistical steady state production to dissipation should
balance in time. As can be seen in Fig. 12, the dissipation to production ratio for
the coarse grid is oscillating around 0.9936 in the turbulent region. The difference
in dissipation can be seen in Table 3, for the coarse and dense grid spacing. In
this case, the temperature field is assumed a passive scalar field, and resolving the
momentum equation should yield the same as for the multiple-resolution and the
single resolution on the coarse grid. This is indeed the case, as Tab. 3 shows.

For the mutliple-resolution method to be viable, it is crucial that the base
grid is able to capture and resolve the momentum equations accurately. The
Kolmogorov scale was found to be η = 0.0874 m for the SR 256, and since the grid
spacing for the coarse field is ∆x = 0.0491m, the base grid should be able to resolve
the turbulence accurately. To further verify the sufficiency of the resolution, the
energy spectrum of the turbulence can be estimated and studied. As previously
mentioned, this was not done in this study, but could readily be implemented to
the code to compare the different resolutions. The rest of the discussion takes on
the assumption that the estimated Kolmogorov scale is indicative of the adequacy
of the resolution.

5.2.2 Resolving the temperature field

To verify that the multiple-resolution method is able to resolve the scalar field
accurately, and quantify the degree of mixing in the flow, the time evolution of
the temperature variance can be studied. The variance of the temperature field
σT(t) can be estimated using Eq. (15). Figure 13 and 14 shows the different
time evolutions with both different resolutions and different Prandtl numbers. As
expected, the gradient of the temperature variance ∂σT(t)/∂t becomes steeper
with lower Pr, because of the increased thermal diffusivity which causes increased
mixing.

Further, it can be observed that with the lower resolution, SR 128, the grid is
not able to capture the change in σT(t) compared to the higher resolution SR 256.
Due to the sharp gradients of the temperature field, the lower resolution is not
small enough to capture the rapid change, as can be seen in the visual comparison
in Fig. 16. This is also to be expected, as the coarse grid spacing ∆x = 0.0491 m
is larger than the Batchelor scale, which was found to be λB = 0.0276 m with
Pr = 10. As the fine grid spacing here is ∆Xs = 0.0245 m, the higher resolution
should be able to capture the temperature field accurately. However, the fine grid

34

spacing, SR 256, has not been compared to other studies or higher resolutions,
and is assumed to be correctly resolving the temperature. Comparing to an even
higher resolution is something that could be considered for future work, to further
verify the accuracy.

For the multiple-resolution method, two different approaches have been com-
pared. The first one uses ∆t/M in the Adams-Bashforth Eq. (12), which is follow-
ing the method described in Section 3.3.5. This is expected to be the same as the
SR 256 solution. However, the results show a much slower diffusion than the higher
resolution SR 256, as can be seen by the σT(t) gradient. Compared to simulations
with Pr = 1 the base grid should be small enough to capture both the momen-
tum and temperature field accurately. As Fig. 14 shows, the multiple-resolution
overestimates the temperature variance, i.e the method estimates a slower thermal
diffusion compared to the higher resolution.

To investigate the problem of underestimating thermal diffusivity, a second
approach was tested, using the original ∆t from the coarse grid. Since ∆t should
be refined along with the refined velocity field, it is expected that this approach
should give an inaccurate result. Although this yields a more accurate diffusion of
the temperature field, it seems to not be able to capture the σT(t) as well as the
higher resolution, even with Pr = 1.

This suggests that the potential source of error is related to how the transient
interpolation from Eq. (26) is implemented together with the Adams-Bashforth
method. Since the Batchelor scale λB is given by Eq. (7), the base grid in this
case is already small enough to capture the scalar field. Therefore, a refinement
of ∆t should not change the diffusivity captured by the resolution. The results
discussed regarding the error in magnitude of the divergence, could likely also be
a source of error in the time evolution of σT(t).

Due to how the parameter of the initialization of the temperature is set, the
initialization time tT0 is slightly different for the high resolution SR 256, as seen
in Tab. 4. However, the difference of around 0.176 τ should not heavily affect the
difference in the advection of the temperature field.

Lastly the mean temperature T(t) was studied, as shown in Fig. 15. The
time evolution of T(t) for the different resolutions can be observed, where the
multiple-resolution scheme has a slightly higher mean temperature, although small
difference in percentage. The mean temperature should be constant throughout
the simulation. Although there seem to be some slight variations immediately
after the initialization, the MR 128 conserves the mean temperature after some
initial adjustments.

35

5.3 Computational performance

To estimate how the multiple-resolution method performance compared to the
single resolution, the total computational time for the different resolutions was
measured. Here the total CPU wall-clock time was measured, for different sections
of the code, (see Fig. 17). The results are from the simulations with Pr = 10 and
show that the total CPU time for the main-loop for SR 256 was 24.47 h. For the
multiple-resolution scheme, the total CPU time was measured to 9.47 h. This is
approximately a reduction of 61.30 %. The adv-diff CPU time represents both
the interpolation and the Adams-Bashforth equation for the multiple-resolution
method. In MR 128 this was measured to be 87.79 % of the total CPU time.

Previous results with multiple-resolution scheme simulating Rayleigh-Benard
flow suggest a computational speed-up of a factor of 7 with Pr = 10 [7]. Here it
is worth mentioning that most of the computational time cost for the solvers used
are the momentum and Poisson solver. The results suggest that there might be
some improvements to be made, and that further reduction in computational time
could be possible. The reduction of the RAM memory usage is something that
would also be worth measuring but was not done in this study.

As mentioned in Section 3.2.3, the properties CpP, ρ and κ are assumed
constant for the multiple-resolution scheme. Thus, there is no need to advect the
VOF function ψ on the fine grid. As can be seen by the results, solving the VOF
equations is computationally expensive, whereas for the single resolution case it
was measured to be 47.93 % of the total CPU time. In a multiphase flow, there will
be a need for interpolating these properties, thus making the multiple-resolution
method slightly more computationally expensive. However, by avoiding solving
the VOF equations on the finer grid there is still substantial CPU time to be
saved.

Though the simulations are not fully representative of a multiphase flow, the
comparison between single and multiple-resolution is still valid in the case of a pas-
sive scalar field. Assuming that the source of error lies with the implementation of
the transient interpolation, the possible fix to this error will not heavily affect the
required computational time, provided that the momentum and pressure equations
are resolved correctly on the base grid. The results are not an accurate represen-
tation of the saved CPU time but is an indication of how much can potentially be
saved.

5.4 Challenges

Due to the nature of this work, there have been several challenges along the way,
such as familiarizing with Fortran programming language, the multiphase solver

36

FluTAS and connecting to the HPC system Betzy. Much of the time has been
dedicated to understanding how the FluTAS code is structured, and how the dif-
ferent sections are organized. Large portions of the problems faced involve how the
MPI and parallelization work together. Several different simulations that are not
included here have been done with efforts to try to understand the aforementioned
errors without success.

37

6 Conclusions

The research question in this work is to see if a multiple-resolution scheme using an
interpolation method can be used to significantly reduce the computational time
needed to resolve scalar transport in a turbulent flow with low scalar diffusivity. To
test the interpolation method proposed, the algorithm developed was implemented
in the multiphase solver FluTAS. Several simulations using the high-performance
computing system Betzy were done to test the accuracy of the multiple-resolution
grid compared to a single resolution. The interpolation method has been tried
verified by computing the divergence of the interpolated velocity field. The total
divergence was found to be on an order of O(10−10). The maximum divergence was
found to be O(101), and seems to vary with the number of processors n used in
the simulation, which likely implies a source of error related to the implementation
of the MPI parallelization.

From the simulations carried out, the results show that although the multiple-
resolution is able to substantially reduce the CPU time with 61.30 %, the accuracy
of the method still yields inaccurate results for resolving the passive scalar field.
Further work investigating the implementation of the transient interpolation is
suggested, as although the method proves to be inaccurate, the comparison of
computational time to single resolution is still representative of the possible re-
duction in CPU time. On the assumption that a correct implementation of the
interpolation method yields an accurate solution of the scalar field, there is promis-
ing potential in reducing the necessary computational time substantially.

38

7 Further work

As discussed in Section 5.1 the maximum divergence of the interpolated velocity
field is clearly incorrect, which suggests that further investigations of the interpo-
lation scheme is needed, to understand what causes this behaviour. The results
involving the evolution of the temperature field suggest that the transient linear
interpolation is not incorporated correctly, and for the method to work correctly
further investigation needs to be done regarding this implementation.

Although the results discussed in 5.2.2 shows inaccuracy compared to the sin-
gle resolution, the comparison in computational time for the different resolutions
still shows promising results regarding the potentially saved CPU time, on the
assumption, based on previous work done, that the multiple-resolution correctly
implemented will resolve the scalar field accurately. The study of how different
Prandtl numbers affect the solution of the multiple-resolution method would be in-
teresting to further investigate. The computational investigation of implementing
this method to a multiphase solver is of high interest as it could lead to drastically
reducing the computational time needed. The further development of this interpo-
lation method could open up possibilities to save substantial computational time
for DNS of scalar fields in turbulence.

39

References

[1] Eberhard Bodenschatz and Michael Eckert. A voyage through turbulence.
pages 40 – 100, 2011.

[2] Kai Velten, William Lubitz, and Alwin Hopf. Simulation of airflow within
horticulture high-tunnel greenhouses using open-source CFD software. PhD
thesis, 02 2018.

[3] E. Lanti and et al. Orb5: a global electromagnetic gyrokinetic code using the
pic approach in toroidal geometry. 2019.

[4] Ming Li and Chris Garret. The relationship between oil droplet size and upper
ocean turbulence. Marine Pollution Bulletin, pages 961–970, 1998.

[5] R. Bessaih and M. Kadja. Turbulent natural convection cooling of electronic
components mounted on a vertical channel. Applied Thermal Engineering,
20(2):141–154, 2000.

[6] Kai Leong Chong, Guangyu Ding, and Ke-Qing Xia. Multiple-resolution
scheme in finite-volume code for active or passive scalar turbulence. Journal
of Computational Physics, 09 2018.

[7] R.Ostilla-Monicoa, Yantao Yanga, E.P.van der Poela, D. Lohsea, and
R.Verzicco. A multiple-resolution strategy for direct numerical simulation
of scalar turbulence. Journal of Coputational Physics, 11 2015.

[8] Tommy Hellen. Interpolation scheme for dns of scalar fields in turbulence.
2021.

[9] Marco Crialesi-Esposito, Nicolo Scapin, Andreas D. Demou, Marco Edoardo
Rosti, Pedro Costa, Filippo Spiga, and Luca Brandt. Flutas: A gpu-
accelerated finite difference code for multiphase flows. 2022.

[10] Sigma2. Betzy. https://documentation.sigma2.no/hpc_machines/betzy.
html, 2022.

[11] O. Podvingina and A. Pouquet. On the non-linear stability of the 1:1:1 abc
flow. pages 471–508, 1994.

[12] A. Kolmogorov. The local structure of turbulence in incompressible vis-
cous fluid for very large reynolds’ numbers. Akademiia Nauk SSSR Doklady,
30:301–305, January 1941.

[13] John G. Heywood, Masuda Kyuya, R. Rautmann, Vsevolod, and A. Solon-

40

https://documentation.sigma2.no/hpc_machines/betzy.html
https://documentation.sigma2.no/hpc_machines/betzy.html

nikov. Theory Of The Navier-stokes Equations. Number v. 47 in Series on
Advances in Mathematics for Applied Sciences. World Scientific, 1998.

[14] M. T. Landahl and E. Mollo-Christensen. Turbulence and Random Processes
in Fluid Mechanics. Cambridge University Press, 1992.

[15] J. O. Hinze. Turbulence. McGraw-Hill, 1975.

[16] S.B Pope. Turbulent flows. pages 112–134, 2000.

[17] H. Lewy R. Courant, K. Friedrichs. On the partial difference equations of
mathematical physics. IBM Journal of Research and Development, 11(2):215–
234, 1967.

[18] B. Shraiman and E.D. Siggia. Scalar turbulence.

[19] Parviz Moin and Krishnan Mahesh. Direct numerical simulation: A tool in
turbulence research. Annual Review of Fluid Mechanics, 30(1):539–578, 1998.

[20] Z. Warhaft. Passive scalars in turbulent flows. Annual Review of Fluid Me-
chanics, 32(1):203–240, 2000.

[21] Antonio Celani, Massimo Cencini, Andrea Mazzino, and Massimo Vergas-
sola. Active versus passive scalar turbulence. Physical review letters,
89(23):234502/4–234502, 2002.

[22] G. K. Batchelor. Small-scale variation of convected quantities like temperature
in turbulent fluid part 1. general discussion and the case of small conductivity.
Journal of Fluid Mechanics, 5(1):113–133, 1959.

[23] Scott A. Socolofsky and Gerhard H. Jirka. Environmental fluid mechanicspart
i: Mass transfer and diffusion. 2002.

[24] Verma, Siddhartha, and G. Blanquart. On filtering in the viscous-convective
subrange for turbulent mixing of high schmidt number passive scalars. Physics
of Fluids, 25(5):55–104, 2013.

[25] Christopher E. Brennnen. Fundamentals of multiphase flow. 2005.

[26] D. J. Clements. Food emulsions: principles, practices, and techniques. CRC
press, 2015.

[27] Sunil Kokal. Crude oil emulsions: A state-of-the-art review. 2005.

[28] Marco Crialesi-Esposito, Marco Edoardo Rosti, Sergio Chibbaro, and Luca
Brandt. Modulation of homogeneous and isotropic turbulence in emulsions.
Journal of Fluid Mechanics, 2022.

41

[29] Ii, Satoshi, Sugiyama, Kazuyasu, Takeuchi, Shintaro, Takagi, Shu, and
Xiao Feng Matsumoto, Yoichiro. An interface capturing method with a con-
tinuous function: The thinc method with multi-dimensional reconstruction.
Journal of Computational Physics, pages 2328–2358, 2012.

[30] B.R. Munson, A.P. Rothmayer, and T.H. Okiishi. Fundamentals of Fluid
Mechanics, 7th Edition. Wiley, 2012.

[31] Pedro Costa. A fft-based finite-difference solver for massively-parallel direct
numerical simulations of turbulent flows. Computers and mathematics with
applications, pages 1853–1862, 2018.

[32] Radyadour Kh. Zeytounian. Joseph boussinesq and his approximation: a
contemporary view. Comptes Rendus Mécanique, 331:575–586, 2003.

[33] E. Harier, G. Wanner, and S.P. Nørsett. Solving Ordinary Differential Equa-
tions I: Nonstiff problems. Springer Berlin, 1993.

[34] Patrick Tabeling. Introduction to Microfluidics.

[35] S Laizet and N. Li. 2decompfft - a highly scalable 2d decomposition library
and fft interface. 2010.

[36] Uriel Frisch. Turbulence: The Legacy of A.N. Kolmogorov. 11 1995.

[37] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary, Septem-
ber 2004.

42

A Interpolation scheme algorithm
1 subrout ine i n t e r p o l a t i o n (nx , ny , nz ,Mx, Lx , Ly , Lz , u , v ,w, Us , Vs ,Ws, nh_d , nh_ds)
2 !
3 imp l i c i t none
4 !
5 i n t ege r , i n t en t (in) : : nx , ny , nz ,Mx, nh_d , nh_ds
6 r e a l (rp) , i n t en t (in) : : Lx , Ly , Lz
7 r e a l (rp) , dimension (0 : 2) : : L
8 i n t ege r , dimension (0 : 2) : : N
9 r e a l (rp) , dimension (0 : 2) : : d l i

10 r e a l (rp) , dimension(1−nh_d : ny+nh_d,1−nh_d : nx+nh_d,1−nh_d : nz+nh_d) : : u , v ,w
11 r e a l (rp) , dimension(1−nh_d : ny∗Mx+nh_d ,
12 1−nh_d : nx∗Mx+nh_d ,
13 1−nh_d : nz∗Mx+nh_d) : : Us , Vs ,Ws
14 r e a l (rp) : : dX,dY, dZ , dXs , dYs , dZs , d ivtot , divmax
15 double p r e c i s i on , dimension (0 : nz∗Mx+2∗nh_d) : : d z f s
16 ! For c a l c u l a t i n g A and As
17 r e a l (rp) , dimension (0 :Mx−1 ,0:2) : : R_i
18 r e a l (rp) , dimension (0 : 2 , 0 : 2) : : A = 0 , A_inv = 0
19 r e a l (rp) , dimension (0 :Mx−1 ,0:2) : : As
20 r e a l (rp) , dimension (0 : 2 , 0 : 0) : : U_i ,V_i ,W_i
21 ! Numerical parameters
22 i n t e g e r : : xl , yl , z l , i , j , k , NI ,NJ ,NK, NIs , NJs ,NKs,
23 pp ,pm, ip , jp , kp , p_i , ik , i_s , j_s , k_s
24 ! Mi s ce l l aneous
25 r e a l (rp) , dimension (0 :Mx−2 ,0:nx+1) : : Vt_j , Wt_j
26 r e a l (rp) , dimension (0 :Mx−2 ,0:ny+1) : : Ut_j
27 r e a l (rp) : : Xi ,Xm, a11 , a12 , a13 , a21 , a22 , a23 , a31 , a32 , a33
28 !
29 L = (/Lx , Ly , Lz /)
30 N = (/nx , ny , nz /)
31 d l i = N(:) /L
32 dX = L(0)/N(0)
33 dY = L(1)/N(1)
34 dZ = L(2)/N(2)
35

36 dXs = dX/Mx
37 dYs = dY/Mx
38 dZs = dZ/Mx
39 dz f s = dZs
40 NI = N(0)+1
41 NJ = N(1)+1
42 NK = N(2)+1
43 NIs = s i z e (Vs (0 ,0 : ,0)) −1
44 NJs = s i z e (Vs (0 : ,0 ,0)) −1
45 NKs = s i z e (Vs (0 ,0 ,0 :)) −1
46 !

43

47 ! Step 1 − So lv ing the R matrix
48 do i =1,1
49 A(: , 0) = 1
50 As (: , 0) = 1
51 do j =−1,1
52 Xi = (i+j +1)∗dX
53 Xm = (i+j)∗dX
54 A(j +1 ,1) = 0 . 5∗ (Xi + Xm)
55 A(j +1 ,2) = 0.33333333∗(Xi∗∗2 + Xi∗Xm + Xm∗∗2)
56 end do
57 do j =0,Mx−1
58 i k = i ∗Mx+j
59 Xi = (ik +1)∗dXs
60 Xm = (ik)∗dXs
61 As(j , 1) = 0 . 5∗ (Xi + Xm)
62 As(j , 2) = 0.33333333∗(Xi∗∗2 + Xi∗Xm + Xm∗∗2)
63 end do
64

65 ! Ca l cu l a t ing the i nv e r s i o n o f the 3x3 A matrix
66 a11 = (A(1 ,1)∗A(2 , 2) − A(1 ,2)∗A(2 , 1)) / (A(0 ,0)∗A(1 ,1)∗A(2 , 2)
67 − A(0 ,0)∗A(1 ,2)∗A(2 , 1) − A(0 ,1)∗A(1 ,0)∗A(2 , 2) + A(0 ,1)∗A(1 ,2)∗A(2 , 0)
68 + A(0 ,2)∗A(1 ,0)∗A(2 , 1) − A(0 ,2)∗A(1 ,1)∗A(2 , 0))
69 a12 = . . .
70 !
71 A_inv = reshape ([a11 , a21 , a31 , &
72 a12 , a22 , a32 , &
73 a13 , a23 , a33] , [3 , 3])
74 R_i = matmul (As , A_inv)
75 end do
76 ! Step 2 − Finding c e l l −su r f a c e v e l o c i t i e s
77 do k=1,NK−1
78 z l = k∗Mx
79 do j =1,NJ−1
80 y l = j ∗Mx
81 do i =1,NI−1
82 x l = i ∗Mx
83 V_i = reshape ([v (j , i −1,k) , v (j , i , k) , v (j , i +1,k)] , [3 , 1])
84 Vs(yl ,1+(i −1)∗Mx: i ∗Mx, z l) = reshape (matmul (R_i ,V_i) , [Mx])
85 U_i = reshape ([u (j −1, i , k) , u (j , i , k) , u (j +1, i , k)] , [3 , 1])
86 Us(1+(j −1)∗Mx: j ∗Mx, xl , z l) = reshape (matmul (R_i ,U_i) , [Mx])
87 W_i = reshape ([w(j , i −1,k) , w(j , i , k) , w(j , i +1,k)] , [3 , 1])
88 Ws(yl ,1+(i −1)∗Mx: i ∗Mx, z l) = reshape (matmul (R_i ,W_i) , [Mx])
89 end do
90 end do
91 ! S e t t i ng BC
92 !
93 Us(: ,1 −nh_d : 0 , z l) = Us (: , NIs−2∗nh_d+1:NIs−nh_d , z l)
94 Us (: , NIs−nh_d+1:NIs , z l) = Us (: , 1 : nh_d , z l)
95 Us(1−nh_d : 0 , : , z l) = Us(NJs−2∗nh_d+1:NJs−nh_d , : , z l)

44

96 Us(NJs−nh_d+1:NJs , : , z l) = Us (1 : nh_d , : , z l)
97 !
98 Vs(: ,1 −nh_d : 0 , z l) = Vs (: , NIs−2∗nh_d+1:NIs−nh_d , z l)
99 Vs (: , NIs−nh_d+1:NIs , z l) = Vs (: , 1 : nh_d , z l)

100 Vs(1−nh_d : 0 , : , z l) = Vs(NJs−2∗nh_d+1:NJs−nh_d , : , z l)
101 Vs(NJs−nh_d+1:NJs , : , z l) = Vs (1 : nh_d , : , z l)
102 !
103 Ws(: ,1 −nh_d : 0 , z l) = Ws(: , NIs−2∗nh_d+1:NIs−nh_d , z l)
104 Ws(: , NIs−nh_d+1:NIs , z l) = Ws(: , 1 : nh_d , z l)
105 Ws(1−nh_d : 0 , : , z l) = Ws(NJs−2∗nh_d+1:NJs−nh_d , : , z l)
106 Ws(NJs−nh_d+1:NJs , : , z l) = Ws(1 : nh_d , : , z l)
107 !
108 end do
109 !
110 Vs (: , : , 1 −nh_d : 0) = Vs (: , : , NKs−2∗nh_d+1:NKs−nh_d)
111 Vs (: , : , NKs−nh_d+1:NKs) = Vs (: , : , 1 : nh_d)
112 Us (: , : , 1 −nh_d : 0) = Us (: , : , NKs−2∗nh_d+1:NKs−nh_d)
113 Us (: , : , NKs−nh_d+1:NKs) = Us (: , : , 1 : nh_d)
114 Ws(: , : , 1 −nh_d : 0) = Ws(: , : , NKs−2∗nh_d+1:NKs−nh_d)
115 Ws(: , : , NKs−nh_d+1:NKs) = Ws(: , : , 1 : nh_d)
116 !
117 ! Step 3 − Finding in te rmed ia t e v e l o c i t i e s f o r V
118 do k=1,NK−1
119 z l = k∗Mx
120 do j =1,NJ−1
121 do i =1,NI−1
122 i f (modulo (Mx,2)==0) then
123 pp = in t (Mx/2)
124 pm = pp
125 ip = Mx∗ i+pp−2
126 jp = Mx∗ j+pp−2
127 e l s e
128 pp = in t ((Mx−1)/2)+1
129 pm = in t ((Mx−1)/2)
130 ip = Mx∗ i+pm−1
131 jp = Mx∗ j+pm−1
132 end i f
133 do p_i=0,Mx−2
134 i f (p_i==0) then
135 Vt_j (Mx−2, i) = v(j , i , k) − (Us(jp+pm, ip−pp , z l)
136 − Us(jp+pm, ip+pm, z l))∗ dYs/dX
137 e l s e
138 Vt_j (Mx−2−p_i , i) = Vt_j (Mx−1−p_i , i)
139 − (Us(jp+pm−p_i , ip−pp , z l)
140 − Us(jp+pm−p_i , ip+pm, z l))∗ dYs/dX
141 end i f
142 end do
143 end do
144 Vt_j (: , 0) = Vt_j (: , s i z e (Vt_j (0 , :)) −2)

45

145 Vt_j (: , s i z e (Vt_j (0 , :)) −1) = Vt_j (: , 1)
146 ! Step 4 − Finding remaining v e l o c i t i e s f o r V
147 do i =1,NI−1
148 i f (modulo (Mx,2)==0) then
149 pp = in t (Mx/2)+1
150 pm = in t (Mx/2)−1
151 ip = Mx∗ i+pm−1
152 jp = Mx∗ j+pm−1
153 e l s e
154 pp = in t ((Mx−1)/2)+1
155 pm = in t ((Mx−1)/2)
156 ip = Mx∗ i+pm−1
157 jp = Mx∗ j+pm−1
158 end i f
159 do p_i=0,Mx−2
160 Vs(jp−pm+p_i , ip−pm: ip+pp−1, z l) = matmul (R_i , Vt_j (p_i , i −1: i +1))
161 end do
162 end do
163 end do
164 Vs(: ,1 −nh_d : 0 , z l) = Vs (: , NIs−2∗nh_d+1:NIs−nh_d , z l)
165 Vs (: , NIs−nh_d+1:NIs , z l) = Vs (: , 1 : nh_d , z l)
166 Vs(1−nh_d : 0 , : , z l) = Vs(NJs−2∗nh_d+1:NJs−nh_d , : , z l)
167 Vs(NJs−nh_d+1:NJs , : , z l) = Vs (1 : nh_d , : , z l)
168 !
169 end do
170 !
171 do k=1,NK−1
172 z l = k∗Mx
173 do i =1,NI−1
174 do j =1,NJ−1
175 i f (modulo (Mx,2)==0) then
176 pp = in t (Mx/2)
177 pm = pp
178 ip = Mx∗ i+pp−2
179 jp = Mx∗ j+pp−2
180 e l s e
181 pp = in t ((Mx−1)/2)+1
182 pm = in t ((Mx−1)/2)
183 ip = Mx∗ i+pm−1
184 jp = Mx∗ j+pm−1
185 end i f
186 do p_i=0,Mx−2
187 i f (p_i==0) then
188 Ut_j (Mx−2, j) = u(j , i , k) − (Vs(jp−pp , ip+pm, z l)
189 − Vs(jp+pm, ip+pm, z l))∗ dXs/dY
190 e l s e
191 Ut_j (Mx−2−p_i , j) = Ut_j (Mx−1−p_i , j)
192 − (Vs(jp−pp , ip+pm−p_i , z l)
193 − Vs(jp+pm, ip+pm−p_i , z l))∗ dXs/dY

46

194 end i f
195 end do
196 end do
197 Ut_j (: , 0) = Ut_j (: , s i z e (Ut_j (0 , :)) −2)
198 Ut_j (: , s i z e (Ut_j (0 , :)) −1) = Ut_j (: , 1)
199 ! Step 4 − Finding remaining v e l o c i t i e s f o r U
200 do j =1,NJ−1
201 i f (modulo (Mx,2)==0) then
202 pp = in t (Mx/2)+1
203 pm = in t (Mx/2)−1
204 ip = Mx∗ i+pm−1
205 jp = Mx∗ j+pm−1
206 e l s e
207 pp = in t ((Mx−1)/2)+1
208 pm = in t ((Mx−1)/2)
209 ip = Mx∗ i+pm−1
210 jp = Mx∗ j+pm−1
211 end i f
212 do p_i=0,Mx−2
213 Us(jp−pm: jp+pp−1, ip−pm+p_i , z l) = matmul (R_i , Ut_j (p_i , j −1: j +1))
214 end do
215 end do
216 end do
217 Us(: ,1 −nh_d : 0 , z l) = Us (: , NIs−2∗nh_d+1:NIs−nh_d , z l)
218 Us (: , NIs−nh_d+1:NIs , z l) = Us (: , 1 : nh_d , z l)
219 Us(1−nh_d : 0 , : , z l) = Us(NJs−2∗nh_d+1:NJs−nh_d , : , z l)
220 Us(NJs−nh_d+1:NJs , : , z l) = Us (1 : nh_d , : , z l)
221 end do
222 !
223 Vs (: , : , 1 −nh_d : 0) = Vs (: , : , NKs−2∗nh_d+1:NKs−nh_d)
224 Vs (: , : , NKs−nh_d+1:NKs) = Vs (: , : , 1 : nh_d)
225 Us (: , : , 1 −nh_d : 0) = Us (: , : , NKs−2∗nh_d+1:NKs−nh_d)
226 Us (: , : , NKs−nh_d+1:NKs) = Us (: , : , 1 : nh_d)
227 !
228 ! Step 5 − Remaining sub−c e l l v e l o c i t i e s f o r V and U
229 do k=1,NK−1
230 z l = k∗Mx
231 do j =1,NJ−1
232 do i =1,NI−1
233 i f (modulo (Mx,2)==0) then
234 pp = in t (Mx/2)
235 pm = in t (Mx/2)
236 ip = Mx∗ i+pm−1
237 jp = Mx∗ j+pm−1
238 kp = Mx∗k+pm−1
239 e l s e
240 pp = in t (Mx/2)+1
241 pm = in t (Mx/2)
242 ip = Mx∗ i+pm−1

47

243 jp = Mx∗ j+pm−1
244 kp = Mx∗k+pm−1
245 end i f
246 do j_s=0,Mx−1
247 do i_s=0,Mx−1
248 V_i = reshape ([Vs(jp−pm+j_s , ip−pm+i_s , z l−Mx)
249 Vs(jp−pm+j_s , ip−pm+i_s , z l)
250 Vs(jp−pm+j_s , ip−pm+i_s , z l+Mx)] , [3 , 1])
251 Vs(jp−pm+j_s , ip−pm+i_s , kp−pm: kp+pp−1) = reshape (
252 matmul (R_i ,V_i) ,
253 [Mx])
254 U_i = reshape ([Us(jp−pm+j_s , ip−pm+i_s , z l−Mx)
255 Us(jp−pm+j_s , ip−pm+i_s , z l)
256 Us(jp−pm+j_s , ip−pm+i_s , z l+Mx)] , [3 , 1])
257 Us(jp−pm+j_s , ip−pm+i_s , kp−pm: kp+pp−1) = reshape (
258 matmul (R_i ,U_i) ,
259 [Mx])
260 end do
261 end do
262 end do
263 end do
264 end do
265 !BC
266 Vs(: ,1 −nh_d : 0 , :) = Vs (: , NIs−2∗nh_d+1:NIs−nh_d , :)
267 Vs (: , NIs−nh_d+1:NIs , :) = Vs (: , 1 : nh_d , :)
268 Vs(1−nh_d : 0 , : , :) = Vs(NJs−2∗nh_d+1:NJs−nh_d , : , :)
269 Vs(NJs−nh_d+1:NJs , : , :) = Vs (1 : nh_d , : , :)
270 Vs (: , : , 1 −nh_d : 0) = Vs (: , : , NKs−2∗nh_d+1:NKs−nh_d)
271 Vs (: , : , NKs−nh_d+1:NKs) = Vs (: , : , 1 : nh_d)
272 !
273 Us(: ,1 −nh_d : 0 , :) = Us (: , NIs−2∗nh_d+1:NIs−nh_d , :)
274 Us (: , NIs−nh_d+1:NIs , :) = Us (: , 1 : nh_d , :)
275 Us(1−nh_d : 0 , : , :) = Us(NJs−2∗nh_d+1:NJs−nh_d , : , :)
276 Us(NJs−nh_d+1:NJs , : , :) = Us (1 : nh_d , : , :)
277 Us (: , : , 1 −nh_d : 0) = Us (: , : , NKs−2∗nh_d+1:NKs−nh_d)
278 Us (: , : , NKs−nh_d+1:NKs) = Us (: , : , 1 : nh_d)
279

280 ! Step 6 − Intermed iate v e l o c i t i e s f o r W
281 do j =1,NJ−1
282 y l = j ∗Mx
283 do k=1,NK−1
284 do i =1,NI−1
285 i f (modulo (Mx,2)==0) then
286 pp = in t (Mx/2)
287 pm = pp
288 ip = Mx∗ i+pp−2
289 kp = Mx∗k+pp−2
290 e l s e
291 pp = in t ((Mx−1)/2)+1

48

292 pm = in t ((Mx−1)/2)
293 ip = Mx∗ i+pm−1
294 kp = Mx∗k+pm−1
295 end i f
296 do p_i=0,Mx−2
297 i f (p_i==0) then
298 Wt_j(Mx−2, i) = w(j , i , k) − (Us(yl , ip−pp , kp+pm)
299 − Us(yl , ip+pm, kp+pm))∗ dZs/dX
300 e l s e
301 Wt_j(Mx−2−p_i , i) = Wt_j(Mx−1−p_i , i)
302 − (Us(yl , ip−pp , kp+pm−p_i)
303 − Us(yl , ip+pm, kp+pm−p_i))∗ dZs/dX
304 end i f
305 end do
306 end do
307 Wt_j (: , 0) = Wt_j (: , s i z e (Wt_j(0 , :)) −2)
308 Wt_j (: , s i z e (Wt_j(0 , :)) −1) = Wt_j (: , 1)
309 !
310 do i =1,NI−1
311 i f (modulo (Mx,2)==0) then
312 pp = in t (Mx/2)+1
313 pm = in t (Mx/2)−1
314 ip = Mx∗ i+pm−1
315 kp = Mx∗k+pm−1
316 e l s e
317 pp = in t ((Mx−1)/2)+1
318 pm = in t ((Mx−1)/2)
319 ip = Mx∗ i+pm−1
320 kp = Mx∗k+pm−1
321 end i f
322 do p_i=0,Mx−2
323 Ws(yl , ip−pm: ip+pp−1,kp−pm+p_i) = matmul (R_i ,Wt_j(p_i , i −1: i +1))
324 end do
325 end do
326 end do
327 Ws(yl ,1−nh_d : 0 , :) = Ws(yl , NIs−2∗nh_d+1:NIs−nh_d , :)
328 Ws(yl , NIs−nh_d+1:NIs , :) = Ws(yl , 1 : nh_d , :)
329 Ws(yl , : ,1 −nh_d : 0) = Ws(yl , : , NKs−2∗nh_d+1:NKs−nh_d)
330 Ws(yl , : , NKs−nh_d+1:NKs) = Ws(yl , : , 1 : nh_d)
331 end do
332 Ws(1−nh_d : 0 , : , :) = Ws(NJs−2∗nh_d+1:NJs−nh_d , : , :)
333 Ws(NJs−nh_d+1:NJs , : , :) = Ws(1 : nh_d , : , :)
334

335 ! Step 7 − Remaining sub−c e l l s f o r W
336 do k=1,NK−1
337 do j =1,NJ−1
338 y l = j ∗Mx
339 do i =1,NI−1
340 i f (modulo (Mx,2)==0) then

49

341 pp = in t (Mx/2)
342 pm = in t (Mx/2)
343 ip = Mx∗ i+pm−1
344 jp = Mx∗ j+pm−1
345 kp = Mx∗k+pm−1
346 e l s e
347 pp = in t ((Mx−1)/2)+1
348 pm = in t ((Mx−1)/2)
349 ip = Mx∗ i+pm−1
350 jp = Mx∗ j+pm−1
351 kp = Mx∗k+pm−1
352 end i f
353 do i_s=0,Mx−1
354 do k_s=0,Mx−1
355 W_i = reshape ([Ws(yl−Mx, ip−pm+i_s , kp−pm+k_s) ,
356 Ws(yl , ip−pm+i_s , kp−pm+k_s) ,
357 Ws(y l+Mx, ip−pm+i_s , kp−pm+k_s)] , [3 , 1])
358 Ws(jp−pm: jp+pp−1, ip−pm+i_s , kp−pm+k_s) = reshape (
359 matmul (R_i ,W_i) ,
360 [Mx])
361 end do
362 end do
363 end do
364 end do
365 end do
366 Ws(: ,1 −nh_d : 0 , :) = Ws(: , NIs−2∗nh_d+1:NIs−nh_d , :)
367 Ws(: , NIs−nh_d+1:NIs , :) = Ws(: , 1 : nh_d , :)
368 Ws(1−nh_d : 0 , : , :) = Ws(NJs−2∗nh_d+1:NJs−nh_d , : , :)
369 Ws(NJs−nh_d+1:NJs , : , :) = Ws(1 : nh_d , : , :)
370 Ws(: , : , 1 −nh_d : 0) = Ws(: , : , NKs−2∗nh_d+1:NKs−nh_d)
371 Ws(: , : , NKs−nh_d+1:NKs) = Ws(: , : , 1 : nh_d)
372 !
373 re turn
374 end subrout ine i n t e r p o l a t i o n

50

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Tommy Hellen

A multiple-resolution scheme for
DNS of scalar fields in turbulent
flows

Master’s thesis in Mechanical Engineering
Supervisor: Prof. Luca Brandt
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Background and Theory
	Turbulence modelling
	Numerical methods
	DNS

	Scalar turbulence
	Multiphase flow
	Modelling multiphase flow

	Method
	Numerical solver
	Governing equations
	Heat transfer in flow
	Code structure
	Parallelization

	Flow configuration
	Governing equations
	Numerical and physical parameters
	Assumptions

	Numerical interpolation method
	Staggered grid
	Interpolation
	Interior velocities
	Scalar extrapolation
	Transient interpolation

	Algorithm
	Verification
	Computing system

	Results
	Divergence of the velocity field
	Simulations
	Turbulent properties
	Temperature field

	Computational time

	Discussion
	Divergence of velocity field
	Simulations
	Resolving the momentum equations
	Resolving the temperature field

	Computational performance
	Challenges

	Conclusions
	Further work
	Interpolation scheme algorithm

