Maren Vorin Fossum

Custimisable waveform generator

Graduate thesis in Electronics System Design and Innovation
Supervisor: Per Gunnar Kjeldsberg
Co-supervisor: Mohammed Saifuddin

June 2022

.ﬂ
7))
@

£

L
@
L
S
S

o
S
S

O

NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@ NTNU

Norwegian University of
Science and Technology

Maren Vorin Fossum

Custimisable waveform generator

Graduate thesis in Electronics System Design and Innovation
Supervisor: Per Gunnar Kjeldsberg

Co-supervisor: Mohammed Saifuddin

June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

@ NTNU

Norwegian University of
Science and Technology

Task

Introduction:

Many applications require fine control of both on- and off-chip analog and/or digital buses
to perform sophisticated functionalities. The high degree of complexity of these applications
necessitates the controller to be able to execute tasks with clock-cycle precision. In addition,
some sub-functionalities also require their own waveform generator that performs a specific
task depending on the operation that is performed, triggered by the main controller. Further-
more, issues found after chip production adds significant cost if the wafer fabrication masks
must be modified; and so, an easily programmable solution is desirable.

Goal:

The main goal of this project is to implement and synthesise low power, low cost (gate count)
and highly customizable solutions that can generate the desired waveforms. The design should
be easily integrated into future designs.

Scope of work:

This is a continuation of the project work from previous semester where the student inves-
tigated different architectures for waveform generators, including open source solutions, and
then proposed an architecture for a waveform generator.

This scope entails building a synthesizable waveform generator in SystemVerilog, then per-
forming power and gate count analysis of the implementation and test it out on FPGA to the
extends that time allows. The student should consider developing a compiler, or modify an
existing open source compiler e.g. GCC, LLVM compatible with the chosen architecture as
a way of making the generator easily integrated into future designs. In addition, the student
may also create a visualizer which can display the generated output waveforms without
running RTL simulation.

Abstract

A waveform is a set of signals that helps drive and control different parts of digital designs.
To create a waveform a waveform generator is needed. This generator can be implemented
in many different ways depending on the needs of the digital design. However it is common
that the waveform has little room for change once the design is made. In this work we aim to
add customizability to the waveform generator. In this way future waveform generators do
not need to be changed when designing new devices. This reasearch is therefore focused on
small compact solutions that can be customized. In previous work some theoretical solutions
were proposed, and will now be implemented.

The memory can be reprogrammed to achieve the customizability, but to save area there were
proposed 5 solutions how to reduce the memory size needed. The first solution is to save all
the bits of the waveform in the memory, the second solution is to save the position where
each signal toggles, the third solution is to save which bit is changed, the fourth solution is
to save the toggle position of which bit that changes and the last is a solution that saves
waveform blocks.

The design that can sustain the fastest clock frequency is the solution that saves all the bits
of the waveform in memory since no extra assembly is needed. The slowest solution is the
change position solution. The design that uses the least amount of space in memory is the
Waveform block solution, while the all bit solution uses the most space in memory. The
solution with the least overall area is the waveform block solution while the solution with the
most overall area is the toggle bit solution

vi

Contents

[Task] v
[Abstractl vi
1__Introductionl 1
[LI_ Motivationl e 1
[1.2 Objective] e e e e 1
1.3 __Main contributionsl 1
L4 _Structurd o 2

3
2.1 Waveforml 3
2.2 Memory| 3

2.3 Generating designs| Lo 4
2.4 Area and energy usage in FPGA and ASICs|. 4

|13 Design constraints and results from pre-study| 5
[3.1 Design constraints| 5
3.2 Pre-study summary|. 5
3.3 Results from pre-study| oo o 7

4 Designl 8
HEI _Overviewl o o 8
4.1.1 Connectionl e e 8

4.2 Module description|o 9
421 Interfacel.o 10

[4.2.2 Memory| e 10

4.2.3 Control Logic| 10

[4.2.4 Data handlingl o 12

4.2.5 Bl 13

4.3 Full design|. 16
4.3.1 Difference between solutionsl. 16

[4.3.2 Comparison| e e e e 21

4.4 est plan| e 21
4.4.1 Read and Write modulel 0oL 21

d42 Tnitmodule 21

4.4.3 Next addressmodulel oL 21

4.4.4 Enablemodulelo 22

[4.4.5 Data handlingl oo 22

4.4 Delayl e 22

vii

CONTENTS
4.4 Dl . . e e e
[4.4.8 Overall design test|
4.4.9 Customizability|

E R & i ol

D. iming|. . . .

b.4 Customizability|

5.5 Results compared to theoretical values from pre-study|

[A.2 change bit solution| oo

[A.3 change position| Lo

IA.4 wave block solutionl.

IB.4 Loop module]
IB.5 Delay module]

IBibliography|

viii

23
23
25

26
26
27
29
29
30

31
31
31

32
32
35
38
39

42
42
43
43
45
46

48

List of Tables

[3.1 'The b solutions saving a simple wavetorm|
B2 Comparison table from pre-study[Fos21]]
4.1 expected commands from interface|
4.2 Data types model Al
4.3 Data typesmodel Bl
4.4 A summary of the difference in solutions|
4.5 memory structure for the different solutions for saving the setup waveform| . .
.1 Comparison of the utilization of the different solutions|
5.2 Memory usage comparison|
b.3 Comparison of results from pre-study and actual results|
5.4 Comparison of results from pre-study and actual results of purely wave datal.

ix

10
12
13
21

27
27
30

List of Figures

2.1 Example wavetorm with 3 signals| 0000 3
[3.1 Simple wavetorm with three signal over 5 clock cycles| 6
4.1 A block diagram of the design and its required parts| 8
4.2 Block diagram of how each module is connected|. 9
4.3 normal behaviour of next address modulelo 11
4.4 Code for implementing the enable module| 11
4.5 Code for program counter| 12
4.6 Loop architecture|. 14
4.7 Delay architecture] 15
4.8 Architecture of saving all bits solution| 16
4.9 Architecture of saving toggle position solution|. 17
|4.10 Architecture of saving changed bit solution| 18
|4.11 Architecture of saving changed bit at toggle positions solution|. 19
|4.12 Architecture of saving waves in blocks solution| 20
4.13 Error behaviour of next address modulel 22
[4.14 Waveform used in functionality test|. 24
4.15 An alternative for waveform part 4, the shutter| 25

Source code

[A.1 all bit solution| L 32
|A.2 change bit solution| Lo 35
|A.3 change position solution| oo 38
[A.4 wave block solutionl. 39
IB.1 intertace modulel 42
IB.2 mnext address modulelo L L 43
[B.3 data handle modulel 43
IB.4 loop module|.o 45
IB.5 delay module] 46

xi

Chapter 1

Introduction

1.1 Motivation

Electrical systems are becoming more and more essential in today’s society. One of the
directions that technology is developing is towards autonomous cars. One of the companies
that contributes to this is Sony Semiconductor Solutions Europe. They collaborate with the
key players in the automotive industry in Europe to define and implement the next generation
image sensors. These sensors are used for safety systems as well as display based visual, and
augmented reality functions in cars[SP21]. These sensors need to be small and effective to
be profitable. Designing such electrical systems from scratch takes time and cost money,
therefore it is desirable to have some general components that can be reused multiple time on
different designs. One example of a general component that can be used in several systems is
a waveform generator. A waveform generator can be used as a controller for the applications
that need to do a specific task or initialize other modules in order. However, it is hard to
design everything perfectly and issues found after chip production add significant costs if the
wafer fabrication masks must be modified. It is therefore preferable if the waveform can be
reprogrammed as long as this does not cause the are and power consumption to be increased
to an unacceptable level.

A waveform generator is not a new concept. The waveform is a vital part of the design,
often able to execute tasks with clock-cycle precision. A normal FPGA can be used as a
programmable waveform generator, but the resulting area and power consumption of the
design are not suitable for the small sensor systems that are in demand. Therefore it is
desirable to create a small and practical customizable waveform generator that can be used
by different types of ASICs.

1.2 Objective

The main goal of this project is to implement and synthesize a low power, low cost, and
highly customizable solution that can generate the desired waveforms. The design should be
easily integrated into future designs.

1.3 Main contributions

Implemented 4 different waveform generators that can be customised

1.4. STRUCTURE 2

Compared the resources and memory usage of each solution

Designs with clock speed between 200MHz and 60MHz

1.4 Structure

In some theory will be presented. This is to help understand the rest of the report.
As this is a continuation from a pre-study, a short summary of the necessary results that
is needed to understand this work is given in [Section 3.2l Next in the design of
the implementation will be explained. Here each module of the design will first be presented
before explaining how they are connected. The test plan that makes sure the design works will
also be described here. shows the result of the test described and some discussions
of how the design compares to other solutions of waveform generators. At the end of the
chapter there will also be presented some thoughts on future work Lastly in the
conclusion will be presented as well as the reference list.

Chapter 2

Theory

2.1 Waveform

In the context of digital circuits a waveform is a combination of several signals where each
signal switch between the binary values of one and zero. Ideally the signals would use no
time in switching value, but in reality there will always be some delay as shown in
This delay comes from the analog component’s transfer characteristics and can cause some
differences between theoretical behaviour and the actual behaviour [HHO7].

None of the signals in the waveform is exactly like each other, meaning all the signals will
change at different times. However this does not mean that two signals can not change at the
same time. The shape of the waveform is dependant on what the purpose of the waveform is.
If a waveform is used as a means to control other part of the circuit, then there will be some
constraints on how each of the signals can propagate compared to each other. One example
is that a signal only can be high if another signal also is high.

signal 1 \ i \ /
signal 2 / \
signal 3 /

Figure 2.1: Example waveform with 3 signals

2.2 Memory

There exist two main types of memory components called Random access memory (RAM)
and Read only memory(ROM). If the memory needs to be re-programmable only RAM and
EEPROM is normally used. EEPROM is a form om memory component that originates from
ROM, but is able to be re-programmed multiple times. However EEPROM can be quite slow
so it is often better to use RAM since this is faster and cheaper[Tys09].

In addition to the main memory it is also normal to have several temporary storage of
intermediate data in the form of registers. Memory is a important component in any
design, And is normally one of the limiting factors when designing a embedded system
designs|CJLZ11].

2.3. GENERATING DESIGNS 4

2.3 Generating designs

To generate electrical design it is necessary to describe the hardware and characteristics of the
design. One language that is able to make such descriptions are Verilog and SystemVerilog.
SystemVerilog is a hardware description language that is an extention from the Verilog
language. Verilog was originaly primarly for designing and testing at the Register Transfer
Level(RTL), while SystemVerilog added means for describing testbenches, defining functional
coverage, and specifying assertions|CDHKI0]. Verilog have a lot of similar syntaxes and
semantics as C, but is more directed torwards hardware modeling[Moh12].

To make use of the descriptions given by the hardware description language a compiler is
needed. A compilers job is to translate high-level language source code into machine-specific
assembly code. Compilers uses a built in model of the target processor that captures
the compiler-relevant machine resources, including the instruction set, register files and
instruction scheduling constraints[LHC™05).

It is also possible to use a compiler to translate the design descriptions into using resources
on a target FPGA. One program that does this is Vivado. Vivado is a software designed by
Xilinx that synthesise and analyse hardware description languages. The Vivado High-Level
Synthesis compiler translates the hardware description language to a bit file that can be
directly targeted into Xilinx devices. This means that it is no need to create a separate
register transfer level code to integrate the code into the devise [Xil].

2.4 Area and energy usage in FPGA and ASICs

Power consumption is one of the most important limiting factor when deciding between
using an FPGA or an ASIC. An ASIC will normally use a lot less power and is therefore
more efficient for specialised design|AAEQ06][Hau98].

Measuring the actual area of an FPGA implementation is not easy as most design does not
fully utilize all the logic on an FPGA. Instead the area is calculated by how many logic
resources that is used [KR0G].

In an ASIC it is possible to place each components very close to each other in a strategic way
with a physical short critical path, but this is not possible in an FPGA. However most logic
gates and flip flops in the FPGA is placed close together, only the clock crystal may be a bit
further from what it would in an ASIC.

Chapter 3

Design constraints and results from
pre-study

3.1 Design constraints

To achieve a customisable waveform generator it is fully possible to use an FPGA. However an
FPGA is not normally a good solution for ASIC design. In this case the waveform generator
should be compatible on an ASIC design, so purely FPGA solutions have not been researched.
However some inspiration from different FPGA solutions were considered in the pre-study,
but as they are not relevant to the final implementation.

The implementation will not be made physically instead an FPGA will be used to test the
design. The FPGA that is available is the xc7z010iclg225-1L from the Zyng-7000 series. This
has a Dual ARM Cortex-A9 MPCore with CoreSight and uses a 28nm technology. The max
frequency of the clock is 766 MHz.

The data in the input and output can wary, but the amount of I/O signals remains the same.
For this implementation the output amount is 8 signals. There is no restrictions for how many
input signals there should be, but it is desirable to be able to give some instruction to the
waveform generator. The instructions that can come is a jump instruction, reset instruction
or a do nothing signal.

3.2 Pre-study summary

Memory is a large component in most digital designs, and if the waveform should be saved
in the memory it should use as little space as possible. To reduce the space a waveform takes
in memory, 5 solutions were proposed in a theoretical research paper[Fos21]. An example of
a waveform is given in Here it shows a simple waveform with three signals called
A, B and C over 5 clock periods.

3.2. PRE-STUDY SUMMARY 6

Figure 3.1: Simple waveform with three signal over 5 clock cycles

An overview of how the 5 different solutions would save the waveform from the example in

igure 3.1] is shown in

Table 3.1: The 5 solutions saving a simple waveform

All bits soluti
(a) its solution (¢) Change bit solution

ABC (b) Toggle solution

000 pos. -
o R
Lo cl 2 o, 10

block soluti
(d) Change position solution (e) Wave block solution

pos. _change bit addr. | A B C | repeat | inst.
5 0L 11 0x0 | 000 1 0x0
3 01’ 10 Ox1 101 1 Ox1
5 01’ 10 0x2 | 011 2 0x2
! 1 Ox1

The first solution is showed in This solution involves saving all the bits of the
waveform. This can take up a lot of space in memory if the waveform is very large, but it does
not need any counters or extra logic. The second solution involves looking at each individual
signals toggle position. This method is beneficial if there are few toggles, and all happens at
different times. An example of this is the C signal that only toggles one time in the span of
the five clock cycles. The third solution proposed were to save which bit change as shown
in Here each signal gets a numerical value, in this case signal A got the value 1,
signal B got the value 2 and signal 3 got the value 3. This method is beneficial if there only
is one signal that change at a time and that the total amount of signals in the waveform is
2 to the power of N, where N can be any whole number. However in this solution there will
be some space where none of the signals change. Therefore to reduce the size further a forth
solution were proposed where the changed bit is saved with the position the change happens
as shown in The last proposed solution to save space in memory were to separate
the wave construction information with the operation instruction. The wave memory contains
every possible combination of each signal that is used in the waveform. From the example
waveform there only is three combination the waveform makes as shown on the left table in
On the right is the operation instruction. This tells how the data from the wave
memory should be combined to create the waveform from

3.3. RESULTS FROM PRE-STUDY 7

3.3 Results from pre-study

In the pre-study some of the different solutions theoretical values were calculated. This results

is shown in To calculate this results the waveform shown in were used.
These values are purely theoretical and will be compared to the actual results in

Table 3.2: Comparison table from pre-study|[Fos21]

method size needed in memory
of saving for waveform in [Figure 4.14 customizability
all bits solution 1224 bits 49 write operations needed
toggle solution 400 bits 2 write operation needed
reduced toggle positions 704 bits 8 write operation needed
change bit solution 711 bits 49 write operation needed
change position solution 276 bits 6 write operation needed
wave block solution 288 bits 6 write operation needed

It is worth noting here that the reduced toggle position solution is a solution with similar
structure as the toggle solution. The only difference is that it does not have a fixed amount
of space for the amount of toggles in one counter period. This resulted in varied memory size
for each signal in the solution. This needed extra control logic that knew exactly how many
times the signals toggled. This extra logic that needed to be added or removed depending
on the waveform removed the customizability part of the solution. Therefore this solution is
not explored further as it does not achieve the minimum requirement of customizability, and
preformed worse than the original method.

Chapter 4

Design

4.1 Overview

This design is based on the theories presented in the project preceding this thesis[Fos21] as
described in To make the waveform generator work it needs more than just a
memory. An suggestion to the other different parts that are needed is shown in the block

diagram in [Figure 4.1

| Waveform generator Mamory

Input <—> Interface Control logic Timing logic Ly Qutput

Data handling

M v

Figure 4.1: A block diagram of the design and its required parts

The design mainly consist of five parts that does different task. The main part is the memory,
this is where all the information needed to generate the waveform is stored. The control logic
is the second biggest part. This controls which part of the memory that needs to be read,
the internal clock and enable signals, and what to do if something needs extra operations.
The data handling part will read from memory and send relevant information to the correct
modules for implementation. The timing logic is the last part before the waveform is sent
out. This part ensures that the timing of the output is correct. The last part is the interface
logic. This is not active during normal operation and is only active when the waveform needs
to be altered.

4.1.1 Connection

Each module need to be connected to each other. A block diagram of how the parts are

connected is shown in

4.2. MODULE DESCRIPTION 9

Input Interface }

T_‘

Memaory Control logic

A
Data handling J—|

Timing logic }47

Dutput

Figure 4.2: Block diagram of how each module is connected

The interface part will often be in sleep mode, so the other four are responsible for generating
the waveforms. As seen in the block diagram the different parts communicate in a circular
pattern. If the data handling read from the data in memory that it needs to to jump to a new
address, the inner circle will be used. The control logic is then responsible for getting a new
address for the memory, and ensure that the design is not stuck in an eternal loop without
sending data to the output. Eventually a instruction containing data that should be sent to
the output should be read and then data handle will send this data to the timing logic. As
there must be a new entry to the timing module before one clock cycle have passed, a signal
will be sent to the control logic that it should start fetching the next instruction before the
previous is finished.

The different solutions all have some difference when connecting each module, but the
functionality of the modules remain mostly the same. In the next section each module will
therefore be presented, and a greater detail of how the modules are connected in the different
solutions will be introduced later in [Section 4.3

4.2 Module description

Inside the main five design parts there are several modules that helps preform the tasks. Here
the different modules will be explained with some of the code of the implementation.

4.2. MODULE DESCRIPTION 10

4.2.1 Interface

The interface will mainly be in sleep mode in normal operation. It is therefore preferred to
have a small and simple design that does not have a large impact on the overall design. The
interface for this design is therefore modelled after a SPI interface. To limit the number of
wires, the interface will look for special commands like write or read. It will then wait for the
next change to know the address followed by data. The specific commands that are accepted

are shown in [Table 4.1]

Table 4.1: expected commands from interface

Command Explanation
00 start writing at available address
01 start writing at this address
10 write this data
11 read data

The interface consist of 10 bits where the first two bits needs to be a command from the
table. The remaining 8 bits is the ones that contains the data. The code can be seen in

4.2.2 Memory

The memory section consist of the information on how the waveform should be generated.
As discussed in the project preceding this thesis this can be done in 5 different ways|[Fos21].
Depending on the methods, the size of the memory also varies. However, there are some
similarities between all the possibilities. The saved data needs to have some form of identifi-
cation that difference each type of data. This identification is therefore always the first 4 bits
in each address. The biggest difference between the solutions are where each information is
stored. In the waveform building block solution it is needed two different memory locations,
while in the others one big memory is required instead. To implement this a large register is

needed, the code is given in

4.2.3 Control Logic

The control logic is the most complex part and consist of 4 smaller modules.

init module:

The task of the init module is to control the start of the possess. The most essential part of
this module is that it makes sure all the other modules is reset before the process is beginning.
The reset signal is active until the clock signal has stabilised after booting up.

wait module: The task of the wait module is to do nothing for 16 clock cycles. This can be
interrupted by the interface if needed. The purpose of the module is to shut down the other
processes while there is a long period where the waveform does not change. The output of
the waveform generator needs to remain the same, and no new data should be fetched in the
control logic, however the process needs to start again after the timing period has ended. The
number of clock cycles to wait is decided basted on the test waveform that will be described
in later sections.

next address module:

The next address modules code is shown in and its expected behaviour is shown

in [Figure 4.3

4.2. MODULE DESCRIPTION 11

CLK
module_CLK
new_fetch_EN

init / / JoxA
Diump . oD X ke O Y . oD . e X
Liimb . O K

P1 7 0xB oxc_ X OXE o X_om0) 0xB X_oxc_)\ OxE X oxF Y oxD_ XOxE

Input

[nxt.addr 72222 0xA X _oB X 0D o { oxc X 0xA oe X o) o X _oxc X ox0

Out

Figure 4.3: A waveform of how the next address module handle the expected inputs

Here the out value describes the address of the memory where the data lies. The different
colours describe what type of data that lies in the address. The yellow colour symbolise a
normal wave that needs to be sent to the Delay module. The red colour symbolises that
the data at that location contains a D-Jump command. The blue colours describe that a
L-Jump command is at that location and needs to be send to the Loop module. The darker
blue symbolises that the loop is not finished and therefore will send a jump command back
to the start. The lighter blue describes that the loop have reached its final iteration and
that the following command should exit the loop. The next address module obviously has
no information about the colours, as this is decoded in the Decoding module, but is added
to visualise why the inputs change.

The top signal in symbolise the output clock of the entire design. The next
address module needs to have the next address ready before one clock cycle have passed.
The second signal is the module clock. This goes four times faster than the output clock.
The next_ fetch_ EN signal is a synchronous enable signal. This signal tells the module
when it is ready to start outputting a new address. The output will only change when both
module CLK and next_fetch EN is high. This enable signal is controlled by the enable
module.

Enable module:

The enable signal that is in the next address is controlled by the data handling module, the
Loop module and the Delay module. The data handling module will set the signal high shortly
after sending the D-Jump command like shown with the arrows in Similarly the
Loop module will also set the signal high right after sending the address it need to jump
to. The rest of signal tops is controlled by the Delay module. The Delay module uses the
output clock signal to determine when the signal should be set, so the tops is always a little
after the clock change. Since there are three sources that can effect the signal, an module
were necessary to ensure that there was no errors accruing if more than one of the sources

activated the enable at the same time. A snippet of the code is shown in

module enableCtrl (
input logic delay fetch,
input leogic loop fetch,
input logic jump fetch,
output logic enable);

always_comb
enable = delay fetch | jump fetch | loop fetch;
endmodule

Figure 4.4: Code for implementing the enable module

Program counter:
The program counter module work in combination with the next address module to update
the address. The program counter will always increase the current address by one, however

4.2. MODULE DESCRIPTION 12

this address will only be used if there are no jump instructions. If a jump occurs the address
in the program counter will also be updated and the module will starting to increase the
address by one from the jump address. The implementation code for this module is shown

in [Figure 4.5

module programCounter (
input logic rst all,
input logic fast clk,
input logic[7:0] current address,
output logic[7:0] P1);

always @ (posedge fast clk)
if(rst _all)
Pl <= 1'b0;
else
Pl <= current address + 1'bl;
endmodule

Figure 4.5: Code for program counter

4.2.4 Data handling

The data handling module gets an address from next address module and reads the data in
the memory location corresponding to the address. As stated earlier the first 4 bits decide
where to send data. A list of the different data types is given in[Table 4.2] and [Table 4.3] The
reason that there are two different data type sets are that the memory size varies between the
solution. In model B there is only expected to be 4 bits containing data for the waveform,
while model A expects that there are 8 bits available. However, the address is expressed with
8 bits, so in model B the data handling module wait on sending the data until the next input
comes. If the corresponding part 2 does not come, the module will act as if it never received
the part 1 command.

Table 4.2: Data types model A

’ Bits ‘ Data type ‘ Where it should go
0000 no data at given address Next address
0001 Do nothing Wait module
0010 Normal wave Delay module
0011 Reset all modules Init module
0100 Loop start Loop module
0101 Loop end Loop module
0110 D-jump inside loop Next address module
0111 D-jump outside of loop Next address module
1000 not in use/error Interface
1001 not in use/error Interface
1010 Normal inverted wave Delay module
1011 Irregular output change Delay module
1100 inverted loop start Loop module
1101 Inverted loop end Loop module
1110 Inverted D-jump inside loop Next address module
1111 | Inverted D-jump outside of loop | Next address module

4.2. MODULE DESCRIPTION 13

As seen from this table the most significant bit is simply telling if the data should be inverted
or not. If the data is inverted then all the bits in the data will change. It is also possible to
only use the first half of the table if the inverting option is not wanted, and thereby be able
to reduce the data type bits from 4 to 3.

Table 4.3: Data types model B

’ Bits ‘ Data type Where it should go
0000 no data at given address Next address
0001 | multiple commands for wave Wayve assembly
0010 Normal wave Wave assembly
0011 Do nothing Wait module
0100 Loop start part 1 wait
0101 Loop start part 2 Loop module
0110 Loop end part 1 wait
0111 Loop end part 2 Loop module
1000 D-jump inside loop part 1 wait
1001 D-jump inside loop part 2 Next address module
1010 D-jump outside loop part 1 wait
1011 D-jump outside loop part 2 Next address module
1100 | Irregular output change part 1 wait
1101 | Irregular output change part 2 Delay module
1110 not in use/error interface
1111 not in use/error interface

Depending on what the first 4 bits are, the remaining 8 bits can contain different information.
In a "normal wave type" the 4 bits following the data type bits will contain the repeat count,
while the remaining bits either contains the desired output waveform or the address it is
saved at. The multiple commands for wave command is special for the change bit solution
and enables multiple signals to change at the same time. This commands store the data
and waits for the next normal wave command, before combining them so the change bits
change at the same time. The irregular output change is a command that changes the read
out value of the output without affecting the output. This is used when looping needs to
reset the value to a reference point for the solutions that depends on the previous output to
determine the next output. In the "loop start type" the 8 bits are the number of times the
loop should repeat, while the bits in the "L-jump type" contains the address of the start of
the loop. L-jump is just a normal jump commands that comes when looping is used. The
D-Jump command is simmilar in that it is just a normal jump command, but originates from
a planned jump in the instruction data. The data in the "D-jump types" contain the address
of where the jump should go. The difference between the two is if the D-jump should break
out of the loop or not, but the data is not affected by this.

Currently with this setup it is not possible to utilise nested loops. However it is possible to
implement by taking advantage of the unused data types, but this will not be implemented
in this design.

4.2.5 Timing

The main task of the timing part is to control the output delay and repeat amount. The
output delay is the amount of clock cycles the waveform stays unchanged, while the repeat

4.2. MODULE DESCRIPTION 14

amount is the number of times a waveform pattern should repeat. The respective functions
are split into two modules called the delay module and the loop module. To be able to handle
the timing, a counter is implemented. The counter is present in both timing modules and
consist of an adder and a register. The delay module will only need a small counter of 16 for
the test waveform that would be described in so this is used as a limit. The loop
count will on the other hand need to be larger as one pattern often is reused multiple times.
As the max amount of bits that are available in the data is 8, the counter max count is 4096.

Both counters have an input for reset and increase. The reset is a synchronous signal that
is controlled by the delay and loop module and is activated when the counter have reach the
repeat count from the data. The reset signal will reset the count to zero, this will also happen
if the count goes over the max count. The increase signal is a signal that tells the counter
when it should increase the count. For the delay module this is on the positive edge of the
output clock. The increase signal for the loop counter is when a loop end type command is
received in the data handling module.

Loop module:

The microarcitecture of the loop module is given in

Address Increase Repeat

'0x00'

Compare
(repeat=counter)

i

i

] i

i + |

| i

] i

] i

1 |

: Reg i

i » >clk !

: » Reset i

Loop e Counter

v
Address

Figure 4.6: Loop architecture

The loop module have tree input that it receives at different times. The first input is the
repeat count that comes when a loop start type command is read in data handling. The next
input is received when a loop stop type command is read from memory. The input consist of
a 8 bit address and the logic signal called increase that is sent into the counter. If the repeat
value is unequal the counter value, then the address is sent to the next address module. If they

4.2. MODULE DESCRIPTION 15

are equal, then the address 0x00 is sent to symbolise that no jump is necessary. Whenever a
address or a zero-address is sent, an fetch enable signal is also sent to the enable module.
Delay module:

The wave data for the delay module is similarly structured as the loop module as seen in

Waveform Clk Repeat

I [

Compare
(repeat=counter)

—

+

Counter

__

Qutput

Figure 4.7: Delay architecture

The delay module also have three inputs and one output. The inputs are the waveform,
repeat count and a logic signal that tells the counter when it should increase. As mentioned
earlier this is the positive edge of the output clock that controls the delay counter. However
unlike the loop module, all the inputs here will arrive at the same time. If the repeat count is
equal to the counter value then the waveform input will be sent to the output, else the output
remains unchanged. When a waveform have been passed trough to the output a fetch enable
signal will be sent to the enable module so that a new waveform eventually comes to the input.

In the change bit solution there will also be an additional module called wave assembly that
will supplement the delay module like how the counter does. This module takes in the data
of which bit that need to change and output the 8 bit waveform that otherwise would come
directly from the memory. If the first bit in the 4 bit data signal is high the module will wait
on next input as this means that there are multiple bits that need to change at the same
clock period.

4.3. FULL DESIGN 16

4.3 Full design

4.3.1 Difference between solutions

A more detailed diagram is needed for all the solutions that will be tested. The architecture
of the saving all bits solution is shown in

Interface

DMUX

Ut Ll spiinterface
v

: Control |
| logic |
i Program counter Init !
[t (teibddhs (e’ I i H
| v i
| b P! | Startadar :
: Memory €« H
| — Mext address [Enable |
i ! nx!. addr. !
| & A A |
Dat?|_1_2__h_lt_] ___________________ s D-Jump I
\ X ! L-Jump—
; Data handling :
! —i—\!ump_fetch

------------ f— address(8 bit) Loap_fetch
Repeal(3 bit) Delay_feich

Wave(s bit) increase(1 bit)

------------------------------- h Ataiaiei, suiuinh, Subeieiuieiitadeid

Counter Timing:

! logic |
____________________ i.______________________________________
QOutput (8 bit)

Figure 4.8: Architecture of saving all bits solution

i Delay Loop

Since all the bits are saved, it means that each memory address is corresponding to one clock
cycle. This means that the delay module does not need a counter as all the repeat counter
would be 1. The data size in memory would only need 12 bits per address, where the first
4 bits are the data type, and the next 8 bit contain the waveform. This architecture is the
basis for the next solutions.

One such solution is the saving of the toggle position. This have an architect like shown in

igure 4.9

4.3. FULL DESIGN 17

Interface

DMUX

Input L, sPlinterface
v

[, S Control |
! logic !
! ! | Program counter Init '
! Memory L v P iStart addr. |
i Memory [« handling ! i
i i Mext address < Enable i
* A A A T i
Data(12 bit T
,———————]-v ————————————————— . D-Jump Mext index x 8
i ! L Jump—
a i 5
: Data handling :
! ———Jump_feich
(S I e address(g bit) Loop_fetch
Repeat(12 bif)
Toggle(8 bits) increase(1 bif)
it Aty L A, St At !
1 i Delay_fetch
i Delay Loop :
! Counter o i
i ‘ 48 Counter T|m||jg:

! logic |
____________________ '______________________________________
Qutput (& bit)

Figure 4.9: Architecture of saving toggle position solution

Here it is important to mention that the thick lines are busses that contain 8 different signals
that change independently of each other. In this solution a memory handling module is
introduced. This is to handle the reading of the different addresses at the same time. Another
addition is the module called "Next index". This module is responsible for changing the index
of the signal that is sent to the data handling. In this way it works similar to the next address
module, with how it waits on a enable signal and is responsible of sending the output to the
memory handling. This module also have a program counter, but do not have any jump
addresses coming into it. When the indexing have reach its end, the memory handling will
send a signal back to the next index module, so that the program counter in the module can
be reset.

An architect of how the change bit solution is shown in

4.3. FULL DESIGN 18

Interface

DMUX

Input <—
¢ SPl interface
Read
)

Program counter Init

i | VP11 | Stataddr
' Memory L T

. Mext address [Enable
nxt. addr.
Data(@ bty —1 T A A A
D-Jump I
L-Jump—m

Data handling

———Jump_feich

C
————————————————— \— address(bif) Loop_fetch
Repeati8 bit) Delay_fetch

Change(4 bit) increase(1 bit)
------------------------------- L il siuiuieh, Sueiieii
Wave !
assemble :
i

i Delay Loop

Counter Timing:

‘ logic |
____________________ i.______________________________________
Output (8 bit)

Figure 4.10: Architecture of saving changed bit solution

This solution is similarly structured as the saving of all bits solution. The difference lies in
memory size and an extra wave assembly module. The memory only save 8 bits in opposition
to the 12 bits that were used when saving all the bits in the waveform. However this difference
also change instruction mode to type B.

If the toggle position and the change bit solution is combined it would look like the architec-

ture shown in

4.3. FULL DESIGN 19

| Interface |
! Input i
P ST sPiinterface ;
| DMUX !
! i I i
! Read Write !
Program counter Imit
| e [i
! v i
i i vP1 | startadar
! Memaory B :
i i Mext address — Enable
i ' nxt. addr
Data(12 bit) Y N S—y
P T
i i D-Jump
i i L-Jurmp—
i Data handling —i—‘ Hme
i —i—lump_fetch
i i
i Tt EET --I—' address(2 bit) Loop_fetch
Toggle time (5 bit) Repeat(s bit) Delay_fetch
Change(3 bit) increase(1 bit)
aiaietntealaiatunien, Aaiels, Attt L tuluiiet, Auieiuh, At !
| Wave '
' | assemble :
i Delay Loop L
! Counter Counter Timing!

. logic |
____________________ T______________________________________
Output (8 bit)

Figure 4.11: Architecture of saving changed bit at toggle positions solution

This solution is very similar to the change bit architecture, however there now is a need for a
counter in the delay module. The data size will also change back to 12 bits, and thereby the
instruction type switch back to type A. Another difference is that there now is two output
from data handling that goes into the delay module. The fist input contains the change bit
information, while the other contains the delay value from the toggle position. Here the wave
assembly module will never wait before changing the bit, instead if more than 1 signals needs
to change at the same time the toggle position on the first change will be zero so that the next
change comes immediately after. This means that the register value inside the delay module
may change multiple times before one clock cycle have passed and the output updated. This
could be a potential problem if a lot of signals need to change at the same time, but the only
way to fix this is to increase the internal clock speed to be at least 8 times faster than the

4.3. FULL DESIGN

output clock speed and that is not realistic with the current design.

20

The last possible solution is the waveform block solution. This have an architect as shown in

Input
P <_|—> SPlinterface

Interface

DMUX

¥
Read Write
S |_ __________________________]
r Memory™] " D —— —Y Control !
' ! i logic |
i Inst. v i i Program counter Init :
i | memory b '
i Memory | | i
| handiing |} | | im ,|; Start addr. ;
V| wave g VL i
i | memory ; % Mext address e— Enable !
i v TR :
e I fo 3 & ;
Daa(i6bm) | | D-Jump
E ' L-Jump—
i Data handling :
i ————Jump_feich
] i
S B N I N address(2 bit) Loop_fetch
Repeat (4 bit)]l— Repeat(12 DiE:I Delay_fetch
Wave(s bit) increase(1 bit)
ittt . Attt | i, Suieieh, Sueiue b !
= i
i Delay Loop :
i ‘ Counter Counter Timingi
i logic |

QOutput (8 bit)

Figure 4.12: Architecture of saving waves in blocks solution

The biggest difference between this and the other architects are the memory handling module
that combines instructions and wave info. 16 bits are entering the data handling that uses
instruction type A. The delay module does also here take in two different inputs about the

wave and the repeat counter.

4.4. TEST PLAN 21

4.3.2 Comparison

A summary of the difference from each design is given in

Table 4.4: A summary of the difference in solutions

memory size

Solutions per address memory handling Delay counter | Wave assembly control logic
all bits of 12 No extra none No need Common
waveform
] RPN 12 Handline index i 8 at 6 bi Timing s extra
toggle positions andling index input at it iming constrain enable module
changed bit 8 No extra none Transform wave common

changed bit at

... 12 extra arithmetic unit 1 at 4 bit Transform wave common
toggle position

Combi inst ti .
wave block 16 OUIDIIES INSTrUCtions 1 at 4 bit No need common
and wave

4.4 Test plan

A test plan is needed to ensure that the design works. In this section the testing of each
module and their connections will be described in greater detail.

4.4.1 Read and Write module

To test the write module the read module needs to be working. The test script will send in
inputs that simulate normal input in the design. These inputs will consist of both writing at
a specific address and writing where there is no data followed by reading the memory and
passing it to the interface. The check is successfully when the output from the interface is
the same as what were sent in.

An error handling test will also be preformed. This test includes sending in wrong commands
and see if this affects anything followed by a test where the instruction tells the module to
write outside the allowed memory addresses. The test is successful if nothing happens in the
memory and a correct input is achievable after sending in the wrong input.

The last test is that the read and write module goes into sleep mode in normal operation.
This is tested by seeing that the clock input into these modules remains unchanging.

4.4.2 Init module

In this module it is important to test that every other module gets a reset signal at startup.
The start address of where the instruction memory is, will also be tested to be correct after
reset. Different start address will be tested to ensure that the start address can be anything.

4.4.3 Next address module

The most important functionality test of this module is that the inputs arrive and stays for
a correct amount of time for the output to notice them. However the output depends on the
different inputs so a event handling is sat in place. A D-jump command should never arrive at
the same time as a L-jump command. The only way this happens is if the new_ fetch__enable
signal rise when it should not. When this happens a priority will take place. Since D-jump

4.4. TEST PLAN 22

have a higher priority this address is the one that is sent at the output of the next address
module. When this happens the L-jump command will be treated as it never arrived.

ok [I\ I/
new fetch ﬁ m /f / Y \ .I'g' / v \ Jg’ / Y \
init i oA [/ i
o-vmp 77777778 0C Y7777k € X777 e Y7777 777 o YO
SV SN)) % S S)) S I
P1 7 0xB ¥ i Y 0B o) 0xB oD J/ 0xBY OxE
out 0xA | oxC J T o oxC_]/ 0xC // OxD

Figure 4.13: A waveform of how the next address module handle the unexpected inputs

The waveform in shows the expected output when multiple inputs are waiting.

The program counter will also be tested with the next address module to see that the address
always are the output plus one one clock cycle after the output have changed.

4.4.4 Enable module

Test that the output always rise when one of the three signals are high. There will also be
a test to see if any of the three signals are high at the same time as this should not happen
unless some of the signals is not set low again after they were set high.

4.4.5 Data handling

In the data handling module it is important that every data type is handled correctly.
Especially the wait command with the type B command set is tested that the output does
not change until the second part comes. Another important thing to check is that the fetch
enable signal is activated when a D-jump command or a wait command comes. It is also
important that this signal is lowered again before the next high comes.

The test will also check that the input is split into the correct output. The wave info and the
repeat count is split into different wires, so there will be checks that these values have not
been switched or been changed from the input value.

The last check for this module involves the loop signal "increase". This signal should be
created in the data handling module and should only be high when a loop stop signal is at
the input.

4.4.6 Delay

Testing of the counter involve seeing that the counter value reset to zero if the count reaches
the max value. The reset in itself will also be tested to be able to reset the count to zero
even if the count haven’t reached max value.

The delay module is suppose to start fetching the next wave as soon as the output is changed.
This means that a test to see that the register values that contain the current output wave
and possibly the repeat count does not change even when new input arrives. The fetching
of new information will also be tested. Here the test entails not fetching new data until the
current input is at the output.

4.4. TEST PLAN 23

4.4.7 Loop

The loop gets the inputs at different times, so a test involving haven gotten the repeat count
before the address is preformed. There is also a test to check that the loop count only
increase at the loop end command. Other than that the loop is testes by looking at the total
functionality of the overall design test.

4.4.8 Overall design test

the last tests are for when all the modules are connected between each other. The main
functional test is to compare the output of the waveform generator to the expected output.
This test will check that the values are correct as well as how long the output stays.

There also is 3 smaller test that checks the connection between each module. The first test is
that the output of one module match is corresponding input on the other modules, with the
exception of the delay modules output that is the output of the generator. The second test are
that the next address module wait when it needs to. This happens when a wave is unchanged
at the output. This is important so that the generator don’t read several instructions while
the output clock still in the same clock periods. The second test ensures that the looping in
the output corresponds with the looping count in memory. This test involves that there is
a looping start and a looping end command, as well as that the addresses outside the loop
also eventually is read. The last test involves the operation with and without activation the
interface. Activating the interface should stop the output from changing, and likewise the
output should change even if the interface never were interacted with.

All the overall tests were preformed with the waveform shown in This is a short
waveform example in itself, however in the test the sample part were repeated 5 times before
the shutter part were generated. This result in an waveform of 489 clock cycles instead of
the original 153 clock cycles.

4.4. TEST PLAN 24

]
RowSet J
1

RowClr

PixRst Ji
PixTxg I
PiXRS I
PiCG T
SampR I
SampS J

(a) Waveform part 1, the setup

Desc CDS sample

RowSet

RowClr

PixRst

PixTxg
PixRS

PiXCG
SampR

Samps

(b) Waveform part 2, the sample

CDS sample

I
I

I
i

(c) Waveform part 3, the sample

Desc shutter
RowSet

RowCir

PixRst

PixTxg
PiXRS
PiCG

SampR

(d) Waveform part 4, the shutter

Figure 4.14: Waveform used in functionality test

The setup part of the corresponding memory for each design when this waveform is used
is given in The whole memory can be found in Here it is worth
mentioning that the four most significant bits represent the data type information. Here
0x2 represent a normal wave, meaning this is the waveform information. In the case of the
toggle, change bit and wave block solutions there are data at the following addresses, but
those addresses are used to represent the rest of the waveform beside the setup part. At
address 0x00 there is always a no data data type. This is to make sure the output is not
affected at startup as the modules still is being reset. This is normally not needed as the
output module should output 0x00 until the reset is done, but are there for extra safety.

4.4. TEST PLAN

25

Table 4.5: memory structure for the different solutions for saving the setup waveform

address | all bit | toggle | change bit | change position | wave block inst. | waveform blocks
0x00 | 0x000 | 0x0000 0x00 0x000 0x000 0x00
0x01 0x200 | 0x29D0 0x30 0x310 0x210 0x40
0x02 0x240 | 0x2260 0x26 0x226 0x242 0x80
0x03 | 0x240 | 0x200 0x30 0x266 0x230 0x04
0x04 | 0x240 | 0x200 0x30 0x297 0x241 -
0x05 | 0x240 | 0x200 0x30 0x2D7 0x240 -
0x06 | 0x200 | 0x202 0x26 0x202 0x293 -
0x07 | 0x200 | 0x200 0x30 0x390 - -
0x08 | 0x200 | 0x200 0x30 - - -
0x09 | 0x280 - 0x27 - - B
0x0A | 0x280 - 0x30 - - _
0x0B | 0x280 - 0x30 - _ _
0x0C | 0x280 - 0x30 - - _
0x0D | 0x200 - 0x27 - - _
0x0E | 0x200 - 0x30 - - _
0x0F | 0x200 - 0x30 - - _
0x10 | 0x200 - 0x30 - - -
0x11 0x204 - 0x22 - - -
0x12 0x204 - 0x30 - - -
0x13 | 0x204 - 0x30 - - _
0x14 0x204 - 0x30 - - -
0x15 | 0x204 - 0x30 - - _
0x16 | 0x204 - 0x30 - - _
0x17 | 0x204 - 0x30 - - _
0x18 0x204 - 0x30 - - R
0x19 0x204 - 0x30 - - _

4.4.9 Customizability

All the solutions can be reprogrammed to customize the waveform, however how easy it is to
do so also need testing. To test customizability the waveform in will be changed

into the waveform shown in [Figure 4.15

Pty

e

Figure 4.15: An alternative for waveform part 4, the shutter

The main alteration consist of toggling the PixTxg signal three times instead of just one. This
cause the total amount of clock periods to increase. Two test will therefore be preformed.
One is to add this waveform in the memory without removing the previous alteration, while
the other test involves completely replacing the waveform. the main focus on both test is
how much extra work this process will take.

Chapter 5

Result & Discussion

5.1 Functionality

All modules works as expected, but when the full test of functionality were preformed on each
of the design a varied results can be seen on the toggle solution. The toggle solution is able
too work fine when each signal switch an equal amount of times, but this was not the case in
the test waveform. The toggle solution uses four bit to state when the signal should change
position. However as the waveform last more than 16 clock cycles, the waveform counter
restart its count to 1 after it reaches 15. If the four bits in memory equals to zero the signal
should go without change for 15 clock cycles. For example the PixCG signal in
does not change in the first 15 clock cycles, but change in the in the 17th clock cycle, so this
is represented by the value 0x02. However the signal RowClr changes twice in the first 15
clock cycles(at position 2 and 6), but none in the clock cycles after 15. This is represented by
the value 0x260. As the setup waveform ends before clock cycle 31 comes, the end zero is not
needed, but this is not the case for the sample and shutter waveform. To keep consistency
the end zero is therefore needed, but this means that the signal is described with 4 more bit
in memory compared to the other signals.

This is a problem as the memory needs to be a fixed size. The problem can be solved by
adding extra zeros to the other signals, but this takes of extra space in memory. It also
creates problems with the timing logic for each of the signals, as some of the signals then
have 15 more clock cycles worth of data than the others. This problems also appear when
the rest of the waveform is saved, as the sample waveform needs 28 or 32 bits in memory and
shutter waveform needs 12 or 16 bits in memory for each signal. To keep consistency for the
entire test each address in memory only contain up to 15 clock cycles for the waveform. With
this change all the addresses in memory will contains 12 bits, but this also put a new restrain
on the available waveform possibilities. Since there only is 8 bits available to describe the
toggle position within the 15 clock period, each signal can only toggle twice in this period.
If more toggling is needed, the entire memory needs to be increased.

Another problem with this solution is that the waveforms does not contain clock cycles that
can be divided by 15. The setup waveform shown in contains 25 clock cycles.
This means that there is a remainder of 10 clock cycles after the first 15. The sample waveform
have an remainder of 9 clock cycles, the original shutter waveform have an remainder of 13
clock cycles and the alternative shutter waveform also have an remainder of 10 clock cycles.
To fix this the unused data type commands and the do nothing command from can
be used. This puts another constraint on the possible waveform generation as the waveform

26

5.2. AREA 27

must have an remainder of 0, 8, 10 or 13 clock periods after dividing by 15 with this suggestion.

The toggle, change bit and change position solutions also have some issues in functionallity
when it comes to repeating each waveform. This is because all the data in memory relies on
the previous output of the waveform generator. For example the setup waveform assumes
the output were 0x00 at the start, while the sample waveform assumes the previous output
data was 0x04 at the start of the waveform. However when the sample waveform is finished
it ends at a value of 0x00. This means that before looping the output value needs to be reset
to the start value when looping. This is done by adding an extra instruction in memory of
an irregular output change. This uses up one clock cycle of the fast clock, but as long as a
normal wave instruction follow it is no problem.

5.2 Area

The utilization of the FPGA that the implementation is using is given in Here it is
seen that the all bit solution uses the least of the resources, however the memory utilization
is not included.

Table 5.1: Comparison of the utilization of the different solutions

Solution Slice LUTs | Slice register | Slice | Lut as logic | FF

All bit 41 57 20 41 51
Change bit 62 78 28 62 53
Change position 67 91 31 67 58
Wave block 44 79 22 44 64

Memory usage can be compared by measuring how many bits each solution needs to generate
the example waveform that were described in [subsection 4.4.8] This value can also be
compared to the theoretical worst case scenario. This comparison can be seen in

Table 5.2: Memory usage comparison

Solution Total Whereas contain | Worst case | Saved space compared
bits used wave info scenario to all bit solution
All bit 1860 1216 1860 -
Change bit 1296 612 9768 30.32%
Change position 444 264 7344 76.13%
Wave block 484 328 3680 73.98%

From the comparison table in we can see that the most efficient solution is the
change position solution with the wave block solution not far behind. The change position
solution and the wave block solution is able to save over 70% of the space compared to the
all bit solution.

The worst case scenario is a theoretical waveform with the most ill suiting waveform for each
of the solution. To compare the value to the results from the test waveform some restriction
were set on this worst case waveform. First is that it is assumed that there are 8 signals like
in the test waveform. The waveform is also structured similar to test waveform with an equal
amount of clock cycles and needs to be split into three parts. The difference lies in how each

5.2. AREA 28

signal change.

It is possible to calculate a worst case for the toggle position by using the suggested fixes,
even though the solution currently is not working. In the worst case scenario for the toggle
solution each signal will change each clock cycle. To accommodate this the bitsize of each
instruction in memory needs to change. In the test waveform each signal only toggled twice
in each period of 15 clock cycles, but now they will toggle 15 times. This increases the bits
for each instruction, Bioggie to be 4%15+4 = 64 bits. The equation for the worst case, Wioggie

is therefore given in
Wtoggle = (I + Pl * Asignal +1+ P2 * Asignal +1+ PS * Asignal) * Btoggle (51)

Here I is the non-wave instruction like loop start and loop end. This takes up one line in the
memory. Agigna is the amount of signals in the waveform. P is the amount of periods of 15
clock cycles in each waveform. To replicate the test waveform the first waveform is split into
2, the second into 6 and the last into 3.

For the worst case for the change bit solution and the change position solution every signal
will change at the same at each clock cycle. This gives the equations as shown in[Equation 5.2]
and Here CL is the clock periods in each waveform. As stated those need to
be the same as the test waveform so C'L1 = 25, C'Ly = 84 and C'L3y = 43.

WchangeBit = (I + CLl +1+ CLQ +1+ CL3) * BChangeBit (52)

WChangePos = (I + CLI * Msignal +1+ CLQ * Msignal +1+ CLS * Msignal) * BChangePos (53)

Do note that there is a difference between the change solutions in that since the change
position solution uses data types model A (from while the change bit solution uses
the data type model B(from , the change position solution have the option to invert
the normal wave. Here the inverted wave is interpreted as change every signal except the one
given in memory. This efficiently means that the memory at max need to instruct four signals
to change at the same time instead of all eight, so M;gnq equals to 4. The bits needed for
each instruction is 8 for the change bit solution and 12 for the change position solution, so

BChangeBit =8 and BChangePos =12.

The worst case for the wave block solution is that there is never a repeat of the previous
combination of which signal is high at the same time and at least one signal will change each
clock cycle. Since there is a new combination every clock cycles, the amount of combinations,
Ac is the same as amount of clock cycles meaning it is 152. To find the total used space the
wave memory takes up the amount of combination needs to be multiplied with the space each
combination takes. In this solution this will always be the number of signals in the waveform,

Asignal .

WWaveBlock - AC’ * Asignal + (I + CLI + 1+ CLQ + 1+ CL?)) * BWaveBlock (54)

The all bit solution does not have a worst case as regardless of how the waveform is formed,
the size in memory is unaffected. Naturally this means that the all bit solution uses the
smallest area in the worst case, but the wave block solution is not that far behind. The worst
case of the change bit solution and the change position solution is well over 3 times worse

5.3. TIMING 29

than the all bit solutions worst case. This may come from that multiple signals change at
the same time.

The method that preforms the overall worst with considering to area is the change bit solution.
This is probably because of all the empty spaces in memory. In the test waveform from
there is a total of 112 clock cycles where the instruction from memory tells the
generator to do nothing. This means that in total 896 bits of memory is used up to tell the
generator that there will be no change in the output for that clock period. In comparison the
change position solution only need a max of 152 % 4 = 608 bits extra to add the information
of the change position.

5.3 Timing

The design uses two clocks, but the speed of each clock is different in all of the solution. The
main clock that controls the output speed should be around 200MHz, but currently it is only
the all bit solution that achieve this. The clock speed is decided by the critical path. The
critical path for the all bit solution goes from memory to the data handling module and have
a slack of 0.182ns.

The fast clock in the change bit design have a clock frequency of 300MHz. As the fast clock
needs to be four times faster than the main clock, the resulting clock speed becomes only
75MHz. The critical path here goes from data handle to the enable module. The reason
this takes longer time than from the all bit solution is that the enable module waits on the
enable signal that comes from the delay module and the loop module. As there is more logic
in the delay module, it uses a longer path. The same critical path appears in the change
position solution, but here the fast clock and main clock needs to be 280MHz and 70MHz
respectively. Since the critical path were the same, it can indicate that the main problem lies
in the assembly module.

The wave block solution have the worst clock frequency of them all. The clock frequency is
only at 60MHz. This is due to the enable module waits on the enable signal from the delay
module and the loop module before passing it to the next address module in less than one
clock cycle. The other solution does not try to this, however there becomes a logic error in the
design if this is not done. Theoretical this should not be needed, but currently cannot be fixed.

5.4 Customizability

All the solutions have a good grade of customizability as it only involves writing to memory.
So the baseline to determine which solution have the best customizability lies in the number
of write operations that is needed.

In the all bit solution adding the alternative waveform takes 71 write operation. You need
one jump instruction before the original waveform and 70 extra to add the new waveform. If
the waveform should replace the waveform, you need 48 write operation as the waveform is
similar in the first 22 clock cycles. This assumes that there is no other wave information after
the shutter waveform. If there were two extra write operation would be needed to place the

5.5. RESULTS COMPARED TO THEORETICAL VALUES FROM PRE-STUDY 30

jump instructions. The change bit solution uses the exact same amount of write operations
as it is structured quite similar to the all bit solution.

The change position solution and the wave block solution needs 11 write operations to add
the alternative waveform and only 5 if it replaces the original. This is by far the easiest and
fastest way of customising the waveform. However it is worth mentioning that the wave block
solution would potentially need more write operations if the signal combination contained
patterns that does not appear in the earlier waveform.

5.5 Results compared to theoretical values from pre-study

Table 5.3: Comparison of results from pre-study and actual results

method Theoretical size Actual size difference
of saving needed in memory | needed in memory
all bits solution 1224 bits 1860 bits 636 bits
toggle solution 400 bits - -
change bit solution 711 bits 1256 bits 545 bits
change position solution 276 bits 444 bits 168 bits
wave block solution 288 bits 484 bits 196 bits

A comparison between the theoretical values and the actual values is given in
Here it is shown that the theoretical value always is smaller than the actual value. This is
because the theoretical value did not consider that the type of data also would take up space
in memory. In the implementation there is always 4 bits in the start of each address that
tells the data handle which type of data it is.

If the values in the theoretical calculations is compared to only the bits used to contain wave

info we get the table shown in

Table 5.4: Comparison of results from pre-study and actual results of purely wave data

method Theoretical size Size of purely difference
of saving needed in memory | wave data in memory
all bits solution 1224 bits 1216 bits 8 bit
change bit solution 711 bits 612 bits 99 bits
change position solution 276 bits 264 bits 12 bits
wave block solution 288 bits 328 bits 40 bits

The values does still not completely match for any of the solutions, but are much closer. This
can have something to do with an error in calculation. It seems from the results that the
theoretical calculations have added an extra clock cycle that should not have been there. The
change bit solution is quite far off ass Well. This comes from that the theoretical calculation
added 2 extra bits in memory for each instruction. this were to be able to handle two signals
changing at the same time, but this were changed to simply use the multiple command for
wave when this was needed.

Chapter 6

Future work & Conclusion

6.1 Future work

As mentioned the toggle solution is currently not working as it should. It still have several
issues that cause it to output the wrong waveform unless the waveform is in a very specific
pattern. This should be fixed and explored further in future work to make the comparison
complete.

Some research into the wave block solution is also needed as the current maximum clock
speed is fairly low and should be able to be increased. The worst case scenario also remains
to be tested and not just calculated theoretically.

For future work it is necessary to test each solution physically on an FPGA. To make
the design compatible and easy integrated with future solutions a compiler should also be
developed. Here a visualiser would be helpful as this could easier display the current waveform
and thereby customise the waveform better.

6.2 Conclusion

Four of the five proposed solution have been implemented and is working. However not one
of the solutions have been physically tested on an FPGA. From the simulated results we see
that the all bit solution have the fewest LUTs and Flip Flops of only 41 and 51 respectively.
However it uses the largest space in memory for the test waveform. The change position
solution uses the least amount of space in memory for the test waveform and achieve a saved
space of 76.13% compared to the all bit solution, but have the second largest worst case of
7344 bits in memory. On the other hand the wave block solution uses the second smallest
space in memory for the test waveform which also saved over 70% of the space used by the
waveform in memory compared to the all bit solution. In addition it also second best in
the worst case scenario with only needing 3680 bits in memory. Therefore when looking at
area the wave block solution is the best alternative, but it have the worst clock speed of
only 60MHz. All the solutions have high degree of customizability, but the change position
solution and the wave block solution have the best customizability. Overall the best solution
is the change position solution, but it have a bad worst case. The wave block solution is not
far behind but have a bad clock speed that needs to be improved in future work.

31

Appendix A

memory for the difference solutions

A.1 All bit solution

Listing A.1: all bit solution

1 module memory (

2 input logic fast_ clk,

3 input logic wr,

4 input logic rd,

5 input logic [11:0] wr_data,

6 input logic [7:0] addr,

7 input logic [7:0] wr_addr,

8 output logic [11:0] rd_data,

9 output logic [11:0] data

10)

11

12 integer 1ij;

13 reg [11:0] memory_ all bit [254:0];
14

15 initial begin

16 i < 0;

17 //saved

18 memory_all bit[0] < 12'h200;
19 memory_all_bit[1] < 12'h200;
20 //setup

21 memory_all_bit[2] < 12'h200;
22 memory_all_bit [3] < 12'h240;
23 memory_all_bit[4] < 12'h240;
24 memory_all_bit[5] < 12'h240;
25 memory_all _bit[6] < 12'h240;
26 memory_all_bit[7] < 12'h200;
27 memory_all bit[8] < 12'h200;
28 memory_all_bit[9] < 12'h200;
29 memory_all bit[10] < 12'h280;
30 memory_all _bit[11] < 12'h280;
31 memory_all bit[12] < 12'h280;
32 memory_all bit[13] < 12'h280;
33 memory_all_bit[14] < 12'h200;
34 memory_all bit[15] < 12'h200;
35 memory_all_bit[16] < 12'h200;
36 memory_all_bit[17] < 12'h200;
37 memory_all_bit[18] < 12'h204;
38 memory_all bit[19] < 12'h204;
39 memory_all_bit[20] < 12'h204;
40 memory_all_bit[21] < 12'h204;
41 memory_all _bit[22] < 12'h204;
42 memory__all_bit[23] < 12'h204;
43 memory_all bit[24] < 12'h204;
44 memory_all_bit[25] < 12'h204;

32

A.1. ALL BIT SOLUTION

45 memory_all _bit[26]
46

47 memory_all_bit[27]
48 //sample

49 memory_all_bit[28]
50 memory_ all_bit[29]
51 memory_all bit[30]
52 memory_all_bit[31]
53 memory_all bit[32]
54 memory_all_bit[33]
55 memory _all bit[34]
56 memory_all bit[35]
57 memory_ all_bit[36]
58 memory_all bit[37]
59 memory_ all _bit [38]
60 memory_all bit[39]
61 memory_all bit[40]
62 memory__all__bit[41]
63 memory_all_bit[42]
64 memory_all _bit [43]
65 memory_all_bit[44]
66 memory_all_bit[45]
67 memory_all bit[46]
68 memory_all _bit[47]
69 memory_all bit[48]
70 memory_all_bit[49]
71 memory_all_bit[50]
72 memory_all_bit[51]
73 memory_ all_bit [52]
74 memory_all bit[53]
75 memory_all _bit[54]
76 memory_all bit[55]
77 memory_all bit[56]
78 memory_all_bit[57]
79 memory_all bit[58]
80 memory_all_bit[59]
81 memory_all bit[60]
82 memory_all bit[61]
83 memory_all bit[62]
84 memory_all bit[63]
85 memory_all_bit[64]
86 memory_all bit[65]
87 memory_all _bit [66]
88 memory_all bit[67]
89 memory_ all_bit [68]
90 memory_all bit[69]
91 memory_all_bit[70]
92 memory_all bit[71]
93 memory_all_bit[72]
94 memory_all bit[73]
95 memory_all bit[74]
96 memory_all_bit[75]
97 memory_all bit[76]
98 memory_all _bit[77]
99 memory_all bit[78]
100 memory_all_bit[79]
101 memory_all_bit[80]
102 memory_all_bit[81]
103 memory_all_bit [82]
104 memory_all bit[83]
105 memory_ all_bit [84]
106 memory_all bit[85]
107 memory_all _bit [86]
108 memory_all bit[87]
109 memory_all_ bit[88]
110 memory_all _bit [89]
111 memory_all bit[90]
112 memory_all_bit[91]
113 memory_all bit[92]

114 memory__all_bit[93]

IA

IA A A AN IA IA A A A IA A A IA IA IA DA TN IA A A A A IA A IA IA DA A IA A A I IA DA IA I IA DA IA A IA A TN IA A IA I IA IA DA I IA IA A I IA DA IA TN IA TN IA TN TN TA

12'h204;
12'h403;

12'h204
12'h204;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h224;
12'h204
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20C;
12'h20E;
12'h20E;
12'h20E;
12'h20C;
12'h204
12'h204;
12'h204
12'h204
12'h204
12'h204
12'h204;
12'h204
12'h204;
12'h204
12'h204
12'h204
12'h204
12'h204;
12'h204
12'h204
12'h204
12'h204;
12'h204
12'h204
12'h204
12'h204
12'h204;
12'h204
12'h204;
12'h204
12'h204
12'h204;
12'h204
12'h204;
12'h20C;
12'h20C;
12'h21C;
12'h21C;
12'h21C;
12'h21C;
12'h21C;
12'h21C;
12'h21C;

//loop

start ,

repeat=3

33

A.1. ALL BIT SOLUTION

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162

164
165
166
167
168

170
171
172
173
174
175

177
178
179
180
181
182

184

end

memory_all _bit[94]
memory_all bit[95]
memory_all_bit[96]
memory_all bit [97]
memory_all bit[98]
memory_ all_bit[99]
memory_all_bit[100]
memory_all bit[101]
memory_all bit[102]
memory_all_bit[103]
memory_all bit[104]
memory_all_bit[105]
memory_all _bit[106]
memory_all_bit[107]
memory_all bit[108]
memory_all bit[109]
memory_all bit[110]
memory_all_bit[111]

memory_ all_bit[112]
//shutter

memory_ all _bit[113]
memory_all_bit[114]
memory_all bit[115]
memory_all bit[116]
memory_all_bit[117]
memory_all bit[118]
memory_all bit[119]
memory_all _bit[120]
memory_all bit[121]
memory_all bit[122]
memory_all bit[123]
memory_all bit[124]
memory_all bit[125]
memory_all bit[126]
memory_all _bit[127]
memory_all bit[128]
memory_all bit[129]
memory_all bit[130]
memory_all bit[131]
memory_all_bit[132]
memory_all bit[133]
memory_all _bit [134]
memory_all_bit[135]
memory_all_bit[136]
memory_all bit[137]
memory_all bit[138]
memory_all bit[139]
memory_all_bit[140]
memory_all_bit[141]
memory_all bit[142]
memory_ all bit[143]
memory_all bit[144]
memory_all bit[145]
memory_all bit[146]
memory_all bit[147]
memory_all bit[148]
memory_all bit[149]
memory_all _bit[150]
memory_all bit[151]
memory_ all_bit[152]
memory_all bit[153]
memory_all bit[154]
memory_all bit[155]

(A VAVANRVANRVANRVAN

(VAN VAN VAN VAN VAN VAN VAN VAN VANR VAN VAN VN

IA A A A A A A A IA A IA IA DA A IA A DA IA A IA A TN IA DA DA TN IA A IA A A IA A IA IAIA TN IA TN IA TN TN TA

12'h21D;
12'h21D;
12'h21D;
12'h21C;
12'h204;
12'h204;
12'h200;
12'h200;
12'h200;
12'h240;
12'h240;
12'h240;
12'h240;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;

12'h51C;

12'h200;
12'h200;
12'h200;
12'h280;
12'h280;
12'h280;
12'h280;
12'h200;
12'h200;
12'h200;
12'h200;
12'h220;
12'h220;
12'h230;
12'h230;
12'h230;
12'h230;
12'h230;
12'h230;
12'h230;
12'h220;
12'h220;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;
12'h200;

always @ (posedge fast_clk) begin
data < memory_all_bit[addr];

//loop stop,

return

to

28

A.2. CHANGE BIT SOLUTION 35
185 if (wr)

186 memory__all__bit[wr_addr] < wr_data;
187 if (rd) begin

188 rd_data < memory_all bit[i];

189 if (i==254)

190 i = 0;

191 else

192 i=1i4 1;

193 end

194 end

195 endmodule

A

.2

Listing A.1: all bit solution

change bit solution

Listing A.2: change bit solution

1 module memory (

2 input logic fast_ clk,

3 input logic wr,

4 input logic rd,

5 input logic [7:0] wr_data,

6 input logic [7:0] addr,

7 input logic [7:0] wr_addr,

8 output logic [7:0] rd_data,

9 output logic [7:0] data
10)
11
12 integer 1ij;
13 reg [7:0] memory_ all bit [254:0];
14
15 initial begin
16 i < 0;
17 //saved
18 memory_all _bit[0] < 8'h43; //loop start part 1
19 memory_all bit[1] < 8'h50; //loop start part 2
20 //setup
21 memory_all_bit[2] < 8'h30;
22 memory all bit[3] < 8'h26;
23 memory_all_bit[4] < 8'h30;
24 memory_all_bit[5] < 8'h30;
25 memory_all_bit[6] < 8'h30;
26 memory__all_bit[7] < 8'h26;
27 memory_all_bit[8] < 8'h30;
28 memory__all_bit[9] < 8'h30;
29 memory_all bit[10] < 8'h27;
30 memory_all _bit[11] < 8'h30;
31 memory_all bit[12] < 8'h30;
32 memory_all bit[13] < 8'h30;
33 memory_all_bit[14] < 8'h27;
34 memory_all bit[15] < 8'h30;
35 memory_all_bit[16] < 8'h30;
36 memory_all bit[17] < 8'h30;
37 memory_all_bit[18] < 8'h22;
38 memory _all bit[19] < 8'h30;
39 memory_all_bit[20] < 8'h30;
40 memory_all_bit[21] < 8'h30;
41 memory_all bit[22] < 8'h30;
42 memory__all_bit[23] < 8'h30;
43 memory_all_bit[24] < 8'h30;
44 memory__all_bit[25] < 8'h30;
45 memory_all bit[26] < 8'h30;
46

47

A.2. CHANGE BIT SOLUTION

48 memory_all bit[27] <
49 memory_all bit[28] <
50

51 //sample

52 memory_all bit[29] <
53 memory_all _bit[30] <
54 memory__all_bit[31] <
55 memory_all _bit[32] <
56 memory_all bit[33] <
57 memory_all_bit[34] <
58 memory__all_bit[35] <
59 memory_all bit[36] <
60 memory_all _bit[37] <
61 memory_all bit[38] <
62 memory_all bit[39] <
63 memory_all bit[40] <
64 memory_all bit[41] <
65 memory__all_bit[42] <
66 memory_all bit[43] <
67 memory_all bit[44] <
68 memory all bit[45] <
69 memory_all_bit[46] <
70 memory all bit[47] <
71 memory_all bit[48] <
72 memory__all_bit[49] <
73 memory_all_bit[50] <
74 memory_all_bit[51] <
75 memory_all bit[52] <
76 memory_all _bit[53] <
7 memory_all bit[54] <
78 memory_all bit[55] <
79 memory_all bit[56] <
80 memory_all_bit[57] <
81 memory__all_bit[58] <
82 memory_all bit[59] <
83 memory_all _bit[60] <
84 memory_all bit[61] <
85 memory_all bit[62] <
86 memory_all bit[63] <
87 memory_all bit[64] <
88 memory_all_bit[65] <
89 memory_all bit[66] <
90 memory_all_bit[67] <
91 memory all bit[68] <
92 memory_all_bit[69] <
93 memory_all bit[70] <
94 memory_all _bit[71] <
95 memory all bit[72] <
96 memory_all_bit[73] <
97 memory_all_bit[74] <
98 memory_all_bit[75] <
99 memory_all _bit[76] <
100 memory_all bit[77] <
101 memory_all bit[78] <
102 memory_all bit[79] <
103 memory_all bit[80] <
104 memory__all_bit[81] <
105 memory_all_bit[82] <
106 memory_all_bit[83] <
107 memory_all_bit[84] <
108 memory_all_bit[85] <
109 memory all bit[86] <
110 memory_all bit[87] <
111 memory__all__bit [88] <
112 memory_all_ bit[89] <
113 memory_all_bit[90] <
114 memory all bit[91] <
115 memory_all_bit[92] <
116 memory__all__bit[93] <
117 memory_all _bit[94] <

8'hd3;
8'h50;

8'h30;
8'h30;
8'h22;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h22;
8'h24;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h26;
8'h30;
8'h30;
8'h26;
8'h24;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h24;
8'h30;
8'h23;
8'h30;
8'h30;
8'h30;
8'h30;

//loop start
//loop start

part 1
part 2

36

A.2. CHANGE BIT SOLUTION

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162
163
164
165

167
168
169
170
171
172
173
174
175
176
177
178

180
181
182
183
184
185

187

memory_all _bit[95]
memory_all bit[96]
memory_all_bit[97]
memory_all bit [98]
memory_all bit[99]
memory_all _bit[100]
memory_all bit[101]
memory_all bit[102]
memory_all bit[103]
memory_all_bit[104]
memory_all bit[105]
memory_all_bit[106]
memory_all _bit[107]
memory_all_bit [108]
memory_all bit[109]
memory_all bit[110]
memory_all bit[111]
memory_all_bit[112]
memory_all bit[113]
memory_ all_bit[114]
memory_all bit[115]

memory_all bit[116]
memory_all bit[117]
memory_all bit[118]
memory_all_bit[119]

//shutter

memory__all_bit
memory_ all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_ bit
memory__all_ bit
memory_ all_bit
memory__all_bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_ bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_ bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_ bit
memory_ all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_bit
memory_ all_bit
memory__all_ bit
memory_all_bit
memory_ all_bit
memory__all_bit
memory_ all_ bit
memory__all_bit
memory_ all_bit
memory__all_ bit
memory_all_bit
memory_ all_bit

120]
121]
122]
123]
124]
125]
126]
127]
128]
129]
130]
131]
132]
133]
134]
135]
136]
137]
138]
139]
140]
141]
142]
143]
144]
145]
146]
147]
148]
149]
150]
151]
152]
153]
154]
155]
156]
157]
158]
159]
160]
161]

INIA AN IA A

(AN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VANR VAN VAN

ININIA N

IA A A A AN IA A A A A IA A IA I IA A IA TN IA A IA TN IA DA TN IA A DA I IA A A A IA DA TN IA TN IA TN TN TA

8'h30;
8'h30;
8'h27;
8'h30;
8'h30;
8'h27;
8'h13;
8'h24;
8'h30;
8'h25;
8'h30;
8'h30;
8'h21;
8'h30;
8'h30;
8'h30;
8'h21;
8'h30;
8'h30;
8'h30;
8'h30;

8'h25;
8'h69;
8'h72;
8'h25;

8'h30;
8'h30;
8'h30;
8'h20;
8'h30;
8'h30;
8'h30;
8'h20;
8'h30;
8'h30;
8'h30;
8'h22;
8'h30;
8'h23;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h23;
8'h30;
8'h22;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;
8'h30;

//correction to
//loop end part
//loop end part
//correction to

enable
1, addr
2, addr

go out

loop
0x29
0x29
of loop

A.3. CHANGE POSITION 38
188 memory_all _bit[162] < 8'h30;
189
190 end
191
192 always @ (posedge fast_ clk) begin
193 data < memory_all bit[addr];
194
195 /xif (wr)
196 memory all bit[wr addr] < wr_data;
197 if (rd) begin
198 rd_data < memory_all bit[i];
199 if (i==254)
200 i = 0;
201 else
202 =i 4+ 1;
203 end x*/
204 end
205 endmodule
Listing A.2: change bit solution
A.3 change position
Listing A.3: change position solution
1 module memory (
2 input logic fast_clk,
3 input logic wr,
4 input logic rd,
5 input logic [11:0] wr_data,
6 input logic [7:0] addr,
7 input logic [7:0] wr_addr,
8 output logic [11:0] rd_data,
9 output logic [11:0] data
10)
11
12 integer 1i;
13 reg [11:0] memory_ change pos [254:0];
14
15 initial begin
16 i < 0;
17 //saved
18 memory_ change pos[0] < 12'h100;
19 memory_ change_pos[1] < 12'h100;
20 //setup
21 memory_ change_pos[2] < 12'h316;
22 memory_change pos[3] < 12'h256;
23 memory_ change pos[4] < 12'h287;
24 memory_change pos[5] < 12'h2C7;
25 memory_change pos[6] < 12'h202;
26 memory_change pos[7] < 12'h880; //end comand for waveform, resets counter
27
28 memory_ change_pos[9] < 12'h403; //loop start, repeat= 3
29 //sample
30 memory_ change_pos[10] < 12'h225;
31 memory_ change_pos[10] < 12'h2D5;
32 memory_ change pos[10] < 12'h2E3;
33 memory_ change_pos[10] < 12'h271;
34 memory_ change pos[10] < 12'h2A1;
35 memory_ change_pos[10] < 12'h2B3;
36 memory_ change pos[10] < 12'h100; //do nothing 16 clock periods
37 memory_ change _pos[10] < 12'h2D3;
38 memory_ change_pos[10] < 12'h2F4;
39 memory_ change pos[10] < 12'h260;
40 memory_change pos[10] < 12'h290;

A.4. WAVE BLOCK SOLUTION

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76

memory_ change pos[10] < 12'h3A4;

memory_ change_pos[10] < 12'h2A3;

memory_ change pos[10] < 12'h2C2;

memory_ change _pos[10] < 12'h2F6;

memory_change pos[10] < 12'h236;

memory_ change pos[10] < 12'h870; //end command for waveform,
memory_ change pos[10] < 12'hB02; //resets waveform for
memory_change pos[10] < 12'h50A; //loop end

memory_ change pos[10] < 12'hB02; // cancel reset of waveform
//shutter

memory_change pos[10] < 12'h237;

memory_ change pos[10] < 12'h277;

memory_change pos[10] < 12'h2B5;

memory_change pos[10] < 12'h2D4;

memory_ change_pos[10] < 12'h244;

memory_change pos[10] < 12'h265;

memory_change pos[10] < 12'h100; //do nothing 16 clock cycles
memory_change pos[10] < 12'h840; //end command for waveform,

end

always @ (posedge fast_clk) begin
data < memory_change pos[addr];

if (wr)

memory__change_pos|[wr_addr] < wr_data;
if (rd) begin

rd_data < memory_change pos[i];

if (i==254)
i = 0;
else
i=1i+4+ 1;
end
end

endmodule

39

counter

looping

counter

A

Listing A.3: change position solution

.4 wave block solution

Listing A.4: wave block solution

© 0 N O W N

10
11
12
13
14
15
16
17

18
19
20
21

module memory (

input logic fast_ clk,

input logic wr,

input logic rd,

input logic [11:0] wr_data,
input logic [7:0] addr,
input logic [7:0] wr_addr,
output logic [11:0] rd_data,
output logic [11:0] data,
output logic [7:0] wave_data

)

integer 1ij;
reg [11:0] InstMemory [254:0];
logic [3:0] wave addr;

memory__wave memory_wavel (. fast__clk (fast_clk), .addr(wave_addr),

.wave_data(wave_data));
initial begin

InstMemory [0] < 12'h210;

A.4. WAVE BLOCK SOLUTION

22 InstMemory [1] < 12'h403; //Loop start
23 //setup

24 InstMemory [2] < 12'h210; //normal
25 InstMemory [3] < 12'h242; //normal
26 InstMemory [4] < 12'h230; //normal
27 InstMemory [5] < 12'h241; //normal
28 InstMemory [6] < 12'h240; //normal
29 InstMemory [7] < 12'h293; //normal
30

31 InstMemory [8] < 12'h403; //Loop start
32 //sample

33 InstMemory [9] < 12'h223;

34 InstMemory [9] < 12'h2B4;

35 InstMemory [9] < 12'h213;

36 InstMemory [9] < 12'h295;

37 InstMemory [9] < 12'h236;

38 InstMemory [9] < 12'h215;

39 InstMemory [9] < 12'h2F3;

40 InstMemory [9] < 12'h2F3;

41 InstMemory [9] < 12'h225;

42 InstMemory [9] < 12'h277;

43 InstMemory [9] < 12'h238;

44 InstMemory [9] < 12'h217;

45 InstMemory [9] < 12'h223;

46 InstMemory [9] < 12'h230;

a7 InstMemory [9] < 12'h242;

48 InstMemory [9] < 12'h250;

49

50 InstMemory [9] < 12'h509; //loop end

51 //shutter

52 InstMemory [9] < 12'h230;

53 InstMemory [9] < 12'h241;

54 InstMemory [9] < 12'h240;

55 InstMemory [9] < 12'h229;

56 InstMemory [9] < 12'h27A;

57 InstMemory [9] < 12'h229;

58 InstMemory [9] < 12'h2F0;

59 InstMemory [9] < 12'h260;

60

61

62

63 end

64

65 always @ (posedge fast_clk) begin

66 data < InstMemory [addr];

67 wave_addr < InstMemory[addr][3:0];

68

69 if (wr)

70 memory_all_bit[wr_addr] < wr_data;
71 if (rd) begin

72 rd_data < memory_all bit[i];

73 if (i==254)

74 i = 0;

75 else

76 =i+ 1

77 end

78 end

79 endmodule

80

81

82 module memory_wave (

83 input logic fast_clk,

84 input logic [3:0] addr,

85 output logic [7:0] wave data);

86

87 reg [7:0] WaveMemory [10:0];

88

89 initial begin

90 WaveMemory [0] 8'h00;

<
91 WaveMemory [1] < 8'h80;

40

A.4. WAVE BLOCK SOLUTION

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

WaveMemory [2]
WaveMemory [3]
WaveMemory [4]
WaveMemory [5]
WaveMemory [6]
WaveMemory [7]
WaveMemory [8]
WaveMemory [9]

IA N IA IAIN N IANIA

8'h40;
8'h04;
8'h24;
8 'h0C;
8 'hOE;
8'h1C;
8'hlD;
8'h20;

WaveMemory [10] < 8'h30;

end

always @ (posedge fast_clk) begin

wave__data < WaveMemory [addr |;

end

109 endmodule

41

Listing A.4: wave block solution

Appendix B

Common modules

B.1 interface

Listing B.1: interface module

1 module interfaceA (

2 input logic fast_ clk,

3 input logic [1:0] command,
4 input logic [7:0] data_in,
5 input logic [11:0] rd_data,
6 output logic [7:0] addr,

7 output logic wr,

8 output logic [11:0] wr_data,
9 output logic rd,

10 output logic [7:0] data_out

1)

12

13 always_ comb begin

14 data_ out < rd_ data;

15 end

16

17 always@ (posedge fast_clk) begin

18 if (command = 2'b00) begin //write at availible address
19

20 end

21 else if (command = 2'b01) begin //write at this address
22 addr < data_in;

23 wr_data < 12'h000;

24 wr < 1'b0;

25 rd < 1'b0;

26 end

27 else if (command == 2'b10) begin //write this
28 wr__data < data_in;

29 addr < addr;

30 wr < 1'bl;

31 rd < 1'b0;

32 end

33 else if (command = 2'b1l1l) begin //read
34 rd < 1'bl;

35 wr < 1'b0;

36 wr__data < 12'h000;

37 addr < addr;

38 end

39 else begin //error

40 rd < 1'b0;

41 wr < 1'b0;

42 addr < 8'h00;

43 wr_data < 12'h000;

44 end

42

B.2. NEXT ADDRESS MODULE

45
46
47

end

endmodule

43

Listing B.1: interface module

B.2 next address module

Listing B.2: next address module

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

module nextAddress (
input logic rst_all,
input logic fast_clk,
input logic [7:0] D_jump,
input logic[7:0] L_jump,
input logic fetchEnable,
output logic [7:0] nxt_ addr);

logic [7:0] P1;
reg [7:0] nxt_addr_temp;

programCounter programCounterl (.rst_all(rst_all), .fast clk(fast_clk),
.current__address (nxt_addr), .P1(P1));

always @ (posedge fetchEnable) begin
if (rst_all) begin
nxt_addr_temp < 1'b0;
end else begin
if (D_jump != 1'b0)
nxt__addr__temp < D_jump;
else if (L_jump != 1'b0)
nxt__addr__temp < L_ jump;
else if (P1 != 1'b0)
nxt_addr_temp < Pl;
else
nxt_addr_temp < 1'b0;
end
end

always @ (posedge fast_clk) begin
if (-rst_all) begin
if (fetchEnable)
nxt_addr < nxt_addr_temp;
else
nxt_addr < nxt_addr;
end else
nxt__addr < 1'b0;
end
endmodule

Listing B.2: next address module

B.3 data handle module

Listing B.3: data handle module

1
2
3
4

module data_handle(
input logic rst,
input logic[11:0] data,
input logic fast_clk,

B.3. DATA HANDLE MODULE

© 00 N O w»

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

output logic [7:0] wave,

output logic wait__enable,
output logic rst_command,
output logic [7:0] loop_addr,
output logic[7:0] loop_ repeat,
output logic increase,

output logic jump_ fetch,
output logic [7:0] D_jump

)
reg [3:0] state;

always__comb begin
if(rst)
state = 4'h0;
else
state = data[11:8];
end

always@ (posedge fast_clk) begin
case (state)
4'h0: begin
wave = 8'h00;
wait__enable = 1'b0;

rst__command = 1'b0;
loop__addr = 8'h00;
loop_repeat = 8'h00;
increase = 1'b0;

jump_ fetch = 1'b0;
D_jump = 8'h00;

end

4'hl: begin
wave = wave;
wait__enable = 1'bl;
rst_command = 1'b0;
loop__addr = loop_ addr;
loop_repeat = loop_repeat;
increase = increase;

jump_ fetch = jump_ fetch;
D_jump = D_jump;

end

4'h2: begin
wave = data [7:0];
wait__enable = 1'b0;
rst_ command = 1'b0;
loop__addr = loop__addr;
loop_repeat = loop_repeat;
increase = 1'b0;

jump_ fetch = 1'b0;
D_jump = D_jump;

end

4'h3: begin
wave = wave;
wait__enable = wait__enable;
rst_ command = 1'bl;
loop__addr = loop_ addr;
loop_repeat = loop_repeat;
increase = increase;

jump_ fetch = jump_ fetch;
D_jump = D_jump;

end

4'h4: begin
loop_repeat = data[7:0];
wave = wave;
wait__enable = 1'b0;
rst_command = 1'b0;
loop__addr = loop_ addr;
increase = 1'b0;

jump_fetch = 1'b0;
D_jump = D_jump;

44

B.4. LOOP MODULE

75 end

76 4'h5: begin

77 loop_addr = data[7:0];
78 wave = wave;

79 wait__enable = 1'b0;
80 rst_ command = 1'b0;
81 loop_repeat = loop_repeat;
82 increase = 1'bl;

83 jump_ fetch = 1'b0;
84 D_jump = D_jump;

85 end

86 4'h6: begin

87 wave = wave;

88 wait__enable = 1'b0;
89 rst_ command = 1'b0;
90 loop__addr = loop__addr;
91 loop_repeat = loop_repeat;
92 increase = 1'b0;

93 jump_ fetch = 1'bl;
94 D_jump = data [7:0];
95 end

96 4'h7: begin

97 wave = wave;

98 wait__enable = 1'b0;
99 rst__command = 1'b0;
100 loop__addr = 8'h00;
101 loop_repeat = 8'h00;
102 increase = 1'b0;

103 jump_ fetch = 1'bl;
104 D _jump = data[7:0];
105 end

106 default: begin

107 wave = data [7:0];

108 wait__enable = 1'b0;
109 rst_command = 1'b0;
110 loop__addr = 8'h00;
111 loop_repeat = 1'b0;
112 increase = 1'b0;

113 jump_fetch = 1'b0;
114 D_jump = data[7:0];
115 end

116 endcase

117 end

118 endmodule

45

Listing B.3: data handle module

B.4 Loop module

Listing B.4: loop module

1 module loop (

2 input logic fast__clk,

3 input logic[7:0] loop_addr,

4 input logic [7:0] loop_repeat,
5 input logic increase,

6 input logic rst,

7 output logic loop_fetch,

8 output logic [7:0] L_jump);

9

10 reg [1:0] state;

11 reg [7:0] count;

12

13 always @(fast_clk) begin

14 if (rst)

B.5. DELAY MODULE

15 state < 2'b00;

16 else begin

17 case (state)

18 2'b00:

19 state < 2'b01;

20 2'b01: begin

21 if (increase) begin
22 if (count < loop_repeat)
23 state < 2'b10;
24 else

25 state < 2'bll;
26 end else

27 state < 2'b01;
28 end

29 2'b10:

30 state < 2'b01;

31 2'bll:

32 state < 2'b01;

33 endcase

34 end

35 end

36

37 always Q(state) begin

38 case (state)

39 2'b00: begin

40 count < 8'hO1l;

41 L_jump < 8'h00;

42 loop_fetch < 1'b0;
43 end

44 2'b01: begin

45 count < count;

46 L_jump < 8'h00;

47 loop_fetch < 1'b0;
48 end

49 2'b10: begin

50 count < count + 1'bl;
51 L_jump < loop_addr;
52 loop_fetch < 1'bl;
53 end

54 2'bll: begin

55 count < 8'hO01;

56 L_jump < 8'h00;

57 loop_fetch < 1'bl;
58 end

59 endcase

60 end

61

62 endmodule

46

Listing B.4: loop module

B.5 Delay module

Listing B.5: delay module

1 module delay (

2 input logic [7:0] wave,

3 input logic fast_clk,

4 input logic main_ clk,

input logic clk_cycle,

input logic rst,

output logic [8:0] out_wave,
output logic delay_ fetch

)

© 0 N o wu

10

B.5.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

DELAY MODULE

reg [1:0] state;

always@(state) begin
case (state)
2'b00: begin
out_ wave = 8'h00;
delay_fetch = 1'b0;

end

2'b01: begin
out__wave = wave;
delay_fetch = 1'bl;
end

2'b10: begin
out__wave = out__ wave;
delay_fetch = 1'b0;
end

default: begin
out_wave = 8'h00;
delay_fetch = 1'b0;
end
endcase
end

always @ (posedge fast_clk) begin
if (rst)
state < 2'b00;
else
case (state)
2'b00:
state < 2'b01;
2'b01:
state < 2'b10;
2'b10:
if (clk_cycle==0)
state < 2'bl0;
else
state < 2'b01;
endcase
end

50 endmodule

47

Listing B.5: delay module

Bibliography

[AAE06]

[CDHK10]

[CILZ11]

[Fos21]

[Hau9sg]

[HHO7]

[KRO6]

[LHCT05]

[Moh12]

[SP21]

[Tys09]

[Xil]

Amara Amara, Frédéric Amiel, and Thomas Fa. FPGA vs. ASIC for low power
applications. Microelectronics Journal, 21 rue d’Assas, 75006 Paris, France, 2006.

Eduard Cerny, Surrendra Dudani, John Havlicek, and Dmitry Korchemny. The
Power of Assertions in System Verilog. Springer, Boston, MA, 2010.

Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partitioning and
scheduling for throughput and power optimization. ACM Transactions on Design
Automation of Electronic Systems, California, Los Angeles, 2011.

Maren Vorin Fossum. Custimisable waveform generator. NTNU, Trondheim,
Norway, 2021.

Scott Hauck. The roles of fpgas in reprogrammable systems. In Proceedings of
IEEE Volume 86, pages 615 — 638, Evanston, IL, USA, 1998. IEEE Computer
Society.

David Money Harris and Sarah L. Harris. Digital Design and Computer
Architecture, ARM edition. Morgan Kaufmann Publishers In, 2007.

Jan Kuon and Jonathan Rose. Measuring the Gap Between FPGAs and
ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Toronto, Canada, 2006.

R. Leupers, M. Hohenauer, J. Ceng, H. Scharwaechter, H. Meyr, G. Ascheid,
and G. Braun. Retargetable compilers and architecture exploration for embedded
processors. IEE Proc.-Comput. Digit. Tech., Vol. 152, CA, USA, 2005.

Khaled Salah Mohamed. IP Cores Design from Specifications to Production.
Modeling, Verification, Optimization, and Protection. Springer, Cham, 2012.

Mohammed Saifuddin and Jenny Picalausa. Imaging and sensing technology
group direction. From Sony official webcite and conversations with engenering em-
ployers, August 2021. https://www.sony-semicon.co.jp/e/technology/direction/.

Jeff Tyson. How ROM works. UNIKOM, Perpustakaan, Indonesia, 2009.

Inc Xilinx. Xilinx accelerates productivity for zyng-7000 all programmable
socs with the vivado design suite 2014.3, sdk, and new ultrafast embedded
design methodology guide. From Xilinx official. https://www.design-
reuse.com/news /35626 /xilinx-zynq-7000-vivado-design-suite-2014-3.html.

48

@ NTNU

Norwegian University of
Science and Technology

	Task
	Abstract
	Introduction
	Motivation
	Objective
	Main contributions
	Structure

	Theory
	Waveform
	Memory
	Generating designs
	Area and energy usage in FPGA and ASICs

	Design constraints and results from pre-study
	Design constraints
	Pre-study summary
	Results from pre-study

	Design
	Overview
	Connection

	Module description
	Interface
	Memory
	Control Logic
	Data handling
	Timing

	Full design
	Difference between solutions
	Comparison

	Test plan
	Read and Write module
	Init module
	Next address module
	Enable module
	Data handling
	Delay
	Loop
	Overall design test
	Customizability

	Result & Discussion
	Functionality
	Area
	Timing
	Customizability
	Results compared to theoretical values from pre-study

	Future work & Conclusion
	Future work
	Conclusion

	memory for the difference solutions
	All bit solution
	change bit solution
	change position
	wave block solution

	Common modules
	interface
	next address module
	data handle module
	Loop module
	Delay module

	Bibliography

