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NARRATIVE REVIEW

Artificial intelligence for prostate MRI: open 
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Abstract 

Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate 
cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor pros-
tate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) 
or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 
412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions deline-
ation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the 
total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset 
highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and 
commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. 
More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test 
general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., 
follow-up, prognosis, interventions, and focal treatment).

Keywords: Artificial intelligence, Deep learning, Image processing (computer-assisted), Multiparametric magnetic 
resonance imaging, Prostatic neoplasms
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Key points

• Artificial intelligence shows promise for being 
applied to prostate cancer magnetic resonance imag-
ing (MRI).

• Open datasets for prostate MRI are limited.

• Commercial solutions are available but lack adequate 
validation.

• Grand challenges could provide the means for bias-
free validation.

Background
Prostate cancer (PCa) is the second most prevalent can-
cer among men worldwide [1]. Nevertheless, the mortal-
ity rate is relatively low, and most patients die with and 
not of PCa [2]. Timely and accurate diagnosis is therefore 
of utmost importance to avoid overtreatment of men with 
indolent, clinically insignificant PCa, and to offer radical 
curative treatment to men with life-threatening, clinically 
significant PCa (csPCa) [3]. Present-day guidelines advise 
the use of multiparametric magnetic resonance imaging 
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(mpMRI) prior to biopsies [3], as it can noninvasively 
discriminate patients with indolent PCa from those with 
csPCa, retaining a high sensitivity for csPCa [4–6]. Using 
the version 2 of the Prostate Imaging Reporting and Data 
System (PI-RADS) [7], radiologists make a semiquanti-
tative assessment of each suspicious lesion observed on 
mpMRI and assign a corresponding csPCa likelihood 
score, from 1 to 5. Together with clinical variables, such 
as patient age, prostate-specific antigen (PSA) levels, and 
family history, PI-RADS scores help clinicians determine 
whether further investigation (via systematic or targeted 
biopsies) is needed to make a final diagnosis.

At present time, the processing and interpretation of 
prostate mpMRI data in clinical routine is entirely per-
formed by human experts (radiologists) who, while 
competent, are time-limited, cost-intensive, and cannot 
be easily scaled to meet increasing imaging demands 
[8]. Furthermore, human performance is dependent on 
experience and training, leading to significant variability 
between observers [9–11]. In contrast to purely qualita-
tive interpretation, artificial intelligence (AI) exploits 
the quantitative nature of mpMRI data. AI can automate 
and support (parts of ) the radiological workflow (Fig. 1), 
improve diagnostic accuracy, reduce costs, and alleviate 
the workload of healthcare personnel.

In recent years, continuous technical developments 
and increased dataset quantity and quality have pushed 
AI performance close to that of experienced radiolo-
gists [12–14], leading to the emergence of both publicly 
and commercially available solutions. However, adequate 
validation via large-scale retrospective multicenter stud-
ies or prospective clinical studies is often still lacking. To 

realize this, the prostate MRI community should invest in 
curating large-scale, multicenter datasets, develop a uni-
fied methodology for standardized performance estima-
tion, reach consensus on the reference outcome standard 
(beginning from the presence/absence of csPCa), and 
establish the minimum requirements for potential testing 
cohorts.

The purpose of this narrative review is to provide 
an overview of open datasets, commercially/publicly 
available AI systems, and grand challenges for prostate 
mpMRI. We focus on methods for segmenting prostate 
anatomy, and for diagnosis and localization of csPCa. 
While the prostate segmentation can facilitate the cal-
culation of PSA density (and also guide treatment plan-
ning and future interventions), diagnosis and localization 
can inform risk stratification and biopsy strategies. As 
we approach a new phase in AI applications to prostate 
mpMRI, where the goal is to move towards transparent 
validation and clinical translation, we specifically report 
studies that investigated commercially or publicly avail-
able AI systems. Furthermore, we summarize publicly 
available MRI data that can be used to accelerate the 
development of AI systems and discuss the increasingly 
important role of grand challenges, which allow for bias-
free benchmarking of AI algorithms applied to prostate 
mpMRI.

Open datasets
AI, especially deep learning, requires large, well-curated 
datasets to facilitate training and meaningful valida-
tion [15]. Furthermore, models require diverse, multi-
center, multivendor data to achieve robust performance 

Fig. 1 Use of artificial intelligence in the radiological workflow of prostate magnetic resonance imaging to automate, improve, and support critical 
tasks, considering radiomics and deep learning approaches
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and generalization. However, most algorithms reported 
in literature thus far, use relatively small, single-center 
datasets [16]. The limited number and quality of publicly 
available datasets for prostate MRI, further aggravates 
this issue.

Table  1 provides an overview of 17 public datasets 
for prostate MRI, which were found by the authors 
through their collaborative role in this research field 
and was updated with additional internet searches (i.e., 
The Cancer Imaging Archive, Zenodo, XNAT, GitHub, 
and grand- chall enge. org). A total of 3,369 prostate MRI 
cases (including some overlapping cases) are available, 
of which 2,238 cases primarily include mpMRI images 
acquired between 2003–2021 in Europe and the United 
States. All cases were provided as full 3D volumes, except 
for the QUBIQ21 dataset [17], which provided a sin-
gle slice per case. A total of 412 cases were collected for 
anatomical segmentation tasks, whereas the remainder 
were collected for PCa detection and/or classification. 
The majority of cases were scanned with a 3-T scanner, 
whereas only 296 cases were scanned with a 1.5-T scan-
ner. Scanner vendors include the following: Siemens 
(Siemens Healthineers, Erlangen, Germany), Philips 
(Philips Healthcare, Best, The Netherlands), and GE 
(General Electric Healthcare Systems, Milwaukee, WI, 
USA) for 2571, 446, and 110 cases, respectively. A total 
of 346 cases were scanned with endorectal coils, whereas 
the remaining were scanned with phased-array surface 
coils. In 2,240 cases lesion delineations are available and 
56 cases have matching histopathologic section images 
obtained from radical prostatectomy specimen. Table  1 
shows that clinical variables are available for some cases, 
e.g., 2,620 cases with an associated PSA level. The scans 
are available in Digital Imaging and COmmunications in 
Medicine (DICOM), ITK MetaImage or NIFTI format 
for 1,547, 1,580, and 242 cases, respectively. Total size of 
all open datasets (images, annotations, and meta-data) 
amounts to approximately 253 GB. In 2021, delinea-
tions of PCa lesions and prostatic zones for (parts of ) the 
PROSTATEx dataset [18] were curated by an independ-
ent third-party and publicly released at [19].

Although quite some prostate MRI data seem to be 
available, the quality of the outcome that is to be pre-
dicted, i.e., the reference standard for annotations (if 
any), is disputable. For datasets carrying annotations of 
the prostate anatomy, the reference standard is often one 
or few human readers (whose annotations highly depend 
on their experience level). Similarly, we notice that for the 
prediction of csPCa, the quality of annotations provided 
per dataset highly differ. One dataset reports pathology 
outcome from MRI fusion biopsies, another uses in-
bore MRI biopsies, another uses radical prostatectomy, 
while for others the reference standard remains unclear. 

Accuracy across these various tissue sampling strategies 
can vary strongly. Inconsistencies and missing informa-
tion across imaging data, cohort distribution, and refer-
ence standard can also make it difficult to consolidate 
multiple public datasets into one. At the same time, most 
public datasets are too small to be used on their own. We 
conclude that annotations and data characteristics for 
public datasets are often ill-defined, and we advise that 
potential users contact the data providers for additional 
information (e.g., patient distribution, follow-up status) 
prior to usage.

Data overlap is an issue with public datasets. In some 
cases, all or part of the dataset contains cases from other 
public datasets. For example, the NCI-ISBI 2013 data-
set [30] combined 40 cases from the Prostate-3T data-
set [22] and 40 cases from the PROSTATE-DIAGNOSIS 
dataset [25], and the entire PROSTATEx [18] and Pros-
tate-3T [22] datasets are included in the PI-CAI dataset 
[38]. Combining these datasets, may therefore inadvert-
ently lead to false assumptions of data size in scientific AI 
experiments or product development.

All the datasets were confirmed to have been collected 
with institutional/ethical review board approval, except 
for I2CVB [23], Prostate158 [39], and QUBIQ21 [17], 
for which this information was not found. The datasets 
are all anonymized. Anonymization is becoming increas-
ingly difficult in our online world in terms of data strictly 
not being traceable to patient information. Radiologi-
cal images are almost always acquired, exchanged, and 
stored in DICOM format. The DICOM header is very 
rich in information that could lead to tracing back to the 
patient. The DICOM standard defines security concepts 
for anonymization, and public tools that implement this 
are available [40]. A simpler solution is to provide images 
in non-DICOM format, which contain header with mini-
mal information. The drawback of non-DICOM images 
or very strongly anonymized DICOM images is that rel-
evant scientific information may get lost. Public prostate 
MRI data should preferably be carefully anonymized 
DICOM images with as many tags preserved as possi-
ble. The Cancer Imaging Archive provides a very strong 
DICOM anonymization procedure with the most com-
prehensive set of DICOM tags available for scientific 
research [41].

Patient inclusion criteria were ambiguous for most 
datasets, which may raise questions about the degree of 
bias in the selected data. Images were mainly acquired 
for PCa detection in patients with suspected csPCa and/
or for intervention or staging purposes. The PROSTATE-
MRI [20] and Prostate Fused-MRI-Pathology [21] data-
sets included patients in whom biopsy confirmed cancer 
and who underwent radical prostatectomy. For the QIN-
PROSTATE-Repeatability dataset [28], the criteria were 

http://grand-challenge.org
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the patient’s ability to undergo prostate MRI with an 
endorectal coil and complete the repeat examination. 
For the Medical Segmentation Decathlon (MSD) dataset 
[35], the criterion was the suitability for the development 
of a semantic segmentation algorithm.

The datasets have been used extensively by research-
ers for the development of clinical applications, including 
segmentation of prostate tissue and detection/diagnosis 
of csPCa [16, 42]. For segmentation-related applications, 
the PROMISE12 [22] and MSD [35] datasets were most 
commonly used for segmentation of the whole prostate 
gland and prostate zones, respectively (e.g. [43, 44]). 
PROSTATEx [22] is currently the dataset that is most 
commonly used for development of AI for detection of 
csPCa (e.g. [45–47]).

As of May 6, 2022, the PI-CAI challenge [37] has pub-
licly released 1,500 (of 12,500) cases [38] with a much 
stronger reference standard than that of the PROSTATEx 
challenge [29]. Additionally, PI-CAI reserves a hidden 
testing cohort of 1,000 cases, with histopathology-con-
firmed positives (Gleason grade > 1) and histopathology 
(Gleason grade < 2) or follow-up confirmed negatives, 
that will span the complete distribution of patients 
encountered in clinical routine. Data will be multiv-
endor (3-T scanners from Phillips and Siemens) and 
multicenter (Radboudumc, Ziekenhuis Groep Twente, 
University Medical Center Groningen, Norwegian Uni-
versity of Science and Technology). Patient age, PSA den-
sity, PSA level and prostate volume will be provided for 
all cases. Expert-derived lesion delineations are provided 
for approximately 80% of all cases, and AI-derived lesion 
delineations (pseudo-labels) are provided for all cases, 
using a state-of-the-art csPCa detection developed at 
Radboudumc [48].

An additional source of public images will be the Pro-
Cancer-I platform [49]. It was launched in 2020 to solve 
issues concerning national and international medical 
data sharing regulations, and lack of tooling, causing 
many institutions not to make their data available [50, 
51]. To enable these institutions that are willing to share 
their data to improve, validate, and test state-of-the-
art AI tools for prostate MRI diagnosis, the EU-funded 
platform provides a scalable high-performance comput-
ing platform that will host the world’s largest collection 
of anonymized prostate MRI image datasets (> 17,000 
cases) based on data donations in compliance with EU 
legislation (GDPR). To ensure rapid clinical implementa-
tion of the developed models, the platform partners will 
closely monitor performance, accuracy and reproduc-
ibility. Optima [52] is another EU-funded initiative that 
aims at overcoming the limitation of data sharing while 
enabling research and clinical partners to leverage a vari-
ety of federated and centralized European data for the 

dynamic development and clinical implementation of AI 
tools to combat prostate, breast, and lung cancer.

Federated learning is an alternative approach to mak-
ing data available. It allows to train robust prostate AI 
for MRI, with representative data from multiple coun-
tries and institutions, but, in contrast to the conventional 
approaches, in a federated learning framework, the AI 
model is trained by iteratively sharing model weights 
obtained from training on local data. Consequently, the 
local data need not to be shared and never leaves the 
hospitals [53, 54]. Promising frameworks for federated 
learning include Flower [55], FedML [56], and pySyft 
[57], which support several operating systems, the use of 
graphics processing units, and differential privacy. A suc-
cessful example of federated training of a prostate seg-
mentation algorithm is reported by Sarma et al. [58].

Available AI tools for prostate MRI
An inventory of commercial/public prostate MRI AI 
products/tools provides an overview of available technol-
ogy and supported clinical applications. This is relevant 
to both the clinical end user and scientists exploring 
knowledge gaps. In reviews, these updates quickly 
become outdated. Of note, a website [59] provides an 
updated overview of available AI-based prostate MRI 
software for clinical radiology.

A comprehensive overview of current commercial 
products/public tools is summarized in Table  2. Eleven 
vendors offer products that help report and acquire 
prostate MRI for diagnostics and intervention. The AI 
claims range from modest automatic segmentation of the 
prostate to measure prostate volume, to calculation of a 
tumor heatmap, up to an automated detection of csPCa 
[60]. Consequently, products vary in their level of clinical 
support and ability to improve workflow or reader vari-
ability. Only few vendors are currently able to automati-
cally generate reports that can help reduce the diagnostic 
workflow. For only one vendor (Siemens Healthineers) 
[13], a prototype was shown to increase diagnostic accu-
racy and reduce variability between readers [60]. Various 
trials are underway, and it is expected that soon other 
vendors will upgrade their products with similar claims. 
AI for prostate MRI is not dissimilar to many other radi-
ology applications, in that peer-reviewed evidence of 
effectiveness is mostly lacking [61]. As shown in Table 2, 
levels of certification vary, which also implies that the 
level of validation varies. The ‘soft’ AI engine claim of it 
being able to produce a tumor heatmap without explicit 
detection performance can do with a class I certifica-
tion with little validation studies. The ability to predict 
presence of csPCa and associated claims of workflow 
improvements requires much stronger evidence and vali-
dation levels (level II and above).
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Non-commercial public AI tools for prostate MRI 
may reflect the current state-of-the-art. Many tools 
have been made available in the form of publications, 
codes, software plugins, or grand challenge algo-
rithms for research or non-clinical purposes. A num-
ber of these tools have already been presented in other 
review articles [16, 42, 62, 63]. However, access to 
these trained models is not always possible, and when 
it is possible, it is usually not easy for end  users or 
researchers to implement. Furthermore, if developers 
want to benchmark against these models, they usually 
must use the source code, install libraries, and make 
changes to fit the model, which can lead to unfair and 
non-direct benchmarking. One way to overcome this 
problem is to use platforms that easily allow the use 
and direct benchmarking of pre-trained models.

NVIDIA Clara Imaging [64] is a platform that pro-
vides a framework for the development and direct 
deployment of AI applications for medical imaging. 
It includes a set of public, pre-trained deep learn-
ing models. Currently, the available models appear 
to focus primarily on segmentation tasks, includ-
ing nnU-Net [43], a self-configuring method for deep 
learning-based segmentation that has shown excel-
lent performance on the MSD [34] and PROMISE12 
[32] challenges. Another platform is Grand Chal-
lenge–Algorithms [65], to which pre-trained models 
can be uploaded so that developers can directly test 
the method and compare their models against its per-
formance. The platform currently includes a prostate 

MRI segmentation model and two csPCa detection 
models. Furthermore, the Federated Tumor Segmenta-
tion (FeTS) Platform [66] provides access to multiple 
pre-trained models that can be deployed in a federated 
fashion.

Grand challenges
Grand challenges provide the means to benchmark and 
validate multiple AI models across a set of common 
training and testing datasets, in a bias-free manner. For 
prostate MRI, there are a handful of public challenges, 
each of which focus on one of two clinical outcome cat-
egories: prostate anatomy segmentation (NCI-ISBI 2013 
[31], PROMISE12 [33], MSD [34], QUBIQ21 [17], Pros-
tate158 [39]) and csPCa detection/diagnosis (PROSTA-
TEx [29], Prostate158 [39] and PI-CAI [37]).

The NCI-ISBI 2013, MSD and Prostate158 challenges 
evaluated the performance of AI models for segmenta-
tion of the prostatic peripheral zone (PZ) and transi-
tional zone (TZ). Meanwhile, the PROMISE12 challenge 
evaluated the segmentation of the whole gland, not its 
constituent zones. Segmentation of the whole gland is 
considered an easier task than segmentation of prostatic 
zones (especially PZ). This is reflected by a top Dice simi-
larity coefficient in the literature of about 0.90 (TZ) and 
0.75 (PZ) [67]. In the MSD, nnU-Net [43], which per-
formed the best, had similar results with a Dice similarity 
coefficient of 0.90 and 0.77 for TZ and PZ, respectively.

PROMISE12 ranked AI-derived segmentations using a 
score that averages four different similarity and distance 

Table 2 Overview of commercially available prostate MRI tools that implement AI. The table attempts a comprehensive comparison 
in terms of highest claim and level of trust based on certification level

AI Artificial intelligence, CE European conformity, FDA Food and Drug Administration. For more information, check [59] for detailed descriptions of features and links to 
vendor websites and related information

Number Vendor Product(s) name Highest AI claim FDA CE

1 Quibim DWI-IVIM, DCE-PKM, Texture, T2 mapping, 
QP-Prostate

Quantitative MR possibly reducing machine 
dependence and automate some report 
generation

Class II Class IIa

2 Quantib Quantib-Prostate Automatic tumor detection that can auto-
mate some report generation

Class II Class IIb

3 JLK JPC-01K Heatmap that may help spot tumors No Class I

4 Siemens Healthineers Prostate MR Syngo.via, AI-Rad companion Automatic tumor detection that can auto-
mate some report generation

Class II Class IIb

5 Lucida Prostate Intelligence Automatic tumor detection that can auto-
mate some report generation

No Class I

6 Cortechs.ai OnQ Prostate Heatmap that may help spot tumors Class II No

7 Elekta ABAS Automated anatomy segmentation Class II Not reported

8 Mirada DLCExpert Automated anatomy segmentation No Class IIb

9 MIM MIM Maestro Automated anatomy segmentation Class II Class III

10 Philips MRCAT Prostate + Auto-Contouring Automated anatomy segmentation Class II Not reported

11 General Electric PROView DL Automated anatomy segmentation Class II Not reported
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metrics relative to an expert’s manual annotations. The 
top score is 100, but in their article [33], challenge organ-
izers explained that final scores are normalized with a 
second (inexperienced) reader to 85. They already indi-
cated that very high scores (> 90) are likely in the realm 
of inter-reader variability. During the challenge, the best 
score achieved was 87. However, in the present-day post-
challenge leader board, ten submissions have a score 
ranging from 89.5 to 91.9, with the highest score being 
achieved using MSD-Net [68]. At these higher limits of 
performance, differences between AI algorithms, with 
respect to the PROMISE12 reference standard (human 
expert with six years of experience), may not be indica-
tive of better or worse performance. Particularly, with 
deep learning algorithms performing so well, the issue 
now becomes to define a better reference standard that 
is more representative of the biological ground-truth, 
which remains an open research question.

The QUBIQ21 challenge aimed to quantify uncertain-
ties in biomedical image segmentation. Recent advances 
in probabilistic deep learning allow for uncertainty esti-
mation across predictions [69], which can pave the way 
to explainable, trustworthy AI and can inform clini-
cians about diagnostic uncertainty of AI [70]. QUBIQ21 
addresses multiple organs and imaging modalities, 
including prostate MRI. For prostate MRI, there are two 
segmentation tasks for 55 T2W cases (one mid-gland 
slice with six expert annotations per case).

The Prostate158 challenge is a recently released chal-
lenge that aims to segment the PZ and TZ of the prostate 
in addition to segmenting the PCa lesions. The challenge 
provides 139 cases for training and validation of AI mod-
els and uses a hidden test dataset of 19 cases for perfor-
mance evaluation of the models.

The PROSTATEx and PI-CAI challenges aim to evalu-
ate the performance of AI models for csPCa detection 
and classification. Launched in 2014, the PROSTATEx 
challenge has been the only public benchmark for this 
task to-date. More than 1,765 entries have been submit-
ted during the challenge, with the maximum value of the 
area under the curve at receiver operating characteristic 
analysis currently at 0.95. Meanwhile, in the PI-CAI chal-
lenge provides the largest training (n ≈ 9,000; of which 
1,500 cases will be made public), validation (n ≈ 100), 
and testing (n ≈ 1,000) datasets to-date, with a study 
design and reference standard established in conjunction 
with multi-disciplinary radiology, urology and AI experts 
in the domain. PI-CAI also includes an international 
reader study with 63 radiologists (42 centers, 18 coun-
tries; 1–23 years of experience reading prostate MRI, 
median 9 years) till-date, to assess the clinical viability of 
stand-alone AI relative to radiologists.

Discussion
AI is starting to get an assistive role in the PCa clinical 
pathway. The advent of deep learning for medical imag-
ing allows realizing stand-alone AI that achieves good to 
expert level performance in the prediction of segmen-
tation volume and csPCa detection [14, 15, 45]. Deep 
learning AI models are being incorporated in products 
that provide human interface software that aims to help 
improve workflow and reduce diagnostic performance 
variability [45, 47, 60, 71]. Moreover, these AI diagnos-
tic models can be used before, during and after radia-
tion therapy. Segmentation models can be used for organ 
delineation in the planning phase and for prostate-tar-
geted MRI-guided radiotherapy [72]. Detection models 
can for example be used to monitor the response of the 
lesion during and after treatment [73]. Similar develop-
ments have already been seen in other medical imaging 
domains such as breast [74] and lung [75]. The recent 
availability of prostate MRI data explains the rather late 
development of prostate MRI AI. The development is 
further complicated because prostate MRI is intrinsically 
multiparametric with an enormously different appear-
ance of the image parameters.

Other complications include the presence of image 
artifacts [76] and that MR image acquisition is not 
standardized, although minimum requirements for PI-
RADS reading exist [7]. An important role for AI may 
therefore also be in image preprocessing and quality 
control [77–80]. Finally, prostate MRI hampers a well-
defined reference standard with definitions of cancer 
significance widely varying. The AI-induced large-
scale collection and curation of data will help further 
develop the field. To that end, AI can help prostate 
MRI realize a better perspective for men with PCa, by 
reducing unnecessary biopsies, reducing overtreat-
ment, providing early detection to achieve less burden, 
and increasing survival.

We have attempted to provide an overview of the cur-
rent state-of-the-art of AI applications for prostate MRI. 
Unlike other review papers [16, 42, 62] that focus on AI 
tools that have been developed, this review focuses on 
open datasets, commercially/publicly available AI, and 
grand challenges. However, since this is a rapidly grow-
ing field, a limitation of this review is that it will become 
outdated in a relatively short period of time, just like the 
review papers before it. Therefore, up-to-date reviews of 
this field are constantly needed.

In conclusion, available prostate MRI AI products 
are relatively few, with only one validated for assisting 
in the difficult detection task and others for the simpler 
gland volume estimation task. The AI prediction of other 
clinical outcomes in the prostate cancer pathway is still 
maturing or even needs to start at all. A lot of research 
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is still required to successfully realize AI to help in the 
whole prostate pathway. Public well-curated datasets are 
available but are relatively small and vary in quality of the 
reference standard. More computational AI challenges 
are needed to provide independent validation of products 
and research to build trust in AI for prostate MRI.
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