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Abstract

Predictive maintenance (PdM) is expected to reduce the maintenance cost by up to 10% and reduce
the frequency of unplanned production disturbances. However, these figures are not verified yet
and the industry faces many challenges in implementing PdM. Especially, the availability of labeled
data sets, which are necessary for predicting the remaining useful lifetime of equipment, is low.
Still, long-short-term-memory (LSTM) neural networks allow early fault detection and root cause
analysis based on unlabeled condition monitoring data, which is readily available in the chemical
process industry.

PdM requires the integration of IoT networks, databases, software, historical data and knowledge
of day-to-day operations of the equipment under study. In addition, the lack of labeled condition
monitoring data increases the need for system knowledge to create and evaluate early fault detection
models. Thus, the thesis discusses the need for, and presents, a failure mode and symptoms analysis
to understand the equipment, possible degradation indicators and how to evaluate the model while
also assessing the data quality of the sources of information used.

A case-study that focuses on ten liquid ring compressors, sensor data analysis and model devel-
opment for fault detection for two different failure modes are then presented. The thesis also
theoretically discusses how these models can be used to find a failure’s root cause with feature
importance analysis.

Lastly, the thesis shows how the experience gained in the case-study can be used when assessing
which equipment is likely to be successfully modeled with long-short-term-memory neural net-
works to detect early fault development and future research necessary in more difficult modeling
situations.
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Sammendrag

Det er forventet at prediktivt vedlikehold basert p̊a maskinlæring vil redusere kostnader relatert
til maskinhavari og vedlikehold med opptil 10%. Mange studier forsøker å definere metoder og
algoritmer for å beregne gjenst̊aende levetid p̊a ulike maskindeler eller systemer. Dette er svært
utfordrende og ofte baserer slike systemer seg p̊a ideelle datasett. Disse datasettene har gjerne
m̊alinger fra systemet i god tilstand, havari og alt i mellom.

I prosessindustrien som er avhengig av høy oppetid, forsøker man derimot å unng̊a uplanlagt
vedlikehold s̊a godt man kan. Derfor mangler det ofte m̊alinger fra systemer i d̊arligere tilstand.
Det finnes da store mengder m̊alinger fra systemet i god eller tilnærmet god tilstand. Dette gjør det
vanskelig å beregne gjenst̊aende levetid p̊a utstyret, men åpner for å trene maskinlæringsmodeller
til å predikere normaltilstanden for et utstyr slik at man kan oppdage avvik.

Dermed undersøker denne masteroppgaven hvordan man kan bruke svikthistorikk og sensorm̊alinger
som allerede samles inn for maskinbeskyttelse og vibrasjonsanalyse til å oppdage sviktmønstre
tidligere enn man kan i dag. Dette forsøkes i et case-studie som undersøker dataene fra ti væsker-
ingskompressorer som er i kontinuerlig drift hos Glencore Nikkelverk.

Oppgaven presenterer og forklarer behovet for å undersøke sviktmodene og tilhørende symptomer
før man kan lage maskinlæringsmodeller. Basert p̊a undersøkelsene velges det to sviktmoder, som
det ønskes å lage avviksmodeller for. En enklere modell for å oppdage behov for vedlikehold i
en platekjøler er laget, og det vises til sensoranalyse for å finne ut hvilke m̊alinger som kan gi
informasjon om hva som fører til lekkasje i mekaniske tetninger. Til slutt presenteres en teoretisk
mulighet for rot̊arsaksanalyse.

Det diskuteres ogs̊a hvordan erfaringene som er gjort i denne case-studien kan overføres til annet
utstyr og gi et startpunkt for videre utvikling av prediktivt vedlikehold.
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Glossary

Anomaly Detection is the detection of a deviation from an intended system state that can lead
to decreased efficiency, partial failures or system failures.

Big-Data refers to data sets that are too large or complex to be dealt with by traditional data-
processing application software.

Cloud Computing is completed by computers/servers connected to the internet, instead of local
computers.

Data-driven Prognosis uses a training data set to fit a mathematical function to the data set
which can then be used to predict an output given some input.

Historian is a database containing historical sensor data at Glencore Nikkelverk.

Industry 4.0 refers to quick changes to technology and industries in recent years due to increasing
interconnectivity and smart automation.

Intelecy is a machine learning software based on LSTM neural networks. It is also the name of
the company that developed the software.

Interlock is used to prevent a machine from harming its operator or damaging itself by defining
conditions where the machine cannot start or must shut down.

Machine Learning is a type of artificial intelligence that allows the software to predict outcomes
without being explicitly programmed to do so.

OPC-UA is a standard for data exchange from sensors to cloud applications.

Remaining Useful Life is a subjective estimate of the time an item, component or system is
estimated to function according to its intended purpose.

SAP PM is a specific computerized maintenance management system.

Supervised Learning is a type of machine learning algorithm where the training data includes
information, commonly called labels, which explain what the model should give as output
given the input.

Unsupervised Learning is a type of machine learning algorithm where the training data does
not include information of what the output should be, commonly called unlabeled data.

Wedge is software for time-series analysis.

Work Order is a document in SAP PM that specifies what work must be done when, usually
maintenance/repair.

Acronyms

AI Artificial Intelligence.

API Application Programming Interface.

CbM Condition-based Maintenance.

CMMS Computerized Maintenance Management System.
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DE Driving-end.

EHS Environment, Health and Safety.

FMECA Failure Mode, Effects and Criticality Analysis.

FMSA Failure Mode and Symptoms Analysis.

GNN Glencore Nikkelverk.

IoT Internet of Things.

LSTM Neural Network Long-Short-Term-Memory Neural Network.

NaN Not a Number.

NDE Non-driving-end.

PdM Predictive Maintenance.

RUL Remaining Useful Life.
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1 Introduction

Many businesses have successfully implemented Condition-based Maintenance (CbM), enabling
them to discover emerging failures and pre-emptively maintain or repair equipment. The analysis
of sensor data is often based on the analysis of the frequency spectrum of the equipment and
static threshold values. However, now businesses are striving toward automating this process by
implementing machine learning solutions to detect hidden patterns in sensor data. As a result,
there exists extensive research on the topic. However, unlike in the industry, where data sets are
usually not labeled and often have few measurements of the system in a faulty state, much of the
research focuses on labeled data sets. On the contrary, this paper highlights a possible method for
anomaly detection and root cause analysis with an LSTM-neural network which is feasible without
labeled data sets.

As the lack of labeled data increases the need for understanding what input machine learning
models should have, a failure mode and symptoms analysis has been completed to gain a deep
understanding of a liquid ring compressor system. The results from that study include practical
experience from business professionals and the importance of such input in developing a novel
maintenance program is discussed and shown in the thesis.

Lastly, the assessment of which input to use and a possible definition of a degradation indicator,
which is necessary for difficult modeling conditions, are presented. An ensemble of anomaly de-
tection and feature importance analysis for root cause analysis is then proposed. The proposed
method is relevant, and a possible starting point in PdM for businesses with limited labeled data
but an abundance of unlabeled process and monitoring data from industrial equipment.

The thesis is conducted in collaboration with Glencore Nikkelverk, the project owner, and Maintech
AS and Intelecy AS, consultants in the project’s machine learning aspect. The project is a part of
Glencore Nikkelverk’s strategy to become more data-driven in its maintenance planning. They have
a tradition of testing new technologies in pilot projects and assessing their use before potentially
implementing new solutions on a broader scale and this thesis is rooted in their pilot project.

1.1 Research Objectives and Questions

RQ1: Which frameworks exist for predictive maintenance?

RQ2: What failure/degradation data is necessary for machine learning tools to detect emerging
failures effectively?

RQ3: How can the existing sensors in the process industry typically used for machine protection
be used to detect emerging failures and facilitate root cause analysis?

1.2 Research Scope

This master thesis aims to research how well the data currently gathered in the process industry
is suited to machine learning applications. The paper presents a case study that tries to detect
emerging failures on liquid ring compressors - commonly used in the process industry - using
machine learning. The model deployed is a Long-Short-Term-Memory neural network, which is
trained on historical data. The collected data is used for automatic machine shutdown systems and
frequency analysis. As it is common for the industry to have vast amounts of data aggregated, this
paper will look at the usefulness of this data. While the data is abundant, it was not necessarily
collected with machine learning in mind, which presents a challenge for the industry as they are
trying to implement Industry 4.0 technology such as predictive maintenance.
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1.3 Limitations

Notable limitations have been the availability of data measurements in the Intelecy software. In-
formation security concerns about connecting the existing software to cloud computing services
have delayed the access to sensor data and live data streams to test the software and models in
action. However, it was possible to upload sensor data for all the compressors from 01.01.21 to
22.03.22. Still, the number of registered failures in this period was low, so there were few specific
cases to investigate. Furthermore, the extraction of this data was time-consuming and would often
crash, so this work-around solution is not sustainable in the long run. Ideally, the machine learning
models would be trained with a time-series representing a healthy state and later fed testing data
from a faulty condition. Thus, it would be possible to see if the model could recognize the known
faulty state in that data.

It was possible to access the sensor data through another time-series analysis software called
”Wedge” to look at trends and perform statistical analysis. However, the database failed in late
May because of some system bug in the software related to a password change. Thus, historical
faults could not be investigated as planned. The last option to view historical trends was directly
in the ABB control system, but the historical trends are deleted after one year and most of the
known failures were further back in time.

3



2 Method

2.1 Framework

The thesis is largely based on a case-study of the development of a predictive maintenance program
for liquid ring compressors. The case study presents the challenges, opportunities and difficulties
in developing a novel predictive maintenance program based on machine learning analysis for
industrial equipment.

The case-study is preceded by a shorter theoretical section that presents the current focus area of
academia to give the reader some context of what the thesis aims to achieve and how the results
from this study contribute to the body of knowledge within predictive maintenance applications.

The methodology used in the thesis represents an outcome-driven research, where research starts
with a known outcome or result and builds an explanation from the observations seen in the past by
archives, interviews or traces as sources to construct a story (Encyclopedia of case study research
2010). The methodology is visualized in figure 1. In this case-study the archives can be seen as the
failure history, sensor data and experience of industry professionals. By investigating these sources
of information closely, hypotheses about the failure modes, failure causes, etc. of the liquid ring
compressors are presented and form the base on which further research relies.

Figure 1: Outcome-driven explanations.

Source: Encyclopedia of case study research 2010

One of the limitations that could result from theorizing about the past is that topics of interest
may not exist at the time of the study and this would limit the variety, diversity and heterogeneity
of the study. In fact, there are examples of that from this case-study. For instance, bearing failures
were more frequent in the past, but have been less frequent in the last two years. Thus, it could be
that the focus of this study would be quite different if the failure history of the compressors were
not the same. Or as Encyclopedia of case study research 2010 states for organizations (which in the
general sense might as well be historical failures of the compressors): ”In the case of organizations,
for example, only the ones that survive to produce the outcome of interest will be examined, and
the ones that did not survive, or were transformed into something else, are not considered, although
there is potentially much to be learned from their contribution and historical significance.”

Not the least, there is a risk of constructing an explanation or story to fit the outcome. Knowledge
or events may be forgotten over time if there is no documentation or if an event has not been
sufficiently reinforced in the memory of individuals or organizations who experienced it.

By assessing the workflow of the case-study, presented in figure 2 and noting the emphasis on
historical records, the limitations of the outcome-driven approach should be taken into account
when interpreting the results of the case-study.

4



Figure 2: General work flow of study.

Similarly, the book also notes that: ”left truncation, a form of sample selection bias, may occur
if important elements of a population are not included for study because they are not evident at
the time of the outcome, potentially resulting in skewed conclusions.” Accordingly, the quality of
the results of this case-study can never be higher than that of the failure history, sensor data and
in-house experience which it builds on.

2.2 Empirical Data Collection

The first step in the empirical data collection was four semi-structured interviews with different
people with hands-on experience with the compressors. The purpose of the interviews was to get
an initial idea of the most frequent and serious failures that the compressors experience. More
than that, they explained how the different parts of the compressor system work and the current
interval- and condition-based maintenance strategies used for the compressors.

The chosen interview style was semi-structured, where a few questions were pre-defined in an
interview guide, presented in appendix B. The style of interview was chosen because the pre-defined
questions were not necessarily covering all areas that could be of interest. All interviews started by
explaining the purpose and goals of the Master Thesis in general and how it would be used in the
study, such that the interview subjects could form their own opinion of what information might be
useful outside of the questions. Their answers were recorded in a notebook during the interviews.
The results are not presented separately in the thesis, instead, the interviews contributed to FMSA
process and the results are merged into the final FMSA sheet.

In the beginning phase of the project, it was first necessary that the project group had a deep
understanding of the compressor system before being able to decide which direction the project
would go. Maintech AS with 20+ years of experience in maintenance optimization from the oil and
gas industry led the first workshop and explained FMSA methodology of systematically analyzing
the system and the importance of the participation of industry professionals at GNN. The version
of the FMSA sheet that was used, has been developed by Maintech and follows the IEC 60812 and
ISO 14224 standards.

The project group is interdisciplinary and present at these workshops were:

• Metallurgical engineers (GNN and Maintech)

• Maintenance engineers (GNN and Maintech)

5



• Maintenance (CbM/vibration) specialists (GNN)

• Data analysts (Intelecy)

• Control systems engineer (Intelecy)

• Process control engineer (GNN)

• Mechanical engineering student (NTNU)

In the three workshops the group had, the compressor system was assessed by a bottom-up ap-
proach. All main components, their functions, failure modes, failure causes, etc. were defined and
put into the FMSA sheet, presented in appendix A. Based on the results, two failure modes would
be the focus of the remainder of the project. During the workshops, many different aspects of the
project were discussed. Among other things; data quality, access to sensor data, material selec-
tion, soft start systems for the electric motors, consequences of the ideal gas law and Arrhenius
relationship for the compressors.

The boundaries of the system under study, presented in figure 3 were also decided by the project
group. Within the red lines is the compressor system. In this representation, only one compressor
is shown, even if the compressors operate in parallel. Initially, it was planned to use historical
data from all three large and seven small compressors and create two models—one for the large
compressors and one for the small compressors. After that, though, because the compressors differ
slightly in set-up, instrumentation and age, it was decided to focus on one compressor at a time
and analyze them separately. As a result of that and the limitations in sensor data access, the
choice of which compressors to investigate has been opportunistic and based on whether any known
failures were present in the historical records.

Figure 3: System boundary.

The historical data used in the case study has been sourced from the history of work orders related
to the compressors in SAP PM (the computerized maintenance system used at GNN). Specifically,
the work orders contain information about:

6



• Equipment identification number

• Date and time

• Contact person

• Description of maintenance need

• Description of the completed work

• Total cost of maintenance (spare-parts cost and cost of labor)

Lists of relevant work orders and the information mentioned above were exported to Excel but
were not complete. Therefore, it was also necessary to look up the work orders in SAP PM and
see if there were more information available. Exactly how SAP PM is used varies a little from
person to person. Sometimes the maintenance needs were described in different text fields which
were not exported to the Excel sheet. Therefore, a ranking based on the failure mode and work
order costs was used to select 75 work orders that were more closely analyzed to ensure that
all relevant information about failures was found. Of course, more work orders could have been
investigated this way, but the analysis findings started to become repetitive and closely resembled
what experienced maintenance personnel described as the most common failures in the interviews.
During the writing of the thesis, more interesting work orders have been analyzed, but not in a
systematic order.

An internal record of more serious chlorine gas leaks in the compressor room has also been available
for the project group. It contained records of parts failures and human errors that have led to
large gas leaks. It has been useful for the author to understand the multitude of things that can
go wrong with such a complex system as the compressors represent. On the other side, it had less
information about the specific cases that have been decided to be the focus area of this study and
is more related to the day-to-day operations of the plant.

While investigating the work order history, it seemed that some work orders had been used to
associate the cost of buying spare parts for all compressors but were registered on a single com-
pressor. Also, sometimes the high cost associated with a work order for a minor repair seemed to
indicate that more parts and labor were used than what the description of the work order included.
Generally, the work orders could hold valuable specific information but were more suitable for un-
derstanding the most common failures and associated costs. In the end, the work order analysis’s
most significant contribution was knowing when a particular fault had occurred in the past such
that the sensor data before and after could be assessed.

The historical sensor data has been accessed through a server, colloquially called Historian, which
contains sensor readings for the compressors and the factory in general. The data is available via
an Excel add-on package or in Wedge, a time-series analysis software. Sensor data is continuously
uploaded to the database, such that in practice, a live data stream is available via the Historian.
Additionally, a copy of most of the sensor data for the compressors in the period 01.01.21 - 22.03.22
were uploaded to the Intelecy software to be used in the machine learning model development. In
the future, Intelecy will also have access to live sensor data. Lastly, the ABB control system has
information about threshold values that will initiate an automatic shut-down of a compressor.
It can also be used to look at trends of sensor measurements and shows some simple statistical
properties of those but is limited to one year back in time before the data is deleted.

To investigate how the sensor values change according to failure modes, a dashboard containing all
sensor tags was systematized in the data analytics program ”Wedge.” The purpose of the dashboard
was twofold first, to have a visual representation of the available sensor readings and secondly, it
enables GNN to instantly view and analyze sensor readings from a specific time interval, using the
history of work orders with information about failures in SAP to find interesting time intervals
to investigate. Also, it is possible to create calculated variables from the sensor readings, often
referred to as ”soft sensors.” During the making of the dashboard, it was clear that not all sensors
shown in the PID documents for the compressors were stored in the database and these were
then later added to the dashboard. These sensor values were thus not recorded and stored in the
database before 10.03.2022.
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2.3 Theory and Literature Study

The primary objective of the chosen literature in the thesis was to document the current focus
of PdM and the challenges related to incomplete data sets that often are the main barriers to
implementing PdM in the chemical process industry. Thus, the literature reviewed has focused on
anomaly detection and root cause analysis in unlabeled data situations within PdM applications.
Nevertheless, extensive literature reviews conducted by others were examined to describe the bigger
picture in PdM.

Notably, the purpose of the literature assessment was not to conduct an extensive literature research
within PdM but to understand where further research is needed and to show how the aim of this
thesis contributes to the current research. Lastly, the purpose was to find literature that could aid
in the development of the maintenance program for the compressors.

NTNU’s library search engine Oria was used to search for literature. Search strings used were:
(“predictive maintenance” OR “anomaly detection”) AND (“machine learning” or “anomaly detec-
tion”). Also, while reading extensive literature reviews, referenced articles on anomaly detection
were analyzed as well. The assessed articles were only selected if they were peer-reviewed and
published in trusted academic journals. Additionally, a book on practical time-series analysis was
assessed based on the supervisor’s recommendation.

The literature review of PdM case studies was conducted to answer the following research questions.
The review did not seek to explain the concept of PdM and focused on real applications of PdM
and practical information and ideas to implement PdM. The articles were also selected on the basis
that they hold valuable information that might be applicable at GNN.

Research Questions

• Q1: Which machine learning techniques
are used to perform PdM?

• Q2: What kind of equipment is subject to
PdM?

• Q3: How is machine learning employed in
the PdM applications?

• Q4: What kind of data is used to train the
models?

Exclusion Criteria

• Articles that do not present a case study

• Articles dated before 2017

• Articles that are not peer-reviewed

Search string: (“predictive maintenance” OR “PdM”) AND (“machine learning” or “machine
learning technique”)
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3 Theoretical Background

3.1 Introduction

Maintenance comes in many forms and can be categorized by the degree of pro-activeness, which
decides when the equipment is repaired. Maintenance scheduling is complex, and even predicting
failure times of single components is not a novel task. Consequently, predicting failures of equip-
ment consisting of a great number of components is even more challenging. Thus, many frameworks
have been developed for how to schedule maintenance actions. Figure 4 below showcases what is
generally acknowledged as the main types of maintenance today. Corrective maintenance (Level 1)
refers to maintenance completed after a failure has occurred. The higher levels all have some degree
of pro-activeness, starting with maintenance completed at certain intervals, which could be based
on previous failure times or the manufacturer’s recommendations. Preventive maintenance relies
on nonlinear parametric models to decide maintenance intervals, while condition-based mainten-
ance decides when maintenance is necessary by monitoring equipment health; usually, maintenance
is completed when a monitored value reaches a threshold value. At level 5, predictive mainten-
ance uses machine learning and statistical models to predict machine failures based on machine
health indicators. These could be vibration signals, environmental conditions, operation modes,
etc. Lastly, prescriptive maintenance (PsM) tries to extend the concept in predictive maintenance
by using the predicted failures to recommend real-time measures - operating and maintenance de-
cisions - to counteract failures and aid production scheduling as well (Gordon et al. 2020). It should
also be noted that these concepts overlap, and definitions may vary depending on the author. Some
authors also regard preventive and interval-based maintenance as the same, and condition-based
and predictive maintenance as the same.

Figure 4: Maintenance types.

Source: Gordon et al. 2020

However, it must be emphasized that predictive or preventive maintenance is not better than
corrective maintenance per se. Importantly, which strategy to select should be closely assessed
to ensure cost-effectiveness. Often corrective maintenance is the simplest to implement and most
cost-effective strategy. On the other side, if failures are dangerous or costly, the higher levels could
be better choices but are more complicated to implement. A closer look at maintenance strategy
selection is presented by Andersen 2021.

3.2 Predictive Maintenance

In predictive maintenance (PdM), three activities are generally present: detection, diagnosis and
prognosis. First and foremost, a failure or emerging failure must be detected by sensors and then,
based on which sensors and the corresponding sensor values, a diagnosis can be inferred. Lastly,
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if there is a degradation pattern, the remaining useful lifetime of the system or component can be
estimated. Together, the combination of this information is valuable to maintenance management
as it enables better planning of production and reduced costs related to corrective maintenance. In
the literature, many different data-driven analytical models aim to realize this. However, to what
degree these possible improvements can be achieved is not verified yet (Hermansa et al. 2022).

As stated, prognostics is central to predictive maintenance and is defined as the prediction of a
future problem in a system. Similarly, forecasting predicts a future sensor value and can also be
used to predict unacceptable health by defining a threshold value for that sensor (Namuduri et al.
2020).

The analytical models are based on machine learning and statistical models and rely on multiple
types of data; time-stamped measurements of physical properties, condition-data, environmental
conditions and process measurements. This is often coined multi-variate data and has become in-
creasingly accessible with the development of the Industrial Internet of Things (IIoT), as visualized
in figure 5.

Predictive maintenance is expected to improve equipment up-time by 10-20%, reduce overall main-
tenance costs by 5-10%, and reduce the time spent planning maintenance by 20-50% (Gordon et
al. 2020). However, the application of machine learning classification and regression methods has
some clear limitations. These models can only be trained to recognize and predict failures if there
is enough historical data from the system in a failed state. Additionally, most systems have several
failure modes, which may be rare and dangerous events. To put it simply, what we are trying to
achieve is dependant on what we want to avoid, eg. breakdowns and costly maintenance. Thus,
data sets for industrial machines rarely contain enough data addressing failure modes to train
classifiers and regressors. However, in these cases it is possible to use outlier detection methods to
identify measurements indicating an upcoming failure (Hermansa et al. 2022).

Figure 5: Visualisation of an industrial sensor network.

Source: Namuduri et al. 2020

Nordal and Idriss El-Thalji 2021 highlights that technical requirements and specifications must be
considered to standardize guidelines to design PdM-ready equipment. The ISO 13379-1 and ISO
17359 standards stipulate the implementation of condition-based maintenance (CbM), showing how
to monitor failure propagation through failure mode and symptom analysis (FMSA). However, the
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are no standards regarding PdM-ready equipment. Whereas CbM requires installation of sensors
and data acquisition systems, PdM also requires that the hardware is aligned with the software
to perform the required detection, diagnosis and prognosis. Additionally, PdM combines data
from sensors and enterprise-level data of varying quality. It must be decided what the failure
symptoms of failure mechanism are and what sensors could detect that symptom. Later, extracting
meaningful features and data analysis techniques must be selected to detect the symptom as early
as possible, diagnose and preferably predict. To add to that, the system must consider fluctuating
operation, different load situations and fault interactions. Combined, these issues make predictive
maintenance hard to accomplish in practice.

All together Nordal and Idriss El-Thalji 2021 summarizes four different requirements of PdM:

1. ”the symptoms identified must be clear and easy to track”

2. ”the diagnosis technique must involve reliable and accurate algorithms that enable detection
of the failure mechanism at the preferred stage (incipient, degraded, or critical).”

3. ”the prognosis technique must facilitate reliable and accurate RUL estimation”

4. ”these aforementioned requirements must be able to manage transient operational charac-
teristics (e.g., fluctuation, change of loading), multiple failures, and failure interactions.”

3.3 PdM Assessment Matrix

According to Nordal and Idriss El-Thalji 2021, technical analysis is an integral part of reaching
a detailed understanding of system criticality and risk assessment. FMECA and FMSA are well-
known and standardized bottom-up approaches. Both methods have the same objective of giving
a holistic view of the total risk for a system. Where FMECA examines the effect and consequences
of specific failure modes for that system, FMSA is more directed at detecting failure modes and
linking failure modes to specific monitorable symptoms using sensor technology. As such, FMSA
is well suited for the preparatory phase of a developing PdM and CbM.

Figure 6: General FMSA.

Source: El-Thalji 2019

However, El-Thalji 2019 notes that during and after making a FMSA worksheet, many more
questions arise and should be answered. For example, one might ask; should we measure all
symptoms or only the most critical symptoms? Do we have the sensors necessary to detect these
symptoms? How early could they be detected? How will we handle fluctuations in the measured
symptom? What about different operation modes? For sure, there are many considerations to
contemplate and the author of this study proposes what is called a PdM Assessment Matrix, shown
in figure 7. This model was further developed to include quantifiable ranking of the different failure
modes and symptoms for the development of PdM-systems by Nordal and Idriss El-Thalji 2021
and is included in ISO 13379-1. It is a further development of FMSA and seeks to incorporate
more technical requirements of detection and prognosis in PdM, which are not addressed in FMSA.
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Figure 7: PdM Assessment Matrix.

Source: El-Thalji 2019

3.4 Data-Driven Prognosis

Usually, when modelling complex systems there are not any known physical relations or math-
ematical equations available to model the degradation pattern (of course, using physical relations
can offer support, but not describe the full dynamics). Thus, the option falls on data-driven
prognosis. It is based on observed or measured values of different parameters available from the
system. Oftentimes there will not be any specific measurement that can give a clear indication
of the degradation level of the system, and the degradation must be estimated based on several
measurements (e.g., voltage, rotational speed and many more). How the degradation indicator is
calculated, must be decided for each individual system (Yin 2021).

How one assesses the system’s degradation level can be divided into three categories: fault detec-
tion, fault isolation and fault estimation, shown in figure 8. The category used depends on the
goal of the system modelling. If only fault detection is necessary a binary degradation indicator
is sufficient. For fault isolation or classification of the state of the system a degradation indicator
separating several states of the system is possible too. Lastly, a continuous representation of the
system state is also possible, which is closely related to the ultimate goal of PdM: predicting the
remaining useful lifetime (RUL).
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Figure 8: Degradation indicator models.

Source: Yin 2021

Generally, the steps included in any data-driven prognosis include the steps shown in figure 9.

Figure 9: Data analysis pipeline.

Source: Namuduri et al. 2020

There exist several statistically based data-driven prognosis methods. The most-well known being
simple linear regression that estimates the relationship between a dependent variable and one or
more explanatory variables.

Y (t) = X(t) + ε(t) (1)

Where Y (t) is the observed condition and X(t) is the actual condition at time t. ε(t) is the random
error from the measurement. Assuming that the observed degradation pattern continues in time,
the time before the degradation reaches a certain threshold, can be estimated by Monte-Carlo
simulation.

Another possibility is to study the degradation increments between time tn and tn+1 and use
statistical analysis to fit a distribution to the observed degradation increments. By using known
maximum likelihood estimators (MLEs) to decide the parameters of the distribution, the degrada-
tion pattern can then be simulated using a Wiener or Gamma process. Again, using Monte-Carlo
simulation and recording when each simulation hits a threshold degradation value, the RUL can
be estimated based on observed degradation until time tk. In figure 10, the system has been mon-
itored until tk = 60 time units, and ten simulated degradation paths are shown in the red area.
However, even if these models give useful estimations of RUL, they are built on top of underlying
assumptions of the Wiener and Gamma process and - usually - these assumptions cannot be veri-
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(a) Wiener process with drift. (b) Linear regression and simulation.

Figure 10: Examples of statistical data-driven models.

fied (Zschech et al. 2019). Therefore, the main focus of this chapter will be on machine learning
methods.

In both of these models the RUL can represented as a stochastic time-dependent variable and
presented either by the mean or by a histogram showing the distribution of the RUL from the
Monte-Carlo simulation.

Supervised learning is the most used machine learning algorithm. Here, training data is supplied
with target variables, often called labels, which explain what the model should give as output given
the input data.

D = {xi, yi}N
i=1 (2)

Where xi represents a vector of independent variables and yi represents the value of the dependent
variable for the ith sample. N represents the number of data samples. After the model has
been trained it can be used to predict labels given the input data. The predicted labels are then
compared to the real labels. One such accuracy measurements can be mean squared error, as
shown in equation 3 below, but there exist many others which and the use of them depends on the
specific application.

MSE =
1

N

N∑
i=1

(ŷ − y)2 (3)

Unsupervised learning is another machine learning algorithm where the target variables are not
available. The data can be represented very similarly as in equation 2, but without the target
variable yi.

D = {xi}N
i=1 (4)

Where xi represents a vector of independent variables for the ith sample. N represents the number
of data samples. Clustering, dimensionality reduction and denoising are examples of unsupervised
tasks. Because there are no target variables to check the results against, unsupervised learning is
a very challenging task and an area of research.

Generally, in the context of PdM, there are three main situations a business who wants to use
machine learning to analyze process data might find themselves in. First, in the ideal situation,
the business has a large amount of data from the system in a healthy state and in a faulty state,
and corresponding labels(information) for each state. In that case, supervised machine learning
techniques are suitable and if there is a concrete degradation pattern, its success in predicting
RUL is well documented. However, this requires a fully representative training data set that
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reflects the behavior of the system in healthy and faulty condition and under different operating
conditions, which as mentioned before; is highly unlikely for systems that require high availability
and are rigorously maintained to avoid unplanned and/or dangerous events. Thus, the authors of
Zschech et al. 2019 highlights the need for a distinction based on data availability to determine
what machine learning approach to adopt.

Naturally, the second case is that the data set is only partially labeled, which could be the result
of maintenance actions that are completed long before a severe or catastrophic failure occur. In
turn, making the data set incomplete and truncated. Here, semi-supervised methods can make
use of both labeled and unlabeled data. One such method is proposed by Yuan and Liu 2013.
Additionally, linear regression, Gamma or Wiener process simulations can be used to estimate
RUL if the assumptions are suitable for the given system or can be verified.

The third case is when no labeled data set is available and manual labeling of data sets is considered
too expensive because of the efforts required to integrate field knowledge of experienced people
and systematically go through potentially years of sensor data. An additional challenge is present
when there are no direct measurements (sensors) indicating the degradation level of the system
and the degradation must be estimated based on several measurements. Here, it is possible to use
product quality as a label, which is generally available in the manufacturing industry, but it is not
guaranteed that this information can be directly linked to the degradation of a particular machine
in a complex manufacturing line. Thus, unsupervised machine learning techniques are the only
option left. This area of PdM is the least researched and Zschech et al. 2019, claims that, to the
best of their knowledge, they present the first case-study using completely unlabeled data with
unsupervised machine learning in the context of PdM.

3.5 Anomaly Detection

An anomaly is a deviation from an intended system state that can lead to decreased efficiency,
partial failures or system failures. Traditionally, detection methods for anomalies have been based
on statistical and non-time-dependant models, for example static threshold values. These methods,
however, fail to address the complexity and evolving nature of anomalies and the cause of the
anomaly is often unknown in complex systems. Now, with the increased use of artificial intelligence
and new developments within deep learning networks, especially the Long-Short-Term-Memory
(LSTM) neural networks have shown the ability to detect anomalies while also taking the temporal
and contextual characteristics into account (Lindemann et al. 2021).

Anomaly detection is used to cope with a variety of different natures and use-cases, where time-
series anomaly detection in predictive maintenance is one application of many. It is also commonly
called outlier detection, rare events or novelty detection and are used with different intentions
depending on the application. Within predictive maintenance, anomaly detection algorithms iden-
tifies singular points that may affect not only that instant but also a subsequent interval and such
that that an intervention to counter-act the anomaly can be initiated (Carrasco et al. 2021).

According to Lindemann et al. 2021, existing surveys on anomaly detection techniques hardly con-
sider deep neural networks and LSTM architectures. These surveys mostly differentiate between
statistical, classification-based, clustering-based and information-theoretic approaches. Thus, tech-
niques as principal component analysis (PCA), support vector machines (SVM), k-nearest-neighbor
(k-NN) algorithm or different types of correlation analysis are the focus of the investigations.

Specifically, for the Intelecy software used in this case-study, anomaly detection is realized in
two parts: prediction of the expected level using a variety of input parameters depending on the
specific case and a comparison of the measured level vs. the predicted level. Then, algorithms
that detect spikes and slower drifting from the expected behavior are used to identify an anomaly.
The prediction model is called a ”Nowcast” and can be seen as a model that predicts the level for
a given output now (not ahead in time), given all the latest input data. In practice, that means
that the long-short-term-memory deep network that the system built on top of is trained with
time-series data from the system in a known healthy state in different modes of operation and
predicts the expected behavior of the output variable. In that way, the model cannot predict the
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system’s behavior when it is not functioning as expected and anomalies can be detected. Again,
the importance of having a clear indicator of degradation is also present here, as the Intelecy
software predicts only one sensor value and identifies anomalies based on the difference between
the predicted value and measured value from a real-life sensor.

After a model has been trained with a time-series from a known healthy state, representing as many
variations of normal operation as possible, the user must assess the model performance by testing
it on a period with a known fault or detrimental conditions. There are two user-defined variables
for anomaly thresholds that define the difference between anomalous and expected behavior:

• A short anomaly threshold value used to detect anomalies where the threshold is exceeded
on data with a ten minute moving average.

• A spike anomaly threshold value used to detect anomalies where the threshold is exceeded
on data without any smoothing or rolling averages.

According to Intelecy’s data analysts, the input data should not be cleaned, except to assess if the
sensor data is trustworthy and correct. Otherwise, data cleaning should be completed by software
before storing it in a database, so all the input data is consistent over time. While this might
sound conflicting to the theory presented earlier, where data cleaning techniques are an essential
part, Intelecy has some built-in data cleaning and highlights the need for realistic training data
which reflects the normal operation conditions not only of the technical system under study but of
the data collection system as well. Notable things that are expected to happen are, for example,
data fallouts or NaN (not a number) conditions. For the model to cope with such conditions, these
errors should not be removed from the training data. The software has numerous possibilities
for filtering out anomalies that may result from data errors and is also a part of the testing and
validation process. In the end, this allows the model to function effectively in a live setting where
anomalies are identified in real-time.

A dashboard showing identified anomalies can be viewed in a web-page user interface or be con-
nected to some other notification program by an application programming interface (API).

3.6 Root Cause Analysis

In case of a detected anomaly, it is also necessary to infer a root cause, such that specific mainten-
ance actions may be planned. Alfarizi et al. 2022, which developed an integrated fault detection,
fault-classification and root cause analysis tool based on Extreme Gradient Boosting, propose to
infer root causes based on feature analysis. By reviewing which features explain the variance of
the fault data the best, one can assume that the logical cause of variance in that feature is the root
cause of the failure. In their research, based on the PHM Challenge 2021 data set collected from
a real-world industrial setting, the most important signals (and corresponding calculated features)
for different failures are based on feature importance analysis. Contrary to the case-study in this
project, the data set is labeled, which allows them to use the predicted classes of faults to decide
the root cause as well.

Intelecy software also integrates feature importance analysis and other analysis methods that can
be used to analyze faults after they occur, but cannot do so automatically. Importantly, because
there are no labels available, the user must define a ”quality indicator” and what ranges of this
variable is wanted. The term ”quality indicator” refers to the most frequent application of feature
analysis: to decide which factors influence product quality the most. In the abstract sense though,
a certain sensor value can be viewed as good or bad quality. Specifically related to predictive
maintenance, a degradation indicator could be assessed this way.

Intelecy can then assess which features impact the most on realizing the defined quality. Figure
11, shows a snapshot of this tool where the amperage of compressor B is used as an example. The
user defines whether good quality is higher or lower than specific threshold values. Additionally,
the user can specify a no-decision-area between the low and high thresholds to better separate
anomalous and normal behavior.
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Figure 11: Intelecy quality analysis.

The example shown in figure 11, yields the feature importance ranking shown in figure 12 with
a goodness of fit of 91,9%. Again, because this deals with unlabeled data, the importance of
understanding the system under study is greatly increased because the user must assess which data
to analyze. The software also does not factor in causality when trying to explain what influences
the data. Therefore, the term ”shit in, shit out” is important to keep in mind. For instance,
in this example, Intelecy ranks the output pressure as the most important feature explaining the
amperage. In reality though, amperage is much more likely to explain the output pressure, not the
other way around. The point is, the analyst must take system knowledge into account to effectively
use feature importance analysis. If done correctly, conclusions about the root causes of failures
can be inferred.
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Figure 12: Intelecy feature importance.

3.7 Predictive Maintenance Case Studies - Literature Review

According to Andersen 2021, business professionals at Glencore Nikkelverk (GNN) have asked for
more PdM proof of concepts and Yunusa-Kaltungo and Labib 2021 found that: ”Case studies in
maintenance decision making and optimization are underrepresented in current literature despite
a consensus that there should be a reasonable connection between the theory and practice of
maintenance.” Thus, this chapter highlights and briefly explains a few possible ways to design a
PdM system according to the literature. The reader is kindly asked to read the referred articles
for a full explanation of the material.

Generally, in an extensive literature review conducted by Carvalho et al. 2019, it can be seen in
figure 13 that PdM is a relatively new area of research. The first mention of PdM in the literature
was in 2009, and since 2012 there has been an upwards trend in the number of articles published.

18



Figure 13: Number of papers per year.

Source: Carvalho et al. 2019

Chen et al. 2020 analyzed time-series data of the closing and opening rates of a pneumatic cylinder
used in the automotive industries. The model deployed was a deep learning neural network. The
authors of this study examined the degradation process based on the action times and gathered a
data set, shown in figure 14. Where a good state means that the cylinder closes and opens quickly.
The data suggested that the degradation was monotonously increasing in time (action time of
cylinder increases). A model trained with time-series data with the action time of the cylinder was
later implemented on a live data stream and was able to diagnose the cylinder as either a normal,
degraded or faulty state. The authors conclude, ”Currently there are sufficient data sets available
for equipment reliability evaluation. Although the multi-source sensing data collected by large-scale
industrial processes are increasing rapidly, it is still difficult to model the complex performance
degradation process. In the context of industrial big data, data-driven algorithms of equipment
reliability prediction are of great significance in both academic and engineering environments”.
Reading the article, it is clear that the case study is regarded as a simple one because of the clear
degradation pattern (measurement of the action time) and the possibility of collecting a labeled
data set.

Figure 14: Details of data samples in verification.

Source: Chen et al. 2020

In another study, Bampoula et al. 2021 used an LSTM-autoencoder system to predict failures in a
steel production facility, specifically on a rolling mill machine. It was outfitted with sensors giving
27 measurements from the machine and the environment every 45 seconds. The authors state
that it was a very challenging task to decide the correct set of parameters that may be associated
with potential failures. To cope with this, they plotted and examined the historical data and
a factory expert’s knowledge and maintenance records to identify patterns to select the most
essential features. They defined three states for the machine: ”initial”(healthy), ”intermediate,”
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and ”bad.” Using historical data and maintenance records, they created one data set for each
state and trained the model to recognize these. The study concludes, ”The main limitation of the
proposed approach is that the use of multiple neural networks to identify the status and the RUL
at higher resolution can be very difficult, as the system may predict fault classifications and may
not be able to recognize neighbor states. Another limitation of this approach emerges from the
need for maintenance records for labeling the data sets and the need for large amounts of good
quality data with maintenance events such as component breakdowns.”
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4 Case-Study

This section presents the methods used in the case study. The section presents the different phases
of the project and shows what methods and analyses have been done to reach the results presented.

It should be noted that the system under study is complex, and to the author’s best ability it
is described carefully. The intent being that the reader can get a practical sense of the system
before presenting a more comprehensive study in the form of a failure mode and symptoms analysis
(FMSA). The findings from that study form the baseline for the specific components investigated
and subsequent analysis presented later.

4.1 Introduction

The case study focuses on ten liquid ring compressors in the KL department. The compressors
function in parallel and draw in chlorine gas from two sources: the electrowinning cells and the
electrolyte dechlorification system. Three compressors are supplied gas from the electrowinning
cells and seven from the declorification system at GNN. However, both sub-systems direct the
pressurized chlorine gas to the same outlet pipe and supply the tanks that dissolve the raw material
using hydrochloric acid and chlorine gas (yellow line in figure 15). To put it simply, if the two or
more compressors fail simultaneously, the production could be reduced/stopped and this will cause
financial losses. Another important consideration is the environment, health and safety (EHS).
These compressors are heavy machinery and failures could result in person injuries. Furthermore,
the chlorine gas itself is poisonous and poses a danger to people if the seals rupture or if the
compressors have a catastrophic failure. The compressors transport about 10-15 tons of chlorine
gas per hour, depending on the electrical current supplied to the electrowinning cells.

The first compressors of the small type were installed in the 70s and more has been added over
the years to cope with increased production and the corresponding increase in chlorine gas pro-
duction/consumption. In the early 2000s, they installed one more large compressor, with twice
the capacity of the small compressor type and two more at a later point. The compressors are
fitted with numerous sensors. Though not all compressors are equipped with the same sensors,
sensor data is available for many years back. Consequently, Glencore Nikkelverk (GNN) has a lot
of in-house knowledge and data related to these compressors and seeks to incorporate that into
the PdM pilot project.
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Figure 15: Simplified process overview.

Source: Glencore Nikkelverk.

The compressors can operate reliably for an extended time and rarely have unexpected failures
that are so serious that the production is stopped. Additionally, a liquid ring compressor is an
inherently reliable design as there is only one moving assembly within the compressor, namely the
shaft, impeller and mechanical seals. Together with the redundant compressors fitted at GNN, the
compressor system is highly reliable. Thus, the usefulness of this case study may be questioned
regarding expected results. However, as stated by GNN, their main priority is developing and
testing Industry 4.0 technology before eventually investing more time and resources into the project.
Therefore, the compressors were selected for this project because of the many sensors and historical
data available. Of course, the drawback is that there are fewer known cases of failures. Nevertheless,
even if unexpected failures are rare, the cost of maintenance is still high. Hence, if it is possible
to extend maintenance intervals and get early warnings of failure, that would contribute to lower
maintenance costs as well.
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An early-stage plan and overview of the project are presented below.

Challenge

• Large maintenance costs. Yearly average
of three million NOK last five years.

• Average production loss the last two years
because of compressors has been 50 tons
Ni/year.

• Failure of one or more compressors has
implications for production and mainten-
ance.

Goal

• Develop, test and evaluate Maintenance
4.0 technology.

• Detect emerging failures earlier than today
and predict remaining useful lifetime.

• Reduce the yearly maintenance cost
by 20% for the compressors (0.6
MNOK/year).

• Reduce the yearly production loss by 20%
(10 tons Ni/year).

Hypothesis Predictive maintenance with machine learning technology can give early warnings of
failure based on historical and live data measurements, in turn enabling Glencore Nikkelverk to
have more targeted maintenance and reduce the frequency of unplanned stops.

Figure 16: Predictive Maintenance illustration.

Source: Glencore Nikkelverk.

Plan

• Establish a foundation to test machine
learning in predictive maintenance in the
chlorine compressor room.

• Implement and train machine learning al-
gorithms on the live and historical data.

Risks

• Use of confidential information.

• Access to compressors vs. disturbing on-
going production.

• Lack of internal competence to follow up
the pilot project.

Usefulness and Unresolved Issues

• If the project is successful, the experience gained could apply to other process equipment.

• Available resources (internally and externally) and competence to complete the project.

• Technical solution.

• Access to necessary data and computer systems.

4.2 System Description

The compressors, both the large and small type, are liquid ring compressors. However, as the large
and small type differ slightly in set-up, they are described separately.
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The main components in the large compressors are:

• Casing

• Mechanical seals, with seal water supply

• Impeller

• Fixed-speed electric motor

• Safe units (regulating flow and pressure of
seal water)

• Driving-end (DE) and non-driving-end
(NDE) bearings

• Gas/liquid separator

• Heat exchanger

• Coupling

• Non-return valve

Similarly, the small compressors have the same main components, except these have a reduction
gear fitted to lower the RPM and only one mechanical seal. The layout can be seen in figure 19.

The compressors work by rotating the eccentric impeller (A) such that the working fluid, which
is water at GNN, is cast out towards the casing (C) by centrifugal forces. At working speed, this
liquid ring rotates together with the impeller, effectively sealing off the compartment between the
liquid ring and the impeller blades. At the intake port (D), the volume of the compartment is low
and as the impeller turns half a revolution the volume increases and draws in chlorine gas. After
a half revolution, the compression stage starts as the volume in the compartment decreases and
pressure increases towards to discharge port (E).

Figure 17: Liquid ring compressor operating mechanism.

Source: Compressed Air & Gas Institute

The compressors are designed such that some working liquid exits the discharge port with the
compressed gas. The expelled gas and liquid then enter the separator. The function of the separator
is, of course, to separate the gas from the liquid but also to ensure the correct working liquid level
for the liquid ring to have the right thickness. This is achieved by piping from the gas separator back
into the compressor; thus, the water level in the separator is the same level within the compressor
(see figure 19). The separator water level (and thus the water level within the compressor) is self-
regulated in that the water can flow out of the separator through an orifice at the correct liquid
height. A level sensor was experimented with earlier, but it failed to give reliable measurements
because there is a continuous flow of water into the separator and very turbulent (splashing)
conditions within it. At GNN, the chlorine gas also contains water vapor that condensates during
the compression stage, so there is usually a continuous flow of water out of the system.
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The compression stage increases the temperature of the gas and thus the working liquid as well.
Consequently, the system is fitted with a heat exchanger where sea water is used to cool the
working liquid which in turn cools the gas. The flow of the working liquid is realized by the
expelled liquid/gas mix into the separator, and gravity does the rest. For the remainder of the
thesis, the working liquid is therefore referred to as the cooling water.

The compressors are equipped with double mechanical back-to-back seals with a seal water supply
which provides the lubricating film in the seals, removes particles resulting from wear at the seal
faces and cools the seal. The seal water pressure is higher than that of the compressor house, so an
initial leakage will likely be water into the compressor instead of chlorine gas out of the compressor
(especially important EHS consideration). As water is an inherent part of the compressor design,
this is not catastrophic but an unwanted event because of increased water consumption and related
costs. Seal water can also leak out of the seals.

An overview of the main components and their functions are presented in a functional architecture
diagram in figure 18. Additionally, the process and instrumentation diagram in figure 19 shows
the layout of a single compressor system of the large type.
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Figure 18: Functional/physical architecture.
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Figure 19: PID large compressors.

Source: Glencore Nikkelverk.
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4.3 Use Cases

The compressors have four main use cases that they will encounter.

• Normal operation

• Maintenance

• Start-up

• Shut-down

• Stand-by

Normal operation

During normal operation, the compressors run at a fixed speed of 1250 RPM. There are numerous
inspections completed regularly by shift workers that operate the plant. They will inspect the
amount of flow and pressure of seal water and, if necessary, adjust the safe units manually. These
manual adjustments can be seen in the seal water pressure data as spikes or sudden drops in
the seal water pressure. Unfortunately, there are no records of when or how often shift workers
manually adjust seal water flow and pressure.

Additionally, workers check that the cooling water temperature has not increased significantly since
the last inspection every two weeks. If that has indeed happened, they will backflush the sea water
side of the heat exchanger such that mussels that grow inside the sea water cooling system are
removed. Mussels get stuck at the heat exchanger inlet before the sea water enters the thin plates
of the heat exchanger. The control system also has low and high alarms at 40 and 60 degrees
Celsius, respectively. The compressor will automatically shut down if the cooling water reaches
60 degrees. Backflushing is achieved by stopping the flow of sea water by closing a manual valve
before the inlet and opening a valve to the atmosphere (see the blue valves in figure 22a). Then
the backpressure from the sea water outlet pipes will reverse the flow of sea water and removes
the mussels. It can significantly improve the cooling effect of the heat exchanger and reduce the
temperature of the cooling water by 10 degrees Celsius shortly after backflushing. However, how
effective it is varies from time to time and eventually, the heat exchanger must be replaced.

Maintenance

The compressors are regularly maintained, but the extent to which they must be disassembled
depends on the maintenance work. In the case of any maintenance which opens the system to the
atmosphere, say a pipe or the heat exchanger, the compressors need to be drained of the service
liquid and flushed because the water inside is saturated with chlorine gas and could pose a danger
to maintenance personnel. Shift-workers complete this in full protective gear. Minor maintenance
work like replacing the heat exchanger does not require complete dissembling but can be done on-
site. More extensive overhauls where bearings, seals, impellers, etc., are replaced are completed in
the central workshop and the compressors are thus completely disassembled and assembled on-site
again. Replacement of seal water filters can be done while the compressor is in use by running the
water in by-pass lines.

Start-up

During start-up, typically after some sort of maintenance has been completed, the compressors
must be filled with the correct amount of water (service liquid) and the couplings must be aligned
with a laser tool and the seal water pressure and flow must be present. As seal water is shut off
to complete overhauling, it is of utmost importance that the technicians remember to turn the
manual valves for the seal water supply before start-up. Else the mechanical seals will fail rapidly
or at least sustain damage that will considerably shorten the seal lifetime. The compressor must
be filled with the correct amount of water during start-up. The large compressors need about
0,5 cubic meters of water. The water used in the compressor comes from the seal water supply.
Consequently, it is essential that the compressor is not filled with water too quickly because this
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can cause the seal water pressure to drop. If the pressure inside the compressor becomes higher
than the seal water pressure, it can damage the seals.

Stand-by

There are usually a few compressors on standby. In that case, it has happened before that the
bearing balls have been damaged because the weight of the shaft is supported by the same bearing
balls for an extended amount of time. This can cause fretting, which is when wear occurs at a single
spot due to small vibrations under load. In addition, in the compressor room, it is believed that
the other compressors nearby create vibrations carried through the floor and negatively impact
the bearing life. Thus, the maintenance inspectors also occasionally turn the shaft by hand to
counteract that effect.

4.4 Current Condition-Monitoring of the Compressors

The compressors are equipped with a large number of sensors and the purpose of these sensors can
be categorized into three main blocks:

• Process control sensors

• Machine protection sensors (interlocks)

• Condition monitoring sensors

Because of the different purposes, not all of them are recorded and stored in the Historian. For
example, are boolean values (on/off) generally not stored because of capacity issues in the process
control system (ABB800xA) and these are instead used for process control. The two latter categor-
ies are more overlapping and some sensors used for machine protection are also used in condition
monitoring and stored in the Historian. Currently, all stored sensor data goes through the process
control system.

Additionally, the instrumentation of the compressors is set up differently depending on the type of
compressor and some compressors have more sensors than others. All sensors that are currently
stored in the Historian are shown in table 1.

4.5 Available Big-Data

The sensor data for the compressors is sampled every nine seconds and stored in a database. The
database contains all measured values in a time-series for each compressor and can be exported
to Excel or other formats. The database is unlabeled e.g. there is no information about whether
a specific interval of measured values correspond to the compressors being in a faulty or healthy
state. However, it is possible to check in SAP when repair or maintenance has been completed,
in that manner the data could be labelled manually, but that is outside the scope of this thesis.
Generally, the sensor network in the whole factory totals 75 thousand tags(sensors) and the data
size amounts to about 100MB of sensor data per day stored in the Historian.

Although the sampling frequency can be decided by the process control engineers, the standard
sampling rate is 0,11 Hz (one sample every 9 seconds) and all the sensors fitted at the compressors
use this sample frequency. The sensor data is also compressed, which is achieved by not recording
a new timestamp if the change in value is less than 0,05%. The Historian handles this by setting
the new value of the new timestamp to the same as the previous one, in that way the time-series
data is consistently nine seconds apart.

NaN-values, which seem to be frequent and randomly distributed in the sensor data, has implic-
ations for the software used in the case-study as well. While Wedge replaces NaN-values of the
time-stamped value with the previous measured value, Intelecy sets it equal to zero. Exactly how
this affects the performance of the machine learning models and which solution is the best is not
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Compressor
Large Small

Sensor
Description

Unit A I J B C D E F G H

Seal water pressure NDE Bar x x x not relevant
Seal water pressure DE Bar x x x
Pressure output Bar x x x x x x x x x x
NDE bearing vibration,
acceleration

G x x x

DE bearing vibration,
acceleration

G x x x x x x x x

DE bearing vibration,
velocity

mm/s x x

NDE bearing vibration,
envelope

env x x

Cooling water
temperature

deg. C x x x x x x x x x x

Motor winding temp. U deg. C x x
Motor winding temp. V deg. C x x
Motor winding temp. W deg. C x x
NDE bearing temperature deg. C x x
DE bearing temperature deg. C x x
Gas temperature deg. C x x x x x x x x
Cooling water flow m3/h x x x x
Motor current Amp x x x x x x x x x x
DE gearbox vibration,
acceleration

G
not relevant

x x x x x x x

NDE gearbox vibration,
velocity

mm/s x x x x x x x

Engine power kW x x

Table 1: Sensor overview
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known. For shorter periods (minutes or less) of consistent NaN measurements, setting the value
to zero might be detrimental to the performance. On the other side, if a sensor fails and the last
real value it measured is recorded for a longer period, this could make it hard to detect that the
sensor is in fact faulty.

4.6 Failure Mode and Symptoms Analysis

This chapter focuses on the findings and decisions made after the FMSA had been completed.

It was decided that the project would focus on two different failures of the system. An assumed
simple case, to verify that it is indeed possible to detect failures early and a more challenging case
to test the technology. The two cases selected were:

• Simple: detection of loss of cooling capacity in the heat exchanger

• Challenging: detection of incipient leakage in mechanical seals

Now, the first case was regarded as relatively simple because there are sensors available that
measure the cooling water temperature, and rising temperatures would likely indicate a loss of
cooling efficiency in the heat exchanger. In other words, there is a direct measurement that tells
something about the condition of the heat exchanger. Rising temperatures are mostly caused by
mussels etc. clogging up the heat exchanger on the sea water side and growth of something called
”klortyggis” which is a sticky substance found in piping transporting chlorine gas at GNN. It is
not known exactly what it is, nevertheless, its detrimental effect is well-known at GNN and it is
assumed to grow over time.

The second case was selected because industry professionals at GNN report that the mechanical
seals in the three large compressors have been the main problem they encounter and it is not
known why. The mechanical seals in the large compressors mostly last 2 years or more unless a
leak of chlorine gas/water occurs. In that case, the seals must be replaced, usually between 3-4
months later. Thus, GNN wants to monitor and model the development of these leaks in the large
compressors. A leaking seal can be detected visually, as can be seen in figure 24 (severe leakage).
However, exactly what happens before a seal becomes degraded is often unknown. Compared to
the first case, direct measurements indicating failure or the reach of some threshold limit are not
available for the mechanical seals. A linear relationship with some variable is also not known,
except wear of the seal faces which is time-dependent. Thus, the hope is that Intelecy’s deep
learning long-short-term memory system could identify hidden relationships in the sensor data.

The findings from the FMSA process are presented in tables 3, 4 and 5. It is important to note that
the symptoms presented in the FMSAs are possible symptoms that could indicate an upcoming
failure, whether they are viable for detection is answered in the exploratory analysis. Some columns
have been left out in this extract of the FMSA sheet for presentation purposes. Additionally, some
information that was deemed to be of no interest, e.g. failure modes that GNN has not had any
issues with in the past, was left out of the presented tables. The complete FMSA sheet is included
in appendix A where the most important information is in green bold text and the least important
information is in red text. Unfortunately, the appendix is not readable in a printed copy of the
thesis, but it is possible to zoom in the digital PDF too see the entire document.

Maintech AS also inspected other common technical aspects that affect the mean-time-before-
failure:

• Precision installation/tolerances of bearings

• Balanced impeller

• Soft-start systems

• Solid foundation
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• Hard shims used between foundation and base plate

• Solid bolts (preferably studbolts)

• Lubrication (According to Maintech AS, studies have shown that 63% of failures result from
poor lubrication)

• Clean medium (chlorine gas)

4.7 Establishing Normal Range of Sensor Values

To draw conclusions from the sensor readings it is first needed to have an idea of the mean and
variance of the sensor values. Additionally, it could be relevant to know how different sensor
values correlate and depend on each other, such that failures could be detected by assessing the
typical correlation between sensor readings. Later when deciding the input of the machine learning
models, knowing which variables correlate strongly also gives an indication of which sensors might
be superfluous.

To establish normal conditions corresponding sensor values the dashboard made in ”Wedge” was
utilized. Wedge calculates statistical properties and a correlation matrix for each compressor. The
results are shown in table 2 and figure 20. The same calculations has been completed for all
compressors, with data from one week sampled every nine seconds and one year sampled once per
day and is available in the attached excel sheet ”Normal operation - sensor statistics - correlation
matrices”. Even if the statistical properties and correlation matrix presented here, can give indic-
ations about the normal state, it is important to recognize its limitations as well. According to the
Nyquist criteria, the sampling frequency must be at least twice the highest frequency contained
in the signal, or information about the signal will be lost. Thus, the correlation and statistical
properties of the pressure and vibration, which are high-frequency signals, must be treated accord-
ingly. Temperature, on the other hand, is a low-frequency signal and the results here are more
thrust-worthy.

Measurement Unit Average Deviation Maximum Minimum
Kompressor-NDE-ACC G 0,5332 0,02563 0,6374 0,4493
Kompressor-DE-VEL mm/s 2,845 0,103 3,459 2,414
TempLagerNDE deg. 48,21 0,6174 49,38 47,28
TempLagerDE deg. C 56,1 0,7137 57,57 55,08
TempViklingW deg. C 74,8 0,7106 76,24 73,75
TempViklingV deg. C 76,62 0,746 78,03 75,19
TempViklingU deg. C 75,4 0,778 76,95 74,06
Temp. kjolevann deg. C 27,72 0,7272 29,06 22,45
Trykk mot scrubber bar 1,676 0,01816 1,801 1,541
Trykk sp.vann aksel bar 2,604 0,02594 2,691 2,485
Trykk sp.vann aksel bar 2,925 0,04508 3,042 2,773
Strom klorkompr amp 275,5 2,65 290 264,7
Mengde kjolvann m3/h 12,58 0,07267 12,94 12,07

Table 2: Statistics - compressor J - 1 week - 10 sec sampling

In a highly statistically dependent system, such as the components in a compressor, correlation
between different sensor readings is expected and do not necessarily indicate that these predict
each other. Often they change at the same time because of some other driving factor (Nielsen
2019). This can be illustrated by calculating the cross-correlation, which is useful for determining
the time delay between two signals. From figure 20, the correlation between output pressure and
amperage is 0.76, indeed a strong correlation. However, from the cross-correlation, shown in figure
21, it is evident that increasing amperage does not predict the pressure output of the compressor
ahead in time, rather they change together simultaneously. Hence, amperage does not give any
indication of future pressure outputs.
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Figure 20: Correlation matrix - compressor J - 1 year - 1 sample/day.
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Figure 21: Cross-correlation - Compressor J. - 1 year - 1 sample/day.

4.8 Heat Exchanger - Model Development

(a) Heat exchanger. (b) Mussels from backflushing.

Figure 22: Heat exchanger.

As mentioned earlier, in the heat exchanger case, there is a direct measurement indicating the
state of the heat exchanger, namely the temperature of the cooling water. Thus, in this case, there
was far less need for a deep exploratory data analysis and there was a known failure of the heat
exchanger at compressor B in the available sensor data. Being that model development is easy
with the Intelecy software, a trial-and-error method is quite effective.

The data and model predictions and anomalies detected are presented in figure 23. As you can
see, the cooling water temperature was increasing and showed a higher variance (the shaded area
around the curve shows the variance) until 15. August, when it was taken out of production to
replace the heat exchanger and left in standby for a while. Then, as it is put back into production
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in the middle of October, the temperature drops significantly, before it is likely clogged by mussels
again and backflushed to restore the performance.

Figure 23: Anomaly detection model.

It must be strongly emphasized that the training period used in this model was far too short and
it has not been tested with data it has never seen before. While the model successfully detects the
two spikes in cooling water temperature at the end, the model has been tuned to do just that for
the given input. Consequently, this model should not be seen as anything more than an example
of how the model is developed and tuned to correctly identify anomalies. If it would perform as
well in a live setting remains to be verified.

The model was trained on all available sensors for compressor B:

• Pressure output

• DE bearing vibration

• Gas inlet temperature

• Motor current

• DE gearbox vibration, acceleration

• NDE gearbox vibration, velocity

• Chlorine gas concentration

The grey area has been filtered out such that it does not identify anomalies when the average motor
current is less than 50 amps over ten minutes. That way, the model can run on live data without
user input and incorrect anomaly warnings. It also allows the model to resume monitoring again
after start-up of the compressor and gives at least ten minutes before it would detect an anomaly.
The delay avoids false alarms because the start-up conditions often deviate a lot from the norm
before they are quickly restored.
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4.9 Mechanical Seals - Exploratory Analysis

(a) Healthy mechanical seal. (b) Leaking mechanical seal.

Figure 24: Pictures of healthy/leaking seal.

Generally, the mechanical seal design is quite complicated even if its function is simple. The design
of the mechanical seal installed in the large compressors is shown in figure 25. There are many
things that can go wrong, however, causes of leakage can be divided into two categories: seal
face opening and component failure, for example, corrosion of the springs that push the seal faces
together. As can be seen in the FMSA table, there are many possible symptoms of leakage in the
seals which necessitates a discussion of the degree of exactness that is wanted in diagnosing the
cause of leakage. For the purpose of this study though, the goal is to first be able to detect the
conditions which may cause to a leakage in the seals in the near future. Of course, if any detrimental
conditions are found, actions that could negate these conditions and improve the reliability of the
seals will also be discussed and the results will be used as a baseline for which sensor data might
be able to indicate these conditions in a live data stream.

As the mechanical seals are fastened to the shaft, vibrations in the shaft are also present in the
seals and could cause damage to the seal faces or other components in the seals. Vibration in the
shaft stem either from an imbalance in the shaft, worn/damaged bearings or a misaligned coupling.
This further complicates the case and increases the number of symptoms that could indicate an
impending leakage, and makes it difficult to know which variables contribute the most to a leak in
the mechanical seals.

Additionally, there are no obvious measurements that could give a direct indication of the health-
iness of the mechanical seals. In the FMSA it was theorized that leakage could be detected by
assessing the seal water pressure and temperature. In theory, a leakage would cause minuscule
pressure drops, at least before the safe unit has a chance to restore the pressure to its pre-defined
pressure level. Other possible symptoms identified were increased power consumption, increased
engine temperature and change in the flow and temperature of seal water through the mech-
anical seals. However, the change in engine temperature and power consumption is believed to
be negligible and there are currently no sensors measuring the temperature of seal water. The
next sub-chapter documents the analysis performed and the results thereof in assessing how the
mechanical seals could be monitored.

4.9.1 Seal Water Temperature

If the seals become degraded it is expected that they will produce more heat because of increased
friction in the seal faces. That could theoretically be detected by a temperature increase through
the seals. Of course, a temperature increase through the seal is expected because one of the
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functions of the seal water is to cool the seals. Thus, there is both the need to establish normal
temperature increases in the seal water and to see if this would become higher when the seals are
degraded.

To investigate this, the equipment inspector at the KL department has been taking daily measure-
ments with a handheld infrared temperature measurement device, to see if this is in fact the case.
The measured difference in seal water temperature at the inlet and outlet is presented in figure
26. Though, to date (15.06.22), the data collected is not sufficient to conclude what the normal
temperature increase is, nor are there any known failures in the mechanical seals of compressors I
and J. Also, the temperature of the seal water was measured at the seal water hoses, not directly
from the water. Thus, the trustworthiness of the measurements can be questioned. The data set
is not complete because measurements were not taken at weekends and the equipment inspector
was away for some time.

All the same, it is interesting to note that the seal water temperature increase in the different seals
differ. However, as described more closely in the next chapter, the safe units that regulate the flow
and pressure of water into the seals, seem to not function properly under fluctuating conditions.
Therefore, the difference in seal water temperature increase could be because the mechanical seals
have different seal water flow rates, which would affect the temperature difference between the
inlet and outlet.
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Figure 26: Difference between inlet and outlet seal water temperature.
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Figure 25: Mechanical seal drawing

Source: AES Seal
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4.9.2 Seal Water Pressure

Initially, as the team considered the boundaries of the system for this study, the supply of seal
water was defined as outside the boundary. However, by looking at the trends of the sensors at the
large compressors some questions arose. Specifically, the highly fluctuating pressure measurements
in the seal water were a bit of a mystery. From table 2, the results from the initial analysis to
establish healthy ”levels” for the sensors showed that:

1. PI2212I41avg = 2.6 bar and PI2212I41max = 2.7 bar (Trykk sp.vann aksel)

2. PI2212I42avg = 2.9 bar and PI2212I42max = 3.0 bar (Trykk sp.vann aksel)

However, comparing these results to the trend in figure 28, figure 29 and figure 27 in the period
20.05.2021 - 25.05.22, it is clearly evident that something has happened. In this period there were
pressure spikes upwards of 11 bar. According to the the seal manufacturer, ”Good-practice” seal
water pressure is 1-2 bar above the compressor pressure output, which is 1,7 bar on average at
GNN, such that the wanted seal water pressure is about 2,7-3,7 bar.

To investigate this further, the physical placement of pressure sensors was checked against the safe
units that regulate flow and pressure into the mechanical seals. In the PID these are not indicated,
therefore, it was verified that the sensors were downstream of the safe units. Additionally, the
pressure measurements from the sensors and the manometer at the safe unit fitted at each seal
water line were compared. The manometers for the two compressors in use were maxed out and
could not tell us the pressure. This is important because mechanics use the manometers when
adjusting the safe units.

Next, the ABB control system was searched for the pumps that supply the seal water pressure,
which is common for all the chlorine compressors and other equipment in the KL department. The
pressure in each seal was compared with the supply pressure. Note that the pressure measurement
for the seal water supply is the highest line in all three figures. The pressure drop that is seen down
to the seal pressures is expected due to the length of travel in pipes. For compressor I (figure 28)
the seal pressure is stable around 2,7 bar at the drive-end, but at the non-drive-end, the pressure
follows the same erratic trend as seen in compressors A and J (figure 29 and 27). This shows that
the pressure fluctuation stems from the seal water pumps and that the safe units do not reliably
regulate the seal water pressure as intended.

From the graphs it was initially thought that only one of the safe units was functioning properly,
that is, supplying a steady pressure of about 2,7 bar. As it turned out, after looking at the trend
of the seal water pressure again after the maintenance stop on the 31.05.22, PI2212I41 constantly
showed a pressure measurement of about 2,7 bar, with some variation as well. However, during
the maintenance stop, the seal water pumps were shut off and the pipes drained of water. As the
sensor still measured 2,7 bar, the sensor is obviously incorrect and should be replaced. This would
likely not have been discovered if the sensor readings were not checked again after the maintenance
stop and show the importance of assessing the data quality before analyzing it.

It was theorized that the highly fluctuating seal water pressure could be the cause of the early
leakages, but the mechanical seals are rated to withstand up to 26 bar pressure such that the
pressure spikes are well below the limit. Therefore, this investigation could not conclude that this
contributes to early leakages. Nevertheless, the safe units should provide a stable pressure to the
mechanical seals and it is still not known how the rapid change in seal water pressure affects the
mechanical seals. Also, as can be seen in figure 25, the inlet and outlet of seal water should be
oriented at 6 O’clock and 12 O’clock, respectively. Some of the mechanical seals had the outlet
and inlet inverted, which may also adversely affect the expected lifetime of the seals.
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Figure 27: Compressor J: Seal water pressure vs. seal water supply pressure

Figure 28: Compressor I: Seal water pressure vs. seal water supply pressure
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Figure 29: Compressor A: Seal water pressure vs. seal water supply pressure

More insight into the behavior of the seal water pressure fluctuations can be gained by studying
parallel coordinates plots generated with Intelecy software. To generate this plot, the raw sensor
data was first segmented into 1-hour segments and then features were calculated for each segment.
The choice of features was the mean and standard deviation in pressure for each mechanical seal.
This choice was made to even out fast fluctuations often seen in pressure signals, such that longer
periods of sustained high pressure (greater than 3 bar) could be identified. Also, on the contrary,
the standard deviation feature is useful to identify very fluctuating periods, which also could be of
interest and indicates the signal-to-noise ratio.

A parallel coordinates plot is useful to study multi-dimensional data sets. In this instance, the
first column from the left and the color of the line indicate the timestamp from the first sample
in each one-hour segment. This enables us to see the temporal development of all the seal water
pressure measurements in the same plot. Particularly, in figure 31, the plot shows that the standard
deviation of the pressure in each segment in each seal has been low at the end of the period, towards
the end of March 2022. However, throughout the period there have been shorter time periods where
the seal water pressure has varied substantially.

According to Intelecy, sensor values in a particular operation mode should not vary significantly
when the system is healthy for their software to effectively analyze and find meaningful relations
in data sets. Therefore, the seal water pressure readings are unfit for use in the software because
of the highly fluctuating sensor values currently seen. In other words, seal water pressure is likely
not a good indicator of seal leakage even if the fluctuating pressure could be a cause of the early
leakages seen in the past. In the end, seal water pressure is discarded as a possible input parameter
in the deep learning model development.
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Figure 30: Parallel coordinates plot: 1h segments, mean pressure

Figure 31: Parallel coordinates plot: 1h segments, standard deviation

4.9.3 Bearings

Vibration is a known mechanical seal killer. Because degraded bearings can contribute to more
vibrations that will be transferred through the shaft into the seals, these measurements are possible
indicators of impending leaks in the mechanical seals.

The bearings are already monitored by SKF vibration analysis software, which transforms the
vibration time-series signals to the frequency spectrum and allows specialists to analyze the state
of the bearings. The same vibration sensors are used in this project. Still, the means of accessing
them are different. These measurements are only sampled at 0,11 Hz, far lower than what is used in
the SKF software (vibration analysis software is dependent on sampling frequencies up to 25000Hz)
to diagnose failures of components. That means that the vibration measurements available in this
project can only give indications of the magnitude of the vibrations present in the bearings and
not be used for diagnosis in the same way. These low-frequency measurements are also used for
automatic machine shut-down and are known to be trustworthy.

Again, using parallel coordinates plots to study the historical vibration data, the vibration signals
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are generally more stable than the seal water pressure. Besides some outlier periods in the mean
and standard deviation features for the vibration signals, seen in figure 32 and 33, respectively, the
data is more suited deep learning model development.

Figure 32: Parallel coordinates plot: vibration, 2h segments, mean

Figure 33: Parallel coordinates plot: vibration, 2h segments, standard deviation
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5 Results and Discussion

Going through the failure mode and symptoms process has been beneficial because it documents
the inherent knowledge and competence related to the equipment in question. It serves as a guide
for what is known about the system and what is unknown. Moreover, having an inter-disciplinary
group present was quite interesting and more than once people were able to build on each other’s
fields of knowledge. One example being, as we started to analyze the time-series data. While
the analysis showed some interesting lows for some sensor values, knowledgeable employees at
GNN, would quickly point to that being a result of the weekly harvesting of nickel cathodes, which
reduces the flow of chlorine gas. The point being that data analysts cannot effectively operate
in a vacuum, they need to cooperate with those who have the ”hidden” information. Hidden in
the sense that it is not readily available to someone new to the process or equipment. Similarly,
maintenance engineers and mechanics traditionally do not possess data analysis skills. The FMSA
process effectively enables that information to surface. Specifically, information related to normal
operation, adjustments made in seal water pressure and backflushing of the heat exchangers has
been important to understand the collected data and make sense of it. For example, it was assumed
that sudden drops in cooling water temperature had to be the result of measurement errors, but
an experienced operator could tell us that backflushing has a rapid effect on the temperature.
In hindsight, the project group should have included someone with more experience in the daily
operation of the compressors, not just people with maintenance experience.

However, as is, the historical work orders generally do not contain enough information about
failures to effectively extract failure modes and symptoms thereof. Thus, for the FMSA process to
become more beneficial in the future, clear work order writing policies are a must. Especially, the
content of the work order should be more in line with the FMSA process and be based upon the
different elements that the FMSA tries to document. According to Maintech AS, the same pattern
is seen in most businesses: work orders are written for the maintenance personnel’s own overview
but less focused on documenting issues for the future. As work order writing is a manual process
involving people, training and a change of focus is needed. Of course, changing organizational
aspects are easier said than done but an important step nonetheless. At GNN, they are also aware
of this issue and working on improving the work order writing, but admit that there is still room
for improvement. Consequently, the findings of the FMSA presented in this report were mainly
based on the experience of maintenance personnel.

If the heat exchanger anomaly detection model can be verified in a live setting later, it could well
be used to extend the maintenance interval beyond the current two-year interval at GNN. The
model has been successful in identifying when there is a need for backflushing to remove mussels.
It should also be trained on a period of more than a full year because mussel growth is seasonal
and a much larger issue in the summer. Further, it has not been verified if it can detect the growth
of ”klortyggis”. Even so, mussels have been the largest issue by far, and it could be that trying
to detect ”klortyggis” growth would not be worth the trouble and cost of installing more sensors.
Anyhow, the verification of the models is dependent on live data access, which has been a major
limitation throughout the project this far. The performance of the model must be verified when
the issues related to data security are solved and a willingness to not replace the heat exchanger is
also necessary to test whether the maintenance interval can be extended beyond the present two
years.

In regard to the challenging case of detecting unwanted conditions that may lead to a leak in the
mechanical seals, the results are not conclusive. The lack of a clear answer as to why the seals
have sometimes started to leak earlier than expected has a range of possible causes that must
be assessed. Without clear measurements that could differentiate the causes and something to
compare them against, model development is difficult.

One possible way forward is to define a cumulative degradation indicator, as mentioned in the
literature for data-driven prognostics. However, a degradation indicator must be defined for each
specific case and is not clear exactly how that could be done. Based on the findings so far, it could
be possible to define multiple different degradation indicators. In practice, that would mean soft
sensors, e.g. calculated variables. These can be defined either in the Historian or in Intelecy and is a
feasible option. A variable integrating the information of all the identified symptoms contributing
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to seal leakage could be defined by a linear combination of the different sensors value and be
accumulative to capture the ”load” the seal has sustained over time, as in equation 5. However, it
is very hard to verify the underlying assumptions of a linear combination of sensor values. Thus,
this should merely be regarded as a proposition and not an answer to how a degradation indicator
could be defined.

DI =

N∑
i=1

C∑
j=1

ωi · Si,j (5)

Where ωc is a weight larger than zero that must be empirically decided, C indicates the number
of sensors evaluated, N indicates the number of timestamps and S is the normalized sensor value
at a specific timestamp for each sensor. The input of the degradation indicator should also be
statistically independent to make sure that sensor values do not cancel each other out or increase
together because of some other driving factor. The correlation matrix calculated from the sensors
in the compressors showed that many measurements correlate, at least in the compressors. Still,
statistically dependent inputs are easily avoided by assessing the correlation matrix.

Ideally, a cumulative variable should be reset after maintenance and thus there is also a need
to integrate information from the computerized maintenance system, which in and of itself is
a challenge because of varying work order data quality in SAP PM. Even if a process control
sensor could be used to this effect, a shut-down does not necessarily mean that the system has
been repaired and does not always give a complete picture of all repairs completed. Thus, if the
goal is that an anomaly detection system should operate independently without sporadic input of
operators, mechanics, etc., integration with SAP and, again, clear policies of work order writing
are important for such a system to function.

A cumulative degradation indicator can then be simulated by a Wiener process or by linear re-
gression in Python. However, previous attempts at similar use of machine learning techniques in
Python at GNN, have shown that the programming skills necessary to make in-house developed
software that function together with other software such as the Historian, are major barriers for
these projects. Thus, GNN prefers to leave the software specifics to professionals. Consequently,
Intelecy’s no-code industrial AI is welcomed, even if it comes at the expense of less freedom to
tune the machine learning models.

Another option for the degradation indicator could be a non-cumulative indicator, which would
integrate more easily into the Intelecy anomaly detection software, as in equation 6. With this kind
of degradation indicator, Intelecy’s Nowcast model could be used to define anomalous conditions
and actions to negate possible detrimental conditions can be taken.

DI =

C∑
i=1

ωi · Si (6)

The hypothetical model must then be trained on a time-series representing normal conditions,
preferably a time-series after replacement of the seals, as we have not conclusively identified which
conditions cause the leakage in the seals. The next stage is essentially a waiting game. Some
leakages must be allowed to occur if such a strategy is to succeed. After a known leakage, the
behavior of the degradation indicator can be assessed to see if it did in fact increase or decrease as
would be necessary for the Intelecy software to detect an anomaly. In other words, the degradation
indicator should stay more or less constant, much like is seen in the heat exchanger model in figure
23, while the mechanical seals are new and functioning properly. After a known leakage, the
historical data and calculated degradation indicator should be increasing or decreasing before the
leakage was detected.

Suppose a degradation indicator based on several sensors can be used to detect anomalies. In
that case, root cause analysis could be performed using the Intelecy’s feature importance analysis,
which has shown promise in the literature, to see which features (and which sensor) have had the
most significant impact on the degradation indicator. The most important features would then
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be linked with the probable failure cause by investigating the failure symptoms identified in the
failure mode and symptoms analysis. Figure 34 presents a visual representation of the idea.

Figure 34: Root cause analysis model.

The necessary testing of the developed models, though, relies on access to live sensor measurements.
According to the IT department at Glencore Nikkelverk and Intelecy, linking the database to
the Intelecy software is a straightforward process because the software used in this project is
based on the OPC-UA IEC62541 standard for data exchange from sensors to cloud applications.
Unfortunately, data security concerns have slowed the process and eventually deemed too risky to
connect the database with the cloud. As a result, GNN and Intelecy are trying a work-around
solution not including access to the cloud or internet. This will likely give sensor measurements
every 45 seconds instead of nine seconds. Accessing every fifth timestamp allows the historical data
to be used without much hassle. That solution will likely be sufficient because the degradation
patterns related to the compressors do not develop that quickly.

Without testing the proposed models the risk of fitting a story to fit the outcome, which is a
possible weakness of outcome-driven research, is large and difficult to uncover before the models
are tested in real-life. Thus, emphasis should be placed on the fact that more testing is needed in
general.

Even if the necessary testing has not been done yet, the case-study has shown that deep-diving
into failure history and historical sensor data often uncovers new knowledge about the system. For
example, it was found that not all sensors were stored in the database and that the safe units do not
reliably regulate the seal water pressure. It was also seen that some manometers that mechanics use
to adjust the seal water pressure were faulty which has implications for the day-to-day operation
of the compressors. Moreover, it was discovered that one of the seal water pressure sensors was
faulty. Lastly, possible human errors were identified, such as forgetting to open the manual valves
for the seal water before start-up. Thus, the addition of interlocks in the factory control system
that would make it impossible to start the compressors without seal water flow were discussed too.
In the end, an in-depth study often gives value outside of the initial goals of the study.

In terms of the goal of the pilot project to detect failures earlier than today, more time and
testing of the proposed solution are necessary. However, the project has succeeded in developing
a platform that can also be used for other equipment. The ease with which models can be created
with Intelecy software, given a good degradation indicator, has also been shown. Thus, GNN has
learned how to select equipment that could be maintained according to an ensemble of an anomaly
detection model and feature importance analysis.

The findings of Nordal and Idriss El-Thalji 2021 about the requirements of PdM explain the
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requirement of the degradation indicator quite well. It must be easy to track, reliable and accurate
enough to detect anomalies and manage transient operational characteristics. In the case-study,
the simple and challenging case were mainly separated by the availability of a degradation indicator
that fulfills these requirements. If GNN decides to scale up the project and look at more equipment,
assessing possible degradation indicators for each case is a crucial step, at least if one would like to
grasp the ”low-hanging fruit” first. More effort should be invested into defining good degradation
indicators that fulfill the requirements in more challenging cases, such as detecting anomalies in
mechanical seals.

As was seen in one of the case-studies from the literature, machine learning techniques were well
suited to diagnose the condition of pneumatic cylinders based on the measured action time. At
GNN, there are also many pneumatic cylinders used across the factory. Thus, if there was invested
time and effort into collecting a labeled data set of action times from PLS systems at GNN, many
cylinders could likely be monitored to achieve early fault detection. Even if labeled data sets have
not been the focus of this study, Intelecy software can also be used to forecast sensor values if
labeled data is available. However, being able to diagnose a cylinder as either ”good”, ”fair” or
”poor” as in the study by Chen et al. 2020, would likely be enough to aid maintenance planning
and would be feasible given access to PLS data. Particularly, the pneumatic cylinders used in the
shears and welding machine are important for production throughput at GNN and could be a good
starting point. In addition, because the cylinders are standardized for different sizes, collected data
sets would likely apply to many other machines used at GNN.

Generally, the case-study is part of a larger strategy at GNN to become more data-driven in
its decisions. Hence, applications of the LSTM neural network and feature importance analysis
should also be experimented with outside of maintenance. For example, related to quality control
and process control, feature importance analysis could well be used to establish which factors
contribute to more excellent metal quality or enhanced production. Contrary to the compressors,
where quality measurements do not directly relate to the compressors because they only transport
gas, quality measurements could be used as labels in other parts of the production process that
contribute more directly to the metal quality or production throughput. With 75 thousand tags
available and an extensive historical database, lessons learned about getting started with big data
analysis are essential in the bigger picture at GNN.

6 Further Work

Based on the findings of the thesis so far, a natural next step is to develop a general recipe for
degradation indicator definition. Because of the vast amount and diversity of industrial equipment
used in the chemical process industry, one would have to define many different categories of de-
gradation indicators. For example, rotating equipment is often fitted with vibration sensors, so
further work should include a discussion of how different vibration measurements may indicate a
failure. Moreover, how should the different measurements like humidity, temperature and other
operating parameters be weighted in contrast to more direct degradation indicators, such as the
temperature of the cooling water in the heat exchanger.

In the research by Tajiani et al. 2020 on roller bearing RUL estimation using vibration signals, a
suitable health indicator was selected based on which features correlate most strongly with time by
calculating ”Spearman’s Correlation Coefficient” under the assumption that the ideal degradation
path is monotonously increasing. A similar approach could be used to decide which features to
include in a degradation indicator for a mechanical seal anomaly detection model and could fit
well into how Intelecy’s software identifies anomalies.
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7 Conclusion

Anomaly detection models based on LSTM neural networks for industrial equipment can be easy to
create given access to data and a good degradation indicator. However, much testing is required to
verify the anomaly detection models. Nevertheless, if they can be used to either plan maintenance
before a failure or extend maintenance intervals, they will likely contribute to lower maintenance
costs soon.

Still, more effort and testing must be given to developing a degradation indicator for cases with
no clear-cut relationship between the measured sensor values and the system’s degradation level.

In cases where a degradation indicator of sufficient quality is present, root cause analysis can also
be implemented with feature importance analysis. Thus, given time and continuous improvement
efforts based on an ensemble of LSTM neural network anomaly detection and feature importance
analysis, the maintenance strategy of a given system can be optimized.

The proposed ensemble method applies to equipment other than the liquid ring compressors as-
sessed in this thesis but requires extensive system knowledge, a well-functioning IoT network and
software integration to be applicable in practice. Not least, root cause analysis requires skilled
data analysts.
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09.03.2022 
 Glencore Nikkelverk 

Kristiansand 

Interview guide 

Purpose 

The purpose of the interviews is to gather information and develop an understanding of the 

most common and serious failure modes and symptoms thereof for the chlorine compressors 

The results gathered will be used in an initial analysis of failure modes and be used in a 

master thesis at NTNU.  

Content 

Generally, the interview will focus on questions related to the failure modes and symptoms 

thereof for the chlorine compressors in the KL department at Glencore Nikkelverk. 

Structure 

The interviews are be semi-structured. The questions below is meant as a starting point for a 

discussion and the interview subjects are free to include any other information they may find 

meaningful. 

Anonymity 

The personal data of the interview subjects is guaranteed to not be shared. No personal 

information about the interview subjects will be used in the thesis and notes will be deleted 

after the thesis has been completed. 

Questions 

Q1: Which failure modes have the highest costs in terms of spare parts? 

Q2: Which failure modes have the highest costs in terms of lost production? 

Q3: Could you rank the mentioned failure modes in terms of frequency? 

Q4: Regarding the mentioned failure modes, what is the root cause of these failures? 

Q5: Regarding the mentioned failure modes, how are these detected? Are there any early 

signs of failure? 

Q6: Is there anything else you would like to highlight? 
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