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Abstract

Classical control methods depend on accurate models. Such models may not exist for
complex systems, and control is limited to simple low-level tasks. Model-free Reinforce-
ment Learning (RL) methods can find near-optimal controllers from data and experience
without the need for such models and learn complex control policies with an arbitrary
input abstraction.

Research in RL for continuous control has only kicked off in the last few years, espe-
cially with the rise in popularity and applicability of deep neural networks as universal
function approximators. Proximal Policy Optimization (PPO) is widely accepted as the
preferred RL algorithm for control problems in control applications.
This thesis applied the PPO algorithm to solve simultaneous path following and colli-

sion avoidance in a synthetic quadcopter environment, using guidance-theoretic naviga-
tion features for proprioception and spherical LIDAR for exteroception. A curriculum
learning framework is implemented to stage the learning in incremental steps; the au-
tonomous agent learns to stabilize the system, follow arbitrary paths in 3D, and avoid
obstacles, incrementally. The resulting RL agent largely succeeds in path following but
has difficulties avoiding obstacles. Furthermore, the resulting agent successfully general-
izes to scenarios not encountered during the training phase. Future research directions
are suggested to improve the agent’s collision avoidance performance.

i



Sammendrag

Klassiske kontrollmetoder avhenger av nøyaktige modeller. Slike modeller eksisterer ikke
alltid for komplekse systemer, og kontroll er begrenset til enkle oppgaver p̊a lavt niv̊a.

Modellfrie Reinforcement Learning (RL) metoder kan finne nesten optimale kontrollere
fra data og erfaring uten behov for slike modeller og lære komplekse kontrollpolicyer med
en vilk̊arlig niv̊a av abstraksjon p̊a inndataen.
Forskning p̊a RL i kontinuerlig kontroll har bare startet de siste årene, spesielt med

økningen i popularitet og anvendelighet av dype nevrale nettverk som universelle funk-
sjonstilnærere. Proximal Policy Optimization (PPO) er allment akseptert som den fore-
trukne RL-algoritmen for kontrollproblemer i kontrollapplikasjoner.
Denne oppgaven brukte PPO-algoritmen for å løse banefølging og kollisjonsunng̊aelse

i en simulert kvadrorotor-applikasjon, ved å bruke styringsteoretiske navigasjonsfunk-
sjoner for propriosepsjon og sfærisk LIDAR for eksterosepsjon. Et læringsrammeverk
er implementert for å iscenesette læringen i trinnvist; den autonome agenten lærer å
stabilisere systemet, følge vilk̊arlige veier i 3D og unng̊a hindringer, trinnvis. Den re-
sulterende RL-agenten lykkes stort sett med å følge veien, men har vanskeligheter med
å unng̊a hindringer. Videre generaliserer den resulterende agenten vellykket til scena-
rier som ikke oppst̊ar under treningsfasen. Fremtidige forskningsretninger foresl̊as for å
forbedre agentens ytelse for å unng̊a kollisjoner.
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1. Introduction

The main contribution of this thesis is a Deep Reinforcement Learning (DRL) controller
for path following and obstacle avoidance for a quadcopter. A DRL environment with
an autonomous underwater vehicle from a prior work is modified to a quadcopter. A
spherical LIDAR is simulated, and a convolutional neural network is employed for feature
extraction from the LIDAR data. The results are validated in unseen environments.

1.1. Motivation and Background

Before autonomous quadcopters can be used in applications like home delivery of med-
ical equipment (EUCHI (2021)) and in retail (Haque et al. (2014)), and inspection of
dangerous and hard-to-access environments, such as power lines, oil tanks, and nuclear
waste (Clark et al. (2017)), they should at least be able to follow a prescribed path and
avoid collisions with obstacles. The contribution of this paper is to present a model-free
approach to path following and collision avoidance.

Many use cases of quadcopters today require an operator for control. By making
quadcopters autonomous, their applications may become more effective, safer, and non-
reliant on human operators. Traditionally, model predictive control, sliding mode con-
trol, adaptive control, and similar methods have been applied to control autonomous
vehicles (Rubi et al. (2020)). However, the performance of these methods is highly cor-
related with the accuracy of the manually developed model. By deploying reinforcement
learning in control, we may free ourselves of manual modeling and potentially increase
performance.

1.2. Classical Path Following

We define path following as an algorithm that controls an agent to traverse a given
continuous path without any prespecified time specification. Path following differs from
trajectory tracking, as trajectory tracking also requires the agent to track the path within
a prespecified timeframe. The given continuous path is typically constructed by some
path planning algorithm, such as Dijkstra’s algorithm (Dijkstra (1959)) or A* search
(Hart et al. (1968)). There has been thorough research on the path following methods
in classical control literature. This section elaborates on the established techniques
utilized in path following studies. One element common to all of them is the reliance on
the mathematical modeling of the dynamics.

1.3. Line of Sight

Line of Sight (LoS) path following is often a component of more sophisticated path
following methods. The method seeks the vehicle to approach the path at a set lookahead
distance ∆ down the path, shown in Figure 1.1. Fossen et al. (2003) used LoS to control

1



1. Introduction

an underactuated marine craft with two lower-level controllers derived using nonlinear
control theory. They achieved excellent performance in a case study on a model boat.

Δ


Figure 1.1.: Visualization of the LoS guidance method. The thick black line is the path,
while the pointed dotted line is the proposed heading. The algorithms seek
the vehicle to approach the path at a set lookahead distance ∆ down the
path.

Model Predictive Control

Model Predictive Control (MPC) traces back to the 1960s (Morari and H. Lee (1999)).
The MPC approach is to transform a control problem into an optimization problem.
MPCs calculate the optimal control sequence for several timesteps ahead, repeated at
every timestep, leading to a high computational cost. The advantages of MPCs are that
they plan for the coming timesteps and that energy usage can be minimized. However,
as in the case with other classical methods, the controller is dependent on the model-
ing of the dynamics. MPCs often have to solve a multi-objective optimization problem
with non-arbitrary weights. Faulwasser (2013) introduced MPC for path following prob-
lems. Yu et al. (2012) demonstrated a nonlinear MPC path following method that
outperformed a nonlinear controller in their simulations. It guaranteed convergence to
a reference path, even with input disturbances.

Sliding Mode Control

Sliding Mode Control (SMC) attains the control objectives by constraining the sys-
tem dynamics to a pre-defined surface by employing a discontinuous control law. This
discontinuity leads to an unwanted chattering effect, often cited as the method’s main
drawback. Nevertheless, there exist methods for dealing with this (Young and Drakunov
(1992)). Dagci et al. (2003) made a path following controller design using SMC for a
wheeled mobile robot and experimentally showed off the algorithm’s effectiveness.

Feedback linearization

Feedback linearization (Jaulin (2015)) is an approach that involves finding a transforma-
tion of the nonlinear system through a change of variables and a suitable control input
into a linear system. Then linear control theory is applied to the system. The advan-
tages of feedback linearization compared to other methods, e.g., model predictive control
and sliding mode control, are the simplicity of the control structure and proof of error
convergence under certain conditions. A drawback is that mathematical knowledge of
the dynamics is needed. The approach is widely used in the literature and has seen use

2



1. Introduction

in control applications (Roza and Maggiore (2012)). Others, such as Moe et al. (2016),
reduce the path following problem to the horizontal plane. Moe et al. then applied the
LoS guidance law and an adaptive feedback linearizing controller to control the vessel
with only absolute velocity sensors.

Vector Field Control

Vector field control is based upon a set of vectors virtually placed around the path such
that if the vehicle follows the direction, it will converge to it. One of the main drawbacks
is the difficulty of implementation. Nelson et al. (2007) achieved excellent performance
on the path following scenarios when the path consisted of a combination of straight
lines and circles. Sujit et al. (2014) showed that vector field control could achieve lower
cross-track error than other, classical, path following algorithms.
Each of the aforementioned classical control methods often used in path following

carries different drawbacks, whereas the main collective challenge may be their reliance
on mathematical modeling. The correctness of the modeling often correlates highly with
the performance of the resulting controller. If we free ourselves from modeling, we may
obtain even better-performing controllers.

1.4. Classical Collision Avoidance

We define collision avoidance as an algorithm that controls an agent to avoid obsta-
cles that are locally discovered. Therefore, Collision avoidance is often referred to as
local path planning. As with path following, classical collision avoidance has seen much
research. In this section, classical collision avoidance methods are presented.

Model Predictive Control

In addition, to be employed in path following algorithms, MPCs are also employed for
collision avoidance. Alrifaee et al. (2016) used an MPC for collision avoidance using
a Lagrangian relaxation approach. They achieved excellent performance in a realistic
simulated environment. Eriksen et al. (2019) used an MPC for short-term collision avoid-
ance for a maritime vessel while adhering to the International Regulations for Preventing
Collisions at Sea (COLREGS). They achieved good performance both in simulations and
in full-scale experiments at sea.

Vector Field Control

Khatib (1986) introduced vector field control for collision avoidance. In contrast to the
path following application, the vector field is time-varying. The method was tested in
simulations of a robotic manipulator. The work of Khatib (1986) laid the groundwork
for more recent research on collision avoidance in mobile robots. Borenstein and Koren
(1989) expanded upon the ideas of Khatib (1986) and introduced the ”virtual-force”
approach. The main idea is that obstacles in the vector field exert a virtual force, pushing
the agent away from the obstacle. They successfully tested the method experimentally
on a mobile robot with ultrasonic sensors. A drawback of vector field control is that the
agent may never reach the target if the obstacle is close enough, and an assumption of
infinite control energy.

3



1. Introduction

Geometric Methods

Another subfield of collision avoidance algorithms is geometric methods. A notable fea-
ture of these methods is that they often have a low computational cost, which makes
them able to react to obstacles rapidly (Huang et al., 2019). Collision cone collision
avoidance is such a method. The collision cone method is based on creating an artificial
cone formed between the agent and the obstacle, as seen in Figure 1.2. Lalish and Mor-
gansen (2009) introduces a collision cone method that seeks to steer the heading of the
agent outside the cone. Fiorini and Shiller (1998) takes into mind the obstacles’ velocity
and defines a collision cone such that the trajectory of the agent and the trajectory of
the obstacle will not collide.

Figure 1.2.: Visualization of the collision cone collision avoidance method. The agent is
to follow a heading that is not within the cone.

Dynamic Window

The dynamic window approach is a popular method (Fox et al., 1997). The approach
reduces the set of translational and rotations velocities to the currently feasible velocities.
The set of velocities is further reduced to the set that allows the vehicle to stop within
a set time interval. The resulting set forms the ”dynamic window”. The approach
searches in the dynamic window to find a set of feasible circular trajectories in a short
time interval. The method chooses the trajectory that maximizes a defined reward
function. Fox et al. test the method experimentally on synchronous drive mobile robot
showing robust results in the AAAI’94 Mobile Robot Competition arena.

1.5. Deep Reinforcement Learning for Control

Reinforcement Learning (RL) is a general framework in which an agent aims to learn
the optimal decision-making policy through sequential or episodic interaction with its
environment. Unlike traditional control methods, model-free RL can be used to solve
control problems without needing a dynamics model. Therefore, RL is often preferable
when specifying a reward function to maximize is simpler than hand-crafting a control
law. Difficulties in hand-crafting a control law could be due to complex, undefined, or
high-dimensional dynamics. We will go deeper into RL in Section 2.5. RL algorithms
have recently achieved superhuman performance in challenging games such as Chess, Go,
and StarCraft II (Silver et al. (2017), Silver et al. (2016), AlphaStar (2019)). The driving
force behind these accomplishments is the integration of deep neural networks (DNNs)
for parameterizing the decision-making policy, enabling the DRL controller to make
continuous or discrete actions in response to high-dimensional continuous or discrete
observations. DNNs are widely used in computer vision and natural language processing.

4



1. Introduction

In the later years, DRL is emerging as an attractive model-free control method for
complex systems.

Q-learning

Watkins (1989) introduced Q-learning: a tabular model-free RL algorithm estimating
the value of an action given a particular state. Mnih et al. (2015) introduced the deep
Q-network (DQN), combining the Q-learning algorithm with powerful DNN function
approximators. DQNs can play multiple Atari 2600 games at an above-average human
level, even surpassing the top-level players in a few of them. They also demonstrated that
the resulting algorithm could use raw pixel values as inputs to solve the tasks. Lillicrap
et al. (2016) adapted deep Q-learning to the continuous action domain, establishing
the Deep Deterministic Policy Gradient (DDPG) algorithm. They solved 20 simulated
physics tasks, most of which were typical control tasks.

Proximal Policy Optimization

Bøhn et al. (2019) used Proximal Policy Optimization (PPO) to control a fixed-wing
unmanned aerial vehicle’s attitude. Then they experimented with the observation vector,
adding the states of the previous timesteps. The result was a proof-of-concept controller
that performed well in a simulated environment. It is yet to be seen how transferable
the PPO agent’s control strategies learned in simulations are to real-world conditions.
Kaufmann et al. (2022) benchmarked control policies with PPO for agile quadcopter

flight. The control policies differed in their action spaces. The most high-level policy
used linear velocity commands for control, while the most low-level used, as in this
paper, commanded forces to each of the quadcopter’s rotors. However, the middle-level
policy of commanding collective thrust and body rates seemed to outperform the others.
Additionally, the authors randomized the domain and tested the resulting agents in
real-life settings, achieving agile flight with speed beyond 45[km/h].
Degrave et al. (2022) used the Maximum a Posteriori Policy Optimisation (MPO)

algorithm for magnetic control of plasma in a nuclear fusion reactor. Training in a
highly accurate simulation made it possible to achieve high performance and robustness
to uncertain operating conditions, even on real hardware.

1.6. Deep Reinforcement Learning for Path Following

Hwangbo et al. (2017) used DRL to guide a quadcopter in a waypoint tracking problem,
in contrast to path following, where the agent would follow a continuous path. They
introduced a deterministic, on-policy method that is more conservative but more stable
than similar methods, and it directly maps the observation vector to motor thrust.
Moreover, they showed that their controller is transferable to the real world. Pi et al.
(2021) considered a disturbance observer to estimate the external forces exerted on the
quadcopter, which is added to the observation vector, resulting in a system more robust
to external forces.
Martinsen and Lekkas (2018a) employed the DDPG method for straight path following

for an underactuated marine vessel. They also added the influence of an unknown
ocean current. Martinsen and Lekkas (2018b) used transfer learning for curved path
following. The agent attained faster training than the one directly trained on curved
paths, achieving indistinguishable performance on three vessel models.

5



1. Introduction

1.7. Deep Reinforcement Learning for Path Following and
Collision Avoidance

Path following and collision avoidance are heavily coupled, and the controller needs to
weigh the goal of following the path against the risk of hitting obstacles. Therefore,
there have been several attempts to do path following and collision avoidance conjoined.
Meyer et al. (2020) used PPO for path following and collision avoidance for an under-

actuated marine surface vessel. Obstacles were detected using rangefinder sensors, and
the processed ranges were a part of the observation space. The results demonstrated
that RL is a viable approach to the dual objective problem of path following and collision
avoidance. Larsen et al. (2021) used the framework of Meyer et al. (2020) to compare
how PPO performs up against other DRL methods, Soft Actor-Critic, DDPG, and Twin
Delayed DDPG. They concluded that PPO seemed to have the highest performance in
the environment. Havenstrøm et al. (2021) built upon Meyer et al. (2020), extending it
to 3D for an autonomous underwater vessel. The agent showed great potential, having
a tracking error of less than 0.5m, even in scenarios with currents.
Batra et al. (2021) demonstrated the use of a multi-agent PPO learning quadcopter

swarm control with collision avoidance. As a requirement for swarm control, the quad-
copters were rewarded for avoiding each other and reaching their goal waypoint. They
trained in a simulated environment incorporating both sensor noise and collision effects,
resulting in a swarm controller capable of flight in a real-world controlled environment.

1.8. Research Objectives

Path following and collision avoidance for a quadcopter using DRL is a complex task.
However, if solved, it shows the potential for DRL in control and could pave the way for
further research. The primary research objective of this paper is to develop a path fol-
lowing and collision avoidance method for quadcopters using DRL. A secondary research
objective is to investigate whether CNNs could be used for dimensionality reduction of
LIDAR observations. Another secondary research objective is to make the controller
generalize to an unseen environment, validating the results.

1.9. Research Questions

To achieve our research objectives, we formulate the three research questions:

• Will the resulting DRL controller with the PPO hyperparameters from Havenstrøm
et al. (2021) and Sundøen et al. (2021) to achieve path following and collision
avoidance?

• Can we exploit the dimensionality-reducing property in convolutional neural net-
works for encoding LIDAR observations?

• Will the resulting DRL controller be able to perform in unseen environments?

6



1. Introduction

1.10. Thesis Structure

This paper is divided into five main sections. In the current section, Section 1, we
introduced the path following and collision avoidance problem, along with state-of-the-
art methods. Section 2 introduces the quadcopter model, the path planning method,
the defined guidance law, and neural networks. We also explain the basics of RL and go
deeper into PPO. In Section 3, we describe the environment setup and implementation
details. In Section 4, we show and discuss our results, while in Section 5, we conclude
our findings and discuss further works.

7



2. Theory

Although we consider a model-free approach, the current DRL algorithms are gener-
ally not suitable for training directly on hardware due to their poor sample efficiency
and unpredictable black-box properties. Therefore, this section establishes the reference
frames, transformations, dynamics models, and path generation tools necessary for set-
ting up a framework suitable for training a path following and collision avoidance DRL
controller in a simulation.

2.1. The Quadcopter Model

2.1.1. Reference Frames

The state variables are given in two reference frames, the North East Down (NED)
frame and the body frame. Both frames are drawn in Figure 2.1, where the NED
frame is denoted n and the body frame denoted b. The NED frame is a tangent plane
defined relative to the earth’s reference ellipsoid, where Xn and Yn point towards true
north and true east, respectively. Thus, Zn is orthogonal to Xn and Yn and points
towards the earth’s core. Navigation in the NED frame is commonly referred to as
“flat earth navigation”. The NED frame is considered suitable for navigation within a
small deviation in latitude and longitude, whereas vehicles crossing over larger distances
require other reference frames. Quadcopters usually move within a small geographic area,
thus making the NED frame a suitable choice. We also consider the ”body” frame, which
moves with the quadcopter. For quadcopters, the origin is generally chosen as the center
of mass because it simplifies the equations of motion and makes control more intuitive.
The unit vector Xb points longitudinal to the vehicle, while Yb points transversely. Zb

is orthogonal to Xb and Yb. Thus, we have established the necessary reference frames to
control a vehicle within a small geographic region.

Table 2.1.: Notation of velocities, angular rates, positions and angles in NED- and body-
frame.

Degree of Freedom Velocity and Angular Rate Position and Angle

1 Motion in the X-direction (Surge) u Xn

2 Motion in the Y-direction (Sway) v Yn
3 Motion in the Z-direction (Heave) w Zn

4 Rotation about the X-direction (Roll) p ϕ
5 Rotation about the Y-direction (Pitch) q θ
6 Rotation about the Z-direction (Yaw) r ψ

2.1.2. Kinematic Equations

Some elements, such as the propeller forces, operate relative to the body frame, while
the path is given in the NED frame. Therefore, there is a need to find a transformation
between the frames. An overview of the state variables can be found in Table 2.1,

8



2. Theory

Zb

Zn

Xn

Yn

Yb

Xb

Figure 2.1.: The reference frames NED and body. NED is a tangent plane defined relative
to the earth’s reference ellipsoid, where Xn and Yn are axis pointing towards
true north and true east, respectively, while Zn is orthogonal to Xn and
Yn and pointing down towards the earth. Body-frame is a frame fixed in
the center of mass of the quadcopter, where the axis Xb and Yb points
longitudinal and transversely, respectively. Zb is orthogonal to Xb and Yb.

following SNAME-notation SNAME (1950). The quadrotor’s kinematics state vector is
represented in η = [pn,Θnb]

T = [xn, yn, zn, ϕnb, θnb, ψnb]
T , where xn, yn, and zn are the

positions in NED-frame, while ϕnb,θnb,ψnb are the yaw, pitch, and roll angles of the body-
frame relative to NED-frame. pn is the positional coordinate vector, pn = [xn, yn, zn]

T ,
while vb is the translational velocity vector, vb = [u, v, w], where u, v, and w are the
velocities along the body-frame in Xb, Yb, and Zb respectively. ω

w
b/n = [p, q, r]T , where p,

q, and r are the rotational velocities aroundXb, Yb, and Zb. The velocity vector is defined
as ν = [vb, ω

w
b/n]

T . The rotation matrix between the linear velocities in NED-frame and
body-frame is then given by Equation 2.1.

Rn
b (Θnb) =

cψcθ −sψcϕ+ cψsθsϕ sψsϕ+ cψcϕsθ
sψcθ cψcθ + sϕsθsψ −cψsϕ+ sθsψcϕ
−sθ cθsϕ cθcϕ

 . (2.1)

The inverted rotation matrix Rb
n(Θnb), is defined as

Rb
n(Θnb) = (Rn

b (Θnb))
T . (2.2)

The transformation of the rotational velocities is

TΘnb
(Θnb) =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 , (2.3)

where s is sine, c is cosine, and t is the tangent. The matrix contains singularities at
pitch angles θ = ±π

2 . However, in most operating modes, the quadcopter will not reach
these pitch angles.
The governing differential equation describing the first-order differential equation be-

tween the velocity in the body and NED frame is

η̇ = JΘnb
(η)ν,

9



2. Theory

where Jθ(η) is

JΘnb
(η) =

[
Rb

n(Θnb) 0
0 TΘnb

(Θnb)

]
.

2.1.3. Equations of Motion

The equations of motion describe how a vehicle behaves given its physical characteristics
and the applied forces, τ . These are essential for simulating the quadcopter. We base
the model setup on the work of Kim et al. (2010) while we employ the model parameters
used in Mamo (2021). To simplify the control problem, we make some assumptions for
the model. We assume that:

• The effect of moving air mass around the quadcopter is negligible, Ma = 0.

• There exists a function mapping the thrust of a propeller, Fi, directly to the needed
power, Wi, of the propeller: Pi=f(Fi). This function often exists, and it is easier
to explain the behavior of the quadcopter with this simplification.

• The quadcopter is axis-symmetrical, resulting in I being a diagonal matrix.

• There is no wind, τwind = 0, nor any other external forces. This assumption implies
that the quadcopter is flown indoors or in calm weather.

These assumptions will likely render the DRL controller unusable in real-world appli-
cations. However, this paper only focuses on demonstrating the potential of a DRL-based
controller for path following.
The equations of motions are shown in the following equation

Mν̇ + C(ν) + g(η) = Bu

where M is

M =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz

 (2.4)

The Coriolis forces are given as

C(ν) =
[
0 0 0 (Iz − Iy)qr (Ix − Iz)pr 0

]T
In this case, the restoring force is simply the gravitational force, as given in Equation 2.5.
The gravitational force acts along Zn, but our dynamics are modeled in body-frame, so
we need to transform from NED-frame to body-frame. The gravitational force vector
g(η) is

g(η) =
[
mgsθ −mgcθsϕ mgcθcϕ 0 0 0

]T
, (2.5)

where m is the mass of the quadcopter and g is the gravitational acceleration defined
in Table 2.2. The control inputs are the four rotors of the quadcopter. The inputs are

10
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Table 2.2.: Model parameters from Kim et al. (2010)

Parameter Value

l 0.5m
m 0.5kg
g 9.81m/s2

Ix 0.005kgm2

Iy 0.005kgm2

Iz 0.01kgm2

λ 0.08

simplified to one force Fi for each rotor. The control force τ is

τ = Bu

B =



0 0 0 0
0 0 0 0
1 1 1 1
0 −l 0 l
−l 0 l 0
−λ λ −λ λ

 ,

where λ is the inflow ratio, l is the length from the origin of body to each of the rotors,
and u is the vector

u = [F1, F2, F3, F4]
T ,

where F1, F2, F3 and F4 are the forces exerted from the rotors. All model parameter
values can be found in Table 2.2.

2.2. Continuous 3D Path Generation

In this section, we introduce a solution to 3D path generation. In real scenarios, one
would instead employ a global path planning algorithm such as A* Hart et al. (1968),
or Dijkstra Dijkstra (1959). We have set up the agent to detect obstacles while running
rather than online while running. Therefore, the path planning consists only of finding a
viable path through some randomly placed waypoints. We define the first waypoint,w1,
in the origin. The subsequent waypoints, wi = [xi, yi, zi], are then defined by

xi = xi−1 + dcos(α)cos(β),

yi = yi−1 + dsin(α)cos(β),

zi = zi−1 − dsin(β)

where i ∈ [2, n], d is the distance between the waypoints, and α and β are instances
from two uniform distributions. Parameter values for n, d, α, and β can be found in
Table 3.3. The setting of the parameters α and β will determine the curvature of the
path. We design a path that goes through all the waypoints while also being physically
feasible to traverse.
Aerial vehicles are unable to obtain momentum from the ground. Therefore, the path

generated can not have any sharp angular movements or instantaneous stops, as this

11
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would require an infinite amount of force from the rotors (Chang and Huh (2015)).
These conditions imply that the path should not have vertexes and that the velocity
and acceleration should be continuous. Further implicating that the movements of the
quadcopter should not have vertices and that velocity and acceleration should be con-
tinuous. We classify paths in terms of continuity, Gn, where n ∈ N. A Gn continuous
path is a continuity of the nth-order differential values. A G2 continuous path has con-
tinuous acceleration and, therefore, continuous velocity. Chang and Huh (2015) expand
the G2-continous quadratic polynomial interpolation (QPMI) (Huh and Chang (2014)
Chang and Huh (2014)), used for smoothing a 2D path to make continuous paths in 3D
and prove G2 continuity. In the 3D version of QPMI, we use a parametric function

p(s) : (x(s), y(s), z(s)),

where s is the length along the path, which can be calculated using the piece-wise
distances. p(s) is a path defined for each triplet of subsequent waypoints. The three
functions x(s), y(s), and z(s) are defined as

x(s) = axms
2 + bxms+ cxm ,

y(s) = ayms
2 + byms+ cym ,

z(s) = azms
2 + bzms+ czm ,

m = 1...nw

where the coefficients can be found by solvingaxm

bxm

cxm

 =

s2m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

−1 x(sm−1)
x(sm)
x(sm+1)

 ,
aymbym
cym

 =

s2m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

−1 y(sm−1)
y(sm)
y(sm+1)

 ,
azmbzm
czm

 =

s2m−1 sm−1 1
s2m sm 1
s2m+1 sm+1 1

−1 z(sm−1)
z(sm)
z(sm+1)


The nw waypoints we consider requires 3(nw − 2) polynomials. We then make one

polynomial for every three waypoints, then a smoothing function between the polyno-
mials is applied. We can define the whole path as P (s) : (X(s), Y (s), Z(s)) where X(s),
Y (s), and Z(s) are

X(s) =


xs(s) s1 ≤ s ≤ s2

µr,m(s)xm+1(s) + µf,mxm(s), (2 ≤ m ≤ nw − 1) s2 ≤ s ≤ snw−1

xnw−1(s) snw−1 ≤ s ≤ snw

 ,

Y (s) =


ys(s) s1 ≤ s ≤ s2

µr,m(s)ym+1(s) + µf,mym(s), (2 ≤ m ≤ nw − 1) s2 ≤ s ≤ snw−1

ynw−1(s) snw−1 ≤ s ≤ snw

 ,

12



2. Theory

Z(s) =


zs(s) s1 ≤ s ≤ s2

µr,m(s)zm+1(s) + µf,mzm(s), (2 ≤ m ≤ nw − 1) s2 ≤ s ≤ snw−1

znw−1(s) snw−1 ≤ s ≤ snw

 ,

where µr,m and µf,m are member functions, defined by

µr,m(s) =
s− sm

sm+1 − sm
,

µf,m(s) =
sm+1 − s
sm+1 − sm

,

m = 2, 3, ..., nw − 1

The resulting path is then G2-continuous, making it continuous in both velocity and
acceleration. A path generated through some waypoints can be seen in Figure 2.2.
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Figure 2.2.: An arbitrary generated 3D QPMI G2-continuous path.

2.3. Guidance Laws for 3D Path Following

In this section, we introduce the guidance laws used for path following. The theory in
this part is used to define the reward function and the error vector, ϵ, which we later use
to evaluate the performance of the DRL controller. First, we define a frame in which
we define the errors. Then we use the errors to define a guidance law that outputs a
desirable direction to move the quadcopter.
The Frenet-Serret frame, introduced by Micaelli and Samson (1994), describes the

geometry of a curve. Although the frame is defined along the whole path, this work
considers only the Frenet-Serret frame that is currently the closest to the quadcopter.
The Frenet-Serret frame is defined from the three axes Xsf , Ysf , and Zsf , where Xsf is
the tangent vector along the path, Ysf is the normal unit vector of the path and Zsf is
the cross product of Xsf and Ysf . This frame is shown in Figure 2.3.
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Ysf

Xsf

Zsf

Figure 2.3.: The Frenet-Serret frame with origin at some arbitrary point along the path.
Xsf is the tangent vector along the path, Ysf is the normal unit vector of
the path and Zsf is the cross product of Xsf and Ysf .

It is on this frame that the along-path errors are defined. We define the error vector,
ϵt, as

ϵt = [s̄t, et, ht], (2.8)

where s̄t, et, and ht is the quadcopter’s position relative to the Frenet-Serret frame.
The entries describe the along-track, cross-track, and vertical-track errors, respectively.
Since we define the errors at the frame closest to the quadcopter, the along-track error,
s̄t, is always zero and thus disregarded.
To accomplish path following, the controller needs to align the quadcopter’s velocity

vector, V n, with the tangential vector of the path. The quadcopter is not seeking to
go to the point closest to the path; instead, it aims at a point given by the look-ahead
distance, ∆. ∆ is the distance down along the path from the origin of the Frenet-Serret
frame.
We consider a path parameterization of the net variable, ω̄, where the path is repre-

sented by pp(ω̄) ∈ R. The error vector ϵ can then be calculated using

ϵ(t) ≜ Rsf
n (p(t)− pp(ω̄))

where p(t) is the position of the quadcopter, pp(ω̄) is the position closest on the path

closest to the quadcopter, and Rsf
n is the rotation matrix between the NED-frame and

the Frenet-Serret frame in the same form as in Equation 2.1 (Breivik and Fossen (2009)).
According to Havenstrøm et al. (2021), the desired azimuth, χd(e), and elevation

angle, vd(h), can then be determined as

χd(e) = χp + χr(e),

vd(h) = vp + vr(h),

where χr and vr are defined as

χr(e) = arctan(
e

∆
),

vr(h) = arctan(
h√

e2 +∆2
),

and ∆ is the look-ahead distance defined in Table 3.3. The errors, χe and ve, are defined
as

14



2. Theory

χe = χd − χ, (2.9a)

ve = vd − v, (2.9b)

respectively, where χ and v are the rotations around NED-frame, defined as

χ = arctan2(ẏ, ẋ)

and
v = arctan2(−ż,

√
ẋ2 + ẏ2)

χe and v are used in the reward function in Section 3.5. When the quadcopter approaches
the path, the error terms e and h will go towards zero, which will result in the correction
angles χr and vr going towards zero. The resulting velocity vector V n will then go
towards the corresponding tangent of the path.

2.4. Neural Networks

Machine learning methods approximates a function y = f(x) where x is the observed
data and f(x) is the function that is approximated. The methods range from linear
regression to more advanced methods such as support vector machines and neural net-
works.
Neural networks is a group of machine learning methods inspired by the human brain.

Neurons are the fundamental units of neural networks, and they share the functionality of
their brain namesake. Neurons are often expressed mathematically, as seen in Figure 2.4.
I is the neural input, while W is the associated weights, and A(·) is the activation
function. The activation function is often tanh, the sigmoid function or the Rectified
Linear Unit function (ReLU). The simplest type of neural net is the perceptron, which

I1

I3

I4

I2

W1

W3

W4

W2

b

A( )

Figure 2.4.: A neuron in a neural network. I is the neural input, W is the associated
weights, b is the bias and A(·) is the activation function.

consists of a single neuron. Commonly the neurons are stacked in multiple layers, as in
Figure 2.5. The computational layers between the input and the output layer are often
referred to as the hidden layers. Neural networks with many hidden layers are often
called ”deep”. In RL, ”deep” is typically used if parts of or the whole policy structure
include one or more artificial neural networks.
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Hidden Layers

Figure 2.5.: An arbitrary neural network, where the orange nodes are the inputs, the
blue nodes are neurons and the green nodes are the ouputs.

CNNs are neural networks that incorporate the convolution operator. In convolution
layers, a filter slides across the height and width of the input. The dot product of
each element of the filter and the input is calculated at each spatial position, as seen
in Figure 2.6. In this way, they manage to capture the spatial information in the data
and enable encoding from high dimensional space to latent lower-dimensional space.
CNNs are often employed in computer vision problems where spatial information may
be relevant, such as image classification, super-resolution, and video processing. The
curse of dimensionality describes the explosive nature of increasing data dimensions and
its exponential increase in computational efforts required for processing Karanam (2021).
By reducing the feature space into more latent lower-dimensional space, CNNs are often
used to avoid the curse of dimensionality.

2 1

1 5

1 0 1

0 1 1

1 0 1

7

Figure 2.6.: An example of the use of an convolution operator with a kernel size of 2.

2.5. Reinforcement Learning

RL is a framework in which an agent learns a decision-making policy through trial and
error. Given an observation, ot, from the environment, the policy performs an action,
at, in the environment. This notation corresponds to x and u, commonly used in control
theory. In our case, the environment consists of the components described in Section 2.1.
The environment can be denoted as a transition model between states p(st+1 | st, at).

In RL, we often differentiate between observations and states. While the state is a
true description of the world, observations may contain partial information about the
world. If an agent can observe the full state of the environment, such as in the game of
chess, it is fully observed. However, this is seldom true for real-world applications.
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The set of valid actions is called the action space. Figure 2.7 shows the flow of
information between the agent and the environment. The environment generates the
observation and the accompanying reward, and the agent then chooses an action that
affects the environment.

Environment

Agent

Action (a)Reward (r)

Observation (o)

Figure 2.7.: Interaction between the agent and the environment in an RL framework.
The environment generates the observation o, with an accompanying reward
r. The agent then chooses an action a that affects the environment.

In essence, every model-free RL algorithms attempts to find the policy, π(a | o), that
maximizes the expected total reward, E [

∑
t rt]. Unlike in classical control theory, RL

enables finding a controller in cases where the environment is too hard to model, e.g.,
in high dimensional spaces or noisy environments.

2.5.1. Deep Reinforcement Learning

Deep learning exploits the powerful universal approximation properties of NNs by em-
ploying them to approximate the policy function π(a | o). Given enough data, it is often
possible to learn better representations with deep neural networks than with shallower
networks (Alom et al. (2019)). Although DNNs are notorious for needing vast amounts
of data to train, they fit well into the RL framework due to the RL agent producing its
own training data. In DRL algorithms, the decision-making policy is parameterized by
a neural network. This allows the learner to observe continuous data input and output
continuous actions, removing the need to discretize both.

2.5.2. Reward Function

All model-free RL methods aim to maximize the expected reward. The expected reward
is the sum of the rewards in all future time steps, often discounted with a factor γ ∈ (0, 1].
A small γ leads to a greedy agent, primarily concerning what happens in the immediate
future. A high γ will lead to a similar valuation of long-term and short-term rewards.
This factor is added to account for the uncertainty of future time steps, as we often can
be more certain about what happens in the near future.

We usually differentiate between sparse and dense rewards. Sparse rewards are rewards
are given at the end of each episode, e.g., +1 when the quadcopter reaches the goal, 0
otherwise. Using sparse rewards may lead to the learner never converging or being slow
to learn in complex environments, such as environments with long time horizons or
challenging exploration. In the quadcopter example, it will likely take long before the
quadcopter reaches the final waypoint, and even then, it will likely take long before it
accomplishes it again.
Dense rewards are given at every time step, e.g., rewarding the agent proportionally to

its distance from the path. This reward scheme will often increase the learning rate and
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thus be more likely to converge. Both dense and sparse rewards involve the manual design
of the reward function, although dense rewards often require more domain knowledge.
In the quadcopter example, it is trivial to implement a reward function that rewards
the quadcopter when reaching the goal waypoint, but finding the distance to the path
is not trivial. The designer will then infuse the design of the reward function with their
inherent bias towards a way they think the agent should act, which likely is suboptimal.
In contrast, sparse rewards let the agent discover the optimal policy by itself.

2.5.3. Proximal Policy Optimization

In DRL, there is a wide array of algorithms, among which we have chosen to use Proximal
Policy Optimization (Schulman et al. (2017)). Larsen et al. (2021) found PPO to exhibit
superior robustness to changes in the environment complexity and reward function and
to generalize well to unseen environments with a domain gap compared to other state-
of-the-art DRL methods. In the paper, the authors tested the algorithms in scenarios
similar to the one we are employing.
PPO is an improved and simplified version of the relatively complicated Trust Region

Policy Optimization method (TRPO). It attains much of the data efficiency and reliable
performance of TRPO while only using first-order approximations.
A problem in DRL is determining the step size of the neural net update. Whereas an

arbitrary large step size may lead to instability, a small step size may lead to inefficient
use of data. PPO deals with this dynamically. The version of PPO we apply uses the
clipped objective function, LCLIP (θ), defined as

LCLIP (θ) = Êt[min(r(θ)Ât, clip(r(θ), 1− ϵ, 1 + ϵ)Ât)],

where θ is the policy parameters, Êt denotes the empirical expectation over timesteps,
ϵ is a scalar clipping parameter, and r(θ) is defined in Equation 2.10, where πθ(s, a) is
the current policy, and πold(s, a) is the old policy. Finally, Â is the advantage function
seen in Equation 2.11,

r(θ) =
πθ(s, a)

πold(s, a)
(2.10)

Â = π(s, a)− V (s), (2.11)

where a is the action vector, s is the state vector, and V (s) is the value function of
the state. Thus, PPO restricts the step length such that appropriate step lengths are
applied. The algorithm itself can be seen in Algorithm 1.

Algorithm 1: Proximal Policy Optimization

for i... do
for actor ← 1 to N do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, ..., ÂT

Optimize L with respect to θ, with K epochs and minibatch size M ≤ NT
θold ←− θ
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In this section, we look at how the theory from Section 2 is used to set up the study.
First, we define the environment and explain our use of curriculum learning in Section
3.1. We then describe our LIDAR simulation set up in Section 3.2. Later we define
the observation space and action space of the agent in Section 3.3 and Section 3.4. In
Section 3.2 we set up an simulation of a LIDAR sensor. We design a suitable reward
function in Section 3.5 and a policy network in Section 3.6. Lastly, we go through the
training details in Section 3.7 and performance evaluation in Section 3.8.

3.1. Environment and Curriculum Learning

The environment consists of a quadcopter with its dynamics from Section 2.1, a path
defined from Section 2.2, and zero to two obstacles. The path is generated from the
randomly initiated waypoints and differs from episode to episode. We utilize curriculum
learning, which is the technique of gradually increasing the complexity of the scenarios
introduced when training an RL agent (Bengio et al. (2009)). The idea is that an agent
learns the challenging scenarios more easily by first learning the basics, similar to how
humans learn. We set up five learning scenarios, defined in Table 3.2. An essential factor
to note is that the observation vector contains the orientation in relation to NED. In the
first scenario, Simple 1D path, the agent is made to follow a path in a single direction.
An effort is made to make the agent work regardless of orientation with the randomized
starting direction of the paths in the other scenarios. A visualization of the scenarios
without obstacles can be found in Figure 3.1d.

The obstacles are initiated as in Havenstrøm et al. (2021), between 1
3 and 2

3 of the
length of the path. The obstacles are spheres with radii uniformly distributed between
4 and 10m with centers on the path.
The hyperparameters for the training environments can be found in Table 3.3. An

episode is terminated if any of the three conditions are met: (a) rt < rmin, (b) t > tmax,
or (c) the quadcopter reaches the final waypoint.

Table 3.1.: Proximal policy optimization parameters

Parameter Value

n steps 1024
learning rate 2.5 · 10−4

batch size 64
gae lambda 0.95
gamma 0.99
n epocs 4
clip range 0.2
ent coef 0.001
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Figure 3.1.: 100 runs each of the four training scenarios without obstacles.

3.2. Simulating a LIDAR for Obstacle Detection

For the agent to avoid obstacles, it needs to be able to detect them. In Havenstrøm et al.
(2021) the authors set up a virtual sensor with a configuration corresponding to a sonar.
Sonars are not usually used in quadcopter sensor suites. On the other hand, LIDARs
are widely used. Therefore, we will apply the same setup as in Havenstrøm et al. (2021)
while making minor modifications to suit our use case better. We employ the same
setup, except expanding the LIDAR from only detecting in a small area in front of the
vessel to being a 3D LIDAR. To simulate the LIDAR, we make two simplifications:

• There is no sensor noise.

• The LIDAR samples in a all directions simultaneously.

• There are no blind spots. In a real environment, there would be blind spots due
to the occlusions originating from the quadcopter itself.

When simulating the sensor, a realistic yet low-cost operation is needed. The sensor
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Table 3.2.: The five scenarios without obstacles used to train the DRL agent

Scenario Description

Simple 1D path The Yn and Zn coordinates of the waypoints are set to zero.

1D path
The waypoints are on a line with an randomly chosen
initial direction.

2D path
The waypoints are on a plane with a randomly
chosen initial direction.

3D path
The waypoints are in three dimensional space
with an randomly chosen initial direction.

3D path with obstacles

The waypoints are in three dimensional space
with an randomly chosen initial direction
with two obstacles placed between 1/3
and 2/3 of the length of the path.

Table 3.3.: Parameters used in the reward function, guidance law and modelling of the
environment

Parameter Value Unit

cpf -6 N/A
∆ 3 [m]
rmin −2000 N/A
tmax 10000 N/A
Fmin −6 [N ]
Fmax 6 [N ]
total steps 150 · 106 N/A
step size 0.01 [s]
d 50 [m]
α U[−π/4,π/4] N/A

β U[−π/4,π/4] N/A

n 7 N/A

is simulated as a 15 by 15 grid of rangefinder sensors. A 3D LIDAR with a 360-degree
field of view is employed. Each of the rangefinders is simulated as lines pointing out of
the LIDAR as seen in Figure 3.2. The rangefinders are placed equally spaced in angle
space. However, most LIDAR samples are denser on their horizontal axis than on the
vertical axis Velodyne (2022).

A line search is done to find the obstacles. The line search returns the obstacle closest
to the sensor up to the max range of the sensor of 25m. In addition, each reading is
transformed to what Havenstrøm et al. (2021) coined ”closeness”. This transformation
can be found in Equation 3.2. The result is a 15 times 15 array of sensor measurements.
This range is lower than one could find on LIDARs, but it is limited due to performance
considerations.
A 15 times 15 array directly input into the observation vector could lead to the well-

known curse of dimensionality. Therefore, reducing the feature space is desirable. We
call the resulting vector s.
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Figure 3.2.: A vizualisation of the LIDAR beams emitting from the origin.

3.3. Observation Space

In this thesis, we divide the observation space into the navigational and LIDAR space.
The navigational space provides the agent with information about the state of the quad-
copter and the quadcopter’s direction in relation to the path. On the other hand,
the LIDAR space is the LIDAR data stream. The navigational vector is implemented
as fully observed, providing true knowledge about the agent’s state, thus rendering a
higher possibility of convergence towards an optimal policy. In real-world scenarios, the
navigational vector variables would consist of estimated variables.

First we define the path error vector epath as

epath =
[
χe,1 υe,1 χe,3 υe,3 χe,5 υe,5 e h

]
,

where υe,1−5 and χe,1−5 are the directional errors with a lookahead of 1, 3, and 5m
respectively, defined in Equation 2.9. υ and χ makes it possible for the agent to acquire
knowledge of the future curvature of the path. The full navigational vector on is defined
as

on =
[
νT ΘT

nb epath
]T
,

, where ν and Θnb are defined in Section 2.1.2.
The LIDAR space, ol, is the full 15x15 grid as defined in section 3.2. It is important

to note that the rangefinders are equally spaced in angle space, not 3D cartesian space.
The definition is done to make a data format suitable to be the input of the neural
network.
The full observation vector, o, is defined as

o =
[
on, ol

]
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3.4. Action Space

In our setup, the action vector is the output of the policy network. Actions can both be
discrete or, as in our case, continuous. The action vector, a, is defined as

a = u =
[
F1 F2 F3 F4

]T
,

where F1, F2, F3, and F4 are the forces exerted by the four propellers. These range from
Fmin to Fmax as seen in Table 3.3. Using a low abstraction level action space entails
that the policy network needs to learn the complex relationship between the observation
space of navigational and LIDAR variables and the force on each of the propellers. The
action space coincides with the lowest level of abstraction in Kaufmann et al. (2022).

3.5. Reward Function

The main objective of any model-free RL algorithm is to find a control policy that
maximizes the reward function. To produce a path following and collision avoidance
policy, we design additive reward terms that encourage path adherence and discourage
collisions and unstable behaviors. The path following reward term, rpft , is given by

rpft = cpf (χ
2
e,3 + υ2e,3),

where χe = |χd − χ| and υe = |υd − υ|. The definitions of χd, χ, υe, and υ can be found
in Section 2.3. cpf is a manually set tuning parameter, whose value can be found in
Table 3.3. Stability is crucial for successful path following. Moreover, high torques and
vibrations can damage the sensors, motors, and other hardware onboard. Therefore, a
reward term guiding the quadcopter towards stability was implemented as

rst =
∑

i∈[0,1,2]

cs,i · ωω
b/n,i, (3.1)

where cs,i is a manually tuned parameter that is set to −1 where |ωω
b/n,i| < 4π and 0

elsewhere, trying to avoid the tuning problem seen in Sundøen et al. (2021), where too
much emphasis on rst may have led to a worse path following performance. Making the
reward zero within this range should allow the quadcopter to perform path following
without sacrificing the reward in steadiness. rst will penalize the agent for being in
states with higher rotational velocities, urging it to keep the quadcopter stable in flight.
Setting the hyperparameters cpf and cs is not trivial. Setting cs too low will make the
quadcopter unable to maneuver, whereas setting cs close to zero will make it hard to
stabilize. Therefore, tuning these parameters is a journey of trial and error, in which
the authors spent much time. The value cpf is shown in Table 3.3.
Dense rewards are favorable in continuous control as the policy should be generally

smooth. A dense closeness penalty provides a richer feedback signal to the RL agent, such
that more of its experience is usable for learning collision avoidance. A reward applied
when the quadcopter collides would be a sparse reward. To make a dense reward, we
need to rely on sensory data. We define obstacle closeness c(di,j) as

c(di,j) = clip(1− di,j
dmax

, 0, 1), (3.2)

where di,j is the i’th and j’th sensor grid position and dmax is the maximal range of
the sensor. As long as there are no obstacles, c(di,j) will render the reward zero. The
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collision avoidance reward rcat is defined in Equation 3.3.

rcat = −
∑

i∈I
∑

j∈J βca(θj , ψi)(γcmax((1− c(di,j))2, ϵc))−1∑
i∈I

∑
j∈J βca(θj , ψi)

(3.3)

, i and j denotes the sensor sector, ϵc is small scalar made to hinder singularities where
c(di,j) = 0, βca is a scaling factor making the rewards relative to the direction of the
quadcopter. βca is defined as

βca(θj , ψi) = (1− (2|ψj |/γa)) + ϵca

, where ϵca is a small scalar made to penalize obstacles at the edge, while θj and ψi are
the vehicle-relative LIDAR directions. A visualization of the collision avoidance reward
function can be found in Figure 3.3, Note that the resolution is set way higher than in
the training.
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Figure 3.3.: The collision avoidance reward function visualized as from Havenstrøm et al.
(2021)

rcat seeks to maximize the distance to objects rather than directly penalizing collisions.
The implications are important to notice. This implies that a too negatively tuned rcat
will make the agent go far off the path to avoid obstacles, while a too high rcat can make
going off-path to avoid an obstacle not worth it.
The resulting reward function is thus given by:

rt = rst + rpft + rcat (3.4)

We expect that in the early stages of the training process, the rotational velocities will
be high due to the exploratory nature of DRL. Unlike rpft , rst has no upper limit. p, q,

and r are squared, likely leading to rst dominating rpft in the early stages, i.e., rt ≈ rst ,
guiding the agent to learn to be stable before trying to follow the path.
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Table 3.4.: CNN feature extraction parameters

Parameter Value

padding 24
kernel rate 5
stride 2
in channels 1

3.6. Policy Network

The neural network architecture can be divided into two parts: CNN feature extraction
and ”Mlppolicy”. The setup can be seen in Figure 3.4.

As stated in the theory section, CNNs excel at extracting spatial information out of
data. Therefore, we use a CNN to extract features out of the LIDAR data. The CNN
feature extractor is set up as seen in Figure 3.5 with alternating Conv2d and ReLU layers
and parameters found in Table 3.4. Additionally, Torch’s circular padding is employed,
solving the problem of discontinuity between 0 rad and 2π rad. The last node flattens
the data, making it suitable for the dense MlpPolicy.
On the other hand, the navigational states are not preprocessed. ”Mlppolicy” is a

deep neural network with ordinary dense layers native to SB3. The navigational states
and the LIDAR data features are input to Mlppolicy. We employ similar nets in the
value network and policy network. Each of them got three hidden layers, where the
first layer has 128 neurons, the second layer has 64 neurons, and the last layer has 32
neurons. The net is deeper than in Sundøen et al. (2021) to account for the increased
complexity of collision avoidance.

Observation

Navigational States

LIDAR Data

Policy Network

Mlppolicy

CNN Feature 
Extractor

1x32


1x17

15x15

1x4

Action

Rotor Thrusts

Figure 3.4.: The neural network architecture. A CNN was used to extract features from
the high dimensional LIDAR data. The policy network map to the rotor
thrusts.

LIDAR
Data

LIDAR
FeaturesConv2d Conv2dConv2dReLU ReLU Flatten

Figure 3.5.: The feature extractor of the LIDAR Data set up in Torch.
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3.7. Training Details

The repository used for training can be found on GitHub (Sundøen et al. (2021)). Sta-
bleBaselines3 (SB3) is a set of reliable implementations of RL algorithms in PyTorch
(Raffin et al. (2021)). We use SB3’s PPO implementation with the parameters stated in
Table 3.1.We follow the curriculum learning strategy described in Table 3.2 to train the
DRL agent. Thus, the agent starts training in the trivial Simple 1D path scenario, pri-
marily stabilizing the quadcopter and maintaining strict altitude control. The difficulty
increases after training for 30 ·106 time steps as the training proceeds to the 1D scenario,
increasing one degree of freedom for the path generation. Thus, in a curriculum learning
fashion, the environment’s difficulty increases over time until the agent has trained for
a total of 150 · 106 time steps. The number of timesteps and parameters for training are
found in Table 3.3.
We run the training with 16 agents in parallel, drastically reducing the training wall-

time. All simulations were conducted on IDUN, a high-performance computing cluster
owned by the Norwegian University of Science and Technology Idun (2022). Approxi-
mately 15 hours of wall-time was required to reach 150e6 time steps for this hardware.

3.8. Performance Evaluation

Evaluating the resulting controller can be troublesome because there are multiple objec-
tives. Therefore, we have a diverse toolset of performance metrics. Firstly we employ
visual inspection. The desired path, the quadcopter path, and the obstacles are plotted
and visually inspected for deviations. Albeit not an accurate tool, visual inspection is
great for getting a general impression of the method’s performance. There is also a
possibility of discussing errors by observing deviations from the path. Due to the scaling
of the axes in the 3D plots, the errors might be troublesome to observe. Especially in
3D plots, an error may be observed, but its magnitude is not necessarily trivial to see.
Therefore, we define an error metric Errt,n as

Errt,n =
√
e2t,n + h2t,n,

where n is the episode number, Errt,n represents the absolute error to the closest point
on the path. To get an accurate view over multiple episodes, we define the Absolute
Path Error, APEt, as

APEt =
1

N

N∑
n=1

Errt,n,

where N is the total number of episodes. In other words, APEt is the episode-averaged
path error. Additionally, we employ the median APE to get a single number error
measure. A median is employed since it is less susceptible to outliers than a mean.
Although the APEt will give an overview of the controller’s path following perfor-

mance, it does not consider the obstacles. The agent will deviate when approaching
objects, resulting in higher APEt. Therefore, two additional metrics are defined. Fail-
ure Rate, FR, is defined as

FR =
Number of failed episodes

N
, (3.5)

where episodes the agent traverses less than 90 % of the path by the time the episode
is terminated for any of the reasons mentioned in Section 3.1, are considered a failures.
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Table 3.5.: The four scenarios without obstacles used to train the DRL agent

Scenario Description

Sphere A spherical obstacle within a helical path
Dead-end A half sphere surface with a path going directly through
Vertical Obstacles placed vertically with a path going directly through
Horizontal Obstacles placed horizontally with a path going directly through

Collision Rate, CR, is defined as

CR =
Number of episodes the agent crashes into an obstacle

N
(3.6)

We also define a diverse set of scenarios unseen by the controller. The description of
the scenarios can be found in Table 3.5. The main goal of testing the resulting controller
on unseen scenarios is to determine whether it has generalized.
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(a) Sphere scenario without the obstacle. Spher-
ical obstacle with radius of 185 and centered
in the origin was added. The obstacle was
not visualized due to a bug in matplotlib.
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(b) Dead-end scenario.
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(c) Vertical scenario.
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(d) Horizontal scenario.

Figure 3.6.: Overview of the testing scenarios. These are unseen for the agent and are
used in the evaluation to find whether the controller has generalized.
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4. Results and Discussions

In this section, we will cover the results of the DRL controller. The focus will be on
the two most challenging training scenarios, the 3D scenario without and with obstacles.
Section 4.1 shows the resulting controller’s performance employing visual inspection of
single runs. Then, in Section 4.2, we look at quantitative measurements from running
the algorithm over 100 simulations. Lastly, Section 4.3 investigates the performance in
unseen scenarios.

4.1. Visual Inspection

This section presents four 3D plots of episodes to get a general idea of the controller’s
performance. Figure 4.1 and Figure 4.2 depicts four arbitrary runs where the agent
succeeds in reaching the goal in Figure 4.1 and fails in Figure 4.2. The path of each of
the episodes starts out at the origin.
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(a) 3D scenario without obstacles
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(b) 3D scenario with obstacles

Figure 4.1.: Successful runs of the resulting agent on the 3D scenario, with and without
obstacles.

In Figure 4.1a the agent follows the path closely, just as it should when there are no
obstacles. There is a slight deviation between the third and fourth waypoint, where the
curvature of the path is high, similar to deviations seen in Sundøen et al. (2021). In
Figure 4.1b, the agent follows the path for the first two waypoints. The agent goes off
the path with the first obstacle coming into the LIDAR range, and it stays off the path
until it has surpassed the second obstacle. It then seems to try to recover. However, it
overshoots several times. Although not unstable behavior, the agent uses a long time
before finally reaching an acceptable path following close to the last waypoint. The
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successful dodging of obstacles indicates that the CNN feature extractor seems to work,
at least to an extent.

North [m]

150 100 50 0 50 100 Ea
st 

[m
]

150
100

50
0

50
100

Do
wn

 [m
]

0
50
100
150
200
250

Path
UAV Path
Waypoints

(a) 3D scenario without obstacles

North [m]

100 50 0 50 100 150

Ea
st 

[m
]

100
50

0
50

100
150

Do
wn

 [m
]

250
200
150
100
50
0

Path
UAV Path
Waypoints

(b) 3D scenario with obstacles

Figure 4.2.: Unsuccessful runs of the resulting agent on the 3D scenario, with and with-
out obstacles.

In Figure 4.2a the agent follows the path until the second waypoint, then it becomes
unstable and goes off the path until the end of the episode. It is unclear why this
happens. A possible reason could be that the path following performance degraded
since the last training batch was done on only scenarios with obstacles. In Figure 4.2b
the agent crashes right into the first obstacle. It can be observed that the agent swerves
around in the area before the obstacle ultimately crashes into it.
Both runs in Figure 4.2 severely fail. In both cases, the agent moves in an unstable

manner resulting in one of the agents crashing and the other continuing to go out of
control.
Even when the agent succeeds, it has trouble dodging obstacles. It does manage to

get back on track but shows oscillations before establishing a standard path following.
The same behavior was commonly seen over multiple runs. However, it is hard to state
what is going wrong. Due to the nature of neural networks, DRL is a black-box method,
one can not find out the specific reasoning behind its actions. The lack of explainability
makes it particularly hard to find out how to solve failures. One can only look at the
performance and theorize where the issues originate.
There could be multiple reasons. The agent needs to go far off the path to avoid

the obstacles. It could be that the agent in the scenarios without obstacles has learned
to follow the path only when close to the path itself, therefore not handling necessary
deviations well. The problem could be solved by additional training in the scenario
with obstacles, by introducing a larger offset to the initial position of the agent, or by
simply adding environmental disturbances such as wind to force the agent off the path
in training.
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4.2. Quantitative Analysis on Training Scenarios

In this section, the quantitative results are presented and discussed. Figure 4.3 shows
the mean absolute path error at each time step in the 3D scenario without and with
obstacles over 100 episodes each. The shadowed blue area is the range of the standard
deviation of the error at the given time step. A table containing failure rate, collision
rate, and median APE is also presented. The same plots and tables for the other training
scenarios can be found in Appendix A.
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(a) 3D scenario without obstacles
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Figure 4.3.: The absolute path error over 100 episodes each in the 3D scenario without
and with obstacles. At the start, the average is of all the 100 starting
agents. However, as time passes, episodes start to terminate. The shadowed
blue area is the standard deviation of the error. Areas where the standard
deviation is zero, are likely due to a single agent surviving that long.

Table 4.1.: Failure rate and collision rate in the 3D scenario without and with obstacles
over 100 episodes.

Scenario Failure Rate Collision Rate Median APE

3D without obstacles 0.26 N/A 5.78m
3D with obstacles 0.65 0.30 21.08m

In Figure 4.3a the APE is low in the first time steps before steadily increasing up to
an error of around 15m at 12 seconds. At the same time, the standard deviations show
a similar increase. The behavior is as expected since the quadcopter initializes close
to the path. After peaking, the error slowly converges back onto the path. The error
spikes at around 53 seconds could be a result of similar behavior as in the single run in
Figure 4.2a.

In the first 10 seconds of Figure 4.3b, the agent shows error characteristics similar to
Figure 4.3a, as expected since the first part of the paths is identical in the two scenarios.
Afterward, the error in the 3D scenario with obstacles rises. Most agents have observed
an obstacle and are in an evasive maneuver at by 10 seconds. Between 22 seconds and
around 55 seconds, the error declines while oscillatory. These oscillations could be the
results of behavior similar to that of the single-agent run in Figure 4.1b. By 55 seconds,
the error reaches its lowest point. It could be that the agents either have become back on
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the path or have ended their episodes. As discussed in section 4.1, this could be caused
by the agent not having correctly learned how to get back on the path and potentially
solved by employing a higher offset to the initial position of the agent.
Table 4.1 shows the failure rate, collision rate, and median absolute path error of the

two formerly examined scenarios. The table serves as an easy-to-read overview of the
agent’s performance. We read from the table that the failure rate severely increases
when adding obstacles. Most of this increase can be attributed to the collision rate of
0.30, but not all. The remaining failures may stem from the agent evading the obstacle
too aggressively, such that it never recovers and results in a failure. The median APE
increases almost four-fold between the two scenarios. A slight increase is necessary and
expected to dodge obstacles. However, a median APE of 21.08m seems excessive when
the maximum obstacle radius is 10m.
This section gave a detailed overview of the controller’s performance in the training en-

vironment. The controller was able to dodge some obstacles but still crashed often. The
controller had a lower failure rate and median APE in the scenario without obstacles,
implying that it had retained its path following ability.

4.3. Performance in Unseen Scenarios

In this section, we present the behavior of the trained agent in a series of test scenarios
never observed by the agent. Visual inspection of single runs and the failure rate,
collision rate, and median APE over ten runs is presented. The reduction from 100
runs in section 4.2 to 10 runs in this section is due to the higher runtime that is caused
by employing multiple obstacles. The agent was initialized with an offset uniformly
distributed between 0 and 5. If this step had not been taken, that agent would follow
the same path in each run. The single runs can be found in Figure 4.4.
It is important to stress that the agent had never seen scenarios with an obstacle as

large as in Figure 4.4a. However, despite that, it can be seen in Figure 4.4a that the
agent could follow the helical path with deviations lower than the 3D scenario without
obstacles. The agent stays on the path even though the LIDAR detects the obstacle
to its side, showing that the agent has become aware of which direction it is heading
compared to the direction towards the obstacle it observes. Potentially, when compared
to Figure 4.3b, the agent might instead ignore adjacent obstacles and focus on follow-
ing the path. The behavior is consistent with the desired behavior from the collision
avoidance reward term, which penalizes obstacles in front of the quadcopter significantly
more than elsewhere, as seen in Figure 3.3. However, in Table 4.2 a Failure Rate of 0.20
can be observed. While not perfect, the Failure Rate is still low.
In the dead-end scenario in Figure 4.4b, the agent encountered a severely tricky sce-

nario, as it could not follow the usual paths around the object. The agent swerved
around in the middle of the half-sphere before it ultimately crashed. We recorded a 1.00
collision rate in Table 4.2, concluding that the agent failed in the dead-end scenario.
In Figure 4.4c, the possibility of flying above the obstacle was removed. The agent

did not struggle with this scenario, successfully completing it. The zero failure rate in
Table 4.2 further strengthens the belief that the controller can handle the scenario. A
slightly lower median APE than in the 3D scenario with obstacles in Table 4.1 was
observed.
In Figure 4.4d the obstacles were placed horizontally. As in Figure 4.4c, the agent tries

to dodge the obstacles vertically. After still observing obstacles, it instead goes over.
During this time, a collision was recorded. The quadcopter was swerving, accidentally
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(a) A run in an environment with a spherical
obstacle and a helical path surrounding it.
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(b) A single run in an unseen environment. The
environment consists of a spherical obstacle
with the path surrounding it.
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(c) A run in an environment with obstacles
placed vertically next to each other and the
path is a straight line.
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(d) A run in an environment with obstacles
placed horizontally next to each other and
the path is a straight line.

Figure 4.4.: Single runs of the agent in various unseen scenarios. The viewing angles of
the figures are adjusted to extract the most information from the runs.

hitting the obstacles. As seen in Table 4.2, it crashes every single time.
This section shows that the agent has successfully generalized its behavior into some

of the unseen scenarios. The agent succeeded in most runs in the sphere scenario,
showing a lower median APE than the 3D scenario without obstacles. Figure 4.4c and
Figure 4.4d showed that the agent may have a preference on dodging obstacles in the
horizontal plane. It was fascinating to observe that in Figure 4.4d, the agent first tried
to go around the obstacles in the horizontal plane but then went over them instead. The
agent may have overfitted to evade the obstacles in the horizontal plane. Employing a
more diverse set of obstacle placement in the training scenarios could solve this problem.
For example, objects could have a random offset of the path. The agent failed in the
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Table 4.2.: Failure rate and collision rate in the unseen scenarios over 10 episodes.

Scenario Failure Rate Collision Rate Median APE

Sphere 0.20 0.10 0.58m
Dead end 1.00 1.00 5.48m
Vertical 0.00 0.00 20.30m
Horizontal 1.00 1.00 11.71m

dead-end scenario, hovering in the middle of the half sphere.

4.4. Improving the Performance

The complexity of the problem could cause a lack of performance. As mentioned in
Section 3, using DRL to solve the task gives rise to the dual objective of rewarding
both path following and collision avoidance, and these objectives do not always coincide.
Additionally, the system contains faster and different dynamics compared to Havenstrøm
et al. (2021), possibly making the current setup unfeasible.

Countermeasures to the complexity were made but were probably not sufficient. The
depth of the policy network was increased from Sundøen et al. (2021), yet it may still
have been too shallow. Tuning the hyperparameters of PPO, seen in Table 3.1, could
also be a possibility. However, tuning DRL agents is a time-consuming process. A
higher-level action space could have been chosen. The action space could instead be
the commanded collective thrust and body rate, as this is the best-performing control
abstraction in Kaufmann et al. (2022). The higher abstraction level action space would
require a classical control method to map between the collective thrust and body rate
to the forces of each of the rotors. The complexity of the task may have been too high
but could be solved by either a deeper policy network or by having a higher abstraction
level action space.
A solution to the performance problem could be in the training setup. As can be seen

in Table 3.2, the first four scenarios do not have any obstacles. The discrete curricu-
lum learning might have introduced obstacles too late and too sudden in training, such
that the policy is predominantly path following with a slight consideration for collision
avoidance. Solving the problem could be done by introducing continuous curriculum
learning. Instead of the obstacles being discretely introduced, we could ease in the ob-
stacles more carefully from earlier on. There could be few to no obstacles in the early
time steps, but as time passes, more obstacles can be introduced according to a random
distribution. A similar approach could also be applied to the path, making the path
increasingly have more curvature and expand through the spatial dimensions. Continu-
ous curriculum learning can increase performance, especially in collision avoidance, and
remove the domain gap between the different scenarios.
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5.1. Conclusion

The primary research objective of this paper was to develop a path following and col-
lision avoidance method for quadcopters using Deep Reinforcement Learning (DRL).
For this purpose, the reward function was composed of guidance-theoretic features for
path following, obstacle closeness was penalized to induce collision avoidance, and high
rotational velocities were penalized to induce stability. A spherical LIDAR suite was
implemented for external sensing of obstacles, and a CNN served the purpose of di-
mensionality reduction through feature extraction to a latent-space encoding. The DRL
agent was trained in a synthetic and stochastic environment using the PPO algorithm
and a curriculum learning approach. Ultimately, the method resulted in an autonomous
DRL agent with high path following performance and room for improvement in collision
avoidance.

Will the resulting DRL controller with the PPO hyperparameters from Havenstrøm
et al. (2021) and Sundøen et al. (2021) achieve path following and collision
avoidance?

The resulting DRL controller was successful in scenarios without obstacles but struggled
in scenarios with obstacles. In Section 4.1, we showed the resulting agent’s behavior,
both when successful and unsuccessful at reaching its goal. In Section 4.2, we saw a high
failure rate where approximately half of the failures were crashes. The hyperparameters
from Havenstrøm et al. (2021) and Sundøen et al. (2021) were at least a good starting
point that has translated well into this new problem formulation.

Can we exploit the dimensionality-reducing property in convolutional neural
networks for encoding LIDAR observations?

Introducing CNNs should allow for feature reduction with minimal loss of information.
Our results show that CNNs seem to be a viable solution. Nevertheless, some changes
are proposed to increase the performance. We observed that the agent was able to react
to obstacles when they were in the path of the quadcopter while ignoring them when
they were out of the way.

The lack of collision avoidance performance could be a tuning problem. The feature
extractor was set up with a kernel size of 2. The tiny kernel size may have led to
the features not fitting inside the kernels, decreasing the feature extractor performance.
Increasing the kernel and padding size could lead to an improvement.
A more sophisticated CNN architecture could be applied. A limitation of the feature

map output of convolutional layers is that they record the precise position of obstacle
features in the input; small movements in the position of an obstacle feature in the input
LIDAR data will result in a different feature map. Commonly, the problem is solved by
downsampling using pooling layers. Pooling have seen use in many similar applications
(He et al. (2019), Zhang et al. (2020)).
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5. Conclusion and Further Work

Will the resulting DRL controller generalize into unseen scenarios?

The unseen scenarios serve as the test set. Using the unseen scenarios, we can observe
whether the agent has overfitted onto the training scenarios or it has generalized. The
unseen test scenarios were generated with a considerable domain gap to the training
scenarios in both path and obstacles, while the dynamics stayed the same. The general-
ization is good in the scenarios where the agent could employ similar evasion strategies
that work for the training scenarios, but the agent does not generalize otherwise. The
failure to generalize is most apparent in the dead-end scenario. The helical one is sur-
prising and combined with dead-end might suggest that the agent overly favors path
following. Additionally, the failure rate in the scenario with vertically stacked obstacles
was 0, 00, whereas, in the training scenario, it was 0.65. When the obstacles were stacked
horizontally, the agent crashed in every episode. It seems like the agent learned to dodge
obstacles, but only by moving in the horizontal plane.
The solution could be to implement a more diverse set of training scenarios. In the

training, the obstacles were only placed on the path. We propose to randomize the
placement of obstacles within the vicinity of the path,

5.2. Further Work

Despite the demonstrated advantages of the DRL approach, we should stress that the
methodology relies on a black-box Deep Neural Network (DNN) to learn the optimal
policy. If DRL-based controllers are to used for quadcopters, safety guarantees will
become a prerequisite. Implementing and analyzing a similar setup as in this paper
using symbolic regression Kubaĺık et al. (2019) could give a better understanding of the
underlying behavior and reasoning of the controller.
The collision avoidance performance of the DRL controller can be improved. A solu-

tion could be to employ a higher-level action space, as seen in Kaufmann et al. (2022)
to increase the performance potential. Another solution could be to employ continuous
curriculum learning to expose the controller to obstacles earlier in training with less
domain gap. Additionally, the CNN kernel size could be increased or the architecture
modified.
Furthermore, our motivation for arguing in favor of DRL was that it is model-free.

However, we utilized a model in this study because the training was done in a purely
synthetic environment. For the training to be genuinely model-free, we will have to train
the agent in real settings. There are several problems with this. First of all, a back-of-the-
envelope calculation in Appendix A reveals that it would require 17 days of continuous
training if we only had one quadcopter in real settings. One possibility is to use transfer
learning, where the model is first trained in a simulated environment, and then the
training continues in the physical world. Another challenge with training in real settings
is the possibility of the quadcopter crashing. Therefore, real-world conditions training
can be unsafe and have considerable costs in continuously repairing the quadcopter. A
solution could be to employ a predictive safety filter. The filter works by evaluating the
proposed control input and then deciding if it is safe to apply.
While a true model-free approach is currently infeasible, the DRL framework is highly

accommodating to combining existing model-based predictive models and low-level con-
trollers with high-level model-free control. Going away from end-to-end may restrict the
performance ceiling but accelerate learning and facilitate safe operation.
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A. Appendix

Table A.1.: Failure rate and collision rate in Simple 1D, 1D and 2D scenarios over 100
episodes.

Scenario Failure Rate Collision Rate Median APE

Simple 1D 0.26 N/A 0.58m
1D 0.00 N/A 0.68m
2D 0.00 N/A 0.87m

training days =
timesteps total · step size

602 · 24
=

150 · 106 · 0.01
602 · 24

≈ 17 days (A.1)
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(a) Simple 1D scenario
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Figure A.1.: The absolute path error over 100 episodes each in the Simple 1D, 1D and
2D scenario. The blue shadowed area is the standard deviation of the error.
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