
Im
plem

entation and evaluation of 16-bit therm
al-inertial odom

etry using non-linear factor graphs
Eirik Flem

sæ
ter Falck

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Eirik Flemsæter Falck

Implementation and evaluation of
16-bit thermal-inertial odometry
using non-linear factor graphs

Masteroppgave i Kybernetikk og robotikk
Veileder: Kostas Alexis
Medveileder: Nikhil Vijay Khedekar
Juni 2022M

as
te
ro
pp

ga
ve

Eirik Flemsæter Falck

Implementation and evaluation of 16-
bit thermal-inertial odometry using
non-linear factor graphs

Masteroppgave i Kybernetikk og robotikk
Veileder: Kostas Alexis
Medveileder: Nikhil Vijay Khedekar
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk

TTK4900 — Engineering Cybernetics, Master’s Thesis

Implementation and evaluation of 16-bit
thermal-inertial odometry using

non-linear factor graphs

Author:
Eirik Flemsæter Falck

Supervisor:
Kostas Alexis

Co-supervisors:
Nikhil Vijay Khedekar

Master’s thesis
Department of Engineering Cybernetics

Norwegian University of Science and Technology
June 6, 2022

2

Preface

This report concludes my master’s thesis in cybernetics and robotics at the Norwegian Uni-
versity of Science and Technology (NTNU). All the work was done in the spring semester
of 2022 and is not based on a specialization project from the previous semester.

In this work, I have based some of the code for the proposed method on the open-source
repository for Semi-direct Visual Odometry (SVO)1, created by researchers at University
of Zürich and ETH Zürich. My work also relies on the factor graph modeling and solving
framework Georgia Tech Smoothing and Mapping (GTSAM)2 from Georgia Tech Uni-
versity. This work extended the SVO implementation to work with thermal images, and
GTSAM’s IMU preintegration, projection factors, and Incremental Smoothing and Map-
ping (iSAM2) optimizer implementations were used to create a back-end system.

All the presented work was done by me, with guidance from my supervisor, Dr. Kostas
Alexis, and my co-supervisor, Ph.D. student Nikhil Vijay Khedekar. Furthermore, all
figures used in this report were created by me except for the figures licensed under the
Creative Commons license.

Lastly, I want to thank my supervisor, Dr. Kostas Alexis, and my co-supervisor, Ph.D.
student Nikhil Vijay Khedekar, for their valuable input and discussions throughout the
semester and for being available for questions and guidance when needed. Furthermore,
I want to thank the team at the Autonomous Robotics Lab (ARL) for providing datasets
with thermal image data.

1https://github.com/uzh-rpg/rpg_svo_pro_open
2https://gtsam.org/

i

https://github.com/uzh-rpg/rpg_svo_pro_open
https://gtsam.org/

ii

Abstract

This thesis presents the adaptation and evaluation of the Semi-direct Visual Odometry
(SVO) algorithm to use 16-bit thermal images and the implementation of a factor graph-
based back-end. Thermal cameras can passively sense the environment, even in com-
plete darkness and in the presence of obscurants like dust or smoke. This makes it an
attractive alternative modality to visible-light cameras for visual-inertial odometry appli-
cations. However, state-of-the-art VIO algorithms are designed to work with 8-bit images
and cannot directly take advantage of the higher bit-depths that radiometric thermal im-
ages provide. Therefore, SVO was modified to support 16-bit matching, feature detec-
tion on histogram equalized thermal images, and 16-bit feature detection. The method
is dubbed Semi-direct Thermal Inertial Odometry (STIO) and was evaluated on three
datasets recorded in different environments. The factor graph-based back-end was im-
plemented using the GTSAM library. STIO was found to be heavily dependent on the
parameters, especially on the grid cell size and the FAST threshold, because these directly
affected the number of tracked features. Feature detection on histogram equalized images
gave features that were more locally distinct and could therefore be tracked with greater
reliability. Interestingly, the VIO-extension of SVO run solely on 8-bit histogram equal-
ized images performed surprisingly well, and often outperformed the 16-bit STIO. This
was because the 8-bit version detected more edgelet features in addition to all the same
corner features. The GTSAM back-end quickly diverged and did not end up in working
conditions because of missing information due to programming errors. The author was
unable to identify the specific bugs. A simplified initialization system for finding the IMU
biases was successfully implemented, although the acceleration biases were found to not
converge to the ground truth. Future work includes implementing and evaluating adaptive
histogram equalization, comparison against semi-dense methods, and fixing the GTSAM
back-end.

iii

iv

Sammendrag

Denne oppgaven presenterer adapsjonen og evalueringen av algoritmen Semi-direct Vi-
sual Odometry (SVO) til å bruke 16-biters termiske bilder, samt implementasjonen av
en faktorgraf-basert backend. Varmekamera kan passivt observere omgivelsene, selv i
helt mørke forhold og i tilstedeværelsen av støv og røyk. Dette gjør dem til attrak-
tive alternativer til vanlige kamera til bruk i visuell-treghets-odometri (VIO). De fremste
VIO-algoritmene er derimot designet for bruk med 8-bitersbilder og kan ikke utnytte ra-
diometriske termiske bilders større datadybde. Av den grunn var SVO endret til å støtte
16-bitersbilder til bruk i matching, deteksjon av kjennemerker på histogram-normaliserte
bilder og deteksjon direkte på 16-bitersbilder. Det modifiserte metoden er kalt Semi-direct
Thermal Inertial Odometry (STIO), og ble evaluert på tre datasett fra ulike omgivelser.
Den faktorgraf-baserte backenden er basert på GTSAM-biblioteket. Det ble funnet at
STIO var særdeles avhengig av hvilke parametere som ble brukt. Spesielt hadde størrelsen
på rutene i deteksjonsrutenettet og FAST-grensen stor betydning fordi disse var tett knyttet
til antallet kjennemerker som ble brukt. Deteksjon på histogram-normaliserte bilder ga
kjennemerker som lokalt sto mer ut og kunne derfor bli matchet med større treffsikker-
het. Overraskende nok gjorde VIO-utvidelsen av SVO som kun brukte 8-biters histogram-
normaliserte bilder det vel så godt, om ikke bedre, enn 16-bitersversjonene. Dette antas å
skylles at 8-bitersversjonen fant flere kant-kjennemerker i tillegg til de samme hjørnene.
GTSAM-backenden divergerte fort og kom aldri i en fungerende tilstand på grunn av man-
glende informasjon som resultat av programmeringsfeil. Forfatteren fant derimot ikke
årsaken til feilen til tross for stor feilsøkingsinnsats. Et forenklet oppstartssystem for å
finne biasene i treghetssensoren var vellykket gjennomført, selv om akselerometerbiasene
ikke konvergerte til den sanne verdien. Fremtidig arbeid inkluderer å teste ut adaptiv
histogram-normalisering, sammenlikning med semi-dense algoritmer som DSO, og å fikse
GTSAM-backenden.

v

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

List of Tables xi

List of Figures xvii

Abbreviations xix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Outline . 3

2 Theory 5
2.1 Thermal imaging . 5

2.1.1 Re-scaling techniques . 6
2.2 Camera geometry . 7

2.2.1 Pinhole camera . 8
2.2.2 Distortion . 10

2.3 FAST corner detector . 11
2.4 Lie theory for state estimation . 12

2.4.1 Lie groups . 12
2.4.2 Tangent spaces . 13
2.4.3 Exponential and logarithmic maps 15
2.4.4 Plus and minus operators . 17
2.4.5 Adjoint . 17

vii

2.4.6 Derivatives . 19
2.4.7 Uncertainty . 20
2.4.8 Composite manifolds . 22

2.5 Probabilistic inference in robotics . 23
2.5.1 MAP inference . 23
2.5.2 MAP inference under Gaussian assumption 24

2.6 Bayes net . 25
2.7 Factor graphs . 27

2.7.1 Nonlinear MAP inference using factor graphs 29
2.7.2 Using factor graphs in code . 30

2.8 Incremental Smoothing and Mapping 30
2.8.1 Bayes tree . 31
2.8.2 Incremental inference . 31
2.8.3 Incremental variable reordering 33
2.8.4 Fluid relinearization . 33

2.9 IMU preintegration . 33
2.10 Evaluation measures . 37

2.10.1 Root Mean Square Error . 38
2.10.2 Absolute Pose Error . 38

3 STIO algorithm 39
3.1 Semi-direct Visual Odometry . 39

3.1.1 Overview . 39
3.1.2 Sparse model-based image alignment 40
3.1.3 Reprojection and feature alignment 42
3.1.4 Pose and structure refinement 43
3.1.5 Probabilistic depth filters . 44
3.1.6 Initialization . 46

3.2 STIO front-end modifications . 47
3.2.1 16-bit matching . 47
3.2.2 Image alignment gain and offset estimation 47
3.2.3 Feature detection on histogram equalized images 48
3.2.4 16-bit FAST corner detection . 48

3.3 GTSAM back-end implementation . 48
3.3.1 Overview . 49
3.3.2 Factor graph . 49
3.3.3 Initialization using external pose priors 51

3.4 Datasets . 52
3.4.1 Vicon Arena . 52
3.4.2 Urban Parking Lot . 52
3.4.3 Active Gold Mine . 55
3.4.4 EuRoC . 55

3.5 Experiments . 56
3.5.1 16-bit front-end . 56
3.5.2 STIO with Ceres back-end . 57
3.5.3 IMU and external prior initialization 57

viii

3.5.4 GTSAM back-end . 57

4 Results 59
4.1 16-bit thermal front-end . 59

4.1.1 Vicon Arena . 59
4.1.2 Urban Parking Lot . 63
4.1.3 Active Gold Mine . 65

4.2 STIO using Ceres . 66
4.2.1 Gravity vectors . 66
4.2.2 Vicon Arena . 68
4.2.3 Urban Parking Lot . 74
4.2.4 Active Gold Mine . 77

4.3 IMU and external pose initialization . 82
4.3.1 Full pose prior from Vicon motion capture 82
4.3.2 Position only partial prior from Leica positioning system 84

4.4 GTSAM back-end partial results . 86

5 Discussion 89
5.1 Choice of front-end . 89
5.2 STIO algorithm . 89
5.3 IMU and external prior initialization . 91
5.4 GTSAM back-end . 92
5.5 Future work . 93

6 Conclusion 95

Bibliography 97

ix

x

List of Tables

4.1 Summary of translational and rotational APE for each TIO method on each
dataset. The duration column informs how long each method kept track
before diverging. The duration in parenthesis under the dataset name is
the total duration of the dataset. 69

4.2 Overview of the RMSE of the biases against the ground truth in the Eu-
RoC Vicon and Leica datasets. Row 3 shows the RMSE values after the
initialization motion was done in the full Leica dataset. Row 5 shows the
RMSE values after the biases had converged for the shortened Leica dataset. 82

xi

xii

List of Figures

2.1 Applying histogram equalization on 16-bit images give better contrast in
the 8-bit re-scaled image by making the cumulative distribution have a
linear trend. Made using a thermal image from the Urban Parking Lot
dataset presented in Section 3.4.2. 7

2.2 An illustration showing the pinhole camera model. The camera frame is
fixed in the optical center, i.e. where the pinhole is. The blue z-axis is
called the optical axis. 8

2.3 Affine transformation from camera frame Fc to image frame Fi. 9
2.4 Illustration of how distortion affects the projected point. 11
2.5 Illustration of how the pixels around a pixel of interest are sampled. The

green squares are all pixels brighter than Ip + t, while the red are darker.
The dashed arc indicate that there are n = 12 contiguous pixels brighter
than the reference, thus passing the segment test. This figure is inspired by
Fig. 1 from the original paper [44], but uses a histogram equalized thermal
image from the Urban Parking Lot dataset presented in Section 3.4.2. . . 12

2.6 Overview illustration showing the relationship between the Lie algebra
(tangent space at identity E), manifold elements X , increments, and the
exponential map. Image from [46], licensed under CC BY-NC-SA 4.0. . . 15

2.7 A schematic overview of the relationship between the tangent space at the
identity, its isomorphic vector space, and the manifold. Image from [46],
licensed under CC BY-NC-SA 4.0. 17

2.8 Illustration showing the difference between right- and left-⊕, as well as
how the adjoint relate the global and local increment element τ . Image
from [46], licensed under CC BY-NC-SA 4.0. 18

2.9 Illustration showing how each direction τ i on manifold M relate to the
directional derivative on manifold N . Image from [46], licensed under
CC BY-NC-SA 4.0. 19

2.10 Illustration of how a covariance ellipse defined in the vector space at X ,
and how it is wrapped over the manifold using ⊕. Image from [46], li-
censed under CC BY-NC-SA 4.0. 21

xiii

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.11 A Bayes net of an example SLAM problem. The robot detects a landmark
lj from pose xi which creates a measurement zk. Note that the direction
of the arrow point in the direction from the conditional parent variable, i.e.
p(x2 | x1) points from x1 to x2. Figure 2.11a is recreated from [13]. . . . 26

2.12 The factor graph representing the same example SLAM problem shown as
a Bayes net in Fig. 2.11a. The factors as they are given in Eq. (2.60) are
shown. This figure is adapted from Fig. 1.3 in [13]. 28

2.13 A chordal Bayes net generated from the factor graph in Fig. 2.12 and the
corresponding Bayes tree. The cliques are marked and color-coded, and
the separators are the areas of overlapping cliques marked with diagonal
lines. 32

2.14 Bayes tree update illustrated. Note that x1 has moved to the root clique and
is now a separator in the child clique. The red child clique is unaffected
and simply moved after the update. Figure inspired by Fig. 3 from Kaess
et al. [29] and Fig. 5.6 from Dellaert and Kaess [13]. 32

2.15 Illustration showing the different rates of the camera and IMU, and how
the IMU preintegration factor is summarizing the IMU measurements be-
tween the keyframes. Based on Fig. 5 in [20]. 34

2.16 Exemplative piece of a factor graph using IMU preintegration factors. The
orange circle represent the relative pose residuals Eqs. (2.74a)–(2.74c).
The gray circle represent the bias residuals Eq. (2.77). Note that additional
measurements are needed to fully constrain the problem as all factors from
IMU preintegration are only relative measurements. 37

3.1 Overview of the SVO algorithm showing the two main threads. Figure
adapted from original in Forster et al. [23]. 40

3.2 Illustration of the sparse image alignment step. The relative pose Tk,k−1

in red is the parameter to optimize while the direct intensity error in blue
between the two images are the optimization cost. Figure adapted from
Fig. 2 in [22]. 41

3.3 Illustration of the reprojection and feature alignment step. The pixel loca-
tions u′

i in red are the variables to optimize, and the intensity errors in blue
are the optimization cost. Notice that the newest frame Ik is matched with
the keyframes Irj and not the necessarily newest frames. Figure adapted
from Fig. 3 in [22]. 43

3.4 Illustration of the pose and structure refinement step. The world pose Tw,k

in red and the 3D landmark positions pi in red are optimized separately
using the reprojection errors δu′

i in blue. Notice that the newest frame Ik
is matches with the keyframes Irj , Figure adapted from Fig. 4 in [22]. . . 44

3.5 Illustration of the update of the depth filters. The green density is the
measurement likelihood mixture model and the turquoise density is the
posterior after the update. The green line is the epipolar line used for
finding a match using the intensity error indicated by the blue squares.
The red point is the feature in the newest frame Ik that is back-projected
to create a depth measurement. Figure adapted from Fig. 5 in [22]. 45

xiv

3.6 Schematic overview of the GTSAM back-end showing what information
is passed to which module at which time. 49

3.7 Illustration of the factor graph design. (a) shows the initialization system
where the IMU preintegration factors (orange circles) and the pose priors
(black circles) are run initially for a predetermined duration. (b) shows
how projection factors (pink circles) are added between keyframes and a
landmark, and how an IMU preintegration factor is added between two
keyframes. 50

3.8 Four frames from the Vicon arena thermal dataset. Notice the illumination
change between Fig. 3.8c and Fig. 3.8d. The illumination change is most
notable on the left and far wall. Note that the images are re-scaled using
histogram equalization as described in Section 2.1.1. 53

3.9 Four example frames from the Urban Parking Lot dataset. Notice that a
lot of the frame is taken up by the uniformly heated ground that is largely
without distinct features. 54

3.10 Four example frames from the Active Gold Mine dataset. Notice the large
thermally flat walls with lack of distinct features. 55

3.11 Example frames from the EuRoC datasets environments. 56

4.1 Initialization data using only the front-end on the Vicon Arena dataset. . . 60
4.2 Tracking data using only the front-end on the Vicon Arena dataset. 61
4.3 Comparison of detected features for the right corner in the Vicon Arena

dataset. Notice that there are features detected on the fully saturated parts
of the space heaters. 62

4.4 Tracked features and seeds by FAST16 and FAST8. Green squares are
tracked landmarks, green circles are converged seeds not yet upgraded to
landmarks, and purple lines are tracked edgelet landmarks. Notice that
FAST16 have fewer false-positive seeds. 62

4.5 Initialization data using only the front-end for the Urban Parking Lot dataset. 63
4.6 Tracking data using only the front-end for the Urban Parking Lot dataset. 64
4.7 Comparison of detected features for the car hoods in the Urban Parking

Lot dataset. Notice that there are features detected on the fully saturated
parts of the car hoods using FAST16. On the other hand, the red lines
are converged edgelet features not yet upgraded to landmarks that are only
detected using FAST8. 65

4.8 Initialization data using only the front-end for the Active Gold Mine dataset. 66
4.9 Tracking data for Active Gold Mine. The vertical line marks the start of

the thermally flat corner showed in Fig. 3.10c. 67
4.10 Comparison of the thermally flat corner of the Active Gold Mine dataset

using FAST16 and FAST8 on a histogram equalized image. 68
4.11 Top-down view of the Vicon Arena estimates. The dashed line is the

ground truth, the blue line is FAST16, green line is FAST8, red line is
ROTIO, and magenta line is the 8-bit STIO. This color scheme will be
used in all subsequent figures. 69

4.12 Each component of the pose estimates for the Vicon Arena. The data is
origin aligned so all trajectories evolve from the same point. 70

xv

4.13 Plots showing the translational and rotational APE over time and their
distributions. In the distribution plots (c) and (d), the white dot represent
the median value. Note that the straight lines in (a) and (b) are graphical
glitches and not part of the data. 71

4.14 Biases for Vicon Arena. No ground truth is available. 72
4.15 Initialization and tracking data for the STIO versions for the Vicon Arena. 72
4.16 Comparison of detected and tracked features for 16-bit using FAST8 and

8-bit STIO. Notice that both detected and tracked more or less the same
corner features, but that the 8-bit STIO detected and tracked more edgelet
features. 73

4.17 Top-down view of the Urban Parking Lot estimates. The ROTIO estimate
clearly followed the ground truth better than any STIO estimate. 73

4.18 Each component of the pose estimates for the Urban Parking Lot. The data
is origin aligned so all trajectories evolve from the same point. 74

4.19 Plots showing the translational and rotational APE over time and their
distributions. Notice that the ROTIO distributions are narrower and have
smaller median than any of the STIO methods. 75

4.20 Biases for Urban Parking Lot. No ground truth available. 76
4.21 Initialization and tracking data for the STIO versions for the Urban Parking

Lot. 76
4.22 Comparison of detected and tracked features by the 16-bit using FAST8

and the 8-bit STIO. Note that the 8-bit STIO detects many more edgelet
features, but also some false-positive features. 77

4.23 Top-down view of the Active Gold Mine estimates. The gaps are when
the front-end lost track in the thermally flat corner. Note that the x-axis is
vertical and the y-axis is horizontal. 78

4.24 Each component of the pose estimates for the Active Gold Mine. The data
is origin aligned so all trajectories evolve from the same point. 78

4.25 Plots showing the translational and rotational APE over time and their dis-
tributions. The 16-bit STIO distributions are stretch out and multi-modal
because they were close to the ground truth for a period in the beginning,
and then diverged. Note that the straight lines in (a) and (b) are graphical
glitches and not part of the data. 79

4.26 Biases for Active Gold Mine. No ground truth available. 80
4.27 Initialization and tracking data for the STIO versions for the Active Gold

Mine. 80
4.28 Comparison of detected features by the 16-bit using FAST8 and the 8-bit

STIO in the starting area of the Active Gold Mine. Note that they both
detect the same corner features, but the 8-bit detect more edgelet features. 82

4.29 States from IMU and external full pose prior on the EuRoC Vicon room
dataset. The dashed lines are the ground truth and the blue lines are the
estimates. The green dashed line is the mean bias for each component. . . 83

4.30 States from IMU and external position prior on the full EuRoC Leica
dataset. 84

xvi

4.31 States from IMU and external position prior on the shortened EuRoC Leica
dataset. The shortened dataset excludes the initialization motion at the
beginning and start the dataset 40 seconds in. 85

4.32 Zoomed in look at the accelerometer bias for the Leica dataset. The green
lines show the mean excluding the first 25 seconds. 85

xvii

xviii

Abbreviations

APE Absolute Pose Error. 37, 38, 68, 74, 94

CLAHE Contrast Limited Adaptive Histogram Equalization. 93

COLAMD Column Approximate Minimum Degree. 33

DAG directed acyclic graph. 26

DSO Direct Sparse Odometry. 90, 93

EuRoC European Robotics Challenge. 52, 55, 57, 86

FAST Features from Accelerated Segment Test. 3, 11, 45, 48, 56, 57, 59, 60, 63, 65, 68,
70, 77, 81, 90, 91, 93, 95

FFC Flat Field Correction. 5, 47, 52, 70, 89, 91, 95

GPS Global Positioning System. 1, 91

GTSAM Georgia Tech Smoothing and Mapping. 2, 30, 39, 49–52, 57, 59, 86, 87, 89,
92–96

IFL Incremental Fixed Lag. 94

IMU Inertial Measurement Unit. 1, 2, 33–35, 37, 42, 49–52, 55–57, 59, 66, 68, 70, 74,
77, 81, 86, 87, 90–93, 95, 96

iSAM Incremental Smoothing and Mapping. 31, 49, 86, 92, 94

KTIO Keyframe-based Direct Thermal-Inertial Odometry. 1, 2, 52

LiDAR Light Detection and Ranging. 52, 55, 92, 93

xix

LM Levenberg-Marquardt. 92

LOAM LiDAR Odometry and Mapping. 52, 55, 57

LWIR Long-wave Infrared. 5, 52

MAP Maximum A-Posteriori. 23–25, 27, 29, 30, 33, 44

MAV Micro-Areal Vehicle. 1, 6, 52, 55, 56, 65, 68, 81, 86, 92

NLS Non-linear Least Squares. 25, 29, 30, 48, 49

OKVIS Open Keyframe-based Visual-Inertial SLAM. 48, 94

RMSE Root Mean Square Error. 37, 38, 84, 86

ROTIO Robust Thermal-Inertial Odometry. 2, 48, 57, 68, 74, 77, 81, 90

ROVIO Robust Visual-Inertial Odometry. 57, 90

ROVTIO Robust Visual-Thermal-Inertial Odometry. 2

SAM Smoothing and Mapping. 30, 31

SLAM Simultaneous Localization and Mapping. 1, 10, 23, 26–28, 30, 49, 92, 93

STIO Semi-direct Thermal-Inertial Odometry. 39, 47, 57, 59, 68, 70, 74, 77, 81, 89–93,
95

SVO Semi-direct Visual Odometry. 2, 39, 41–44, 46–49, 57, 59, 65, 89, 91, 92, 95

TIO Thermal-Inertial Odometry. 2, 57

VIO Visual-Inertial Odometry. 1, 2, 33, 44, 48, 51, 57, 90–93, 95, 96

VO Visual Odometry. 2, 23, 91, 95

xx

Chapter 1
Introduction

1.1 Motivation

State estimation is an essential component of any autonomous robotic system. For the
robot to make an informed decision, it needs to know how it is positioned and oriented
relative to its surroundings. This is especially challenging in Global Positioning System
(GPS) denied environments such as in indoor or underground settings. Therefore, there is
much research into fusing multiple sensor modalities to accurately and robustly estimate
the ego-motion of a robot moving in such environments.

Visual-Inertial Odometry (VIO) is one class of problems trying to fuse visual infor-
mation for cameras and inertial information from an Inertial Measurement Unit (IMU).
VIO is a subset of visual Simultaneous Localization and Mapping (SLAM). Several state-
of-the-art algorithms exist (e.g. SVO [23], DSO [15], LSD-SLAM [16], OKVIS [35],
ORB-SLAM [9], VINS-Mono [42]) that work well for visual-light images. However, the
illumination conditions of the environment can greatly affect the effectiveness of the algo-
rithms as darkness eliminates much of the information available from camera images. This
is particularly challenging for Micro-Areal Vehicles (MAVs) that have limited power and
cannot externally illuminate the scene using flashlights. Obscurants like dust and smoke
also reduce visual-light cameras’ visibility and degrade the data.

Therefore, research is being done into the use of sensors that can passively observe a
scene in adverse conditions. One such sensor is a thermal camera that can ”see” thermal
radiation. Therefore, a thermal camera can observe the scene, even in complete darkness,
since everything with a temperature above 0 Kelvin emits thermal radiation. Thermal
radiation also has a longer wavelength and can better penetrate obscurants like dust and
smoke. This makes it a good candidate as an alternative to or complementary sensor to
visual-light cameras.

However, thermal images can typically provide a larger 14- or 16-bit bit depth than
the usual 8-bits of visual-light cameras and can not be used directly with the methods
mentioned above. This motivates the development of algorithms that can take advantage
of the full data. Some examples include Keyframe-based Direct Thermal-Inertial Odom-

1

Chapter 1. Introduction

etry (KTIO) [33], Robust Thermal-Inertial Odometry (ROTIO) [32], and Robust Visual-
Thermal-Inertial Odometry (ROVTIO) [18]. These methods leverage direct matching,
meaning they operate directly on the pixels’ intensity values. This is opposed to indirect
methods that employ other means to find correspondences between images. The authors
of [33, 32, 18] all concluded that direct methods are the better choice when using the full
16-bit thermal data.

This motivates the exploration into using other state-of-the-art direct VIO methods
for Thermal-Inertial Odometry (TIO). For this reason, this thesis will convert the Semi-
direct Visual Odometry (SVO) front-end algorithm to work with thermal images. Visual
methods for state estimation distinguish between the front-end and back-end. ”The front-
end abstracts sensor data into models that are amenable for estimation, while the back-end
performs inference on the abstracted data produced by the front-end.” [8] SVO is originally
a Visual Odometry (VO) method only, but extensions exists that include VIO capabilities
[35] using the Ceres optimizer library [1]. However, it is of interest to develop a VIO back-
end using a custom-built factor graph library like Georgia Tech Smoothing and Mapping
(GTSAM) as well. This can allow for simplified development and inclusion of other sensor
modalities and loop closures in the future.

1.2 Objectives
The main objectives for this master’s thesis are, therefore, to convert the state-of-the-art
VIO algorithm SVO to work on 16-bit radiometric thermal images and implement a factor
graph-based optimization back-end for VIO using the GTSAM library. These will then be
evaluated using real-life datasets. The converted SVO algorithm’s accuracy and reliability
will be evaluated by testing it on several thermal datasets from various environments. This
will give insight into the strength and weaknesses of the proposed method. To focus on
the core functionality of the GTSAM back-end and ease the development process, the
back-end will be assisted with external priors as an initialization routine.

Therefore, the research questions for this thesis can be summarized as follows:

1. What is a good way of extending a state-of-the-art VIO method to work with 16-bit
radiometric thermal images?

2. How does the proposed method compare against other TIO methods in constructed
indoor and real-life outdoor environments?

3. How can a factor graph-based optimization back-end for VIO be implemented in
GTSAM?

4. Can IMU preintegration and external priors be used to ease development by helping
initialize the system?

1.3 Contributions
This thesis contributes with an extensive evaluation of how the modified SVO front-end
algorithm performs on multiple datasets that cover scenarios where thermal cameras have

2

1.4 Outline

an advantage over visible-light cameras. It also contributes with a thorough comparison
of how the FAST feature detector performs when it is used on histogram equalized images
versus directly on the 16-bit image.

1.4 Outline
This thesis is structured as follows: Chapter 2 will introduce relevant background theory
necessary for the development and understanding of the proposed method; Chapter 3 will
go into details surrounding the implementation of the proposed method, and also outline
the experiments that will be used to evaluate the method; Chapter 4 will present the results
from the experiments; Chapter 5 will discuss the results and propose future work; and
lastly, Chapter 6 will conclude the thesis.

3

Chapter 1. Introduction

4

Chapter 2
Theory

2.1 Thermal imaging
Thermal imaging is the process of creating images based on heat. Regular cameras work
by focusing visible light onto an image sensor which registers the intensity of different
wavelengths, thus creating an image. The process is the same for thermal cameras, except
it uses infrared radiation instead of visible light.

All objects with an absolute temperature above 0 Kelvin emits thermal radiation dic-
tated by Stefan-Boltzmann law. [56, ch. 17, p. 569] Using this law, the subdivision of
the infrared spectrum called Long-wave Infrared (LWIR) is defined to be the wavelengths
between 8 and 15 µm and corresponds to temperatures between -80 and 89 °C. [7, p. 22]

LWIR is, therefore, the called the ”thermal imaging” range as many objects typically
found in our environments are in this temperature range, enabling the creation of a picture
of the world without external light or thermal source. [7] This enables thermal cameras to
”see” in the dark. The emitted thermal radiation is also a longer wavelength than visible
light, making it possible to penetrate obscurants such as smoke and dust. These facts make
thermal cameras a viable substitute or complementary sensor in visual state estimation
where visible light cameras struggle. [33]

Thermal cameras accumulate sensor noise during their operation and need to reduce
this noise periodically. This is done through Flat Field Correction (FFC). During FFC, the
camera pauses for up to 500 milliseconds, and a uniform temperature (i.e., a flat field) is
presented to the image sensor. This allows for the estimation of noise correction parame-
ters. [19] However, this process poses two challenges. Firstly, the FFC process can lead
to a significant change in illumination. This can make both direct and indirect methods
of matching fail due to too large intensity differences. Secondly, the image data stream
gap can cause drift in the odometry estimate. This can be especially pronounced in filter-
based algorithms where the estimate is iteratively propagated but is less pronounced in
optimization-based algorithms that optimize over a window of keyframes. [33]

Other challenges with thermal imaging include absorption in the environment and the
lens, thermal reflection in the scene, and vignetting from non-uniform camera tempera-

5

Chapter 2. Theory

tures. In the same way that glass is transparent for visible light, germanium is transparent
for thermal radiation. For this reason, lenses in thermal cameras are typically made of ger-
manium. [50] Also, similarly to visible light, thermal radiation will reflect off objects in
the scene and cause objects to look ”washed out.” [11] Lastly, thermal cameras work best
when all components are at the same temperature. However, this can be hard to achieve,
especially on an autonomous MAV. Therefore, the non-uniform temperature will cause
some vignetting because the outer parts of the camera are cooler than the inner parts. [49]
Vignetting can be challenging for computer vision tasks.

Thermal cameras come in radiometric and non-radiometric variants. Thermal cameras
can be used to measure the temperature of each pixel. However, radiometric measurements
can be corrected to account for effects due to emissivity and distance to the object, thus
finding a more accurate temperature measurement. This is not true for non-radiometric
measurements. [55]

Radiometric measurements pose a challenge in visual state estimation, though. Ra-
diometric measurements are typically more than 8-bit (e.g., 14-or 16-bit) and need to be
represented using 16-bit integers. However, virtually all state-of-the-art visual state esti-
mation algorithms are based on 8-bit, gray-scale visible light images. [23, 3, 9, 15] To use
thermal images directly, the algorithms must be changed to support 16-bit images natively,
or the thermal images must be rescaled to 8-bit.

2.1.1 Re-scaling techniques
There are several ways to rescale a 16-bit image to 8-bit. One way is to divide all pixel
values by the same factor. Alternatively, a predefined interval can be selected, or lastly, a
histogram equalization can be applied.

Dividing all pixel values by the same factor is a simple but naive method. For example,
a 16-bit image has values in the range 0 to 65 535, so integer division by a factor of 256
will rescale all pixel values to the 8-bit range 0 to 255. However, as Fig. 2.1a shows, this
results in loss of information in terms of low contrast, which is poorly suited for feature
detection. The images get a low contrast because the variance in temperature in a scene is
typically low. This cause many values to be truncated to the same value.

Instead, the fact that there is low variance in temperatures can be exploited, and the
16-bit values can be truncated by selecting an acceptable range of values to be rescaled
to 8-bit. This will increase the contrast in the rescaled image. However, this requires
manually selecting the range for each environment. It is also unsuitable for long-term
usage because thermal cameras accumulate sensor noise over time, shifting the acceptable
range of values. [33]

A better way to increase global contrast is to use histogram equalization. Figures 2.1b
and 2.1d shows the histogram before and after equalization and the resulting equalized
image. The histogram equalization is done by making the cumulative distribution of the
image linear. [25, sec. 3.3.1, p. 144] This spreads out the values that are close together.
As Fig. 2.1c shows, the contrast is significantly better than Fig. 2.1a. However, histogram
equalization by itself does not convert the image to 8-bit. This is instead done afterward
by rescaling the image.

However, the histogram equalization is dependent on the temperature of the objects
currently in the camera’s field of view. The image contrast will change significantly if a

6

2.2 Camera geometry

(a) 16-bit thermal image scaled by a constant fac-
tor.

(b) Histogram and cumulative distribution of the
full 16-bit image in Fig. 2.1a.

(c) Histogram equalized 16-bit thermal image. (d) Histogram and cumulative distribution of the
8-bit histogram equalized image in Fig. 2.1c.

Figure 2.1: Applying histogram equalization on 16-bit images give better contrast in the 8-bit re-
scaled image by making the cumulative distribution have a linear trend. Made using a thermal image
from the Urban Parking Lot dataset presented in Section 3.4.2.

cold or hot object enters the view. [33] This can be problematic when the thermal camera
is moving in robotic state estimation.

Rescaling is also important for visualization. High contrast is desirable to see the
objects in the scene easily. For this reason, in the remainder of this thesis, the histogram
equalization technique will be used to illustrate thermal images unless otherwise noted.

2.2 Camera geometry

Section 2.2.1 is copied more or less verbatim from the author’s specialization project [17],
with only minor modifications. Section 2.2.2 is simplified from [17] as the specific details
surrounding distortion are less important in this thesis.

7

Chapter 2. Theory

Figure 2.2: An illustration showing the pinhole camera model. The camera frame is fixed in the
optical center, i.e. where the pinhole is. The blue z-axis is called the optical axis.

2.2.1 Pinhole camera
This section will briefly introduce the pinhole camera and equidistant distortion models.
The theory behind the pinhole model is compiled from Hartley and Zisserman [27] and
Ma et al. [38].

The pinhole camera model is a geometric camera model describing the relationship
between 3D world points in the camera frame pc with the 2D pixel coordinates in the
image u. Mathematically, it is written as u = π(pc) where π : R3 → Ω is the projection
function mapping 3D points to the image plane Ω ⊂ R2. To express the projective geom-
etry as matrix multiplications, homogeneous coordinates are used. Thus, the world point
and pixel coordinates are expanded as

pc =
[
X Y Z 1

]⊤
(2.1)

u =
[
u v 1

]⊤
(2.2)

Figure 2.2 shows the setup for the camera model. Light rays from an object in the
world go through the pinhole and onto the image sensor. The origin of the camera frame,
also known as the optical center, is fixed to the pinhole. The z-axis is called the optical
axis and is perpendicular to the sensor plane. The focal length f specifies the distance
from the pinhole to the sensor. The image on the sensor will make objects appear upside
down. Therefore, a virtual image is placed in front of the pinhole when modeling to

8

2.2 Camera geometry

Figure 2.3: Affine transformation from camera frame Fc to image frame Fi.

make the derivations easier. The coordinates in the virtual image are f units along the
optical axis in front of the optical center and are often expressed in the the camera frame
using x =

[
xf yf f

]⊤
=
[
x y 1

]⊤
. The last equality is valid as homogeneous

coordinates are unique up to a scale factor. When the last component of x is 1, the point
is said to be in the normalized image plane. It is preferred to work with points in the
normalized image plane to make the calculations easier. The coordinates in x are different
from the pixel coordinates u by an affine transformation, shown later.

Similar triangles are used to find the pixel coordinate of a point from the scene. First,
the coordinates in the normalized image plane can be expressed as

x

f
=

X

Z

y

f
=

Y

Z
(2.3)

x =
f

Z
X y =

f

Z
Y (2.4)

which can be expressed as the matrix equation

x =

xy
1

 =
1

Z

f 0 0
0 f 0
0 0 1

︸ ︷︷ ︸

Kf

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

X
Y
Z
1

 =
1

Z
KfΠ0p

c (2.5)

An affine transformation is used to find the pixel coordinates u of x. This transforma-
tion is given by

9

Chapter 2. Theory

u =

uv
1

 =

sx 0 cx
0 sy cy
0 0 1

︸ ︷︷ ︸

Ki

xy
1

 = Kix (2.6)

where sx and sy are the size of the sensor pixels in metric units in the horizontal and
vertical direction, and cx and cy are the coordinates of the principal point. The principle
point is where the optical axis intersects the sensor plane. An additional skew parameter sθ
can be included in Ki, but this is often negligible small in modern cameras and is therefore
ignored. Putting Eq. (2.5) and Eq. (2.6) together, the resulting model becomes

u =
1

Z
KiKfΠ0p

c =
1

Z
KΠ0p

c = π(pc) (2.7)

The matrix K = KiKf is called the intrinsic matrix and is often expressed as

K =

fx 0 cx
0 fy cy
0 0 1

 (2.8)

where f∗ = fs∗. The parameters of the pinhole model can therefore be summarizes as the
vector k =

[
fx fy cx cy

]
.

2.2.2 Distortion
Equation (2.7) is valid in the ideal case, but in reality, the pixel location is distorted when
the light rays pass through the lens. This is modeled with a distortion model. Figure 2.4
shows how a light ray becomes distorted and ends up in a different location xd than the
projective model would suggest. This shift in location is modeled with a distortion model.
Many models exist, and which model works best for a particular camera will depend on
the camera’s lens geometry and other factors. To illustrate how distortion work, the simple
radial distortion model will be presented.

Radial distortion is built on the idea that points further away from the projective center
will be more affected. The distance of a point x from the projective center r =

√
x2 + y2

is calculated in the normalized image plane. The relationship between the distorted point
location xd and the undistorted location x use a low-order polynomial in r, e.g.

x = xd(1 + k1r
2 + k2r

4) (2.9)

where d =
[
k1 k2

]
are the parameters of the distortion model. [48] This polynomial is

used for the simple radial distortion, but other polynomials or functions can also be used.
The distortion parameters d are found together with the intrinsic parameters k when doing
intrinsic camera calibration.

In conclusion, the pinhole camera model u = π(pc) includes both the pinhole pro-
jection Eq. (2.7) and the distortion Eq. (2.9). A common scenario in SLAM is that the
landmark is given in the world frame, pw, and the camera’s pose is also given in the
world frame, Twc. It is therefore also common to see π take the pose of the camera as a
parameter, i.e.

10

2.3 FAST corner detector

Figure 2.4: Illustration of how distortion affects the projected point.

u = π(pw; Twc) = π(T−1
wcp

w) (2.10)

2.3 FAST corner detector
FAST is a corner detector proposed in [44]. It is a feature detector that gives repeatable
corner features at a low computation cost. FAST operates directly on pixel values. This
section will briefly summarize each part of the algorithm. For more details, please refer to
the original paper [44].

Corners are found by comparing the 16 pixels in a circle around a point p, see Fig. 2.5b,
with intensity Ip. An appropriate threshold t is also chosen. An initial high-speed test is
performed by examining the pixels at 1, 9, 5, and 13 (i.e. the cardinal directions, see
Fig. 2.5b). If less than three pixels are brighter than Ip + t or darker than Ip − t, p cannot
be a corner. However, if at least three out of the four pixels pass the threshold test, a full
segment test checks all the pixels in the circle. If at least n contiguous pixels are brighter
than Ip + t or darker than Ip − t, the pixel p is selected as a candidate. In the original
paper, n was chosen to be 12.

This segment test can give many points close together. To remove adjacent corners,
non-maximal suppression is used. A score V is calculated for each point p as the sum of
the absolute difference between Ip and the intensities of the pixels in the contiguous arc.
The points with higher values V are kept, and the others are discarded.

In the paper by Rosten and Drummond [44], a machine learning approach is proposed
as an alternative to the segment test. However, both OpenCV [4] and the library that will
be used in this thesis1 does not incorporate this machine learning approach. Instead, they
use the segment test and non-maximal suppression. Hence, the machine learning approach
is not described here, and its details are left to the original paper [44].

1Modified version of fast neon: https://github.com/uzh-rpg/fast_neon

11

https://github.com/uzh-rpg/fast_neon

Chapter 2. Theory

(a) The image to detect on. (b) Zoomed in view of the black square in
Fig. 2.5a.

Figure 2.5: Illustration of how the pixels around a pixel of interest are sampled. The green squares
are all pixels brighter than Ip + t, while the red are darker. The dashed arc indicate that there are
n = 12 contiguous pixels brighter than the reference, thus passing the segment test. This figure is
inspired by Fig. 1 from the original paper [44], but uses a histogram equalized thermal image from
the Urban Parking Lot dataset presented in Section 3.4.2.

2.4 Lie theory for state estimation

Lie theory gives a convenient and robust representation of poses lying on a non-Euclidean
manifold. It provides a way to represent probability densities and do optimization with
non-Euclidean elements. Lie theory is a comprehensive branch of mathematics, so this
section will only present the most basic and relevant parts for state estimation. This section
is based on the paper by Solà et al. [46]. Concrete examples will be given where relevant
when presenting the theory, and the examples will only use manifolds relevant to state
estimation. This section will not serve as a rigorous study of Lie theory but rather a
pragmatic introduction to how to apply the theory to one specific case.

2.4.1 Lie groups

A Lie group is a smooth manifold whose elements satisfy the group axioms. A smooth, or
differentiable, manifold is a topological space that resembles linear space locally. In other
words, a smooth manifold is a curved, smooth surface with no edges or spikes embedded
in a higher-dimensional space. For example, the one-dimensional perimeter of the unit
circle is a smooth manifold embedded in two-dimensional space.

A group (G, ◦) is a set G with a compositional operator ◦ for which the elements
X ,Y,Z ∈ G satisfy the group axioms

12

2.4 Lie theory for state estimation

Closure under ◦ : (X ◦ Y) ∈ G (2.11a)
Identity E ∈ G : E ◦ X = X ◦ E = X (2.11b)

Inverse X−1 : X−1 ◦ X = X ◦ X−1 = E (2.11c)
Associativity : (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z) (2.11d)

Note that the compositional operator is not commutative in general.
The group structure of a Lie group ensures that the composition of elements on the

manifold stays on the manifold due to the closure property Eq. (2.11a), and that each
element on the manifold has an inverse, Eq. (2.11c). These two properties are vital for
representing a robot’s state. Another property of the Lie group is that the manifold looks
the same at every point. For example, every point on the unit circle will locally look the
same.

In summary, Lie groups combines the local properties of smooth manifolds with the
global properties of groups, enabling the use of calculus and non-linear composition of
distant objects.

Lie groups also have a group action operator ”·” that can transform elements of other
sets. Given a Lie group M and a set V , the Lie element X ∈ M acts on the element
v ∈ V through ·, i.e. X · v ∈ V . This is used extensively in robotics to represent rotation,
transformation, and scaling. For example, a rotation matrix X = Rab ∈ M = SO(3)
can transform a vector v = vb ∈ V = R3 from frame Fb to frame Fa through the group
action va = Rab · vb ≜ Rabv

b. For SO(3) and R3, the group action reduces to matrix
multiplication. On the other hand, a transformation T ≜ [R | t] ∈ SE(3) acts on a
homogeneous vector x̃ =

[
x 1

]⊤ ∈ R4 as T · x̃ ≜ Rx + t. In later sections and other
works, the operator ”·” is typically dropped for brevity.

2.4.2 Tangent spaces
The velocity Ẋ (t) = ∂X/∂t of a point X (t) moving on a manifoldM exist in the tangent
space at that point, denoted TXM. Due to the smoothness of the manifolds, there exists
a unique tangent space at every point, and the structure of the tangent space is the same
everywhere. Tangent spaces are essential as velocities and perturbations are defined in the
tangent space. Through a special operation called the exponential map, the elements of
the tangent space can transform the elements of the manifold.

The tangent space at the identity is called the Lie algebra ofM and is denoted m ≜
TEM. Every Lie group has an associated Lie algebra. Three main properties relate them
to each other. These properties are

• The Lie algebra m is a vector space. This means there exists a linear transformation
between elements of m and the vectors of Rm. The dimension m is the number of
degrees of freedom of the manifoldM. For SO(3), m = 3 as there can be rotated
around each of the three axes.

• The exponential map exp : m → M exactly transforms an element in the Lie
algebra to an element on the manifold. The inverse operation is the logarithmic map
log : M→ m. These operations will be introduces in Section 2.4.3.

13

Chapter 2. Theory

• Elements of the tangent space at X can be transformed into elements of the Lie
algebra m, and vice versa, through a linear transform called the adjoint. This will
be introduced in Section 2.4.5. Together with the fact that all tangent spaces of a
manifold have the same structure, the properties of the Lie algebra are the same as
any other tangent space.

Elements of a tangent space are denoted with a ”hat” symbol, for example τ∧. An
optional left superscript can be added to indicate the exact tangent space the element is in,
for example Xτ∧ ∈ TXM and Eτ∧ ∈ TEM = m.

The structure of the Lie algebra can be found by time differentiating the group con-
straint Eq. (2.11c). Multiplicative groups are groups where the composition ◦ can be
thought of as multiplication, e.g., rotation matrices in SO(3) where the composition be-
comes matrix multiplication. For multiplicative groups, the constraint for the tangent space
becomes

∂

∂t
(X−1 ◦ X) = ∂E

∂t
˙X−1 ◦ X + X−1 ◦ Ẋ = 0 (2.12)

where the product rule is used on the left side, the derivative of the constant identity E is
zero, and ˙X−1 denotes the time derivative of the inverse. Elements of the tangent space
are, therefore, on the form

v∧ = X−1 ◦ Ẋ = − ˙X−1 ◦ X (2.13)

where v∧ can be thought of as the velocity at X . For SO(3), the group constraint is

R⊤R = I, so the tangent space constraint becomes Ṙ⊤R = −R⊤Ṙ. This means that
elements of the tangent space of SO(3) are skew-symmetric 3× 3 matrices. A derivation
of this is given in Example 3 of [46].

Additive groups are groups where the composition ◦ can be thought of as addition,
e.g., vectors in R3. For additive groups, the group constraint becomes X −X = 0 and the
tangent space constraint becomes Ẋ = Ẋ . This means there is no constraint on the tangent
space, which means that the tangent space is coincident with the manifold. In other words,
there is no difference between the manifold and the tangent space.

Although the tangent space elements have non-trivial structures, one of the main prop-
erties is that there exists a linear transform between the Lie algebra and the vectors of Rm.
Two operations, called hat and vee, are used to transform elements from m to Rm, and vice
versa. These are isomorphisms, i.e., two inverse linear maps between two similar spaces,
and are defined as

Hat : Rm → m; τ 7→ τ∧ =

m∑
i=1

τiEi (2.14a)

Vee : m→ Rm; τ∧ = (τ∧)∨ = τ =

m∑
i=1

τiei (2.14b)

14

2.4 Lie theory for state estimation

Figure 2.6: Overview illustration showing the relationship between the Lie algebra (tangent space at
identity E), manifold elements X , increments, and the exponential map. Image from [46], licensed
under CC BY-NC-SA 4.0.

where Ei are the generators of m and ei are the basis vectors of Rm. They are also related
through the hat and vee operators as e∧i = Ei. The generators can be thought of as basis
elements for the Lie algebra.

These isomorphic transformations are of interest because the Euclidean vectors τ ∈
Rm are simpler to work with. They can be stacked in large, composite state vectors (Sec-
tion 2.4.8 will give more details on this), and most importantly, they can be manipulated
using linear algebra and matrix operations.

2.4.3 Exponential and logarithmic maps
Velocities and perturbations are given in the Lie algebra, so to evolve a state, it is useful to
be able to map a tangent element to the manifold. The exponential map exp() can exactly
transfer a tangent element to an element in the corresponding Lie group. This operation
is generally known as retraction. As seen in Fig. 2.6, the exponential map exp() wraps
a vector in the Lie algebra around the geodesic2 of the manifold. The inverse mapping is
called the logarithmic map log(). Collectively, these maps are known as charts. [12]

The exponential map arises by considering the time derivative of a manifold element
X ∈ M. Left-multiplying Eq. (2.13) with X gives the ordinary differential equation
(ODE)

Ẋ = Xv∧ (2.15)

where the composition operator ◦ has been left out for notational clarity. For constant v,
the solution of this ODE is

2A geodesic is the shortest path between two points on a curved manifold. Intuitively, for a sphere, this is the
resulting path from wrapping a string around the sphere. Incidentally, the curved lines showing airplane flight
paths on flat maps are geodesics on the spherical globe but look curved when projected to a flat surface.

15

https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 2. Theory

X (t) = X (0) exp(v∧t) (2.16)

Since X (t) and X (0) are elements of the group, so must exp(v∧t) = X (0)−1X (t) also
be. This shows that exp(v∧t) maps elements of the Lie algebra to elements of the group.

Defining τ∧ ≜ v∧t as a perturbation living in the Lie algebra, the exponential and
logarithmic maps are defined as

exp : m→M; τ∧ 7→ X = exp(τ∧) (2.17a)
log : M→ m; X 7→ τ∧ = log(X) (2.17b)

Key properties of the exponential map include

exp((t+ s)τ∧) = exp(tτ∧) exp(sτ∧) (2.18a)

exp(tτ∧) = exp(τ∧)t (2.18b)

exp(−τ∧) = exp(τ∧)−1 (2.18c)

exp(Xτ∧X−1) = X exp(τ∧)X−1 (2.18d)

The last property Eq. (2.18d) is easily proved by simplifying the terms of the Taylor ex-
pansion ofX−1X . This property is key in developing the adjoint operator in Section 2.4.5.

The exponential map can be found in closed form for multiplicative groups by expand-
ing and simplifying the absolute convergent Taylor series of the exponential function

exp(τ∧) = E + τ∧ +
1

2
(τ∧)2 +

1

3!
(τ∧)3 + . . . (2.19)

by taking advantage of the algebraic properties of powers of Lie algebra elements τ∧. The
logarithmic map is found by taking the inverse. Example 4 in [46] shows the exponential
map for SO(3). For additive groups, the exponential map is simply the identity function
because the manifold is coincident with Rm.

The elements of the Lie algebra τ∧ are rarely of interest in state estimation as the
equivalent Euclidean vectors τ are used instead. Hence, convenient shortcuts are defined
to directly map Euclidean vectors τ ∈ Rm to elements of the manifold X ∈ M, and vice
versa. These are distinguished from the standard exponential and logarithmic maps by
capitalizing the function, i.e.

Exp : Rm →M; τ 7→ X = Exp(τ) ≜ exp(τ∧) (2.20a)

Log : M→ Rm; X 7→ τ = Log(X) ≜ log(X)∨ (2.20b)

Figure 2.7 gives an overview of the exponential and logarithmic maps, the hat and vee
operators, and how they transform elements between the manifold, Lie algebra, and Eu-
clidean vector.

16

2.4 Lie theory for state estimation

Figure 2.7: A schematic overview of the relationship between the tangent space at the identity, its
isomorphic vector space, and the manifold. Image from [46], licensed under CC BY-NC-SA 4.0.

2.4.4 Plus and minus operators
Plus and minus operators make it possible to introduce increments between elements of
a (curved) manifold and express them in its (flat) tangent vector space. They are defined
using the Exp/Log operators and a composition ◦. Due to the non-commutativity of the
composition, a right and a left flavor of the plus and minus operators exist.

The right versions of the operators are defined as

right-⊕ : Y = X ⊕ Xτ ≜ X ◦ Exp (Xτ) ∈M (2.21a)

right-⊖ : Xτ = Y ⊖ X ≜ Log (X−1 ◦ Y) ∈ TXM (2.21b)

because Exp (Xτ) appears on the right side of the composition in Eq. (2.21a). Hence, Xτ
belongs to the tangent space at X . By convention, the increment Xτ ∈ TXM is said to be
in the local frame at X .

Likewise, the left versions of the operators are defined as

left-⊕ : Y = Eτ ⊕X ≜ Exp (Eτ) ◦ X ∈ M (2.22a)

left-⊖ : Eτ = Y ⊖ X ≜ Log (Y ◦ X−1) ∈ TEM (2.22b)

These are the left versions because Exp (Eτ) appear on the left side of the composition in
Eq. (2.22a). The increment Eτ ∈ TEM is now said to be in the global frame.

Notice the ambiguity of the minus operator in Eq. (2.21b) and Eq. (2.22b). This thesis
will exclusively use the right version of the plus and minus operators to avoid confusion.
This implies that all perturbations are expressed locally. This is consistent with the con-
vention chosen by Solà in Solà [45]. Note that other authors use the global convention,
notably NASA Jet Propulsion Laboratory (JPL). [45] The choice of which convention is
used is not always obvious and can quickly become a source of confusion.

2.4.5 Adjoint
The adjoint operator transform a tangent element between the global and local frame.
Setting Eq. (2.21a) equal to Eq. (2.22a) yields the expression X ◦Exp (Xτ) = Exp (Eτ)◦

17

https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 2. Theory

Figure 2.8: Illustration showing the difference between right- and left-⊕, as well as how the adjoint
relate the global and local increment element τ . Image from [46], licensed under CC BY-NC-SA
4.0.

X . By manipulating this equation, the relationship between the tangent space elements
can be written as Eτ∧ = XXτX−1. Thus, the adjoint AdX ofM at X is defined as

AdX : m→ m; AdX (τ∧) ≜ Xτ∧X−1 (2.23)

which means Eτ∧ = AdX (Xτ∧). The adjoint has two useful properties:

Linearity : AdX (aτ∧ + bσ∧) = aAdX (τ∧) + bAdX (σ∧) (2.24a)
Homomorphism : AdX (AdY(τ

∧)) = AdXY(τ
∧) (2.24b)

Since the adjoint is a linear map, an equivalent matrix can be found. [34, p. 94] This is
called the adjoint matrix and is defined as

AdX : Rm → Rm; Xτ 7→ Eτ = AdX
Xτ (2.25)

In the same way the adjoint maps an element in the tangent space at X to the Lie algebra,
the adjoint matrix maps an element in the equivalent Cartesian vector space at X to the
equivalent Cartesian vector space of the Lie algebra.

To find the adjoint matrix, the ∨ operator is applied to Eq. (2.23) to give AdXτ =
(Xτ∧X−1)∨. However, the adjoint matrix is dependent on the underlying manifold and
needs to be developed for each Lie group. See Example 6 of [46] for a derivation of the
adjoint matrix for SE(3).

Some useful properties of the adjoint matrix include

X ⊕ τ = (AdXτ)⊕X (2.26a)

AdX−1 = Ad−1
X (2.26b)

AdXY = AdXAdY (2.26c)

Note that for Eqs. (2.26b) and (2.26c), the left side of the equality is often cheaper to
compute than the right side.

18

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2.4 Lie theory for state estimation

Figure 2.9: Illustration showing how each direction τ i on manifold M relate to the directional
derivative on manifold N . Image from [46], licensed under CC BY-NC-SA 4.0.

2.4.6 Derivatives
Derivatives are essential in linearization and optimization, and it is, therefore, essential
to define when using states on manifolds in state estimation. This section will present
the derivatives in the form of Jacobian matrices mapping two vector tangent spaces. All
Jacobians defined in this section fulfill the chain rule, so more complex Jacobians can
easily be formed.

Before developing the theory for derivatives on Lie groups, a brief summary of Jaco-
bians on Euclidean vector spaces will be given. For a multivariate function f : Rm → Rn,
the Jacobian matrix is defined as the n×m matrix with all the partial derivatives, i.e.

J =
∂f(x)

∂x
≜

∂f1
∂x1

. . . ∂f1
∂xm

...
. . .

...
∂fn
∂x1

. . . ∂fn
∂xm

 ∈ Rn×m (2.27)

This matrix can be further partitioned into J = [j1, . . . , jm] where ji = [∂f1∂xi
, . . . , ∂fn

∂xi
]⊤

are it’s i-th column vector. This column vector is found using

ji =
∂f(x)

∂xi
≜ lim

h→0

f(x+ hei)− f(x)

h
∈ Rn (2.28)

where ei is the i-th standard basis vector3 of Rm. The columns of J thus represent the
directional derivative along each dimension of Rn. A more compact form of writing the
full Jacobian is introduced for convenience. This compact form is

J =
∂f(x)

∂x
≜ lim

h→0

f(x+ h)− f(x)

h
∈ Rn×m (2.29)

with h ∈ Rm. This is the same notation used in Eq. (2.27). This form is just a notational
convenience as dividing by a vector h is undefined and proper computation of the Jacobian
requires Eq. (2.28). Finally, for small values of h, a linear approximation is found using

3The standard basis vector is the vector of all zeros but with the i-th element set to 1.

19

https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 2. Theory

f(x+ h)
h→0−−−→ f(x) =

∂f(x)

∂x
h = f(x) + Jh (2.30)

For a function f : M→N acting on manifolds, the definition of the (right) Jacobian
Eq. (2.29) is changed to use the right-⊕ and -⊖

J
f(X)
X ≜

X∂f(X)
∂X

≜ lim
τ→0

f(X ⊕ τ)⊖ f(X)
τ

∈ Rn×m (2.31)

= lim
τ→0

Log
(
f(X)−1 ◦ f(X ◦ Exp(τ))

)
τ

(2.32)

Since the right-⊕ and -⊖ operators are used, this is called the right Jacobians.
The notation Eq. (2.31) conveys an intuition of what is going on: the Jacobian is the

derivative of f(X) with respect to X , but the infinitesimal variation τ is expressed in the
tangent space at X . In this light, the variations in X and in f(X) are expressed as vectors
in the local tangent spaces at X ∈ M and f(X) ∈ N . The resulting Jacobian matrix is
thus a linear mapping between variations in the local tangent spaces TXM → Tf(X)N .
This is illustrated in Fig. 2.9. The local property of the right Jacobian is indicated with the
superscript X in Eq. (2.31). Many examples of Jacobians on common manifolds in state
estimation are given in the appendices of [46].

Finally, for small values of τ , the following linear approximation also holds

f(X ⊕ Xτ)
Xτ→0−−−−→ f(X)⊕

X∂f(X)
∂X

Xτ ∈ N (2.33)

The derivatives can also be defined using the left-⊕ and -⊖ operators, yielding the left
Jacobians. Contrary to the right Jacobians, now the infinitesimal increment τ ∈ TEM is
given in the Lie algebra, and the numerator belongs to TEN . Thus, the left Jacobian maps
the global tangent spaces TEM→ TEN . The right and left Jacobians are also related by
the adjoint matrices forM and N . The left Jacobians will not be developed further here
since only the right version of all operations is used in this thesis.

Lastly, crossed right-left Jacobians exist using the right-⊕ and left-⊖, or vice versa.
However, these rarely come up in practice and are therefore omitted from this exposition.
For the interested reader, refer to Section II-G.4 of Solà et al. [46].

2.4.7 Uncertainty
Uncertainty plays a central role in state estimation to quantify the accuracy of measure-
ments and estimates. The final step required to use Lie theory for state estimation is to
develop a way of representing the uncertainty of states on manifolds.

A local perturbation τ around a point X̄ ∈ M that lives in the tangent space TX̄M
can be defined using the right-⊕ and -⊖ like

X = X̄ ⊕ τ , τ = X ⊖ X̄ ∈ TX̄M (2.34)

This can be used to properly define covariance matrices on the tangent space at X̄ through
the standard expectation operator E[·] like

20

2.4 Lie theory for state estimation

Figure 2.10: Illustration of how a covariance ellipse defined in the vector space at X , and how it is
wrapped over the manifold using ⊕. Image from [46], licensed under CC BY-NC-SA 4.0.

ΣX ≜ E[ττ⊤] = E[(X̄ ⊖ X)(X̄ ⊖ X)⊤] ∈ Rm×m (2.35)

With a definition of the covariance matrix, a Gaussian variable on manifolds can be defined
as

X ∼ N (X̄ ,ΣX) (2.36)

Notice that although the covariance matrix is written as ΣX , the covariance actually
describes the perturbation τ in the tangent space. Figure 2.10 illustrate this by showing
a Gaussian variable X with the covariance ellipse in the tangent space (in red). The co-
variance ellipse can be wrapped over the manifold using ⊕. This shows how increments
that fall within the ellipse with a certain probability are mapped to the manifold. It is an
important distinction that the uncertainty is defined in the tangent space for the uncertainty
to be well-defined. If the dimension of the manifold d is greater than the degrees of free-
dom m, the covariance will be ill-defined. On the other hand, since the tangent space has
dimension m, the covariance is well-defined.

Covariance can also be given in the global frame by using the left-⊕ and -⊖ operators.
This way, the perturbation is given in the Lie algebra, i.e. the tangent space at the origin
Eτ ∈ TEM as

X = τ ⊕ X̄ , τ = X ⊖ X̄ ∈ TEM (2.37)

21

https://creativecommons.org/licenses/by-nc-sa/4.0/

Chapter 2. Theory

One use of specifying the covariance in the global frame is if the roll and pitch, but
not the yaw, are known, thus having the 3D orientation known up to the horizontal plane.
Then the covariance can be set to EΣ = diag(σ2

ϕ, σ
2
θ ,∞). Since the notion of ”horizontal”

is a global specification, the covariance must be given in the global frame.
The covariance matrix can also be transformed between the global and local frames

using the adjoint using

EΣX = AdX
XΣXAd⊤

X (2.38)

Moreover, covariance can also be propagated through a function f : M→N ; X 7→
Y = f(X) by using the linearization Eq. (2.33) yielding the familiar formula

ΣY ≈
∂f

∂X
ΣX

∂f

∂X

⊤
∈ Rn×m (2.39)

2.4.8 Composite manifolds
A composite manifold M = {M1, . . . ,Mm} is simply the concatenation of m non-
interacting manifolds. This construction is useful when dealing with heterogeneous states
or bundles of states. For example, a full bundle adjustment require a heterogeneous state
with the robot’s pose Xt ∈ SE(3) and L observed landmarks X = {SE(3),R3

1, . . . ,R3
L}.

Conversely, a motion-only bundle adjustment require a bundle of states Xt ∈ SE(3) over
several time steps X = {SE(3)1, . . . , SE(3)T }.

The identity, inverse, and composition are defined element-wise for the composite
manifold. For the composite manifoldM above, we have

E ≜

E1...
Em

 , X−1 ≜

X
−1
1
...
X−1

m

 , X ◦ Y ≜

 X1 ◦ Y1
...

Xm ◦ Ym

 (2.40)

The notation remains the same, and it should be clear from the context if the operations
relate to a single manifold or a composite manifold.

All the other operators introduced earlier can also be applied element-wise in the same
fashion. For example, the exponential and logarithmic maps become

Exp {τ} ≜

Exp (τ 1)
...

Exp (τm)

 , Log {X} ≜

Log (X1)
...

Log (Xm)

 (2.41)

These give the composite right-plus and -minus operators

X ⊕ τ ≜ X ◦ Exp {τ} (2.42)

Y ⊖ X ≜ Log {X−1 ◦ Y} (2.43)

These results makes it possible to define the composite Jacobian of a function f :
M→N :

22

2.5 Probabilistic inference in robotics

∂f(X)
∂X

≜

∂f1
∂X1

. . . ∂f1
∂Xm

...
. . .

...
∂fm
∂X1

. . . ∂fm
∂Xm

 (2.44)

where each block ∂fi
∂Xj

is calculated using Eq. (2.31). Moreover, the same results for
approximating small perturbation Eq. (2.33) and for calculating covariance Eq. (2.35) has
equivalent composite forms using the composite operators given above.

2.5 Probabilistic inference in robotics
In SLAM/VO applications, the robot’s state, i.e., the unknown pose x and the position of
the unknown landmarks l, is estimated using sensor measurements z with some associated
uncertainty. The pose is continuous and multi-dimensional and can be represented by its
probability density using the Lie theory from Section 2.4. It is also common to include
the landmarks in the state vector such that x ≜ {x, l}. In the remainder of this section,
lowercase letters are used for random variables, and uppercase letters are used for a set of
them.

Hence, to estimate the states and landmarks X from a set of observed measurements
Z, we are interested in estimating the conditional density

p(X | Z) (2.45)

This quantity is called the posterior, and estimating this quantity is called probabilistic
inference.

This takes advantage of the Bayesian probability frameworks and can better utilize
information about our belief and trust in specific estimates and sensor measurements. This
is done by using the covariance information related to the different variables.

2.5.1 MAP inference
Maximum A-Posteriori (MAP) estimation is used to find the states X that maximizes
Eq. (2.45) given the observed measurements. Using Bayes’ law, the MAP estimate be-
comes

XMAP = argmax
X

p(X | Z) = argmax
X

p(Z | X)p(X)

p(Z)
(2.46)

The quantity p(Z | X) is called the likelihood and quantifies the chance of observing the
observed measurements Z given that the robot is in the current state X . The quantity p(X)
is the priors on the states.

Since the denominator of Eq. (2.46) is only dependent on Z but the optimization is
done over X , the denominator p(Z) can be dropped. Furthermore, since only the posterior
as a function of X is of interest, the likelihood function l(X; Z) ∝ p(Z | X) is defined
to emphasize this fact. [13] An example of the likelihood function will be presented in
Section 2.5.2. Thus, Eq. (2.46) can be rewritten as

23

Chapter 2. Theory

XMAP = argmax
X

p(Z | X)p(X) = argmax
X

l(X; Z)p(X) (2.47)

2.5.2 MAP inference under Gaussian assumption
The multivariate Gaussian distribution is commonly used in state estimation in robotics.
The probability density of the multivariate Gaussian distribution is

N (x;µ,Σ) =
1√

|(2π)nΣ|
exp

{
−1

2
||x− µ||2Σ

}
(2.48)

where µ ∈ Rn is the mean, Σ ∈ Rn×n is the covariance matrix, | · | is the determinant, and

||x− µ||2Σ = (x− µ)⊤Σ−1(x− µ) (2.49)

is the squared Mahalanobis distance. [13] The fraction coefficient in Eq. (2.48) is the
normalization factor and ensures the integral over the state space equals 1.

In state estimation, it is convenient to model measurements as being corrupted by zero-
mean Gaussian noise, i.e.

z = h(x) + η η ∼ N (0, R) (2.50)

where h(·) is a measurement prediction function, and R is the covariance of the measure-
ment noise. The conditional distribution of z therefore becomes

p(z | x) = N (z;h(x), R) =
1√
|2πR|

exp

{
−1

2
||h(x)− z||2R

}
(2.51)

The likelihood function introduced in Section 2.5.1 can, in the Gaussian case, be written
as

l(x; z) = exp

{
−1

2
||h(x)− z||2R

}
(2.52)

The measurement prediction function is derived from the known sensor geometry and
is often nonlinear. Equation (2.52) is Gaussian in z, but not Gaussian in x due to the
nonlinear measurement prediction function. Even if h were linear, the density would be
degenerate because z is typically of lower dimension than x. For example, if the state in-
cluded the x- and y-position and yaw of the robot, while the measurement is the range and
bearing to a landmark, we would have x ∈ R3 and z ∈ R2. Hence, multiple measurements
are needed to have a proper probability density and fully constrain all variables. If this is
not achieved, the MAP estimate will fail because a unique maximizer of Eq. (2.47) is not
available. [13]

Another common assumption is that the measurements Z are independent from each
other. Under this assumption, the likelihood p(Z | X) can be written as the product

p(Z | X) = p(z1, . . . , zk | X) =

k∏
i=1

p(zi | X) (2.53)

24

2.6 Bayes net

Inserting this into Eq. (2.47) yields

XMAP = argmax
X

p(X)

k∏
i=1

p(zi | X) (2.54)

When both the priors and the likelihoods are Gaussian, this becomes

XMAP = argmax
X

(
exp

{
−1

2
||X − µX ||2ΣX

} k∏
i=1

exp

{
−1

2
||hi(X)− zi||2Ri

})
(2.55)

where the normalization coefficient is omitted.
Because the logarithm is a monotonically increasing function, applying it to the objec-

tive function of Eq. (2.55) (i.e., the expression inside the parenthesis) does not change the
optimum. Conversely, the negative logarithm transforms the maximization problem into a
minimization problem but keeps the same optimum. Thus, taking the negative logarithm
of the objective function gives

XMAP = argmax
X

(− log {Eq. (2.55)})

= argmin
X

(
1

2
||X − µX ||2ΣX

+

k∑
i=1

1

2
||hi(X)− zi||2Ri

)
(2.56)

This is the familiar non-linear (weighted) least-squares problem and can be solved using
any non-linear least-squares solver, e.g., Gauss-Newton and Levenberg-Marquardt. Each
iteration of these algorithms solves a linearized problem to obtain an increment to move
the current best estimate towards the optimum. The problem is linearized around this
current best estimate, and it is therefore known as the linearization point.

In conclusion, when all the variables are assumed to be distributed according to the
Gaussian distribution, the MAP estimate can be found by solving a Non-linear Least
Squares (NLS) problem.

The MAP problem can also be formulated using the Lie theory presented in Sec-
tion 2.4. Since increments, Jacobians, and probability distributions can be defined on the
manifold, the exact derivations for the MAP solution given in this section can be followed
for variables in a Lie group. The difference is that instead of the state x ∈ Rn, we have
x ∈ N , where e.g. N = SE(3).

2.6 Bayes net
Bayesian network, also known as Bayes nets, is a graphical model for modeling inference
problems. It is also a helpful way of thinking about how sensor measurements are gen-
erated and how they are affected by the robot’s pose. Given the location of a landmark,
the robot’s pose when observing that landmark, and the geometry of how a sensor mea-
surement is created, it is easy to predict what the measurement will be. If the landmark

25

Chapter 2. Theory

(a) A Bayes net. (b) One topological sort that clearly illustrate
parent-child relationship.

Figure 2.11: A Bayes net of an example SLAM problem. The robot detects a landmark lj from pose
xi which creates a measurement zk. Note that the direction of the arrow point in the direction from
the conditional parent variable, i.e. p(x2 | x1) points from x1 to x2. Figure 2.11a is recreated from
[13].

or robot moves, the measurement will be different. Furthermore, the uncertainty of that
measurement is called a noise model and can be assumed or learned. These components
constitute a conditional probability, which is the core of Bayes nets. This section will
briefly introduce Bayes nets for modeling inference problems. It is primarily based on
[13, sec. 5.4]. The subsequent sections will show how it is related to factor graphs and
how it is used to update and solve nonlinear inference problems incrementally.

Formally, a Bayes net is a directed acyclic graph (DAG) where the nodes represent
variables θj , and the edges represent conditional dependencies. The set of all random
variables is denoted Θ = {θ1, . . . , θn}. A Bayes net then defines the joint probability
function p(Θ) over all the variables in Θ as the product of conditional densities like

p(Θ) ≜
∏
j

p(θj | πj) (2.57)

where πj is an assignment of all the parents of θj . Since a DAG always can be topolog-
ically sorted [10], each variable θj will either have a set of parent variables on which it
is conditionally dependent or have no parents, i.e., πj = ∅ is the empty set. The density
becomes a prior for θj . Hence, in a Bayes net, the factorization of the joint density is dic-
tated by its graph structure and the conditional dependence relationships between nodes
and their parents.

Figure 2.11a shows an example Bayes net for a simple SLAM problem. The random
variables are Θ = {X,Z}, i.e. the set of all unknown robot poses and landmarks X =
{x1, x2, x3, l1, l2} as well as all the measurements Z = {z1, . . . , z4}. The poses and
landmarks are represented using circles, and measurements are represented using boxes.
This distinction is made since measurements are observed and therefore have no children.
Their parents are the variables that affects the measurement. The arrows in Fig. 2.11a
point in the direction from the conditional parent variables to the current variable. E.g.,
the arrow between x1 and x2 encodes the conditional probability p(x2 | x1). Figure 2.11b
shows one topological sort for the Bayes net, and clearly illustrate the relationship between

26

2.7 Factor graphs

the parents and children, where the parents are physically higher in the figure.
The joint density p(X,Z) is the following product of conditional densities as per the

definition of a Bayes net Eq. (2.57):

p(X,Z) = p(x1, x2, x3, l1, l2, z1, z2, z3, z4) (2.58a)
= p(x1)p(x2 | x1)p(x3 | x2) (2.58b)
× p(l1)p(l2) (2.58c)
× p(z1 | x1) (2.58d)
× p(z2 | x1, l1)p(z3 | x2, l1)p(z4 | x3, l2) (2.58e)

The division of the factors above illustrate four qualitatively different sets of densities:

• Equation (2.58b) represents a Markov chain on the poses. The conditional densities
p(xt+1 | xt) can be information about the robot’s movement derived from e.g. prior
knowledge, known control inputs, or integration of inertial measurements.

• Equation (2.58c) represents priors on the landmarks’ position. However, this is
often omitted in SLAM when there is no prior map known.

• Equation (2.58d) represents an absolute pose measurement for the first pose x1. This
is essential as it determines the origin of the world frame.

• Equation (2.58e) represents the measurements of the landmarks from the robot. In
this example, they are range-bearing measurements originating from e.g. a laser
sensor.

These four types of densities are the most common in visual SLAM. However, other prac-
tical considerations are not represented here, like data association.

While Bayes nets are a convenient way of modeling and thinking about inference prob-
lems in robotics, better ways exist to solve the inference problems. Factor graphs are one
way of doing this.

2.7 Factor graphs
A factor graph is another graphical model for modeling and solving inference problems in
robotics. Similar to Bayes nets, factor graphs allow for intuitive modeling and representa-
tion of relationships between variables in a SLAM problem. Unlike Bayes nets, however,
they are better suited for calculating the MAP estimate due to the non-Gaussian likelihood
functions. [13] This section will give a brief introduction to factor graphs and how they
can be leveraged in solving SLAM problems. It is based primarily on chapters 1 and 2 of
Dellaert and Kaess [13].

Formally, a factor graph is a bipartite graph built up of two types of nodes: variables
xj and factors ϕi. The edges of the graph always connect variable nodes with factor
nodes, and never connect nodes of the same type. The set of variable nodes adjacent to a

27

Chapter 2. Theory

Figure 2.12: The factor graph representing the same example SLAM problem shown as a Bayes net
in Fig. 2.11a. The factors as they are given in Eq. (2.60) are shown. This figure is adapted from Fig.
1.3 in [13].

factor node ϕi is written as Xi = N (ϕi). These definitions defines the factorization of the
function ϕ(X) as

ϕ(X) =
∏
i

ϕ(Xi) (2.59)

In other words, each factor is a function of only its neighboring variables, which encodes
the variables’ independence relationship, making up the entire graph. A factor graph can
be used to specify any factored function ϕ(X) by individually modeling each factor. In
inference problems, this is usually applied to a posterior density p(X | Z).

Any Bayes net can trivially be converted to a factor graph. Recall that each node in
a Bayes net denotes a conditional density for a variable and its parent nodes. Bayes net
variable nodes, e.g., states and landmarks, are converted into a variable node in the factor
graph and a factor node connecting a variable node and its parents. Bayes net measurement
nodes are converted into a factor node connecting the variables it depends on, and the
known measurement is given as a fixed parameter in the factor.

Consider the SLAM example given in Section 2.6. After conditioning the joint prob-
ability Eq. (2.58) on the measurements Z and employing the likelihood notation from
Section 2.5.2, we get the following posterior

p(X | Z) ∝ p(x1)p(x2 | x1)p(x3 | x2) (2.60a)
× p(l1)p(l2) (2.60b)
× l(x1; z1) (2.60c)
× l(x1, l1; z2)l(x2, l1; z3)l(x3, l2; z4) (2.60d)

28

2.7 Factor graphs

This is converted to a factor graph following the procedure outlined above. It is clear
that this represents a factored function with only unknowns, so each factor in Eq. (2.60)
corresponds to a factor in the factor graph. This factorization is therefore represented as a
factor graph as

ϕ(x1, x2, x3, l1, l2) = ϕ1(x1)ϕ2(x2, x1)ϕ3(x3, x2) (2.61a)
× ϕ4(l1)ϕ5(l2) (2.61b)
× ϕ6(x1) (2.61c)
× ϕ7(x1, l1)ϕ8(x2, l1)ϕ9(x3, l2) (2.61d)

This is also represented visually as can be seen in Fig. 2.12. The qualitative description of
the different factors that was given for Eq. (2.58) hold true for the factors in Eq. (2.61).

A factor in the factor graph can analogously be thought of as a spring. The spring is
connected between the variables in the factor, and the length of the spring is analogous
to the measurement. For example, an odometry measurement constrains two variables to
each other, so they cannot be too far apart or too close. Moreover, the covariance of the
factor is analogous to the stiffness of the spring. The smaller the covariance, the stiffer the
spring. When doing inference using the factor graph, we can think of the springs pulling
on the variables to make them reach a state of equilibrium. This pulling corresponds to the
iterative solving of the NLS problem.

2.7.1 Nonlinear MAP inference using factor graphs
Since factor graphs can represent a posterior density, it is a valuable construct for perform-
ing MAP inference. The MAP problem on a factor graph can be stated as

XMAP = argmax
X

ϕ(X) = argmax
X

∏
i

ϕi(Xi) (2.62)

As shown in Section 2.5.2, solving the MAP problem under the Gaussian assumption
is the same as solving a NLS problem. Under the Gaussian assumption, each factor takes
the form

ϕi(Xi) ∝ exp

{
−1

2
||hi(Xi)− zi||2Σi

}
(2.63)

Following the same procedure as in Section 2.5.2 by taking the negative logarithm of the
objective function gives the NLS formulation

XMAP = argmin
X

∑
i

||hi(Xi)− zi||2Σi
(2.64)

It is crucial to attach a prior to the first pose variable to fix it in space. To understand
why, imagine a factor graph consisting of only relative factors (e.g., odometry factors,
range-bearing factors, etc.). Without a prior factor on the pose, the poses can be anywhere

29

Chapter 2. Theory

in the space since we only have relative information. By attaching a prior, we have a
starting point from which the relative measurements can evolve from.

An important note is that the measurements zi are typically of lower dimension than
the unknown states Xi. Therefore, it is necessary to have more measurements to constrain
and determine the problem fully. Whether or not the problem is fully determined can be
understood by looking at the number of unknowns versus the number of equations.

For example, imagine a reduces version of the factor graph in Fig. 2.12 with only x1,
x2, and l1. Each state x1, x2 ∈ SE(3) contribute 6 unknowns, and l1 ∈ R3 contribute
3 unknowns, for a total of 15 unknown variables. Imagine that the factor connecting the
states and the landmarks are projection factor. Then, they contribute two equations from
the 2D pixel locations each, for a total of 4 equations. Moreover, the factor connecting the
states is a relative pose measurement, i.e. x2 ⊖ x1 ∈ Tx1

SE(3), giving 6 equations. This
is only a total of 10 equations. The remaining equations to fully determine the problem
comes from the prior on x1 that fixes the pose to the world frame. In total, there are 16
equations and 15 unknowns. Since there are more equations than unknowns, the problem
is solvable.

Variable ordering is an important aspect of efficient solving of non-linear MAP prob-
lems. The variable ordering refers to the order of the unknown poses and landmarks in the
vector X . In short, the order of the variables affects the sparsity of the matrices used to
solve the NLS problem, and this significantly affects the speed at which the linear systems
can be solved. However, this will not be explored in detail here as it is more relevant for
efficient and practical implementations than for understanding how factor graphs can be
used for robotic inference problems. The interested reader is referred to chapters 3 and 4
of Dellaert and Kaess [13] for more information.

2.7.2 Using factor graphs in code

Several libraries exist for using factor graphs in code. Since, under the Gaussian assump-
tion, a factor graph can be reduced to a NLS problem, any NLS solver can be used. For
example, the Google Ceres [1] is one library commonly seen in SLAM solutions. How-
ever, to facilitate easier modeling, other libraries have been developed.

GTSAM is one such library. It is implemented in C++ and is open-source, available
on Github4. It enables the user to model the problem using a factor graph and to solve
the problem to obtain the posterior density. Multiple predefined factors are already im-
plemented, such as range-bearing factors, camera projection factors, odometry/between
factors, and more. The user can also create custom factors by simply defining the mea-
surement prediction function and the Jacobian with respect to each variable involved in
the factor. This way, GTSAM can also evaluate complex Jacobians using the chain rule.

2.8 Incremental Smoothing and Mapping
Solving the full SLAM problem as shown in Section 2.7.1 is known as Smoothing and
Mapping (SAM). Smoothing refers to the fact that the whole trajectory is estimated in

4https://github.com/borglab/gtsam

30

https://github.com/borglab/gtsam

2.8 Incremental Smoothing and Mapping

a batch update and, if applicable, also a map. This is opposed to filtering, which only
keeps the latest pose. Smoothing is generally more accurate but at the cost of being more
computationally demanding. Therefore, several ways of doing SAM incrementally have
been developed.

Incremental Smoothing and Mapping (iSAM) is one way of solving SAM problems
incrementally. It was originally introduced in Kaess et al. [31] using incremental matrix
factorization but did relinearization by doing periodic batch updates. This is a sub-optimal
way of doing relinearization because new measurements often have only a local effect
[30], so batch updates perform many unnecessary calculations. iSAM2 was therefore
introduced in Kaess et al. [30]. iSAM2 formulates the problem in terms of a Bayes tree
and applies incremental variable reordering and fluid relinearization to alleviate the issues
in the original iSAM formulation. This section will introduce the Bayes tree data structure
before briefly explaining how it is applied in iSAM2.

2.8.1 Bayes tree
A factor graph can be converted to a Bayes net using the elimination algorithm (for details,
see Algorithm 3.1 in Dellaert and Kaess [13]). A Bayes net from this process satisfies a
special property called chordal, meaning that undirected cycles of length greater than three
have a chord, i.e., an edge between non-consecutive vertices in the cycle [13]. It is still
a Bayes net with the joint density Eq. (2.58), but can be rewritten as a tree by identifying
cliques in the chordal net. The resulting tree is known as a Bayes tree.

Bayes trees were first introduced in Kaess et al. [29]. The nodes represents the cliques
Ck of the underlying chordal Bayes net. The conditional density p(Fk | Sk) is defined per
node, where Sk = Ck ∩Πk are the separators and Fk = Ck \ Sk are the frontal variables.
The clique can be partitioned into these two types and written as Ck = Fk : Sk. [13]
Figure 2.13b shows how the cliques are structured as a tree, and Fig. 2.13a shows the
corresponding variables in the Bayes net from the factor graph in Fig. 2.12. The joint
density p(X) of the Bayes tree is given as

p(X) =
∏
k

p(Fk | Sk) (2.65)

The root Cr = Fr have no separators because it have no parents, and corresponds to a
simple prior p(Fr).

2.8.2 Incremental inference
Incremental inference corresponds to simply editing the Bayes tree. The key insight is that
when a factor between xi and xj is added, it will only affect the paths between the clique
containing xi and xj and the root clique. [29]

An example update to the Bayes tree in Fig. 2.13 is illustrated in Fig. 2.14, where a
new factor is inserted between x1 and x3. First, the affected part highlighted in the top left
is converted to a factor graph, and the new factor is inserted (top right). The factor graph
is then converted to a chordal Bayes net (bottom right) and is lastly converted to a Bayes
net, and the unmodified ”orphan” sub-tree is added back.

31

Chapter 2. Theory

(a) Chordal Bayes net (b) Corresponding Bayes tree

Figure 2.13: A chordal Bayes net generated from the factor graph in Fig. 2.12 and the corresponding
Bayes tree. The cliques are marked and color-coded, and the separators are the areas of overlapping
cliques marked with diagonal lines.

Figure 2.14: Bayes tree update illustrated. Note that x1 has moved to the root clique and is now a
separator in the child clique. The red child clique is unaffected and simply moved after the update.
Figure inspired by Fig. 3 from Kaess et al. [29] and Fig. 5.6 from Dellaert and Kaess [13].

32

2.9 IMU preintegration

To get the state estimates after updating the Bayes tree, a delta vector ∆ is computed
and added to the current linearization point X , i.e., X + ∆. This delta is found using
back-substitution starting from the root clique and working towards the leaves. Since new
updates typically only have a local effect, the back-substitution is stopped when ∆ does
not change the states by more than a given threshold.

2.8.3 Incremental variable reordering

As briefly mentioned in Section 2.7.1, the variable order is essential for solving the MAP
problem efficiently. Finding the optimal order is NP-hard [30], so it is common to use a
heuristic such as Column Approximate Minimum Degree (COLAMD). For incremental
inference, Kaess et al. [30] found that the variables could be reordered after every incre-
mental update. Since the update only affects a sub-tree of the full Bayes tree, COLAMD
could be applied to the affected sub-tree. However, this will only minimize the fill-in, i.e.,
dependencies between variables that were previously independent, for the current step,
and does not take into account the fact that recent variables are more likely to be affected
in a new update. [30]

Therefore, a constrained COLAMD (CCOLAMD) is used, which forces the most re-
cent access variables to the end of the variable ordering, i.e., to the root clique. This
reduces the expected cost of incorporating new measurements because measurements typ-
ically have a local effect and will, therefore, most likely only affect the most recent vari-
ables.

2.8.4 Fluid relinearization

To avoid excessive computations when relinearizing, variables are only relinearized when
needed. This is done by checking that variables in ∆ have a larger change than a given
threshold and updating only those variables. [30] When a variable is relinearized, all
cliques that contain the affected variable must be updated. However, this is significantly
cheaper than updating the whole tree. [13]

2.9 IMU preintegration

IMU sensors are often used together with cameras in VIO systems due to the complemen-
tary nature of IMUs and cameras; cameras provide measurements of the scene geometry
while IMUs renders metric scale and the gravity vector observable. [20] IMUs also provide
inter-frame motion estimates because IMUs usually operate at a higher rate than cameras.
However, this discrepancy in sensor rate proves challenging in tightly-coupled sensor fu-
sion systems. If we were to build a factor graph where each node corresponds to each IMU
measurement, the graph would grow too large and become intractable to do inference on.

To this end, a technique to only insert nodes for keyframes and add a motion factor
summarizing the IMU measurements is used. This technique is called IMU preintegration
and was originally proposed in [37]. It was later extended in Forster et al. [20] by ex-
ploiting the manifold structure of SO(3) and SE(3) groups using Lie theory. Figure 2.15

33

Chapter 2. Theory

Figure 2.15: Illustration showing the different rates of the camera and IMU, and how the IMU
preintegration factor is summarizing the IMU measurements between the keyframes. Based on Fig.
5 in [20].

shows an illustration showing the different sensor rates and how the preintegration factor
summarizes the IMU measurements between two consecutive keyframes.

This section will only summarize the main results related to IMU preintegration from
Forster et al. [20] and will not delve deep into the derivations. For a complete overview of
the derivations, refer to the original paper Forster et al. [20] and its supplementary paper
Forster et al. [21].

There are two problems associated with the preintegration of IMU measurements. The
first is related to how to handle changes in the linearization point. The second is how to
handle the bias. The former is solved by performing the integration in a local frame, mak-
ing the result agnostic to changes in linearization point. The latter is solved by assuming
the bias is constant between keyframes and using update equations when the bias change
during optimization instead of reintegrating the measurements.

The IMU is assumed to be coincident with the body frame. Then, IMU measurements
ãb(t) and ω̃b

wb(t) are given in the body frame Fb and are affected by additive white Gaus-
sian noise η and a slowly varying bias b

ãb(t) = R⊤
wb(t)(a

w(t)− gw) + ba(t) + ηa(t) (2.66)

ω̃b
wb(t) = ωb

wb(t) + bg(t) + ηg(t) (2.67)

where the prefix subscript indicates the frame the quantity is expressed in. The state of the
IMU is given by the SE(3) element [Rwb | tw], with corresponding kinematic model

Ṙwb = Rwb(ω
b
wb)

∧ v̇w = aw ṫ
w
= vw (2.68)

Let the time between IMU samples be given by ∆t. Assume the acceleration and angular
velocity are constant over the interval [t, t + ∆t]. By applying forward Euler integration
and inserting for true acceleration aw and true angular velocity ωb

wb from Eqs. (2.66)
and (2.67), the states at t+∆t becomes

34

2.9 IMU preintegration

R(t+∆t) = R(t) Exp ((ω̃(t)− bg(t)− ηgd(t))∆t) (2.69a)

v(t+∆t) = v(t) + g∆t+R(t)(ã(t)− ba(t)− ηad(t))∆t (2.69b)

t(t+∆t) = t(t) + v(t)∆t+
1

2
g∆t2 +

1

2
R(t)(ã(t)− ba(t)− ηad(t))∆t2 (2.69c)

where the frame subscripts are dropped for readability. The frame should be unambiguous
in the remainder of this section. The additive white noise is also converted to its discrete-
time equivalent by dividing the covariance by ∆t.

Equations (2.69a)–(2.69c) are valid for one IMU measurement. To create a single
”measurement” summarizing multiple measurements in the interval between the two keyframes
at k = i and k = j, the equations will be applied repeatedly. However, doing this directly
will make the equations dependent on the state at time ti. Hence, the equations are rewrit-
ten to be relative motion increments that are independent on the state at time ti

∆Rij = R⊤
i Rj =

j−1∏
k=i

Exp ((ω̃k − ba,k − ηgd,k)∆t) (2.70a)

∆vij = R⊤
i (vj − vi − g∆tij) =

j−1∑
k=i

∆Rik(ãk − ba,k − ηad,k)∆t (2.70b)

∆tij = R⊤
i (tj − ti − vi∆tij −

1

2
g∆t2ij)

=

j−1∑
k=i

3

2
∆Rik(ãk − ba,k − ηad,k)∆t2 (2.70c)

where ∆tij ≜
∑j

k=i ∆t, ∆Rik ≜ R⊤
i Rk, and (·)k ≜ (·)(tk) are the respective quantity

evaluated at time tk.
Equations (2.70a)–(2.70c) still depend on the biases and the noise terms. To deal with

this, the bias terms are assumed to be known and the noise terms are isolated. Later, Forster
et al. [20] develops update equations for when the bias changes.

Isolating the noise terms from Eqs. (2.70a)–(2.70c) using Eq. (2.33) yields the prein-
tegrated measurement model:

∆R̃ij = ∆Rij Exp (δϕij) (2.71a)
∆ṽij = ∆vij + δvij (2.71b)

∆t̃ij = ∆tij + δtij (2.71c)

where the compound measurements are the relative motion states from Eqs. (2.70a)–
(2.70c) without the noise terms plus a random noise described by the random vector[
δϕ⊤

ij δv⊤
ij δt⊤ij

]⊤
. More analysis of the noise terms in the random vector shows all

35

Chapter 2. Theory

terms can be written as a linear combination of zero-mean Gaussian densities, meaning
the entire random vector can be characterized by[

δϕ⊤
ij δv⊤

ij δt⊤ij
]⊤ ∼ N (09×1,Σij) (2.72)

This analysis can be found divided across the paper Forster et al. [20] and the supplemen-
tary material Forster et al. [21].

Finally, the update terms are given. Given a bias update b ← b̄ + δb, the compound
measurements Eqs. (2.71a)–(2.71c) can be updated using a first-order expansion as

∆R̃ij ≈ ∆R̃ij(b̄g,i) Exp

(
∂∆R̄ij

∂bg
δbg

)
(2.73a)

∆ṽij ≈ ∆ṽij(b̄g,i, b̄a,i) +
∂∆v̄ij

∂bg
δbg,i +

∂∆v̄ij

∂ba
δba,i (2.73b)

∆t̃ij ≈ ∆t̃ij(b̄g,i, b̄a,i) +
∂∆t̄ij
∂bg

δbg,i +
∂∆t̄ij
∂ba

δba,i (2.73c)

where ∆(̄·)ij = ∆(̃·)ij(b̄g,i, b̄a,i). The derivation for these update formulas can be found
in Forster et al. [21, Sec. 1.2].

The preintegrated compound mesurements Eqs. (2.71a)–(2.71c) together with the noise
characteristic Eq. (2.72) and bias update equations Eqs. (2.73a)–(2.73c) are all the re-
quired components to define the residuals that make up a between factor. The residuals
rIij = [r⊤∆Rij

, r⊤∆vij
, r⊤∆tij

]⊤ ∈ R9 are

r∆Rij = Log

((
∆R̃ij(b̄g,i) Exp

(
∂∆R̄ij

∂bg
δbg

))⊤ (
R⊤

i Rj

))
(2.74a)

r∆vij = R⊤
i (vj − vi − g∆tij)

−
[
∆ṽij(b̄g,i, b̄a,i) +

∂∆v̄ij

∂bg
δbg,i +

∂∆v̄ij

∂ba
δba,i

]
(2.74b)

r∆tij = R⊤
i (tj − ti − vi∆tij −

1

2
g∆t2ij)

−
[
∆t̃ij(b̄g,i, b̄a,i) +

∂∆t̄ij
∂bg

δbg,i +
∂∆t̄ij
∂ba

δba,i

]
(2.74c)

These residuals fit into the measurement prediction function and measurement formu-
lation from Section 2.5.2, i.e. r = h(x) − z. In this context, the measurement prediction
function predicts the relative change between two keyframes. For the position and veloc-
ity residuals, these are the expressions before the minus sign, and the expressions after the
minus sign are the measurement. For the rotation, this is done on the manifold by using ⊖
to calculate the residual. The transposed expression to the left is the measurement, and the
expression to the right is the measurement prediction.

36

2.10 Evaluation measures

Figure 2.16: Exemplative piece of a factor graph using IMU preintegration factors. The orange
circle represent the relative pose residuals Eqs. (2.74a)–(2.74c). The gray circle represent the bias
residuals Eq. (2.77). Note that additional measurements are needed to fully constrain the problem as
all factors from IMU preintegration are only relative measurements.

As previously mentioned, the bias is modeled as a slowly varying quantity. This is
done by using a Brownian motion model, i.e., integrated white noise. This is also called
random walk, and is expressed as

ḃg(t) = ηbg, ḃa(t) = ηba (2.75)

Integrating this over a time interval [ti, tj] gives

bg,j = bg,i + ηbgd, ba,j = ba,i + ηbad (2.76)

where bg,i ≜ bg(ti). The discrete noises ηbgd and ηbad have zero mean and covariance
Σbgd ≜ ∆tijCov(ηbg) and Σbad ≜ ∆tijCov(ηba). This means the discrete covariance
increase linearly from the continuous covariance with the length of the time interval.

Thus, the bias residual rbij
∈ R6 between keyframes k = i and k = j is simply

||rbij
||2 = ||bg,j − bg,i||2Σbgd

+ ||ba,j − ba,i||2Σbad
(2.77)

In summary, Eqs. (2.74a)–(2.74c) and (2.77) constitute the IMU preintegration factor
between two keyframes k = i to k = j. This is illustrated in Fig. 2.16.

2.10 Evaluation measures

To evaluate an odometry algorithm, its estimates can be compared against the ground truth
or another trajectory estimate. This section will present the Absolute Pose Error (APE)
that measures the global accuracy of an estimate, and the Root Mean Square Error (RMSE)
which summarizes multiple errors in one scalar.

37

Chapter 2. Theory

2.10.1 Root Mean Square Error
The Root Mean Square Error (RMSE) is often used to measure the difference between
predicted values x̂ and observed/ground truth values x. For N values, the RMSE is defined
as

RMSE =

√√√√ 1

N

N∑
i=1

e2i =

√√√√ 1

N

N∑
i=1

(x̂i − x̂)2 (2.78)

where ei is any error term, and x̂i and xi are the components of x̂ and x, respectively. The
reason for squaring and then taking the square root is so error terms of equal magnitude
but opposite sign will not cancel each other.

2.10.2 Absolute Pose Error
The Absolute Pose Error (APE) is a measure to investigate the global accuracy and consis-
tency of an odometry trajectory. [26] Given two poses, the ground truth Tw,gt(t) ∈ SE(3)
and the odometry estimate Tw,est(t) ∈ SE(3), at the same timestamp t, the APE is de-
fined as

APE(t) = Tw,est(t)⊖Tw,gt(t) = Tw,est(t)
−1Tw,gt(t)

= Test,gt(t) ∈ SE(3) (2.79)

where ⊖ is the (right) minus operator on the SE(3) manifold introduced in Section 2.4.4.
The APE can either be evaluated as a full pose error or it can be broken down into its
translational and rotational components:

APEtrans(t) = ||trans{APE(t)}|| (2.80)
APErot(t) = ||Log (rot{APE(t)})|| (2.81)

where trans{·} and rot{·} extract the translational and rotational part of the error, re-
spectively. The rotational part gives the Rodrigues parameters of the rotation, where the
magnitude is the angle rotated, and the normalized vector is the axis of rotation. [14]

Different statistics can be calculated on the APEs for all timestamps. For example,
for RMSE in Eq. (2.78), the APEs Eqs. (2.80) and (2.81) are used as the error, e.g. ei =
APEtrans(ti) and N = T the length of the dataset.

38

Chapter 3
STIO algorithm

This chapter will give an overview of the implementation details surrounding the modifi-
cations of the SVO front-end. It will also present the design of the GTSAM back-end. The
modified SVO algorithm for 16-bit thermal image is dubbed Semi-direct Thermal-Inertial
Odometry (STIO).

3.1 Semi-direct Visual Odometry
Semi-direct Visual Odometry (SVO) is a semi-direct front-end algorithm that utilizes di-
rect methods to track and triangulate features and feature-based (indirect) methods for
optimization of structure and motion. It also maintains a map of 3D landmarks. Two pa-
pers ([22] and [23]) have been released, where the second extends the first with additional
feature types, multi-camera setup, and more. This section will introduce the original SVO
algorithm from Forster et al. [22] and the relevant extensions from Forster et al. [23].

SVO is released as an open-source project on Github called rpg_svo_pro_open1.
This repository and the theory from Forster et al. [23] is the basis for the modifications
done in this thesis to make it work with 16-bit images.

3.1.1 Overview
SVO uses two parallel threads: the motion estimation thread does the front-end tracking
to estimate the movement of the camera, and the mapping thread keeps track of the trian-
gulated landmarks in a map of the environment. This division is illustrated in Fig. 3.1.

The motion estimation thread finds the relative pose between two consecutive images
by minimizing the photometric error between pixels corresponding to the projected lo-
cation of 3D landmarks in the sparse model-based image alignment step, see Fig. 3.2.
The 2D locations are further refined in the feature alignment step by aligning the pose to
the tracked landmarks in the map and with the previous keyframes, see Fig. 3.3. Finally,

1https://github.com/uzh-rpg/rpg_svo_pro_open

39

https://github.com/uzh-rpg/rpg_svo_pro_open

Chapter 3. STIO algorithm

Figure 3.1: Overview of the SVO algorithm showing the two main threads. Figure adapted from
original in Forster et al. [23].

the pose and structure are refined by minimizing the reprojection error introduced by the
previous feature alignment by performing motion-only, structure-only, and full bundle ad-
justment, see Fig. 3.4.

The mapping thread initializes and updates probabilistic depth filters to estimate the
3D position of the 2D features. New depth filters are initialized when a new keyframe is
selected. For every other image, the depth filters are updated in a Bayesian fashion using
the correspondences found in the motion estimation thread. When the uncertainty in depth
for a given point is small enough, the point is considered converged and is inserted into
the map for use in motion estimation.

Keyframes are selected based on heuristics. The relative pose between the newest
keyframe and all other keyframes is calculated. A new keyframe is selected if the relative
Euclidean distance and the relative angle are greater than a configurable threshold.

In the subsequent sections, each step in the motion estimation thread and the depth
filters are explained in more detail.

3.1.2 Sparse model-based image alignment

As mentioned above, the sparse model-based image alignment step finds the relative mo-
tion Tk,k−1 between two consecutive images Ik−1 and Ik. This is illustrated in Fig. 3.2.
This is found by minimizing the sum of intensity residuals

Tk,k−1 = argmin
T

∑
u∈R̄

ρ[δI(T,u)] (3.1)

40

3.1 Semi-direct Visual Odometry

Figure 3.2: Illustration of the sparse image alignment step. The relative pose Tk,k−1 in red is
the parameter to optimize while the direct intensity error in blue between the two images are the
optimization cost. Figure adapted from Fig. 2 in [22].

where the intensity residual δI is the photometric error between the pixels corresponding
to the same 3D landmark, and ρ[·] is a cost function. Assuming the residuals are normally
distributed with unit variance, this cost function becomes the 2-norm ρ[·] = 1

2 || · ||
2, and

the resulting optimum is the maximum likelihood estimate of the relative pose. In practice,
the distribution has a heavier tail, so a more robust cost function such as the Huber norm
must be used. The residual is defined as

δI(T,u) = Ik(π(T · π−1(u, du)))− Ik−1(u) ∀u ∈ R̄ (3.2)

where u is the 2D pixel location of the landmark in the previous image, which is back-
projected and subsequently projected into the newest image. R̄ is the image region for
which the depth is known at time k−1 and for which the back-projected points are visible
in the newest image, i.e.

R̄ =
{
u | u ∈ Rk−1 ∧ π(T · π−1(u, du)) ∈ Ωk

}
(3.3)

whereR ⊆ Ω is the subset of the image domain Ω for which the depth is known.
Contrary to other direct methods, in SVO the depth dui

is known for sparse feature
locations ui. To make the optimization less sensitive to noise, a small 4× 4 patch around
the feature location is used and is denoted as the vector I(ui). The residual Eq. (3.2) is then
applied element-wise to each pixel in the patch and assumes the same depth for the entire
patch. The optimization problem that is solved to find the relative pose then becomes

Tk,k−1 = argmin
Tk,k−1

1

2

∑
ui∈R̄

||δI(Tk,k−1,ui)||2 (3.4)

Figure 3.2 illustrates this optimization problem.

41

Chapter 3. STIO algorithm

Equation (3.4) is nonlinear in Tk,k−1 due to the projection functions in δI. Thus,
the optimization must be solved using an iterative nonlinear solver such as the iterative
Guass-Newton algorithm. An incremental update T(ξ) ∈ SE(3) is parametrized with a
twist ξ ∈ se(3). In each iteration j, the increment is computed and applied to the current
estimate using

T̂
j+1

k,k−1 ← T̂k,k−1 ⊕−ξj = T̂
j

k,k−1 ◦T(ξj)−1 (3.5)

where Eqs. (2.18c) and (2.21a) are used. The increment is computed using the intensity
residual

δI(ξ,ui) = Ik(π(T̂k,k−1 · pi))− Ik−1(π(T(ξ) · pi)) (3.6)

where pi = π−1(ui, dui
). Note that the patches are not warped to increase computing

speed. Warping can be neglected as the frame-to-frame motion is assumed to be small.
If a motion or rotation prior is available from another sensor modality, e.g., from an

IMU, it can be used here as an initial guess to the optimization in Eq. (3.4). If no motion
prior is available, the initial guess for Tk,k−1 is set to the identity transformation. This
is valid since the motion between two frames is relatively small. The sparse model-based
image alignment is also done hierarchically on an image pyramid, where it starts on the
coarsest level. This helps the patches align when there is no overlap at the full resolution.

Equation (3.6) is on the inverse compositional formulation from Baker and Matthews
[2]. This formulation makes the Jacobian of Eq. (3.4) constant over all iterations of the
Gauss-Newton algorithm. This results in a significant speed-up. The details surrounding
the derivation of the Jacobian is left to the original SVO paper Forster et al. [22] and to
Baker and Matthews [2].

3.1.3 Reprojection and feature alignment
The previous step aligned the new image to the previous frame to find the relative pose
Tk,k−1. Initial guesses for the features’ pixel location in the new image were also found.
However, due to inaccuracies in the landmarks’ 3D positions and thus also the camera
world pose, the initial guesses can be improved. The camera pose should also be aligned
to the map rather than to the previous frame to reduce drift.

All 3D landmarks from the map that are visible from the estimated camera pose are
projected into the image resulting in an estimate of the corresponding 2D feature positions
u′
i, as seen in Fig. 3.3. For each feature, the closest keyframe r is identified. The feature

alignment step then optimizes all 2D feature positions ui in the new image by minimizing
the photometric error of a patch in the new image against a reference patch in the keyframe
r. The cost function is therefore

u′
i = argmin

u′
i

1

2
||Ik(u′

i)−Ai · Ir(ui)||2 ∀ i (3.7)

where Ai is an affine wrapping which accounts for the fact that a keyframe is typically
further away from the new image than the previous image. Contrary to the previous step,
a larger patch of 8× 8 pixels is used in the feature alignment. The optimization Eq. (3.7)
is solved using the inverse compositional Lucas-Kanade algorithm [2, sec. 3.2].

42

3.1 Semi-direct Visual Odometry

Figure 3.3: Illustration of the reprojection and feature alignment step. The pixel locations u′
i in

red are the variables to optimize, and the intensity errors in blue are the optimization cost. Notice
that the newest frame Ik is matched with the keyframes Irj and not the necessarily newest frames.
Figure adapted from Fig. 3 in [22].

Forster et al. [23] introduced a new type of feature. Originally, only corners were used,
but the new features allow for edgelet features as well, i.e., a small line segment on a
straight edge. However, this cannot be optimized in two dimensions as it can be anywhere
along the edge. Therefore, in solving Eq. (3.7), an edgelet feature is only optimized along
the normal direction n of the edge it sits on. This means the update for u′

i becomes
u′
i ← u′

i + δui ·n for the edgelet features, where δui ∈ R. For corner features, the update
equation becomes u′

i ← u′
i +∆ui.

The feature alignment step can be seen as a relaxation of the epipolar constraint to
achieve subpixel accuracy of the features’ positions.

3.1.4 Pose and structure refinement

The final step of the SVO algorithm is pose and structure refinement, illustrated in Fig. 3.4.
This step will increase the accuracy of the pose estimate and the 3D landmarks in the map.
This is done in two rounds. The first is motion-only bundle adjustment where only the pose
Tk,w is optimized by solving Eq. (3.8). The second is structure-only bundle adjustment,
where the 3D landmarks are optimized by solving Eq. (3.9) for the set of all 3D landmarks
Pw. In both cases, the optimization uses reprojection errors in the objective function
instead of photometric errors like in the previous steps.

43

Chapter 3. STIO algorithm

Figure 3.4: Illustration of the pose and structure refinement step. The world pose Tw,k in red and
the 3D landmark positions pi in red are optimized separately using the reprojection errors δu′

i in
blue. Notice that the newest frame Ik is matches with the keyframes Irj , Figure adapted from Fig.
4 in [22].

Tk,w = argmin
Tk,w

1

2

∑
i

||ui − π(Tk,w · pw
i)||2 (3.8)

Pw = argmin
Pw

1

2

∑
i

||ui − π(Tk,w · pw
i)||2, Pw = {pw

i } (3.9)

An optional local bundle adjustment can be done after the motion- and structure-only
bundle adjustments are done. All close keyframes and the 3D landmarks are jointly op-
timized in this local bundle adjustment. This will give greater accuracy but will increase
computational cost.

The pose and structure refinement step is redundant when using SVO in a VIO system.
In this scenario, SVO only acts as the front-end, and the back-end system will do the same
as the pose and structure refinement step when the MAP problem is solved.

3.1.5 Probabilistic depth filters
The mapping thread estimates the depth of the observed features using probabilistic depth
filters introduced in Vogiatzis and Hernández [53]. A depth filter is associated with a 2D
feature, and the filter is updated in a Bayesian fashion using the subsequent frames that
observe the same feature. Features being updated by the depth filters are called seeds.
When the uncertainty is small enough, the depth estimate has converged, and the feature

44

3.1 Semi-direct Visual Odometry

Figure 3.5: Illustration of the update of the depth filters. The green density is the measurement
likelihood mixture model and the turquoise density is the posterior after the update. The green line is
the epipolar line used for finding a match using the intensity error indicated by the blue squares. The
red point is the feature in the newest frame Ik that is back-projected to create a depth measurement.
Figure adapted from Fig. 5 in [22].

and seed are upgraded to a landmark by using the estimated depth to insert a 3D landmark
into the map. The new landmarks are immediately used for motion estimation.

Every depth filter is associated with a keyframe r. When a new keyframe is selected,
FAST features are detected. To keep an even distribution of features in the image, the im-
age is divided into cells and the features are pruned to have one feature per cell. The prun-
ing is done by selecting the FAST corner with the highest Shi-Tomasi score in each cell of
a grid over the image unless there is already a tracked feature in that cell. If no corner fea-
ture can be found in a cell, an edgelet feature with the highest gradient is initialized instead.
Corner features are preferred as they provide more information than edgelet features since
corners are fixed in both dimensions. Filters are then initialized with high uncertainty in
depth for every feature in the keyframe. For every subsequent frame {Ik, Tk,w} the patch
on the epipolar line with the highest correlation to the reference patch around the feature
ui is found. The epipolar line is easily computed using the relative pose Tr,k and the ray
passing through ui. The point of highest correlation u′

i is then used to triangulate a depth
d̃ki .

The depth measurement d̃ki from the triangulation is modeled as a Gaussian and Uni-
form mixture density. This models the measurement as being normally distributed around
the true depth di while including the possibility of being an outlier measurement in the
interval [dmin

i , dmax
i] with uniform probability. The mixture density can be expressed as

p(d̃ki | di, ρi) = ρiN (d̃ki | di, τ2i) + (1− ρi)U(d̃ki | dmin
i , dmax

i) (3.10)

45

Chapter 3. STIO algorithm

where ρi is the inlier probability and τ2i is the variance assuming an inlier measurement.
τ2i can be computed by assuming a one pixel variance on the pixel location u′

i and back-
projecting the variance to get a variance for the depth measurement. [41]

The depth filter is updated using recursive Bayesian estimation. This is explained
in Vogiatzis and Hernández [53], and the main result will be summarized here with an
adapted notation to match the rest of the SVO material. Assume all the measurements
d̃1i , . . . , d̃

n
i are independent. With Eq. (3.10) as the measurement likelihood, the posterior

of the true depth di and inlier probability ρi has the form

p(di, ρi | d̃1i , . . . , d̃ni) ∝ p(di, ρi)
∏
k

p(d̃ki | di, ρi) (3.11)

where p(di, ρi) is the prior for true depth, and the inlier probability is assumed to be
uniform.

Since the posterior is multiple mixture models multiplied together, it has no simple
expression and must therefore be modeled using a dense 2D histogram. However, due to
memory and computational limitation, this is not feasible for real-time applications. Thus,
a parametric approximation is derived.

The posterior Eq. (3.11) was found to be close to uni-modal. Therefore, a uni-modal
approximation is used. A good approximation is the mixture model of a Beta distribution
for inlier probability and a Gaussian distribution for the depth. This can also be shown to
have the smallest Kullback Leibler divergence from the true posterior and is therefore a
good fit. The approximate posterior is therefore defined as

q(di, ρi | an, bn, µn, σn) ≜ Beta(ρi | an, bn)N (di | µn, σ
2
n) (3.12)

where an and bn relate to how many inlier and outlier measurements have occurred, and
µn and σ2

n is the mean and variance of the Gaussian depth estimate.
Finally, the new posterior q+ after a new measurement would not have the same dis-

tribution as Eq. (3.12). This is solved using moment matching. The parameters of the
approximate, parametric posterior q are calculated such that the first and second-order
moments for di and ρi match the new posterior q+. The depth filter update process is
illustrated in Fig. 3.5.

3.1.6 Initialization

The front-end is initialized by using the five-point relative pose algorithm from Nister
[39] to obtain the pose of the first two keyframes and an initial map. In broad terms, this
algorithm finds the relative pose between the keyframes from the essential matrix using
only (minimum) five point correspondences. The correspondences are found by tracking
keypoints using the Kanade-Lucas-Tomasi (KLT) tracker algorithm [36, 51]. The average
disparity in pixels is calculated, and when this is above a certain threshold, the five-point
algorithm is run, and the front-end is considered initialized.

46

3.2 STIO front-end modifications

3.2 STIO front-end modifications

The front-end component of STIO builds upon the front-end from SVO. The front-end
is modified to work with 16-bit images, both in the image matching steps and feature
detection. This section will present the modifications done to the front-end.

3.2.1 16-bit matching

Due to the limitation of re-scaling the 16-bit thermal image to 8-bit discussed in Sec-
tion 2.1, we want to have the front-end support the full 16-bit images directly. This re-
quired changing the direct matching code for the sparse image alignment and the feature
alignment steps. It also required changing the feature detection code.

The direct matching code was implemented using pointer arithmetic and reinterpret
casting in C++. In short, the image data is represented as an array of bytes. For 8-bit
images, one byte corresponds to one pixel. When the array is indexed to retrieve a pixel,
this is simply an offset from the base pointer that point to the first pixel. Hence, the pixel
at index i has the memory address base_pointer + i. On the other hand, for 16-bit
images, we have two bytes per pixel. If we indexed the array as an array of bytes, the
resulting pointer location would not correspond to a pixel. Casting the image byte data to
a uint16_t data type tells C++ to interpret the bytes of the array as 16-bit wide integers.
Then, when indexing the array, the pointer location points to the desired pixel since each
index increments the pointer by two bytes. The use of pointer arithmetic and reinterpret
casting made the modification to 16-bit matching simple. The challenge was correctly
identifying all the relevant places in the code that needed to be changed.

3.2.2 Image alignment gain and offset estimation

When a thermal camera does FFC as described in Section 2.1, there can occur a sudden
and significant shift in intensity values. This breaks the assumption of little to no intensity
change between consecutive images in the sparse image alignment step of the SVO front-
end. This can be a major problem in tracking features between frames and need to be
remedied. The SVO implementation includes illumination gain and offset estimation that
can account for large changes in illumination. This section presents the theory behind this
as it is implemented in the code of rpg_svo_pro_open.

The sparse image alignment minimizes the photometric error (5) from Forster et al.
[22]. To introduce illumination gain and offset estimation, the error term is modified to be

δI(T,u) = Ik(π(T · π−1(u, du)))− (a · Ik−1(u) + b) (3.13)

where a, b ∈ R. a is the estimated illumination gain and b is the estimated illumination
offset. The gain increase (a > 1) or decrease (a < 1) the contrast in the image. The offset
increase (b > 0) or decrease (b < 0) the brightness of the image.

The optimization (7) from Forster et al. [22] is also duly modified to optimize with
respect to a and b as well, i.e.

47

Chapter 3. STIO algorithm

{Tk,k−1, a, b} = argmin
Tk,k−1

a,b

1

2

∑
i∈R̄

||δI(Tk,k−1,ui)||2 (3.14)

where the addition of a and b in the list of optimized variables is emphasized. Although
these values are optimized, their final values are of no interest and is not used in later
calculations. They are merely added to aid the sparse image alignment optimization.

3.2.3 Feature detection on histogram equalized images

One way the front-end was modified to support 16-bit images was to do feature detection
on a histogram equalized image. This is inspired by ROTIO [32]. Since ROTIO only does
feature detection when it needs new features, feature detection is only dependent on the
contrast in a single frame and does not need consistency over multiple frames. Exploiting
this fact, the contrast is improved using histogram equalization as seen in Section 2.1.1
and the FAST corner detector is used on the resulting 8-bit image.

Since SVO also only detects new features when a new keyframe is selected, the same
technique is applied. Feature detection in SVO is done on an image pyramid. Hence, when
new features are needed, the frame is firstly histogram equalized, then an image pyramid
is created from the equalized image. This order of operations is important to ensure that
the smaller pyramid levels’ intensities are not equalized differently from the source image.
The FAST corner detector is then run on the equalized image pyramid to find distinct
features.

3.2.4 16-bit FAST corner detection

Another way the front-end is modified to support 16-bit images was to modify the FAST
corner detector to work directly on the full 16-bit image. The SVO implementation uses the
library fast_neon2 for the FAST feature detection. This library uses machine-generated
code based on pointer arithmetic to access the image values. This made it easy to convert
to 16-bit using the same technique as for the direct matching code described above. This
allows us to use the 16-bit image pyramid in the feature detection step.

To distinguish the two implementations of the FAST corner detector, the detector work-
ing directly on 16-bit images will be called FAST16 and the standard detector working on
8-bit images will be called FAST8.

3.3 GTSAM back-end implementation

The SVO implementation in rpg_svo_pro_open includes a VIO back-end based on
Open Keyframe-based Visual-Inertial SLAM (OKVIS) [35]. This uses a factor graph for-
mulation that is solved as an NLS problem (see Section 2.7.1). OKVIS is therefore imple-
mented using the Ceres Solver [1], which is a general-purpose NLS solver.

2https://github.com/uzh-rpg/fast_neon

48

https://github.com/uzh-rpg/fast_neon

3.3 GTSAM back-end implementation

Figure 3.6: Schematic overview of the GTSAM back-end showing what information is passed to
which module at which time.

While Ceres is a good choice to solve large scale NLS problems, a back-end imple-
mented in GTSAM can simplify future development. Being made for modeling and solv-
ing problems formulated as a factor graph, adding, e.g., new sensor modalities or loop
closure constraints will be quick and easy. GTSAM also have several common SLAM
factors already implemented, thus reducing the amount of code required for new function-
ality. For these reasons, a simple back-end was implemented using GTSAM. This section
will present the design of the back-end.

In the remainder of this thesis, the back-end based on Ceres will be referred to as the
Ceres back-end, while the back-end based on GTSAM will be referred to as the GTSAM
back-end.

3.3.1 Overview

Figure 3.6 shows a schematic overview of the GTSAM back-end. IMU measurements are
integrated by the IMU preintegrator according to the theory presented in Section 2.9. To
ease initialization of the IMU biases, external priors are added for the first Tinit seconds
and for the two first keyframes used for initializing the front-end. IMU preintegration
factors are added between each prior. This is explained in more detail in Section 3.3.3.
After Tinit seconds, the SVO front-end start processing the images. For each keyframe it
selects, projection factors are added for all the visible landmarks in that keyframe. IMU
preintegration factors are added between each keyframe. This is explained in more detail
in Section 3.3.2. This builds a small factor graph that can be added to the iSAM2 opti-
mizer, and one iteration of the iSAM2 algorithm is run. The updated results for poses and
landmarks are used to update the position of all keyframes and landmarks tracked by the
front-end. Likewise, the IMU preintegration is reset and updated with the newest biases.

3.3.2 Factor graph

This section will present the small factor graph that is created and added to the iSAM
estimator. Figure 3.7b shows the factor graph for two keyframes r1 and r2. An IMU

49

Chapter 3. STIO algorithm

(a) IMU preintegration factors and external pose
priors.

(b) Projection factors and IMU preintegration fac-
tors

Figure 3.7: Illustration of the factor graph design. (a) shows the initialization system where the IMU
preintegration factors (orange circles) and the pose priors (black circles) are run initially for a pre-
determined duration. (b) shows how projection factors (pink circles) are added between keyframes
and a landmark, and how an IMU preintegration factor is added between two keyframes.

preintegration factor is added between the state variables x, v, and b for each keyframe.
Landmarks are added as projection factors between landmark i and the keyframe rj that
observed it. The following paragraphs will detail each factor type and how they are imple-
mented in code.

The projection factor creates a constraint between a landmark and the pose from which
the camera observes that landmark. The projection function uses the pinhole projection
function Eq. (2.10) to create a measurement prediction. The measurement ui is the fea-
ture’s final pixel location after the sparse model-based image alignment step from Sec-
tion 3.1.2 and the feature alignment step from Section 3.1.3. Hence, for a landmark pw

i

observed at pose xrj and a given measurement covariance Σproj
i ∈ R2×2, the projection

factor have the form

ϕproj
ij (xrj ,p

w
i) ∝ exp

{
−1

2
||ui − π(pw

i ; Tw,cj)||2Σproj
i

}
(3.15)

Note that the pose is of the camera is used in the projection function, and this can be
calculated using the pose of the body frame and the body to camera extrinsic calibration
using Tw,cj = Tw,rjTb,c. The measurement covariance Σproj

i = σI2×2 where I2×2 is
the 2 × 2 identity matrix. Since the feature pixel location can be at different levels of the
image pyramid, we set σ = 2li where li is the level at which the feature is extracted. The
full image is level 0, so features extracted at that resolution has a covariance of 1 pixel.

In the code, this is implemented using GTSAM’s GenericProjectionFactor.
This factor constrains the landmark’s 3D position with the pose using the projection on the
camera at that pose. It is important to provide the body to camera extrinsic calibration as
the argument of the constructor body_P_sensor = Tb,c.

Projection factors are only added for landmarks that have two or more observations
from keyframes. This is because landmarks with only one observations is not constrained
enough to be observable, and can cause the optimization to fail.

The IMU measurements are preintegrated according to the theory presented in Sec-
tion 2.9. In GTSAM, there are two ways of doing IMU preintegration. The old way splits

50

3.3 GTSAM back-end implementation

the relative motion from the preintegration and the random walk of the bias into two fac-
tors. The new way creates one factor that includes the preintegration residuals and the bias
random walk residuals. In the code, the new way is used, and that is what will be presented
here.

New IMU measurements are preintegrated using the GTSAM class that combines IMU
and bias into one, PreintegratedCombinedMeasurements. This class imple-
ments the preintegration theory presented in Section 2.9 and stores the relative motion in-
crements Eqs. (2.70a)–(2.70c). Similarly to the projection factor, if the IMU frame is not
coincident with the body frame, an extrinsic body to IMU calibration must be provided.

To turn the relative motion increments into a between factor, the preintegrated mea-
surement object is given to the CombinedImuFactor class. This creates one factor
that constrain the pose and velocity states using the relative motion increment residuals
Eqs. (2.74a)–(2.74c), and the bias states using the bias random walk residuals Eq. (2.77).
The white square in Fig. 3.7b illustrate how this factor connects the states to each other.

After running the optimizer to find the newest estimate, the IMU preintegration is reset
and given the newest biases. This needs to be done because the preintegration only saves
relative information. If the integration were not reset, the next factor would contain the
relative motion information between the latest keyframe and the third latest keyframe, and
not between the latest and the penultimate keyframe.

3.3.3 Initialization using external pose priors

Initialization is an integral part of any VIO system. It establishes the scale of the system
to achieve correct estimation of depth of landmarks during triangulation. It also gives the
IMU a good starting point by finding initial estimates of the biases. [43] For monocular
VIO systems, it is common to perform an initialization motion in which all degrees of
freedom are excited to let the IMU biases converge.

Monocular initialization can be a complicated process, so a shortcut used in this thesis
to focus on the development of the rest of the back-end. The shortcut is to use an external
pose system to give accurate poses as priors and insert IMU preintegration factors between
the pose priors. These pose priors can come from a motion capture system or another state
estimation pipeline using. Regardless of the source of the pose prior, the initialization
routine is the same. The goal of this initialization is to let the IMU biases converge and to
have some nodes in the factor graph that determine the scale of the system.

Figure 3.7a shows the initialization using external pose priors. Without processing the
image frames, the IMU measurements are preintegrated and added as constraints between
two nodes. Since keyframes are not selected yet, new nodes are added at every frame. At
each node, a prior is added to the pose. The priors are assumed to be approximately ground
truth, thus giving them a small covariance. This graph is optimized, and estimates for the
poses, velocities, and biases are obtained. We let this system run for a predetermined
duration Tinit. Afterward, the front-end is started, and the system is run like any other
VIO system. Pose priors are added to the first two keyframes as seen in Fig. 3.7b to help
set the scale in the problem.

51

Chapter 3. STIO algorithm

3.4 Datasets

To test the 16-bit thermal front-end, three datasets with thermal image data and IMU data
were used. These were originally captured for testing the KTIO algorithm [33]. They are
captured using a MAV fitted with FLIR’s Tau2 LWIR camera and a VectorNav VN100
IMU. The Tau2 camera provides thermal images at 640 × 512 resolution at 20 Hz, and
the VN100 IMU provides measurements at 200 Hz. The thermal camera is intrinsically
calibrated using a custom thermal checkerboard [40], and temporo-spatially calibrated
with the IMU using Kalibr [24] Moreover, an Ouster OS1-64 Light Detection and Ranging
(LiDAR) sensor is also placed on-board the MAV to provide a LiDAR odometry estimate
using the LiDAR Odometry and Mapping (LOAM) algorithm [57] to compare against.
The following sections will briefly introduce each of the thermal datasets.

For developing and testing the GTSAM back-end, the European Robotics Challenge
(EuRoC) datasets [6] were used. This contains synchronized stereo images, IMU mea-
surements, and ground truths from motion capture systems and laser scanners. Only the
left image stream is used in the GTSAM back-end.

3.4.1 Vicon Arena

This dataset was captured in a constructed indoor scene where the MAV is flying in a
rectangular pattern at a fixed height. The room was completely dark, and the scene was
furnished with thermally active objects such as a space heater, a computer, and heating
cables on the floor. Figure 3.8a shows a frame of the whole scene, and Fig. 3.8b shows
a close-up of the right corner with the space heater and computer are placed. Lastly, the
room was also equipped with a Vicon motion capture system that provides ground truth
pose measurements.

Figure 3.8c and Fig. 3.8d shows the frame just before and just after the thermal camera
performs FFC. These is a noticeable change in contrast and illumination between the two
frames.

3.4.2 Urban Parking Lot

This dataset was captured in a parking garage at the University of Nevada, Reno, USA.
Figure 3.9 shows some example frames from the dataset. Several cars had recently had
their engines running which is evident from the heat emitting from the car hoods. There
is also some contrast in the image from the roof and the floor having different emissivity.
However, Figs. 3.9a, 3.9b and 3.10c shows large thermally flat areas taking up the majority
of the frame, with the high gradient areas being concentrated to the edges of the frame.

The urban parking lot has an abundance of good LiDAR features, and the LOAM
estimate can therefore be considered as ground truth. This will not be discussed further
here, but the interested reader is referred to the author’s specialization project [17] for
more details.

52

3.4 Datasets

(a) Whole Vicon room scene. (b) Close-up of right corner with space heaters.

(c) Before FFC. (d) After FFC.

Figure 3.8: Four frames from the Vicon arena thermal dataset. Notice the illumination change
between Fig. 3.8c and Fig. 3.8d. The illumination change is most notable on the left and far wall.
Note that the images are re-scaled using histogram equalization as described in Section 2.1.1.

53

Chapter 3. STIO algorithm

(a) View before taking off. (b) Thermal hot spots from hot cars.

(c) Large thermally flat areas in the frame. (d) Some spacers on the ground with different
emissivity than the ground.

Figure 3.9: Four example frames from the Urban Parking Lot dataset. Notice that a lot of the frame
is taken up by the uniformly heated ground that is largely without distinct features.

54

3.4 Datasets

(a) Starting area. (b) Hallway after starting area.

(c) Thermally flat corner. (d) Another hallway frame.

Figure 3.10: Four example frames from the Active Gold Mine dataset. Notice the large thermally
flat walls with lack of distinct features.

3.4.3 Active Gold Mine

This dataset was captured in an active underground gold mine in northern Nevada, USA.
Figure 3.10 shows some example images from the dataset. The walls are noticeable ther-
mally flat, but the ground in the hallways seen in Fig. 3.10b and Fig. 3.10d has more
variety where the puddles and the ground emit different levels of thermal radiation. On the
other hand, Fig. 3.10c shows a thermally flat corner with little contrast. This dataset also
includes obscurants from airborne dust. [33]

The active gold mine has some straight hallways that are not ideal for LiDAR odom-
etry, but the hallways are interrupted by frequent junctions that make the geometry of the
mine not self-similar. This means the LOAM estimate is close to the ground truth.

3.4.4 EuRoC

The EuRoC datasets were recorded in two different environments. In each environment,
datasets of varying difficulty were recorded. The more difficult datasets include faster
and more aggressive motion. The datasets were recorded using a MAV with an IMU and

55

Chapter 3. STIO algorithm

(a) EuRoC Leica (Machine Hall) (b) EuRoC Vicon

Figure 3.11: Example frames from the EuRoC datasets environments.

stereo camera setup. The MAV also had external motion capture markers. For all datasets,
ground truth for position, velocity, and IMU biases are given from a batch optimization
solution. The datasets were recorded by Burri et al. [6] at ETH Zürich and are available
online.3

The first environment is a machine hall at ETH Zürich. An example image is shown
in Fig. 3.11a. A Leica laser positioning system provides position measurements but not
orientation measurements. The easy dataset ”Machine Hall 01” will be used in this work.
This dataset will be referred to as the Leica dataset.

The second environment is in a Vicon motion capture room with extra textured objects
for easy feature detection. Figure 3.11b shows an example image. In the Vicon room, full
pose measurements are available from the Vicon motion capture system. The easy dataset
”Vicon Room 1 01” will be used in this work. This dataset will be referred to as the Vicon
dataset.

Furthermore, the Leica dataset includes an initialization movement that excites the
IMU along each axis. This is important for monocular systems to converge the biases. On
the other hand, the Vicon dataset does not include this motion.

3.5 Experiments

3.5.1 16-bit front-end

To tune, evaluate, and compare the 16-bit front-end modifications in isolation, the front-
end will be run alone, i.e., without help from the IMU. This will look qualitatively at the
difference in feature extraction, how robust the features are, and the impact of noise by
comparing the FAST16 corner detector versus the FAST8 corner detector on histogram
equalized images. The full 16-bit radiometric thermal image will be used for inter-frame
matching in both cases.

The two 16-bit methods will be evaluated on the thermal datasets presented in Sec-
tion 3.4. The Vicon Arena will test the front-end in conditions with a thermally diverse

3https://projects.asl.ethz.ch/datasets/doku.php?id=
kmavvisualinertialdatasets

56

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

3.5 Experiments

scene, while the Urban Parking Lot and the Active Gold Mine will test in real-life condi-
tions but with different environments.

3.5.2 STIO with Ceres back-end
Using the experiences from the front-end experiments, the STIO system using Ceres back-
end will be run on the same datasets. This will test the performance of the TIO system
using both the FAST16 detector and the FAST8 detector on histogram equalized images.

The estimated poses will be compared against ground truth from a Vicon motion cap-
ture system in the Vicon Arena. In the Urban Parking Lot and the Active Gold Mine,
LiDAR odometry algorithm LOAM will be used in place of the Vicon motion capture
ground truth.

The estimates will also be compared to another TIO system ROTIO [32, sec. IV-B].
This is a modified version of the Robust Visual-Inertial Odometry (ROVIO) VIO algorithm
[3]. The modifications are the same as STIO when using FAST8 on histogram equalized
images, i.e., feature detection on histogram equalized images, but direct matching on the
full 16-bit images.

As a control, the unmodified 8-bit SVO front-end with the Ceres back-end will be used
solely on histogram equalized images for both matching and feature extraction.

The evaluation metrics introduced in Section 2.10 will be used to assess the accuracy
and consistency of the STIO estimates. The open-source implementation EVO4 [26] will
be used to calculate the metrics and create the plots.

3.5.3 IMU and external prior initialization
The initialization system using preintegrated IMU measurements and external priors will
be tested to investigate the observability of the IMU biases. This will be tested using both
a full pose prior and only a position prior using the EuRoC datasets. The EuRoC Vicon
room dataset has full pose priors, and the machine hall dataset only has position priors.

3.5.4 GTSAM back-end
Lastly, the GTSAM back-end will be tested on the EuRoC datasets. Despite much de-
bugging effot, the author could not make the GTSAM back-end work. The results for
the GTSAM back-end will therefore be partial. The focus will instead be on trying to
understand why it does not work.

4https://github.com/MichaelGrupp/evo

57

https://github.com/MichaelGrupp/evo

Chapter 3. STIO algorithm

58

Chapter 4
Results

This chapter will present the results from the experiments introduced in Section 3.5. The
16-bit thermal front-end will be presented first, followed by the STIO results. Then, the
biases from the IMU preintegration and external priors will be presented, and lastly, partial
qualitative results from the failed GTSAM back-end will be presented.

However, before delving into the results, a quick note on naming. The 16-bit thermal
front-end has two variants: 16-bit matching and 16-bit feature detection using FAST16,
and 16-bit matching and 8-bit feature detection using FAST8 on histogram equalized im-
ages. To avoid tedious repetitions and over-explanation, the former will be referred to as
simply FAST16, and the latter as FAST8. They will be talked about as ”different front-
ends,” but it is here reiterated that they only differ in the feature extraction method. More-
over, whether ”FAST” refers to the front-end or the feature detection algorithm will be
clear from the context. The same naming convention will be used in the STIO results.
Lastly, the original SVO front-end using the Ceres back-end applied to histogram equal-
ized images only will be referred to as the ”8-bit STIO front-end”.

4.1 16-bit thermal front-end

4.1.1 Vicon Arena
Figure 4.1 shows the number of tracked features and average disparity during initialization.
The sawtooth shape resulted from the initializer selecting a new reference frame when the
number of tracked features fell below a predetermined threshold. Features were detected
on this new reference frame, causing the increase in features before slowly decreasing
because some features were not tracked in the following frames. The selection of a new
reference frame also caused spikes in the disparity plot. The fact that the front-end lost
so many features suggests that some detected features were not features of the scene but
rather false-positive features originating from noise and other artifacts in the image.

Both front-ends initialized at approximately the same time. The two plots are slightly
shifted because some false-positive matches by FAST16 caused just enough features to be

59

Chapter 4. Results

Figure 4.1: Initialization data using only the front-end on the Vicon Arena dataset.

lost, and a new reference frame was selected.
The initialization disparity threshold was 15 for both front-ends. This was found to be

a good trade-off between being large enough for good point cloud initialization but small
enough for easy initialization. Increasing the threshold rendered the front-end unable to
initialize in a reasonable time. Decreasing it made the tracking perform poorly due to a
bad initial point cloud. Lastly, the front-end did not initialize at around 4 seconds, despite
the average disparity being larger than 15, because there were not enough tracked points.

Figure 4.2 shows, from top to bottom, the number of tracked features in the sparse
model-based image-alignment step, the number of matches in the reprojection step, and
the total number of tracked landmarks, converged seeds not yet inserted as landmarks, and
unconverged seeds. Both front-ends tracked the same number of features and landmarks.
On the other hand, FAST8 was tracking more seeds than FAST16. As Fig. 4.4 try to
show, FAST8 detected more seeds than FAST16. For the most part, the seeds were short-
lived and did not move with the scene, confirming that they were false-positive detections.
This was likely due to noise build-up in the sensor that was exaggerated by the histogram
equalization. A close look at Fig. 4.4b also shows some horizontal and vertical lines that
were sensor artifacts and could be a contributing factor to the noisy seed initialization.

FAST16 and FAST8 did, for the most part, detect and track the same features. How-
ever, as Fig. 4.3 shows, FAST16 detected features in the fully saturated areas of the frame,
i.e. the hottest areas in the scene. This is a space heater with vertical grills that give it
some texture in the full 16-bit image that FAST16 can use as features, but FAST8 cannot.
However, the total number of tracked features in the two frames was approximately equal.

60

4.1 16-bit thermal front-end

Figure 4.2: Tracking data using only the front-end on the Vicon Arena dataset.

61

Chapter 4. Results

(a) Features detected using FAST16. (b) Features detected using FAST8 on histogram
equalized image.

Figure 4.3: Comparison of detected features for the right corner in the Vicon Arena dataset. Notice
that there are features detected on the fully saturated parts of the space heaters.

(a) FAST16 (b) FAST8

Figure 4.4: Tracked features and seeds by FAST16 and FAST8. Green squares are tracked land-
marks, green circles are converged seeds not yet upgraded to landmarks, and purple lines are tracked
edgelet landmarks. Notice that FAST16 have fewer false-positive seeds.

62

4.1 16-bit thermal front-end

Figure 4.5: Initialization data using only the front-end for the Urban Parking Lot dataset.

4.1.2 Urban Parking Lot

Figure 4.5 shows the initialization data for the Urban Parking Lot dataset. Both front-ends
initialized at almost the same time, and the plots look similar to those for the Vicon Arena,
although the duration between the peaks is longer. A larger disparity threshold was also
used and was doubled from the Vicon Arena. This indicates that the detected points were
easier to track. One explanation for this is that there were stronger gradients making the
direct alignment easier. As Fig. 4.7 shows, many points were located on and around the
hot cars. The strong gradient can therefore come from high temperature differences and
varying emissivity in the materials on the car and the surroundings.

Figure 4.6 shows that FAST8 matched overall ever so slightly more features than
FAST16 in the sparse model alignment step. In a similar fashion to the Vicon Arena,
FAST8 also tracked more seeds than FAST16. Indeed, FAST8 converged more seeds than
FAST16, indicating that it tracked them long enough for their depth to converge. However,
both front-ends tracked the same number of landmarks, indicating that although FAST8
converged more seeds, the quality of the features was not good enough to keep them as
landmarks because they fail reprojection too many times.

Figure 4.7 show that FAST16 detected features in the hot, saturated parts on the car
hoods, while FAST8 did not. Despite this, FAST16 did not track more features. This is
the same result as observed in the Vicon Arena. On the other hand, FAST8 detected more
edgelet features on the beams in the ceiling that FAST16 did not track.

Figure 4.7 also show that the thermally flat ground makes up around half of the image

63

Chapter 4. Results

Figure 4.6: Tracking data using only the front-end for the Urban Parking Lot dataset.

64

4.1 16-bit thermal front-end

(a) FAST16 (b) FAST8

Figure 4.7: Comparison of detected features for the car hoods in the Urban Parking Lot dataset.
Notice that there are features detected on the fully saturated parts of the car hoods using FAST16.
On the other hand, the red lines are converged edgelet features not yet upgraded to landmarks that
are only detected using FAST8.

and that features were only detected in the upper half. Since SVO detects features on a
grid with a maximum of one feature per cell, this caused few total tracked features. In
an attempt to detect and track more features, the grid cell size was reduced. While this
did increase the number of features, it also caused the estimated trajectory to move in
the wrong direction. This was likely due to imperfect structure estimation and erroneous
feature tracking due to features being on self-similar textures.

4.1.3 Active Gold Mine

Similar initialization results as the two other datasets can be seen in Fig. 4.8. More features
were detected, but they were quickly lost because the front-end could not track them. Both
front-ends used the same disparity threshold of 20, but FAST8 initialize after FAST16
because it lost too many features just before reaching the threshold.

Figure 4.9 shows that the first 18 seconds FAST8 tracked more features overall. This
was despite FAST16 using a smaller FAST threshold. The smaller threshold was needed
to maintain enough features. At 18 seconds, the MAV did a quick dip forward that caused
both front-ends to lose track of several features. After this point, the two front-ends tracked
approximately the same number of features until the thermally flat corner, indicated by the
vertical line.

The thermally flat corner has little texture, and both front-ends struggled to find fea-
tures to track. Figure 4.10 show the features detected by FAST16 and FAST8. It is clear
from the frames that FAST8 found many features in the noise. This is also reflected in the
unconverged seeds plot in Fig. 4.9, where the count spikes after the black line. However,
none of them could converge, since the number of converged seeds went to zero. This
confirms that the seeds were noisy measurements and not real features.

65

Chapter 4. Results

Figure 4.8: Initialization data using only the front-end for the Active Gold Mine dataset.

4.2 STIO using Ceres

4.2.1 Gravity vectors
The gravitation magnitude was estimated per dataset by averaging each component of the
linear acceleration measurements from the IMU over a short period of no motion. This
excludes the effects of acceleration due to motion and ensures the bias stays constant. The
magnitude was then calculated by taking the L2-norm of the averaged measurement vector.
The magnitudes for each thermal dataset were estimated to be

gvicon arena = 9.576 m/s2 (4.1a)
gurban parking lot = 10.164 m/s2 (4.1b)
gactive gold mine = 10.080 m/s2 (4.1c)

The thermal datasets were recorded in northern Nevada, USA. The magnitude of the
gravity vector is not constant on the Earth’s surface and depends on several factors like al-
titude and latitude since the Earth is not a perfect sphere. A United States Geological Sur-
vey (USGS) report [28] measured the gravity in Reno, Nevada to be g = 9.797 m/s2 when
rounded to three decimal places. However, the estimated trajectories quickly diverged on
all datasets using this value. It was therefore vital to use the estimated magnitudes in
Eq. (4.1) instead.

66

4.2 STIO using Ceres

Figure 4.9: Tracking data for Active Gold Mine. The vertical line marks the start of the thermally
flat corner showed in Fig. 3.10c.

67

Chapter 4. Results

(a) With FAST16 there are significantly less noise,
but still few tracked features.

(b) With FAST8 on a histogram equalized image
there is a lot of noise and few tracked features.

Figure 4.10: Comparison of the thermally flat corner of the Active Gold Mine dataset using FAST16
and FAST8 on a histogram equalized image.

The measured gravity magnitudes in Eq. (4.1) differ from the theoretical value likely
because of bias build-up in the IMU. The biases also depend on the temperature, which
could affect the bias differently in the indoor Vicon Arena and the outdoor Urban Parking
Lot and Active Gold Mine.

Using these values, STIO was run on each of the thermal datasets. Table 4.1 sum-
marizes the translational and rotational APE and maximum value of the trajectories from
STIO with FAST16 and FAST8, for the 8-bit STIO, and for ROTIO.

4.2.2 Vicon Arena

All methods finished the entire dataset. Row 1-4 in Table 4.1 show that all STIO versions
outperformed ROTIO in terms of translational APE (in fairness however, ROTIO was not
tuned to the same degree as STIO). Among the 16-bit STIO, FAST16 have slightly smaller
translational errors than FAST8. Unexpectedly, the 8-bit STIO have smaller translation
APE than both 16-bit versions. On the other hand, the 8-bit version has worse rotation
APE. Figure 4.11 show that the 8-bit trajectory coincided with the ground truth better than
any of the other methods. It also shows that ROTIO estimated the most incorrect scale.
Lastly, Figs. 4.13a and 4.13b show the APE over time. In particular, Fig. 4.13a show
that FAST8 slowly drifted away from the ground truth, while FAST16 and the 8-bit STIO
stayed consistently close. Moreover, Fig. 4.13c show that all STIO methods have narrower
distributions of translation APE compared to ROTIO. On the other hand, Fig. 4.13d shows
that rotation APE was overall worst for the 8-bit STIO and comparably equal for the 16-bit
versions. However, FAST16 have the largest rotation APE. This is due to the loss of track
at the very end when the MAV descended to land.

Figure 4.14 shows the estimated biases for each method. No ground truth for the biases
is available, but they can be compared against each other. The gyroscope biases all quickly
converged to approximately the same value. On the other hand, the accelerometer biases
varied more. The spike at the beginning for FAST16 is because the FAST16 front-end had

68

4.2 STIO using Ceres

Table 4.1: Summary of translational and rotational APE for each TIO method on each dataset.
The duration column informs how long each method kept track before diverging. The duration in
parenthesis under the dataset name is the total duration of the dataset.

Dataset Method Duration [s] APE translation [m] APE rotation [◦]

RMSE Max RMSE Max

Vicon
Arena
(342.35 s)

FAST16 342.35 0.4100 0.6539 0.6778 4.4777

FAST8 hist.eq. 342.35 0.6276 1.2164 0.6465 1.8008

ROTIO 342.35 1.0284 2.4714 1.0469 2.1976

8-bit hist.eq. 342.35 0.2393 0.5436 1.0946 2.4507

Urban
Parking
Lot
(200.42 s)

FAST16 200.42 2.4872 5.1533 2.8508 5.6659

FAST8 hist.eq. 200.42 2.9897 5.8081 3.1768 6.9486

ROTIO 200.42 1.5451 2.9642 0.7813 1.9943

8-bit hist.eq. 200.42 3.5713 4.9870 7.6961 11.953

Active
Gold
Mine
(159.62 s)

FAST16 110.81 10.019 16.664 14.211 22.564

FAST8 hist.eq. 137.61 8.1502 14.843 13.761 18.941

ROTIO 159.62 1.2693 1.9905 2.6760 6.9045

8-bit hist.eq. 159.62 2.4736 5.8050 4.9044 9.4295

Figure 4.11: Top-down view of the Vicon Arena estimates. The dashed line is the ground truth, the
blue line is FAST16, green line is FAST8, red line is ROTIO, and magenta line is the 8-bit STIO.
This color scheme will be used in all subsequent figures.

69

Chapter 4. Results

(a) XYZ (b) Roll, pitch, yaw

Figure 4.12: Each component of the pose estimates for the Vicon Arena. The data is origin aligned
so all trajectories evolve from the same point.

to reinitialize shortly after starting.

Figure 4.15a show the number of tracked features by STIO during initialization. All
methods initialized at approximately the same time, but FAST16 immediately lost track
and had to reinitialize. This caused the height estimate to overshoot, which can be seen
in the z plot in Fig. 4.12a. Despite this overshoot, FAST16 was able to correct the height
and stayed close to the ground truth for the rest of the dataset. Both 16-bit methods also
initialized quicker than when the front-end was run alone. This shows the effectiveness of
having rotation priors from the IMU to help the matching.

As seen in Fig. 4.15b, both 16-bit STIO front-ends tracked the same number of features
and landmarks. This was despite the fact that FAST8 used a larger grid cell size and a
larger FAST threshold than FAST16. On the other hand, the 8-bit STIO tracked more
features than both 16-bit methods. This was using exactly the same parameters as the 16-
bit STIO with FAST8. However, the number of tracked landmarks is noticeably noisier.
Despite tracking many features, it also tracked significantly more false-positive features.
The 8-bit version also detected and tracked more edgelet features than both 16-bit versions.
Figure 4.16 shows a comparison of the features detected by FAST8 and the 8-bit version.
Notice that on the heating cable on the ground, there are more edgelet features. Figure 4.16
also shows that there were more features overall with the 8-bit version.

Lastly, the illumination gain and offset estimation was essential to be able to retain
track during data interruption when the thermal camera performed FFC. The front-end
would consistently fail without using gain and offset estimation. Additionally, having the
IMU also helped to match the features after the FFC. This is opposed to the front-end only,
where the estimate would often incorrectly estimate the translation after the FFC.

70

4.2 STIO using Ceres

(a) Translational APE (b) Rotational APE

(c) Translational APE distribution (d) Rotational APE distribution

Figure 4.13: Plots showing the translational and rotational APE over time and their distributions.
In the distribution plots (c) and (d), the white dot represent the median value. Note that the straight
lines in (a) and (b) are graphical glitches and not part of the data.

71

Chapter 4. Results

(a) Accelerometer biases (b) Gyroscope biases

Figure 4.14: Biases for Vicon Arena. No ground truth is available.

(a) Number of tracked features during initialization. (b) Tracking data after initialization.

Figure 4.15: Initialization and tracking data for the STIO versions for the Vicon Arena.

72

4.2 STIO using Ceres

(a) FAST8 (b) 8-bit STIO

Figure 4.16: Comparison of detected and tracked features for 16-bit using FAST8 and 8-bit STIO.
Notice that both detected and tracked more or less the same corner features, but that the 8-bit STIO
detected and tracked more edgelet features.

Figure 4.17: Top-down view of the Urban Parking Lot estimates. The ROTIO estimate clearly
followed the ground truth better than any STIO estimate.

73

Chapter 4. Results

(a) XYZ (b) Roll, pitch, yaw

Figure 4.18: Each component of the pose estimates for the Urban Parking Lot. The data is origin
aligned so all trajectories evolve from the same point.

4.2.3 Urban Parking Lot

All methods finished the entire dataset. Row 5-8 in Table 4.1 shows that contrary to the Vi-
con Arena, ROTIO have smaller APE on all counts than all STIO methods for this dataset.
This is also seen in Figs. 4.19c and 4.19d where ROTIO have the narrowest distributions
of APE for both translation and rotation, and with the smallest median. Figures 4.17
and 4.18a also show that both 16-bit STIO methods estimated a too short trajectory, while
the 8-bit STIO overshot slightly in the y-direction. It also show that the 8-bit version
wrongly estimated the height. It overshot drastically at the beginning, but converged to the
correct height after a while. However, at around 50 seconds, the height started deviating
again. This coincides with the thermally flat area seen in Fig. 3.9c.

Figure 4.20 show the biases for all methods. The gyroscope biases quickly converged
for the x- and y-components, while the z-component had more variation. On the other
hand, the accelerometer bias x- and y-components seem more random for STIO than for
ROTIO. The z-component converged quicker but to a different value than ROTIO.

Figure 4.21a shows the number of features tracked during initialization. All STIO
methods initialized at the same time and were faster than when the front-end was run
without IMU. Both 16-bit methods triangulated approximately the same number of fea-
tures, and the 8-bit version triangulated almost double the number of points. However, all
methods lost almost all features right after they had initialized. This is seen in Fig. 4.21b
with the sudden fall in number of features as the beginning. The points were removed by
the outlier rejection. This is likely due to erroneous translation estimation in the beginning.
This can best be seen from Fig. 4.19a where all STIO algorithms had large translational
APE at the start.

The 16-bit STIO front-ends were generally unable to track many features as seen in
Fig. 4.21b. However, compared to when the front-end was run alone, the grid cell size
could be reduced significantly more, which allowed for more detected and tracked features.

74

4.2 STIO using Ceres

(a) Translational APE (b) Rotational APE

(c) Translational APE distribution (d) Rotational APE distribution

Figure 4.19: Plots showing the translational and rotational APE over time and their distributions.
Notice that the ROTIO distributions are narrower and have smaller median than any of the STIO
methods.

75

Chapter 4. Results

(a) Accelerometer biases (b) Gyroscope biases

Figure 4.20: Biases for Urban Parking Lot. No ground truth available.

(a) Number of tracked features during initialization. (b) Tracking data after initialization.

Figure 4.21: Initialization and tracking data for the STIO versions for the Urban Parking Lot.

76

4.2 STIO using Ceres

(a) FAST8 (b) 8-bit STIO

Figure 4.22: Comparison of detected and tracked features by the 16-bit using FAST8 and the 8-bit
STIO. Note that the 8-bit STIO detects many more edgelet features, but also some false-positive
features.

This shows the improvements motion priors from an IMU had for both matching and
correct trajectory estimation. Furthermore, FAST8 detected and tracked more features than
FAST16. Similar to the Vicon Arena, FAST16 required a smaller threshold than FAST8
to have reliable estimates. On the other hand, the 8-bit version tracked more features than
both 16-bit versions using exactly the same front-end parameters as 16-bit with FAST8.
However, similarly to the Vicon Arena, the 8-bit front-end tracked more false positive
features. This is evident from the noisy plots, which show that features and landmarks
were initialized and tracked but were quickly removed again.

Between around 45 to 65 seconds in Fig. 4.21b, the number of tracked features dropped
drastically. This was the thermally flat area seen in Fig. 3.9c. Neither of the 16-bit STIO
front-ends was able to detect many features in this area, and in both cases, the number
of tracked features fell below 10. In this time frame, the STIO estimates relied heavily
on dead reckoning from the IMU. It still maintained a couple of tracked features, but the
threshold for minimum required tracked features had to be turned down to 5 so the front-
end would not lose track in this area. However, while it could not track many features,
tracking just a couple was better than none at all. On the other hand, the 8-bit STIO
version tracked more features in this time frame. However, the features were often quickly
lost or removed. Figure 4.22 shows the detected features in one frame in the thermally flat
area. The 8-bit version detected more features, especially edgelet features. On the other
hand, FAST8 only detected a few corner features. Figure 4.22b also show that the 8-bit
version did indeed detect and track more false-positive features.

4.2.4 Active Gold Mine

Both 16-bit STIO methods were not able to complete the entire dataset before failing,
while ROTIO and the 8-bit STIO were able to complete the entire dataset. FAST8 di-
verged later than FAST16. Figure 4.23 shows a top-down view of the estimated trajectory.
The gaps are the parts of the trajectory where the front-end completely lost track in the

77

Chapter 4. Results

Figure 4.23: Top-down view of the Active Gold Mine estimates. The gaps are when the front-end
lost track in the thermally flat corner. Note that the x-axis is vertical and the y-axis is horizontal.

(a) XYZ (b) Roll, pitch, yaw

Figure 4.24: Each component of the pose estimates for the Active Gold Mine. The data is origin
aligned so all trajectories evolve from the same point.

78

4.2 STIO using Ceres

(a) Translational APE (b) Rotational APE

(c) Translational APE distribution (d) Rotational APE distribution

Figure 4.25: Plots showing the translational and rotational APE over time and their distributions.
The 16-bit STIO distributions are stretch out and multi-modal because they were close to the ground
truth for a period in the beginning, and then diverged. Note that the straight lines in (a) and (b) are
graphical glitches and not part of the data.

79

Chapter 4. Results

(a) Accelerometer biases (b) Gyroscope biases

Figure 4.26: Biases for Active Gold Mine. No ground truth available.

(a) Number of tracked features during initializa-
tion.

(b) Tracking data after initialization. The vertical lines in-
dicate the time frame in which the 16-bit STIO methods lost
track in the thermally flat corner. The blue line indicate when
FAST16 lost track, the green line indicate when FAST8 lost
track, and the black line indicate when both regained track.

Figure 4.27: Initialization and tracking data for the STIO versions for the Active Gold Mine.

80

4.2 STIO using Ceres

thermally flat corner and tried to reinitialize. This will be looked at in more detail later.
Row 9-12 in Table 4.1 show the quantitative results. As expected, the 16-bit have large
values for the metrics because they deviated from the ground truth early and were therefore
always far from the ground truth.

The 16-bit STIO estimates deviated quickly in the beginning. This is clear from
Figs. 4.25a and 4.25b where the errors quickly increased after 20 seconds. Figure 4.23
also show the STIO trajectories diverged from the path shortly after start. One explanation
for the divergence is that the MAV did a quick pitching motion to move forward at around
18 seconds. This can be seen in Fig. 4.24b. This caused both 16-bit STIO methods to lose
track of many features. This can also be observed in Fig. 4.27b, which show the number
of tracked features. A similar motion happened at around 37 seconds. However, at that
time, FAST16 lost track of all features and had to reinitialize. This is seen in the spike
in features in Fig. 4.27b that are quickly lost again. On the other hand, FAST8 barely
managed to track enough features to not lose track.

Conversely, the 8-bit STIO has comparable results to ROTIO. The 8-bit’s position
estimate closely followed the ground truth until around 100 seconds, when it started to
deviate. It deviated for the same reason as the 16-bit, i.e., the front-end lost track of all
features and had to reinitialize. Despite this, the 8-bit version was able to reinitialize and
continue to give decent position estimates.

Figure 4.28 show the features detected and tracked in the start area by the 16-bit STIO
using FAST8 and the 8-bit STIO. It is clear that both detected the same corner features on
the ground, but the 8-bit version detected and tracked many more edgelet features.

The dashed blue line in Fig. 4.27b marks when FAST16 lost track in the thermally
flat corner. Likewise, the dashed green line marks when FAST8 lost track. The black
dashed line marks when both regained track. FAST16 lost track for almost 7 seconds,
while FAST8 lost track for around 3 seconds. As seen in Fig. 4.23, both 16-bit STIO
versions lost track at the same location, but FAST8 estimated using the IMU movement
in the correct direction, while FAST16 wrongly continued forward. Figure 4.26a shows
a discrepancy in the x-component of FAST16’s accelerometer bias compared to the other
estimates in the time frame of the thermally flat corner. Since the bias is only updated
with additional measurements such as tracked landmarks, the unchanging positive bias
was integrated and caused drift in the x-direction. This is exactly what is observed in
Fig. 4.23 (note that the x-axis is the vertical axis). While FAST8 also lost track, it was for
a shorter duration. Though it did not track many landmarks in the thermally flat corner, it
seems like the few it did track helped stabilize the estimate enough to have good motion
estimation when the front-end lost track.

In the thermally flat corner, the 8-bit STIO version detected strikingly many false-
positive and noisy features. While Fig. 4.27b show that the front-end tracked many land-
marks, the majority of them were false positives in that they are stationary in the frame and
do not move with the scene. However, despite this, the 8-bit version successfully kept track
through the entire thermally flat corner without deviating much from the ground truth.

FAST16 lost track for short periods multiple times during the dataset. This can be seen
by the spikes in tracked features in Fig. 4.27b. Conversely, FAST8 was able to keep track
in more areas where FAST16 lost track.

Nevertheless, in the end, both 16-bit STIO methods diverged because they lost track

81

Chapter 4. Results

(a) FAST8 (b) 8-bit STIO

Figure 4.28: Comparison of detected features by the 16-bit using FAST8 and the 8-bit STIO in the
starting area of the Active Gold Mine. Note that they both detect the same corner features, but the
8-bit detect more edgelet features.

Table 4.2: Overview of the RMSE of the biases against the ground truth in the EuRoC Vicon and
Leica datasets. Row 3 shows the RMSE values after the initialization motion was done in the full
Leica dataset. Row 5 shows the RMSE values after the biases had converged for the shortened Leica
dataset.

Dataset RMSE ba [m/s2] RMSE bg [rad/s]
x y z x y z

EuRoC Vicon 0.0224 0.4146 0.0440 0.0003 0.0006 0.0020
EuRoC Leica, full 0.3486 0.2084 0.8314 0.0420 0.0238 0.0239
EuRoC Leica, full,
excl. first 25 sec. 0.0730 0.1091 0.1976 0.0116 0.0009 0.0048

EuRoC Leica, short 0.4536 0.5434 2.1011 0.2500 0.1648 0.1598
EuRoC Leica, short,
excl. first 25 sec. 0.0837 0.1503 0.2288 0.0058 0.0016 0.0015

and could not recover. During reinitialization, the dead reckoning had diverged the pose
estimate too far, so it quickly lost track again due to bad motion priors after the front-end
had reinitialized. This caused a self-amplifying effect, and the estimate diverged quickly.

4.3 IMU and external pose initialization

4.3.1 Full pose prior from Vicon motion capture

Figure 4.29 show the position, orientation, and biases against ground truth when the full
pose prior was available. The position and orientation followed the ground truth almost
perfectly, with only small deviations. The gyroscope biases also converged quickly to the
ground truth. The x-component is noisier than the y- and z-component but moved around

82

4.3 IMU and external pose initialization

(a) Position (b) Accelerometer bias

(c) Roll, pitch, yaw (d) Gyroscope bias

Figure 4.29: States from IMU and external full pose prior on the EuRoC Vicon room dataset. The
dashed lines are the ground truth and the blue lines are the estimates. The green dashed line is the
mean bias for each component.

83

Chapter 4. Results

(a) Position (b) Accelerometer bias. Note the vertical axis scale.

(c) Roll, pitch, yaw (d) Gyroscope bias

Figure 4.30: States from IMU and external position prior on the full EuRoC Leica dataset.

the ground truth. Notice also that the scale on the vertical axis is small. The convergence
of the gyroscope biases is also evident from the small RMSE in Table 4.2.

On the other hand, the accelerometer bias never converged to the ground truth. The
x-component fluctuated around the ground truth and has a mean value equal to the ground
truth. The same is not true for the y- and z-components, which had a large difference
between their mean and the ground truth. This is also reflected in the RMSE in Table 4.2.
The y-component did converge, albeit with small fluctuations, but to a value different from
the ground truth.

4.3.2 Position only partial prior from Leica positioning system
Figures 4.30 and 4.31 show the position, orientation, and biases against ground truth when
only a position prior was available. Figure 4.30 is the results from the whole dataset which
include the initialization motion, while Fig. 4.31 is the results from a subset of the data
which start 40 seconds into the dataset, skipping the initialization motion.

It seems from Fig. 4.30 that the initialization motion quickly converged the biases to
close to ground truth. However, the scale on the vertical axes in Fig. 4.30b is too large to
see the variations in the bias. Figure 4.32a shows a zoomed in look at the accelerometer

84

4.3 IMU and external pose initialization

(a) Position (b) Accelerometer bias. Note the vertical axis scale.

(c) Roll, pitch, yaw (d) Gyroscope bias

Figure 4.31: States from IMU and external position prior on the shortened EuRoC Leica dataset.
The shortened dataset excludes the initialization motion at the beginning and start the dataset 40
seconds in.

(a) Accelerometer bias zoomed in for the full dataset. (b) Accelerometer bias zoomed in for the short dataset.

Figure 4.32: Zoomed in look at the accelerometer bias for the Leica dataset. The green lines show
the mean excluding the first 25 seconds.

85

Chapter 4. Results

bias, which clearly shows more fluctuations, although the means were close to the ground
truth. This is also seen in the RMSE in Table 4.2 (line 2). One reason for the large RMSE
were the spikes in the beginning. As line 3 in Table 4.2 show, the RMSE is smaller when
excluding the initial spikes from calculations.

The roll and pitch were also accurately estimated, while the yaw had a larger error.
Notice also in Fig. 4.30c that from around 25 seconds to 50 seconds, the yaw drifted
while the MAV is lying still. This resulted from the gyroscope x-component being slightly
different from the ground truth. It essentially integrated a constant, albeit tiny, fake angular
velocity, leading to the ramp in yaw. The reason the x-component affected the yaw and
not the z-component is because of the unusual orientation of the IMU where the x-axis
is pointing upwards [6]. Another reason, as Fig. 3.12 in Weiss [54, p. 112] shows,
is that yaw and x- and y-velocities are jointly observable (line 3), meaning motion in the
horizontal plane is required to correctly estimate the yaw when only position measurement
is available.

In Fig. 4.31 the biases appear to also converge after around 25 seconds of motion. This
is true for the gyroscope biases, as line 5 in Table 4.2 show, but as seen in Fig. 4.32b
the accelerometer biases were more noisy. Table 4.2 also show that the RMSE is large.
However, when calculating RMSE for only the period after the biases seemingly have
converged, the RMSE is smaller.

4.4 GTSAM back-end partial results
The author was not able to make the GTSAM back-end work. Significant effort was put
into debugging and trying to figure out the root issue. However, in the end, no defini-
tive conclusion was reached on the issue. Therefore, this section will be a presentation of
what was done and the observations made during debugging. Since the estimate quickly
diverged after the front-end initialized, only qualitative results will be presented, and the
behavior will be compared to the working Ceres back-end. During development and test-
ing, the EuRoC Vicon dataset was used, so that will be the basis for the following results
and discussion.

First, the current state of the back-end is described. The initialization using IMU
preintegration and external pose priors was run for a predetermined duration, after which
the front-end initialized and triangulated an initial map. The initial map was inserted into
the back-end factor graph and optimized, and the results were used to update the map. This
worked for a couple of frames, but the estimated pose diverged fast. In almost all cases,
the iSAM optimizer eventually crashed with an indeterminant linear system exception.

The duration of the initialization did not affect how quickly the estimate diverged. As
seen in Section 4.3.1, the gyroscope biases quickly converged to the ground truth while the
accelerometer biases were noisy throughout the entire dataset. Different durations ranging
from 3 seconds to 30 seconds were tried, but the same diverging result was observed in all
cases.

The external pose prior was added to each keyframe, even after the front-end had
initialized. This will ensure that the pose is known with low uncertainty. However, the
pose estimate still diverged within a second or two of the front-end being initialized. This
can indicate that the landmarks are being erroneously estimated.

86

4.4 GTSAM back-end partial results

Outlier rejection was found to be essential for accurate estimating using the Ceres
back-end. However, when used within the GTSAM back-end, strikingly many landmarks
were removed as outliers. The outlier threshold was also doubled but to no avail. A
landmark is marked as an outlier if the projected landmark and the corresponding feature
are more than a threshold pixels apart. Therefore, landmarks that were not outliers should
move mainly along the ray from the optical center passing through the measured pixel
location. I.e., it should mainly change its depth in the camera frame it was observed in.
However, the fact that so many landmarks were removed indicates that they move too much
in the image plane and not only in depth. Since the Ceres back-end has fewer outliers, it
is logical to conclude that this is due to inaccurate estimation by the GTSAM back-end.

Moreover, the reprojection step in the front-end was frequently unable to reproject
many landmarks into the newest frame because of the optimization to align the features,
Eq. (3.7), did not converge. This is a sign that the initial guess of feature location was too
far away, so the optimization cannot find patches that overlap well. The poor initial guess
was either due to bad motion estimation or a bad estimate of the 3D landmark position.
From the initialization and results seen in Section 4.3, the IMU preintegration is known
to work well with the external prior and, over a short period, should be able to predict
the motion of the system accurately. This gives reason to expect that it was the landmark
positions that were bad. However, since the motion estimation depend on the tracking of
the landmarks, they are necessarily intertwined, so a combination of both reasons is likely.

87

Chapter 4. Results

88

Chapter 5
Discussion

5.1 Choice of front-end

SVO was chosen as the front-end algorithm to base this work on. The main reasons for
choosing this method was that it uses direct matching to find feature correspondences
while simultaneously triangulating a map of 3D landmarks. Additionally, an open-source
C++ implementation was available, saving development time as only the parts related to
direct matching had to be adapted to work with 16-bit images.

Firstly, triangulating landmarks makes fusing the visual system with inertial measure-
ments simpler. They can easily be incorporated with the visual measurements as projection
factors in a factor graph and the inertial measurements as preintegration factors. This made
the overall factor graph design of the GTSAM back-end simple and familiar. This will be
discussed more in Section 5.4.

Secondly, Khattak et al. [32] showed empirically that direct methods operating on
the full 16-bit radiometric gave the best results for thermal odometry estimation. This
motivated the choice of a direct method. Moreover, most indirect methods are based on
using feature descriptors that are made to work with 8-bit images. To make these work with
16-bit images, the descriptor would need to be modified to work directly on 16-bit images,
or the 16-bit thermal image would need to be rescaled using one of the methods presented
in Section 2.1.1. The primary concern with the latter was if it is robust to significant
illumination changes when the thermal camera performs an FFC. Since SVO use direct
matching, however, the illumination changes can easily be handled by illumination gain
and offset estimation. This is a strength of direct matching, as the modifications necessary
to have gain and offset estimation are minimal.

5.2 STIO algorithm

The STIO algorithm and the front-end were tested on three thermal datasets in different
environments, each with distinct characteristics.

89

Chapter 5. Discussion

STIO appears to be heavily dependent on finding suitable parameters for the environ-
ment. The grid cell size and the FAST threshold were observed to be especially important.
For example, a grid cell size that worked well for the Vicon arena did not work well for
the Urban Parking Lot. Exactly what grid cell size to choose is hard to know a priori and
will depend on the environment.

One could reduce the grid cell size to 1 pixel and potentially make the front-end use
every pixel as a feature. This should select features from strong gradient areas but would
most likely track too many features and render the optimization problem intractable since
it triangulated a 3D landmark for each feature. In fact, this essentially describes a semi-
dense method. The semi-dense method Direct Sparse Odometry (DSO) by Engel et al. [15]
works almost in this. However, DSO handles the points more cleverly by incorporating
the intensity error in the optimization and not relying on reprojection errors like STIO. It
also only optimizes the depth in the camera frame instead of the full 3D position. This
reduces the number of variables to optimize by two per landmark since the pixel location
determine the location in the image plane.

In conclusion, the grid cell size was observed to be an important parameter, especially
in the Urban Parking Lot dataset with distinct features in only half the frame and the Active
Gold Mine with large, thermally flat walls. In this thesis, this parameter was tuned to best
work with the given datasets, but in real applications, this is rarely the case.

Moreover, different FAST thresholds could be used depending on whether FAST8 or
FAST16 were used. FAST8 could use a larger threshold than FAST16. This seems to
make FAST8 detect and subsequently track points that are more locally distinct. Points
detected by FAST8 were also observed to be tracked with greater reliability. This was an
unexpected result, as histogram equalization necessarily deletes some information when
it converts from 16-bit to 8-bit. However, it can be explained by the fact that histogram
equalization increases the contrast in the image, making some features more visible (e.g.,
the spots on the floor in the starting area of the Active Gold Mine, see Fig. 3.10a). In-
creased contrast means an increased difference between neighboring pixels, and thus the
FAST threshold can be set larger.

This can indicate that the FAST threshold should be set high to have only distinct
points. However, this comes at the cost of not selecting many points. On the other hand,
a low threshold gave many points, but at the cost of detecting and tracking more false-
positive and noisy features. Hence, no threshold value works well for all settings. Some
variation in what threshold worked best was observed in the thermal dataset, although a
broader range gave decent results.

The results also seem to show a relationship between the number of tracked features
and the robustness of the STIO estimate. While unsurprising, it indicates that STIO is
a method that lends itself to tracking many landmarks. This is contrary to ROTIO. The
authors of ROVIO found that it gave comparable results to other state-of-the-art methods
with fewer tracked landmarks. The rationale is that the IMU gives a good prior on the
motion of the system and merely needs recurring landmark observations to stabilize the
estimate. [3] They argue, therefore, that it is better to have few high-quality landmarks (the
authors of ROVIO use approximately 20) than many landmarks with a risk of not rejecting
outliers. ROTIO also performed well with few tracked landmarks, so the same conclusion
seems to hold for ROTIO as well. ROVIO is a method designed with VIO in mind. On the

90

5.3 IMU and external prior initialization

other hand, SVO is originally a pure VO method with VIO capabilities added through the
Ceres back-end later. The number of tracked features is a crucial parameter in monocular
VO. [47] It is therefore natural that SVO track many features, and that this is not changed
for the VIO modification.

The outlier rejection module was, therefore, critical to remove false-positive features.
This was especially true for the FAST8 and the 8-bit STIO which seemed to detect more
noisy features than FAST16. This was because histogram equalization also increases the
noise’s contrast, making it more visible to the 8-bit feature detectors.

A surprising result was that the 8-bit STIO version worked as well as it did. This
was just the original SVO with Ceres back-end VIO implementation used on histogram
equalized images. All detection and matching are done directly on the 8-bit histogram
equalized image. There seem to be two main reasons for this.

The first is that it can detect and track more features than any of the 16-bit methods. In
addition to detecting the same features as 16-bit FAST8 did, it also detected more edgelet
features. This was because the histogram equalization increased the contrast enough where
edgelet features could be detected for the front-end to detect and track them. It is believed
that one reason they were not detected and tracked as often in the 16-bit versions is that
the temperature difference was too small for the detector to select that edge. This could be
due to the incorrect FAST threshold for edgelet features.

The second reason the 8-bit version worked so well is that the direct matching between
frames is not affected much by the illumination change introduced by FFC and when
hot objects enter the frame as initially thought. This might be because the frequency of
images is high enough and there is little motion between each frame, making the difference
between two consecutive frames small enough to track. Moreover, the illumination gain
and offset estimation likely also play a prominent role in finding the correct matches. This
further support the claims made by other authors ([33, 32, 18]) that direct methods are
better suited for thermal data.

Lastly, the noise parameters for the IMU biases were found to be essential for accurate
estimation. Initially, the bias noise terms were erroneously set to too large. This greatly
affected the estimated trajectory negatively. The 16-bit STIO methods were unable to
complete Urban Parking Lot and the Active Gold Mine datasets, constantly failing in the
thermally flat areas where it relied heavily on the IMU for motion prediction. In both
cases, STIO never managed to recover because the estimate had drifted too far due to
poor dead reckoning from the IMU for too long. When the bias was too noisy, the IMU
preintegration accumulated too much error in the period of no front-end tracking, causing
the pose to drift too far. This illustrates the importance of correct bias noise terms, either
from the datasheet or an Allan variance analysis.

5.3 IMU and external prior initialization
The initialization procedure using IMU preintegration and external priors essentially de-
scribe an IMU and GPS system. This sensor setup is known to render both the accelerome-
ter and gyroscope biases observable. This is shown in [54], where non-linear observability
analysis is done for several sensor configurations, including an IMU and GPS system.

While this system renders the biases observable in theory, the results did not show this

91

Chapter 5. Discussion

empirically. As seen in Section 4.3, the gyroscope biases converged relatively quickly to
the ground truth, but the accelerometer biases did not. In fact, the observability of the
biases also depends on the system’s motion. [43] Little motion means the biases might
not converge. Though the MAV did move in all degrees of freedom in the datasets, it
might not move enough over a short enough period to achieve a reasonable estimation of
the accelerometer bias. In simulated experiments, [43] found that significant rotation was
necessary to reduce the accelerometer bias sufficiently. This might also explain why the
accelerometer bias was closer to the ground truth for the Leica dataset when the initializa-
tion motion was included because the MAV was sufficiently excited during that motion.

The discrepancy in bias was also not due to the back-end optimizer used. The same
setup was run using a Levenberg-Marquardt (LM) optimizer instead of iSAM2, but the
results were identical. The only difference was that the LM optimizer was slower than
iSAM2 and not able to solve the batch problem in real-time after enough states were added.
On the other hand, the iSAM2 optimizer was able to solve the whole problem in real-time
without any marginalization because it only updated the affected states. Coincidentally,
this also shows the effectiveness of the iSAM2 optimizer.

As far as using this as an initialization system, it could work. While the biases did
not converge to the ground truth values, they are not zero like they would be if no prior
information about the biases is known. [43] also found that neglecting the acceleration
biases in initialization will not pose a significant negative impact on the results. However,
having an external prior available is unlikely in many VIO scenarios. One conceivable
scenario is if multiple modalities are fused, for example, in visual-laser-inertial odometry
using a LiDAR. Nevertheless, a specially designed VIO initialization system would still
be preferable, e.g., like the one used in VINS-Mono [42, 43]. This had the added benefit
of also initializing the map of landmarks.

5.4 GTSAM back-end
The proposed factor graph design for the GTSAM back-end is the most basic factor graph
for Visual-Inertial Odometry and is nothing new. The design is described in [13, sec.
7.1], and also forms the basis for state-of-the-art VIO and SLAM systems such as ORB-
SLAM3 [9]. Furthermore, the employed GTSAM factors are elementary factors that have
been thoroughly tested by the community at large. Additionally, GTSAM has several unit
tests and working examples for these factors and VIO. For these reasons, there is no doubt
that the design should work given correct interactions with the front-end.

The depth filters of the SVO front-end ensure good data associations by only inserting
converged points into the back-end as landmarks. The STIO algorithm using the Ceres
back-end also proved to work well, showing that the front-end can work with a back-end.
Moreover, as seen in Section 5.3, the IMU preintegration works well.

Therefore, the only explanation is that there is a programming error such that the GT-
SAM back-end either does not use the correct information from the front-end or that the
back-end and front-end do not pass all the necessary information between each other. The
main indication is that too many landmarks are removed as outliers because they move too
much after optimization. As the Ceres back-end shows, this should not be the case.

However, despite strenuous debugging efforts by the author, the root issue was not

92

5.5 Future work

found. The GTSAM back-end code follows the same structure as the Ceres back-end,
and extra care and attention were put towards making sure that the interface between the
back-end and front-end is identical between the two back-ends. However, the author must
have missed something during code review, or there is an underlying logical bug that is
not apparent.

To further debug this, one approach would be to run the Ceres back-end for some sec-
onds so the estimated pose and landmarks can converge. All the information from the
Ceres back-end can then be used to construct an identical factor graph using GTSAM.
Then, the front-end algorithm is run as two instances, one using the Ceres back-end and
the other using the newly constructed GTSAM back-end. The estimates for pose and land-
marks are inspected for each frame to see when they diverge. By revising the GTSAM
back-end code to make the estimates identical, the bug can hopefully be identified. This
is a time-consuming and strenuous process but should, given enough time, allow the pro-
grammer to identify the bug.

5.5 Future work
Section 4.2 started by presenting gravity magnitudes that are different from the theoretical
value where the datasets were recorded. This discrepancy is believed to be due to bias
build-up in the IMU. It would be interesting to validate or disprove this belief by estimating
the biases using all the available information using the recently published Super Odometry
algorithm [58]. In short, this fuses IMU preintegration factors with odometry factors from
other sources, for example visual-inertial and LiDAR-inertial odometry, to constrain and
estimate the IMU biases.

One issue that was observed with using histogram equalization is that some areas of
the image can become over-exposed. This is because regular histogram equalization only
considers the global contrast of the image. This can reduce the number of possible features
when using the FAST8 feature detector on histogram equalized images. It would therefore
be interesting to apply an adaptive histogram equalization instead. For example, OpenCV
provide a Contrast Limited Adaptive Histogram Equalization (CLAHE) implementation
[5]. This divides the image into small tiles, and regular histogram equalization is done in
each cell. To avoid amplifying noise, contrast limiting is applied. The example provided in
[5] shows significant improvement to an 8-bit image. To use this for feature extraction with
FAST8 however, this functionality would have to be reimplemented for 16-bit images.

It was also seen that the 16-bit STIO front-ends struggled due to few tracked features.
This was mitigated by reducing the grid cell size to detect more features in the high gradi-
ent areas with more information. However, it would be interesting to instead adapt other
direct methods to 16-bit that directly use only the high gradient areas. For example, Large
Scale Direct SLAM (LSD-SLAM) [16] and DSO [15] are potential candidates. LSD-
SLAM is a semi-dense method that directly estimates a depth map for the high gradient
regions carrying information. A VIO formulation using the LSD-SLAM front-end is also
available [52]. DSO samples pixels from the high gradient regions and directly tracks
them. DSO also employs a photometric camera calibration that could be advantageous
for thermal cameras. As briefly mentioned in Section 2.1, uneven camera temperature
can cause a vignetting effect in the thermal image. By using a photometrically calibrated

93

Chapter 5. Discussion

camera, this vignetting could be accounted for. Moreover, online intrinsic parameter esti-
mation could also make the photometric calibration adapt to changes in temperature during
operation.

For the GTSAM back-end, the obvious future work is to figure out the bug and fix it. As
mentioned, this could be a time-consuming and strenuous process. Once the back-end is
working, it should be compared to the Ceres back-end. The points of comparison could be
accuracy, reliability, and speed. How does the APE compare, and do both methods remove
the same number of outliers? Is iSAM2 able to run in real-time when more landmarks are
added? How does the execution time compare to the marginalization strategy employed in
the OKVIS Ceres implementation?

GTSAM provide an experimental Incremental Fixed Lag (IFL) smoother. This is based
on iSAM2, but marginalize out variables when they become too old. This way it keeps
a fixed maximal time horizon for the iSAM to solve and prevents the problem to grow
indefinitely. With a working GTSAM back-end based on iSAM2, it should be simple to
change it to use IFL. This should be compared to the iSAM2 implementation in terms of
speed and accuracy. Is there a significant speed-up by marginalizing out old states? How
much accuracy is lost by marginalizing out old states? What is a good time lag that balance
the trade-off between speed and accuracy?

94

Chapter 6
Conclusion

The main objectives for this master’s thesis were to convert a state-of-the-art VIO al-
gorithm to work on 16-bit radiometric thermal images, implement a factor graph-based
optimization back-end for VIO using the GTSAM library, and evaluate them on real-life
datasets. The chosen state-of-the-art VIO method was the Semi-direct Visual Odome-
try (SVO) front-end algorithm. This was chosen because it uses direct matching instead of
feature descriptors and triangulates landmark positions. The former made it simple to con-
vert the method to use 16-bit images using reinterpret casting in C++. The direct matching
also proved useful as it enabled illumination change estimation when the thermal camera
did FFC. The latter made it easy to incorporate the landmarks as projection factors in the
GTSAM factor graph. The converted method was dubbed Semi-direct Thermal-Inertial
Odometry (STIO).

Evaluation on the thermal dataset showed that the 16-bit STIO methods were heav-
ily dependent on the parameters, especially the grid cell size and the FAST threshold.
Both affected the number of tracked features and landmarks, which was observed to be
an important factor for the accuracy and reliability of the estimate. Moreover, the FAST
threshold could be set higher when using FAST8. This indicated that FAST8 was able to
detect features that are more locally distinct and therefore track them more easily. Further-
more, the illumination gain and offset estimation was found to be vital for reliable tracking.
Without it, the front-end would consistently fail after data interruption when the thermal
camera did FFC. This was because the illumination was often significantly changed. Sur-
prisingly, the original 8-bit version of SVO with the Ceres back-end used directly on only
histogram equalized images often outperformed the 16-bit STIO. This was because the
8-bit version detected more edgelet features in addition to the same corner features as the
16-bit versions did. Lastly, STIO was seen to benefit from the motion priors from the IMU
in matching and tracking. This also made the 16-bit STIO methods initialize markedly
quicker than the VO-only counterparts.

The GTSAM back-end design was not completed due to programming errors by the
author that was not identified despite much debugging. The issue is believed to be due
to inadequate or incorrect data being passed between the front-end and back-end, but it

95

Chapter 6. Conclusion

is unclear if this is due to a logical bug or if some data is missing. Nevertheless, given
correct information exchange between the front-end and back-end, the overarching design
of the GTSAM back-end should work as it is just a basic VIO design based on IMU
preintegration found in the literature and other VIO methods.

The IMU preintegration and external prior initialization routine was not seen to con-
verge the biases despite them being observable in theory. This is believed to be because
of a lack of enough exciting motion. While it could still work as an initialization routine,
the external pose is rarely available in VIO systems, and it would be preferable to use a
specially designed VIO initialization system instead.

96

Bibliography

[1] Agarwal, S., Mierle, K., Others, . Ceres solver. http://ceres-solver.org.

[2] Baker, S., Matthews, I., 2004. Lucas-kanade 20 years on: A unifying framework
part 1: The quantity approximated, the warp update rule, and the gradient descent
approximation. International Journal of Computer Vision - IJCV .

[3] Bloesch, M., Omari, S., Hutter, M., Siegwart, R., 2015. Robust visual inertial
odometry using a direct ekf-based approach, ETH-Zürich, Zürich. doi:10.3929/
ethz-a-010566547. 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS); Conference Location: Hamburg, Germany; Conference
Date: September 28 - October 2, 2015.

[4] Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools .

[5] Bradski, G., N/A. Histograms - 2: Histogram Equalization. Online tuto-
rial at OpenCV’s webpage. Accessed online June 2, 2022. URL: https:
//docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_
equalization.html.

[6] Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik,
M.W., Siegwart, R., 2016. The EuRoC micro aerial vehicle datasets. The In-
ternational Journal of Robotics Research URL: https://projects.asl.
ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets,
doi:10.1177/0278364915620033.

[7] Byrnes, J., 2008. Unexploded Ordnance Detection and Mitigation. NATO Science
for Peace and Security Series B: Physics and Biophysics, Springer Netherlands.

[8] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid,
I., Leonard, J.J., 2016. Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Transactions on Robotics 32,
1309–1332. doi:10.1109/TRO.2016.2624754.

97

http://ceres-solver.org
http://dx.doi.org/10.3929/ethz-a-010566547
http://dx.doi.org/10.3929/ethz-a-010566547
https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
https://docs.opencv.org/4.x/d5/daf/tutorial_py_histogram_equalization.html
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
http://dx.doi.org/10.1177/0278364915620033
http://dx.doi.org/10.1109/TRO.2016.2624754

[9] Campos, C., Elvira, R., Rodriguez, J.J.G., Montiel, J.M.M., Tardos, J.D.,
2021. ORB-SLAM3: An accurate open-source library for visual, vi-
sual–inertial, and multimap SLAM. IEEE Transactions on Robotics 37,
1874–1890. URL: https://doi.org/10.1109%2Ftro.2021.3075644,
doi:10.1109/tro.2021.3075644.

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algo-
rithms. 3nd ed., The MIT Press.

[11] Defense Advanced Research Projects Agency (DARPA), 2020. Broad
Agency Announcement Invisible Headlights (IH). URL: https:
//research-authority.tau.ac.il/sites/resauth.tau.ac.il/
files/DARPA-Invisible-Headlights-%20HI-HR001120S0045.
pdf.

[12] Dellaert, F., 2020. GTSAM concepts. https://github.com/borglab/
gtsam/blob/develop/GTSAM-Concepts.md.

[13] Dellaert, F., Kaess, M., 2017. Factor graphs for robot perception. Foundations and
Trends in Robotics 6, 1–139. doi:10.1561/2300000043.

[14] Egeland, O., Gravdahl, T., 2002. Modeling and Simulation for Automatic Control.
Marine Cybernetics, Trondheim.

[15] Engel, J., Koltun, V., Cremers, D., 2016. Direct sparse odometry, in:
arXiv:1607.02565.

[16] Engel, J., Schöps, T., Cremers, D., 2014. Lsd-slam: Large-scale direct monocular
slam, in: Computer Vision – ECCV 2014, Springer International Publishing, Cham.
pp. 834–849.

[17] Falck, E., 2021. Retrofitting a multi-link robot with a LiDAR-visual-intertial sensor
suite for sensor fusion (Project thesis). Technical Report. NTNU.

[18] Flemmen, H.D., 2021. ROVTIO: RObust Visual Thermal Inertial Odometry. Mas-
ter’s thesis. NTNU. Trondheim.

[19] FLIR, 2018. Flat field correction control. Technical ref-
erence. Accessed online March 23, 2022. URL: http://
softwareservices.flir.com/BFS-U3-120S4/latest/Model/
public/FlatFieldCorrectionControl.html.

[20] Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D., 2015a. Imu preintegration
on manifold for efficient visual-inertial maximum-a-posteriori estimation, Georgia
Institute of Technology. doi:1853/55417.

[21] Forster, C., Carlone, L., Dellaert, F., Scaramuzza, D., 2015b. Supplementary material
to: Imu preintegration on manifold for efficient visual-inertial maximum-a-posteriori
estimation, Georgia Institute of Technology. doi:1853/53653.

98

https://doi.org/10.1109%2Ftro.2021.3075644
http://dx.doi.org/10.1109/tro.2021.3075644
https://research-authority.tau.ac.il/sites/resauth.tau.ac.il/files/DARPA-Invisible-Headlights-%20HI-HR001120S0045.pdf
https://research-authority.tau.ac.il/sites/resauth.tau.ac.il/files/DARPA-Invisible-Headlights-%20HI-HR001120S0045.pdf
https://research-authority.tau.ac.il/sites/resauth.tau.ac.il/files/DARPA-Invisible-Headlights-%20HI-HR001120S0045.pdf
https://research-authority.tau.ac.il/sites/resauth.tau.ac.il/files/DARPA-Invisible-Headlights-%20HI-HR001120S0045.pdf
https://github.com/borglab/gtsam/blob/develop/GTSAM-Concepts.md
https://github.com/borglab/gtsam/blob/develop/GTSAM-Concepts.md
http://dx.doi.org/10.1561/2300000043
http://softwareservices.flir.com/BFS-U3-120S4/latest/Model/public/FlatFieldCorrectionControl.html
http://softwareservices.flir.com/BFS-U3-120S4/latest/Model/public/FlatFieldCorrectionControl.html
http://softwareservices.flir.com/BFS-U3-120S4/latest/Model/public/FlatFieldCorrectionControl.html
http://dx.doi.org/1853/55417
http://dx.doi.org/1853/53653

[22] Forster, C., Pizzoli, M., Scaramuzza, D., 2014. SVO: Fast semi-direct monocular vi-
sual odometry, in: 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 15–22. doi:10.1109/ICRA.2014.6906584.

[23] Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D., 2017. Svo:
Semidirect visual odometry for monocular and multicamera systems. IEEE Transac-
tions on Robotics 33, 249–265. doi:10.1109/TRO.2016.2623335.

[24] Furgale, P., Maye, J., Rehder, J., Oth, L., et al., 2014. Kalibr. https://github.
com/ethz-asl/kalibr.

[25] Gonzalez, R.C., Woods, R.E., 2006. Digital Image Processing (3rd Edition). Third
ed., Prentice-Hall, Inc.

[26] Grupp, M., 2017. evo: Python package for the evaluation of odometry and slam.
https://github.com/MichaelGrupp/evo.

[27] Hartley, R., Zisserman, A., 2004. Multiple View Geometry in Computer Vision. 2
ed., Cambridge University Press. doi:10.1017/CBO9780511811685.

[28] Jewel, E.B., Ponce, D.A., Morin, R.L., 2000. Principal Facts for Gravity Stations in
the Antelope Valley–Bedell Flat area, West-Central Nevada. Technical Report. U.S.
Geological Survey. URL: https://pubs.usgs.gov/of/2000/0506/.

[29] Kaess, M., Ila, V., Roberts, R., Dellaert, F., 2010. The bayes tree: An algorithmic
foundation for probabilistic robot mapping , 157 – 173.

[30] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F., 2012.
isam2: Incremental smoothing and mapping using the bayes tree. The International
Journal of Robotics Research 31, 216–235. doi:10.1177/0278364911430419.

[31] Kaess, M., Ranganathan, A., Dellaert, F., 2008. isam: Incremental smoothing and
mapping. IEEE Transactions on Robotics 24, 1365–1378. doi:10.1109/TRO.
2008.2006706.

[32] Khattak, S., Mascarich, F., Dang, T., Papachristos, C., Alexis, K., 2019a. Robust
thermal-inertial localization for aerial robots: A case for direct methods, in: 2019
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1061–1068.
doi:10.1109/ICUAS.2019.8798279.

[33] Khattak, S., Papachristos, C., Alexis, K., 2019b. Keyframe-based direct ther-
mal–inertial odometry. 2019 International Conference on Robotics and Automa-
tion (ICRA) URL: http://dx.doi.org/10.1109/ICRA.2019.8793927,
doi:10.1109/icra.2019.8793927.

[34] Lay, D., Lay, S., McDonald, J., 2016. Linear Algebra and Its Applications. Fifth ed.,
Pearson.

99

http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/TRO.2016.2623335
https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr
https://github.com/MichaelGrupp/evo
http://dx.doi.org/10.1017/CBO9780511811685
https://pubs.usgs.gov/of/2000/0506/
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1109/TRO.2008.2006706
http://dx.doi.org/10.1109/TRO.2008.2006706
http://dx.doi.org/10.1109/ICUAS.2019.8798279
http://dx.doi.org/10.1109/ICRA.2019.8793927
http://dx.doi.org/10.1109/icra.2019.8793927

[35] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P., 2015. Keyframe-
based visual–inertial odometry using nonlinear optimization. The International Jour-
nal of Robotics Research 34, 314–334. URL: https://doi.org/10.1177/
0278364914554813, doi:10.1177/0278364914554813.

[36] Lucas, B.D., Kanade, T., 1981. An iterative image registration technique with an
application to stereo vision, in: Proceedings of the 7th International Joint Confer-
ence on Artificial Intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. p. 674–679.

[37] Lupton, T., Sukkarieh, S., 2012. Visual-inertial-aided navigation for high-dynamic
motion in built environments without initial conditions. IEEE Transactions on
Robotics 28, 61–76. doi:10.1109/TRO.2011.2170332.

[38] Ma, Y., Soatto, S., Košecká, J., Sastry, S.S., 2004. An Invitation to 3-D Vi-
sion. Interdisciplinary Applied Mathematics, Springer New York. doi:10.1007/
978-0-387-21779-6.

[39] Nister, D., 2004. An efficient solution to the five-point relative pose problem. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26, 756–770. doi:10.
1109/TPAMI.2004.17.

[40] Papachristos, C., Mascarich, F., Alexis, K., 2018. Thermal-inertial localization for
autonomous navigation of aerial robots through obscurants, in: 2018 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 394–399. doi:10.1109/
ICUAS.2018.8453447.

[41] Pizzoli, M., Forster, C., Scaramuzza, D., 2014. Remode: Probabilistic, monocu-
lar dense reconstruction in real time, in: 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2609–2616. doi:10.1109/ICRA.2014.
6907233.

[42] Qin, T., Li, P., Shen, S., 2018. Vins-mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on Robotics 34, 1004–1020. doi:10.
1109/TRO.2018.2853729.

[43] Qin, T., Shen, S., 2017. Robust initialization of monocular visual-inertial estimation
on aerial robots, in: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4225–4232. doi:10.1109/IROS.2017.8206284.

[44] Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection,
in: Leonardis, A., Bischof, H., Pinz, A. (Eds.), Computer Vision – ECCV 2006,
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 430–443.

[45] Solà, J., 2017. Quaternion kinematics for the error-state kalman filter. URL: https:
//arxiv.org/abs/1711.02508, doi:10.48550/ARXIV.1711.02508.

[46] Solà, J., Deray, J., Atchuthan, D., 2018. A micro lie theory for state estimation in
robotics. arXiv:1812.01537.

100

https://doi.org/10.1177/0278364914554813
https://doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1109/TRO.2011.2170332
http://dx.doi.org/10.1007/978-0-387-21779-6
http://dx.doi.org/10.1007/978-0-387-21779-6
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1109/TPAMI.2004.17
http://dx.doi.org/10.1109/ICUAS.2018.8453447
http://dx.doi.org/10.1109/ICUAS.2018.8453447
http://dx.doi.org/10.1109/ICRA.2014.6907233
http://dx.doi.org/10.1109/ICRA.2014.6907233
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/IROS.2017.8206284
https://arxiv.org/abs/1711.02508
https://arxiv.org/abs/1711.02508
http://dx.doi.org/10.48550/ARXIV.1711.02508
http://arxiv.org/abs/1812.01537

[47] Strasdat, H., Montiel, J.M.M., Davison, A.J., 2010. Real-time monocular slam: Why
filter?, in: 2010 IEEE International Conference on Robotics and Automation, pp.
2657–2664. doi:10.1109/ROBOT.2010.5509636.

[48] Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer. URL:
https://szeliski.org/Book/.

[49] Teledyne FLIR, . FLIR UAS IR Camera FAQ. Accessed online March 23, 2022.
URL: https://www.flir.com/suas/flir-uas-ir-camera-faq/.

[50] Teledyne FLIR, 2021. What are ir camera lenses made of? Accessed online March
23, 2022. URL: https://www.flir.com/discover/rd-science/
what-are-ir-camera-lenses-made-of/.

[51] Tomasi, C., Kanade, T., 1991. Detection and Tracking of Point Features. Technical
Report. International Journal of Computer Vision.

[52] Usenko, V., Engel, J., Stückler, J., Cremers, D., 2016. Direct visual-inertial odom-
etry with stereo cameras, in: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1885–1892. doi:10.1109/ICRA.2016.7487335.

[53] Vogiatzis, G., Hernández, C., 2011. Video-based, real-time multi-view
stereo. Image and Vision Computing 29, 434–441. URL: https://www.
sciencedirect.com/science/article/pii/S0262885611000138,
doi:https://doi.org/10.1016/j.imavis.2011.01.006.

[54] Weiss, S.M., 2012. Vision based navigation for micro helicopters. Ph.D. thesis. ETH
Zurich. Zürich. doi:10.3929/ethz-a-007344020.

[55] Workswell Infrared Cameras and Systems, . Radiometric and
non-radiometric thermal camera. Accessed online Marhc 23,
2022. URL: https://workswell-thermal-camera.com/
radiometric-and-non-radiometric-thermal-camera/.

[56] Young, H., Freedman, R., 2015. University Physics with Modern Physics.
Pearson Education. URL: https://books.google.no/books?id=
WsigBwAAQBAJ.

[57] Zhang, J., Singh, S., 2014. LOAM: Lidar odometry and mapping in real-time, in:
Proceedings of Robotics: Science and Systems (RSS ’14).

[58] Zhao, S., Zhang, H., Wang, P., Nogueira, L., Scherer, S., 2021. Super odometry: Imu-
centric lidar-visual-inertial estimator for challenging environments. URL: https:
//arxiv.org/abs/2104.14938, doi:10.48550/ARXIV.2104.14938.

101

http://dx.doi.org/10.1109/ROBOT.2010.5509636
https://szeliski.org/Book/
https://www.flir.com/suas/flir-uas-ir-camera-faq/
https://www.flir.com/discover/rd-science/what-are-ir-camera-lenses-made-of/
https://www.flir.com/discover/rd-science/what-are-ir-camera-lenses-made-of/
http://dx.doi.org/10.1109/ICRA.2016.7487335
https://www.sciencedirect.com/science/article/pii/S0262885611000138
https://www.sciencedirect.com/science/article/pii/S0262885611000138
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2011.01.006
http://dx.doi.org/10.3929/ethz-a-007344020
https://workswell-thermal-camera.com/radiometric-and-non-radiometric-thermal-camera/
https://workswell-thermal-camera.com/radiometric-and-non-radiometric-thermal-camera/
https://books.google.no/books?id=WsigBwAAQBAJ
https://books.google.no/books?id=WsigBwAAQBAJ
https://arxiv.org/abs/2104.14938
https://arxiv.org/abs/2104.14938
http://dx.doi.org/10.48550/ARXIV.2104.14938

102

Im
plem

entation and evaluation of 16-bit therm
al-inertial odom

etry using non-linear factor graphs
Eirik Flem

sæ
ter Falck

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Eirik Flemsæter Falck

Implementation and evaluation of
16-bit thermal-inertial odometry
using non-linear factor graphs

Masteroppgave i Kybernetikk og robotikk
Veileder: Kostas Alexis
Medveileder: Nikhil Vijay Khedekar
Juni 2022M

as
te
ro
pp

ga
ve

	Preface
	Abstract
	Sammendrag
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Objectives
	Contributions
	Outline

	Theory
	Thermal imaging
	Re-scaling techniques

	Camera geometry
	Pinhole camera
	Distortion

	FAST corner detector
	Lie theory for state estimation
	Lie groups
	Tangent spaces
	Exponential and logarithmic maps
	Plus and minus operators
	Adjoint
	Derivatives
	Uncertainty
	Composite manifolds

	Probabilistic inference in robotics
	MAP inference
	MAP inference under Gaussian assumption

	Bayes net
	Factor graphs
	Nonlinear MAP inference using factor graphs
	Using factor graphs in code

	Incremental Smoothing and Mapping
	Bayes tree
	Incremental inference
	Incremental variable reordering
	Fluid relinearization

	IMU preintegration
	Evaluation measures
	Root Mean Square Error
	Absolute Pose Error

	STIO algorithm
	Semi-direct Visual Odometry
	Overview
	Sparse model-based image alignment
	Reprojection and feature alignment
	Pose and structure refinement
	Probabilistic depth filters
	Initialization

	STIO front-end modifications
	16-bit matching
	Image alignment gain and offset estimation
	Feature detection on histogram equalized images
	16-bit FAST corner detection

	GTSAM back-end implementation
	Overview
	Factor graph
	Initialization using external pose priors

	Datasets
	Vicon Arena
	Urban Parking Lot
	Active Gold Mine
	EuRoC

	Experiments
	16-bit front-end
	STIO with Ceres back-end
	IMU and external prior initialization
	GTSAM back-end

	Results
	16-bit thermal front-end
	Vicon Arena
	Urban Parking Lot
	Active Gold Mine

	STIO using Ceres
	Gravity vectors
	Vicon Arena
	Urban Parking Lot
	Active Gold Mine

	IMU and external pose initialization
	Full pose prior from Vicon motion capture
	Position only partial prior from Leica positioning system

	GTSAM back-end partial results

	Discussion
	Choice of front-end
	STIO algorithm
	IMU and external prior initialization
	GTSAM back-end
	Future work

	Conclusion
	Bibliography

