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Abstract
A Derivative-Free Trust-Region (DFTR) algorithm is proposed to solve the robust well control optimization problem under
geological uncertainty. Derivative-Free (DF) methods are often a practical alternative when gradients are not available or
are unreliable due to cost function discontinuities, e.g., caused by enforcement of simulation-based constraints. However,
the effectiveness of DF methods for solving realistic cases is heavily dependent on an efficient sampling strategy since cost
function calculations often involve time-consuming reservoir simulations. The DFTR algorithm samples the cost function
space around an incumbent solution and builds a quadratic polynomial model, valid within a bounded region (the trust-
region). A minimization of the quadratic model guides the method in its search for descent. Because of the curvature
information provided by the model-based routine, the trust-region approach is able to conduct a more efficient search
compared to other sampling methods, e.g., direct-search approaches. DFTR is implemented within FieldOpt, an open-
source framework for field development optimization, and is tested in the Olympus benchmark against two other types
of methods commonly applied to production optimization: a direct-search (Asynchronous Parallel Pattern Search) and a
population-based (Particle Swarm Optimization). Current results show that DFTR has improved performance compared to
the model-free approaches. In particular, the method presented improved convergence, being capable to reach solutions with
higher NPV requiring comparatively fewer iterations. This feature can be particularly attractive for practitioners who seek
ways to improve production strategies while using an ensemble of full-fledged models, where good convergence properties
are even more relevant.

Keywords Derivative-free trust-region algorithm · Well control optimization · Robust optimization under geological
uncertainty

1 Introduction

Production optimization problems are important because
they complement general reservoir management efforts
with systematically-derived information regarding how to
operate wells optimally given a determined objective. Pro-
duction optimization problems involving well controls are
typically computationally-demanding since cost function
evaluations ordinarily require time-consuming reservoir
simulations. Cost function objectives associated with pro-
duction problems are usually formulated using continuous
well controls, e.g., bottom-hole pressures (BHP) and/or
production/injection rates, as independent variables. For
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the most part, these objectives involve maximizing profit,
e.g., increasing either the net present value or other more
sophisticated economic targets [4, 20]. However, objec-
tives can also include other performance measures and
costs, e.g., improving water-flooding sweep, reducing top-
side energy consumption and environmental objectives. In
general, for water-flooding cases, optimal control solutions
imply increasing hydrocarbon production while reducing
water production and injection.

Production optimization problems with continuous con-
trols are generally considered to exhibit smooth cost func-
tion surfaces. These surfaces have been reported to organize
in ridge-like topologies consisting of multiple local optima,
i.e., different optimal solutions have been observed to yield
similar cost function values lying within a plateau range
[14]. On a related note, this problem characteristic has been
suggested as a general point of support for using gradient-
based methods for production optimization [39]. These
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gradients are most efficiently calculated using an adjoint
formulation [23, 25]. However, since the problem is smooth
and the control variables are continuous, standard finite-
differences methods may be applied, though at a significant
computational cost (as discussed later), when the simulator
does not provide corresponding sensitivities.

Though calculating the gradient using the adjoint
formulation is highly efficient compared to finite-difference
and other alternatives, the additional computation necessary
to assemble the gradient after simulation has a similar
computational runtime as the forward simulation. Moreover,
when not readily available from the reservoir simulator,
computing adjoint gradients may be difficult because
implementing the procedure to assemble these gradients
requires an intrusive development within the simulator code.
Still, when adjoint-gradients are available and reliable, they
can be fairly useful for large-scale production optimization
since their added computational cost does not scale with
problem dimension [23]. Adjoint-based methods can be
broadly split into single shooting methods, see e.g., [23] for
a review, or multiple shooting approaches [6, 34]. While the
first considers only the well controls as decision variables,
the latter embeds the reservoirs states along the simulation
time into the optimization problem, thereby increasing the
problem complexity but allowing an easier handling of
output constraints.

Clearly, a common concern for gradient-based method-
ologies, in particular those that rely on adjoints, is
that their search efficiency and ultimate performance are
highly dependent on the accuracy of the calculated gra-
dient. Adjoint-gradient accuracy may be compromised by
simulation-based constraints that operate at the simulation
time-step level (as opposed to the optimization control-
step level). This type of constraints is often imposed on
well operations in realistic production strategies. The issue
of lost sensitivity concerns not only the enforcement of
production- and/or economic-type of constraints such as
liquid production or water-cut limits, in the case of water
flooding, but also industry-standard heuristic rules of well
control switching during simulation. (Well group control
heuristics and other facility-wide constraints that may addi-
tionally be imposed on the problem are here disregarded.) In
particular, [36] shows that enforcing simulator-based eco-
nomic constraints may trigger non-differentiable unsched-
uled changes during reservoir simulation. Crucially, these
discontinuities can subsequently lead to inconsistencies
within the adjoint-gradient formulation and this can even-
tually translate into decreased performance of a gradient-
based algorithm.

Although production optimization is considered a rel-
atively smooth problem, and derivative information can
therefore in theory be estimated numerically in a straight-
forward manner, e.g., using finite differences, doing so is

generally not practical for even medium-scale problems
because of the computational cost associated with each
objective function evaluation. Along these lines, stochastic
gradient approximation methods have been studied exten-
sively [5, 39] as a way to estimate cost function sensitivity
in a computationally efficient manner. Even disregard-
ing computationally-expensive function evaluations, typical
gradient estimation efforts for the control problem may be
difficult and unreliable, e.g., due to the difficulty in select-
ing appropriate perturbation sizes [13] in addition to various
types of simulation error that can influence the final cost
function value [37].

Multiple methodologies rely on gradients for effective
solution of the well control problem, see e.g., [4, 14, 24, 35,
38]. As mentioned, however, gradient information for this
type of problem may be unreliable due to numerical errors,
cost function nonsmoothness due to simulation-based
constraints, or other inaccuracies. From a practical point
of view, derivative-free approaches are attractive because
they are relatively easy to implement, are noninvasive to
simulator code and many of the underlying search strategies
are straightforward to parallelize [13]. More importantly,
these methods are useful for problems where derivative
information is not readily available, e.g., in the case of well
placement optimization, and/or when an expanded or global
search is required. These approaches are often split into
deterministic and stochastic methods. In optimization terms,
the stochastic component in the latter type serves to avoid
local minima in contrast to gradient-based methods which
only have local-search property and are heavily-dependent
on initial controls [39].

Though generally less efficient than gradient-based
methods, several derivative-free approaches offer global-
search properties and most can be implemented efficiently
in a distributed environment. Derivative-free methods can
be broadly divided into direct-search and model-based
type of methods, see e.g., [10]. Direct-search methods
conduct their search for improved solutions by making
immediate use of their sampled feasible space information
according to a predetermined logic. Among these, pattern-
search methods sample the feasible space using stencils
and exhibit local convergence properties given their stencils
comply with specific geometric conditions [16]. Other
commonly-used direct-search methods, e.g., Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) rely on
population-based approaches that involve a large number
of sampling points. Model-based methods, on other hand,
construct a model of the objective function with the aim of
incorporating higher-order curvature information about the
solution space to improve the search.

In this work, a Derivative-Free Trust-Region (DFTR)
algorithm is presented to solve realistic well control
optimization problems. The DFTR algorithm relies on
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a model-based search strategy that uses a quadratic
interpolation model to approximate the true cost function
within a certain neighborhood (the trust-region). The use
of a model to guide the search not only allows for a wider
exploration of the search space, but also provides a certain
level of robustness against cost function inaccuracies and
nonsmooth characteristics. Finally, compared to methods
relying on direct-search, a model-based approach can
be more effective in reaching reasonably good solutions
with fewer function evaluations. This is particularly
important when cost function evaluations involve numerical
simulations, and for real-time applications where good-
enough solutions need to be calculated within short spans of
time.

Results from this work demonstrate that DFTR is a
practical algorithm with good convergence performance that
can be used to obtain results on realistic cases in an efficient
manner. In practice, this means that a sufficiently good
solution can likely be obtained even though the optimization
is halted, e.g., due to limited time or computational
budget, before specified convergence criteria have been met.
Specifically, we show that the iterative progression of DFTR
outperforms the other algorithms tested in this work, a
pattern-search and population-based, for the presented case
studies. Even when the DFTR solutions are not locally
optimal, they are comparable to the solutions using other
approaches that were obtained using a considerably higher
number of simulations. From a practical point of view, this is
a reasonable result for the production optimization problem.

The next section presents a formulation for the well
control problem, and provides a broad overview of common
solution approaches in the literature for well control
optimization. In particular, it describes the use and typical
challenges associated with gradient-based and derivative-
free approaches in this context. The subsequent section
provides a detailed explanation of the various operations
comprising the DFTR algorithm. Finally, the last two
sections describe the test case, as well as present and analyze
case results and offer some conclusions and discussion of
further work.

2Well control optimization

Well control optimization consists of determining the well
controls, i.e., production and injection rates or bottom-hole
pressures (BHPs), that maximize an objective function of
interest, commonly the cumulative oil production or the
net present value (NPV). With the right choice of well
controls the economic performance of the reservoir can
be considerably improved for the field life cycle. In this
section, we first formulate the well control optimization
problem, including the objective, the control variables and

the constraints. Then, we provide a justification for the
proposed method in light of currently available methods in
the literature for well control optimization.

2.1 Nominal problem formulation

The objective function is an economic function that contains
certain monetary parameters such as the oil price and the
costs associated with injection and processing of water. The
objective function employed in this work is the NPV, which
results from a time series of cash flows over a period of time.
For two-phase flow of oil and water, the NPV is defined by:

NPV(qu) =
T∑

t=1

Δt

(1 + d)t ·Δt/τ
·
[
rt

op · qt
op − rt

wp · qt
wp − rt

wi · qt
wi

]
(1)

where qu is a vector of the total oil production rate qt
op,

the total water production rate qt
wp, and the total water

injection rate qt
wi for all time steps t = 1, . . . , T . The

associated oil price and water treatment cost are rt
op and

rt
wp, respectively, whereas the water injection cost is rt

wi.
The total field production time is split into a set of time
steps T := {1, . . . , T } with a step size of Δt , typically
corresponding to a couple of days, whereas the parameter
τ is a normalization term, typically taken as the number
of days in a year. The revenue obtained with the field
production is discounted over time by a discount factor term
d.

The decision variables u are the controls of the wells in
i ∈ W := {1, . . . , Nw} for a set of control steps k ∈ K :=
{1, . . . , Nt}. The controls of each well ui are piecewise-
constant values for the well bottom-hole pressure, one for
each control step k ∈ K . There is a surjective function
κ(t) : T → K which maps the simulation steps T into
control steps in K , with |K | ≤ |T | and Nt ≤ T . The
total number of well controls Nu is given by the product of
the total number of wells and the number of control steps,
i.e., Nu = Nw · Nt. Notice that the number of variables of
the well control optimization problem is proportional to the
number of control steps, which means that a refined control
strategy has more degrees of freedom at the expense of an
increase in the problem dimension.

The nominal well control optimization problem for a
single reservoir realization is formulated as follows:

maximize
u

NPV(qu) (2a)

subject to:

R(x0, xu, u) = 0 (2b)

qu = Q(xu) (2c)

ulb ≤ u ≤ uub (2d)

c(u) ≥ 0 (2e)
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where NPV(qu) is the objective function defined in Eq. 1,
xu are the states of the system of reservoir equations
R(x0, xu, u), over the production planning horizon, for the
initial condition x0 and the control sequence u, and qu are
the field flow rates computed from the states using the
equation Q(xu). The constraints (2d) and (2e) are bounds on
the well controls and some additional inequality constraints
respectively. The lower and upper bounds ulb and uub are
needed to avoid infeasibility of the control strategy, such
as too low pressures in the producers causing lift die-
out, or pressures at the injectors exceeding the maximum
allowable formation or equipment pressures. The inequality
constraints (2e) on the input variables u are typically
employed to impose field-wide constraints, such as limits on
the total water injected into the field and also environmental
constraints.

2.2 Robust problem formulation

In addition to the nominal well control problem, we also
formulate the robust well control optimization problem.
For that, we will use an ensemble of reservoir models to
address uncertainty. Then, instead of maximizing one NPV,
as in the previous section, we propose the maximization of
the expected value for the NPV. As all the realizations of
the ensemble are considered equally probable, the expected
value is given by the average of the NPV computed across
all realizations, namely:

f (qu) = 1

M

M∑

i=1

NPVi (qu), (3)

in which NPVi (qu) is the economic function resulting from
the ith realization, assuming a well control sequence u, and
M is the number of reservoir realizations.

The constraints which are written on the decision
variables, such as bounds (2d) and the inequality constraints
on control variables (2e), are kept unaltered. Constraints
which depend on the simulation outputs have to be
dealt with individually. The feasibility of the simulation,
established by Eq. 2b, has to be enforced for every model
of the ensemble. The robust formulation for well control
optimization is as follows:

maximize
u

f (qu) (4a)

subject to:

Ri(x0, xu, u) = 0, ∀i = 1, . . . , M (4b)

qu = Q(xu) (4c)

ulb ≤ u ≤ uub (4d)

c(u) ≥ 0 (4e)

2.3 Solutionmethods

Production optimization problems have been treated
using both gradient-based [2, 3, 26, 32] and derivative-
free approaches [13, 22]. While many gradient-based
approaches rely on adjoints for the efficient computa-
tion of derivatives [23], derivative-free methods are com-
monly accelerated making extensive parallelization of the
objective function sampling routines. The following dis-
cussion focuses primarily on features and associated lim-
itations of typical methodologies for gradient-based and
derivative-free well control optimization, which can be
either applied in a single reservoir or an ensemble of mod-
els. In this respect, gradient-based approaches are discussed
with regard to adjoint-gradient computation and accuracy,
while derivative-free approaches are treated with regard to
local/global search attributes and large objective function
sampling requirements.

The well control optimization problems (2) and (4)
require the solution of the set of differential (2b) and (4b),
i.e., one and multiple reservoir simulations, respectively,
for each objective function evaluation. When the reservoir
simulator provides the cost function gradients associated
to the well controls, it is convenient to use a gradient-
based approach, which typically exhibits faster convergence
rate and provides robust guarantees for optimality. Within
several studies, the adjoint-gradient has been used by vari-
ous numerical algorithms to solve production optimization
problems. Several of these applications involve the Sequen-
tial Quadratic Programming (SQP) algorithm [2, 6, 11, 12,
32, 37], while a few use the Method of Moving Asymptotes
(MMA) [3], among others [39].

A simulation-based error source impacting overall
adjoint-based algorithm performance, e.g., leading to pre-
mature convergence, is inconsistency in adjoint-gradient
accuracy during the optimization process. This inconsis-
tency stems from the adaptive time-stepping strategy imple-
mented by the simulator, which can generate time step
refinements that vary significantly from one simulation to
the next during optimization [37]. The varying time dis-
cretizations lead to altered objective function value calcula-
tions that also arbitrarily affect the corresponding gradients
across subsequent simulations. In a wider sense, this error
source is also related to the implementation of simulation-
based constraints, e.g., well control-switching constraints,
which can cause a high degree of time step refinement, par-
ticularly if time step sizes and tuning parameters are not
set appropriately. Though this type of inconsistency may
be avoided by using a fixed time-stepping strategy, sim-
ulations of large-scale production systems are usually run
with adaptive strategies as a trade-off between substan-
tial performance improvement and the need to accurately
capture significant changes in dynamic behavior due to
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common phenomena, e.g., water-breakthrough and/or gas
coning.

Overall, the application of gradient-based approaches
can be challenging due to inaccurate calculation of
derivatives caused by simulation errors or impossible
if well control sensitivities are unavailable. In these
situations, approaches based on derivative-free methods
become a practical alternative because of their robust search
properties.

In this work we propose a derivative-free model-building
method relying on a trust-region search approach [7] for
well control optimization with control bound constraints.
The Derivative-Free Trust-Region algorithm (DFTR) is
applied to both a nominal reservoir case and for an ensemble
of models, as defined in (2) and (4), respectively. The
method works by constructing a polynomial interpolation
model with simulated data-points which provides a locally
valid approximation of the underlying cost function. A
minimization of the approximate model is then performed to
find the next solution candidate. Compared to direct-search
sampling methods, the inference of curvature information
through the approximate model is expected to result in a
more efficient search of the feasible space.

DFTR can be compared to the SQP method in
that both methods build a quadratic model of the
objective function. In its scheme, the SQP relies on a
Hessian approximation built using gradients from previous
iterations. As previously discussed, this approximation is
susceptible to gradient inconsistencies that may result in
inaccurate curvature information which is likely to degrade
search performance [37]. The model-building process
of the DFTR method, on the other hand, relies on a
polynomial interpolation of objective function values. The
subsequent search for new tentative solutions relying on
this interpolation is regarded as less sensitive to objective
function noise and error. New iterates are found through
efficient minimization of the quadratic interpolation model,
and the model updates are controlled in a dynamic way
by considering a measure comparing predicted and actual
improvement in the objective.

In general, the motivations for applying the DFTR
algorithm for well control optimization are that (1)
the adjoint-gradient may not be entirely reliable nor
sufficiently accurate in the case of problems with typical
simulation-based constraints, which are common in realistic
applications; that (2) direct-search methods are often
inefficient for realistic applications, despite substantial
parallel resources; and that (3), in comparison, the DFTR
approach, though involving complex algorithms for model-
building, nevertheless enables a robust search procedure that
can yield significant improvement over few iterations. A
detailed presentation of the proposed DFTR algorithm is
given next.

3 Derivative-free trust-region algorithm

In this section we present the algorithm implemented to
solve the well control optimization problem formulated pre-
viously. Though the individual elements of the proposed
algorithm are present in the literature, their orchestration
into an efficient methodology for well control optimiza-
tion is regarded as the main contribution of this work.
Derivative-free trust-region algorithms conduct an opti-
mization by modeling response surfaces using results from
black-box functions (obtained by simulation). These meth-
ods attempt to achieve greater increase of the cost func-
tion using fewer time-consuming simulations, compared to
direct-search methods which do not include cost function
curvature information explicitly in their searches.

Here, the objective function will be denoted f , which can
be any black-box function of interest (for example the NPV,
or its average). The variables of the problem will be denoted
in a single vector x = (x1, x2, . . . , xn). As the algorithm
runs, f is sampled and their values are used to build a
model. At each iteration k, the incumbent model mk of the
objective is optimized inside the trust-region, which is a ball
around the iterate xk . Only then is f evaluated once more, so
steps can be accepted or rejected as a new iterate. Through
the iterations, the model is improved by incorporating more
recent evaluations of f .

Next we turn to the issue of generating the models mk ,
which interpolate the objective f in a set of points Yk using
quadratic polynomials. For the sake of notation, we will
omit the iteration number k for models and interpolation sets
during this explanation. In order to state the interpolating
equations, we define the basis employed for a problem of n

variables:

φ = {φ0(x), φ1(x), . . . , φL(x)}
=

{
1, x1, x2, . . . ,

1

2
x2

1 , x1x2,
1

2
x2

2 , x1x3, . . . ,

xn−2xn, xn−1xn,
1

2
x2
n

}
, (5)

which includes all monomials of degree at most 2. The
model is a linear combination of these terms

m(x) =
L∑

i=0

αiφi(x). (6)

For every point yi of Y , m(yi) = f (yi). Then,
the coefficients of Eq. 6 can be obtained solving this
interpolation condition for all the points:

α0φ0(y0) + α1φ1(y0) + · · · + αLφL(y0) = f (y0)

α0φ0(y1) + α1φ1(y1) + · · · + αLφL(y1) = f (y1)

...
...

α0φ0(yL) + α1φ1(yL) + · · · + αLφL(yL) = f (yL),
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which is a system of linear equations that can be written

M(φ, Y )α = f(Y ). (7)

The total number of terms of the basis is L = (n +
1)(n + 2)/2, so for this system to be fully determined Y
should have the same number of interpolation points. For
our application case with 40 variables, the number of terms
of the basis is L = 861.

It is, of course, impractical to demand that many
reservoir simulations before being able to take steps.
Indeed, quadratic interpolation would have no place in the
derivative-free optimization literature if it were not for the
use of under-determined models. The DFTR algorithm in
this work follows [8] in allowing interpolation sets Y
with varying number of points. In fact, the first model is
built using only two points. As the algorithm progresses,
more simulations are performed, so the set Y is gradually
increased. Up until n+1 points, the models are computed by
a coarse finite differences method, involving only part of the
linear terms of the basis (5). These may be called sub-basis
models.

When the trust-region algorithm reaches iteration k with
an iterate xk and the number of points which are available
for model building is between n + 1 and L = (n +
1)(n + 2)/2, another computation is employed. In this case,
the number of interpolating conditions is insufficient to
fully determine a quadratic model. The remaining degrees
of freedom are used to compute a model with minimum
Frobenius norm Hessian around xk , that is, the model
computed is of the form

m(xk + s) = m(xk) + ∇m(xk)
T s + 1

2
sT ∇2m(xk)s,

where the Hessian matrix ∇2m(xk) has minimum Frobenius
norm. This is obtained by first shifting the set of
interpolation points Y = {y0, y1, y2, . . .} to the center of
the trust-region:

Ŷ = {
ŷ0, ŷ1, ŷ2, . . .

} = {y0 − xk, y1 − xk, y2 − xk, . . .} .

Then, the system (7) is written partitioning the interpolation
matrix M in two: ML and MQ, with columns corresponding
to the linear and to the quadratic terms respectively. The
interpolation condition can be written

ML

(
φ, Ŷ

)
αL + MQ

(
φ, Ŷ

)
αQ = f(Y ).

The model is computed by solving the quadratic problem

minimize ‖αQ‖2

subject to:

ML

(
φ, Ŷ

)
αL + MQ

(
φ, Ŷ

)
αQ = f(Y ).

Such models capture not only first-order information, but
also some curvature. We must stress that while there are
different approaches for the formulation of models [30, 31],

the possibility of under-determined quadratic interpolation
is a main feature for the success of many model-based
derivative-free algorithms available.

As we fixed the basis of monomials at the beginning, the
matrices M(φ, Y ), ML and MQ depend only on the set of
points Y . Special maintenance procedures are performed
to ensure that these matrices are well-conditioned so the
interpolation can be solved accurately. These procedures
operate only on the set of points: the inclusion of some
points may be rejected and some points may need to be
replaced in order to maintain good conditioning. These
procedures are explained in [9] and [10, Chapter 6] and will
not be detailed here.

Following [8], we chose to perform the model mainte-
nance in blocks, by the use of Newton Fundamental Poly-
nomials. In this approach, quadratic monomials are only
included after all the linear ones. This also ensures that any
model with more than n + 1 points is a good first-order
representation of the objective f . Another important conse-
quence is that a model with at least n+1 points, has bounded
modeling error:

|f (x + s) − m(x + s)| ≤ κef Δ2, ‖s‖ < Δ, (8a)

‖∇f (x + s) − ∇m(x + s)‖ ≤ κegΔ, ‖s‖ < Δ, (8b)

where κef and κeg depend on the function, and Δ is the
radius of the trust region. A model satisfying such bounds
is said to be Fully Linear (FL). Having defined this, we
may turn to the description of the derivative-free trust-region
algorithm.

At the beginning of each iteration, the model mk is
optimized inside of the trust-region, which is a ball of radius
Δk around the iterate xk:

maximize
s

mk(xk + s) (9a)

subject to:

‖s‖∞ ≤ Δk (9b)

xlb ≤ xk + s ≤ xub (9c)

This is called the trust-region subproblem. We elected
the infinity norm because it aligns with variable bounds,
making such constraints easier to handle.1 The subproblem
above may be NP-hard, depending on the model [29], but
this is not a big issue in this context. Convergence can be
obtained with a coarse approximation of the solution of (9):
it suffices to take the steepest ascent direction. Also, as the
dimension of the problem is quite limited in general, it pays
to put some effort in solving the trust-region subproblem as
best as possible in order to save function evaluations (which
involve lengthy reservoir simulations).

1See [7, Section 7.8] for a discussion on the choice of trust-region
norms
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Notice that this maximization involves only the model
mk , available at the beginning of the iteration, to compute
the trial-point x+

k = xk + sk . Only then, the objective
is evaluated once more, rendering f (x+

k ) which may be
accepted or rejected as the next iterate, by the use of the
following factor:

ρk = f (x+
k ) − f (xk)

mk(x
+
k ) − mk(xk)

, (10)

which assesses both the ascent obtained and the degree
to which the model agrees with the actual function
[10, Chapter 10], [27, Chapter 4]. Notice that point x+

k is
computed only if xk is not the optimum of model mk . Since
it is computed maximizing model mk , mk(x

+
k ) > mk(xk)

and the denominator of Eq. 10 is strictly positive. From this
fact, follows that not only the numerator f (x+

k ) − f (xk),
but also the resulting ρk measure ascent of f from xk to x+

k

(and nonpositive values signal lack of ascent). Since ρk is
the ratio between actual ascent and predicted ascent, it also
serves the purpose of measuring how the model agrees with
the actual objective. Accurate models render a ρk close to
1, and less accurate models will result in ρk further from 1
(either too high or too low).

If factor (10) is large enough (ρk ≥ η1 > 0), then the
step is accepted as the next iterate (xk+1 = x+

k ). It may
also be accepted with a threshold η0 ≥ 0 smaller than η1:
if ρk > η0 ≥ 0, then xk+1 = x+

k as long as the model is
already FL (and the bounds (8) hold). Upon the acceptance
of a new iterate, the model is necessarily updated so it
interpolates f at xk+1.

At this point, the derivative-free approach distances itself
from traditional gradient-based trust-region methods. If ρk

is small, it may be either because the radius is too big (and
the local approximation degrades), or because the model is
not accurate (not FL). If the model is FL, reducing the radius
will reduce the error, according to Eqs. 8a and 8b. That can
not be said if the model is not yet FL: in such case, the model
must be improved with appropriate maintenance procedures
[9].

To that end, we first try to include in the model the trial-
point just rejected, since the simulation has already been
performed and it conveys information that the model is
lacking. If the model maintenance procedures are unable to
include such point in the interpolation set, the model must
be improved with the computation of another point (with the
corresponding objective function evaluation). We chose to
make model improvements incremental: they include only
one point at a time and it may take a few iterations until
the model becomes FL. With this scheme the algorithm
performs at most two simulations per iteration.

Notice that the management of points in the model plays
a central role in the method as it affects both the method’s
robustness and efficiency. Even the points evaluated which

do not improve the model are stored in a list of cached
points for further use in future iterations. As storing many
points in memory might be problematic for problems
with many decision variables, the oldest points, or those
which lie further away from the trust-region, are discarded
after some time. Further, there is a model maintenance
procedure in the algorithm that marks the model as old
if the distance of the points being used in the model is
larger than a pre-specified distance to the trust-region area.
If so, the model is rebuilt using sampled points that are
nearer the incumbent solution. This criterion is a tuning
parameter of the algorithm that weighs model accuracy and
computational cost, i.e. allowing models to use only the
points which are near the trust-region center could yield
more accurate approximations, but at the expense of more
frequent model updates. An alternative approach, taking
more emphasis on the distance of the interpolation points is
addressed in [33].

The value of ρk is also used to decide on the radius
update. If ρk ≥ η1, the radius may be increased. In this case
we set

Δk+1 = min [max(Δk, 2‖sk‖), Δmax] ,

where the value Δmax defines the maximum radius allowed
through the algorithm run. This scheme allows steps to
grow, while trying to avoid unnecessary increases of the
radius.

If ρk < η1 and the iteration model mk is FL, the error
may be reduced decreasing the radius (according to Eqs. 8a
and 8b). In this case we set

Δk+1 = 1

2
Δk .

If ρk < η1 and the model can not be guaranteed to be FL,
there is no point in reducing the radius, so it is kept the same
(Δk+1 = Δk). We also defer the radius decrease if the trial
point is successfully included in the interpolation set.

A criticality measure is used to assess the convergence of
the algorithm. For unconstrained problems, the norm of the
gradient is used. For problems with bounds on variables, a
practical measure is the projected gradient:

σ [mk, xk] =
∥∥∥max

{
min[xk + ∇mk(xk), xub], xlb

} − xk

∥∥∥,

which is equivalent to the distance of the point xk and the
projection of the point xk + ∇mk(xk) onto the feasible set
[7, p. 450].

Models are expected to be accurate when they can be
certified to be FL, so the error is bounded by Eqs. 8a and
8b. When it appears that convergence is near, the gradient
∇m(xk) of the model becomes small, so the gradient
∇f (xk) of the actual objective is small, provided that the
bound (8b) is sufficiently tight. If the radius Δk is overly
large, the two gradients may be far apart, both in magnitude
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and direction. This issue, if not corrected, may slow the
algorithm to the point of preventing convergence. This is
addressed by the criticality step [33], [10, Chapter 10].

When convergence appears to be near (σ [mk, xk] < εc,
for a small εc > 0), the criticality step is performed to
ensure that the radius of the trust-region is comparable to the
criticality measure, reducing it if necessary. Since σ [mk, xk]
depends on the model mk , which in turn depends on the
radius Δk , the reduction of the radius must be iterative.
Therefore, the radius is reduced by a factor ω ∈ (0, 1), so
Δ(1) = ωΔk , and the model maintenance procedures make
a new model m(1), FL in a trust-region with radius Δ(1). If
the criticality measure of the new model is not sufficiently
high (σ [m(1), xk] < μΔ(1), for μ > 0), the procedure is
repeated, otherwise it can be stopped with a new model m(1)

and radius Δ(1). This procedure is formalized in Algorithm
1, which was based in [10, Chapter 10]. In the end, it is
possible to increase the radius a bit, so the reduction is not
excessive.

Algorithm 1 Criticality step.

Inputs: Initial model mk , and trust-region radius Δbct
k .

Iterate xk of main trust-region algorithm.
Parameters: μ > β > 0 for the acceptance of the radius,
fixed throughout the main algorithm, and ω ∈ (0, 1) for
reducing the radius.
Set radius Δ(1) = Δbct

k .
Generate model m(1) by improving model mbct

k until it is
FL in a trust-region of radius Δ(1).
for i = 1, 2, . . . do

if σ [m(i), xk] > μΔ(i) then
break

else
Update radius Δ(i+1) = ωΔ(i).
Generate model m(i+1) by improving model m(i)

until it is FL in a trust-region of radius Δ(i+1).
end if

end for
Increase radius

Δk = min
[
max(Δ(i), βσ [m(i), xk]), Δbct

k

]
.

Set mk = m(i).
return radius Δk and model mk .

Now we are in position of presenting the full derivative-
free trust-region algorithm (Algorithm 2). It takes from [8]
the use of Newton Fundamental Polynomials to manage the
set of interpolation points and model improving procedures.
It is also based on the framework of [10, Chapters 10
and 11], which includes an explicit criticality step. Since
the criticality step may be invoked, changing the model

and the trust-region radius, we introduced the superscript
“bct” to denote radius and model Before Criticality Test.
A computational analysis of the proposed DFTR algorithm
in a batch of 300+ mathematical optimization problems
may be found in the recently accepted paper [19], which
was a development from the present algorithm. Preliminary
computational studies of DFTR on analytical optimization
problems can be found in [18].

We included the practical condition of stopping the
algorithm when the radius falls below a tolerance Δtol. Since
the convergence is asymptotic, theoretically this could stop
the search far from an actual solution.

Another practical aspect that is worth mentioning regards
the selection of the initial point. The initial point for many
algorithms is often selected based on domain knowledge
about the process. In well control optimization problems
addressed in this work, we selected three initial points
distributed in the feasible range for the well controls. As
the DFTR algorithm is a local search method, it is expected
to converge to a local optimum in the neighborhood of the
starting point. This means that, in the first iterations up
until n + 1 points, the models are computed by a coarse
approximation, involving only part of the linear terms of the
basis, and thus have a large sensitivity to the initial point.

The initial trust-region size is an important tuning param-
eter in this context as it limits the steps performed by
the model initially, allowing the algorithm to adjust the
trust-region size gradually until it starts using models with
minimum Frobenius norm Hessian around the incumbent
solution. Such models capture not only first-order informa-
tion, but also some curvature in the approximation, and thus
are a better representation of the function being optimized.
Further, model-based derivative-free algorithms, such as the
trust-region method presented in this work, can benefit from
previous simulation runs by warm-starting the algorithm
with a set of points. If the model is warm-started with a
sufficient number of points to capture some curvature, the
trust-region size could be chosen larger as the algorithm
will use a more accurate model since the first iteration
[18, Chapter 5].

4 Case studies

This section presents two case studies that compare the
performance of the proposed method, i.e., the DFTR
algorithm, against two direct-search methods, APPS [21]
and PSO [28]. In both cases, the performance of the
algorithms is investigated for well control optimization
using the synthetic reservoir OLYMPUS model [15].
The first case study investigates the performance of the
algorithms in a nominal well control optimization problem
using a single realization of the OLYMPUS benchmark.
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Algorithm 2 Derivative-free trust-region algorithm.

Inputs: initial point x1, variable bounds xlb, xub.
Parameters: Thresholds for acceptance of steps 1 > η1 >
0, η0 ≥ 0, threshold for criticality step εc, initial radius
Δbct

1 , maximum radius allowed Δmax.

Compute initial model mbct
1 .

for k = 1, 2, . . . do
if σ

[
mbct

k , xk

]
< εc then

Perform criticality step (Algorithm 1) to compute
new model mk and trust-region radius Δk

else
Set mk = mbct

k , Δk = Δbct
k .

end if
if Δk < Δtol then

stop and return solution xk , with value mk(xk).
end if
Solve trust-region subproblem to compute the step sk:

maximize
s

mk(xk + s)

subject to:
‖s‖∞ ≤ Δk

xlb ≤ xk + s ≤ xub

Evaluate objective function at the trial point x+
k =

xk + sk and compute

ρk = f (x+
k ) − f (xk)

mk(x
+
k ) − mk(xk)

,

if ρk ≥ η1 or (ρk > η0 and the model is FL) then
Set xk+1 = x+

k .

Include x+
k in the interpolation set Y , computing an

updated model mbct
k+1.

else
Set xk+1 = xk .
Try to include x+

k in the interpolation set Y to
generate an improved model mbct

k+1.

if x+
k was not successfully included in Y then
Compute another point to generate an improved

model mbct
k+1.

end if
end if
if ρk ≥ η1 then

Increase radius:

Δbct
k+1 = min

[
max(Δk, 2‖sk‖), Δmax

]
.

else if Iteration model was FL and (the criticality step
was executed or no point was added) then

Decrease radius

Δbct
k+1 = 1

2
Δk .

else
Keep the same radius: Δbct

k+1 = Δk .

end if
end for

The second case study analyzes the performance of the
algorithms in a robust well control optimization problem
using a reduced-size ensemble consisting of the first 10
realizations of the OLYMPUS benchmark.

The optimization algorithms used in the case studies,
i.e., APPS, PSO and DFTR, are all implemented in the
FieldOpt framework [1] for field development optimization.
All the algorithms have parallel implementation using the
Message Passing Interface (MPI). However, due to its
inherent sequential nature, the DFTR algorithm runs only
one simulation at a time in the nominal well control
problem investigated in case study 1. Therefore, in this
case study, we consider both the objective evolution with
respect to the number of simulations and per iteration in
the performance comparison of the algorithms. In case
study 2, the DFTR algorithm can take advantage of
parallelization capabilities similarly to the other algorithms
by simulating the ensemble of realizations in parallel at
each iteration. Thus, in case study 2, we present the
objective evolution only with respect to the number of
iterations as all algorithms utilize the same computational
resources.

The remaining of this section is divided in three parts.
The first describes the numerical reservoir model utilized
in the experiments. Then, we provide a description of the
optimization problems being tackled as well as the results
obtained for case study 1. The third and last part presents the
optimization problem description and the results obtained
for case study 2.

4.1 Reservoir model

The OLYMPUS reservoir model is a synthetic channelized
reservoir inspired in the Norwegian Continental Shelf. It
spans a 9 km by 3 km area, is 50 m thick and split into 16
layers. The model consists of grid cells of approximately
50 m × 50 m × 3 m each, resulting in a total of 192,750
active cells. Permeabilities in the X and Y coordinates are
identical, whereas the permeability in the Z coordinate is
10% of the permeability in the X coordinate. The Oil-
Water Contact (OWC) is set to 2090 m deep with a local
hydrostatic pressure of 206 bar.

The OLYMPUS model was developed for benchmark
studies in field development optimization. It consists of
50 geological realizations with different permeabilities,
porosities and fault multipliers. In this work, we use
the geological realization #1 for case study 1, and an
ensemble with the realizations from #1 to #10 in case
study 2. The horizontal permeability and porosity fields
of the model used in case study 1 are depicted in Fig.
1. Differently from the original well control optimization
challenge proposed by [15], the reservoir model has 8 wells,
of which 4 are producers and 4 are injectors. The injectors
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Fig. 1 Static properties of the
OLYMPUS reservoir model,
realization #1

(a) Horizontal permeability field

(b) Porosity field

are placed in fault-divided regions of the reservoir, as it
can be seen in Fig. 2b. The model has pressure support
from an aquifer at the west, as shown in the saturation
field in Fig. 2a. All wells perforate vertically the grid
blocks from the first to the fourth layer, and are placed
within channelized regions of the reservoir. The injectors
are strategically placed in locations surrounding larger oil-
containing volumes.

The horizontal permeability fields of the realizations
#1 to #10 are shown in Fig. 3. There are large contrasts
in permeability and porosity between the channels and
outer surrounding volumes. Notice that each geological
realization has different settings for the channels, and
therefore the sweep occurs differently in each model.
Because of such differences between the models, a
control strategy that yields good performance in one
model might result in early water breakthrough in another
realization.

4.2 Case Study 1: Nominal well control optimization

The problem formulated in Eqs. 2a–2e is instantiated for the
nominal well control optimization of the realization #1 of
the reservoir model described previously. In the following
we present the parameters for the optimization algorithms,
the NPV parameters and the initial well controls used as
starting points for the algorithms.

4.2.1 Problem setup

The total simulation time is set to T = 20 years, which
is split into N = 5 control steps of 4 years each. The
wells controls u are constant bottom-hole pressures for each
control step k ∈ K := {1, . . . , Nt}, thus the total number of
optimization variables is calculated as the Cartesian product
of the number of wells Nw = 8 and the number of control
steps Nt = 5, i.e. Nu := Nw × Nt = 40.
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Fig. 2 Initial saturation field,
and well locations

(a) Initial oil saturation field

(b) Well locations

The objective function is the NPV as defined in Eq. 2a.
The economic parameters of the NPV are defined in Table 1.

Since an economic analysis is not the focus of the studies
we consider constant costs for the entire field life cycle. The
time intervals Δti are set to calendar months. Because all

wells are assumed to be drilled and completed at the start
time of the field life cycle, the drilling costs are assumed to
be negligible. Objective function evaluations are calculated
by running reservoir simulations using a commercial fully
implicit black oil simulator [17].

Fig. 3 Horizontal permeability map of the ensemble used in case study 2 (from the upper left realization #1 to the lower right realization #10).
The channelized regions represent highly permeable zones of the reservoir, whereas the surrounding volumes are low permeability regions
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Table 1 NPV economic parameters

Oil price rt
op 450 $/Sm 3

Water injection cost rt
wp 12.5 $/Sm 3

Water production cost rt
wi 12.5 $/Sm 3

Annual discount factor d 10 %

Normalization term τ 365 days

End of the life cycle period T 20 years

The bottom-hole pressure (BHP) of the wells needs to
range within certain bounds. BHPs for the producers are
set to be between 80 bars and 210 bars, while injectors are
set to operate within the range from 200 to 400 bars. For
simplicity, in this work, we impose no rate constraints on
the production and injection rates of the wells.

Different initial parameters are selected for the algo-
rithms as shown in Table 2. By varying the initial parameters
we investigate the sensitivity of the algorithms with respect
to their tuning parameters.

Except for PSO, which starts with a random set of
particles, the performance and local solution obtained by the
other algorithms can vary with the starting point. Thus, we
chose three different initial well controls as starting points,
as shown in Table 3.

4.2.2 Simulation results

In this section we present the objective function evolution
presented by the algorithms Asynchronous Parallel Pattern
Search (APPS), Particle Swarm Optimization (PSO), and
the Derivative-Free Trust-Region (DFTR) with different
parameters using initial points P1, P2 and P3. The direct-
search algorithms, i.e. APPS and PSO, executed in parallel
mode over 8 cores, whereas the DFTR algorithm executed
sequentially.

Figure 4 shows the NPV evolution of the algorithms
starting from P1. The NPV evolution by the total number
of simulations is depicted for a total of 1000 simulations.
We are considering that simulations are computationally
expensive and take long time. Plotting by number of
simulations we can show the ascent obtained with the use
of this costly resource. This would not be shown in plots
by number of algorithmic iterations. Further, we believe
showing the NPV evolution by the number of simulations
is a fairer comparison of the algorithms performance as

Table 2 Parameters of optimization algorithms

Algorithm Parameter Values

APPS Initial step size 50, 75, 150

Trust-Region Initial radius 50, 75, 150

PSO Swarm size 20, 25, 40

Table 3 Initial controls

Starting point BHP of producers BHP of injectors

P1 120 250

P2 145 300

P3 170 350

it shows their efficiency with respect to the required
computational budget.

In this plot, it can be seen that the DFTR algorithm
clearly outperforms both PSO and APPS across all the
different algorithm parameters. It not only achieves a
solution with the best NPV values at the end, but also
achieves a solution near the optimum after a few iterations,
namely with less than 100 simulations. Although the
convergence of PSO is slower than the DFTR algorithm,
it achieves a final solution at the end that is not far from
the solution obtained by the DFTR algorithm. APPS is
outperformed by both PSO and the DFTR algorithm.

The performance of the algorithms starting from point
P2 is shown in Fig. 5. This figure shows that APPS
is outperformed by both PSO and the DFTR algorithm
in all cases. Two out of three final objective function
values obtained using DFTR are close to the ones obtained
with PSO, however, for the same number of simulations,
DFTR shows equal or better progression early on in the
optimization process. One plausible explanation for this is
the fact that the DFTR algorithm got trapped into a local
minimum when performing the search, whereas PSO found
improved solutions because of the stochasticity of its search.

The last performance comparison is performed with the
three algorithms starting from P3, as shown in Fig. 6.
When the algorithms are compared with respect to their
evolution by the number of simulations, DFTR reaches good
candidate solutions with only a few simulations, and in most
cases converges to solutions with slightly higher objectives
than the ones obtained with PSO. APPS is considerably
slower than both PSO and the DFTR in all cases.

4.2.3 Field production analysis

In this section we analyze the various well control solutions
with respect to field production performance.

Figure 7 shows the NPV, and the corresponding field
cumulative profiles for the best runs obtained using APPS,
PSO and DFTR. The Field Oil Production Total (FOPT)
evolution over the years for the three algorithms is shown
in Fig. 7(a). The FOPT in the first three years is similar for
all algorithms. From the fourth year on, the FOPT obtained
with APPS distances itself from the production obtained
with PSO and DFTR. The FOPT obtained with the latter
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Fig. 4 Comparison of
performance of the algorithms
with the initial point P1
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methods progresses at a similar pace, whereas the larger
FOPT is obtained with PSO at the end of the field life cycle.

PSO achieved a solution that yielded the highest
accumulated oil production at the end of the field life
cycle. On the other hand, when it comes to the Field Water
Production Total (FWPT), as shown in Fig. 7(c), PSO’s best
solution is the one that produced the most water in total at
the end of the field life cycle. APPS’ solution has the largest
FWPT during the first 10 years, when it is surpassed by
PSO’s solution. The solution obtained with DFTR is the one
that produces the least water during most of the field life
cycle, and in cumulative terms at the end.

Figure 7(d) shows the Field Water Injection Total (FWIT)
evolution over the years for all the algorithms. PSO yields a
solution which injects the most water during the whole field
life cycle. APPS on the other hand yields a solution that
injects the least water during most of the life cycle period.
DFTR’s solution achieves the least FWIT at the end.

Among all the optimization runs, PSO yields the solution
with higher NPV, as shown in Fig. 7(b). The final NPV
achieved using DFTR is not far from this result. DFTR’s
NPV evolution is somewhat comparable to PSO’s, and was
practically the same over various time periods, namely in the
first 8 years and also close to the end of the field life cycle,

Fig. 5 Comparison of
performance of the algorithms
with the initial point P2
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Fig. 6 Comparison of
performance of the algorithms
with the initial point P3
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from 2032 to 2034. Recall that PSO’s ability to achieve
an improved solution comes at the expense of performing
numerous reservoir simulations, namely 10 times more
compared to DFTR and APPS in this particular comparison.
Meanwhile, the DFTR achieved a fairly good solution
within a few function evaluations performed sequentially.
The NPV achieved by APPS is considerably lower than the
others from the fourth year on of field activity.

For completeness, we present the optimal well controls
of producers and injectors in Fig. 8. Notice that the control
strategies calculated by each algorithm are quite different
(see for instance the controls of the injection well i4 at
the lower right plot in Fig. 8). With APPS the bottom-hole
pressure of the well is kept constant at a low value from
the fourth year until near to the end of the field life cycle,
whereas the well controls calculated by PSO and DFTR
switch often during the same time period.

4.3 Case study 2: Robust well control optimization

In the second case study we analyze the performance of
the algorithms DFTR, APPS and PSO in the robust well
control optimization problem formulated in Eqs. 4a–4e. The
optimization is applied to the Olympus ensemble described
in Fig. 3 which consists of the first 10 realizations of the
original Olympus benchmark.

4.3.1 Problem setup

The wells are located in the same positions as the nominal
case in all the ensemble members as illustrated in Fig. 2b.

The simulation schedule is also kept the same, i.e., a total
simulation time of T = 20 years, split into N = 5 control
steps of 4 years. Although the performance of a given
well control strategy might vary from one realization to
the other, the well controls are the same for all realizations
independently of the model to which it is applied. Therefore,
the number of optimization variables in the robust problem
remains the same of the nominal problem, i.e., it is the
number of wells times the number of control steps Nu :=
Nw × Nt = 40.

The objective is the cost function formulated in Eq. 3
and the economic parameters utilized in each term of
the equation are defined in Table 1. Objective function
evaluations are calculated by running reservoir simulations
of all equally probable ensemble realizations with a certain
well control strategy and taking the average NPV. In the case
of inherently sequential algorithms like the DFTR, these
reservoir simulations can be executed in parallel, thereby
leveraging its computational efficiency with respect to other
naturally parallel algorithms such as APPS and PSO.

Analogously to the nominal problem, the decision
variables in the robust optimization problem are the well
controls. The wells are controlled through piecewise-
constant values for the bottom-hole pressures, which are
bounded in the interval between 80 bars and 210 bars for
producers, and range from 200 to 400 bars for injectors.
Except for PSO, which starts with a random set of particles,
both DFTR and APPS start from the initial point P2 from
Table 3, as the bottom-hole pressures of the wells in
this initial point lie at the center of the feasible pressure
intervals. The initial parameters of the algorithms are set
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Fig. 7 Field rates and NPV obtained with the best optimization runs of APPS, PSO, and DFTR

to the values which yielded the best performance in most
nominal well control problems, i.e., APPS with a initial step
size of 150, DFTR with an initial radius of 75, and PSO with
a swarm size of 20.

4.3.2 Simulation results

In this section we present the simulation results obtained
with the algorithms in the robust well control optimization
problem described in the previous section. As the DFTR
algorithm performs each iteration sequentially, and in each
iteration a batch of simulations for the ensemble members
can be performed in parallel, we chose to execute all
algorithms in parallel over 10 cores, which is exactly the
number of realizations in the ensemble. This allows all
algorithms to use the computational budget equally. All
algorithms executed in parallel over a total of 10 cores (same

number of ensemble members) with a computational budget
of 1000 simulations.

The objective function evolution (expected NPV) per
iteration for all the algorithms is presented in Fig. 9. In this
context, for a fair comparison of the algorithms, we consider
one iteration to be the simulation of all realizations in the
ensemble for a certain candidate solution within a robust
well control optimization procedure.

In this plot, it can be seen that the DFTR algorithm
clearly outperforms both PSO and APPS. It not only
achieves the best NPV at the end, but also presents improved
convergence performance, being able to obtain a solution
with higher NPV than the best solutions obtained with
APPS and PSO within fewer than 30 ensemble simulations.
PSO starts from a solution with higher NPV due to its
stochastic nature, but it is surpassed by DFTR nearly over
20 ensemble simulations. APPS showed a performance
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(c) Producer 3

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Time (Year)

80

100

120

140

160

180

200

220

B
H

P
 [b

ar
]

(d) Producer 4
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(e) Injector 1
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(f) Injector 2
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(g) Injector 3
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(h) Injector 4

Fig. 8 Optimal well controls for producers and injectors correspond-
ing to best runs of APPS, PSO and DFTR. The best runs of
each algorithm are identified with APPS-S150-P1, PSO-W40-P1, and

DFTR-R75-P1 in the simulation analysis. Orange dashed lines are the
controls obtained with APPS, blue dotted lines are the PSO controls,
and solid purple lines are the controls with DFTR

considerably inferior to both DFTR and PSO from the first
iteration until the end of the execution.

Another interesting behavior that can be observed in
Fig. 9 is the search pattern presented by the algorithms. PSO
exploits the feasible space stochastically through the spread
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Fig. 9 Performance comparison of the algorithms in the robust well
control optimization problem. The figure shows the trial (circles) and
best solutions (solid line) found by the algorithms by the number
of iterations, where an iteration corresponds to the execution of one
batch of simulations of all ensemble members. Each circle in the
plot represents one candidate solution by the corresponding algorithm,
whereas the solid lines represent the best solution found by the
algorithm among the cases evaluated

of particles spanning a large search area (blue circles). On
the other hand, APPS and DFTR conduct a more localized
search, exploring the space in surrounding regions of trial
solutions. Among the algorithms, DFTR presented much
faster convergence arguably because of the model support
in the search for new trial solutions. The model, i.e. the
trust-region, provides additional information with respect to
the curvature of the response surface in the neighborhood
of trial solutions. This helps the algorithm in identifying
ascent regions in the feasible space, which lead to larger
improvements in the objective per iteration.

Good convergence properties are particularly relevant
when optimizing the performance of high-fidelity models
of real-world fields. In such scenarios, each cost function
evaluation requires considerable amounts of computational
resources as it requires the simulation of a set of fully-
fledged models corresponding to the ensemble of possible
realizations of the real reservoir. Because of the curse
of dimensionality in these applications, even with a large
computational budget, it is wise to have informed decisions
on where to search for potential solutions rather than
exploiting randomly the entire feasible space.

4.3.3 Field production analysis

In this section we present the field results corresponding
to the best solutions found by APPS, PSO, and DFTR
in the robust well control optimization problem tackled
in this case study. Figure 10 presents the mean values
and the standard deviations for the field rates and the
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b) Net Present Value (NPV)

c) Total Water Production

a) Total Oil Production

d) Total Water Injection 

Fig. 10 Total oil production, water production, water injection, and
NPV obtained with the best solutions found by APPS, PSO, and
DFTR. Red dashed lines and red shaded regions are the mean and stan-
dard deviation values obtained with APPS. Blue dashed lines and blue

shaded regions are the mean values and corresponding standard devi-
ation obtained with PSO. Black dashed lines and grey shaded regions
are the mean and standard deviation values obtained with DFTR

net present values corresponding to the best solutions
found by the algorithms. From the plots, it is possible
to conclude that the total oil production obtained by
the DFTR solution is the highest among the algorithms,
whereas PSO and APPS yield similar production rates
with a slightly higher production from PSO. On the other
hand, the DFTR solution also achieves the highest total
water production and injection, while the PSO solution
achieves lowest production and injection of water. The
water production and injection obtained with APPS is

average compared to DFTR and PSO solutions. Even with
a control strategy that produces and injects more water,
DFTR achieves a considerably higher NPV compared to
PSO and APPS, mainly because of the considerably higher
oil production.

The best well control strategies for producers and
injectors obtained with the APPS, PSO and DFTR,
corresponding to the field results shown Fig. 10, are
depicted in Fig. 11. As it can be seen in the figure,
the optimal control strategies computed by each algorithm
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Fig. 11 Optimal well controls for the robust optimization problem. Red dashed lines are the controls obtained with APPS, blue dotted lines are
the PSO controls, and solid black line are the controls with DFTR

follow similar trends in some cases (see for instance the
production well p1) but can also be quite different (see
injection well i3). In the case of the producer p1, the controls
are switched between an average and low value of bottom-
hole pressure at similar times, whereas with APPS the
controls are kept constant at the average until the end of the
field life cycle. On the other hand, in the case of the injector
i3, the controls suggested by the optimizers switch quite
often in different time periods and sometimes in opposite
directions, e.g., around the eighth year, DFTR increases the
control to a high value while PSO switches the control to a
low value at the same time.

5 Conclusions

This work proposes a derivative-free trust-region optimiza-
tion algorithm for well control optimization. The algorithm
is assessed in a synthetic field developed for benchmark-
ing field development optimization methodologies. DFTR
performance is compared against two other derivative-free
methods, APPS and PSO. Current results show DFTR has
promising convergence properties compared to the other
derivative-free methods. In particular, the method pre-
sented improved convergence properties, being capable to
reach fairly good solutions requiring comparatively fewer
iterations. This feature can be particularly attractive for
practitioners who seek ways to improve production strate-
gies while using fully-fledged models, which can be quite
demanding.

In the robust well control optimization problem, the
competitiveness of the algorithm is much improved against
parallel methods because of its ability to perform a batch
of ensemble simulations in parallel at each iteration. In
a case study involving an ensemble of realistic models,
the proposed method presented superior convergence
performance compared to the other algorithms, being able
of achieving a final solution with considerably higher
expected NPV. Good convergence is particularly important
when optimizing the performance of an ensemble of high-
fidelity models of real-world fields. In such scenarios, each
cost function evaluation requires considerable amounts of
computational resources to simulate the ensemble of models
at each iteration. In such cases, even with a generous
computational budget, it is highly beneficial to utilize an
algorithm such as the DFTR that can smartly search for
candidate solutions rather than randomly exploiting the
feasible space.

Notice that we do not claim that the proposed algorithm
is superior to the existing derivative-free optimization
methods available in the literature. In fact, a comprehensive
analysis of the existing related methods applied to well
control and well placement problems is a relevant topic
for future research. Instead, our work focuses on the
description of a novel derivative-free trust-region algorithm
for robust well control optimization, which to the best of our
knowledge, is a new type of algorithm for such problems.
From the results obtained in representative well control
optimization problems, we conclude that the DFTR method
offers practitioners an alternative approach when derivatives
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are not readily available and the computational budget is
limited.

We acknowledge that problem size may be the most
important limitation of any derivative-free optimization
method, including the DFTR algorithm. The literature unan-
imously advises using gradient based methods whenever
possible, even if this costs more hours in the implementa-
tion side. For instance, employing the DFTR algorithm to
solve the original Olympus case with n = 1 440 variables
could require more than a 1 million simulations (estimate
based on the number of terms of the basis, L = (n+1)(n =
2)/2). Still, even though the main advantage of the DFTR
algorithm is that it enables search based on descent informa-
tion from underdetermined models, and thus the algorithm
requires far less cost function evaluations to advance, solv-
ing for problems with thousands of variables still requires
a large number of simulations just to obtain linear descent
information and is a major challenge and current research
topic. In fact, [10] further describes the general DFTR
methodology as practical for problems with number of vari-
ables in the range 50–100. Thus, as a first application of the
DFTR algorithm to a realistic case, this work has tested the
algorithm using the Olympus model using a control opti-
mization problem definition involving fewer variables than
those posed in the original challenge.

Future work involves extending the proposed method-
ology in terms of constraint-handling. As the trust-region
method builds a model of the objective function based on
sampled points, this capability can be extended to also treat
output constraints, which are typically difficult to deal with
for both direct-search and gradient-based methods.

Another potential research topic involves conducting
a more extensive comparison of the proposed method
with other types of algorithms. In this work, we assume
gradients can not be relied or are unavailable due to the
lack of sensitivities provided by the simulator. Therefore,
we only compare the proposed method with other types
of derivative-free methods which are typically employed
in well control optimization problems. On the other hand,
further comparison of the proposed method with adjoint and
other gradient-based methods, e.g. SQP, could demonstrate
the robustness of the derivative-free trust-region method
in the presence of discontinuities in the nonlinear variable
profiles. Further, an extended comparison with other
derivative-free algorithms, e.g. experimental design with
response surfaces and meta model assisted memetic
algorithms, could provide readers with a good overview
of the existing derivative-free algorithms for production
optimization. Though a more extensive computational
analysis involving several algorithms is an interesting line
of study, such study would require substantial standalone
effort and thus is left for future research.
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