
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vetle Gustav Birkeland

Monocular Action Classification

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
March 2022

M
as

te
r’s

 th
es

is

Vetle Gustav Birkeland

Monocular Action Classification

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
March 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Exergames are games that use elements like rewards or challenges from video
games to get people to exercise. The use of exergames has been showing prom-
ise in physical rehabilitaion by helping patients do their exercises without the
constant presence of a physician. In physical rehabilitation it is important that ex-
ercises are executed correctly in order to achieve a faster and better recovery. An
exergame that can use an camera to monitor and provide real time feedback to
patients undergoing treatment would allow for more flexibility for both patient
and physician, both in terms of time commitment and location.

A vital part of such an exergame is the ability to recognize and classify human
actions from videos. In this thesis three models are created that can perform clas-
sification of movements: two XGBoost models, with and without feature selection,
and a CNN model. A data set of videos containing examples of exercises related to
physical therapy is used to train the models. The video data is first converted into
a data set of joint positions by using the freely available, state-of-the-art pose es-
timator called OpenPose. The resulting data set is used to train the three models.
Experiment results all show that the models manage to classify the different ex-
ercises correctly. The XGBoost models both score higher and are more consistent
than the CNN-based model, with the feature selected model showing a significant
decrease in training time over the other two. All models show similar difficulties
with separating exercises that are very similar to one another.

i

Sammendrag

Treningsspill er spill som bruker aspekter som belønninger eller utfordringer fra
videospill for å få folk til å trene. Bruk av treningsspill har vist potensiale innenfor
fysisk rehabilitering ved å hjelpe pasienter med å gjøre øvelsene sine uten konstant
tilstedeværelse fra en lege. Når det kommer til fysisk rehabilitering er det viktig å
gjøre øvelse på korrekt vis for å oppnå rask og god bedring. Et treningsspill som
kan bruke et kamera for å observere og tilby sanntidstilbakemelding til pasienter
under behandling vil kunne gi økt fleksibilitet for både pasient og lege, både med
tanke på bruk av tid og sted.

En viktig del i et slikt treningsspill er evnen til å gjenkjenne mennesker og
klassifisere handlingene deres ved hjelp av video. I denne masteroppgaven blir
det laget tre modeller som kan klassifisere handlinger: to XGBoost-modeller, med
og uten variabelvalg (feature selection), og en CNN-modell. Et datasett bestående
av videoeksempler på øvelser rettet mot fysisk rehabilitering blir brukt til å trene
modellene. Videoene blir først konvertert over til et datasett bestående av leddpos-
isjoner ved hjelp av det fritt tilgjengelige, state-of-the-art positurestimeringssystemet
OpenPose. Dette leddposisjons-baserte datasettet blir brukt for å trene de tre mod-
ellene. Gjennomførte eksperimenter viser at alle modellene klarer å klassifisere
de ulike øvelsene riktig. XGBoost-modellene scorer begge høyere og er mer kon-
sistente enn CNN-modellen. XGBoost-modellen med variabelvalg trener i tillegg
betydelig fortere enn de to andre. Alle modellene viser lignende tendenser til prob-
lemer med å skille øvelser som er svært like fra hverandre.

iii

Acknowledgements

I would like to thank my supervisor Kerstin Bach for her guidance, availability, help
and patience during the process of writing this thesis. I would also like to thank
Emanuel Alexander Lorenz and his supervisors Xiaomeng Su and Nina Skjæret
Maroni for sharing their data set with me and letting me use it in my thesis. Fur-
ther, I want to thank Trine Marie L’Abée-Lund and Henning Normann for the fre-
quent follow-ups that helped me get and keep going, and for their help with taking
the photos used in Appendix A.

v

Contents

Abstract . i
Sammendrag . iii
Acknowledgements . v
Contents . vii
Figures . ix
Tables . xiii
1 Introduction . 1

1.1 Thesis Goals and Research Questions 1
1.2 Research Methods . 3
1.3 Thesis Structure . 3

2 Background and Related Work . 5
2.1 Pose Estimation . 5
2.2 Monocular Action Classification . 5
2.3 Exergaming . 7
2.4 Neural Networks . 8

2.4.1 Artificial Neuron . 8
2.4.2 Feedforward Neural Networks 11
2.4.3 Loss and Gradient Descent . 11
2.4.4 Backpropagation . 13
2.4.5 Convolutional Neural Networks 16

2.5 Tree-Based Ensemble Methods . 20
2.5.1 Decision Trees . 20
2.5.2 Entropy and Information Gain 21
2.5.3 Ensemble Methods . 21
2.5.4 Boosting . 22
2.5.5 Gradient Boosting . 22

2.6 Parameter Search . 23
2.7 Related Work . 24
2.8 Reproducibility of Results . 26

3 Method . 29
3.1 Creating the Data Set . 29
3.2 Training Models . 30

3.2.1 XGBoost . 30
3.2.2 Convolutional Neural Network 31

vii

viii Birkeland: Monocular Action Classification

4 Experiments and results . 35
4.1 Reproducing OpenPose Results . 35
4.2 Model Results . 36

4.2.1 Performance . 36
4.2.2 Training Time . 36

5 Discussion . 41
6 Conclusion and Future Work . 45

6.1 Conclusion . 45
6.2 Future Work . 45

Bibliography . 47
A Exercises . 51

Figures

2.2 An artificial neuron. Inputs are weighted and a bias is added before
the activation function is applied. 8

2.3 The Sigmoid activation function . 9
2.4 The effect of bias on neuron output. 10
2.5 A neural network with an input, hidden and output layer. 11
2.6 Conceptualization of how gradient descent can fail to locate a min-

imum if the step size is too large. On the left the steps are small
enough for the process to approach and eventually reach the min-
imum. The figure on the right shows a process that is diverging; the
steps are too large at each iteration, and the process will not reach
the minimum. 13

2.7 Illustrative example showing how biases, activations and weights
are referred to using the notation in section 2.4.4. 14

2.8 The filter connects a 3×3 region in the input layer to a single neuron
in the hidden layer. 17

2.9 A convolutional layer outputting three feature maps, followed by a
pooling layer halving the size of said feature maps. 18

2.10 In max-pooling the output neuron outputs the same value as the
maximum activation in its corresponding input region. 19

2.11 General structure for CNNs. The first part of the network consists
of alternating convolution and pooling layers, represented by the
three dots. At the end of the network there are some fully-connected
layers before the final output. 19

2.12 Example decision tree. The inputs are temperature, which will be
a rational number, and weather, which can be sunny or rainy. The
decision tree will determine whether one should go outside or not.
The root node is marked with an arrow. The internal nodes are
square, while the leaf nodes are circular. 20

2.13 Multiple marginal heatmaps, each providing postitional informa-
tion in two dimensions, can fully describe a location in three di-
mensional space. 25

2.14 Four categories of recreating results as defined in Pineau et al., 2021 27

ix

x Birkeland: Monocular Action Classification

3.1 The three first squares correspond to the process of creating the
data set used to train classifiers, covered in section 3.1. The last
three correspond to the process of classification. The creation of
the classifiers is covered in sections 3.2.1 and 3.2.2. 29

3.2 The shape of the CNN after hyper-parameter searches. For the Max-
Pooling2D and Conv2D layers numbers indicate the shape of the
input and output, given as (height, width, depth). For the Dense
layers the number represents the incoming and outgoing connec-
tions. 32

4.1 Confusion matrix for the XGBoost classifier before feature selection. 38
4.2 Confusion matrix for the XGBoost classifier after feature selection. . 39
4.3 Confusion matrix for the CNN classifier 40

A.1 While being kept straight the right arm is brought up to a vertical
position by moving it 180◦ in a forward arching movement, then
the arm is brought back down in the same way. 51

A.2 The forearm is brought to a vertical position by moving it 180◦ in a
forward arching movement, then brought back down the same way. 52

A.3 While keeping both arms stretched out to the sides, the right leg is
first lifted forwards by 90◦, then stretched out slightly behind the
body, before it is brought back to the starting position. 52

A.4 From a standing position, the right lower leg is brought back until
parallel with the ground, then lowered back into starting position. . 53

A.5 While being kept straight the right arm is brought up to a vertical
position by moving it 180◦ in a sideways arching movement, then
the arm is brought back down in the same way. 53

A.6 Starting with the lower arm extended forward parallel to the ground,
it is first turned 90◦ outwards pointing away from the body, then
brought back 180◦ before being returned to the starting position. . 54

A.7 From a standing position, the right leg is brought approximately
45◦ out sideways, then return to the starting position. 54

A.8 Starting with arms stretched out to the sides parallel to the ground,
the leg is lifted up to also be parallel to the ground, turned 90◦

outwards, brought back over by 180◦, then brought back into the
forward position before being lowered back into the starting position. 55

A.9 From a standing position, the right leg is brought backwards and
down until the right knee touches the ground, then back up into
the starting position. 56

A.10 From a standing position both arms are lifted forward until parallel
to the ground, followed by the knees being bent until the legs are
also parallel to the ground. Then the process is reversed to arrive
back at starting position. 56

A.11 Starting with the right arm stretched to the side parallel to the
ground, it and the right foot is brought across the body and back. . 57

Figures xi

A.12 Starting with arms stretched out to the sides parallel to the ground
the torso is twisted 90◦ to the right and back. 57

A.13 From a standing position an outwards sideways step is taken with
the right leg, then an inwards step to return to starting position. . . 58

A.14 From a sitting position, the body is brought into a standing position
then back down to a sitting position. 58

A.15 From a sitting position the right foot is moved a step to the right,
then back. 59

A.16 From a sitting position the heels are lifted, then lowered. 59
A.17 From a sitting position the lower right leg is brought up and for-

ward until parallel to the ground, then back down again. 60

Tables

3.1 Final parameter values for XGBoost classifier after parameter search.
n_estimators refers to the number of trees that can be added to the
ensemble, and max depth is the maximum depth any individual
tree is allowed to grow to. 31

3.2 Resulting parameter values for the CNN classifier after parameter
searches. 33

4.1 Results from OpenPose evaluated on the COCO test-dev and valid-
ation data sets as reported by Cao et al., 2019, and from attempting
to reproduce the results using the COCO validation set. All values
are percentages. 35

4.2 Accuracy scores for the classifiers. 36
4.3 F1 scores for the classifiers. 37
4.4 Time used to train the three different classifiers. 37

xiii

Chapter 1

Introduction

Recognizing a person’s movements and classifying them, called action classifica-
tion, has applications in a variety of areas, such as physical therapy, rehabilitation,
animation and controlling virtual avatars in video games. The capturing of this in-
formation is traditionally done with specialized equipment such as cameras with
depth capturing capabilities and motion capture camera setups requiring multiple
cameras while subjects wear special marker suits. Due to the need for specialized
equipment or setups, these methods are both expensive and inaccessible to the
average consumer. A system that can extract this information and perform a clas-
sification using a single consumer grade RGB camera, for example a web camera,
would make action classification accessible to a much wider array of applications.
One area that would benefit greatly from being able to use standard RGB cameras
is exergaming, the use of serious games for exercise purposes. A computer pro-
gram that can provide proper feedback and supervision for people going through
physical therapy or other training programs would benefit both the user and the
professionals that would otherwise guide them manually.

In this thesis a data set of films capturing movements related to physical re-
habilitation exercises are used to create human action classifiers. OpenPose (Cao
et al., 2019) is used to perform pose estimation in order to extract the joint loc-
ations of the films’ subjects. The joint coordinates are used as input for training
a Convolutional Neural Network model and two Extreme Gradient Boost models
(with and without feature extraction) that classify the various exercise types.

1.1 Thesis Goals and Research Questions

The goal of this thesis is to develop a framework that can perform action classific-
ation on monocular video using machine learning methods based on state of the
art approaches. To complete this goal current state of the art methods for pose es-
timation and action recognition are described. A fitting pose estimation model is
chosen to be used as part of the framework, its results are attempted reproduced.
Promising methods for action recognition are also chosen, and models are created

1

2 Birkeland: Monocular Action Classification

based on these. The models are then evaluated, and strengths and weaknesses are
pointed out and compared.

Aim of the thesis To create a system that is able to classify human actions from
monocular RGB video.

To achieve this aim, we formulate goals and define research questions that are
addressed in this thesis:

Goal 1 To describe existing state of the art approaches and reproduce their results.

Research question 1.1 What is the state of the art in research on human pose es-
timation and action classification systems?

The current state of the art in pose estimation and action classification is ex-
plored. There are two main goals of this exploration: to find a promising pose
estimation candidate for use as part of this thesis’ framework, and to identify
methods that show promise on the task of action recognition.

Research question 1.2 Are reported results from state of the art methods reprodu-
cible?

The data used to train action classifiers is created using an existing pose es-
timator. If this model does not perform as well as the authors claim it does it
has the potential to undermine any results that are derived from or depend on
it. It is therefore of great interest to be able to reproduce the model’s reported
performance.

Goal 2 To train a model capable of classifying human actions

Research question 2.1 Can a model be trained to classify human actions

The use of computer programs like exergames has great potential in field like
physiotherapy and rehabilitation. Motivating users while simultaneously provid-
ing feedback on their exercises largely independent of human physicians allows
for greater freedom and flexibility in treatments. For a computer program to be
able to provide these services it must be able to identify classify human actions.
The creation of a model that can do this is a core aspect of this thesis.

Research question 2.2 What improvements can feature selection yield

Feature selection is the process of reducing the amount of features used to
create a model. This can have several upsides, like shortening training time, sim-
plifying the resulting model and reducing variance. This is a potential source of
performance gains for a model which is of interest to look into. In this thesis fea-
ture selection will be performed for an Extreme Gradient Boost classifier to see if
it yields any benefits.

Chapter 1: Introduction 3

1.2 Research Methods

To get an overview over the state of the art in the field of pose estimation and ac-
tion recognition a literature review is performed. This process begins with a liter-
ature search, where relevant literature from the field and state of the art methods
are identified. This gives an understanding on previous work that has been done
and what is relevant for further work. The findings from the literature search are
outlined in section 2.7.

The purpose of this thesis is to answer the research questions posed in section
1.1. To that end, a number of experiments are designed and executed based on
findings from the literature review. There are two types of experiments being per-
formed in this thesis. The first type is an experiment where we try to reproduce
the results of an existing model. The second type consist of experiments that cre-
ate new models. In both cases results are gathered and used to give an evaluation
of the outcome of the experiment.

1.3 Thesis Structure

Chapter 2: Background and Related Work In this chapter relevant background
theory is outlined, as well as related work.

Chapter 3: Method In this chapter the methods used to create the dataset and
the motion classifiers are explained.

Chapter 4: Experiments and Results In this chapter the results of the experi-
ments are reported.

Chapter 5: Discussion In this chapter results are compared and evaluated, and
research questions are answered.

Chapter 6: Conclusion In this chapter the findings are summarized and poten-
tial further work is discussed.

Chapter 2

Background and Related Work

2.1 Pose Estimation

Human pose estimation is the task of estimating one or more humans’ positions
in 2D or 3D space from a video or image input (Y. Chen et al., 2020). In 2D pose
estimation a system needs to provide some 2D representation of a 3D human be-
ing, for example in the form of joint coordinate values for each joint it is tasked
with localizing in an image. The resulting points and the connections between
them will yield a 2D skeletal representation. The exact amount of points and the
connections between them vary somewhat between different datasets and estim-
ators, but typical numbers for the amount of joints vary from 10-30. An example
of one configuration used by the COCO keypoint evaluation task1is seen in 2.1.
There are many challenges to take into account when designing a pose estimation
system, such as truncation of the subject, occlusion of the subject by other objects,
self-occlusion by the subject and the many different articles of clothing subjects
wear.

In 3D pose estimation each joint location is defined in 3D space. The task faces
the same challenges as its 2D counterpart with the added difficulty of needing to
estimate depth information from RGB input, which is 2D. This can be done directly
using an end-to-end 3D estimation technique, or a 2D pose estimation method can
be used as a base which is then brought up into the third dimension (Martinez
et al., 2017).

2.2 Monocular Action Classification

Action classification is the task of recognizing an action and correctly classifying
it, e.g. seeing a video of a jumping human and correctly classifying it as a case
of jumping. While humans see movement as a continuous change of position, a
video of the same movement will be seen by a computer as a series of still images.
In other words, action classification is a matter of recognizing a certain action

1https://cocodataset.org/#keypoints-2020

5

https://cocodataset.org/#keypoints-2020

6 Birkeland: Monocular Action Classification

Figure 2.1: A skeleton representation with 18 joints used by the COCO dataset
for their keypoint detection task.

Chapter 2: Background and Related Work 7

from a series of poses in succession. Many action classification models therefore
build upon the results of pose estimation or performs pose estimation as part
of the action classification system (Luvizon et al., 2018; Nie et al., 2015; Yan et
al., 2018). Accurate estimates of poses gives better data for a classifier, yielding
better classification results. Making a human action classification system usable
in a consumer or home setting poses challenges unique from those found in a lab
or studio setting. Chief among these is the requiring the system to run using input
from a single camera which can be of varying quality with regards to aspects such
as aspect ratio, resolution, color, frame rate, etc. There can also be differences
in image quality not directly caused by the camera itself, such as the quality of
the lighting of the subject and surroundings, dirt on the camera lens or clothes
obscuring the human shape. Restricting the system to only using one camera can
also lead to problems with occlusion of body parts by objects in the scene or with
the subject’s own body occluding itself. All of these are "in the wild" problems that
are easy to circumvent/prevent in a lab setting, but that a system nonetheless
need to be able to handle.

2.3 Exergaming

Exergaming is the use of gamification, the usage of elements from (video) gaming
such as challenges and reward systems, to encourage people to exercise and make
it easier to adhere to a training regimen (Vonstad et al., 2021). This is achieved
through the use of serious games, i.e. games made for a specific purpose other
than leisure (Wiemeyer and Kliem, 2011). An area in which exergaming shows
promise is the field of physical rehabilitation. An important element of physical
rehabilitation is the use of specific exercises to meet a patient’s needs. Making
sure that the exercises are performed correctly is important for faster and better
treatment, which has traditionally best been ensured through supervised exercise
programs. One of the advantages of using exergaming for rehabilitation is that
a game can provide guidance to patients without the need for a medical profes-
sional. For a game to provide proper guidance it must be able to identify exercises
that a patient is supposed to perform, and provide some reward when these are
performed correctly. What constitutes "correct" execution of a given exercise will
wary from person to person. A system that can account for a patient’s unique needs
in order to provide a customized program would be a powerful tool for the field
of physical rehabilitation. The biggest benefit would come from a system that can
do this without the user needing specialized equipment, such as cameras able to
capture depth information, or travel to a separate location (Vonstad et al., 2020).
It is desirable to develop a system that can run on hardware available to most
consumers and that does not require a large footprint in the patient’s home. This
thesis will use machine learning approaches to create models that can recognize a
number of different exercises using a single RGB camera, such as a standard web
camera found in many personal computers.

8 Birkeland: Monocular Action Classification

2.4 Neural Networks

2.4.1 Artificial Neuron

Figure 2.2: An artificial neuron. Inputs are weighted and a bias is added before
the activation function is applied.

The basic building block of neural networks is the artificial neuron. Artificial
neurons are inspired by biological neurons, like the ones found in the human
brain (Mitchell, 1997). The task of the neuron is to take some number of inputs
and provide a single output based on these. Each input x i has a weight wi asso-
ciated with it, see figure 2.2 (Nielsen, 2015). In order to calculate its output the
neuron will first calculate the sum of the inputs, with each input weighted by its
corresponding weight.

n
∑

i=1

wi x i (2.1)

The weights act as a measure of importance for each of the neuron’s inputs.
An input with a large weight, positive or negative, will have a greater impact on
the final output value than the same input with a smaller weight. A bias b is then
added to the weighted sum to get the weighted input z.

z =
n
∑

i=1

wi x i + b (2.2)

An activation function is then applied to the weighted input to get the neuron’s
final output, its activation.

a = fa(z) = fa(
n
∑

i=1

wi x i − b) (2.3)

Chapter 2: Background and Related Work 9

The term fa is the neuron’s activation function. The activation function acts
as the neurons mapping from weighted input to an output. An example of an
activation function is the sigmoid function.

σ(z) =
1

1+ e−z
(2.4)

This function is illustrated in figure 2.3. The neuron’s activation function de-
termines how strong of an output the neuron has for a given input. It also dictates
the possible range of output values. using the sigmoid function, for example, will
constrain the neuron’s output to fall between 0 and 1. A non-linear activation func-
tion will also introduce non-linearity to the neuron. This is especially useful when
creating networks using many neurons. Since any function that is a combination
of only linear function will itself be a linear function, this source of non-linearity is
necessary if we are ever to represent non-linear functions. Looking at the sigmoid
activation function, one can also see why a bias term is useful. If all of the neuron’s
inputs are 0 the weighted sum will also add up to 0, in which case the final output
will be 0.5. Through the use of a bias this does not have to be the case. As shown
in 2.4 changing the bias value shifts the activation function, allowing the neuron
to map inputs to outputs it otherwise could not.

Figure 2.3: The Sigmoid activation function

10 Birkeland: Monocular Action Classification

Figure 2.4: The effect of bias on neuron output.

Chapter 2: Background and Related Work 11

2.4.2 Feedforward Neural Networks

By arranging neurons into groups and connecting these groups to one another,
a neural network is formed (Russell and Norvig, 2010). While neural networks
can have many different configurations they generally follow a general structure
of an input layer, an output layer, and some number of hidden layers in between
(Goodfellow et al., 2016; Nielsen, 2015). This general structure can be seen in
figure 2.5. Each layer is connected by having the outputs from neurons in one
layer act as the inputs for the neurons in the following layer. Since all neurons in
one layer are connected to all neurons in the next, these layers are called fully-
connected layers. When an input is applied by the input layer, the nodes in the first
hidden layer will update their outputs accordingly. Their outputs will then do the
same to the next layer and in this way the information from the input layer will
propagate through the network until the output nodes update their outputs. This
type of network where the information only flows one way is called a feedforward
network.

Figure 2.5: A neural network with an input, hidden and output layer.

2.4.3 Loss and Gradient Descent

The goal of a neural network is to give a good estimate or prediction given some
input. This means finding some set of weights and biases that will transform inputs
into good outputs. To do this a measure of "correctness" is needed, called a loss
function (Goodfellow et al., 2016; Nielsen, 2015). An example of a loss function
is mean squared error (MSE).

MSE(w, b) =
1

2n

n
∑

i=1

(yi − ŷi)
2 (2.5)

12 Birkeland: Monocular Action Classification

Here n is the total number of inputs, yi is the desired output for input i, ŷi is
the neural network’s output from input i, and w and b indicates all the weights
and biases of the network in question. The output of the loss function is called
the loss. Looking at the formula, one can see that the loss approaches 0 if the net-
work’s outputs are all close to the desired output. The task of the learning process
is therefore to minimize loss, which is done through a process called gradient des-
cent (Mitchell, 1997). Formula 2.6 shows how changes to the parameters impact
the MSE.

4MSE ≈
∂MSE
∂ w1

4w1 + ...+
∂MSE
∂ wk

4wk +
∂MSE
∂ b1

4b1 + ...+
∂MSE
∂ bl

4bl (2.6)

The partial derivatives contains information about how the function as a whole
changes as each of the individual parameters are changed. The magnitude of the
partial derivatives indicate how much of an impact a given change in a para-
meter will have on the MSE, whereas the parity of the partial derivatives indicate
whether the change leads to an increase or decrease in overall MSE. The idea be-
hind gradient descent is to use the information contained in the gradient vector
to change each parameter in such a way as to make changes in weights and bi-
ases that will lead to a negative4MSE (Russell and Norvig, 2010). The gradient
vector ∇MSE is defined as a vector containing the partial derivatives of the loss
function.

∇MSE ≡ (
∂MSE
∂ w1

, ...,
∂MSE
∂ wk

,
∂MSE
∂ b1

, ...,
∂MSE
∂ bl

)T (2.7)

4p is a vector where each element indicates the change to a given parameter.

4p ≡ (4w1, ...,4wk,4b1, ...,4bl)
T (2.8)

In both ∇MSE and 4p T is the transpose operation. 4MSE can now be re-
written using formula 2.7 and 2.8 to get 4MSE ≈ ∇MSE · 4p. 4p is set to the
negative of the gradient multiplied by a small, positive parameter known as the
learning rate.

4p = −α∇MSE (2.9)

4MSE can now be written entirely in terms of its gradient.

4MSE ≈ −α∇MSE · ∇MSE = −α‖∇MSE‖2 (2.10)

Since ‖∇MSE‖2 ≥ 0, it is guaranteed that −α‖∇MSE‖2 ≤ 0. This means that
changing the parameters according to formula 2.9 results in a reduction of the
loss. This can be used to create update rules for the individual weights and biases.

wk← wk −α
∂MSE
∂ wk

(2.11)

Chapter 2: Background and Related Work 13

bl ← bl −α
∂MSE
∂ bl

(2.12)

The logic behind gradient descent is to that the gradient points in the direction
that will increase the loss the most. By going in the opposite direction, which
is where the negative sign in formula 2.9 comes in, a step can be taken in the
direction that most reduces the loss. The idea is to take many small steps in this
direction until the loss can be reduced no further, at which point a minimum has
been reached. At each step all parameters are updated according to the rules in
formulas 2.11 and 2.12. The learning rate introduced in formula 2.9 is included
to keep the step size small. If the steps at each iteration are too large it can cause
the process to overshoot the minimum and diverge, see figure 2.6. The learning
rate should not be too small, however, as this can cause the process to take longer
than necessary.

Figure 2.6: Conceptualization of how gradient descent can fail to locate a min-
imum if the step size is too large. On the left the steps are small enough for the
process to approach and eventually reach the minimum. The figure on the right
shows a process that is diverging; the steps are too large at each iteration, and
the process will not reach the minimum.

2.4.4 Backpropagation

Gradient descent is wholly dependent on calculating the gradient of the loss func-
tion, seen in equation 2.7 (Nielsen, 2015). In the case of neural networks this is
done using a process called backpropagation (Goodfellow et al., 2016; Mitchell,
1997). To make it easier to read without getting bogged down by indices, some
notation is needed. wl

jk refers to the weight associated with the connection between

neuron k in layer l − 1 to neuron j in layer l, bl
j refers to the bias of neuron j in

layer l, and al
j refers to the activation of neuron j in layer l, from formula 2.3.

Figure 2.7 shows examples of the notation in use.
With the sigmoid function as activation function formula 2.3 can be rewritten

using the new notation.

al
j = σ(
∑

k

wl
jkal−1

k + bl
j) (2.13)

14 Birkeland: Monocular Action Classification

Figure 2.7: Illustrative example showing how biases, activations and weights are
referred to using the notation in section 2.4.4.

The sum is summing over all k neurons in layer l − 1. Defining wl as a matrix
containing the weights connecting layer l and l − 1, bl as a vector containing the
biases in layer l, and al as a vector containing the activations of layer l, formula
2.13 can be rewritten in vectorized form.

al = σ(wl al−1 + bl) (2.14)

One more useful term when talking about backpropagation is the weighted
input defined in equation 2.2, also rewritten in vectorized form.

z l ≡ wl al−1 + bl (2.15)

Backpropagation begins by calculating an error term for each neuron in the
network.

δl
j ≡
∂MSE

∂ z l
j

(2.16)

The intuition here is similar to the one for equation 2.6: the partial derivatives
∂MSE
∂ z l

j
says something about how big of an impact a small change to the weighted

input (which is a function of weights and bias) of the neuron in question has on
the total loss (Russell and Norvig, 2010). If δl

j is large it means that the neuron
is comparatively far from being optimal, in turn meaning this is a neuron that
changes should be made to. A small δl

j means changes to the neuron will not
matter that much, and it is probably close to being optimal. Focusing only on the
error in the output layer, the error is written as δL

j =
∂MSE
∂ zL

j
, where the capital L

Chapter 2: Background and Related Work 15

indicates that this is the output layer. This is rewritten using the chain rule from
multivariable calculus.

δL
j =
∑

k∈L

∂MSE
∂ aL

k

∂ aL
k

∂ zL
j

(2.17)

When j 6= k the term
∂ aL

k

∂ zL
j

will vanish, allowing equation 2.17 to be simplified

to δL
j =

∂MSE
∂ aL

j

∂ aL
j

∂ zL
j
. Per formula 2.14 aL

j = σ(z
L
j), meaning the term

∂ aL
j

∂ zL
j

can be

written as σ′(zL
j). Using this δL

j can be further simplified into an equation for the
error in the output layer.

δL
j =

∂MSE
∂ aL

j

σ′(zL
j) (2.18)

The next piece of backpropagation is a formula that can calculate δl
j if the

errors of the next layer are known. The starting point is once again equation 2.16.
The chain rule is used to rewrite δl

j in terms of δl+1
k .

δl
j =
∑

k

∂ z l+1
k

∂ z l
j

δl+1
k (2.19)

Using differentiation one can see that
∂ z l+1

k

∂ z l
j
= wl+1

k j σ
′(z l

j), which is substituted

into 2.19 to yield the desired equation.

δl
j =
∑

k

wl+1
k j δ

l+1
k σ′(z l

j) (2.20)

Using equation 2.18 first to find the errors of the output layer L, equation 2.20
can then be used to find the errors of layer L − 1. Knowing these errors equation
2.20 can be used again to find the errors in layer L−2 and so on, propagating the
errors backwards through the network until every neuron’s error is known. This is
where the method gets its name. The only steps that remain are to use the errors
to calculate partial derivatives for the weights and biases, ∂MSE

∂ wl
jk

and ∂MSE
∂ bl

j
.

To find the equation for ∂MSE
∂ bl

j
, first rewrite it using the chain rule.

∂MSE

∂ bl
j

=
∑

i∈l

∂MSE

∂ z l
i

∂ z l
i

∂ bl
j

(2.21)

Since
∂ z l

i

∂ bl
j

vanishes when i 6= j the summation over l disappears.

∂MSE

∂ bl
j

=
∂MSE

∂ z l
j

∂ z l
j

∂ bl
j

=
∂MSE

∂ z l
j

∂
∑

k∈l−1 wl
jkal−1

k + bl
j

∂ bl
j

(2.22)

16 Birkeland: Monocular Action Classification

Since the weights wl and activations al−1 does not depend on bl
j the term

∂
∑

k∈l−1 wl
jkal−1

k +bl
j

∂ bl
j

is equal to 1. Making this substitution and remembering the

definition of δl
j from equation 2.16 yields the equation for partial derivative of

biases.

∂MSE

∂ bl
j

=
∂MSE

∂ z l
j

· 1= δl
j (2.23)

The only thing missing now is to find ∂MSE
∂ wl

jk
. The first step is once again to use

the chain rule to rewrite the term.

∂MSE

∂ wl
jk

=
∑

i∈l

∂MSE

∂ z l
i

∂ z l
i

∂ wl
jk

(2.24)

Since z l
i only depends on wl

jk when j = i, the summation over l disappears.

∂MSE

∂ wl
jk

=
∂MSE

∂ z l
j

∂ z l
j

∂ wl
jk

=
∂MSE

∂ z l
j

∑

i∈l−1 wl
jia

l−1
i + bl

j

∂ wl
jk

(2.25)

Since wl
ji only depends on wl

jk when k = i,
∑

i∈l−1 wl
ji a

l−1
i +bl

j

∂ wl
jk

= al−1
k . Making this

substitution and also using the definition of δl
j gives the equation for the partial

derivatives of the weights.

∂MSE

∂ wl
jk

=
∂MSE

∂ z l
j

al−1
k = δl

ja
l−1
k (2.26)

This is the last piece of backpropagation. After using equations 2.18 and 2.20
to calculate the errors in the whole network, equations 2.23 and 2.26 can use the
errors to calculate the partial derivatives needed to perform gradient descent as
described in section 2.4.3.

2.4.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a variant of neural networks inspired
by biological eyes. Their name comes from an operation known as a convolution
that such networks utilize to great effect on grid-like data, e.g. the grid of pixels
that form an image (Goodfellow et al., 2016; Nielsen, 2015). There are two lay-
ers that are characteristic to CNNs: convolutional layers and pooling layers. The
convolutional layer is based around a filter (also called kernel), which consists
of weights arranged in a matrix of size (m, n, d), as well as a bias. The d in the
matrix dimensions refers to the depth of the input. In the case of an RGB image
the depth would be 3, one for each color channel. For the purposes of this section,
the depth will be ignored, as it does not change the concepts at hand. The filter

Chapter 2: Background and Related Work 17

connects m× n adjacent neurons in one layer to a single neuron in the next layer,
illustrated in figure 2.8.

Figure 2.8: The filter connects a 3×3 region in the input layer to a single neuron
in the hidden layer.

Beginning in one corner of the grid, for example the top left, it slides across the
image from left to right, moving some number of columns to the right each time.
When it reaches the right side of the grid it moves down some number of rows
and slides from left to right again. This repeats until the bottom right of the grid
is reached. How many rows or columns the filter moves at each step is called the
stride length, and is a hyperparameter used to tune CNN models. The activation
of the neuron at position (k, l) in the resulting hidden layer is conceptually the
same as that for a neuron in a feedforward network.

a = fa(b+
m
∑

i=0

n
∑

j=0

wi, jak+i,l+ j) (2.27)

fa is the neuron’s activation function, b is the bias, wm,n is the weight matrix
of the filter and ax ,y is the activation of the input layer at position (x , y). This
equation assumes a stride length of one for both columns and rows. Adjusting for
larger values is simply a matter of modifying the indices for the term ak+i,l+ j to
account for this. The equation also shows that throughout this whole process of
sliding across the grid of neurons the filter is using the same weights and bias at
every step. This is key because filters detect features. A feature is some pattern in
the input that causes the hidden neuron to activate, for example a line. When the
filter moves across the image it is essentially detecting the presence of its particular
feature. As a result, the hidden layer becomes a map depicting how instances of a
particular feature are related to one another spatially. For this reason the output
layer that results from running a filter across the some input is called a feature
map. By applying different filters to the same input the convolutional layer creates
several different feature maps. These feature maps can then be used as inputs for a
new convolutional layer. The relatively simple features detected by an early layer

18 Birkeland: Monocular Action Classification

can be combined into more complex features in later layers, which combine into
even more complex features further into the network. In this way lines and edges
becomes simple shapes, which becomes complex shapes, which becomes objects,
faces, people, etc.

An important difference between convolutional layers and the fully-connected
layers described in section 2.4.2 is that the convolutional layer requires far fewer
parameters. Fully connecting a x× x input to a y× y output would require x2× y2

weights in addition to y2 biases for a total of x2 y2 + y2 parameters. As the size
of the input increases, this number quickly becomes very large, easily numbering
in the billions. A z × z filter only requires z2 weights and a bias meaning a con-
volutional layer utilizing such filter will only need a total of z2 + 1 parameters
per feature map, independent of the size of the input. As the filter is usually quite
small, typical values for z being in the single digits, this represents an enormous
difference in the number of parameters, even when using hundreds of filters. This
efficient use of parameters is a huge advantage for CNNs over fully-connected
networks.

Figure 2.9: A convolutional layer outputting three feature maps, followed by a
pooling layer halving the size of said feature maps.

Pooling layers are used to condense information contained in some input. They
work similarly to the convolutional layer in that a filter of some size (m, n) slides
across a grid, usually a feature map, according to some stride length, performing
a pooling operation at each step. A typical size for a pooling filter is 2× 2, with
a stride of 2, which will result in halving the size of the input. They are usually
used immediately following a convolutional layer to reduce the size of the feature
maps output by the convolution, see figure 2.9. The main difference from the
convolutional layer is in the operation being performed by the filter. Pooling does
not involve weights and biases that are trained iteratively through some process.
Instead, the operation is clearly defined when creating the network, and operates
the same way at all times. Another difference is that a convolution layer takes
some number of inputs di and outputs some number of feature maps do, where
do is the number of filters in that layer. A pooling layer taking di feature map
inputs will perform the exact same pooling operation on each one, outputting di
outputs. The pooling does not change the number of feature maps, only their size.
An example of a pooling operation is max-pooling. In max-pooling the maximum

Chapter 2: Background and Related Work 19

activation among the neurons in the pooling filter is selected as the activation for
the output neuron, see figure 2.10.

Figure 2.10: In max-pooling the output neuron outputs the same value as the
maximum activation in its corresponding input region.

One benefit of pooling is to provide invariance to translations in the input,
meaning that if the input is translated by some small amount, the pooled outputs
do not change by a lot. This makes the model rely less on the exact position of
a feature, and instead rely more on where features are located relative to one
another. Another advantage of pooling is that it (usually) reduces the size of the
input, reducing the amount of computation that needs to be done in later layers.

A general CNN structure involves alternating convolution and pooling layers
before ultimately using some fully-connected layers at the end, see figure 2.11.
Training a CNN is done in much the same way as a fully-connected network;
an input is applied, propagated through the layers, loss is calculated, gradient
descent using backpropagation is used to update weights and biases, repeat until
desired performance is achieved (or it becomes clear desired performance will not
be achieved).

Figure 2.11: General structure for CNNs. The first part of the network consists of
alternating convolution and pooling layers, represented by the three dots. At the
end of the network there are some fully-connected layers before the final output.

20 Birkeland: Monocular Action Classification

2.5 Tree-Based Ensemble Methods

2.5.1 Decision Trees

Decision trees are structures that take some number of attributes as input, pro-
ducing a single output through a series of tests (Mitchell, 1997). The decision
making process begins at the root node, where one of the input attributes will be
subject to a test. Then the branch corresponding to the result of the test is fol-
lowed to the next node, where the process is repeated. This continues until a leaf
node is reached, at which point the value of the leaf node is given as the decision
tree’s output. An example decision tree is depicted in figure 2.12.

Figure 2.12: Example decision tree. The inputs are temperature, which will be a
rational number, and weather, which can be sunny or rainy. The decision tree will
determine whether one should go outside or not. The root node is marked with
an arrow. The internal nodes are square, while the leaf nodes are circular.

Decision trees learn through a recursive greedy divide-and-conquer strategy
(Russell and Norvig, 2010). Starting at the root node, determine which attribute
will give the best split. Use this attribute as the test for the root and split the
training data accordingly. Create a new node for each value this test can result in
and sort the training data to the descendant nodes according to the test. At each
of these nodes this process can be repeated in a recursive fashion. A leaf node will
be created in three cases.

1. If the remaining examples after a split all correspond to the same output,
create a leaf node with that output value.

2. If a set of examples after a split is empty, there are no examples for this
combination of attribute values. Create a leaf node with a default value, for
example the most common value among the examples in the parent node.

3. If all attributes have been used, but there are still examples corresponding
to different outputs, create a leaf node with output set to the most common
value of the remaining examples.

Chapter 2: Background and Related Work 21

This process is dependent on some measure indicating which attribute will res-
ult in the best split. An example of such a measure is information gain, calculated
using entropy.

2.5.2 Entropy and Information Gain

The entropy E(S) of some collection S consisting of c classes is a measure of how
impure or uneven S is (Mitchell, 1997; Russell and Norvig, 2010).

E(S) =
c
∑

i=1

−pi log2pi (2.28)

pi is the proportion of the number of elements belonging to class i to the total
number of elements in the set S. A collection of examples where all members
belong to the same class will have an entropy of 0. If the members are equally
split between c different classes the entropy will be log2c. For unequal splits the
entropy will fall in between these extremes. By using entropy as a measure of
"unevenness" in a set of data a method for deciding on a best attribute can be
defined. The goal is to move from a single dataset into subsets where each entry
of a given subset belongs to the same class. In other words, to go from one large
dataset with ent rop y > 0, to some number of subsets each with ent rop y = 0.
At each step the data should be split by using the attribute that will result in the
largest reduction of entropy. Define E(S|A) as the total entropy of the resulting n
subsets after splitting a set S using attribute A.

E(S|A) =
n
∑

i=1

pt H(St) (2.29)

pt is the proportion of the number of elements in subset t to the total number
of elements in S and H(St) is the entropy of subset t. The reduction in entropy
after using attribute A to split dataset S is called information gain, and is given by
IG(S, A).

IG(S, A) = H(S)−H(S|A) (2.30)

The information gain acts as the measure of an attribute’s impact on a set of
data. When deciding which attribute to use at a node during the training process
simply calculate IG(S, A) for each attribute that is being considered, then choose
the one with the highest value.

2.5.3 Ensemble Methods

The concept of ensemble learning involves using multiple different learners, an
ensemble, to provide an output. Using decision trees as an example one could
generate T = 15 decision trees. Given an input the 15 trees will provide their
10 outputs, which can then be combined into a single final output by means of

22 Birkeland: Monocular Action Classification

for example majority voting. The reason for combining multiple learners is that it
will make misclassifications less likely (Russell and Norvig, 2010). Consider the
situation where the 15-tree ensemble attempts a Boolean classification task, that
is each input belongs to one of two classes. To misclassify an input would require
at least 8 of the individual trees to get it wrong. The hope is that this is less likely
to happen than a single learner making the mistake; the ensemble will suppress
uncommon errors among the learners.

2.5.4 Boosting

One technique for creating an ensemble is called boosting. This method utilizes
weighted data sets, in which each example used to train the learners also has a
weight associated with it (Russell and Norvig, 2010). An example with a higher
weight is deemed more important during learning, which the training algorithm
will have to be modified to account for. Initially all the examples are weighted
equally. An initial learner, for example a decision tree, is trained on the data as de-
scribed in section 2.5.1. Assuming the first learner does not correctly classify every
example, we want the next one to focus more on the misclassified examples. To do
this the weight of each misclassified example is increased while the correctly clas-
sified examples have their weights decreased. This process repeats until T learners
have been trained, where T is provided as input to the boosting algorithm.

2.5.5 Gradient Boosting

Gradient boosting is a boosting variant where an ensemble is created from weak
learners, for example simple decision trees (Natekin and Knoll, 2013). A weak
learner is a learner that performs slightly better than random guessing (Boehmke
and Greenwell, 2020). Gradient boosting starts by creating a base estimator F1
and fitting it to some training data x . Since this estimator is very basic it is probably
not very accurate, so there is going to be some difference between its output ŷ1 =
F1(x) and the desired output y , called the residual. The next step is to fit a new
estimator h1 to the residual of the previous. The idea is that the contribution from
h1 will compensate for some of the error of F1, and thereby reduce the residual.
In order to limit how big the correction from h1 is, a learning rate α is applied to
it, which functions similarly to how it is used in section 2.4.3. In fact, the process
is a form of gradient descent, which is where the "gradient" in "gradient boosting"
comes from. The new estimator is then added to the old to create F2. The steps
can be combined into a simple four-step algorithm.

1. Calculate residuals from the difference between ŷn = Fn(x) and y
2. Create a new estimator hn
3. Fit hn to residuals
4. Create new ensemble Fn+1 = Fn +αhn

This is repeated until some mechanism tells the process to stop, for example
due to the residuals becoming small enough or the process having met some up-

Chapter 2: Background and Related Work 23

per limit for number of iterations. The result of the process is an ensemble Fb,
consisting of b different estimators working together. Some important hyperpara-
meters when creating models using gradient boosting with decision trees are the
number of trees, learning rate and maximum tree depth. Without an upper limit
to the number of trees that can be added to the ensemble, the final model is
prone to overfitting. Overfitting is when a model has failed to generalize, and is
instead memorizing the training data. The idea with this hyperparameter is to
help prevent overfitting from occurring by stopping the training process after it
has learned from the data, but before it begins to overfit. The learning rate has
serves the same function as described in section 2.4.3. The depth of a decision tree
is the largest number of splits between a leaf node and the root. The maximum
tree depth enforces an upper limit on this quantity for each decision tree in the
ensemble, which helps keep each tree simple. Deeper trees have the advantage of
being able to capture interactions involving larger number of attributes, but they
are both more computationally expensive and more prone to overfitting. Deciding
on a good value for this hyperparameter is about finding a balance between these
factors.

Extreme Gradient Boosting (XGBoost) is a gradient tree boosting system, seek-
ing to provide an efficient and scalable implementation of the method (T. Chen
and Guestrin, 2016). It provides features like parallell processing, the ability to
use a variety of base learners and early stopping, and has implementations in
several programming languages.

2.6 Parameter Search

Both CNNs and XGBoost models require tuning of hyper-parameters to achieve
good results, or even do better than random noice at all. Manually tuning a model’s
hyper-parameters can be a very time consuming endeavour. Without some a priori
knowledge about the specific domain or task at hand the process can quickly be-
come a matter of trial and error using best practices that may or may not apply to
said domain or task (Nielsen, 2015). Grid search is a method used to explore the
hyper-parameter space at hand in order to find promising hyper-parameter val-
ues quicker than a manual process would allow. When performing a grid search
a set of possible values is chosen for each parameter that is to be tuned. Then
every combination of values across all the hyper-parameters are tested, and the
combinations can be ranked by their performance (Bergstra and Bengio, 2012).
While the method does not necessarily find the best values for the parameters, it
will give a good indication of where in the hyper-parameter space the good com-
binations are. The main drawback of this method is that the number of parameter
combinations grows exponentially with the number of hyper-parameters.

Random search explores the hyper-parameter space by generating parameter
combinations through random sampling of values. For each parameter a range of
possible values are provided to be used for said sampling. The search algorithm
is also provided the number of combinations to be tested, so that it will have a

24 Birkeland: Monocular Action Classification

stopping condition. By narrowing or widening the parameter value ranges or by
increasing or decreasing the number of combinations to be tested one can control
how finely or coarsely the search space will be explored. The logic behind random
search is that the rigidity of grid search causes it to miss important information.
Consider a grid search that has a set of values (v1, ..., vn) for some parameter p.
No matter how many total combinations will be explored by the search, p will
only ever take on n values. If the best values for p falls outside of exactly these n,
the grid search will never find them. This can be mitigated by providing a more
granular set of values, but doing so further amplifies the growth of the number of
parameter combinations. The same parameter in a random search would have its
values pulled from the range v1 < p < vn. This results in each combination being
explored using a (probably) unique value for p. This makes the random search
able to explore each parameter more thoroughly, even in cases where the total
number of combinations is lower than an equivalent grid search.

2.7 Related Work

This section outlines existing approaches and methods for pose estimation and
action recognition. These are closely related tasks, and the latter will often build
upon the former. In both cases the input is usually visual data, i.e. images and
videos. For the purposes of this thesis the focus will be on methods that utilize
video input, since we have a data set of videos available to use.

Current state of the art pose estimation methods are generally based on deep
learning models (Y. Chen et al., 2020). These can be divided into two general
categories: regression-based or detection-based. Detection-based methods aim to
give an approximation, using heatmaps to represent an approximate location of
joint locations or body parts. Bulat and Tzimiropoulos, 2016 is one such method
that uses a two-network architecture where the first network produces part heat-
maps indicating probable locations for each body part. The second network refines
the part heatmaps into confidence maps by narrowing down the probable loca-
tions into a final location for each joint. The final output of the model is this set
of confidence heatmaps. Regression-based methods are characterized by mapping
an input directly to the desired output, i.e. the output is a set of coordinates (Lu-
vizon et al., 2018). One way of doing this is to have the model output location
coordinates directly, such as in Toshev and Szegedy, 2014. This approach is lim-
ited by the fact that the regression method is often sub-optimal. A solution to
overcome this weakness is to take a detection-based method and transform it into
a regression-based method using soft-argmax (Luvizon et al., 2017). Converting
heatmap representation into coordinate representation this way lets models re-
tain the advantages of both representations (Y. Chen et al., 2020). This is used
by Nibali et al., 2018 in their Margipose model in which 3D joint coordinates
are calculated using three marginal heatmaps representing the xy, xz and yz di-
mensions, illustrated in figure 2.13. To obtain a coordinate representation of the
position soft-argmax is used on these three heatmaps, converting the model from

Chapter 2: Background and Related Work 25

detection to regression.
A common usage of heatmaps is the concept of confidence heatmaps (Y. Chen

et al., 2020). A confidence heatmap is a heatmap indicating a particular joint’s
approximate position in an image. Each confidence heatmap only contains in-
formation about one joint, meaning models need to create one heatmap per joint
for a full representation of a person. In Mehta et al., 2017 confidence heatmaps
are used to give an initial 2D joint position, before this is lifted into 3D. Cao et al.,
2019 uses one confidence maps per joint to indicate the joint locations of all of
that particular joint, i.e., the confidence map for left shoulder contains locations
of all left shoulders in the image. The joint location heatmaps are then combined
with Part Affinity Fields (PAFs) to obtain a pose estimate. The PAFs are vector
fields indicating how closely associated a pair of joints are with one another, al-
lowing the system to connect the correct shoulder and elbow joints, for example.
This approach allows the method to give pose estimates for multiple people in an
image in one pass.

Figure 2.13: Multiple marginal heatmaps, each providing postitional information
in two dimensions, can fully describe a location in three dimensional space.

Action recognition is the task of recognizing human actions from images or
video. If the video contains only a single action that needs to be classified, it is
called action classification. Action recognition methods can be roughly divided
into two groups, depending on whether they are based purely on RGB inputs, or
if they also utilize depth information (RGBD) (Zhang et al., 2019). Depth data
carries with it several advantages over pure RGB, such as robustness with regards
to changes in light conditions, environment and background, as well as enabling
quick object segmentation. The main downsides comes from requiring special

26 Birkeland: Monocular Action Classification

depth cameras, leading to methods only performing well in specific environments
as well as limiting their effective ranges. Current state of the art methods consists
mostly of deep neural networks such as CNNs (Herath et al., 2016). A common
factor for such action recognition systems is that they need some way to extract
temporal information from their inputs (Zhu et al., 2020). This is difficult to ob-
tain from raw video input. One technique to allow models to access the temporal
information is through the use of optical flow (Horn and Schunck, 1981), which
concerns patterns of motion in a scene due to the relative motion between said
scene and its observer. In Simonyan and Zisserman, 2014 a two-stream neural net-
work architecture is described. It consists of two separate networks whose outputs
are combined to provide a prediction. One of the two networks utilizes optical flow
to capture temporal information between frames in the input video to recognize
motion, while the other is RGB-based and performs object recognition.

Recent developments in human action recognition involves using skeleton se-
quences (Zhang et al., 2019). Such methods use poses represented by skeletons as
input instead of RGB or RGBD images or films. In Luvizon et al., 2018 a joint pose
estimation and action recognition system is described. The pose estimation part of
the system uses RGB images as its input and outputs coordinates from a heatmap
through the use of soft-argmax, as described in section 2.7. The action recognition
half of the system is further divided into two, with one part making predictions
based on RGB images and the other making predictions based on time series of
poses, each pose being represented by a skeleton of joint coordinates. This res-
ults in a two-part structure, similar in concept to Simonyan and Zisserman, 2014,
where the two combine their predictions to produce a final output. Yan et al.,
2018 describes an action recognition system based purely on skeleton sequences
to make predictions. The skeletons are framed as spatial-temporal graphs with
spatial edges connecting the joints in a skeleton to each other (i.e. the limbs) and
temporal edges connecting joints across time steps (i.e. connecting a joint j at time
step tn to that same joint at time step tn+1). A special graph convolutional net-
work called a Spatial-Temporal Graph Convolutional Network was used to provide
action predictions.

In this thesis models using skeleton sequences as input will be used as action
classifiers to classify exercises related to physiotherapy. The skeletal information
will be obtained by using OpenPose to acquire joint positions from videos of par-
ticipants performing said excersises. Action classifier models will then be trained
on this data.

2.8 Reproducibility of Results

Being able to reproduce results is important in order to verify research results. In
the field of machine learning models are trained to do some task, tested on data
and evaluated based on the results. The model that scores the highest on some
metric can then be said to be the best for that task (Gundersen et al., 2022). This
is, however, dependent on the reproducability of the results. If the results of the

Chapter 2: Background and Related Work 27

highest scoring method are unable to be reproduced, confidence in the method
is reduced. Gundersen et al., 2022 found that it is in fact almost impossible to
reproduce the exact results of an experiment. Platform, processing unit, software
versions, bugs, and the general stochasticity of machine learning models create
so many points at which models created from the same code can begin to diverge
from one another that any two such models are essentially bound to be different
from one another. Instead of trying for a perfect reproduction of the results, the
best that can realistically be done is to create a model that allows for the same
overall conclusions to be drawn.

A common starting point when applying a method to new data or domains is
to reproduce reported results to verify that the method was installed or implemen-
ted correctly, and that code was set up and run properly (Tatman et al., 2018). If
results are inherently non-reproducible it can become a challenge just to get star-
ted with using an existing method. It is thus not only for scientific or academic
purposes that reproducability is important, but also for any practical application
of a machine learning method. Pineau et al., 2021 suggests four categories de-
pending on whether data or code is the same or different when attempting to
recreate experiment results, see figure 2.14. Under this system results are repro-
ducible when a new experiment that is run using the same code and data as the
original experiment manages to recreate the original results. It is this notion of
reproducibility that will be used in this thesis when using existing methods.

Figure 2.14: Four categories of recreating results as defined in Pineau et al., 2021

Because OpenPose (Cao et al., 2019) is used to transform a video-based data
set into one of skeletal sequences it is important to have confidence in the Open-
Pose model. After all, if the pose estimation system does not work there is no
foundation for other methods to build upon. For this reason the results repor-
ted in the OpenPose paper will be attempted reproduced by testing the publicly
available OpenPose implementation2 on data that was used in the paper to report
performance.

2Download and installation instructions located at https://github.com/
CMU-Perceptual-Computing-Lab/openpose

https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose

Chapter 3

Method

This chapter contains information on the methods used to create a data set, train
models and perform feature selection for an XGB Classifier. All code used to per-
form these tasks can be found in the github repository located at https://github.
com/ntnu-ai-lab/excergame-pose-estimation. Figure 3.1 illustrates the total pro-
cess from exercise videos to predictions.

Figure 3.1: The three first squares correspond to the process of creating the data
set used to train classifiers, covered in section 3.1. The last three correspond to
the process of classification. The creation of the classifiers is covered in sections
3.2.1 and 3.2.2.

3.1 Creating the Data Set

The data used to train the models is based on an unpublished dataset1 filmed at
NTNU consisting of videos capturing participants performing a series of 17 dif-
ferent exercises filmed at 25 frames per second. The exercises were repeated 10
times, and each video features a single repetition of an exercise. These exercises
are intended for use in physiotherapy, specifically related to recuperation after
procedures like e.g. hip replacements, and are therefore fairly simple, slow and
deliberate. Illustrations of the exercises can be seen in appendix A. Each video was
between 4 and 8 seconds long, corresponding to a length of 100 to 200 frames.
The participants were captured by multiple cameras placed around the capture
area. The capture area itself was free of equipment and other foreign objects,
resulting in no occlusion apart from self occlusion by the participant. The lighting

1Dataset created by Emanuel A. Lorenz, Xiaomeng Su and Nina Skjæret Maroni

29

https://github.com/ntnu-ai-lab/excergame-pose-estimation
https://github.com/ntnu-ai-lab/excergame-pose-estimation

30 Birkeland: Monocular Action Classification

was good and consistent between subjects. All these factors contribute to a "clean"
dataset which makes it easier for a model to achieve good results on, but could
fail to prepare it for real world applications. For the purposes of this thesis only
the camera facing the participant head on was used, resulting in a smaller data set
consisting of 170 videos per participant. OpenPose (Cao et al., 2019) was used to
perform 2D pose estimation on these front-facing videos. The output from Open-
Pose was one JSON object per frame containing the joint coordinates of each joint.
These objects were grouped together according to which video they came from,
then each group was sorted chronologically by frame number and combined into
a single csv file per video. Each of these csv files has 25 sets of (x, y) coordinates
per row for a total length of 50, one row per frame of its corresponding video.
Each column thus contains a chronological series of joint coordinate values for
the coordinate corresponding to said column. The resulting set of csv files, one
for each video, was ultimately used as data for training action classifiers. In order
to provide the classifier models with uniform input sizes, some processing of the
data was performed. 100 was chosen as the number of columns in each input.
For each video the first, last and middle 100 columns were used to create three
50x100 input grids, for a total of 5000 features per input.

3.2 Training Models

Two different types of models were trained as classifiers, an XGBoost Classifier
(XGBC) and a Convolutional Neural Network (CNN). For both models parameter
searches were performed to identify promising hyper-parameter values. The XGBC
model also underwent feature selection, for a total of three models: XGBC with
and without feature selection, and a CNN.

3.2.1 XGBoost

To find parameters that would yield good results two parameter searches were
performed. The first was a random parameter search fetching parameter values
from a wide range of values in order to narrow down the parameter search space.
The results of the random search was used as indicators for which value ranges
showed promise. With the parameter value ranges narrowed down a more tar-
geted grid search was performed. Each of these parameter searches were done
using 5-fold cross validation. This process yielded final parameter values seen in
table 3.1.

To evaluate the performance of the parameter values leave-one-group-out
cross-validation was used. At each iteration one participant was left out to be
used as the test set, repeating until all participants had been left out once. The
data not being left out was split into a validation and training set, using a 10-90
split. The training used early stopping to evaluate when the model was finished
training, with the early stopping set to stop after 10 epochs without improvements
to the validation set performance.

Chapter 3: Method 31

Parameter Value

learning rate 0.1
max depth 2

n_estimators 150

Table 3.1: Final parameter values for XGBoost classifier after parameter search.
n_estimators refers to the number of trees that can be added to the ensemble,
and max depth is the maximum depth any individual tree is allowed to grow to.

After the leave-one-group-out cross-validation, feature selection was performed.
An initial model was trained using the parameters in table 3.1. Before feature se-
lection the input to this model had 5000 features. Using XGBC’s built-in feature
importance evaluation method revealed that 3614.0±20.7 features had zero im-
pact on the model’s predictions; they only served to make the input larger than
necessary and prolong the training process. In order to find the features that had a
significant impact on the model’s performance, an iterative process of eliminating
features was performed. At each iteration the features were sorted according to
their importance and the top n most important features were kept. A new data
set was generated keeping only these important features, and a new model was
trained on the data. This process was repeated, halving n at each iteration, until
the performance of the model was noticeably impacted. Then a more exhaustive
search through values of n close to this value could be performed. Through this
process only the features that actually had an impact on the model’s ability to
classify exercises were kept.

3.2.2 Convolutional Neural Network

In addition to the XGBoost classifiers a CNN was trained on the data. Parameter
search was used to find good parameters for this model too, but it was done
through a combination of manual and automated searches. The initial manual
exploration revolved around finding a functional shape for the network, i.e. how
many layers, how many features per layer, etc. Once promising network candid-
ates were found random searches were set up and ran for these. Using the res-
ults of these searches, narrower grid searches could be used to find final hyper-
parameter values. The resulting values and the shape of the network can be seen
in table 3.2 and figure 3.2

32 Birkeland: Monocular Action Classification

Figure 3.2: The shape of the CNN after hyper-parameter searches. For the Max-
Pooling2D and Conv2D layers numbers indicate the shape of the input and output,
given as (height, width, depth). For the Dense layers the number represents the
incoming and outgoing connections.

Chapter 3: Method 33

Parameter Value

learning rate 0.001
optimizer Adam

epochs 15
loss function categorical cross-entropy

Table 3.2: Resulting parameter values for the CNN classifier after parameter
searches.

Chapter 4

Experiments and results

4.1 Reproducing OpenPose Results

Cao et al., 2019 used, among others, the COCO dataset to report results and com-
pare their model’s performance to that of other methods. When evaluating keypo-
int1 detection performance COCO uses Average Precision (AP). To calculate the
AP for keypoints a measure called Object Keypoint Similarity2 (OKS) is used. This
metric gives each joint location prediction a score ranging between 0 and 1, with
1 being a perfect match and 0 a complete fail, based on the distance to the ground
truth. By using the OKS score as a threshold, each keypoint can now be classified
in a binary manner as correct or incorrect. If the OKS threshold is set to 0.5 this
means that any keypoint with OKS > 0.5 is considered a correct prediction, while
points with OKS < 0.5 are considered incorrect. Doing this calculation for each
prediction allows for the calculation of the AP for the total set of predictions.

Method AP AP50 AP75 APM APL

OpenPose test-dev 64.2 86.2 70.1 61.0 68.8
OpenPose validation 65.3 85.2 71.3 62.2 70.7
Reproduction 59.2 83.2 59.8 62.0 68.4

Table 4.1: Results from OpenPose evaluated on the COCO test-dev and validation
data sets as reported by Cao et al., 2019, and from attempting to reproduce the
results using the COCO validation set. All values are percentages.

Table 4.1 shows the reported results of OpenPose on the COCO test-dev and
validation data sets. Of the two, the results based on the validation data is most
directly comparable to our attempt at reproducing the results, as this is the data
that was used to attempt said reproduction. AP50 and AP75 are AP values using
0.5 and 0.75 as OKS thresholds. The score simply labeled AP is an average over
10 OKS-thresholded AP scores, with the thresholds ranging from 0.5 to 0.95 with

1In the COCO dataset joint location are referred to as keypoints
2https://cocodataset.org/#keypoints-eval

35

https://cocodataset.org/#keypoints-eval

36 Birkeland: Monocular Action Classification

a 0.05 interval. APM and APL are the same as AP, just filtered to only consider
medium or large sized objects respectively.

4.2 Model Results

4.2.1 Performance

To evaluate the models, F1 and accuracy are used as metrics, shown in table 4.2
and 4.3, in addition to a confusion matrix for each model, see figures 4.1, 4.2
and 4.3. Accuracy is the ratio of correctly classified instances to the total amount
of instances. This can result in misleading scores if the classes in the dataset are
unevenly distributed. This is not a problem for our dataset, which is very well
balanced. The F1 score is the harmonic mean of precision and recall. A high F1
score means that both precision and recall are high, indicating a model that has a
high amount of true positive classifications, and comparatively few false positives
or negatives. A visualization of the distribution of true and false predictions can be
seen in the confusion matrices. A square in row j, column k is colored according
to how many times an input of class j was classified as belonging to class k. The
optimal result is to have all classifications fall along the diagonal. Figure 4.1 shows
that the greatest sources of confusion for the XGBC model before feature selection
was distinguishing between exercises 1 and 2 and 16 and 17, as well as there
being a tendency to confuse 6 for 10, but not the other way around. After feature
selection the XGBC model still has some trouble separating 1 from 2, as well as
issues distinguishing 15, 16, and 17; 1 and 5; and 3 and 8. The CNN confusion
matrix show pillar-like patterns in columns 10, 11 and 15, and a weaker diagonal.
As with the XGBC models there is also confusion between 15, 16 and 17. The
errors seem to be concentrated in the mentioned areas, as there are not any strong
activations outside of them.

Not shown in the tables is the result of the feature selection process described
in section 3.2.1, which resulted in the number of features in the input being re-
duced to 150. This represents a 97% reduction in the number of features.

Model Accuracy St.Dev.

XGBC before feature selection 0.9741 ± 0.0391
XGBC after feature selection 0.9714 ± 0.0355

CNN 0.8839 ± 0.2622

Table 4.2: Accuracy scores for the classifiers.

4.2.2 Training Time

All training was performed on a system with an intel i5-6600K CPU running at 3.5
GHz, 16 GB RAM and an NVIDIA GeForce GTX 1070 GPU. The time spent training

Chapter 4: Experiments and results 37

Model F1 St.Dev.

XGBC before feature selection 0.9682 ± 0.0468
XGBC after feature selection 0.9656 ± 0.0488

CNN 0.8770 ± 0.2768

Table 4.3: F1 scores for the classifiers.

the XGBoost Classifiers differed greatly depending on whether feature selection
was performed or not, as shown in table 4.4. On the non-feature-selected model
training took 52 seconds. After performing feature selection the time needed was
down to 6.4 seconds, a reduction of roughly 88%. The CNN classifier used about
4 seconds per epoch, for a total of just above one minute of training time when
set to train for 15 epochs.

Model Training Time

XGBC without feature selection 52s
XGBC with feature selection 6.4s
CNN (15 epochs) 61s

Table 4.4: Time used to train the three different classifiers.

38 Birkeland: Monocular Action Classification

Figure 4.1: Confusion matrix for the XGBoost classifier before feature selection.

Chapter 4: Experiments and results 39

Figure 4.2: Confusion matrix for the XGBoost classifier after feature selection.

40 Birkeland: Monocular Action Classification

Figure 4.3: Confusion matrix for the CNN classifier

Chapter 5

Discussion

Research Question 1.1 asked what the state-of-the-art in pose estimation and ac-
tion recognition is. Through the literature review process mentioned in section
1.2 and the findings from this outlined in section 2.7 an approach using skeleton
sequences as inputs showed promise as a basis for our models. Since the data set
described in section 3.1 consisted of videos, it was decided that an existing pose
estimator would be used to extract information about joint positions from the
films. Several pose estimation systems were explored, and OpenPose Cao et al.,
2019 was chosen based on reported performance and availability. Together, the
information gathered as part of the literature study was used to plan the rest of
the thesis.

Research Question 1.2 asked whether results from state of the art methods are
reproducible. The state-of-the-art method that was of specific importance for this
thesis was the OpenPose pose estimator. This model was used to transform a data
set of videos into one of joint positions to work as the basis for the classification
models, so a sense of confidence in the method was imperative. Our results were
compared to the results from the paper by evaluating performance on the COCO
keypoint dataset. As can be seen in table 4.1 our results, while not too far off, did
not quite reach the same results as reported. The results for AP50, APM and APL

are all close to meeting the reported numbers, only being behind the best scores
by 3, 0.2 and 2.3 percentage points respectively. It should be noted that APM is
only 2 points behind the reported number on the validation set, which is the data
set that was used to get our numbers and is therefore a more direct comparison.
The AP falls a bit further behind with a difference of 6.1 points. AP75 shows the
largest discrepancy, being 11.5 points behind the best reported value.

Not being able to reproduce the exact same results was to be expected, as ex-
plained in section 2.8. The question therefore becomes whether or not the num-
bers are close enough to where the model can be said to provide the needed func-
tionality. For our purposes it is not as important to have pin-point accurate joint
positions as it is to have joint positions that are good enough to be able to dis-
tinguish movements from each other. While AP75 was the metric with the biggest
difference, it is also a fairly strict metric requiring OKS > 0.75 for a point to be

41

42 Birkeland: Monocular Action Classification

classified as correct. The inability for our local OpenPose instance to reach the re-
ported values for this metric may not matter that much if that level of precision is
not required. Compare to AP50 where the difference is much smaller. If this lower
level of precision in the joint positions is sufficient for a model to classify move-
ments, then the lackluster AP75 score does not really matter for our purposes. This
is not that unlikely as the temporal information contained in the positions of joints
over time is not dependent on exact location, instead relying more on how joint
locations change over time relative to themselves and others. A less strict demand
on the joint locations is therefore not unreasonable. The Ap score, which covers
both strict and less strict OKS thresholds, falls in between AP50 and AP75 with its
6.1 percentage point difference. Comparing our score to the worse score of 64.2
reported from the test-dev set, however, reduces the difference to 5 points. While
it can not be said that the model did succeed in reproducing the results of all the
metrics, it does not need to achieve the strictest goals. The metrics corresponding
to less rigorous requirements all reached scores close to those reported, which
is good enough for the system to be likely to capture enough information for a
classifier to classify different exercises.

Research Question 2.1 asked whether a model can be trained to classify hu-
man actions. The results seen in section 4.2 indicate that the XGBC models man-
aged to learn the task at hand very well. Their accuracy and F1 scores are high,
with low standard deviations. This indicates consistently high results throughout
the whole cross-validation process. This is further corroborated by their confu-
sion matrices showing clear diagonals with few errors. As reported in section 4.2,
however, there were some exercises that both models consistently struggled to dif-
ferentiate between, namely 15, 16 and 17. Looking at the movements in appendix
A, these are exercises that share some similarities, as these are the exercises where
the participant stays seated the whole time. It is therefore not unexpected that a
classifier would struggle with differentiating these exercises more than other com-
binations. The non-feature-selected XGBC model showed a tendency for confusing
exercise 1 and 2, which both involve a forward vertical movement of the arm. The
XGBC model after feature selection showed a tendency to confuse 1 and 5 with
each other. These movements are again similar to one another, as they both in-
volve lifting an arm into a vertical position, with the start, end and middle part of
the movements being essentially identical. The model also showed a slight issue
with differentiating exercises 3 and 8. Both of these movements begin and end
identically, which could lead to some confusion similar to that between exercise 1
and 5. In general there is a pattern where exercises involving similar movements
tend to be confused for one another. The CNN model results tell a different story.
It scored lower on the metrics and had a much higher standard deviation value,
indicating an inconsistent classifier. Looking at its confusion matrix columns 10,
15, and, to a lesser degree, 11 are all showing substantial amounts of incorrect
classifications. However, the CNN models did not all fail. Even though the diag-
onal is weaker than in the XGBC models, it is still where most of the predictions
fell overall. One explanation for this pattern is that a majority of the models did

Chapter 5: Discussion 43

indeed learn to differentiate between the exercises, but that some amount of the
time the learning process fails, perhaps because of gradient descent ending up in
a local minimum, bringing the overall score down. Outside of the three columns
the only exercises that are consistently misclassified are 15, 16 and 17. This does
hint at the possibility of the CNN-based classifier being better in the cases where
it manages to learn properly, the issue being that that does not always happen.

Looking at the results of the three models overall, it seems that the most con-
sistent problem the models have in common is differentiating between the chair-
based exercises. Outside of this they are all able to produce classifiers that differ-
entiate between the exercises, though inconsistently in the CNN’s case. The main
reason for such high scores is that we used a well behaved data set. This is due
to several factors. The area used to capture the films was identical for each parti-
cipant. It was well lit, without any foreign objects that could interfere with their
ability to move or cause occlusion. This is different from what such a framework
would probably encounter "in the wild", in a consumer product for home use, or
even for use by a specialist in a controlled environment, e.g. a physical therap-
ist. The exercises themselves are simple, deliberate and mostly distinct from one
another. This is not such a far fetched expectation for use cases such as physical
therapy or rehabilitation, where these kinds of exercises may be the main focus.
For a data set containing faster, larger and more similar sets of moves the system
might struggle more with the learning, for instance if it were to be used to evaluate
gym exercises as part of a workout program. The participants in the videos also
wore clothes that did not hide or cover body parts, think typical exercise clothing
one would wear for a run. This is fairly likely to match what patients would wear
to a physiotherapy appointment they would go to. However, if an action classific-
ation system is to be used in a home setting, there is less insight into and control
over what people would wear. The data set also contains no incorrectly performed
exercises, so a system trained using the data would be unable to learn what a bad
example of an exercise looks like. Ideally the classifier should not only classify the
movements, but also give a rating or provide feedback as to whether an exercise
was done well or not, and why.

Research Question 2.2 asked what improvements feature selection can yield.
From table 4.4 it becomes clear that removing insignificant features significantly
reduces training time. Tables 4.2 and 4.3 show that this time improvement can be
had without negative impact on the accuracy, F1-score or variance. This can be of
great use during model development as it lets developers get feedback on how a
model performs much faster. Speeding up development time allows for a larger
amount of model configurations to be trained in a given amount of time, allowing
for a larger parameter space to be explored.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The overall aim of this thesis was to create a system that is able to classify human
actions based on monocular RGB video input, more specifically exercises related
to physiotherapy and rehabilitation. To achieve this goal three human action clas-
sification models were created. A data set containing RGB video was converted
into one containing skeleton sequences using an existing pose estimator. The pose
estimator performance was evaluated by attempting to reproduce some of its re-
ported results, and comparing the resulting numbers with those that were repor-
ted. The resulting data set was used to train the models to distinguish between 17
different exercises. Each model underwent leave-one-group-out cross-validation,
and the results were used to compare the models.

The results from the models reported in section 4.2 and the discussion in sec-
tion 5 show that all three models learned to separate the classes from one another,
though inconsistently in the case of the CNN-based model. This result indicates
that making a complete end to end system able to take RGB video as input and
identify which exercise, if any, is present in said video in real time is a feasible
endeavour. This has great potential in areas such as physical therapy or rehabilit-
ation. Being able to receive real time feedback as to whether an exercise was ex-
ecuted correctly or not without needing constant supervision from a professional
opens up for more freedom in when and where a patient wants to exercise. This
freedom could in turn lead to increased levels of both motivation and happiness,
which are positive attributes for a patient to have.

6.2 Future Work

As mentioned in chapter 5 the data set used to train classifiers is very well-behaved,
potentially too much so. A data set that more realistically mirrors what the sys-
tem would be exposed to in real scenarios could allow for training classifiers that
are able to handle badly executed exercises, unfamiliar movements, multiple in-

45

46 Birkeland: Monocular Action Classification

dividuals in frame, various environments, etc. Another aspect of the data set used
in this thesis is that it consists of neatly segmented videos, each containing exactly
one exercise. A classifier that can work on a video stream, for example from a web
camera, is a necessity for real life applications.

An end to end system able to identify actions from RGB video and classify them
in real time, as mentioned in section 6.1, is another step between what has been
done in this thesis and a hypothetical rehabilitation exercise evaluation program.
Building further off of this, it would also be of great use to have a system that not
only says whether an exercise was executed correctly or not, but also provides
some sort of feedback, e.g. a score. By telling a user how well they performed
their exercise they can quickly detect when they are doing something wrong, and
can take immediate steps to correct the mistake.

Bibliography

Bergstra, J. & Bengio, Y. (2012). Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13(1), 281–305.

Boehmke, B. & Greenwell, B. (2020). Hands-on machine learning with r. Chapman;
Hall/CRC. https://bradleyboehmke.github.io/HOML/

Bulat, A. & Tzimiropoulos, G. (2016). Human pose estimation via convolutional
part heatmap regression. Computer vision – ECCV 2016 (pp. 717–732).
Springer International Publishing. https://doi.org/10.1007/978-3-319-
46478-7_44

Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S. & Sheikh, Y. A. (2019). Openpose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754. http://arxiv.org/abs/1603.02754

Chen, Y., Tian, Y. & He, M. (2020). Monocular human pose estimation: A survey of
deep learning-based methods. Computer Vision and Image Understanding,
192, 102897. https://doi.org/10.1016/j.cviu.2019.102897

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning [http://www.
deeplearningbook.org]. MIT Press.

Gundersen, O. E., Shamsaliei, S. & Isdahl, R. J. (2022). Do machine learning plat-
forms provide out-of-the-box reproducibility? Future Generation Computer
Systems, 126, 34–47. https://doi.org/https://doi.org/10.1016/j.future.
2021.06.014

Herath, S., Harandi, M. & Porikli, F. (2016). Going deeper into action recognition:
A survey. https://doi.org/10.48550/ARXIV.1605.04988

Horn, B. K. & Schunck, B. G. (1981). Determining optical flow. Artificial Intelli-
gence, 17(1), 185–203. https://doi.org/https://doi.org/10.1016/0004-
3702(81)90024-2

Luvizon, D. C., Picard, D. & Tabia, H. (2018). 2d/3d pose estimation and action
recognition using multitask deep learning. https://doi.org/10.48550/
ARXIV.1802.09232

Luvizon, D. C., Tabia, H. & Picard, D. (2017). Human pose regression by combin-
ing indirect part detection and contextual information. https://doi.org/
10.48550/ARXIV.1710.02322

47

https://bradleyboehmke.github.io/HOML/
https://doi.org/10.1007/978-3-319-46478-7_44
https://doi.org/10.1007/978-3-319-46478-7_44
http://arxiv.org/abs/1603.02754
https://doi.org/10.1016/j.cviu.2019.102897
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/10.48550/ARXIV.1605.04988
https://doi.org/https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/https://doi.org/10.1016/0004-3702(81)90024-2
https://doi.org/10.48550/ARXIV.1802.09232
https://doi.org/10.48550/ARXIV.1802.09232
https://doi.org/10.48550/ARXIV.1710.02322
https://doi.org/10.48550/ARXIV.1710.02322

48 Birkeland: Monocular Action Classification

Martinez, J., Hossain, R., Romero, J. & Little, J. J. (2017). A simple yet effective
baseline for 3d human pose estimation. Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV).

Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H.-P., Xu,
W., Casas, D. & Theobalt, C. (2017). Vnect: Real-time 3d human pose
estimation with a single rgb camera. ACM Transactions on Graphics, 36(4).
https://doi.org/10.1145/3072959.3073596

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
Natekin, A. & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers

in Neurorobotics, 7. https://doi.org/10.3389/fnbot.2013.00021
Nibali, A., He, Z., Morgan, S. & Prendergast, L. (2018). 3d human pose estimation

with 2d marginal heatmaps. https://doi .org/10.48550/ARXIV.1806.
01484

Nie, B. X., Xiong, C. & Zhu, S.-C. (2015). Joint action recognition and pose estim-
ation from video. 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 1293–1301. https://doi.org/10.1109/CVPR.2015.
7298734

Nielsen, M. A. (2015). Neural networks and deep learning. Determination Press.
http://neuralnetworksanddeeplearning.com/

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché-
Buc, F., Fox, E. & Larochelle, H. (2021). Improving reproducibility in ma-
chine learning research: A report from the neurips 2019 reproducibility
program. Journal of Machine Learning Research, 22.

Russell, S. & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.).
Prentice Hall.

Simonyan, K. & Zisserman, A. (2014). Two-stream convolutional networks for
action recognition in videos. https://doi.org/10.48550/ARXIV.1406.2199

Tatman, R., VanderPlas, J. & Dane, S. (2018). A practical taxonomy of reprodu-
cibility for machine learning research.

Toshev, A. & Szegedy, C. (2014). DeepPose: Human pose estimation via deep
neural networks. 2014 IEEE Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/cvpr.2014.214

Vonstad, E. K., Su, X., Vereijken, B., Bach, K. & Nilsen, J. H. (2020). Comparison of
a deep learning-based pose estimation system to marker-based and kinect
systems in exergaming for balance training. Sensors, 20(23). https://doi.
org/10.3390/s20236940

Vonstad, E. K., Vereijken, B., Bach, K., Su, X. & Nilsen, J. H. (2021). Assessment of
machine learning models for classification of movement patterns during a
weight-shifting exergame. IEEE Transactions on Human-Machine Systems,
51(3), 242–252. https://doi.org/10.1109/THMS.2021.3059716

Wiemeyer, J. & Kliem, A. (2011). Serious games in prevention and rehabilita-
tion—a new panacea for elderly people? European Review of Aging and
Physical Activity, 9, 41–50.

https://doi.org/10.1145/3072959.3073596
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.48550/ARXIV.1806.01484
https://doi.org/10.48550/ARXIV.1806.01484
https://doi.org/10.1109/CVPR.2015.7298734
https://doi.org/10.1109/CVPR.2015.7298734
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.48550/ARXIV.1406.2199
https://doi.org/10.1109/cvpr.2014.214
https://doi.org/10.3390/s20236940
https://doi.org/10.3390/s20236940
https://doi.org/10.1109/THMS.2021.3059716

Bibliography 49

Yan, S., Xiong, Y. & Lin, D. (2018). Spatial temporal graph convolutional networks
for skeleton-based action recognition. https://doi.org/10.48550/ARXIV.
1801.07455

Zhang, H.-B., Zhang, Y.-X., Zhong, B., Lei, Q., Yang, L., Du, J.-X. & Chen, D.-S.
(2019). A comprehensive survey of vision-based human action recogni-
tion methods. Sensors, 19(5). https://doi.org/10.3390/s19051005

Zhu, Y., Li, X., Liu, C., Zolfaghari, M., Xiong, Y., Wu, C., Zhang, Z., Tighe, J., Man-
matha, R. & Li, M. (2020). A comprehensive study of deep video action
recognition. https://doi.org/10.48550/ARXIV.2012.06567

https://doi.org/10.48550/ARXIV.1801.07455
https://doi.org/10.48550/ARXIV.1801.07455
https://doi.org/10.3390/s19051005
https://doi.org/10.48550/ARXIV.2012.06567

Appendix A

Exercises

Figure A.1: While being kept straight the right arm is brought up to a vertical po-
sition by moving it 180◦ in a forward arching movement, then the arm is brought
back down in the same way.

51

52 Birkeland: Monocular Action Classification

Figure A.2: The forearm is brought to a vertical position by moving it 180◦ in a
forward arching movement, then brought back down the same way.

Figure A.3: While keeping both arms stretched out to the sides, the right leg is
first lifted forwards by 90◦, then stretched out slightly behind the body, before it
is brought back to the starting position.

Chapter A: Exercises 53

Figure A.4: From a standing position, the right lower leg is brought back until
parallel with the ground, then lowered back into starting position.

Figure A.5: While being kept straight the right arm is brought up to a vertical
position by moving it 180◦ in a sideways arching movement, then the arm is
brought back down in the same way.

54 Birkeland: Monocular Action Classification

Figure A.6: Starting with the lower arm extended forward parallel to the ground,
it is first turned 90◦ outwards pointing away from the body, then brought back
180◦ before being returned to the starting position.

Figure A.7: From a standing position, the right leg is brought approximately 45◦

out sideways, then return to the starting position.

Chapter A: Exercises 55

Figure A.8: Starting with arms stretched out to the sides parallel to the ground,
the leg is lifted up to also be parallel to the ground, turned 90◦ outwards, brought
back over by 180◦, then brought back into the forward position before being
lowered back into the starting position.

56 Birkeland: Monocular Action Classification

Figure A.9: From a standing position, the right leg is brought backwards and
down until the right knee touches the ground, then back up into the starting
position.

Figure A.10: From a standing position both arms are lifted forward until parallel
to the ground, followed by the knees being bent until the legs are also parallel to
the ground. Then the process is reversed to arrive back at starting position.

Chapter A: Exercises 57

Figure A.11: Starting with the right arm stretched to the side parallel to the
ground, it and the right foot is brought across the body and back.

Figure A.12: Starting with arms stretched out to the sides parallel to the ground
the torso is twisted 90◦ to the right and back.

58 Birkeland: Monocular Action Classification

Figure A.13: From a standing position an outwards sideways step is taken with
the right leg, then an inwards step to return to starting position.

Figure A.14: From a sitting position, the body is brought into a standing position
then back down to a sitting position.

Chapter A: Exercises 59

Figure A.15: From a sitting position the right foot is moved a step to the right,
then back.

Figure A.16: From a sitting position the heels are lifted, then lowered.

60 Birkeland: Monocular Action Classification

Figure A.17: From a sitting position the lower right leg is brought up and forward
until parallel to the ground, then back down again.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vetle Gustav Birkeland

Monocular Action Classification

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
March 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Thesis Goals and Research Questions
	Research Methods
	Thesis Structure

	Background and Related Work
	Pose Estimation
	Monocular Action Classification
	Exergaming
	Neural Networks
	Artificial Neuron
	Feedforward Neural Networks
	Loss and Gradient Descent
	Backpropagation
	Convolutional Neural Networks

	Tree-Based Ensemble Methods
	Decision Trees
	Entropy and Information Gain
	Ensemble Methods
	Boosting
	Gradient Boosting

	Parameter Search
	Related Work
	Reproducibility of Results

	Method
	Creating the Data Set
	Training Models
	XGBoost
	Convolutional Neural Network

	Experiments and results
	Reproducing OpenPose Results
	Model Results
	Performance
	Training Time

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Exercises

