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Abstract

Biometrics has emerged as a promising technology for automated recognition of
individuals. The stored biometric characteristics are used to recognise an indi-
vidual and hence biometrics technology plays a major role in security-related ap-
plications and stands in the front-line for authentication of data subjects. Biomet-
rics has a wide range of applications in law enforcement, surveillance, banking,
border control, medical records, time and attendance tracking etc. As the inherent
biometrics characteristics don’t undergo any changes, biometric technology has
shown the best performance for authentication of data subjects.

Though biometrics technology is promising for person authentication, attackers
may employ various techniques like presentation attacks and adversarial attacks to
impersonate an enrolled individual with interest to obtain unauthorised access to
the system. In addition to these attacks, in relatively recent times, biometric are
attacked in the facial image enrolment stage, especially in the ID related applic-
ations, by performing face morphing. Facial morphing is initially performed for
entertainment purposes, but gradually it has been used to attack face recognition
systems. The face morphing process combines two different facial identities to
generate a single facial image with the facial representations of both identities. An
attacker may use the morphed facial image to enrol it in the ID documents (like
driving license, passport). Since the morphed facial image shows a high resemb-
lance to both facial identities, the ID document can be claimed by both identities.
This indicates the severity of facial morphing and the necessity of morphing attack
detection mechanisms to avoid the security lapse.

Hence the primary objective of this thesis is the development of face morphing at-
tack detection techniques using hand-crafted and deep learning approaches. Dur-
ing this doctoral work, morphing attack detection approaches are developed for
both digital and print-scan datasets. To empirically evaluate the performance of

v
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the newly generated morphing attack detection approaches, various face morph-
ing databases are generated using landmark and deep learning-based GAN tech-
niques. Furthermore, the vulnerability of face recognition systems to face morph-
ing attacks with ageing co-variate is evaluated. To this extent, this doctoral thesis
contributes with the novel morphing attack detection approaches.
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Chapter 1

Introduction

Biometrics is used to automatically verify/identify an individual based on the
physiological and behavioural characteristics [16]. Among various biometric char-
acteristics, face biometric systems are widely deployed in various security related
applications by considering the usability (non-intrusive capture) and the reliable
verification performance [17, 18]. The rapid development in the field of deep
learning has led to cutting edge Face Recognition Systems (FRS) that result in ac-
curate recognition systems [19, 20]. The FRS are extensively integrated with the
border control applications to enable passport control. Because face biometrics are
reliable for both border control officers (human observers) and Automatic Border
Control (ABC) gates to verify the identity.

Though FRS are reliable in achieving high recognition performance, they are vul-
nerable to direct (e.g. presentation attack/spoofing attack) and indirect attacks (e.g.
template attacks, database injection attacks). The direct attacks are performed at
the sensor level [21] in which the attacker can use various artefacts (e.g. facial
photo, silicon face mask, printed iris, synthetic fingerprint) to impersonate a tar-
get. The indirect attacks are performed at various functional blocks of FRS to
obtain non-legitimate access to the internal system operation [21]. In addition to
these attacks on the FRS, one such attack that can be carried out during the face
image enrolment, especially in security applications such as border control, is the
face morphing attack [22].

The face morphing attack has gained significant interest in the biometric research
community due to its relevance for high-security applications (e.g. passport con-
trol). The face morphing process involves manipulating the face image of two (or
more) different data subjects by blending to generate a single morphed face im-
age. A person with malicious intent may enrol the morphed facial image in the
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identity documents like e-passport/eMRTD (electronic Machine Readable Travel
Document). Eventually, it may lead to a false identity claim of the same eMRTD
by multiple contributing data subjects1. Such an attack leads to a violation of sole
proprietorship of an identification document that eventually leads to inadequacy in
security.

1.1 Motivation and Problem Statement
Face biometrics is an integral part of the identification documents including pass-
port/eMRTD. The passport application protocol varies across countries, especially
the way in which facial images are acquired during the application process. The
majority of the countries accept the printed face image from the applicant for the
eMRTD enrolment. Further, the printed face image will be re-digitized/scanned to
the eMRTD. However, countries like New Zealand, the UK, Estonia and Ireland
accept a digital facial image for passport renewal that can be uploaded directly in
the web portal [13, 23, 24, 22]. However, if a person has a criminal record, obtain-
ing a genuine eMRTD is challenging. Therefore the applicant may use a malicious
approach by using the morphing process to generate a morphed face image by
blending his/her face image with a look-alike accomplice. Since the morphed face
image shows higher similarity to both data subjects (malicious person and accom-
plice), the accomplice can submit it to the passport office with a malicious intention
to enrol it in the eMRTD. Even though the border control officials thoroughly in-
vestigate any possible image manipulation, one may fail to detect morphed facial
images because of (1) the absence of visible artefacts (2) high resemblance to the
applicant, especially after careful post-processing. Additionally, several studies
suggest that identifying an unfamiliar face is a challenging task that may deceive
the border control officers to detect the morphed face images [25, 26, 27, 28, 29].
Once the morphed face image is enrolled in the eMRTD, both data subjects (ma-
licious person and accomplice) can claim the same eMRTD to cross the border
control.

A real-life risk of facial morphing attack was demonstrated in a case study repor-
ted in [30, 31]. An activist’s facial image was morphed with the EU representative
‘Federica Mogherini’s’ facial image to generate a morphed facial image of a non-
existing person. The morphed face image is used by an activist to successfully ob-
tain the eMRTD by deceiving the passport application protocol. This case clearly
indicate the risk of morphing attacks that can risk the national security. Another
similar case is also reported in [32], in which a person applying for the Dutch

1Although multiple identities can be combined to create a morphed image, it is common to
combine two identities in practice due to practical applicability. This thesis restricts the scope of
studying morphing attacks when two identities are used to create a morphed image
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passport was identified to have submitted a morphed face image. The submitted
morphed face images were generated with another person, an asylum seeker in
another country.

Considering the threat posed by morphing attacks, developing reliable face Morph-
ing Attack Detection (MAD) techniques are essential. Therefore, this doctoral
work is dedicated to developing reliable and automated face morphing attack de-
tection techniques. In general, morphing attack detection techniques are of two
types (i) Single image-based morph attack detection (S-MAD)/ No-reference based
morph attack detection2 (ii) Differential image-based morph attack detection (D-
MAD)/Reference-based morph attack detection.

1.2 Research Objectives
Based on the motivation discussed above, the following research objectives are
formulated in this doctoral thesis.

• Generation of new databases (digital/print-scan) to facilitate the empirical
evaluation of new Morphing Attack Detection (MAD) algorithms develop-
ment in this doctoral work.

• To benchmark the vulnerability of FRS for different types of facial morph
generation techniques and to analyze the factors (for example, morphing
factor, ageing) that can contribute to circumvent the FRS to the highest de-
gree.

• To develop novel algorithms to detect face morphing attacks reliably, es-
pecially in the Single Image Morphing Attack Detection (S-MAD) or no-
reference based scenario.

1.3 Research Questions
The following research questions are formulated to investigate in this doctoral
study.

1.3.1 Research Question 1 (RQ1): MAD using residual noise

During the process of morphing, two different facial images are combined together
by blending the corresponding pixels of the two facial images. This process may
generate additional noise due to geometric distortion. With the intuition of hav-
ing additional noise stemming from the morphing process, the following research
questions are formulated.

2S-MAD and No-reference based MAD is used interchangeably throughout the thesis
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1. What is the best-suited approach to effectively detect face morphing attacks
by quantifying residual noise in the digital images? Does quantifying the
residual noise resulting from the morphing process help in detecting face
morphing attacks?

(a) Which deep learning architectures can be designed to quantify the re-
sidual noise resulting from morphing?

(b) What is the performance gain achieved using residual noise-based at-
tack detection compared to SOTA morph attack detection schemes?

1.3.2 Research Question 2 (RQ2): Features and robustness for MAD

In some countries like the United Kingdom (UK), printed facial images are sub-
mitted to the passport office by an applicant are re-digitized using a scanner to
enrol in the eMRTD. Along the process of re-digitization, additional noise may
be introduced due to the print-scan process, making the morphing attack detec-
tion challenging. The additional noise introduces another challenge in detecting
morphing attacks efficiently. The following research question is formulated to re-
liably detect morphing attacks in print-scan images with this motivation.

1. What kind of novel features (texture-based/time frequency-based/deep fea-
tures/ensemble) can be devised to reliably identify morphing attack when no
reference image is available (i.e., S-MAD) in a print-scan scenario?

(a) What is the best performing SOTA method to reliably detect no-reference
morphing attacks in a print-scan scenario?

(b) What image features (texture-based/time frequency-based/deep fea-
tures/ensemble) can provide reliable morphing attack detection, espe-
cially in a no-reference scenario?

(c) Does the hand-crafted feature analysis approach generalize across cross
datasets when compared to deep learning features?

(d) Does the morphing factor employed to generate a morphing image in-
fluence the performance of morph attack detection?

1.3.3 Research Question 3 (RQ3): Influence of face age progression on vul-
nerability and morphing attack detection

Generally, the eMRTD issued to an applicant has a life span of 10 years. Further-
more, the facial image enrolled in the eMRTD is also valid for 10 years. How-
ever, the eMRTD holder undergoes ageing with time. Hence, the facial biomet-
ric characteristics change with the appearance of wrinkles, saggy skin, and addi-
tion/reduction of fat on facial muscles due to weight gain/loss. Therefore, it is



1.4. Research Methodology 9

interesting to empirically study the influence of ageing through the following re-
search question.

1. What is the impact of ageing on morphing attack potential with respect to
FRS?

(a) Does the blending/morphing factor show any diverse effect on the FRS
vulnerability and no-reference MAD performance?

(b) Do existing MAD techniques in the literature scale up to detecting such
morphing attacks with ageing co-variate?

1.3.4 Research Question 4 (RQ4): Deep learning based facial morph gener-
ation

The morphed facial image may get verified with the contributing subjects in-
volved in the morphing procedure only when the morphed image has sufficient
high quality. However, the success rate of attacks using a morphed facial image on
FRS depends on the quality of the morphs generated. As traditionally employed,
landmark-based morphs generate several ghosting artefacts during the morphing
process and require manual intervention to assure high quality. Therefore, it is es-
sential to generate fully automated morphs and investigate the attack potential of
such morphing attacks on FRS.

1. Can deep learning-based image synthesis using Generative Adversarial Net-
works (GAN) be used to generate high-quality face morphs?

(a) Does modifying the information at latent space of StyleGAN lead to
the generation of high quality morphed image?

(b) Does the StyleGAN based morph generation circumvent the FRS to a
higher degree when compared to previous GAN based morph genera-
tion (MorGAN)?

(c) Does the StyleGAN based morph generated image can be successfully
detected using SOTA MAD algorithms?

1.4 Research Methodology
The following research methodology is followed to achieve the research objectives
based on the aforementioned research questions.
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• Data Collection: Face morphing datasets

The field of face morphing lacks a diverse and large scale dataset that can
facilitate the development of reliable MAD approaches. With an objective
to generate reliable MAD techniques and analysis of the factors influencing
the vulnerability of FRS, this doctoral work contributed to the generation
of face morph databases. Morph databases were generated in digital and
print-scan scenarios based on the experimental requirement to complement
the real-life scenario. Chapters 5 and 6 detail the morph databases gener-
ated using deep learning based approaches such as StyleGAN and MIPGAN
techniques. Chapter 7 presents the first morphing database generated with
ageing co-variate. The ageing database is generated to analyze the influ-
ence of ageing factor on FRS with morphing attacks. Chapter 10 details the
face morphing data generation using landmark-based approaches that also
includes re-digitized data generated to analyze the impact of different print-
ers for morphing attack detection.

This research work is undertaken using the public databases (FRGC [33],
PUT face database [34] and MORPH II database [35]). These databases are
employed to generate different morphing types (Landmark, GAN) in vari-
ous mediums (digital, print-scan, print-scan compression). Facial images in
Figures 2.1, 2.2, 2.6, 2.7 were captured for illustration purpose and the data
subjects have consented for using it in the publication medium.

• Vulnerability analysis

Understanding the factors that make the FRS vulnerable is essential, to get
a better perspective for generating reliable MAD techniques. Hence, this
thesis focus on the factors (ex: morphing factor, ageing factor and morph
generation type) that affect the vulnerability of FRS. Chapter 7 evaluates
the influence of ageing for morphing attacks, and it extensively evaluates
the impact of different morphing factors on such attacks. Chapter 5 and 6
performs an evaluation of the vulnerability generated by different morphing
types.

A new vulnerability metric is proposed to compute the proportion of morphed
facial images verified with its contributing subjects to perform the vulnerab-
ility analysis effectively. Chapter 7 details the new vulnerability metric and
its mode of operation for vulnerability assessment.

• Morphing Attack Detection approach The final step is to detect morphed
facial images by extracting the features present in the facial image. Based
on the existing literature, morphing attacks can be detected by employing
a handcrafted/machine learning or deep learning approach. Motivated by
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the existing MAD approaches and its detection performance in the liter-
ature, this thesis proposes both handcrafted and deep learning approaches
for MAD. Chapter 10 presents the machine learning-based morph detection
approach especially for the print-scan datasets. Further, Chapters 8 and 9
present the deep learning-based morphing detection approach that has shown
best performance on several digital datasets.

1.5 List of Research Publications
This section provides a list of research publications earned during this doctoral
study that contributes to this thesis.

• S. Venkatesh, R. Raghavendra, K. Raja, L. Spreeuwers, R. Veldhuis, and C.
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IEEE, November 2019 [4].
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¨Visible to band gender classification: An extensive experimental evaluation
based on multi-spectral imaging¨. In 2019 15th International Conference on
Signal-Image Technology Internet-Based Systems (SITIS),pages 120–127,
2019 [45].

• K. Raja, R. Raghavendra, S. Venkatesh, M. Gomez-Barrero, C. Rathgeb,and
C. Busch. ¨A study of hand crafted and naturally learned features for fin-
gerprint presentation attack detection. In Handbook of Biometric Anti-
Spoofing¨. Springer Intl. Publishing, January 2019 [46]. .

• R. Raghavendra, K. Raja, S. Venkatesh, and C. Busch. ¨Design and de-
velopment of low-cost sensor to capture ventral and dorsal finger vein for
biometric authentication¨. IEEE Sensors Journal, 19(15):6102–6111, Au-
gust 2019 [47].

1.6 Scope of thesis
The scope of the thesis is listed below and also illustrated in the Figure 1.1

• The development of MAD algorithms using both hand-crafted and deep
learning features.

• The performance of the developed MAD algorithms are benchmarked with
the existing MAD techniques in the literature.

• Development of novel morph generation techniques to create high quality
face morphing attacks.
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• Generation of new databases to benchmark the novel MAD techniques de-
veloped in this thesis.

• Benchmarking the vulnerability of both Commercial Off-The Shelf (COTS)
and deep learning-based FRS for the newly generated face morphing data-
base.

1.7 Thesis Outline

Detection
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Figure 1.1: Thesis outline addressing the research questions within the scope of this dis-
sertation

The overview of the tasks carried out during this doctoral work is presented in
Figure 1.1. This thesis is divided into four parts: Part I presents the overview of the
thesis. Parts II (morph generation), III (vulnerability analysis) and IV (morphing
attack detection) present the research articles published during the course of this
doctoral work. In Part I, Section 1 presents the introduction and the various real-
life instance that serve as a motivation to define the problem statement and the
research objective. Further, the research questions are formulated in Section 1.3
to address in this thesis followed by research methodology in Section 1.4. In the
course of this doctoral work, the research publications achieved by addressing the
research questions are listed in Section 1.5. Additionally, the research publications
earned in collaborative research in morphing and other topics are listed in Section
1.5.1.

Chapter 2 presents the background of face morphing and the existing literature.
Further, the evaluation metrics employed for the morphing attack detection and
vulnerability analysis are presented in Section 2.5. Finally, the availability of pub-
lic evaluation and benchmarking platforms are presented in Section 2.6. Further-
more, a summary of the research articles published in this doctoral work is presen-
ted in Chapter 3.
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Finally research articles published in this doctoral work are presented in the Part
II (morph generation), Part III (vulnerability analysis) and Part IV (face morphing
attack detection). Articles 5 and 6 present the high quality morph image synthesis
using deep learning based GAN approach that address the research question 1.3.4.
Article 7 details about the influence of ageing on morph attacks on FRS that ad-
dress the research question 1.3.3. Articles 8 and 9 present the deep learning based
morph attack detection approach on digital datasets that addresses the research
question 1.3.1. Article 10 presents the morphing attack detection approach on re-
digitised dataset by employing hand crafted approach that addresses the research
question 1.3.2. Finally the article 11 summarises the comprehensive development
in the field of face morphing generation and detection.



Chapter 2

Background and Related Work

This chapter is an updated version of our article [7] that details the existing re-
search work in this area. This Chapter gives an overview of the different morph
generation tools, State-Of-The-Art(SOTA) approaches employed for morphing at-
tack detection, evaluation metrics for morph detection and vulnerability analysis.
Finally the public benchmarking platforms are reported.

2.1 Background

7
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Figure 2.1: Illustration of facial morphing (Figure is taken and adopted from S.Venkatesh
et al., [7])

Face morphing is performed with an intention to deceive the human observers or
automatic FRS. Figure 2.1 shows the two facial images blended using the morph-
ing process to generate a single morphed facial image. The morphed facial im-
age possesses high similarity to the contributing facial images used for morph-
ing. Hence the human observer evaluation and automatic FRS may fail to detect
morphing successfully. Morphed facial images can be generated by varying the
blending/morphing factor to control the contribution of a subject towards the final
morphed image. Figure 2.2 presents an illustration of facial morphs generated by
varying the morphing factor from 0.1 to 0.9. Variation in the morphing factors

16



2.2. Face Morphing Generation Tools 17

indicates the contribution of weights of the corresponding facial image to generate
the morph. The morphed image with morphing factor 0.5 has equal contribution
from both corresponding facial identities. However the morphed images generated
from morphing factor 0.1 to 0.4 indicates higher similarity to subject 1. Similarly,
morphing factor 0.6 to 0.9 indicates higher similarity to subject 2 based on the
increased weight of subject 2.

0.1

Morphing factors

0.2 0.3 0.4 0.5 0.7 0.8 0.90.6

Subject 1 Subject 2

Figure 2.2: Facial morphs generated by varying morphing factors

2.2 Face Morphing Generation Tools
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Figure 2.3: Facial morphs generated using different morph generation methods (Figure is
taken and adopted from S.Venkatesh et al., [7])

Facial morphs are generated using various techniques. One widely used morph
generation technique is the Landmark based technique, where the point corres-
pondence between the facial images is obtained to perform morphing. Conven-
tionally landmark based approach is extensively employed. However with the pro-
gress in the deep learning, morphed image synthesis based on deep learning based
GAN has evolved.
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2.2.1 Landmark based morph generation

Landmark based approach is conventionally employed for morph generation. There
exists different methods for face morphing using landmark technique [48, 49, 50,
51, 52, 53]. Generally landmark based facial morphs follows four steps.

• Correspondence: First step is to find the corresponding points or the key
points between the two facial images, also known as landmark points. The
landmark points are the coordinates of the facial salient points specifically
from the eyes and nose region. The manual landmark detection is accur-
ate but it is time consuming and tedious [22] [54]. However the automatic
landmark detection is less time consuming and convenient than manual pro-
cessing. Various methods for automatic landmark detection includes D-lib
landmark detector [55, 56], elastic bunch graph models [57], active shape
models [58].

• Warping: In the next step the detected landmark points from the two facial
images are positioned by moving the pixels based on the nearest landmark
point [59]. Several approaches for warping are proposed that include Free
Form Deformation which is a grid based or mesh based approach [60], im-
age metamorphosis by field morphing approach [61], image deformation
approach based on moving least squares [62], mass spring based on image
deformation model [63]

• Blending: Once the corresponding pixels of both the facial images are posi-
tioned, they are combined by blending process. Linear blending is the most
prominently used blending process, where the color values of both the facial
images are combined at each pixel point. Additionally the weighted linear
function makes the flexibility of changing the weights of the corresponding
facial images based on the requirement. IM = (1−α)× I1+α× I2 , where
IM is the morphed image, I1 and I2 are the facial images of the two different
identities that are intended to be morphed and α is the morphing factor.

• Post-processing During the process of morphing, especially during warp-
ing and blending the pixels are re-positioned or some pixels might be lost
during the morphing process and hence leading to ghosting artefacts on
the morphed image as shown in the Figure 2.4. To achieve a high quality
morphed facial image, it is essential to minimise the artefacts by perform-
ing certain post-processing operations. Various post-processing operations
are outlined in [64, 65, 66] that includes image enhancement operations by
varying the brightness, contrast and sharpness. Further image smoothing is
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performed by Gaussian filtering. The ghosting artefacts can also be minim-
ised by manual post-processing that includes image retouch, edge correc-
tion, image sharpening operations. Figure 2.3 shows the different landmark
based morph generation methods that includes both manual and automatic
morphing procedure. Additionally there are several commercial morphing
tools that employs landmark based morph generation [67, 68, 69, 70, 71].

11

Landmark issues
Landmark based image

Figure 2.4: Ghosting artefacts generated in landmark based morph generation

2.2.2 Deep learning based morph generation

Advancement in the deep learning techniques has facilitated the morphed facial
image synthesis using Generative Adversarial Network (GAN). The GAN archi-
tecture synthesizes a facial image similar to real person in the image by employing
generator and discriminator network. The first GAN architecture that has syn-
thesized the morphed facial image is the MorGAN architecture. It generates the
morphed facial image with dimension 64 × 64 [15]. The MorGAN morph gen-
eration is further improved that has resulted in facial morphs with dimension 120
× 120 [72]. Another GAN architecture based on StyleGAN synthesizes the facial
image in the latent space that has resulted in morphed facial image with a di-
mension 1024 × 1024. Further the two versions of StyleGAN model (StyleGAN
1 and StyleGAN 2) is employed with identity loss functions that has developed
morph images generated using identity prior network MIPGAN 1 and MIPGAN 2.
Another hybrid morph generation technique that avoids the introduction of GAN
artefacts during the image synthesis in the latent space is the ReGenMorph [36]
that is a combination of landmark and GAN based morph generation. Figure 2.3
shows an illustration of the morphed facial images generated using different GAN
approaches.
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2.3 Digital and Print-Scan Morph Generation
In general, facial morphs can be generated in different scenarios (i) Digital (ii)
Print-Scan and compression. In the digital scenario, the two facial images are
morphed together electronically using morphing software to generate a single fa-
cial image incorporating the facial features of the corresponding subjects. Whereas
in the print-scan scenario, the digitally generated morphed facial image is printed
and scanned which corresponds to the passport enrolment scenario. Further the
print-scanned facial image is compressed to 15 KB in JPEG2000 that is in compli-
ance with real life scenario where the submitted facial image is compressed before
enrolment to passport following ICAO compliance [73] . Figure 2.5 shows the
facial morphs generated in digital and print-scan scenarios.

11

Digital Print-Scan Print-Scan
compression

Bona fide Bona fideMorph

Figure 2.5: Illustration of facial morph generated in different scenarios (i) Digital (ii)
Print-scan (iii) Print-Scan Compression (Figure is taken and adopted from Zhang et al.,
[2])

2.4 Related Work
This section discusses the existing literature for the approaches employed for de-
tecting morphed facial images. Based on the SOTA, morphing attack detection
techniques can be generalised into Single image based MAD and differential im-
age based MAD. This section is derived from our article [7]. Reader may come
across redundant information.

2.4.1 Single Image Morphing Attack Detection (S-MAD)

In this scenario, morphing attack detection has to be performed on a given single
image that lacks any additional information. Hence, single image MAD is highly
challenging. Figure 2.6 illustrates the real life passport application scenario where
a facial image is submitted by the applicant for enrolment in the passport. This
facial image intended for enrolment has to be thoroughly investigated to check the
existence of morphing. As discussed in the Section 2.2, morphed facial images
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can be generated in digital or print-scanned format depending on the requirement
of the country’s passport application procedure. Hence, it is essential to have ro-
bust techniques for facial morphing attack detection in both digital and print-scan
scenario. Several morphing attack detection techniques are existing in the literat-
ure that can reliably detect morphing and are listed in the Table 2.1 below. Based
on the existing literature the S-MAD techniques can be generalised into texture
based, quality based, residual noise based, deep learning based, wavelet based and
hybrid S-MAD approaches.

Texture based S-MAD: employs the widely used texture features like Local Bin-
ary Pattern (LBP) [74], Local Phase Quantization (LPQ) [75], Binary Statistical
Image Features (BSIF) [76], Histogram Of Gradients (HoG). Further the SIFT and
SURF texture features were also employed in several works [77, 78]. Consider-
ing the efficiency of texture feature for extracting the salient features, it is widely
employed for morphing detection. However, the generalizability of texture based
approaches are still challenging.

Quality based S-MAD: In general, the morphing process deteriorates the qual-
ity of the morphed facial image. The variation of facial images before and after
morphing is analysed with respect to reflection, compression artefacts, edge dis-
tortion, Photo Response Non-Uniformity (PRNU) [79, 80, 81, 82]. Hence several
works report the image degradation approach to detect face morphing.

Residual noise based S-MAD: During morphing process, additional artefacts are
introduced due to the pixel discontinuity in the blending and warping process.
Hence the morphed facial image posses morphing artefacts/morphing noise that
are non-exiting in the bona fide facial image. Several works report the idea of
extracting the residual noise from the given facial image [4] [5]. Residual noise
based S-MAD shows good performance on the digital datasets with improved gen-
eralizability. But the impact of residual noise extraction for print-scan dataset is
not studied.

Deep learning based S-MAD: Rapid evolution of deep learning based approaches
and it’s efficiency for image classification tasks has motivated to employ the deep
CNN based techniques for MAD. Hence researchers have employed various pre-
trained deep CNN networks for MAD that includes AlexNet, VGG18, VGG19,
GoogleNet, ResNet18, ResNet50, ResNet150 [83, 84, 85, 86, 87, 88, 89, 64, 5].
The deep learning approaches are explored on both digital and print-scan data and
it shows better performance than hand crafted approaches.

Hybrid S-MAD: In general a combination of different approaches shows best res-
ult compared to individual approaches. As different approaches employs diverse
techniques to extract features and to perform classification, fusion of different ap-
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proaches in various levels (score, feature) shows reliable performance. Several
works report the hybrid approach employed for morph detection [6] [84] [86] [87]
[90] [91] [92].

Wavelet based S-MAD: Wavelet based sub-band selection approach is performed
to analyse the texture feature variation in the bona fide and morphed facial images.
Several works report the wavelet based morph detection on digital images [93, 94].
The efficiency of wavelet based MAD for print-scan data needs to be investigated.

Further the different approaches employed for S-MAD along with its advantages
and disadvantages are provided in our survey article [7]. Reader is referred to
Chapter 11 for more information.

Passport Application 
Form

Full Name: ---------------
------------ --------------
Address: ------------------
-----------------------

S-MAD

Bona fide

Morph

Passport Application

Figure 2.6: Illustration of passport application scenario for S-MAD (Figure adopted from
our article [7]

2.4.2 Differential Morphing Attack Detection (D-MAD)

In the D-MAD scenario, as the name suggests there exists an additional live cap-
tured image to detect morphing in the given facial image. As the given facial image
can be compared with the trusted live captured image, the challenge posed in the
S-MAD is reduced in case of D-MAD. Figure 2.7 illustrates the real life border
control scenario for D-MAD. In this scenario, to detect morphing in the given im-
age (facial image for enrolment in passport), an additional reference image from
the trusted live source eg: Automatic Border Control Gate (ABC) gate is avail-
able [112]. In the literature, there exists several approaches to detect morphing in
differential scenario. Based on the morph generation type, it is essential to have
D-MAD approaches for both digital and print-scan scenario. Table 2.2 presents the
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Table 2.1: State-of-the-art S-MAD

Reference Approach Algorithm Database

Raghavendra et al. [54] Quantised DCT co-efficients Local Binary Pattern (LBP)-SVM, Binary Statistical
Image Features (BSIF)-SVM, Image Gradient (IG)-
SVM

Digital

Makrushin et al. [95] Quantised DCT co-efficients Benford features Digital
Neubert et al. [96] Image degradation approach Corner feature detector Digital
Seibold et al. [64] Deep learning-based approach VGG19, Google Net, Alex Net Digital
Raghavendra et al. [13] Texture-based approach LBP, LPQ, BSIF, colour textures Print-scan
Asaad et al. [97] Texture-based approach Topological data analysis approach Digital
Scherhag et al. [98] Texture- and frequency-based ap-

proach
LBP, LPQ, BSIF, 2DFFT with SVM classifier Digital

Print-scan
Raghavendra et al. [83] Deep CNN-based approach Feature fusion of fully connected layers of VGG19

and Alex Net
Digital
Print-scan

Kraetzer et al. [99] Image life cycle model Keypoints (SIFT, SURF, ORB, FAST, AGAST) and
loss of edge operators (Canny and Sobel)

Digital

Hildebrandt et al. [81] [100] StirTrace-based approach Multi-compression anomaly detection Digital
Debiasi et al. [82] Image degradation Photo Response Non-uniformity (PRNU) Digital
Raghavendra et al. [90] Steerable features Luminance component extraction Print-scan
Hildebrandt et al. [81] StirTrace StirTrace face morph forgery detection Print-scan
Seibold et al. [79] Image degradation Specular reflection Digital
Makrushin et al. [101] Quantised DCT co-efficients Benford features extracted from quantised DCT co-

efficients
Digital

Neubert et al. [102] Morph pipeline footprint detector Benford features extracted from quantised DCT co-
efficients

Digital

Spreeuwers et al. [103] Texture-based approach LBP-SVM, Down-up sampling Digital
Scherhag et al. [88] Feature difference-based approach Pre-processing and feature extraction using texture

descriptors , keypoint extractors, gradient estimators
and deep learning-based method

Digital

Damer et al. [84] Multi-detector fusion LBPH, Transferable deep-CNN Digital
Ferrara et al. [85] Deep learning AlexNet, VGG19, VGG-Face16, VGG-Face2 Print-scan
Scherhag et al. [87] Multi-algorithm fusion Texture descriptors (LBP, BSIF), Keypoint extract-

ors (SIFT, SURF), gradient estimators (HoG), Deep
neural network

Digital

Debiasi et al [104] PRNU PRNU DFT magnitude histogram and PRNU DFT
energy

Digital

Seibold et al. [105] Complex multi-class pre-training VGG-19 network Digital
Damer et al. [106] Texture and deep learning based Anomaly detection using LPQ and VGG features Digital
Venkatesh et al. [4] Colour denoising-based approach Denoising Deep Convolutional Neural Network Digital
Scherhag et al. [80] PRNU Spectral features and spatial features Print-scan
Makrushin et al. [86] Dempster-Shafer Theory KeyPoints (SIFT, SUFT, FAST, ORB, AGAST, High

Dim LBP, GoogleNet, VGG19
Digital

Raghavendra et al. [91] Scale space approach Colour scale space features Print-scan
Neubert et al. [107] Frequency and spatial domain feature

space approach
Discrete Feature Transformation (DFT) , SURF,
SIFT, ORB, FAST, AGAST, Canny edge, SobelX,
SobelY)

Digital

Seibold et al. [89] Style Transfer-based approach LBP, BSIF, Image degradation, Deep neural network
(VGG19)

Digital

Venkatesh et al. [5] Colour denoising-based approach Context Aggregation Network Digital
Venkatesh et al. [6] Ensemble-of-features-based approach LBP, HoG, BSIF Print-scan
Seibold et al. [108] Interpretability based on DNN Focused Layer-wise Relevance Propagation (FLRP) Digital
Aghdaie et al. [94] Wavelet based approach Attention based DNN Digital
Aghdaie et al et al. [93] Wavelet based approach Discriminative 2D Discrete Wavelet Transform (2D-

DWT)
Digital

Abisoye et al. [109] Texture based approach LBP, Neighborhood Component Analysis (NCA) for
feature extraction. Classification using K-Nearest
Neighbor (KNN), Decision Tree Classifier (DTC),
Naive Bayes (NB)

Post-
processed
digital

Damer et al. [110] Pixel based approach Pixel Wise MAD (PW-MAD) using DenseNet-121
architecture

Digital
Print-Scan

Tapia et al. [111] Combination of intensity, texture and
shape based approach

texture features using LBP, BSIF, shape feature using
inverse HoG

Digital

Lorenz et al. [92] Fusion approach Deep features (ArcFace, FaceNet) and texture fea-
tures (BSIF, LBP)

Digital
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existing D-MAD techniques for both digital and print-scan data. Based on the ex-
isting literature, the D-MAD techniques can be generalised into feature difference
based D-MAD and Demorphing.

Feature Difference: In a morphed facial image due to distortions during morphing
process, the image feature undergoes variation. Analysing the variation in feature
vectors with respect to texture, gradient, landmark, histogram and deep features of
the given image to be probed and the reference image indicates the existence of
morphing [113, 84, 114, 115, 116]. As the differential MAD has two facial images
i.e, a suspected morphed facial image and a reference image live captured from a
trusted source, subtracting the features.

Demorphing: Face morphing is achieved by following various procedures (e.g.
warping, blending, post-processing). Investing this idea of face morphing on a
given facial image in reverse order may reveal various components used to perform
morphing. Demorphing procedure is employed by several works reported so far
for D-MAD [112, 117].

Wavelet decomposition: Difference features in the suspected morphed facial im-
age and the reference facial image are investigated by wavelet decomposition in
sub-band level. Differential face morph detection by employing the wavelet based
approach has reported good performance on the digital dataset [118].

Passport image

ABC gate image

D-MAD

Bona fide

Morph

Figure 2.7: Illustration of border crossing scenario for D-MAD (Figure adopted from our
article [7]
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Table 2.2: State-of-the-art D-MAD

Reference Approach Algorithm Database

Ferrara et al. [119] Demorphing Demorphing by image subtraction Print-scan
Ferrara et al. [119] Demorphing Face verification Digital
Scherhag et al. [114] Landmark based approach Distance-based and angle-based feature extraction with

Random Forest, SVM without kernel and SVM with
radial basis function classifier

Digital

Scherhag et al. [88] Feature difference-based ap-
proach

Pre-processing and feature extraction using texture
descriptors, keypoint extractors, gradient estimators
and deep learning-based method

Digital

Damer et al. [84] Multi-detector fusion LBPH, Transferable deep-CNN Digital
Singh et al. [116] Deep learning SfS Net, AlexNet Digital

Print-scan
Damer et al. [113] Landmark shift Landmark detection, shift representation Digital
Peng et al. [117] Face restoration by demorphing

GAN
Symmetric dual-network architecture Digital

Scherhag et al. [115] Deep Face Representation ArcFace Network, FaceNet algorithm Digital
Print-scan

Seibold et al. [105] Deep Learning Layer-wise Relevance Propagation (LRP) Digital
Print-scan

Ortego et al. [112] Demorphing, Deep CNN-based Auto-encoders Digital
Print-scan

Soleymani et al. [120] Deep learning Siamese network Digital
Soleymani et al. [121] Deep learning Appearance and landmark disentanglement Digital
Autherith et al. [122] Analysis of geometric facial

features
Facial anthropometry-based facial feature comparison Digital

Chaudhary et al. [118] Wavelet decomposition Wavelet sub-band selection, Kullback Liebler Diver-
gence (KLD)

Digital

Sudipta et al. [123] Implicitly disentangle identities Information theoretic framework using conditional
GAN

Digital

Borghi et al. [124] Deep learning based Double Siamese network Digital
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(Figure adopted from our article [7]
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2.5 MAD Evaluation Metrics
The metrics employed for vulnerability analysis and morphing attack detection
performance are presented in the following section.

2.5.1 Detection metrics

Based on the ISO/IEC 30107-3, the standardised metrics for evaluation of MAD
approaches are given in [21] namely Attack Presentation Classification Error Rate
and Bona fide Presentation Classification Error Rate. In the following section we
discuss this metrics that are taken from ISO/IEC 30107-3 [21].

Attack Presentation Classification Error Rate (APCER) Attack presentation classi-
fication error rate defines the number of attack images (in this case morph images)
misclassified as bona fide images. APCER is presented in the equation 2.1, where
NPAIS is the number of attack presentations (morph presentation) and Resi will
be 1, if ith presentation is classified as attack presentation and 0 if it is classified
as bona fide presentation [21].

APCER = 1− (
1

NPAIS
)

NPAIS∑
i=1

Resi, (2.1)

Bona fide Presentation Classification Error Rate (BPCER) Bona fide presentation
classification error rate is the number of bona fide presentations misclassified as
attack presentations (in this case morph presentations). BPCER can be represented
in equation 2.2. Where NBF is the number of bona fide presentations. Resi will
be 1 if the ith presentation is classified as attack presentation and 0 if it is classified
as bona fide presentation [21].

BPCER = (

∑NPAIS
i=1 Resi
NBF

), (2.2)

2.5.2 Vulnerability metrics

Vulnerability of the FRS are analysed using the following vulnerability metrics (i)
Mated Morph Presentation Match Rate (MMPMR)(ii) Fully Mated Morph Present-
ation Match Rate (FMMPMR). Reader can refer to the article [7] for more inform-
ation about the vulnerability assessment in Chapter 11.

Mated Morph Presentation Match Rate (MMPMR) MMPMR vulnerability metrics
defines the proportion of morphed images getting verified with contributing sub-
jects [125]. MMPMR is represented in the equation 2.3.
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MMPMR(τ) =
1

M
·

M∑
m=1

{[
min

n=1,...,Nm

Sn
m

]
> τ

}
, (2.3)

Where M is the number of morphed images and Nm is the number of contributing
subjects to morph m. τ represents the threshold of the FRS at the designated False
Match Rate (FMR). Further the comparison score for the morph m of the subject
nth is represented as Sn

m.

Fully Mated Morph Presentation Match Rate (FMMPMR) FMMPMR vulnerability
metric is proposed by [3], that defines the proportion of morphed images that get
verified with the contributing subjects. Additionally it takes into account all the
attempts that the morphed image gets verified with a pairwise comparison to the
contributing subjects. Hence FMMPMR follows strict protocol to evaluate the
attack strength of the morph image. FMMPMR is represented in the equation 2.4.

FMMPMR =
1

P

∑
M,P

(S1PM > τ)AND(S2PM > τ) . . . AND(SkPM > τ)

(2.4)

Where P = 1, 2, . . . , p represents the number of attempts the contributing subjects
are compared against the M th morphed image. K = 1, 2, . . . , k represents the
total number of subjects contributing to generate morph. τ represents the threshold
which is set according to the FRONTEX requirement [126] to FMR = 0.1% and
SkPM represents the comparison score for the contributing subject K for the P th

attempt.

Morphing Attack Potential (MAP) MAP [127] metric aims at assessing the attack
potential of the dataset M that consists of the morphed images to analyze the im-
pact of two different factors (i) number of attempts the morphed image gets veri-
fied with the (variable number of) probe images captured at the ABC gate (ii) and
generalising over a (variable number of) different FRS. MAP is represented in the
equation below.

V =
|M ∈ M : CV (M) = true|

|M|
(2.5)

Where, V represents the vulnerability and M represents the morphed images. The
vulnerability represented as V reports the proportion of morphed images M, where
the condition CV (M) is met.
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Relative Morph Match Rate (RMMR) RMMR metric provides the relative meas-
ure by combining the recognition accuracy with the vulnerability measure [125].
Following the vulnerability metrics MMPMR and FMMPMR discussed earlier,
RMMR can be defined as follows.

RMMR(τ)MMPMR =1 + (MMPMR(τ))

− [1− FNMR(τ)]
(2.6)

RMMR(τ)FMMPMR =1 + (FMMPMR(τ))

− [1− FNMR(τ)]
(2.7)

Where τ represents the threshold and FNMR indicates the false rejection rate.

15

Figure 2.9: Sample illustration of the detection accuracy of MAD algorithms at different
operating points with a detection error tradeoff curve (DET). As noted from the figure,
MAD Algorithm 3 performs best at a chosen APCER of 5% or 10%.(Figure adopted from
our article [7])

Detection Equal Error Rate (D-EER) In general, D-EER denotes a common point
where both the errors APCER and BPCER are equal.

Detection Error Trade-off curve (DET) The error curve plotted corresponding to
APCER and BPCER at different operational points are shown in the Figure 2.9. If
one error is minimised for instance APCER is reduced, then the BPCER increases
and vice versa. The error rates can be obtained by fixing the values for instance
APCER = 5 %.



2.6. Public benchmarking platforms 29

2.6 Public benchmarking platforms
The public benchmarking platform provides a medium where one can evaluate
the algorithm and assess the status. One can utilize the reliable and trustworthy
infrastructure for assessment that includes sequestered datasets, protocols for eval-
uation and computational environment. There are two benchmarking platforms
available for both S-MAD and D-MAD evaluation (i) NIST FRVT Part 4:Perform-
ance of Automated Face Morph Detection [128] and (ii) Bologna-SOTAMD [38].

NIST FRVT Part 4: Performance of Automated Face Morph Detection NIST FRVT
benchmarking platform is put forward in the year 2018 as a common platform
for assessment of algorithms developed for both S-MAD and D-MAD. The eval-
uation platform uses the datasets generated using different morphing approaches
with the objective of identifying the low quality morphing that are generated us-
ing freely available open source tools, high quality morphing that are generated
using the automatic morphing tools by incorporating additional post-processing
steps to mask the artefacts and automated morphing that are generated using auto-
matic morphing tools alone without manual intrusion. The NIST evaluation report
[128] indicates the various algorithms presented by different institutes. Based on
the evaluation report, morph detection is still a challenging task as there is no al-
gorithm that shows best performance to detect morphing following the operational
requirement of FRONTEX [126].

Bologna SOTAMD: D-MAD The Bologna public benchmarking was launched in the
year 2019 and provides a common assessment platform for D-MAD techniques.
The datasets employed for Bologna D-MAD benchmarking are collected using
real ABC gates as a part of the European project SOTAMD [129]. Face morph
generation is performed using both commercial and open-source morphing soft-
wares. The evaluation report indicates that the existing D-MAD approaches are
not reliable enough to detect morphing based on the FRONTEX operation require-
ment. More information about the D-MAD techniques that are evaluated can be
obtained in [38].

Bologna SOTAMD: S-MAD The Bologna public benchmarking platform started in
the year 2020 with the objective of providing a common assessment for both S-
MAD and D-MAD algorithms. The datasets were constructed using high quality
facial images similar to the real passports and the morphed images are constructed
using the commercial and open-source morphing softwares. Further the morphed
facial images are post-processed to mask the artefacts generated during the morph-
ing process using automatic software and manual post-processing. More informa-
tion on the Bologna benchmarking platform is provided in [38].
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Summary of public benchmarking platforms Evaluation reports of the public bench-
marking platforms suggest the requirement of reliable techniques for both S-MAD
and D-MAD thus indicating the challenging task of detecting morphed facial im-
ages.



Chapter 3

Summary of Published Articles

This chapter summarises the research articles published during this doctoral study.
The Articles 3.1 and 3.2 focus on the morph generation and address the research
question 1.3.4. Articles 3.3 works on the vulnerability assessment and address
the research question 1.3.3. Furthermore the Articles 3.4 , 3.5 and 3.6 focus on
the morphing attack detection on digital and print-scan scenario and address the
research questions 1.3.1 and 1.3.2 respectively. Finally the Article 3.7 presents
a comprehensive survey of face morphing attack generation and detection, that
partly address the research question 1.3.2.

3.1 Article 1: Can GAN Generated Morphs Threaten Face Re-
cognition Systems Equally as Landmark Based Morphs?-
Vulnerability and Detection [1]

This article is published at International Workshop on Biometrics and Forensics
(IWBF) 2020

Most of the research works in the literature have developed MAD techniques for
landmark- based morphing approaches. Morphing process induces noise, and
hence the final morphed facial image exhibits ghosting artefacts as shown in Fig-
ure 3.1, that needs to be post-processed to improve the quality. Hence this research
work aims to generate a high quality morphed facial image using deep learning
techniques. With the advancement in the field of deep learning, morphed facial
images were synthesized by employing Generative Adversarial Networks (GAN)
technique [15] that does not require additional post-processing steps. Hence, it is
essential to investigate to what extent can the GAN based morphed facial image
challenge the FRS by generating vulnerability.

31
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Figure 3.1: Illustration of facial morphs generated using (a) Landmark and (b) StyleGAN
based morphing approaches

The existing work in the literature employs MorGAN to generate morphed facial
images with resolution (64 × 64 pixels), however that does not comply with the
ICAO standards [130]. With the motivation to improve the quality of the morphed
facial image by employing GAN technique, this work generates a high quality
morph (1024 × 1024 pixels) by employing StyleGAN complying to ICAO stand-
ards with less visual artefacts compared to landmark based morphs. We have pro-
posed a method to perform morphing in the latent space of StyleGAN-1 architec-
ture by performing weighted SUM fusion. Hence we employ the weight 0.5 for
both the facial identities in the latent space which is then synthesized using syn-
thesis network from StyleGAN. Although the morphs generated are of high quality,
this work investigates if the StyleGAN based morphs can scale up to threaten the
FRS similar to the landmark based morphs. Hence a new StyleGAN based morph
dataset is developed that is derived from FRGC-V2 dataset.

To effectively analyze the vulnerability of FRS for the proposed StyleGAN based
morphs, two different FRS are employed and the vulnerability is compared with
the landmark based morph and MorGAN based morph. Further the performance is
evaluated by employing four different MAD techniques existing in the literature.
The experimental results indicates that, though the StyleGAN morphs possess vis-
ibly less artefacts, it has reduced capacity to make the FRS vulnerable when com-
pared to landmark based morphs that may be due to the lower similarity with the
geometrical features. Further the experimental results indicate that a morphing at-
tack is less challenging to detect in case of StyleGAN and MorGAN morphs when
compared with the landmark based morphs. But the StyleGAN based morphs
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shows reasonable success rate in making the FRS vulnerable when compared with
the MorGAN approach that may be attributed to the improved spatial resolution of
StyleGAN with 1024 × 1024 pixels. Overall the reduced challenge to detect GAN
based morphs may be attributed to the inherent noise generated during the GAN
based morphing process.
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3.2 Article 2: MIPGAN- Generating High Quality Morphing At-
tacks Using Identity Prior Driven GAN [2]

This article is published at IEEE Transactions on Biometrics, Behavior and Iden-
tity Science 2021

Proposed method

(a) (b) (c)

Morph using StyleGAN method Morph using MIPGAN-I Morph using MIPGAN-II

Figure 3.2: Illustration of facial morphs generated using (a) StyleGAN (b) MIPGAN-I (c)
(b) MIPGAN-II approaches (Figure adopted from our article [2])

Motivated by our previous work on StyleGAN based morph generation, we ex-
tend this work to generate realistic high quality morphs by employing a new loss
function to preserve the identity. Though the StyleGAN based morphs are of high
quality with good perceptional resemblance with the original identity, it is chal-
lenging to generate vulnerability to circumvent the FRS to higher degree that may
be a result of loss in the identity information in the synthesized images. Hence,
this research work is undertaken to generate realistic facial image as shown in the
Figure 3.2 by employing a novel loss function that includes identity priors. We
refer this novel approach as MIPGAN (Morphing through Identity Prior GAN).
We explore two versions of StyleGAN (I and II) and we term them as MIPGAN-I
and MIPGAN-II. The proposed loss function includes four components (i) Iden-
tity prior computed using ArcFace FRS (ii) Perceptual loss (iii) ID- Diff (iv) MS-
SSIM.

To analyze the attack potential of MIPGAN generated morphs in comparison with
landmark and StyleGAN based morph generation, new morphing dataset is gener-
ated based on MIPGAN-I/II. To effectively evaluate the attack potential of MIP-
GAN based morph, datasets are generated in three different scenarios that includes
(i) Digital (ii) Print-scan and (iii) Print-scan compression. Further the vulnerab-
ility of FRS are empirically investigated by employing five different FRS that in-
cludes both COTS and deep learning based FRS on five different datasets employ-
ing different morph generation techniques (Landmark-I, Landmark-II, StyleGAN,
MIPGAN-I, MIPGAN-II).

The experimental results indicates that the MIPGAN based morphs shows vulner-
ability to all five FRS to a highest degree compared with StyleGAN based morphs.
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Based on the experimental results deep learning based FRS shows highest vul-
nerability (MMPMR and FMMPMR) for the MIPGAN based morphs. Among
the MIPGAN morphs generated, MIPGAN-I shows marginally better performance
than MIPGAN-II. Further the experiments are performed to analyze the perceptual
image quality using both human observer study and quality metrics such as SSIM
and PSNR on the MIPGAN generated morphing images. The experimental results
indicate the slightly better perceptual image quality of the morphs generated us-
ing MIPGAN compared to StyleGAN. Lastly we benchmark the performance of
existing MAD on MIPGAN I/II.
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3.3 Article 3: On the Influence of Ageing on Face Morph At-
tacks: Vulnerability and Detection [3]

This article is published at IEEE International Joint Conference on Biometrics
(IJCB) 2020

Subject 1 Subject 2

Morphed image

Sample 2 Sample 3 

Bona fide samples from Subject 1

Sample 3 Sample 2

Bona fide samples from Subject 2

Age gap
in days

132 1578 92 1143

Age gap
in days

FRS

OR OR

OROR
Figure 1: Intro Figure

Figure 3.3: Illustration of morph image quality with ageing co-variate (Figure adopted
from our article [3])

The facial image enrolled in the eMRTD is retained for 10 years aligning with the
validity of the eMRTD. However the facial biometric characteristics progresses
with age resulting in addition of facial wrinkles, saggy skin, fat loss or fat depos-
ition. Hence this work performs an analysis on the vulnerability of Commercial
Off The Shelf (COTS) FRS when a morphed facial image is enrolled in the eM-
RTD and one of the contributing identity is probed after a period of time as the
facial features have undergone age progression as illustarted in Figure 3.3.

To effectively analyze the influence of ageing, new datasets are constructed with
ageing co-variate and is derived from the publicly available dataset. The datasets
are developed with two different bins consisting of facial images with different
age groups. The first dataset bin MorphAge-I consists of facial images with the
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age group between 1 to 2 years and the second dataset bin MorphAge-II consists
of facial images between the age group 2 to 5 years. To investigate the impact
of different morphing factors, the facial images are morphed using three different
morphing factors.

Further the vulnerability of FRS are investigated for the two different ageing data-
set groups by employing two different COTS FRS. Additionally the impact of
three different morphing factors for the vulnerability of the FRS is investigated on
both age groups. A new vulnerability metric FMMPMR is also introduced that
efficiently measures the vulnerability of the FRS when a morphed facial image is
enrolled and corresponding facial images are probed by considering the number
of attempts. This research work investigates if the existing MAD algorithms can
scale up to detect such morphing attacks with ageing co-variate by employing 5
different MAD techniques existing in the literature.

The experimental results obtained from this research suggests that one of the COTS
FRS is highly vulnerable for both age groups but the second COTS FRS indicates
reasonable vulnerability. The vulnerability of FRS in MorphAge-I dataset is re-
duced to some extent in case of MorphAge-II that indicates, it is less likely that
the morphed image gets verified against the probe images after certain ageing.
Among the three different morphing factors 0.3, 0.5 and 0.7 employed in this re-
search work, the experimental results indicates the higher vulnerability of FRS
for morphing factor 0.5 when compared with the morphing factor 0.3 and 0.7.
However, the MAD experiments on the two datasets indicates minor/negligible
variation in the performance after ageing. Hence, the existing MAD algorithms
can efficiently detect morphing even after ageing.
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3.4 Article 4: Morphed Face Detection Based on Deep Color
Residual Noise [4]

This article is published at 9th International Conference on Image Processing The-
ory, Tools and Applications (IPTA) 2019

Input image:Bona fide

Input image: Morphed

Residual noise: Hue Residual noise: Value 

Residual noise: Hue 

Residual noise: Saturation 

Residual noise: Saturation Residual noise: Value 

Figure 3.4: Illustration of residual noise from (a) Bona fide image (b) Morphed face image
(figure taken from our article [4])

The morphed facial image is obtained by blending two different facial identities
that imparts pixel distortion or missing pixels or noise due to double compression
that can be termed as morphing noise. With the aim of detecting the existence of
facial image morphing, this work investigates a novel technique to quantify the
morphing noise from the given facial image. To this extent the proposed approach
will estimate the residual noise by performing the differential operation between
the given facial image and the denoised version of the the given facial image.

The proposed technique is designed to quantify the residual noise especially in
the color space to achieve the discriminating features towards reliable face MAD.
The denoising operation is performed using Denoise Deep Convolutional Neural
Network (De-DCNN) [131] in HSV (Hue, Saturation and Value) color space. In
the next step, the residual noise image is computed by subtracting the given im-
age with it’s denoised counterpart in HSV color space independently (see Figure
3.4). Then the computed residual noise are further processed to extract the features
using Pyramid LBP. In this work, we have used Pyramid LBP with 3 level decom-
position by considering computation versus detection accuracy. Finally Spectral
Regression Kernel Discriminant Analysis (SRKDA) performs the classification to
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decide if the given image is bona fide or morph.

To effectively evaluate the performance of the proposed method, extensive experi-
ments are performed to benchmark the denoising MAD approach with 13 different
SOTA MAD approaches existing in the literature. Further the performance of the
proposed MAD approach is evaluated on three different databases by following
different experimental protocols. (i) Firstly the performance is evaluated on three
different datasets individually, (ii) Secondly, the performance is evaluated on large
scale dataset by combining all three datasets together (iii) Finally, the general-
izability of the proposed approach is evaluated by cross dataset evaluation. The
experimental results obtained from intra-dataset and inter-dataset evaluation in-
dicates the best performance of the proposed method in all three datasets when
benchmarked with the 13 different SOTA MAD approaches.
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3.5 Article 5: Detecting Morphed Face Attacks Using Residual
Noise from Deep Multi-Scale Context Aggregation Network
[5]

This article was published at IEEE Winter Conference on Applications of Com-
puter Vision (WACV) 2020

Residual noise

Bona fide Denoised Bona fide

−

Residual noise

Morph Denoised Morph

−

Figure 3.5: Illustration of residual noise from (a) Bona fide image (b) Morphed face image
(figure taken from our article [5])

The promising result obtained using residual noise has led to the robust MAD.
In this work we extend the previous work in two directions. (i) Improving the
denoising operation by combining the best denoising approaches. Further this
combination of denoising approaches are realised using, novel Context Aggreg-
ation Network (CAN). (ii) To overcome the need of color spaces to reduce the
complexity.

In this work, we have employed the combination of four different denoising ap-
proaches to extract the morphing noise. The four different denoising approaches
include Wavelet Denoising (WD), Block Matching and 3D filtering (BM3D), Multi-
resolution Bilateral Filtering (MBF) and Denoising Convolutional Neural Net-
works (DnCNN) to extract morphing noise. The final denoised image is obtained
by performing the best sub-band selection based on energy. The whole operation
of denoising is realised using deep CNN architecture called deep Multi-Scale Con-
text Aggregation Network (MS-CAN). In order to improve the generalizability of
MS-CAN approach, we train our proposed MS-CAN for the general denoising
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operation using IAPR-TC 12 dataset that includes natural images (consists of im-
ages of people, buildings and natural scenes) that are contaminated with Gaussian
noise and salt and pepper noise. Given the face image, the proposed MS-CAN is
used to obtain the residual noise. Further the deep features are extracted using pre-
trained AlexNet and finally Probabilistic- Collaborative Representation Classifier
(P-CRC) is used to perform classification.

The performance of the proposed method is benchmarked with 14 different deep
learning and non-deep learning SOTA MAD techniques. To effectively validate
the performance of the proposed method empirically, three different morphed face
datasets are employed. To this extent, experiments are conducted on (i) the three
datasets individually, (ii) merged dataset by combining the three datasets together
and (iii) cross dataset evaluation to investigate the generalizability of the proposed
method. The experimental results indicate that the proposed method is outper-
forming in all three datasets independently when compared with the existing deep
learning and hand crafted SOTA MAD approaches.
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3.6 Article 6: Single Image Face Morphing Attack Detection Us-
ing Ensemble of Features [6]

This article is published in IEEE 23rd International Conference on Information
Fusion (FUSION) 2020

Conforming to the real life scenario where the applicant submits the printed facial
image that will be scanned (re-digitized) to enrol in the eMRTD, the morphed
facial image has to be re-digitised that may generate additional print-scan noise
thereby masking the morphing noise. This leads to the challenging task of MAD on
print-scan data in single image based scenario. Hence this research work analyzes
the performance of proposed method with respect to re-digitised images in single
image based scenario.

This research work undertakes the challenging task to detect morphing in the print-
scanned facial images by employing ensemble of features. The given facial image
is decomposed into two different color spaces (YCbCr and HSV) to obtain large
scale complementary features that effectively serve as a cue to detect morphing.
Further the scale space features are extracted individually by employing 3 level
decomposition. In the next step, three different feature extraction techniques that
includes LBP (Local Binary Pattern), BSIF (Binarized Statistical Image Filtering)
and HoG (Histogram of Gradients) are employed to extract the texture features.
Further the features are classified independently using Probabilistic Collaborative
Representation Classifier (P-CRC) to obtain the morphing scores. Finally the in-
dependent morphing scores from the three feature extraction techniques are fused
using SUM rule to decide if the given image is bona fide or morph.

To effectively analyze the performance of the proposed method, a new print-scan
dataset is generated in addition to an existing print-scan dataset. The first dataset
is the existing dataset that is re-digitised using RICOH office printer. Additionally
a new re-digitised dataset is developed by using high quality photo printer (Epson
expression photo XP860). Both the datasets have the same images to have a fair
and balanced comparison of the proposed method. The experimental results in-
dicates the best performance of the proposed method on both print-scan datasets
when a comparative analysis is performed on the 16 different MAD algorithms ex-
isting in the literature. In general the performance of existing MAD algorithms is
degraded on the newly generated dataset and indicates the challenging MAD due
to the high quality print-scan process.
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3.7 Article 7: Face Morphing Attack Generation and Detection:
A Comprehensive survey [7]

This article is published in the journal IEEE Transactions on Technology and So-
ciety, 2021

This article presents an overview of the developments in the field of facial image
morphing and morphing attack detection techniques [7]. Facial image morphing
has captured the attention of the research community considering the threat caused
due to the enrolment of morphed facial images in the eMRTD [22]. This article
can serve as a starting point for the beginner to understand the development in the
field of facial image morphing.

This article presents an overview of the existing morph generation types, available
databases (public, private and sequestered), SOTA MAD techniques. It provides a
technical insight in the reference-based and no-reference based morphing attacks
conforming to the border control scenario and reports the existing MAD techniques
(both reference-based and no-reference based techniques). Further exclusive dis-
cussion on different performance metrics for both benchmarking the vulnerability
of FRS and detection of morphing attacks are discussed. The public platforms
available for evaluation and benchmarking the MAD approaches are summarised
in this article. During the course of work on facial image morphing, several tech-
nical challenges are observed that are reported as open challenges and risks that
are faced in the morphing attack detection.
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Conclusions and Future Work

This thesis is aimed to develop reliable single image-based morphing attack de-
tection algorithms. To this extent, extensive work is undertaken to address the re-
search questions formulated in section 1.3. The research questions are answered by
generating relevant publications included in Parts II, III and IV. This thesis mainly
comprises the contributions from the seven publications achieved during this doc-
toral study. The overall thesis contribution includes the generation of face morph-
ing databases, vulnerability assessment and development of MAD approaches.
While addressing the research questions, several conclusions were drawn within
the scope of this thesis that are discussed below.

4.1 Conclusions on each research question
Research Question 1

1. What is the best-suited approach to effectively detect face morphing attacks
by quantifying residual noise in the digital images? Does quantifying the
residual noise resulting from the morphing process help in detecting face
morphing attacks?

(a) What deep learning architectures can be designed to quantify the re-
sidual noise resulting from morphing?

(b) What is the performance gain achieved using residual noise-based at-
tack detection compared to SOTA morphing attack detection schemes?

Conclusion

• With the novel idea of quantifying the residual noise for S-MAD, in this
thesis, two novel approaches based on deep learning are proposed. The first

44
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work Denoise DCNN is developed over a deep CNN based denoising net-
work to extract the residual noise in the color channels. The second ap-
proach is based on the novel Multi-Scale Context Aggregation Networks
(MS-CAN) to compute the residual noise. Both of the proposed methods
are extensively evaluated using three different datasets and compared with
several state-of-the-art S-MAD techniques. Obtained results demonstrate
the consistent and reliable performance of the proposed models. Among the
two deep learning models, the MS-CAN network shows the best MAD per-
formance. The proposed MS-CAN approach shows the reliable detection
performance on all three databases (database-1 D-EER = 3.83%, database-2
D-EER = 4.85% and database-3 D-EER = 9.71%) when compared with 14
different state-of-the-art techniques.

Thus, based on the obtained results, it can be concluded that quantifying a
residual noise is a promising approach to detecting morphing attacks reli-
ably. Further, the use of residual noise also indicated reliable performance
when tested for generalisation, especially on the digital medium.

Research Question 2

1. What kind of novel features (texture-based/time frequency-based/deep fea-
tures/ensemble) can be devised to reliably identify morphing attacks when
no reference image is available (i.e., S-MAD) in a print-scan scenario?

(a) What is the best performing SOTA method to reliably detect no-reference
morphing attacks in a print-scan scenario?

(b) What kind of image features (texture-based/time frequency-based/deep
features/ensemble) can provide reliable morphing attack detection, es-
pecially in a no-reference scenario?

(c) Does the hand-crafted feature analysis approach generalize across data-
sets compared to deep learning features?

(d) Does the morphing factor employed to generate a morphing image in-
fluence the performance of morphing attack detection?

Conclusion

• Detection of re-digitized morphing images is very challenging due to ad-
ditional noise introduced during re-digitization. In this thesis, a novel ap-
proach based on the ensemble of features is proposed to address the chal-
lenges with re-digitized morphing images. The proposed method is com-
pared with 16 different state-of-the-art methods on two different datasets.
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The obtained results indicate the best performance of the proposed method
(database-1 D-EER = 5.99% and database-2 D-EER = 5.64%). Thus, the
use of ensemble of hand-crafted features has demonstrated the robustness
toward noise resulting from the re-digitizing process. Therefore, our com-
prehensive analysis indicates that it is essential to employ more than a single
set of hand-crafted feature to achieve reliable MAD, especially with print-
scan datasets.

Research Question 3

1. What is the impact of ageing on morphing attack potential with respect to
FRS?

(a) Does the blending/morphing factor shows any diverse effect on the
FRS vulnerability and no-reference MAD performance?

(b) Do existing MAD techniques in the literature scale up to detecting such
morphing attacks with ageing co-variate?

Conclusion

• Face ageing is an important influencing factor that needs to be investigated
to shed light on the attack potential of morphed images with the lifetime
of ID documents. To this extent, we have devised extensive experiments to
benchmark both vulnerability and detection with two different age groups.
The quantitative results obtained on two different age group database bins
(MorphAge-1 with less ageing up to 1-2 years and MorphAge-2 with more
ageing up to 2-5 years) indicates the reduced vulnerability of the COTS FRS.
The empirical evaluation performed on three different morphing factors (0.3,
0.5, 0.7) indicates that morphed face images with a morphing factor 0.5 in-
dicate the highest vulnerability. Further, benchmarking the morphing attack
detection performance using the SOTA MAD approaches on the two data-
base bins indicates a reduced effect of facial ageing. It is interesting to note
that the vulnerability is reduced with age, and both morphing factors and
ageing do not influence detection performance. One of the reasons for con-
sistent detection performance can be attributed to the single image MAD.
However, the detection performance may vary in the D-MAD scenario.

Research Question 4

1. Can deep learning-based image synthesis using Generative Adversarial Net-
works (GAN) be used to generate high-quality face morphs?
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(a) Does modifying the information at latent space of StyleGAN lead to
the generation of high quality morphed image?

(b) Does the StyleGAN based morph generation circumvent the FRS to
higher degree when compared to previous GAN based morph genera-
tion (MorGAN)?

(c) Can the StyleGAN based morph generated image be successfully de-
tected using SOTA MAD algorithms?

Conclusion

• Conventional morphing generation techniques based on landmarks often res-
ults in ghosting effects that demand post-processing. Therefore, the auto-
matic generation of perceptually high-quality morph images is essential. To
this extent, in this thesis, we proposed the technique using StyleGAN archi-
tecture to automatically generate high quality morphed face images. Even
though the use of StyleGAN can generate perceptually high quality morphed
images, the attack potential is degraded due to the loss of identity inform-
ation. To overcome this drawback, we proposed a novel morph generation
technique using an identity prior driven network (MIPGAN) that can pre-
serve the identity information while generating a perceptually high quality
morphed image. The identity while synthesising the morphed face images
are preserved using a novel loss function that controls both the identity factor
and perceptual quality of the morphed image. Extensive experiments are
performed that have indicated the attack potential of the MIPGAN based
morphed images to both human observers and COTS FRS.

4.2 Future works
While the findings from this thesis answered the initially formulated research ob-
jectives, the morphing attacks have evolved due to the advancement in morph gen-
eration methods (deep learning). The evolution of attacks and the findings from
initial works set the foundations for future research directions. In this section, a
number of interesting directions are listed.

• Unavailability of large scale database with variation:

– Generally, attack detection on biometric-based applications are data-
driven. Hence, large scale data is essential to train and test the model
to achieve reliable performance. Several studies in the existing liter-
ature on morphing indicates the availability of various morphing data-
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base, but they are not publicly available due to privacy and GDPR con-
cerns. Hence, a systematic evaluation of morphing attack detection
approaches on a large scale database is still underway.

– Unavailability of morphing databases with diverse morph generation
types: MAD approaches must be able to achieve reliable detection per-
formance irrespective of the morph generation type employed. Hence
it is essential to generate a morph database by employing different
morph generation types, including landmark and deep learning-based
morph generation.

– Unavailability of morphing database with different scenarios (digital,
print-scan and print-scan compression): Based on the existing stud-
ies, it is required to generate face morphing dataset in digital, print-
scan and print-scan compression scenarios conforming to the passport
application protocol in different countries.

• Synthetic data generation: With the recent research interest moving to-
wards the generation of synthetic face database, one can consider generat-
ing a large-scale morphing database that overcomes the current challenge of
lack of face morphing database.

• Careful selection of data subject for morphing: While generating a facial
morph database, it is essential to take additional care to select the look-alike
facial identities to generate a high quality morphed facial image. This will
eventually challenge both human observers and automatic morphing attack
detection and pave the way for the generation of reliable MAD approaches.

• Algorithmic bias in MAD: A reliable MAD approach has to detect morph-
ing irrespective of gender, age, ethnicity and other demographic factors.
While not many works are reported in this direction, a relatively recent art-
icle address the variation in detection performance for different ethnic back-
grounds [132]. The influence of demographic factors should be carefully
studied in future works.

• Generalizability: The risk of facial morphing is high in border control
areas, and hence it is crucial to have MAD techniques that can achieve reli-
able performance. Earlier studies indicate that the existing MAD approaches
achieve the best performance on a known set of data and thereby indicating
the existing challenge of generalizability on unknown datasets [4, 5].

• Variation with face co-variate: The role of face co-variate (for ex: face
ageing, ethnicity, gender, quality of the image captured and beautification
of facial images) needs a systematic investigation. Work on facial ageing
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and its influence on morphing attacks was reported in [3]. Further, the role
of beautification needs a systematic investigation as beautification software
are commonly employed to enhance or sharpen the captured facial image.
One of the face co-variates that may have a larger influence on the D-MAD
scenario is the image quality. As the facial images are captured in the ABC
scenario, one may expect a variation in the quality of the image captured.
Along the lines, the influence of occlusion due to hair and glasses needs a
systematic study.

• Performance metrics: There is a need for standardized metrics to report the
vulnerability of FRS to morphing attacks. Currently, various metrics are em-
ployed to report the vulnerability of FRS, including FMMPMR, MMPMR
and MAP. Considering the real life scenario in border control, improved
vulnerability metrics especially to account Failure To Accept Rate (FTAR)
is required. And a generalised metric that consider different morphing gen-
eration types can also be anticipated.
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Chapter 5

Article 1: Can GAN Generated
Morphs Threaten Face
Recognition Systems Equally As
Landmark Based Morphs? -
Vulnerability and Detection

Sushma Venkatesh, Haoyu Zhang, Raghavendra Ramachandra, Kiran Raja, Naser
Damer, and Christoph Busch. Can GAN generated morphs threaten face recog-
nition systems equally as landmark based morphs? - Vulnerability and Detection.
In 2020 8th International Workshop on Biometrics and Forensics (IWBF), pages
1–6, April 2020

5.1 Abstract
The primary objective of face morphing is to combine face images of different
data subjects (e.g. an malicious actor and an accomplice) to generate a face image
that can be equally verified for both contributing data subjects. In this paper, we
propose a new framework for generating face morphs using a newer Generative
Adversarial Network (GAN) - StyleGAN. In contrast to earlier works, we gener-
ate realistic morphs of both high-quality and high resolution of 1024×1024 pixels.
With the newly created morphing dataset of 2500 morphed face images, we pose
a critical question in this work. (i) Can GAN generated morphs threaten Face Re-
cognition Systems (FRS) equally as Landmark based morphs? Seeking an answer,
we benchmark the vulnerability of a Commercial-Off-The-Shelf FRS (COTS) and
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a deep learning-based FRS (ArcFace). This work also benchmarks the detection
approaches for both GAN generated morphs against the landmark based morphs
using established Morphing Attack Detection (MAD) schemes.

5.2 Introduction
Due to the widespread deployment of biometric-based identification and verifica-
tion of individuals, it is essential to observe a biometric characteristic that is re-
liable, user-friendly and easy to capture. Face biometrics is well suited for this
purpose due to its popularity and widespread use for biometric authentication.
Moreover we consider the ease of capturing from a distance in a non-intrusive
manner and also the recently achieved high recognition accuracy. These properties
further enable that face recognition is to be used in various applications that are
attributed with high security requirements like border control. However, biometric
face recognition systems (FRS) are known to be highly vulnerable to presentation
attacks (aka., spoofing attacks) against the capture device [133]. In addition face
recognition system can be deceived during the enrolment process by providing
manipulated images [22].

Among the different types of attacks against FRS, face morphing has gained mo-
mentum because of the high impact it poses on border control security. The morph-
ing process enables a malicious actor to generate a morphed image by using an
accomplice’s face image in a seamless manner [22]. The process introduces a
significant threat to the border control scenario as it is easy to obtain a passport
document with a morphed image. This fact is also due to the limitations of cur-
rent passport issuance protocols in which digital images are submitted in a self-
supervised manner by an applicant for passport renewal through web services in
countries like New Zealand, Estonia and Ireland. In other countries there exists
no live enrolment in the passport renewal process, on the contrary the facial im-
age is provided by an applicant in printed form and is subsequently scanned and
re-digitized. This leaves an opportunity for the applicant to morph the face image
prior to submitting it in the passport application.

5.2.1 Morph generation process and limitations

Early work on face morphing attacks [22] demonstrated the vulnerability of FRS
with respect to morphed facial images, while to the same extend human experts
could be fooled [134] [135]. Following the recent works towards detecting morph
attacks on both digital image and re-digitized (print-scanned) image [54, 83, 13]
we must state that this area of research is still in a premature state. The crucial
part of a morphing attack is the generation of high quality morphed facial image,
which is ICAO compliant and can attack a deployed FRS with high probability.
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Figure 5.1: Comparison of morphed images generated using LandMark (LM) , MorGAN
and StyleGAN

In the literature, there exist two different ways of generating morphed face images
namely (a) Landmark based morphed face generation and (b) Deep learning-based
morphed face generation. In landmark-based morph generation, given two images,
the landmarks of both facial images are obtained and the Delaunay triangulation is
generated for both images. Subsequently alpha blending is performed to obtain a
single morphed image based on averaged Delaunay triangles. The majority of the
recently published literature is based on open-source morphing tools [13] which
are based on landmark constrained Delaunay triangles.

A deep learning-based approach in contrast involves synthesizing a morphed face
image by using a Generative Adversarial Network (GAN). Limited works are re-
ported in the literature on using GAN for morph generation[15]. The first reported
work in this direction is based on the MorGAN [15] in which morphed images
are generated corresponding to a image resolution of 64×64 pixels. Recently, the
morphed images generated using MorGAN were super-resolved to have a incre-
mentally larger dimension of 120×120 pixels [72]. It is important to note that
the images generated using both approaches incorporating GAN [15] [72] are not
ICAO compliant and hence have very limited use in real-life attacks. Irrespective
of the morph image generation approach, it is essential that one needs to generate
a high-quality image that can pose a high threat potential, when presented to a hu-
man expert in the control procedure while the passport issuance is carried out or to
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surpass a FRS during Automatic Border Control (ABC) crossing scenario.

Morph using StyleGAN Morph using Landmark
Figure 5.2: Illustration of minimal artifacts in morphed images generated using StyleGAN
versus landmark based face morphing.

Motivated to address the limitation of low quality images generated by the previ-
ous GAN architectures, in this work, we present a new approach to generate high
quality morph images. The recent improvement made in GAN architectures has
enabled us to generate a high quality facial images with a resolution of 1024×1024
pixels using StyleGAN [136]. This is achieved by embedding the images into lat-
ent space which is further optimized to synthesize the high quality and high res-
olution image [137]. As illustrated in Figure 5.1 the morphed images generated
using StyleGAN can be observed to be superior in terms of quality, resolution and
visual depiction.

Further, as noted from Figure 5.2, a number of artifacts can be easily handled in
an automatic manner with the newly proposed approach, which is capable of sup-
pressing visual artifacts. The clear superiority of the newly proposed approach
can be noted around the iris regions, where double edges are inherently dealt with.
While it well known fact that landmark based morphs threaten FRS to a high de-
gree [13, 22], one can easily conclude the amount of extra time and resources that
is anticipated to make the morphs visually appealing by removing the artifacts.

While the superior quality of face images can be achieved through the newly pro-
posed approach and eventually reaching compliance to ICAO standards, we raise
some fundamental questions.
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• Despite the high quality of morphed images do they scale up to threaten a
FRS in the same manner as the landmark based morphs, which typically
exhibit large artifacts?

• To what degree can current MAD mechanisms detect such GAN based at-
tacks on FRS, when the processing is limited to the digital domain?

In the course of answering the above questions, we can summarize the contribu-
tions of this work as follows:

• A new approach to generate morphed face images using the StyleGAN is
presented.

• A new face morphing dataset comprising of 2500 × 3 = 7500 morphed
images is generated using the StyleGAN and MorGAN approach. In order
to compare the new approach using the GAN methodology, this work also
constructs a corresponding landmark based morph dataset.

• To quantify the threats from GAN based morphed face images, a compre-
hensive vulnerability analysis is conducted using both, a commercial FRS
(COTS) and an open-source FRS (ArcFace).

• In order to give an insight into the detection challenges of such attacks, this
work also reports a detailed evaluation of MAD mechanisms on both GAN
based and landmark based morphed face images.

In the rest of the paper, Section 5.3 describes the morph generation process pro-
posed in this work using StyleGAN. Section 5.4 provides the details regarding
the quantitative experiments indicating the vulnerability of FRS and the detection
challenge. With remarks on future works in this direction, we draw the conclusion
in Section 5.5.

5.3 Morphed Face generation using StyleGAN
In this section, we present the StyleGAN based face morph generation to achieve
high quality face morphs. Figure 5.3 depicts the block diagram of the proposed
framework for the morphed face generation using a StyleGAN architecture[136].
Given the latent code L1 of the faces, the StyleGAN [137] maps the inputs to an
intermediate latent space (W ) through the mapping network. The mapping layer
consists of 8 fully connected layers that are serially connected. In this work, we
force a strategy to embed the face image into the latent space (Wf ), which is
inspired by earlier work [137]. This process enables us to synthesize the data-
subject-specific morphed face. The embedded latent space for a particular face is
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Figure 5.3: Block diagram of the morphed face image using StyleGAN

then passed through the synthesis network consisting of 18 layers, in order to con-
trol the adaptive instance normalization (AdaIN).As a direct result, we obtain the
representation in 18 multiple latent spaces, each with a dimension of 512, which
is further concatenated. For a given face image I1, the embedding is carried out
by optimizing a loss function that measures the similarity between I1 and the re-
constructed image ÎL1 using the corresponding latent code L1. To maintain the
perceptual fidelity a loss is computed as the weighted combination of VGG-16
perceptual loss [137] as given below:

PL = min

4∑
i=1

λi
Ni

||Fj(ÎL1)˘Fj(I1)||22 (5.1)

Where, Fj is the feature output of VGG-16 layer conv11, conv12, conv32 and
conv42 respectively, λi = 1 and Nj is the number of scalars in the jth layer. The
optimization is carried out using Adam optimizer with a β1 = 0.5.

We have selected the perceptual loss based on the visual quality of the morphed
image that can reflect the suitability for border control applications. Let the final
reconstructed image correspond to I1 and L1 be Î1 and the corresponding updated
latent code be L

′
1. We follow the same procedure mentioned above for the second

image I2 to get again a reconstructed image Î2 and the corresponding updated
latent code denoted L

′
2. The morphing operation is carried out by averaging the

latent code as follows:

LM =
w1 ∗ L

′
1 + w2 ∗ L

′
2

2
(5.2)



58 Article 1: Can GAN Generated Morphs Threaten Face Recognition Systems Equally As
Landmark Based Morphs? - Vulnerability and Detection

Finally, LM is passed through the synthesis network to generate the morphed im-
age that has a resolution of 1024 × 1024 pixels, where w1 and w2 indicate the
weights, which we have chosen to be w1 = w2 = 0.5.

5.3.1 Differences of proposed approach with earlier works

In contrast to earlier works [15], to avoid the bias of morph generation with known
set (closed-set), the StyleGAN is trained using the disjoint face dataset from FFHQ
dataset[136] consisting of high quality face images. As it can be observed from
Figure 5.1, the morphed face images generated using StyleGAN have higher per-
ceptual fidelity as compared to MorGAN based morphed images and are equally
comparable to landmark based morphed generation. It can be noticed that, the
MorGAN [15] based morph generation indicates low-quality images that are not
ICAO complaint rendering them not suitable for passport applications. As a sec-
ondary note, the MorGAN based images also indicate a poor visual similarity to
the contributing subjects, while landmark based morphs exhibit stronger artifacts
that are clearly visible in Figure 5.1.

Intrigued by the high fidelity of morphed face images, we take a detailed ana-
lysis guided by a sample image to compare it against the landmark based morph
generation. As observed in Figure 5.2, the ghosting artifacts in landmark based
morphing can be prominently seen due to the misalignment of landmarks leading
to several artifacts, especially in the ocular, mouth and nose region. It is interest-
ing to observe that the proposed StyleGAN based morph generation did not create
any perceptual noise.The example demonstrates the high quality of the generated
image, when compared to the MorGAN based approach.

While contrary to a landmark based morphed faces, the proposed StyleGAN based
morph generation does not indicate a strong geometrical resemblance as it is the
case for a landmark based approach. Motivated by such visual observations and su-
perior quality of morph images achieved with the proposed approach and account-
ing for the lower geometrical resemblance of contributing subjects, we conduct a
detailed analysis of threats to FRS as detailed in the next section.

5.4 Experiments and Results
In order to measure the impact of the proposed approach of morph generation,
we first create a new dataset of morphed images created from 140 unique data
subjects. With the newly generated morph dataset, we first investigate and report
the vulnerability of FRS and compare it with the vulnerability reported in similar
earlier work using MorGAN [15] and traditional landmark based morphing. Fur-
ther, we also analyze the detection potential of morphed faces generated using the
proposed framework with StyleGAN.
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5.4.1 Database Generation

We introduce a new morphed face database created from 140 individuals that in-
clude 47 female and 93 male data subjects. The facial images are derived from the
FRGC-V2 face database [33]. The newly generated database is sub-divided into
two sets for training and testing that consists of independent data subjects with
no overlap between the splits. The training set consists of 690 bona fide images
and 1190 morphed images. The testing set consists of 580 bona fide and 1310
morphed images. To effectively analyze the vulnerability and provide a com-
parison to earlier works, we have generated morph images using three different
techniques, which include (i) Landmark-Based (ii) MorGAN and (iii) proposed
StyleGAN approach. Care is exercised to generate morphed images with similar
facial appearance within same gender category. Additionally, to guarantee high
quality of the newly generated dataset constraints of high quality illumination and
no pose is imposed before creating the morphs. The guidelines laid out in earlier
works [13] [125] are followed to obtain a database of high relevance for morphing
attack detection.

5.4.2 Evaluation Metrics for Vulnerability Analysis

We measure the vulnerability of FRS following the guidelines of Frontex and set-
ting the operating threshold to FAR = 0.1 % (for both FRS). We further follow
the realistic evaluation protocol where the morph image is created by using two
face images corresponding to a malicious actor and and an accomplice. We com-
pute the vulnerability by enrolling a given morphed face image MI1,2 and probing
the corresponding contributing subjects I1 and I2 with an image from a differ-
ent FRGC-session. We further obtain the comparison scores S1 and S2 for both
images I1 and I2 against the morphed image. The morphed image MI1,2 is only
considered a threat if and only if the comparison scores S1 and S2 succeed to cross
the preset threshold at FAR = 0.1%. If the condition is not met, we simply con-
sider that the morphed image is not a real threat as the comparison scores are not
able to successfully verify the morphed image against both contributing subjects
making the morphing attack not realistic. We term this new metric as Fully Mated
Morphed Presentation Match Rate (FMMPMR) and compute it in general form
as:

FMMPMR =
1

P

∑
M,P

(S1PM > τ)AND(S2PM > τ) . . . AND(SkPM > τ)

(5.3)

Where P = 1, 2, . . . , p represent the number of attempts made by presenting
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all the probe images from the contributing subject against M th morphed image,
K = 1, 2, . . . , k represents the number of contributing data subjects to the con-
stitution of the generated morphed image (in our case K = 2), SkPM represents
the comparison score of the Kth contributing subject obtained with P th attempt
(in our case the P th probe image from the dataset) corresponding to M th morph
image and τ represents the threshold value corresponding to FAR = 0.1%.

When compared to the existing metric MMPMR [125], the FMMPMR considers
the number of attempts (that are assessed jointly with contributing subjects) with
regards to each face morphed images and thus reflect the realistic vulnerability
of a FRS. The MMPMR [125] is designed to measure vulnerability only on the
morphed image in a joint set rather than a number of attempts on each morphed
image. Hence, the MMPMR fails to reflect the number of attempts (by contrib-
uting subjects) made against the corresponding morphing image to determine the
vulnerability of FRS.

In this work, the COTS threshold is set at τ = 0.5 based on the NIST FRVT
test reports as recommended by the COTS provider while ArcFace FRS threshold
is set at τ = 0.36 base on the face recognition trials on FRGC-v2 dataset. The
higher the value of the FMMPMR the higher the threat from morphed images and
correspondingly a higher vulnerability of FRS towards morphed images must be
stated.

5.4.3 Results from Vulnerability analysis

In this section, we present the vulnerability analysis using two different Face Re-
cognition Systems (FRS) (i) a Commercial off the Shelf face recognition system
(COTS), Cognitec FaceVACS-SDK Version 9.4.2 1 and (ii) an Open-source deep
learning based FRS (ArcFace). To effectively benchmark the results we also com-
pare two different State-Of-The-Art (SOTA) morph generation techniques such
as landmark based morph generation [14] and MorGAN based morph generation
[15].

Figure 5.4 shows the scatter plot of the comparison scores obtained from two dif-
ferent FRS on images obtained using three different types of morphed face gen-
eration approaches. Table 7.2 indicates the quantitative values of both MMPMR
and FMMPMR computed from two different FRS for all three cases of face morph
generation techniques. Based on the obtained results the key observations made
are listed below:

The following are the main observations from our experiments.

1outcome not necessarily constitutes the best the algorithm can do
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Figure 5.4: Vulnerability analysis using COTS and ArcFace. The scatter plots represents
the comparison scores of morphed face image against two contributing subjects.The red
lines indicate the threshold corresponding to FAR = 0.1%

Table 5.1: Vulnerability analysis FMMPMR(%) and MMPMR(%)

Morphing Type
FMMPMR (%) MMPMR (%)

ArcFace COTS ArcFace COTS
Landmark based 86.04 98.91 95.76 100

Morph[14]
MorGAN[15] 0 0 0 0

StyleGAN 21.1 41.49 39 64.68
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• Landmark based face morph generation indicates a high threat to FRS (ana-
logously high vulnerability of FRS to such images) compared to that of two
other morph generation methods. This can be attributed to the fact that the
landmark based morph generation preserves both texture and geometrical
structure of the morphed image corresponding to it’s contributing subjects.

• The analysis of the experimental results also show that MorGAN based
morph generated images do not pose a severe threat to FRS. The potential
reason for this can be due to low quality generated morph image (64 × 64
pixels). A careful observation of the images also revealed the degradation
of texture and geometry in the generated morphed images. As a caveat, we
note that the MorGAN network is not re-trained (or fine-tuned) on closed
dataset of contributory subjects. The conscious choice was made to invest-
igate the generalisation of GANs for morph face image generation and study
the threats.

• StyleGAN based morph generation method shows relatively higher degree
of threats when compared with MorGAN. Despite higher threats, the images
from proposed approach of morph generation did not compete against the
landmark based methods. An introspection into this indicates the quality dif-
ference of FFHQ dataset versus the employed FRGC-V2 dataset. Specific-
ally, the pre-trained morph generator is trained on FFHQ dataset which has
very different characteristics than FRGC-V2 dataset leading the network to
mimic the characteristics of the FFHQ dataset. Another aspect for the lower
degree of threat is due to lack of geometric correspondence of facial struc-
ture in morphed faces when compared to that of the landmark based face
morphing. The lower geometrical correspondence despite the high visual
quality fails in verification stage from FRS.

• When compared to ArcFace, the COTS indicates a higher vulnerability for
both landmarks and StyleGAN based morph attack detection due to the high
accuracy of verifying the subjects in COTS under different data capture con-
ditions as expected in operational scenario. Thus, COTS while making itself
robust about certain degree of degraded data, also accepts the morphs to a
higher degree.

• Table 7.2 also indicates the distinction between FMMPMR and MMPMR
metric used to quantify the vulnerability. The MMPMR reports high val-
ues in comparison to FMMPMR as it does not account for the number of
attempts per morphing image. Further, we have also measured the Relative
Morph Match Rate (RMMR) [125] that can account for the True Acceptance
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Rate of the FRS. Since both FRS employed in this paper have reached TAR
= 100%, the RMMR is the same as the FMMPMR/MMPMR.

Table 5.2: Quantitative performance of state-of-the-art MAD techniques on StyleGAN
dataset

Morphing Type Algorithms D-EER(%)
BPCER(%) @ APCER
=5(%) =10(%)

HoG-SVM 10.29 17.66 10
Landmark LBP-SVM 15.42 29.15 22.98

based Morph [14] Color Textures 1.57 0.51 0.17
CAN 4.8 4.63 2.4

MorGAN [15]

HoG-SVM 0 0 0
LBP-SVM 0 0 0

Color Textures 0 0 0
CAN 0 0 0

StyleGAN

HoG-SVM 0.04 0 0
LBP-SVM 0.68 0 0

Color Textures 0 0 0
CAN 0.36 0 0

5.4.4 Performance Metrics for MAD

The performance of Morphing Attack Detection (MAD) techniques are presented
using the ISO/IEC 30107-3 metrics [21] such as Attack Presentation Classification
Error Rate (APCER (%)) which defines the proportion of attack images incorrectly
classified as bona fide images and Bona fide Presentation Classification Error Rate
(BPCER (%)) in which bona fide images incorrectly classified as attack images
[21] along with the Detection Equal Error Rate (D-EER (%)).

5.4.5 MAD Detection Performance

In this section, we report the detection performance of MAD techniques to un-
derstand the impact of different types of morphing techniques. We have therefore
selected four different MAD techniques - LBP-SVM [54], HoG-SVM [5], color
denoising [4], Context aggregation Network (CAN) [5] based on the recent bench-
marks. Table 5.2 indicates the MAD performance on all three different morph
generation techniques.

Compared to three different morph generation methods, landmark based technique
indicates a relatively high challenge for the detection techniques, when compared
to that of GAN based techniques. However on the same kind of morph generation
approach, the recent technique based on color texture indicates the lowest error
rates with D-EER(%) of 1.57(%). While it is noted that the GAN generated morphs
are easier to detect, a possible reason can be attributed to the residual noise [138]
that is associated with GAN in generating these morphed images. Even though
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StyleGAN can generate a high quality images with a resolution of 1024×1024
pixels, the inherent noise in the generated morph images make enables to detect
them. This is not the case for landmark based morph images, which do not contain
such characteristic noise.

5.4.6 Limitations and Future Directions

Observing the results from the empirical evaluation of different approaches of
morph generation both for threats to FRS and ability to detect the morphs, we
note certain limitations in the current work as listed below.

• The GAN based morph generation does not impose the landmark corres-
pondence leading to high quality images but not with high facial similarity
in geometrical appearance to contributing subjects. This has lead to lower
threat to FRS in comparison to landmark based morphs. Future works in
this direction can focus on imposing such a constraint in the latent space, in
order to increase the threat to FRS.

• Despite the accuracy of MAD being very high, it can be primarily attributed
to digital pixel level information helping to detect the attacks. A print and
scan of the the same morphed images can further reveal the real challenge in
detecting the morphing attacks as the print-scan cycle looses the pixel level
soft-information in the image.

The future works in this direction will lead to establishing the real threat landscape
on FRS from the GAN generated morphed face images.

5.5 Conclusion
This work investigated the feasibility of generating high quality morph generation
and proposed a new approach using StyleGAN. The proposed approach resulted
in morphed face images with a dimension of 1024×1024 pixels and no visual ar-
tifacts. To indicate the real threat potential to FRS, the morphed face images gen-
erated from proposed StyleGAN were analyzed using a commercial FRS and an
open-source FRS. Further, to provide a fair comparison to earlier works, MorGAN
and Landmark based approaches were benchmarked on the same set of data by
creating a new morphed face database. The set of experiments clearly indicate the
that StyleGAN based morphed face images do show threats to FRS but to a much
lower degree as compared to traditional landmark based morph generation tech-
niques. While detecting the attacks stemming from GAN approaches is relatively
easy in the digital domain, the real challenge of detecting them after the print-scan
process is still not explored. In summary, we answer the question - Can GAN Gen-
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erated Morphs Threaten Face Recognition Equally as Landmark Based Morphs?,
our experimental results indicates with a clear no in digital domain alone.
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Article 2: MIPGAN—
Generating Strong and High
Quality Morphing Attacks Using
Identity Prior Driven GAN

Haoyu Zhang, Sushma Venkatesh, Raghavendra Ramachandra, Kiran Raja, Naser
Damer, and Christoph Busch. MIPGAN—generating strong and high quality morph-
ing attacks using identity prior driven GAN. IEEE Transactions on Biometrics,
Behavior, and Identity Science, 3(3):365–383, 2021

6.1 Abstract
Face morphing attacks target to circumvent Face Recognition Systems (FRS) by
employing face images derived from multiple data subjects (e.g., accomplices and
malicious actors). Morphed images can be verified against contributing data sub-
jects with a reasonable success rate, given they have a high degree of facial re-
semblance. The success of morphing attacks is directly dependent on the quality
of the generated morph images. We present a new approach for generating strong
attacks extending our earlier framework for generating face morphs. We present
a new approach using an Identity Prior Driven Generative Adversarial Network,
which we refer to as MIPGAN (Morphing through Identity Prior driven GAN).
The proposed MIPGAN is derived from the StyleGAN with a newly formulated
loss function exploiting perceptual quality and identity factor to generate a high
quality morphed facial image with minimal artefacts and with high resolution. We
demonstrate the proposed approach’s applicability to generate strong morphing
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attacks by evaluating its vulnerability against both commercial and deep learning
based Face Recognition System (FRS) and demonstrate the success rate of attacks.
Extensive experiments are carried out to assess the FRS’s vulnerability against the
proposed morphed face generation technique on three types of data such as di-
gital images, re-digitized (printed and scanned) images, and compressed images
after re-digitization from newly generated MIPGAN Face Morph Dataset. The ob-
tained results demonstrate that the proposed approach of morph generation poses
a high threat to FRS.

6.2 Introduction

(a) (c) (d)

Proposed method

(b)

MIPGAN-I MIPGAN-II

Figure 6.1: Results from StyleGAN based face morphing [1] and the proposed MIPGAN
(a) Contributing subject 1 (b) StyleGAN[1] (c) Proposed method (d) Contributing subject
2

Face Recognition Systems (FRS) have provided ubiquitous ways of verifying an
identity claim in many applications. FRS have been used in everyday applications
from low-security applications such as smartphone unlocking to high-security ap-
plications such as identity verification in border control processes. Each of the
applications mandate a chosen way of enrolment to FRS where either a supervised
enrolment is carried out (for instance in on-boarding at bank premises) or unsuper-
vised enrolment is requested (on-boarding for banking applications from home).
While it provides a high degree of flexibility and convenience to users to initiate
an enrolment process in an unsupervised manner, this potentially leads to a secur-
ity risk: Without supervision, a data subject enrolling into the FRS can submit a
face image which is manipulated, a printed face image, an image displayed from
an electronic screen (e.g., iPad) or a silicone latex face mask [133]. In order to
mitigate such attacks at the enrolment level, it is therefore essential to have a ro-
bust attack detection mechanism. While a number of works in recent years have
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been proposed on both conducting such attacks and detecting the attacks in a ro-
bust manner for printed attacks, display attacks and mask attacks, in this work we
focus on a new kind of attack referred popularly as Morphing Attack.

Face morphing is the process of combining two or more face images to generate
a single face image that can resemble visually to all the contributing face images
to a greater degree [22]. A good quality morphed face image is also effective in
verifying against all contributing subjects by obtaining a comparison score that
exceeds the pre-determined threshold (i.e., passes through FRS) [22, 83, 54, 38].
While morphing can be conducted using multiple face images of different subjects,
the effectiveness of morphed images is reported when the face images of similar
ethnicity, gender and age group are considered [13, 38, 125]. This is primarily
due to the fact that a morphed image should not only defeat the FRS but should
also provide high visual similarity, in order to convince a human expert in a visual
comparison process.

Face morphing attacks threaten FRS due to the current practices in the ID-document
application process, where the biometric enrolment is carried out in an unsuper-
vised manner in many countries. Countries like the U.K. and New Zealand allow
citizens to upload a digital face image for various applications such as passport
renewal [24] and visa application [23]. The capture process for such images is
unsupervised. In a similar manner, many Asian countries and European countries
(e.g. in The Netherlands [139]) request the applicant to submit a scanned face
image for passport/visa/identity-card applications. Given that the images are cap-
tured and submitted in an unsupervised setting, the applicant has vast opportunities
to upload a morphed image with malicious intent underlining the need for robust
Morphing Attack Detection (MAD) mechanisms.

Proposed method

(a) (b) (c)

Morph using StyleGAN method Morph using MIPGAN-I Morph using MIPGAN-II

Figure 6.2: Details of segmented components in morphs generated by earlier method
based on StyleGAN [1] and proposed MIPGAN (a) StyleGAN [1] (b) MIPGAN-I (c)
MIPGAN-II.

6.3 Related Work
While morphing attacks have been studied in recent years, most of the attacks
are conducted using the morphed images created using facial landmarks-based
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approaches needing high a degree of supervision to first determine the facial land-
marks, thereupon align them and then finally blend them to generate morphs. The
common set of procedures for warping/blending includes Free Form Deformation
(FFD) [60] [61], Deformation by moving least squares [62], deformation based
on mass spring [63], Bayesian framework based morphing [140] and Delaunay
triangulation based morphing [95] [141] [81] [64] [98]. Due to inadvertent arte-
facts caused by pixel/region-based morphing, the images need additional work in
refining the signal to create highly realistic morph images. A set of post pro-
cessing steps are usually included as illustrated in number of works [64] [65]
[66]. Generally, some set of post processing techniques such as image smooth-
ing, image sharpening, edge correction, histogram equalization, manual retouch-
ing, image enhancement to improve the brightness and contrast are used to elim-
inate the artefacts generated during the morphing process. In a parallel direction,
morphed face images can also be generated using landmarks-based methods avail-
able in open-source resources like GIMP/GAP and OpenCV. Morphs generated
using GIMP/GAP technique are more efficient with respect to a good quality of
the resulting image (i.e., less noticeable artefacts) as pixels are aligned manually.
Despite the minimal amount of effort needed for creating morphs using such ap-
proaches, a significant amount of effort needs to be dedicated to correcting arte-
facts. Additionally, commercial solutions like Face Fusion [142] and FantaMorph
[143] can also generate good quality morphed images with limited manual inter-
vention. Although some steps can be excluded in creating the morphs, it is very
critical to meet the face image quality standards laid out by the International Civil
Aviation Organization (ICAO) [144][130] for electronic Machine Readable Travel
Document (eMRTD) and deployment of biometric identification applications.

6.3.1 GAN Based Face Morph Generation

In an attempt to overcome the cumbersome efforts of manually creating (semi-
automated) morphed images, a fully automated approach using a Generative Ad-
versarial Network (GAN) was proposed by Damer et al.[15]. Unlike the supervi-
sion required in the mark-up of landmarks and aligning the face images in a (par-
tially) manual process, GAN-based techniques synthesise morphed images directly
by merging two facial images in the latent space. In the work by Damer et al.[15],
the proposed MorGAN architecture for morph generation basically employed a
generator constituting encoders, decoders and a discriminator. The generator was
trained to generate images with the dimension 64 × 64 pixels which is a key lim-
iting factor of the attack, as most commercial FRS will reject images that do not
meet the ICAO standard that requires a minimum Inter-Eye Distance (IED) of 90
pixels. The empirical evaluation of generated morph images using MorGAN in a
vulnerability analysis against two commercial FRS indicated that those MorGAN
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morphs fail to meet both quality standards and the verification threshold of the
FRS [1]. Motivated to address the deficiency of the MorGAN architecture, in our
recent work [1] 1 we proposed an approach based on the StyleGAN architecture
[136] to increase the spatial dimension to 1024 × 1024 and thus to improve the
face image quality. Unlike the previous approach of MorGAN [15], StyleGAN
[1] achieves better spatial resolution by embedding the images in the intermediate
latent space. With the increased spatial dimension of resulting morphed images
from our recently proposed architecture, we not only demonstrated that the im-
ages meet quality standards but also have a reasonable success rate when attacking
commercial FRS [1].

6.3.2 Limitations of GAN Based Face Morph Generation and Our Contribu-
tions

While our earlier work [1] indicated that better GAN architectures could result
in superior quality morphs and could attack an FRS in general, we also acknow-
ledge the limited threats that exist for Commercial-Off-The-Shelf (COTS) FRS, as
merely a subset of morphed images was accepted. Only approximately 50% of the
generated morph images were verified successfully against probe images from a
contributing subject. Thus the empirical evaluation in our earlier work has shown
that the attack was yet not very effective [1] for a COTS FRS[8] and an open-
source FRS based on ArcFace [10]. We must state that up to now FRS are not very
vulnerable to GAN-based morphing attacks unlike to landmarks-based morphing
attacks. With a clear introspection into this aspect, we notice that the resulting
morphed images from our earlier work [1] does not retain a high degree of facial
similarity to both contributing subjects. With lower similarity to contributing sub-
jects in terms of facial structures, the FRS do not attribute a high comparison score,
as anticipated. In other words, the missing enforcement of identity information of
contributing subjects will lead to a high visual quality facial image but with lower
face similarity to contributing face characteristics.

In an effort to make the attacks stronger such that both subjects can be verified
with a good success rate, in this work, we extend our previous architecture to gen-
erate morphs by including the identity priors before the generation of morphed
faces. We now refer to this approach as MIPGAN (Morphing through Identity
Prior driven GAN). We propose two variants of our approach named as MIPGAN-
I and MIPGAN-II based on the employed GAN being StyleGAN or StyleGAN2
respectively [136, 138]. With the inclusion of a new loss function in our pro-
posed architecture, we increase the attack success rate against commercial-off-the-
shelf (COTS) FRS and deep learning based FRS. Figure 6.1 shows the example of

1The preliminary work results were published at IWBF-2020 in April, 2020.
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morphed face images generated using proposed MIPGAN along with outputs of
both the variants. To further achieve superior quality face morphs, we also cus-
tomize the newly designed loss function to account for ghosting and blurring arte-
facts in an end-to-end manner with no human or manual intervention eliminating
the need for a high degree of interaction. As noted in Figure 6.2, the results from
MIPGAN-I and MIPGAN-II is more coherent in retaining structural similarity as
compared to our earlier architecture [1]. With the updated architecture to generate
high-quality morphs which preserve both identity information and structural cor-
respondence, we evaluate the applicability in creating stronger attacks by creating a
large-scale dataset of morphed images by employing the face images derived from
the FRGC-V2 face database [33]. The created dataset of 1270 bona fide images
and 2500 morphed images is first evaluated to measure the attack success rate by
verifying the morphed images against the contributing subjects using a commer-
cial FRS from Cognitec [8]. In addition to measuring the attack success rate for
digital images, we also extend our work by printing and scanning (re-digitizing)
the dataset. We check the consistency of the attack success rate, unlike our earlier
work which was limited to an investigation on digital images alone [1]. We also
include the experiments on assessing the impact of compression (down to 15kb
following ICAO guidelines) of printed and scanned face images that simulate the
real-life e-passport application scenario. The key motivation to extend our work in
this direction is, to mimic the passport application process that is operated in many
European countries and Asian countries, which all accept printed-and-scanned fa-
cial images in the application process for an identity document (e.g. passports).

With the extensive experimental results indicating a highly satisfactory attack suc-
cess rate, we also evaluate a set of MAD algorithms to benchmark the detection
capabilities. To this extent, we evaluate two state-of-the-art MAD approaches on
digital morphed images, re-digitized and compressed morphed images after re-
digitizing. Thus, we comprehensively cover the potential morphing attacks in the
digital domain and the re-digitized domain. While we note the earlier works [1]
arguing that attacks in the digital domain can be detected by studying the cues
such as residual noise in morphing [4], patterns of noise from morphed images,
histogram features of textures or the deep features [83], we also investigate the
MAD capabilities for re-digitized images which do not exhibit the similar features
(residual noise) as the print-scan process eliminates the digital cues and presents
another set of variations. Specifically, given the nature of the dataset in which we
have only a single suspected morphed image, for which we must determine either
the morph or the bona fide class, we resort to Single Image based MAD (S-MAD)
approaches using two recent but robust approaches using hybrid and ensemble fea-
tures [91, 4, 6, 145].
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Figure 6.3: Block diagram of the proposed MIPGAN for generating high quality morphed
face images

We therefore present a summary of contributions of this work as listed below:

• We present a novel approach of generating morphed face images through
GAN architecture with enforced identity priors and a customized novel loss
function to generate highly realistic images which we refer as MIPGAN
(Morphing through Identity Prior driven GAN). We present two variants of
the proposed approach for generating attacks with a high success rate.

• The proposed approach (both variants) is benchmarked to measure the at-
tack success rate by verifying COTS and deep learning based FRS through
studying the vulnerability using a newly generated dataset from our pro-
posed architecture which is referred as MIPGAN Face Morph Dataset.

• Human observer analysis for detecting morphs generated by the proposed
and existing morphing attack methods is presented.

• Analysis of the perceptual quality metrics to illustrate the visual quality of
the generated morph images is presented.

• Extensive experiments on three different data types such as (a) digital morphed
images (b) print-scan morphed image (c) print-scan morphed images with
compression are presented to cover the full spectrum of passport application
process under morphing attacks.

• The generated images are also benchmarked against the existing MAD ap-
proaches both in digital form and the re-digitized form to provide the in-
sights on detection challenges of SOTA approaches. We also present a gen-
eralizability study on MAD schemes by training one kind of morph genera-
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tion and testing on a different kind of morph generation approach to indicate
directions to future works.

In the rest of the paper, Section 6.4 describes the new architecture along with
the newly designed loss function to generate high-quality morphs. Section 6.5
provides the details on the quantitative experiments indicating the vulnerability of
FRS and the detection challenge. With the set of remarks and future works in this
direction, we draw the conclusion in Section 6.7.

6.4 Proposed Morphed Face Generation
Figure 6.3 presents the block diagram of the proposed morphed face image gen-
eration using MIPGAN. The proposed method is based on the end-to-end optim-
ization using a new loss function that can preserve the identity of the generated
morphed face image through enforced identity priors. The proposed MIPGAN
framework is designed independently on two different GAN models based on Styl-
eGAN [136] and StyleGAN2 [138] model. We refer to the proposed scheme with
StyleGAN as MIPGAN-I and with StyleGAN2 as MIPGAN-II respectively. Given
the face images from the accomplice (I1) (contributing subject 1) and the malicious
(I2) (contributing subject 2) data subjects, we predict the corresponding latent vec-
tors L

′
1 and L

′
2 in the first step. In this work, we have employed the open-source

pre-trained prediction models trained to predict the corresponding latent vector
given an input image. Hence, L′

1 and L′
2 are predictions from the final output

layer of the model, which is further reshaped. Since MIPGAN-I and MIPGAN-II
are based on pre-trained StyleGAN [136] and StyleGAN2 [138] model respect-
ively, we used two different open-source pre-trained models for prediction. Both
of the prediction models employ ResNet50 [146] as backbone. The model for
MIPGAN-I (StyleGAN) uses one convolution layer and two tree-connected layers
[147] to map the output of ResNet50 into the final latent vector with the size of
(18, 512). In comparison, the model for MIPGAN-II (StyleGAN2) just uses one
fully-connected layer to achieve the mapping. The predicted latent vectors thus
provide the initialization for the morphed face generation that is obtained using a
weighted linear average of L

′
1 and L

′
2 as follows:

L
′
M =

w1 ∗ L
′
1 + w2 ∗ L

′
2

2
, (6.1)

where w1 and w2 indicate the weights, which we have chosen to be w1 = w2 = 1.
Equal weights are selected as shown in earlier work [3] where the morphing images
generated with equal weights pose higher vulnerability to COTS FRS. Finally, L

′
M

is passed through the synthesis network (independently from StyleGAN [136] and
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StyleGAN2 [138] model) to generate the corresponding morphed image I
′
M that

has a resolution of 1024 × 1024 pixels. The generated morphed face image I
′
M

is then optimised using the proposed loss function to generate the high quality
morphed face image. In the following section, we discuss the loss function to
optimism the latent vector obtained using Equation 6.1.

6.4.1 Proposed Loss Function

The proposed loss function is based on both perceptual fidelity, quality and iden-
tity factors that can facilitate high-quality face morph generation. The common
issue with the GAN-based morph generation is the presence of ghost artefacts and
blurring issues. We employ the perceptual loss with multiple layers to eliminate
such effects as given by Eqn 6.2.

LossPerceptual =
1

2

∑
i

1

Ni
||Fi(I1)− Fi(I

′
M )||22

+
1

2

∑
i

1

Ni
||Fi(I2)− Fi(I

′
M )||22,

(6.2)

whereNi denotes the number of features in layer i and Fi denotes features in layer
i of the perceptual network (VGG-16 in our case). For the combination of percep-
tual layers, we choose conv11, conv12, conv22, conv33 inspired by [148]. Com-
pared with the original combination of layers conv12, conv22, conv33, conv43
[149], our design measures low-level features instead of high-level features like
style of an image and is closer to our goal of morphing faces with high quality.

The main goal of this paper is to generate the morphed face images that can signi-
ficantly attack FRS. In order to achieve this, we have introduced the identity loss
function based on the feedback from FRS. We employ Arcface [10] - a deep learn-
ing based FRS because of its robust and accurate performance to obtain feedback
on generated morphed face images. Specifically, we employ a pre-trained em-
bedding extractor with ResNet50 as the backbone to extract the unit embedding
vectors and define the identity loss by their cosine distance to improve the morph
generation process as given by Eqn 6.3.

LossIdentity =
(1− v⃗1·v⃗M

∥v⃗1∥∥v⃗M∥) + (1− v⃗2·v⃗M
∥v⃗2∥∥v⃗M∥)

2
, (6.3)

where v⃗1, v⃗2, v⃗M respectively denotes the embedding vectors which are extracted
from image I1, I2, I

′
M respectively.

To further prove the loss function is differential for the morphed embedding vec-
tor v⃗M , we define xd, yd, zd to be the value of vector v⃗1, v⃗2, v⃗M in dimension d
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respectively and d′ ̸= d to be other dimensions except d. The expanded identity
loss function and its partial derivative are:

LossIdentity =
(1−

∑
d xdzd

∥v⃗1∥∥v⃗M∥) + (1−
∑

d ydzd
∥v⃗2∥∥v⃗M∥)

2
, (6.4)

∂LossIdentity
∂zd

= 1− xd
2∥v⃗1∥

∂

∂zd
(

zd√
z2d +

∑
d′ ̸=d z

2
d′

)

− yd
2∥v⃗2∥

∂

∂zd
(

zd√
z2d +

∑
d′ ̸=d z

2
d′

),

(6.5)

∂

∂zd
(

zd√
z2d +

∑
d′ ̸=d z

2
d′

) =
1√

z2d +
∑

d′ ̸=d z
2
d′

+
2z2d

−2(z2d +
∑

d′ ̸=d z
2
d′)

3
2

=

∑
d′ ̸=d z

2
d′

(z2d +
∑

d′ ̸=d z
2
d′)

3
2

,

∂LossIdentity
∂zd

= 1−
( xd
2∥v⃗1∥ + yd

2∥v⃗2∥)
∑

d′ ̸=d z
2
d′

(z2d +
∑

d′ ̸=d z
2
d′)

3
2

. (6.6)

For any value zd = z′d, it is obvious that:

lim
∆zd→0

∂LossIdentity(z
′
d +∆zd)

∂zd

= lim
∆zd→0

(1−
( xd
2∥v⃗1∥ + yd

2∥v⃗2∥)
∑

d′ ̸=d z
2
d′

((z′d +∆zd)2 +
∑

d′ ̸=d z
2
d′)

3
2

)

= 1−
( xd
2∥v⃗1∥ + yd

2∥v⃗2∥)
∑

d′ ̸=d z
2
d′

(z
′2
d +

∑
d′ ̸=d z

2
d′)

3
2

=
∂LossIdentity(z

′
d)

∂zd
.

Hence, for any dimension of d, the partial derivative of the identity loss function
is continuous.
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It is interesting to note that the identity loss based on the Arcface feature extractor
model is trained to maximize the face class separability and thus is more sensitive
to face attributes. Hence, only optimising the identity loss cannot achieve the same
reconstruction performance as the perceptual loss but applying it on the face region
can effectively control the generated attributes to be recognized as both subjects.

To solve the imbalance between different subjects, we introduce an identity differ-
ence loss as given by Eqn 6.7.

LossID−Diff = |(1− v⃗1 · v⃗M
∥v⃗1∥∥v⃗M∥

)− (1− v⃗2 · v⃗M
∥v⃗2∥∥v⃗M∥

)|. (6.7)

With the idea of the Lagrange multiplier, it adds a constraint to the optimization
process to force the cosine distance between morph embedding and each of the
two reference embeddings to be the same. Since LossID−Diff is usually small
with a value less than 1, we apply L1 loss on the difference of two cosine distance
terms to avoid the vanishing gradient problem.

Finally, in order to improve the structural visibility of the generated morphed
face image, we also apply the Multi-Scale Structural Similarity (MS-SSIM) loss
LMS−SSIM to measure the similarity in structure [150]. Given two discrete non-
negative signals (images in our case) x and y, luminance, contrast and structure
comparison measures were given by l, c, s as computed using Eqn 6.8.

l(x, y) =
(2µx2µy + (K1L)

2)

µ2x + µ2y + (K1L)2
,

c(x, y) =
(2σx2σy + (K2L)

2)

σ2x + σ2y + (K2L)2
,

s(x, y) =
(σxy +

(K2L)2

2 )

σxσy +
(K2L)2

2

,

(6.8)
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Figure 6.4: Qualitative results of proposed MIPGAN together with existing GAN
based face morph generation methods (a) Landmark-I [13] (b) Landmark-II [14] (c)
StyleGAN[1] (d) MorGAN [15] (e) Proposed method
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where µx, σx and σxy denotes the mean of x, the variance of x and the covariance
of x and y respectively. L is the dynamic range of the signal andK1 ≪ 1,K2 ≪ 1
are two constant scalars. The MSSSIM loss LMS−SSIM is further defined by
Eqn 6.9.

MSSSIM(x, y) =[lJ(x, y)]
αJ ·

J∏
j=1

[cj(x, y)]
βj [sj(x, y)]

γj ,

LMS−SSIM =
1

2
(1−MSSSIM(I1, I

′
M ))

+
1

2
(1−MSSSIM(I2, I

′
M )),

(6.9)

where j = 1, 2, . . . , J represents the jth scale and αj , βj and γj are the factors of
relative importance. As suggested in [150], we also set αj = βj = γj ,

∑J
j=1 γj =

1 and use the resulting parameters β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 =
γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 0.1333.

Thus, the proposed loss function can be formulated as:

Loss = λ1LossPerceptual + λ2LossIdentity

+ λ3LossMS−SSIM + λ4LossID−Diff ,
(6.10)

where λ1, λ2, λ3 and λ4 are the hyper-parameters that are set to achieve both
stable and generalized convergence. In this work, we empirically set λ1 = 0.0002,
λ2 = 10, λ3 = 1 and λ4 = 1.

6.4.2 Training and Optimization

The training and optimization of the proposed method are carried out on Tensor-
flow version 1.13 and version 1.14 for StyleGAN and StyleGAN2, respectively.
The optimization is carried out using NVIDIA GTX 1070 8 GB GPU with CUDA
version 10.0 and CUDNN version 7.5 and NVIDIA Tesla P100 PCIE 16 GB
GPU. The Adam optimizer with hyper-parameters β1 = 0.9, β2 = 0.999 and
ϵ = 1 × 10−8 as recommended in the original paper [151] is employed on this
work. The list of morphing pairs is generated in advance with careful consider-
ations to gender. During each optimization process of 150 iterations, the learn-
ing rate is initially set to η = 0.03 with an exponential decay per 6 iterations of
ηnew = η ∗ 0.95.

Figure 6.4 illustrates the qualitative results of the proposed MIPGAN framework
based on StyleGAN and StyleGAN2. Further, the qualitative results of the exist-
ing methods based on StyleGAN [1] and MorGAN [15] are provided alongside
for the convenience of the reader in the same figure. It is interesting to note that
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the proposed MIPGAN generated face morph images indicate both perceptual and
geometric features correspondence to both contributing subjects (for instance, ma-
licious actor and accomplice).

6.5 Experiments and results
This section presents and discusses the experimental protocols, datasets, and quant-
itative results of the proposed face morphing technique. The images generated
from the proposed MIPGAN-I and MIPGAN-II architectures are compared with
the state-of-the-art techniques based on both facial landmarks [13] and StyleGAN
based morph generation [1]. The effectiveness of the face morphing generation
is quantitatively evaluated by benchmarking the vulnerability of the COTS FRS
and deep learning based FRS for generated morphed face images. Further, we
also evaluate the morphing attack detection potential by evaluating the generated
morphed face images using the most recent and robust MAD techniques.
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Figure 6.5: Illustration of morphing in digital, print-scan and print-scan compression data
(a) Contributing subject 1 (b) Landmark-I [13] (c) Landmark-II [14] (d) StyleGAN [1] (e)
MIPGAN-I (f) MIPGAN-II (g) Contributing subject 2

6.5.1 MIPGAN Face Morph Dataset

We employ the face images from FRGC-V2 face database [33] to generate the MI-
PGAN Face Morph Dataset consisting of morphed face images using both state-
of-the-art and the proposed MIPGAN technique. We have selected 140 unique
data subjects from the FRGC dataset by considering the high-quality face im-
ages captured in constrained conditions that resemble the passport image quality.
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Among 140 data subjects, 47 data subjects are female and 93 data subjects are
male. Each data subject has a variable size of 7-21 additional captured samples,
resulting for the whole dataset to have 1270 samples corresponding to 140 data
subjects. We employ three different face morph generation techniques based on fa-
cial landmarks constrained by Delaunay triangulation with blending [13] we term
this as Landmarks-I, landmarks-based techniques with automatic post processing
and color equalisation [14], we term this as Landmarks-II and StyleGAN [1]. We
do not consider MorGAN [15] [72] based face morph generation as it was earlier
demonstrated that MorGAN does not generate ICAO compliant images and thus
makes COTS FRS not vulnerable [1]. All the samples are pre-processed to meet
the ICAO standards [130] and morphing is carried out by following the guidelines
outlined earlier [13] [125], i.e, careful selection of subjects based on gender and
similarity score using a FRS, in order to have realistic attacks.

To effectively evaluate the proposed method’s quantitative performance and the ex-
isting techniques, we create three different types of attacks from morphed images,
such as Digital morphed images: Morphed face images that are obtained from
the morph generation process in the digital domain. Print-scanned morphed im-
ages: The digital morphed and bona fide images are printed and then scanned (or
re-digitized) to simulate the passport application process. We have employed a
DNP-DS820 [152] dye-sublimation photo printer to generate the prints of the di-
gital morphed and bona fide face images in this work. The use of a dye-sublimation
photo printer guarantees high-quality photo printing (generally used for a passport
application) and makes sure that printed photos are free from dotted patterns (or
individual droplets of ink) that are resulting from the printing process of conven-
tional printers. Each of these printed photos is then scanned (or re-digitized) using
the Canon office scanner to have 300 dpi as suggested in ICAO standards [130].
Print-scanned compressed morphed images: The printed and scanned images
(both morphed and bona fide) are compressed to have a size of 15kb that makes
it suitable to store in the e-passport. This process reflects the real-life scenario of
face image storage in passport systems. Thus, the overall dataset has 2500 × 3
(types of morph data) × 4 types of morph generation technique = 30, 000 morph
samples and 1270 × 3 (types of morph data) × 4 types of morph generation tech-
nique = 15, 240 bona fide samples. Figure 6.5 illustrates the three data types of
attacks that are used to evaluate the effectiveness of the proposed method and the
existing methods of face morph generation. It is evident that the visual quality of
the images vary largely for different attack types (for instance, the digital data at-
tack indicates the best quality and print-scan with compression indicates the lowest
quality).
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Table 6.1: Quantitative evaluation of vulnerability of COTS Cognitec-FRS [8] from
various morph generation approaches. Note that, since FNMR = 0 @ FMR = 0.1%
for Cognitec-FRS [8] following Eq. 11.2 and 11.3, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table
above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)
Digital Print-Scan Print-Scan with compression
Male Male Male

Landmark-I [13] 100 98.77 97.23 97.34 97.38 96.95
Landmark-II [14] 87.29 76.86 90.32 78.23 88.78 77.14

StyleGAN [1] 63.51 41.27 60.59 39.51 57.12 35.05
MIPGAN-I 93.35 83.08 91.72 80.55 91.07 77.89
MIPGAN-II 92.22 80.45 90.74 77.67 89.16 73.47

Female Female Female
Landmark-I [13] 100 99.26 99.37 99.02 99.78 99.24
Landmark-II [14] 94.28 88.67 98.22 91.48 98.16 90.97

StyleGAN [1] 68.75 42.62 66.45 42.01 66.45 40.49
MIPGAN-I 98.57 93.11 98.16 91.22 96.12 90.52
MIPGAN-II 95.91 87.66 95.30 86.26 94.69 84.47

Combined Combined Combined
Landmark-I [13] 100 98.84 97.64 97.60 97.84 97.30
Landmark-II [14] 88.65 78.72 91.85 81.56 90.61 79.33

StyleGAN [1] 64.68 41.49 61.72 39.90 58.92 35.89
MIPGAN-I 94.36 84.65 92.97 82.23 92.29 79.88
MIPGAN-II 92.93 81.59 80.56 79.02 90.24 75.20

Table 6.2: Quantitative evaluation of vulnerability of VGGFace2 [9] FRS from various
morph generation approaches. Note that, since FNMR = 0 @ FMR = 0.1% for VGGFace2
[9] following Eq. 11.2 and 11.3, the value of RMMR is equal to MMPMR/FMMPMR.
Therefore, we have not entered RMMR separately in the Table above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)
Digital Print-Scan Print-Scan with compression
Male Male Male

Landmark-I [13] 85.59 70.80 83.91 68.20 83.86 67.73
Landmark-II [14] 63.27 46.55 63.12 46.37 63.72 46.80

StyleGAN [1] 61.19 41.01 61.68 41.43 61.68 41.04
MIPGAN-I 76.96 59.24 76.96 57.16 76.07 57.31
MIPGAN-II 75.73 56.97 72.87 54.57 72.87 54.43

Female Female Female
Landmark-I [13] 96.03 83.55 93.95 82.02 93.32 81.39
Landmark-II [14] 87.76 71.85 89.39 73.82 89.80 74.27

StyleGAN [1] 80.42 59.19 79.79 59.10 78.54 58.83
MIPGAN-I 90.41 76.68 89.39 75.95 89.18 75.85
MIPGAN-II 88.98 75.42 87.96 74.54 88.37 74.90

Combined Combined Combined
Landmark-I [13] 87.64 72.82 85.87 70.39 85.71 69.90
Landmark-II [14] 68.07 50.64 68.27 50.80 68.86 51.28

StyleGAN [1] 64.92 43.91 65.20 44.25 64.96 43.88
MIPGAN-I 79.61 62.06 79.41 60.19 78.66 60.30
MIPGAN-II 78.34 59.95 75.84 57.80 75.92 57.73
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Table 6.3: Quantitative evaluation of vulnerability of Arcface [10] FRS from various
morph generation approaches. Note that, since FNMR = 0 @ FMR = 0.1% for Arcface
[10] following Eq. 11.2 and 11.3, the value of RMMR is equal to MMPMR/FMMPMR.
Therefore, we have not entered RMMR separately in the Table above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)
Digital Print-Scan Print-Scan with compression
Male Male Male

Landmark-I [13] 99.60 98.19 97.38 96.88 97.33 96.70
Landmark-II [14] 91.09 84.62 93.45 86.42 93.60 86.02

StyleGAN[1] 70.99 55.76 73.86 58.67 73.32 58.26
MIPGAN-I 93.70 85.17 92.76 84.39 93.01 84.41
MIPGAN-II 93.65 86.45 93.55 85.30 93.25 85.06

Female Female Female
Landmark-I [13] 99.79 97.01 99.79 96.91 99.79 97.01
Landmark-II [14] 94.49 86.71 97.76 89.76 98.16 89.17

StyleGAN [1] 80.21 63.22 82.71 65.70 82.71 66.05
MIPGAN-I 97.35 89.53 97.96 91.02 97.76 91.02
MIPGAN-II 96.33 89.47 95.92 89.33 96.12 89.42

Combined Combined Combined
Landmark-I [13] 99.68 98.00 97.88 96.89 97.84 96.75
Landmark-II [14] 91.79 84.96 94.33 86.96 94.53 86.54

StyleGAN [1] 72.80 56.95 75.60 59.79 75.16 59.51
MIPGAN-I 94.45 85.94 93.81 85.46 93.97 85.48
MIPGAN-II 94.21 86.94 94.05 85.95 93.85 85.77

Table 6.4: Quantitative evaluation of vulnerability of COTS Neurotec [11] FRS from
various morph generation approaches. Note that, since FNMR = 0 @ FMR = 0.1%
for COTS Neurotec [11] following Eq. 11.2 and 11.3, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table
above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)
Digital Print-Scan Print-Scan with compression
Male Male Male

Landmark-I [13] 99.40 94.70 95.45 83.71 93.23 77.16
Landmark-II [14] 88.99 68.51 88.92 63.31 80.62 53.63

StyleGAN [1] 52.26 26.47 31.88 12.98 31.60 12.15
MIPGAN-I 58.18 32.56 32.59 25.33 57.6 53.52
MIPGAN-II 53.16 29.65 47.41 20.71 50.73 23.72

Female Female Female
Landmark-I [13] 100 99.25 100 98.11 98.74 91.18
Landmark-II [14] 94.69 85.96 97.49 84.92 95.40 78.89

StyleGAN [1] 70.60 50.13 55.20 25.72 52.39 26.19
MIPGAN-I 80.98 56.29 73.06 46.87 77.89 30.50
MIPGAN-II 74.79 49.45 69.59 42.17 70.73 46.18

Combined Combined Combined
Landmark-I [13] 99.51 95.37 96.32 85.43 94.30 79.25
Landmark-II [14] 90.16 71.17 90.59 66.67 83.50 57.38

StyleGAN [1] 55.06 29.39 36.36 14.83 35.62 14.28
MIPGAN-I 63.22 35.73 40.46 28.71 61.66 34.14
MIPGAN-II 57.47 31.45 51.72 23.54 54.94 27.46
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Table 6.5: Quantitative evaluation of vulnerability of LCNN-29 [12] FRS from various
morph generation approaches. Note that, since FNMR = 0 @ FMR = 0.1% for LCNN-29
[12] following Eq. 11.2 and 11.3, the value of RMMR is equal to MMPMR/FMMPMR.
Therefore, we have not entered RMMR separately in the Table above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)
Digital Print-Scan Print-Scan with compression
Male Male Male

Landmark-I [13] 96.63 89.28 95.25 89.36 94.80 88.62
Landmark-II [14] 75.09 60.72 74.64 57.81 82.43 68.32

StyleGAN [1] 83.12 66.44 85.20 69.54 84.85 68.88
MIPGAN-I 95.13 86.35 94.04 84.39 94.09 84.30
MIPGAN-II 94.93 85.14 93.94 83.14 93.75 82.63

Female Female Female
Landmark-I [13] 99.16 95.00 98.75 94.26 98.96 94.49
Landmark-II [14] 92.04 82.28 94.69 82.85 95.92 86.98

StyleGAN [1] 93.33 80.08 92.92 83.06 92.92 82.76
MIPGAN-I 97.76 92.27 96.94 91.59 96.94 91.44
MIPGAN-II 95.71 90.72 95.31 89.85 95.71 89.58

Combined Combined Combined
Landmark-I [13] 97.16 90.19 95.96 90.14 95.64 89.55
Landmark-II [14] 78.42 64.20 78.58 61.85 85.11 71.36

StyleGAN [1] 85.12 68.61 86.72 71.69 86.44 71.09
MIPGAN-I 95.68 87.30 94.64 85.55 94.68 85.45
MIPGAN-II 95.12 86.05 94.25 84.23 94.17 83.75

6.5.2 Vulnerability Analysis

This section presents the vulnerability analysis of the proposed morphed face gen-
eration techniques to quantify the impact of our efficient attacks on FRS. We
quantify the attack success for five different FRS including two Commercial-off-
the-Shelf (COTS) FRS and three deep-learning-based open-source FRS. The COTS
FRS include the Cognitec FRS (Version 9.4.2) [8] 2 and Neurotechnology (Version
10) [11] and the set of open-source FRS includes Arcface [10], VGGFace [9] and
LCNN-29 [12] . The operational threshold for all 5 FRS is set at False Match Rate
(FMR) of 0.1% following the guidelines of Frontex [126].

The vulnerability is assessed using two metrics Mated Morphed Presentation Match
Rate (MMPMR) [125] and Fully Mated Morphed Presentation Match Rate (FM-
MPMR) [1] based on the threshold provided by Cognitec FRS. For a given morph
image MI1,2 obtained using two subjects, we compute the vulnerability by en-
rolling MI1,2 and verifying it against probe images from the corresponding con-
tributing subjects I1 and I2. The obtained comparison scores S1 and S2 for both
probe images I1 and I2 against the morphed image MI1,2 indicates the threat to
FRS, if and only if both S1 and S2 cross the actual verification threshold at FMR
= 0.1%. The corresponding metric FMMPMR [1] [3] is therefore computed as:

FMMPMR =
1

P

∑
M,P

(S1PM > τ)&&(S2PM > τ) . . .&&(SkPM > τ), (6.11)

2Outcome not necessarily constitutes the best the algorithm can do
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where P = 1, 2, . . . , p represent the number of attempts made by presenting
all probe images of the contributing subjects against the M th morphed image,
K = 1, 2, . . . , k represents the number of composite image constitute to gener-
ate the morphed image (in our case K = 2), SkPM represents the comparison
score of the Kth contributing subject obtained with P th attempt corresponding to
M th morphed image and τ represents the threshold value corresponding to FMR
= 0.1%. When compared to MMPMR, the FMMPMR will consider both pair-
wise comparison of contributory subjects and the number of attempts. In order to
also establish the relationship with respect to earlier metrics, we also report the
vulnerability using MMPMR [125].

Further, to effectively analyse the vulnerability, we also present the results using
Relative Morph Match Rate (RMMR) defined as follows [125]:

RMMR(τ)MMPMR =1 + (MMPMR(τ))

− [1− FNMR(τ)]
(6.12)

RMMR(τ)FMMPMR =1 + (FMMPMR(τ))

− [1− FNMR(τ)]
(6.13)

Where, FNMR indicates the False Reject Rate (FNMR) of the FRS under con-
sideration obtained at the threshold τ . In this work, τ represents the value cor-
responding to FMR = 0.1%. Since we have evaluated 5 different FRS systems,
we have computed FNMR corresponding to these FRS to calculate the RMMR.
Note that, in Equation 11.2 and 11.3 if FNMR = 0 then RMMR corresponds to
MMPMR/FMMPMR.

The obtained success rate, or alternatively the vulnerability of FRS is provided
in Table 6.1, 6.2, 6.3, 6.4 and 6.5 corresponding to to Cognitec [8], VGGFace
[9], Arcface [10], Neurotechnology (Version 10) [11] and LCNN-29 [12] respect-
ively. The vulnerability analysis is carried out on 5 different morph generation
methods that include facial landmarks (Landmarks-I) with image smoothing as the
post-processing operation [13], Facial landmarks (Landmarks-II) with automatic
image retouching and colour equalisation [14], existing GAN based face morph-
ing method based on StyleGAN [1] and proposed MIPGAN variants (MIPGAN-I
and MIPGAN-II). Based on the obtained results, the following are the concrete
observations:

• The FNMR corresponding to five different FRS is equal to 0. Therefore, the
value of the RMMR is equal to MMPMR or FMMPMR. This indicates that
the FRS systems are accurate on our face datasets employed in this work.



84 Article 2: MIPGAN— Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN

• Among the five FRS, the highest vulnerability is noted for Arcface [10],
which is vulnerable to all five kinds of face morphing attack methods.

• Among COTS FRS, the Cognitec FRS indicates a higher vulnerability on all
five types of face morphing attack methods compared to Neurotechnology
FRS.

• Among five different morph generation methods, Landmark-I indicates the
highest vulnerability on all five other FRS.

• The proposed face morphing methods MIPGAN-I and MIPGAN-II con-
sistently indicate the highest vulnerability, when compared to the existing
method based on StyleGAN [1]. This indicates the high quality of morphs
generated using the proposed MIPGAN-I and MIPGAN-II methods.

• The proposed MIPGAN-I and MIPGAN-II methods also indicate a higher
vulnerability than the Landmark-II technique for morph generation with four
different FRS.

• Among the two different metrics (MMPMR and FMMPMR), the proposed
FMMPMR indicates a lower vulnerability than MMPMR consistently as
FMMPMR imposes a strict selection of attack images, unlike MMPMR.

• MIPGAN-I based morphed images show a marginally better performance in
attacking FRS than images generated by MIPGAN-II.

6.5.3 Perceptual Image Quality Analysis

This section presents quantitative results of the proposed morphed image genera-
tion techniques using the perceptual image quality metrics PSNR and SSIM. Both
of these metrics are computed based on the reference image. Morphed face images
are generated based on parent face images from two contributory data subjects.
Therefore, we used the parent face images from both contributory data subjects as
the reference image against which the given morphed image is assessed and we
average the obtained image quality scores for both parent images. Table 6.6 indic-
ates the quantitative results of both PSNR and SSIM on four different types of face
morph generation mechanism in the digital format. Based on the obtained results,
it can be observed that:

• There is little deviation in the perceptual image quality metrics computed on
all four different types of face morph generation mechanisms.
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Figure 6.6: Box plots of PSNR values computed from different face morph generation
methods (digital version)
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Figure 6.7: Box plots of SSIM values computed from different face morph generation
methods (digital version)
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• The proposed MIPGAN-I and MIPGAN-II methods indicate a slightly better
image quality when compared to the StyleGAN [1] based face morphing
method.

• The proposed MIPGAN-I and facial landmarks-based methods [14] indicate
a similar image quality.

• Figure 6.6 and 6.7 indicate the box plots of the PSNR and SSIM quality
scores. These results further indicate that the perceptual quality of the pro-
posed MIPGAN-I and MIPGAN-II is superior to the existing state-of-the-art
method based on StyleGAN [1].

Table 6.6: Morph image quality analysis using PSNR and SSIM with 95% confidence
interval

Morph generation Methods PSNR SSIM
Landmark-I [13] 21.1111± 0.0415 0.7609±0.0009
Landmark-II [14] 20.2737±0.0523 0.7363±0.0010

StyleGAN [1] 20.1347±0.0383 0.7199±0.0008
MIPGAN-I 21.0133±0.0409 0.7573±0.0008
MIPGAN-II 20.8306±0.0409 0.7586±0.0008

6.5.4 Human Observer Analysis

(a) (b)

Figure 6.8: (a)Example of screen shot used for human observer study (b) Quantitative
results

In this section, we discuss the quantitative detection performance of human obser-
vations regarding morphed face images, which are generated using MIPGAN-I and
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(a) (b)

Figure 6.9: (a)Example of screen shot used for differential human observer study (b)
Quantitative results

MIPGAN-II. To this extent, we have designed and developed a Web-portal to eval-
uate the human morph detection performance reflecting both single image-based
morphing attack detection scenario (S-MAD) and differential morphing attack de-
tection scenario (D-MAD). We have used only digital samples of both bona fide
and morphed face images as the proposed MIPGAN is used to generate the im-
ages in the digital domain. Figure 6.8 (a) shows the screenshot of the Web-portal
for S-MAD in which the human observer needs to decide whether the displayed
image is a morphed face image or a bona fide image by looking at one single
image at a time. Correspondingly, Figure 6.9 (a) presents the screenshot for D-
MAD experiment where the observer needs to detect whether the unknown image
is morphed given a trusted bona fide image as a reference. We have selected a
total of 90 images where 15 images are from each group corresponding to bona
fide, two different types of facial landmarks based morphing such as Landmarks-I
[13] and Landmarks-II [14], StyleGAN [1] based face morphing, MIPGAN-I and
MIPGAN-II based face morphing. To make the testing robust, all 90 chosen im-
ages correspond to unique data subjects and there is no repetition of data subjects.
To avoid gender bias by participants, we have selected a near equal distribution
of male and female data subjects in each group. We have chosen 90 images con-
sidering the time constraints required to assess these images for human observers.
It was important that observers do not loose focus while conducting the detection
experiments.

Figure 6.8 (b) shows the quantitative results of S-MAD obtained from 56 human
observers, including 14 experienced and 42 inexperienced observers. The exper-
ienced observers’ group consists of researchers working in face morphing attack
detection and as ID expert’s in border control, while the non-experienced group
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consists of students and other computer science professionals. As noticed from
the Figure 6.8 (b) following are the main observations:

• Detection performance of the bona fide images indicates better detection
performance by both experienced and non-experienced group when com-
pared to the morphed face image. The experienced group indicates the de-
tection performance with an accuracy of 97.14%, while the non-experienced
group indicates the detection performance with an accuracy of 79.21%.

• Human observers with experience in face morphing demonstrate higher de-
tection accuracy on four different face morph generation mechanisms than
the inexperienced group.

• Among the four different morphing types, the experienced group indicates
that the detection of the landmarks-based morphing is challenging compared
to other morphing mechanisms (deep learning-based).

• Human observers with no experience in face morphing are marginally good
in detecting the landmarks-based face morph images compared to other
types of face morphing techniques. MIPGAN-I exhibits more challenging
morph images to detect as compared to other morph generation methods.

• Based on the obtained results, it can be noted that the human observers with
good experience in face morphing can detect morphed images with an accur-
acy of 88.25% while the human observer with no knowledge of face morph-
ing shows the challenge to detect the morphed face images with a detection
accuracy of 64.31%.

• The overall results from 56 human observers indicate that detecting morphed
face images is challenging. Further, it is also interesting to note that detect-
ing different face morphing types is also challenging.

For the quantitative results of D-MAD, 5 experienced observers and 10 inexper-
ienced observers have participated. As shown in Figure 6.9 (b), the following
observations are illustrated:

• In the scenario of D-MAD, the group with relevant experiences achieved an
overall 86% accuracy, which is better than 81% for the inexperienced group.
However, this difference is much less than the difference in S-MAD, which
means that the reference image can help inexperienced observers to identify
the morphs.
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• Morphs generated by Landmark-II present a significant challenge as com-
pared to other morph generation mechanisms in D-MAD. This may be at-
tributed to a more natural skin texture appearance (comparing with GAN-
based mechanisms) and fewer artefacts (comparing with Landmark-I) and
observers focusing less on its minor artefacts in the pairwise comparison.

• It is also interesting to see that the performances of experienced observers
on detecting Landmark-II (80.95% and 72.00%), StyleGAN (90.48% and
88.00%), MIPGAN-II (90.95% and 86.67%), and bona fide images (90%
and 88.00%) are lower than their performance in S-MAD. We believe this
is because experienced observers do not pay critical attention to tolerable
difference between the trusted reference image and the unknown comparison
image.

6.5.5 Ablation Study

Table 6.7: Vulnerability - Ablation study on the proposed loss function. Here, ✓ indicates
the selected and ✕ indicates the not selected loss function in the ablation study

LossID−Diff LossIdentity LossMS−SSIM LossPerceptual

MIPGAN-I MIPGAN-II
FMMPMR MMPMR FMMPMR MMPMR

Cognitec ArcFace Cognitec ArcFace Cognitec ArcFace Cognitec ArcFace
✕ ✓ ✓ ✓ 81.82 75.87 90.69 93.47 77.83 71.98 90.1 91.18
✓ ✕ ✓ ✓ 78.07 62.15 89.17 83.77 78.39 64.51 90.04 82.54
✓ ✓ ✕ ✓ 80.82 73.33 91.81 92.66 78.73 71.79 89.58 90.55
✓ ✓ ✓ ✕ 21.37 47.85 44.18 71.95 11.92 33.12 29.47 59.56
✓ ✓ ✓ ✓ 84.65 85.94 94.36 94.45 81.59 86.24 92.93 94.21

In order to measure the impact of the loss functions in the proposed approach, we
conduct an extensive ablation study. The proposed loss function combines four dif-
ferent entities such as: perceptual loss (LossPerceptual), identity loss (LossIdentity),
identity difference (LossID−Diff ) and Multi-Scale Structural Similarity (MS-SSIM)
loss (LossMS−SSIM ). The main contribution of our work is to use identity inform-
ation, which can be considered as a specific high-level feature, to measure the loss.
However, high-level features also mean that it is hard for the gradient descent al-
gorithm to ensure a good convergence during the optimization process. Therefore,
we have introduced the perceptual loss that can measure relatively low-level fea-
tures in addition to MS-SSIM and identity difference loss to effectively control the
optimization process to generate a high-quality morphed image. We perform the
ablation study by discarding each term in the loss function iteratively. We bench-
mark the vulnerability using COTS FRS (Cognitec FRS (Version 9.4.2)) and the
open-source ArcFace FRS, as the proposed approach is dedicated to generating
high-quality morphed images.

Table 6.7 indicates the quantitative performance of the ablation study using a vul-
nerability analysis for both the COTS-FRS from Cognitec and for the open-source



90 Article 2: MIPGAN— Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN

Arcface FRS with the proposed MIPGAN-I and MIPGAN-II methods. The ab-
lation study is carried out on the digital morphed images generated using both
MIPGAN-I and MIPGAN-II Methods. Figure 6.10 and 6.11 shows the qualitative
performance of the ablation study on both MIPGAN-I and MIPGAN-II, respect-
ively. Based on the obtained results, the following are the main observations:

• Each term in our proposed loss function (see Eq. 6.10) contributes to posing
a greater challenge to a FRS for both proposed MIPGAN-I and MIPGAN-II
morph generation frameworks.

• Among the four other loss functions that we have used, the LossPerceptual

is critical in improving the proposed method’s performance. Discarding the
perceptual loss has resulted in a degrading performance in both qualitative
(see Figure 6.10 (d) and 6.11 (d)) and quantitative results.

• The use of identity loss (LossIdentity) also indicates the importance of im-
proving the quantitative performance of the proposed method.

• The LossMS−SSIM also contributes to both qualitative and quantitative im-
provements of the morphs generated by the proposed method.

MIPGAN-IBonafide Bonafide(a) (b) (c) (d)

Figure 6.10: Qualitative results of ablation study using proposed MIPGAN-I
(a)LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual

MIPGAN-II BonafideBonafide (c)(b)(a) (d)

Figure 6.11: Qualitative results of ablation study using proposed MIPGAN-II
(a)LossID−Diff (b) LossIdentity (c) LossMS−SSIM (d) LossPerceptual
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6.5.6 Hyper-parameters Study

This section presents both qualitative and quantitative results on the selection of
hyper-parameters (λ1, λ2, λ3, and λ4) in the proposed loss function employed in
both MIPGAN-I and MIPGAN-II. Based on the ablation study reported in Section
6.5.5, we have noticed that the perceptual loss is the vital component of our loss
function (see Eq. 6.10) and the other three terms can be used as constraints dur-
ing the optimization. Therefore, the first step is to study the generated morphed
face images’ attack strength by increasing and decreasing the value of λ1. Among
the remaining three terms, we have also noticed from the ablation study that the
identity loss (LossIdentity) is contributing more towards generating a high-quality
morph compared to the other two-loss functions (lossMS−SSIM , LossID−Diff ).
We analyze the importance of identity loss (LossIdentity) with respect to the other
two loss functions (LossMS−SSIM , LossID−Diff ) by increasing the value of λ3
and/or λ3 and decreasing the value of λ2. Further, we have also noticed from
the ablation study that the loss functions lossMS−SSIM and LossID−Diff are
less important and numerically very small. Therefore, we did not conduct studies
on decreasing the values of λ3 and λ4. Altogether, we have tested four differ-
ent cases of changing the hyper-parameter values to generate the morphed face
images. These generated morphed face images are benchmarked against the pro-
posed hyper-parameter values through the vulnerability analysis using both COTS
FRS (Cognitec FRS (Version 9.4.2)) and open-source ArcFace FRS.

MIPGAN-I

(a) (b) (c) (d)Bonafide Bonafide

MIPGAN-II

Bonafide Bonafide
(b) (c) (d)(a)

Figure 6.12: Qualitative results of Hyper-parameters study on both MIPGAN-I and
MIPGAN-II (a)λ1 (b) λ2 (c) λ3 (d) λ4
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Table 6.8: Quantitative results of hyper-parameters study

Proposed Morph Generators Case-study
Hyper-parameters weights MMPMR (%) FMMPMR (%)
λ1 λ2 λ3 λ4 Cognitec ArcFace Cognitec ArcFace

MIPGAN -I

1 0.0004 10 1 1 93.94 93.49 84.39 75.61
2 0.0001 10 1 1 92.66 91.15 79.66 72.94
3 0.0002 1 10 1 94.17 91.9 84.34 75.66
4 0.0002 1 1 10 83.16 82.14 67.19 59.46

Proposed weights 0.0002 10 1 1 94.36 94.45 84.65 85.94

MIPGAN -II

1 0.0004 10 1 1 91.36 91.98 81.29 76.18
2 0.0001 10 1 1 91.69 88.29 73.91 68.16
3 0.0002 1 10 1 90.63 90.91 80.76 75.87
4 0.0002 1 1 10 87.22 74.33 57.43 51.91

Proposed weights 0.0002 10 1 1 92.93 94.21 81.59 86.94

Table 6.8 shows the qualitative performance and Figure 6.12 shows the qualitative
performance of the hyper-parameter study. Based on the obtained results, it can be
noted that the increase in the value of λ1 and λ3 shows comparable results with the
proposed weighting schemes. However, based on our empirical study on hyper-
parameters, we noted that: if we set λ1 and λ2 with equal weights, then, during
the optimization, the generated morph image will soon become roughly similar to
both contributing subjects. This will quickly reduce identity loss (LossIdentity)
to a minimal value and loose its importance in the optimization. Hence, we set a
larger factor to the identity loss compared with other loss terms measuring high-
level features to ensure our most important constraint term is still effective in the
later stage of optimization. Further, both λ3 and λ4 can make the optimization
goal more comprehensive but setting a large factor will obstruct the convergence.
Especially setting high values to λ4 will end up with an image not similar to both
subjects. Therefore, the selection of the proposed hyper-parameters confirms the
generation of a high-quality morphed image but also aids for effective and com-
prehensive optimization.

6.5.7 Morphing Attack Detection Potential

Table 6.9: Quantitative performance of MAD - Training- Landmarks-I [13]

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

Landmarks-I [13]

Ensemble Features [6] 0 0 0 2.35 1.45 0.96 2.58 1.71 1.54
Landmarks-I [13]

Hybrid Features [91] 0.16 0 0 1.85 0.85 0.34 2.25 1.12 0.51

Landmarks-II [14]
Ensemble Features [6] 49.55 92.22 88.85 41.93 81.45 76.25 42.15 83.88 77.64
Hybrid Features [91] 49.16 99.31 97.59 44.17 86.48 80.24 46.49 88.38 81.95

StyleGAN [1]
Ensemble Features [6] 0.22 0 0 13.36 27.44 16.46 14.77 27.27 19.38
Hybrid Features [91] 0.16 0 0 44.96 83.7 75.47 9.44 14.57 9.14

MIPGAN-I
Ensemble Features [6] 39.16 73.14 65.35 9.45 14.57 8.74 8.95 15.26 9.26
Hybrid Features [91] 46.82 86.62 81.64 12.32 19.72 13.2 9.74 15.95 8.91

MIPGAN-II
Ensemble Features [6] 34.13 70.49 61.57 5.32 6.68 2.57 6.72 8.16 4.14
Hybrid Features [91] 44.96 83.7 75.47 5.9 8.42 3.23 5.67 6.18 2.91

Considering the success rate of the newly generated dataset, we naturally choose
to evaluate the morphing attack detection performance to also validate the robust-
ness of existing MAD mechanisms. Additionally, we investigate recent works
about general face manipulation detection [153] [154] [155] and some results are
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Table 6.10: Quantitative performance of MAD - Training- Landmarks-II [14]

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

Landmarks-II [14]

Landmarks-I [13]
Ensemble Features [6] 48.57 97.77 95.36 24.19 52.48 43.22 21.64 47.51 36.19
Hybrid Features [91] 45.67 96.91 94.16 32.26 77.87 66.55 24.51 50.94 40.65

Ensemble Features [6] 3.62 2.22 0.68 6.32 7.97 2.42 5.57 6.41 2.42
Landmarks-II [14]

Hybrid Features [91] 1.53 0.17 0 5.21 5.19 3.14 5.37 5.71 3.46

StyleGAN [1]
Ensemble Features [6] 29.67 61.92 52.48 27.18 61.57 50.6 29.18 62.14 52.48
Hybrid Features [91] 34.76 74.44 62.95 34.8 67.23 58.14 23.17 49.22 38.25

MIPGAN-I
Ensemble Features [6] 30.23 65.35 53.17 43.92 87.65 79.24 44.24 89.23 82.33
Hybrid Features [91] 46.29 84.04 77.01 34.16 71.18 64.66 35.5 76.84 65.52

MIPGAN-II
Ensemble Features [6] 27.13 58.83 45.45 33.57 77.35 65.52 40.46 84.9 75.47
Hybrid Features [91] 46.82 83.53 75.81 35.91 77.18 65.24 36.5 79.24 68.78

Table 6.11: Quantitative performance of MAD - Training- StyleGAN [1]

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

StyleGAN [1]

Landmarks-I [13]
Ensemble Features [6] 0.32 0 0 16.6 28.13 19.89 13.89 22.12 17.66
Hybrid Features [91] 0.42 0 0 15.26 26.41 17.66 14.37 22.81 16.92

Landmarks-II [14]
Ensemble Features [6] 44.72 89.53 80.61 38.31 78.5 69.15 38.84 83.7 74.17
Hybrid Features [91] 45.65 90.22 84.56 34.18 81.95 70.53 32.93 78.5 64.12

Ensemble Features [6] 0 0 0 0 0 0 0 0 0
StyleGAN [1]

Hybrid Features [91] 0 0 0 0 0 0 0 0 0

MIPGAN-I
Ensemble Features [6] 39.97 75.98 68.78 20.21 42.14 33.44 20.73 45.28 36.53
Hybrid Features [91] 46.45 86.79 77.87 29.34 59.19 47.51 24.87 51.62 41.18

MIPGAN-II
Ensemble Features [6] 39.93 73.58 66.89 15.78 28.14 19.38 13.72 28.98 16.63
Hybrid Features [91] 44.72 82.16 73.75 19.36 43.22 28.64 16.98 32.93 23.84

Table 6.12: Quantitative performance of MAD - Training- MIPGAN-I

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

MIPGAN-I

Landmarks-I [13]
Ensemble Features [6] 23.66 51.45 39.96 5.82 7.22 2.92 6.17 7.54 3.94
Hybrid Features [91] 47.15 87.16 79.41 6.5 8.23 4.15 7.91 10.29 6.34

Landmarks-II [14]
Ensemble Features [6] 35.38 82.33 68.95 41.67 95.14 83.53 43.68 96.01 85.44
Hybrid Features [91] 28.62 75.64 61.4 44.38 95.66 85.78 38.18 90.46 78.16

StyleGAN [1]
Ensemble Features [6] 17.72 37.22 26.58 12.19 26.24 15.26 11.82 24.69 14.23
Hybrid Features [91] 31.16 64.32 53.85 11.99 19.2 13.72 9.93 18.15 9.94

Ensemble Features [6] 0 0 0 0 0 0 0 0 0
MIPGAN-I

Hybrid Features [91] 0 0 0 0 0 0 0 0 0

MIPGAN-II
Ensemble Features [6] 2.15 0.17 0 0.68 0 0 0.64 0 0
Hybrid Features [91] 1.36 0.34 0 0.86 0 0 0.8461 0 0

Table 6.13: Quantitative performance of MAD - Training- MIPGAN-II

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

MIPGAN-II

Landmarks-I [13]
Ensemble Features [6] 13.08 29.15 15.78 4.28 3.94 2.22 4.28 3.61 2.22
Hybrid Features [91] 40.14 77.7 67.23 5.49 5.48 2.4 7.21 10.98 4.15

Landmarks-II [14]
Ensemble Features [6] 32.37 84.9 70.32 39.2 90.12 82.32 44.17 95.49 88.73
Hybrid Features [91] 23.88 63.8 45.62 40.22 88.9 79.2 38.96 94.28 82.14

StyleGAN [1]
Ensemble Features [6] 12.51 22.29 15.78 13.72 29.67 18.18 14.25 31.73 20.41
Hybrid Features [91] 24.7 49.74 41.85 12.87 26.58 14.75 11.86 26.92 15.09

MIPGAN-I
Ensemble Features [6] 1.56 0.68 0.34 2.14 1.22 0.53 2.57 0.85 0.34
Hybrid Features [91] 2.27 0.85 0.17 4.79 4.8 3.43 4.3 3.6 2.22
Ensemble Features [6] 0 0 0 0 0 0 0 0 0

MIPGAN-II
Hybrid Features [91] 0 0 0 0 0 0 0 0 0
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shown in the supplementary material. In this work, we focus on single image
based morphing attack detection (S-MAD) as it perfectly suits our dataset. MAD
has been widely addressed in the literature by developing the techniques based on
both deep learning [85], [89], [86] [112] [117] and non-deep learning [81] [79]
[99] approaches. Readers can refer to [7] for an exclusive survey on face MAD.
Owing to the recent works detailing the applicability of Hybrid features [91] and
Ensemble features [6] in detecting morphing attacks, we choose to benchmark both
Hybrid features [91] and Ensemble features [6]. While the Hybrid features [91]
resort to extracting features using both scale space and color space combined with
multiple classifiers, Ensemble features [6] employ a variety of textural features in
conjunction with a set of classifiers. In common both approaches evaluate a wide
variety of MAD mechanisms in a holistic manner supported by empirical results
[91, 6]. In addition, the Hybrid features [91] mechanisms are also validated against
the ongoing NIST FRVT MORPH challenge [145] with the best performance in
detecting printed and scanned morph images justifying our selection of algorithm
to benchmark the newly composed database.

Contributing Subject 1 Contributing Subject 2Morph Contributing Subject 2Contributing Subject 1 Morph
(b)

(a)
Contributing Subject 1 Contributing Subject 1Contributing Subject 2 Contributing Subject 2Morph Morph

Figure 6.13: Examples of morphed images that failed to attack FRS (a) morphed face
images generated using proposed MIPGAN-I (b) morphed face images generated using
proposed MIPGAN-II

The reporting of MAD performance is following the ISO/IEC metrics [21] namely
the Attack Presentation Classification Error Rate (APCER (%)) which defines the
proportion of attack images (morph images) incorrectly classified as bona fide im-
ages and the Bona fide Presentation Classification Error Rate (BPCER (%)) in
which bona fide images incorrectly classified as attack images are counted [21]
along with the Detection Equal Error Rate (D-EER (%)). To evaluate the generated
morphed face image’s attack potential, we have sub-divided the newly generated
database into two sets for training and testing that consists of independent data
subjects with no overlap between the splits. The training set includes 690 bona
fide images and 1190 morphed images. The testing set consists of 580 bona fide
and 1310 morphed images. To effectively evaluate the performance of the MAD
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reflecting a real-life scenario, we report the results on both intra (training and test-
ing dataset from the same morph generation approach) and inter (training on one
type of morphing techniques and testing on another type of morphing techniques)
evaluation of MAD mechanisms. Extensive experiments are performed on digital,
print-scan and print-scan with compression data types to provide an in-depth ana-
lysis of the S-MAD performance. Table 6.9, 6.10, 6.11, 6.12 and 6.13 presents
the quantitative results of MAD mechanisms on morph generation methods to-
gether with the SOTA morph generation techniques. Based on the results obtained
from the intra-dataset experiments, we make some concrete observations as listed
below:

• The intra-dataset evaluation indicates that the morphing attacks are detected
with a good success rate irrespective of the type of generation.

• In general, the attack detection success rate is high with digital data when
compared to print-scan and print-scan compression.

• Among the different types of morph generation techniques, the Landmark-
II based morph generation shows the highest error rates. The attack images
created using StyleGAN and proposed MIPGAN can be efficiently detec-
ted using both the employed approaches with high accuracy. This can be
attributed to the noises that are synthesized using GANs due to the compu-
tational modifications performed on the latent space in GAN-based morph
generation methods.

In the following, we discuss the important observations based on the results ob-
tained from inter-dataset MAD analysis:

• The performance of the MAD techniques are degraded on all five different
case studies as indicated in the Table 6.9, 6.10, 6.11, 6.12 and 6.13.

• Training MAD algorithms with one type of landmarks-based method did not
show the improvement in detection performance of another kind of landmarks-
based morph generation method.

• When MAD mechanisms are trained using the Landmarks-I [13] method,
the degraded performance is noted for all other morph generation methods
except for the StyleGAN [1] based approach. This fact is also noted when we
train the MAD techniques using StyleGAN [1] generated samples and test
it with Landmarks-I [13] samples. Thus, the StyleGAN [1] based morph
generation is easy to detect even when MAD mechanisms are not trained
using the images from same morph generation scheme.
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• When MAD algorithms are trained using Landmarks-II [14] samples, MAD
algorithms indicate degraded performance on all other morph generation
techniques.

• When MAD mechanisms are trained using the proposed MIPGAN-I gener-
ated samples. The MAD mechanisms indicate an excellent detection per-
formance on MIPGAN-II samples. However, the detection performance of
MAD methods is deceived with other morph generation techniques.

• It is interesting to note that when MAD mechanisms are trained using MIPGAN-
I/MIPGAN-II, higher detection accuracy can be observed for print-scan and
print-scan with compression data when compared to digital morph data. A
possible reason is that the noise generated together with the morphed images
using the proposed MIPGAN-I/MIPGAN-II can approximate the generated
noise resulting from the print-scan and print-scan compression process.

• Based on the results of the inter-database MAD analysis, the detection of
Landmarks-II [14] samples are challenging.

6.6 Limitations of Current Work and Potential Future Works
Despite this work presenting a new approach to generate strong morphing attacks,
which are empirically evaluated using COTS FRS, our work has a few noted lim-
itations. In the current scope of work, we evaluate the impact of print and scan
(re-digitizing) using one printer reflecting a realistic scenario. The MAD mechan-
ism employed in this work has not been investigated with a wide range of printers
and scanners that may impact the MAD performance. While we assert that the
MAD performance may not vary extremely, when tested with a wider combination
of printers and scanners, that empirical evaluation is yet to be conducted in future
works.

A second aspect is that the proposed approach needs pre-selection of ethnicity for
generating stronger attacks. Figure 6.13 shows example morphed face images gen-
erated using the proposed method using MIPGAN-I and MIPGAN-II that fail to
get verified to contributing subjects when ethnicity pre-selection is not performed
[13]. We notice that the selection of contributing subjects plays an important role
with the proposed method to generate stronger attacks with MIPGAN. It is our
assertion that the selection of contributing subjects with similar geometric struc-
tures (particularly ethnicity and age) can improve the performance of the proposed
system, but that aspect needs further investigation.



6.7. Conclusion 97

6.7 Conclusion
Addressing the limitations of generating the strong and severe morphing attacks
using GAN, we have proposed a new architecture for generating face morphed
images in this work. The proposed approach (MIPGAN with two variants) for
devising strong morphing attacks uses identity prior driven GAN with a custom-
ized loss exploiting perceptual quality and identity factors to generate realistic
images that can strongly threaten FRS. In order to validate the attack potential of
the proposed morph generation method, we have created a new dataset consisting
of 30, 000 morphed images and 15, 240 bona fide images. Both COTS and deep
learning based FRS were evaluated empirically to measure the success rate of the
new approach and vulnerability was reported indicating the applicability of the
new approach and newly generated database. In a similar direction, the dataset is
also validated for detection performance by studying two state-of-art MAD mech-
anisms. Despite the high attack detection success rate by employed MAD, we note
that the morphed images generated by MIPGAN can severely threaten FRS in a
present state without MAD in FRS.
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Article 3: On the Influence of
Ageing on Face Morph Attacks:
Vulnerability and Detection

Sushma Venkatesh, Kiran Raja, Raghavendra Ramachandra, and Christoph Busch.
"On the influence of ageing on face morph attacks: Vulnerability and detection".
In 2020 IEEE International Joint Conference on Biometrics (IJCB), pages 1–10.
IEEE, September 2020.

7.1 Abstract
Face morphing attacks have raised critical concerns as they demonstrate a new vul-
nerability of Face Recognition Systems (FRS), which are widely deployed in bor-
der control applications. The face morphing process uses the images from multiple
data subjects and performs an image blending operation to generate a morphed
image of high quality. The generated morphed image exhibits similar visual char-
acteristics corresponding to the biometric characteristics of the data subjects that
contributed to the composite image and thus making it difficult for both humans
and FRS, to detect such attacks. In this paper, we report a systematic investig-
ation on the vulnerability of the Commercial-Off-The-Shelf (COTS) FRS when
morphed images under the influence of ageing are presented. To this extent, we
have introduced a new morphed face dataset with ageing derived from the publicly
available MORPH II face dataset, which we refer to as MorphAge dataset. The
dataset has two bins based on age intervals, the first bin - MorphAge-I dataset has
1002 unique data subjects with the age variation of 1 year to 2 years while the
MorphAge-II dataset consists of 516 data subjects whose age intervals are from 2

100



7.2. Introduction 101

years to 5 years. To effectively evaluate the vulnerability for morphing attacks, we
also introduce a new evaluation metric, namely the Fully Mated Morphed Present-
ation Match Rate (FMMPMR), to quantify the vulnerability effectively in a real-
istic scenario. Extensive experiments are carried out using two different COTS
FRS (COTS I Cognitec FaceVACS-SDK Version 9.4.2 and COTS II - Neurotech-
nology version 10.0) to quantify the vulnerability with ageing. Further, we also
evaluate five different Morph Attack Detection (MAD) techniques to benchmark
their detection performance with respect to ageing.

7.2 Introduction

Subject 1 Subject 2

Morphed image

Sample 2 Sample 3 

Bona fide samples from Subject 1

Sample 3 Sample 2

Bona fide samples from Subject 2

Age gap
in days

132 1578 92 1143

Age gap
in days

FRS

OR OR

OROR
Figure 1: Intro Figure

Figure 7.1: Illustration of the influence of ageing on face morphing

Facial characteristics have been well explored for identifying and verifying indi-
viduals and numerous biometric systems have been deployed in operational ap-
plications for many years [156, 17]. The preference towards face based bio-
metric systems is founded on multiple factors such as ease of capture of facial
characteristic without invasive imaging, capturing at a stand-off distance both in
semi-cooperative (voluntary identification/verification) and uncooperative scen-
arios (surveillance) [157, 9, 158]. While many of the breakthrough articles detail-
ing iris and vein recognition systems have shown impeccable accuracy with very
low false accepts and false rejects, those systems suffer from highly constrained
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image capturing processes. In order to reach the performance of such iris and vein
recognition systems, face biometrics has seen benefits from recent algorithmic ad-
vancements, which was focused on features that have been engineered in a robust
manner [159, 160, 161], and pre-processing that has been improvised [162] by
including end-to-end learning using Deep Neural Networks (DNN) even in large
scale applications [158, 163].

Such attractive and inherent advantages of the face modality have led to a wider
deployment of Face Recognition Systems (FRS) in passport issuance processes,
visa management, identity management and Automated Border Control (ABC).
Despite the high accuracy and convenience of face biometrics, FRS systems are
impeded by various factors such as ageing [164, 165], partial face availability [165]
and also imperilled by various attacks that include presentation attacks (spoofing-
attacks) with print, display or silicon mask attack instruments [166], make-up at-
tacks [167, 168], coverted mask attacks [169], morphing attacks [22], database
level attacks [170, 171] and comparison level attacks [172, 173]. While many of
the attacks have been addressed through mitigation measures over the period of
time, we focus on recently surfaced face morphing attacks [22, 54] in this work.
Despite some of the recent works proposing measures to mitigate these attacks
through various approaches [142, 174, 119, 54] a number of covariates are repor-
ted to impact the attack detection performance. A list of covariates impacting the
performance of morphing attack detection include the techniques used to generate
the morphed image [22], the configuration of the print-scan pipeline [83], factors
of age and ethnicity [125] among many other unknown factors. With a clear in-
trospection of the existing works, we observe that both the FRS vulnerability and
also the Morphing Attack Detection (MAD) performance under variation of age is
not studied in the context of morphing attacks, despite the fact that the issue was
pointed out already in the early works in this domain [125, 119].

Starting with this observation, we focus in this work on establishing the impact of
ageing on morphing attacks by carefully studying the vulnerability of FRS and
MAD performance of currently reported MAD algorithms under the influence
of ageing. The key motivation stems from earlier works who have disentangled
the impact of ageing on face recognition systems with respect to recognition per-
formance [164, 165, 175] and a number of works that have proposed approaches
to handle the associated performance limitations [164, 176, 177, 178, 175]. We
therefore provide a brief overview of impact of ageing in the subsequent section
and thereafter illustrate the impact of ageing specifically for morphing. Further,
we focus our work on investigating the impact using the digital images alone due
to two primary factors: (i) many countries across the world allow to upload digital
images via web-portal for passport renewal and visa issuance, and (ii) to align our
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works with recent studies focusing on digital MAD [119].

7.2.1 Facial Ageing

Facial ageing is a commonly observed phenotype of human ageing, which is vis-
ibly seen. Despite the complexity of understanding the characteristic changes as-
sociated with the facial ageing, a number of works have reported the role of skin
and soft tissues and their impact on visible changes of facial appearance [179].
Complementary works have demonstrated the role of loss of facial bone volume
to contribute to facial appearance under ageing progress [180]. As it can be de-
duced, facial ageing being a complex process involving soft tissues and skeletal
structure changes, it is influenced by many factors, such as exposure to sunlight
and body weight among others. As an additional factor, large variations in facial
ageing across individuals and ethnic populations can further be observed [181].
While in face recognition, the main differences in exterior facial structure making
individuals distinguishable from each other allows recognition analysis to achieve
high identification accuracy, a longitudinal study of the same face over a period of
time has shown to challenge the accuracy [175].

7.2.2 Facial Ageing and Morphing Attacks

Under the observation of complex changes of facial appearance, which bring down
the recognition accuracy of FRS unless proper measures are taken, our assertion
is that the effect and impact on morphing attacks may change. For electronic
Machine Readable Travel Documents (MRTDs) a typical life-cycle of 10 years is
recommend [182] meaning that the drastic changes in facial appearance must be
tolerated as intra-class variance during that life-cycle, while up to now the impact
of morphing and its correlation with the progressing of the potentially morphed
reference image in this life-cycle, has neither been considered nor investigated.
Initial studies on morphing attacks have demonstrated the ability to fool a human
expert (i.e. trained border guards) with morphed facial images. The changes of
facial appearance, which are caused by ageing, are illustrated in Figure 9.1. Our
assertion is to validate the impact of ageing and thus we formulate three specific
research questions:

• How vulnerable are COTS FRS when a composite morph image is enrolled
and is after a period of ageing probed against a live image from one of the
contributing subjects?

• Do current Morphing Attack Detection (MAD) algorithms scale-up to detect
such attacks under the influence of ageing?

• What is the impact of different alpha (or blending, morphing) factors used
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to generate the morphed image under the constraint of ageing, specifically
with respect to MAD?

We address each of these questions in a systematic manner through our contri-
butions. We focus in this work to first establish the impact on FRS through an
extensive empirical evaluation. While a detailed study of appearance change is
more of a cognitive study, it is beyond the scope of the current work.

7.2.3 Contributions of Our Work

While the hypothesis is well justified, we also note that there exists no database
with morphing and ageing according to the current literature. With such a caveat,
we focus on first creating a database to facilitate and validate our assertion.

• The first key contribution is the creation of a (moderately) large-scale data-
base of morphed faces with ageing covariate by employing the MORPH II
non-commercial face dataset [35], which is hereafter referred as MorphAge
Database.

• We investigate the vulnerability of FRS to such attacks by employing two
widely used Commercial-Off-The-Shelf (COTS) FRS systems. This contri-
bution not only helps in verifying our assertion but also validates the use-
fulness of the newly created database. Further, we also investigate the role
of alpha (or blending, morphing) factor (with α = 0.3. 0.5 and 0.7) while
analysing the vulnerability under ageing.

• As a third contribution, we employ a set of recently reported morphing at-
tack detection algorithms to benchmark detection performance and thereby
identify the impediments if any.

In the rest of the paper, we first provide details on the newly constructed database
in Section 7.3 and in Section 7.4 we investigate the vulnerability of FRS using two
COTS FRS. Further, the benchmarking of morphing attack detection systems is
detailed in Section 7.5 while the key observations and conclusions are reported in
Section 7.7.

7.3 MorphAge Database Construction
To effectively study the influence of ageing on face morphing vulnerability and
morph detection, we introduce a new dataset, which is derived from the MORPH
II non-commercial dataset [35] that is publicly available. The MORPH II dataset
consists of a total of 55000 unique samples captured from 13000 data subjects. The
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images are captured over the time span from 2003 to 2007. The age of the subjects
varies from 16 to 77 years. The dataset consists of male and female subjects with
different ethnicity (African, European, Asian, Hispanic). In this work, we choose
the MORPH II dataset motivated by the large number of subjects, the quality of the
captured data and the variation in age for one and the same subject across different
capture sessions.

The newly constructed MorphAge dataset is binned in two age groups from MORPH
II dataset. The first bin - Age Group (MorphAge-I) consists of 1002 unique data
subjects with a gender distribution of 143 female and 859 male subjects. For each
data subject, three different samples are chosen such that the first session corres-
ponds to the high quality data capture (younger age), second session corresponds
to the aged capture of 1-8 months from first session and third session corresponds
to the aged capture of same subject between 1-2 years from first session. The
second bin - Age Group (MorphAge-II) is comprised of 516 unique data subjects
sub-sampled from the MORPH II dataset with 62 female and 454 male data sub-
jects. Each data subject was captured in three different sessions. The first session
corresponds to the high quality data capture (younger age), the second session cor-
responds again to a time lapse of 1-8 months from the first session and the third
session corresponds to an aged capture of 2 years up to 5 years after the first ses-
sion.
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Figure 2: Illustration of Morph Age I and MorphAge II

Figure 7.2: Illustration of sample images from newly constructed MorphAge dataset (a)
MorphAge-I (1 year to 2 years) (b) MorphAge-II (2 years to 5 years)

7.3.1 MorphAge-I and MorphAge-II - Bonafide Set

In both bins, i.e. MorphAge-I and MorphAge-II, we select for each data subject
three samples (one of each session) such that the first session sample is used only
to generate the morphing image, the sample from the second session is used as
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Table 7.1: Statistics of bona fide and morphed images in MorphAge Database

Session Dev Training Testing Total
MorphAge-I Subset

Session 1 251 500 251 1002
(used for morphing)
Session 2 251 500 251 1002
(used for vulnerability)
Session 3 251 500 251 1002
(with age difference)
Morphed Images 1980 6614 1944 10538

MorphAge-II Subset
Session 1 130 257 129 516
(used for morphing)
Session 2 130 257 129 516
(used for vulnerability)
Session 3 130 257 129 516
(with age difference)
Morphed Images 648 2310 809 3767
(with different morphing factors)

bona fide sample in the morph attack detection experiments and the third session
to analyze the vulnerability of the commercial FRS. As seen from the Figure 7.2,
the facial appearance changes significantly with the increasing age which cannot
be modelled geometrically or morphologically for any particular ethnicity or age
group for both the bins (MorphAge-I and MorphAge-II).

7.3.2 MorphAge-I and MorphAge-II - Morphed Image Set

To generate the morphed image datasets for the subjects represented in our newly
constructed dataset, we have used the face morph generation tool from Ferrara et
al. [14] [135], which is based on facial landmarks based warping and weighted
linear blending to generate a high quality morphed image. We particularly, choose
this technique for morphing generation over other type of generators based on
GAN [15] by considering: (1) high quality of the generated morphed images, in
order to establish a significant threat to the tested commercial FRS [14] (2) high
quality of generated morphed image, such that the submitted images are considered
compliant with the requirements in the ICAO standards and (3) feasibility to create
the morphed images with various blending and warping factors.

In this work, the morphing process is carried out between only two data subjects by
considering its use-case in a real-life scenario where typically one criminal morphs
his/her face image with the image of an accomplice. To carefully select the pair of
images for the morphing process, we use the COTS-I FRS, which is widely used
in Automated Border Control installations. Through the FRS, a set of similarity
scores is obtained between the probe image of a selected data subject against the
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Subject 1 Subject 2Morph= 0.3 Morph= 0.5 Morph= 0.7

Figure 7.3: Example of generated morphed images

reference images of all data subjects. We then choose the pair of images that are
successfully verified at FMR = 0.1% with high scores to retain a high degree of
similarity between two constituting subjects for the morphed image. Additional
care is exercised not to combine data subjects with different genders and also to
separate the data subject into three independent groups such as non-overlapping
training, testing and development sets [125, 142]. For a selected image pair, we
generate three morphed images at three different morphing (or blending) factors
α = 0.3, 0.5, 0.7 to obtain insights with regard to the impact of ageing at different
blending factors. Figure 7.3 shows the example of morphed face images with three
different blending factor within our MorphAge dataset.

Table 7.1 presents the statistics of the generated dataset corresponding to the two
bins - MorphAge-I and MorphAge-II. Further, in order to evaluate the MAD per-
formance, we have divided the whole datasets into three independent and non-
overlapping subsets for training, development and testing. The training subset is
used purely to train the MAD techniques, the development subset is used to op-
timize and adjust the operating threshold for the MAD techniques and finally the
testing subset is solely used to analyze the detection performance obtained at the
optimal threshold.

7.4 Vulnerability Analysis
In this section, we present the vulnerability analysis of the FRS, when confron-
ted with the morphed images under variation of age. To this extent, we employ
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Figure 4: Scatter and Box plots obtained using Cognitech FRS on MorphAge-I dataset
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Figure 5: Scatter and Box plots obtained using Neurotech FRS on MorphAge-I dataset

I and MorphAge-II. Figure 5 and Figure 4 shows the
scatter plot and box plot for MorphAge-I dataset from
two COTS FRS respectively. Figure 4a,4b, 4c and Fig-
ure 5a,5b, 5c provides the visualization of the compar-

ison scores when the morphed image is enrolled, and
both composite data subjects are probed for both FRS.
In ideal conditions, the FRS is vulnerable to morphing
attacks with the proviso all the obtained comparison

5

Figure 7.4: Scatter and box plots obtained using COTS-I FRS
on MorphAge-I dataset
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Figure 4: Scatter and Box plots obtained using Cognitech FRS on MorphAge-I dataset

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Subject 1 Scores

Su
bj

ec
t2

Sc
or

es

Comparision Scores

(a) Morphing Factor 0.3

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Subject 1 Scores

Su
bj

ec
t2

Sc
or

es

Comparision Scores

(b) Morphing Factor 0.5

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Subject 1 Scores

Su
bj

ec
t2

Sc
or

es

Comparision Scores

(c) Morphing Factor 0.7

Subject 1 Subject 2
0

20

40

60

80

100

120

140

Co
m

pa
ris

on
Sc

or
es

(d) Morphing Factor 0.3

Subject 1 Subject 2

20

40

60

80

100

120

140

Co
m

pa
ris

on
Sc

or
es

(e) Morphing Factor 0.5

Subject 1 Subject 2

20

40

60

80

100

120

140

Co
m

pa
ris

on
Sc

or
es

(f) Morphing Factor 0.7
Figure 5: Scatter and Box plots obtained using Neurotech FRS on MorphAge-I dataset

I and MorphAge-II. Figure 5 and Figure 4 shows the
scatter plot and box plot for MorphAge-I dataset from
two COTS FRS respectively. Figure 4a,4b, 4c and Fig-
ure 5a,5b, 5c provides the visualization of the compar-

ison scores when the morphed image is enrolled, and
both composite data subjects are probed for both FRS.
In ideal conditions, the FRS is vulnerable to morphing
attacks with the proviso all the obtained comparison

5

Figure 7.5: Scatter and box plots obtained using COTS-II FRS
on MorphAge-I dataset



7.4. Vulnerability Analysis 109

two different COTS Face Recognition Systems (FRS) namely, COTS-I Cognitec1

FaceVACS-SDK Version 9.4.2 and COTS-II Neurotechnology Version 10.0. To
effectively measure the vulnerability of the FRS against morphed face samples,
we set a realistic constraint that all contributing data subjects (in our case two)
must exceed the verification threshold of the FRS. Further, in this work, we set the
operating threshold of both COTS FRS to FAR = 0.1% following the guidelines
of FRONTEX [126] for automated border control. Thus, we coin the new realistic
constraint using a new vulnerability metric as Fully Mated Morphed Presentation
Match Rate (FMMPMR) that can be computed as:

FMMPMR =
1

P

∑
M,P

(S1PM > τ)&&(S2PM > τ) . . .&&(SkPM > τ) (7.1)

Where P = 1, 2, . . . , p represent the number of attempts made by presenting
all the probe images from the contributing subject against M th morphed image,
K = 1, 2, . . . , k represents the number of contributing data subjects to the con-
stitution of the generated morphed image (in our case K = 2), SkPM represents
the comparison score of the Kth contributing subject obtained with P th attempt
(in our case the P th probe image from the dataset) corresponding to M th morph
image and τ represents the threshold value corresponding to FAR = 0.1%.

We have employed the new metric FMMPMR considering the fact that the exist-
ing vulnerability metric MMPMR[125] accounts only for the morphed images get-
ting verified with the contributing subjects without taking into account the number
of attempts. However, the new metric FMMPMR overcomes this drawback and
considers each and every attempt a morphed image gets verified with the pair of
contributing subjects, i.e., reflecting the actual vulnerability of a FRS.

Table 7.2: Vulnerability analysis: FMMPMR (%)

Morphing factor (α)

FMMPMR(%)
MorphAge-I MorphAge-II

COTS-I COTS-II COTS-I COTS-II
0.3 66.24 18.42 58.47 17.29
0.5 95.07 56.96 93.81 51.27
0.7 67.32 18.21 58.18 15.61

Table 7.2 indicates the FMMPMR (%) computed using the two COTS FRS on
both bins - MorphAge-I and MorphAge-II. Figure 7.4 and Figure 7.5 shows the

1Outcome not necessarily constitutes the best the algorithm can do.
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Table 7.3: Experiment-I: Quantitative performance of the MAD techniques on
MorphAge-I

Algorithm

Development Testing set
Set

EER (%) EER (%)
BPCER (%) @ APCER (%) =

1 5 10
Morphing factor (α) 0.3

LBP-SVM [54, 103, 85, 98] 28.14 35.11 84.4 68.8 56.8
BSIF-SVM [54, 98] 31.82 37.59 98.8 90 73.2

HOG-SVM [98] 32.09 33.51 84.4 63.6 53.6
AlexNet-SVM [85, 90, 64] 4.38 2 7.2 3.2 0.8

Color Denoising [4] 1.63 3.65 5.2 0.4 0.4
Morphing factor (α) 0.5

LBP-SVM [54, 103, 85, 98] 27.82 33.76 75.2 59.2 57.2
BSIF-SVM [54, 98] 31.82 36.9 98.8 89.21 73.6

HOG-SVM [98] 30.73 34.1 81.2 63.2 56.8
AlexNet-SVM [85, 90, 64] 3.18 2.01 4.12 0 0

Color Denoising [4] 1.63 1.21 7.6 0.4 0
Morphing factor (α) 0.7

LBP-SVM [54, 103, 85, 98] 28.86 34.92 88.4 66.8 57.2
BSIF-SVM [54, 98] 31.9 37.98 98.8 88 73.2

HOG-SVM [98] 32.98 33.38 80 62.8 57.2
AlexNet-SVM [85, 90, 64] 5.08 2.78 5.6 2 0

Color Denoising [4] 2.75 2.43 13.2 2 0.4
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Figure 6: Scatter and Box plots obtained using Neurotech FRS on MorphAge-II dataset
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Figure 7: Scatter and Box plots obtained using Cognitech FRS on MorphAge-II dataset

scores are clustered on the top right corner of the graph.
The vertical and horizontal lines indicate the threshold
that is recommended by the COTS FRS in operational
settings at border control corresponding to FAR = 1%.
Figure 4d,4e, 4f and Figure 5d,5e, 5f shows the box plot

that can provide insights on the distributions of com-
parison scores corresponding to the composite images
that allows us to understand which of the two com-
posite subjects are more vulnerable in FRS. In similar
lines, Figure 6 and 7 shows the scatter plot and box

6

Figure 7.6: Scatter and box plots obtained using COTS-I FRS
on MorphAge-II dataset
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Figure 6: Scatter and Box plots obtained using Neurotech FRS on MorphAge-II dataset
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(f) Morphing Factor 0.7
Figure 7: Scatter and Box plots obtained using Cognitech FRS on MorphAge-II dataset

scores are clustered on the top right corner of the graph.
The vertical and horizontal lines indicate the threshold
that is recommended by the COTS FRS in operational
settings at border control corresponding to FAR = 1%.
Figure 4d,4e, 4f and Figure 5d,5e, 5f shows the box plot

that can provide insights on the distributions of com-
parison scores corresponding to the composite images
that allows us to understand which of the two com-
posite subjects are more vulnerable in FRS. In similar
lines, Figure 6 and 7 shows the scatter plot and box

6

Figure 7.7: Scatter and box plots obtained using COTS-II FRS
on MorphAge-II dataset
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scatter plot and box plot for MorphAge-I dataset from two COTS FRS respect-
ively. Figure 7.4(a), 7.4(b), 7.4(c) and Figure 7.5(a), 7.5(b), 7.5(c) provides the
visualization of the comparison scores when the morphed image is enrolled, and
both contributing data subjects are probed for both FRS. In the most serve condi-
tions, meaning a high vulnerability of the FRS with regards to morphing attacks,
we will obtain comparison scores that are clustered in the top right corner of the
figure. The vertical and horizontal lines indicate the threshold that is recommen-
ded by the COTS FRS for operational settings in the border control application
corresponding to FMR = 0.1%. Figure 7.4(d), 7.4(e), 7.4(f) and 7.5(d), 7.5(e),
7.5(f) shows the box plot that provides insight on the distributions of comparison
scores corresponding to the contributor probe images allowing us to understand
which of the two probe images (of the contributing subjects) are more vulnerable
for the FRS. In similar lines, Figure 7.6 and 7.7 shows the scatter plot and box plot
for the MorphAge-II dataset that are computed from the two COTS FRS. Based on
the obtained results the following are our main observations:

• Intra-Age Groups: As expected the morphed image with the morphing factor
of 0.5 indicates the highest vulnerability as reflected by both COTS FRS.
However, the morphing factor of 0.3 and 0.7 indicates a reduced vulnerabil-
ity that can be attributed to the morphing factor weights leaning toward only
one of the contributing data subjects. This fact is illustrated in Figure 7.4,
7.5, 7.6 and 7.7, where we can observe that with a morphing factor of 0.3,
the subject 1 is likely to be verified. While with a morphing factor of 0.7,
in most cases, subject 2 is likely to be verified rather than subject 1. While
not so surprising, the morphing factor of 0.5 indicates (almost) equally both
contributing subjects can be verified.

• Inter-Age groups: Based on the obtained results, it is also interesting to note
the direct influence on the morphing factor on the vulnerability. Thus, with
the morphing factor of 0.3 and 0.7, both COTS FRS shows a greater reduc-
tion value of FMMPMR on MorphAge-II dataset. This indicates morphing
attacks pose lesser threats to FRS under the influence of ageing. However,
with the morphed factor of 0.5, the COTS-II FRS indicates lower values of
FMMPMR, while COTS-I indicates a moderate reduction in the vulnerabil-
ity despite being very significant.

• Observing the box plots for the morphing factor of 0.5 from both MorphAge-
I and MorphAge-II, it can be noted that, both the median and whiskers
corresponding to the comparison scores from both subjects are reduced in
MorphAge-II when compared to MorphAge-I. These observations, together
with the quantitative value of FMMPMR, indicate the reduced threats to
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morphing attacks on FRS under ageing. This fact is consistently observed
for both COTS FRS and are statistically significant as observed in the box
plots.

• Role of COTS FRS: The COTS-I FRS indicates the highest vulnerability on
three morphing factors when compared to that of the COTS-II FRS. The
morphing factor with 0.5 shows the highest FMMPMR with 95.07% on
MorphAge-I and 93.81% on MorphAge-II with COTS-I FRS. The lowest
value of FMMPMR is noted with COTS-II FRS with a morphing factor of
0.7 in the MorphAge-II dataset.

Table 7.4: Experiment-I: Quantitative performance of the MAD techniques on
MorphAge-II

Algorithm

Development Testing set
Set

EER (%) EER (%)
BPCER (%) @ APCER (%) =

1 5 10
Morphing factor (α) 0.3

LBP-SVM [54, 103, 85, 98] 30.64 29.21 61.24 48.83 44.96
BSIF-SVM [54, 98] 33.35 39.17 58.91 51.16 48.83

HOG-SVM [98] 32.56 32.56 66.66 51.93 45.73
AlexNet-SVM [85, 90, 64] 4 5.49 7.75 4.65 4.65

Color Denoising [4] 3.15 1.7 3.1 0 0
Morphing factor (α) 0.5

LBP-SVM [54, 103, 85, 98] 28.71 32.39 68.99 48.06 41.08
BSIF-SVM [54, 98] 32.65 39 63.56 51.16 48.83

HOG-SVM [98] 30.33 32.56 62.02 52.71 44.96
AlexNet-SVM [85, 90, 64] 2.92 3.78 6.2 3.87 3.11

Color Denoising [4] 3.77 0.75 1.55 0.77 0.77
Morphing factor (α) 0.7

LBP-SVM [54, 103, 85, 98] 29.33 27.03 58.91 51.98 45.73
BSIF-SVM [54, 98] 34.7 33.07 58.91 51.16 48.06

HOG-SVM [98] 31.02 29.09 73.64 58.91 44.96
AlexNet-SVM [85, 90, 64] 3.15 5.5 11.62 5.42 4.65

Color Denoising [4] 3.15 0.75 3.1 0 0

7.5 Face Morph Attack Detection Performance
In this section, we benchmark the most recent digital MAD techniques on the
newly created MorphAge dataset. The goal of this experiment is to understand
the impact of ageing on the detection performance of the MAD techniques. To
this extent, we design two different experiments to reflect the variation in the per-
formance of the MAD techniques under the influence of ageing. Experiment-I:
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the evaluation protocol is designed to evaluate the MAD detectors in the same
age group. Thus, the MAD detectors are trained and tested with the same group
data. Experiment-II: is designed to evaluate the performance of MAD detection
with the variation in age. Thus, MAD detectors are trained with the MorphAge-I
data and tested with only the MorphAge-II dataset. In both experiments, the cor-
responding development dataset is used to tune the parameters of the algorithm
and also to compute the operating threshold at APCER = 1%, 5% and 10%. In
this work, we have evaluated five different MAD schemes such as: Local Bin-
ary Pattern (LBP) LBP-SVM [54, 103, 85, 98], Binarized Statistical Image Fea-
tures (BSIF) [54, 98], Histogram of Oriented Gradients (HOG) [98], AlexNet
[85, 90, 64] and Color Denoising [4]. We have considered these five MAD tech-
niques as they have indicated good performance on three different large scale di-
gital morphing datasets [4]. The quantitative results are presented according to the
ISO/IEC 30107-3 [21] metrics such as Bona fide Presentation Classification Er-
ror Rate (BPCER(%)) and Attack Presentation Classification Error Rate (APCER
(%)) along with D-EER(%).

Table 7.3 and Table 7.4 indicates the quantitative results of the MAD schemes
on two different age groups MorphAge-I and MorphAge-II respectively on the
Experiment-I protocol. Based on the obtained results, it can be noticed that:

• The traditional MAD methods based on LBP, BSIF, and HOG fail to indicate
acceptable detection performance for both MorphAge-I and MorphAge-II
dataset.

• Recently introduced MAD techniques based on AlexNet and Color denois-
ing techniques have shown excellent performance in detecting morphing at-
tacks.

• It is interesting to note that the MAD methods do not show any influence of
the different morphing factors on the detection performance. The detection
performance with different morphing factor did further not vary irrespective
of the age group as well.

• Among the five benchmarked different MAD techniques, the color denoising
MAD has indicated the best performance across various morphing factors
(α) for both MorphAge-I and MorphAge-II.

Table 7.5 indicates the quantitative detection performance of MAD methods in
Experiment-II. Based on the obtained results, it can be noted that the ageing does
not influence the performance of the MAD methods. It is worth noting that, in
this protocol, MAD methods are trained using only MorphAge-I dataset and are
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tested on the MorphAge-II dataset with the age difference up to 5 years. Further,
the data subjects in MorphAge-I and MorphAge-II do not overlap. Among the five
different MAD methods, color denoising based MAD has again indicated the best
performance for all three morphing factors (α). As it can be deduced, ageing does
not influence the detection capabilities of MAD under the performed experimental
settings.

Table 7.5: Experiment-II: Quantitative detection performance of MAD techniques on
MorphAge-I v/s. MorphAge-II

Algorithm

Development Testing set
Set

EER (%) EER (%)
BPCER (%) @ APCER (%) =

1 5 10
Morphing factor (α) 0.3

LBP-SVM [54, 103, 85, 98] 28.14 34.19 92.24 65.89 47.28
BSIF-SVM [54, 98] 31.82 44.13 100 98.44 84.49

HOG-SVM [98] 32.09 41.86 91.47 70.54 62.01
AlexNet-SVM [85, 90, 64] 4.38 3.03 8.52 3.10 2.32

Color Denoising [4] 1.63 2.27 1.55 0.45 0
Morphing factor (α) 0.5

LBP-SVM [54, 103, 85, 98] 27.82 33.29 86.04 66.66 48.06
BSIF-SVM [54, 98] 31.82 45.42 100 96.89 84.49

HOG-SVM [98] 30.73 37.95 85.27 67.44 57.36
AlexNet-SVM [85, 90, 64] 3.18 0.94 3.10 0.77 0.39

Color Denoising [4] 1.63 1.59 0.7 0 0
Morphing factor (α) 0.7

LBP-SVM [54, 103, 85, 98] 28.86 32.24 93.20 65.89 49.61
BSIF-SVM [54, 98] 31.90 37.33 100 96.89 84.49

HOG-SVM [98] 32.98 33.54 88.37 68.99 58.13
AlexNet-SVM [85, 90, 64] 5.08 2.27 6.97 3.87 0.77

Color Denoising [4] 2.75 2.46 3.10 0.40 0

7.6 Discussion
Based on the observations made above from the experiments and obtained results,
the research questions formulated in Section 7.2.2 are answered below.

• Q1. How vulnerable are COTS FRS when a composite morph image is
enrolled and is after a period of ageing probed against a live image from one
of the contributing subjects?

– Supported by the obtained experimental results reported in Table 7.2, it
is interesting to note that the value of FMMPMR is reduced to certain
extent in case of MorphAge-II dataset. The morphed images are not
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easily verified against the probe images after a certain degree of ageing
making FRS less vulnerable.

• Q2. Do current Morphing Attack Detection (MAD) algorithms scale-up to
detect such attacks under the influence of ageing?

– Based on the experimental results reported in Table 7.4, ageing has
negligible impact on the MAD and thereby the existing MAD schemes
can detect the attacks even under ageing.

• Q3. What is the impact of different alpha (or blending, morphing) factors
used to generate the morphed image under the constraint of ageing, specific-
ally with respect to MAD?

– Based on the experimental results, it is interesting to note that the
morphing factors alpha = 0.3 and 0.7 show greater reduction in the
vulnerability in both the COTS FRS with respect to ageing as reported
in Table 7.2. It has to be however noted that COTS-II FRS indicates
lower vulnerability when a morphing factor of 0.5 is employed.

7.7 Conclusion
We have presented an empirical study on quantifying the vulnerability of COTS
FRS with regards to morphing attacks under the influence of ageing. We have
introduced a new dataset with two different age groups derived from the pub-
licly available MORPH II face dataset referred as MorphAge-I and MorphAge-
II. Further, we have also introduced a new evaluation metric namely, Fully Mated
Morphed Presentation Match Rate(FMMPMR) to quantify the vulnerability effect-
ively. Extensive experiments were carried out using two different COTS FRS and
three different morphing factors(with α = 0.3, 0.5 and 0.7). Based on the obtained
results, it is observed that impact of ageing reduces the vulnerability from morph-
ing attacks on COTS FRS. The reduction in the vulnerability is more prominent
when the morphing factor is α = 0.3 and 0.7. However with a morphing factor
of α = 0.5, the vulnerability does not change significantly with the COTS-I, while
COTS-II FRS still indicates a significant reduction in the vulnerability. Extensive
experiments were performed to quantify the performance variation of the MAD
methods under the influence of ageing. To this extent, three different evaluation
protocols are presented that show no influence of ageing on morph attack detec-
tion performance. It is also interesting to note that robust MAD methods are not
sensitive to variations of the morphing factor even under the influence of ageing.
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Article 4: Morphed Face
Detection Based on Deep Color
Residual Noise

Sushma Venkatesh, Raghavendra Ramachandra, Kiran Raja, Luuk Spreeuwers,
Raymond Veldhuis, and Christoph Busch. Morphed face detection based on deep
color residual noise. In 9th Intl. Conf. on Image Processing Theory, Tools and
Applications (IPTA). IEEE, November 2019

8.1 Abstract
Secure access control applications like border control rely on the face based verific-
ation system by considering its reliability, usability and accuracy in-person verific-
ation. However, face recognition systems are vulnerable to morphed face attacks,
in which, the morphing process combines two different facial images into a single
facial image. The features extracted from the morphed face image will match to
those extracted from probe images of both faces. Thus, it is essential to reliably
detect the morphed face image attacks on the face recognition systems. In this
work, we propose a novel approach to detect morphed face images using residual
color noise. The proposed method is designed to capture the noise patterns that
are a result of the morphing process. Thus, the proposed method performs first
denoising using Deep Convolutional Neural Network (CNN) independently on the
Hue Saturation Value (HSV) color space, and then computes the residual noise.
The extracted residual noise is further processed using Pyramid Local Binary Pat-
terns (P-LBP), which is further classified using the Spectral Regression Kernel
Discriminant Analysis (SRKDA). Extensive experiments are carried out on three

119
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different morphed face image datasets. The Morphed Attack Detection (MAD)
performance of the proposed method is benchmarked with 13 different state-of-
the-art techniques using the ISO IEC 30107-3 evaluation metrics. Based on the
obtained quantitative results, the proposed method has indicated the best perform-
ance.

8.2 Introduction
Biometric systems employing face, fingerprint or iris recognition are widely de-
ployed to verify the unique identity of an individual in various access control ap-
plications. Face Recognition Systems (FRS) are predominantly deployed to verify
and establish an identity due to the ease of capture process in a non-invasive man-
ner and at a distance. At the same time, face images are also used in passport
based verification both for border crossing and International Civil Aviation Or-
ganization (ICAO) based identity verification amongst others. Recently well-used
identity check in the airport involves an individual presenting his electronic Ma-
chine Readable Travel Document (eMRTD) to verify identity either via Automated
Border Control (ABC) gates or to an immigration officer.

While the identity can be verified against a presented image on the passport, many
countries issue such documents based on the printed face photo provided by the
applicant. Malicious actors can therefore use such an opportunity to provide a
tampered face image. One critical case of a tampered face image defeating the
FRS is reported as morphed face image, which can successfully verify against
multiple individuals. Morphing is an image processing technique used to combine
face images of two different individuals, to obtain a single face image. Morphing
poses a great threat for the identity check in passport control, as an authentic eM-
RTD, containing a morphed image, can be used by two different individuals. This
applies to the visual inspection process by a border guard, but also to automated
processing, when the verification in conducted with the commercial-off-the-shelf
(COTS) FRS [119]. The challenge becomes critical, when malicious actors morph
the face image against the non-blacklisted subject. This poses a potential threat to
security of the border control and thereby it is essential to identify such morphed
face images. Motivated by the gravity of the problem, recent research works are
focused on detecting morphed images to identify a possible attack on the face re-
cognition system. As indicated in [142], there exists two different techniques for
Morphing Attack Detection (MAD): (i) No reference morphing attack detection
technique (ii) Differential morphing attack detection techniques. In the former
morphing detection technique, an image is analyzed individually without any ref-
erence and then classified as a bona fide image or morphed image. In the latter,
an image is analyzed based on the stored reference image by using a obtained ref-
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MorphBona fide Bona fide

Figure 8.1: Example of the morphed face image

erence image, for instance using a live captured image (from Automatic Border
Control (ABC) gate) compared against stored reference eMRTD image. In such a
scenario, the eMRTD image is classified as bona fide, if the MAD-features of live
captured image from the ABC-gate correspond to the extracted MAD-features of
the eMRTD image. Further, the no reference morphing attack detection can be of
two types depending upon the type of processing of the image data such as [54]:
(a) print-scan attack detection in which the digital photo captured in the photo both
(or studio) is then printed and handed over to the passport issuance center, where it
is again digitised using a scanning device and subsequently stored in the eMRTD.
(b) Digital attack detection, where the captured face digitally can be used directly
to detect the morphing attacks. since the digital passport photos are used in many
countries to renew the passport applications [54]. In this work, we focus on detect-
ing digital face morphed attacks by considering its wide applicability in real-life
applications and also it is easy to generate these attacks [54].

The digital morphed face detection is widely addressed in the literature that has
resulted in several techniques that can be broadly divided into three types: (a)
Texture based (b) image quality based (c) deep learning based approaches. Early
works are based on hand-crafted texture-based techniques that are expected to cap-
ture the variation in micro textures during the process of morphing that facilitates
morph detection. To this extent, several algorithms-based on texture features such
as Binary Statistical Image Features (BSIF), Local Phase Quantization (LPQ) [54]
and Local Binary Pattern (LBP) [54], [103] and it’s variants are introduced to de-
tect the digital version of morphed faces. Among these texture-based techniques,
the use of LBP and BSIF has indicated consistent morphed face detection per-
formance. The image quality-based methods are designed to quantify the variation
in the compression artefacts and morphing noise introduced during the process
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Figure 8.2: Block diagram of the proposed method

of morph generation. Several approaches are presented that includes analysis of
Benford features distribution that varies after the jpeg compression [95]. spectral
analysis of PRNU [82] and StirTrace [81]. Recent approaches are based on using
the deep learning approaches, especially on using the pre-trained CNN architec-
ture like AlexNet, VGG, ResNet, GoogleNet and InceptionV3 [83], [64]. Based
on the several experiments reported in the literature, the deep learning-based ap-
proaches and the image degradation approaches shows the improved performance
over texture-based approaches.

Input image:Bona fide

Input image: Morphed

Residual noise: Hue Residual noise: Value 

Residual noise: Hue 

Residual noise: Saturation 

Residual noise: Saturation Residual noise: Value 

Figure 8.3: Illustration of the residual noise image computed using proposed method on
(a) Bona fide image (b) Morphed image

In this work, we present a new approach for no-reference morphing face attack
detection by analysing the residual noise that may be attributed due to the process
of face morphing. Specifically, we compute the residual noise using a Deep-CNN
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based denoising network on each of the color channels of the given face image.
On the obtained residual noise of each channel, we further extract the textural fea-
tures using the Pyramidal Local Binary Pattern (P-LBP) to better quantify the noise
patterns. Finally, we learn a spectrally regressed kernel discriminant (SRKD) to
discriminate between the bona fide and morphed image. To validate the intuition of
our proposed approach, we employ three different large scale datasets comprom-
ised of bona fide and morphed images. Through empirical evaluation on these
three large scale datasets, we demonstrate a superior Morphing Attack Detection
(MAD) performance and further compare it against the detection performance of
hand-crafted and deep-learning features. The key contributions of this work in-
cludes: (1) Novel method for morphed face detection based on the color residual
noise computed based on D-CNN denoising technique. (2) Extensive experiments
are carried out on three different face morphing datasets and the performance of
the proposed method is benchmark with 13 different state-of-the-art techniques.

The rest of the paper is organized in the following order: Section 8.3 presents
our proposed method. Section 8.4 describes the experiments and results obtained.
Finally, Section 8.5 draws the conclusion.

8.3 Proposed Method
Figure 8.2 shows the functional block diagram of the proposed method for the
proposed face morphing detection. The face morphing process combines two face
images using mathematical operations to obtain the morphed face image. This
results in the morphed image that adulterates the noisy components due to pixel
discontinuities. Thus, we assert that computing these residual noises that are ex-
pected to be in high magnitude in the morphed face images when compared to that
of the bona fide face images. Such irregularities can help in revealing the morphed
manipulation. The proposed method is structured to compute the residual noise
from the individual color spaces. Given the color (RGB) face image IRGB , the
first step is to decompose the image into HSV color space that can better capture
the distinct characteristics of the bona fide and morphed images. For example, the
morphed images may have different characteristics of edges, textures, shade and
color smoothness. These characteristics can be best described by decoupling the
intensity from the chroma component using HSV color space. Let the HSV color
image can be represented as IHSV .

In the next step, the image denoising is carried out on individual color channels.
To this extent, we propose to employ, the Denoise Deep Convolutional Neural
Network (De-DCNN) denoising method from [131] by considering it’s denoising
performance. In this work, we use the pre-trained De-DCNN that is trained using
natural images with a large variety of noise [131]. We then carry out the denoising
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of individual color channels to get corresponding denoised images: I
′
H , I

′
S , I

′
V . In

the next step, we compute the residual noise independently on three channels as:
RNH = IH − I

′
H , RNS = IS − I

′
S , RNV = IV − I

′
V . Figure 8.3 illustrates

the residual noise computed from the HSV color space that clearly indicates the
distinction between bona fide and morphed image.

In the next step, we further process the residual noise images using Pyramid-Local
Binary Component (P-LBP) features to quantify the residual noise effectively. We
are motivated to employ this approach by considering it’s efficiency in modeling
the residual noise as indicated in [183]. In this work, we use the Laplacian Pyramid
with three level decomposition independently on residual noise image on which the
LBP is computed. Given the residual image, the proposed method provides three
sets of features computed using LBP corresponding to three level Laplacian pyr-
amid. Thus, in total there are 9 different P-LBP features computed from 3 differ-
ent residual noise images as: RNL1

H , RNL2
H , RNL3

H , RNL1
S , RNL2

S , RNL3
S , RNV ∗

L1, RNV ∗L2, RNV ∗L3. Finally, we train the morph detector based on Spectral
Regression Kernel Discriminant Analysis [184] independently on nine different
features using a training set. Given the test image, we compute the Morph Attack
Detection (MAD) score corresponding to 9 different features as:

MDf1,MDf2,MDf3,MDf4,MDf5,MDf6,MDf7,MDf8 ,MDf9. Final de-
cision is computed by combining the MAD scores using a sum rule as:

∑9
1=1MDfi.

8.4 Experiments and Results

Morph Bona fideBona fide Bona fide Bona fideMorphBona fide Bona fideMorph

(a) Dataset-1 (b) Dataset-2 (c) Dataset-3

Figure 8.4: Illustration of the example images from (a) Dataset-1 (b) Dataset-2 (c)
Dataset-3

In this section, we present the quantitative results of the proposed method together
with 13 different State-Of-The-Art (SOTA) techniques for the morphed face image
detection. Experimental results are presented using the ISO30107-3 [21] metrics
such as Bona fide Presentation Classification Error Rate (BPCER(%)) and Attack
Presentation Classification Error Rate (APCER (%)) along with D-EER(%). BP-
CER defines the proportion of bona fide presentations incorrectly classified as at-
tack images and APCER defines attack images incorrectly classified as the bona
fide images [21].

Extensive experiments are presented on three different datasets namely: Dataset-
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Table 8.1: Quantitative performance of the MAD algorithms on Experiment-1 (individual
dataset)

Algorithms

Database-1 Database-2 Database-3

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

=5% =10% =5% =10% =5% =10%
AlexNet-SVM [90] 5.50 3.5 2.33 7.08 8.95 4.85 11 22 12
GoogleNet-SVM [90] 9.63 13.66 8.83 11.95 22.38 14.55 42.23 100 77.23
InceptionV3-SVM [90] 11.66 18.83 12.33 8.21 11.94 8.20 11.94 26 16
ResNet101-SVM [90] 5.51 6.16 4 6.48 6.10 4.74 13.76 32 22
VGG16-SVM [90] [83] 13.31 25 16.83 14.50 28.35 18.28 21.86 100 36
VGG19-SVM [90] [64] 12.49 22.66 15 12.32 22.38 14.17 24.50 52 40
BSIF-SVM [98] 26.70 53 42 12.67 25.74 14.55 20.45 44 32
Steerable pyramid - SVM
[90]

26.19 65.50 50 37.97 82.08 71.64 34.00 82 70

HOG-SVM [98] 10.37 19.83 10.50 12.30 23.50 14.92 11.91 26 10
Image Gradient-SVM [54] 17.34 38 26.50 25.24 51.86 39.92 31.98 72 60
LBP-SVM [54] 18.67 39.16 28.16 9.31 14.55 8.20 22.06 62 38
PRNU [82] 26.51 57.16 44.67 39.89 78.35 70.15 35.62 74 58
LPQ-SVM [54] 17.30 43.66 28.66 13.43 26.11 16.41 20.24 56 38
Proposed Method 3.83 3 1.5 4.85 4.85 3.35 9.71 14 8

Figure 8.5: DET Curves (a) performance of the proposed method on three different data-
sets in Experiment-1 (b) performance of the top five MAD algorithms including the pro-
posed method on Experiment-2 (c) performance of the proposed method in Experiment-3
(cross dataset)
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1: This dataset is constructed using 179 unique subjects that are divided into two
disjoint independent sets namely training (89 subjects) and testing (90 subjects).
These subjects are selected using both publicly available and private face data-
sets. The morphing process is carried out using the open source tool mentioned
in [13] that has resulted in a training set with 709 bona fide and 1255 morphed
images and testing set with 918 bona fide and 1354 morphed images. Figure 8.4
(a) shows the example of the bona fide and morphed images. Dataset-2: This
dataset is constructed using the FRGC dataset in which 568 data subjects are used
to generate morphed images using an automatic method based on facial landmark
and triangulation as described in [103]. This dataset has 300 bona fide and 3041
morphed images corresponding to 300 data subjects used as the training set. While
the testing set is generated using 268 data subjects that correspond to 268 bona fide
and 2739 morphed images. Figure 8.4 (b) illustrates the example image from this
dataset. Dataset-3: This dataset is comprised of 100 data subjects selected from
putDB dataset which is publicly available. The training dataset is comprised of 50
data subjects that are used to generate 50 bona fide and 254 morphed samples. The
testing dataset is comprised of 50 data subjects that are used to generate 50 bona
fide and 244 morphed images. The morphing process is based on facial landmark
and triangulation as described in [103]. Figure 8.4 (c) shows the example of the
bona fide and morphed images.

In this work, we have evaluated 6 deep learning based SOTA and 7 non-deep
learning based techniques. In case of deep learning technique, we have used the
pre-trained network and compute the corresponding features that are further clas-
sified using linear Support Vector Machines (SVM). To this extent, we have con-
sidered pre-trained CNN such as AlexNet [90], GoogleNet [90], Inception V3[90],
ResNet101[90], VGG16 [90] and VGG19 [90]. In case of non-deep learning tech-
niques, texture-based techniques such as; LBP [54], LPQ [54], BSIF [98], Steer-
able Pyramids [90] together with image distortion based features such as Image
gradients[54] , HoG [98] and PRNU [82] are used together with linear SVM (ex-
cept for PRNU) to compute the detection performance. To effectively evaluate the
performance of the Morph Attack Detection (MAD) schemes, we perform three
different experiments such as Experiment-1:- is designed to evaluate the perform-
ance of the MAD schemes when training and testing are done on the same dataset.
Experiment-2:- is designed to evaluate the MAD schemes on the merged dataset
in which all three datasets are merged into one dataset. This experiment provides
an insight into the MAD performance when the dataset is increased with a number
of samples. Experiment-3:- is designed to perform the cross-dataset comparison
in which one of the datasets is used for training and another dataset is used for
testing. This experiment will highlight insights on MAD techniques that tested on
the unknown dataset.
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Table 9.3 shows the quantitative performance of the proposed method, along with
13 different SOTA techniques on Experiment-1. It is interesting to note that (1) the
MAD performance of the deep learning features shows the improved performance
over non-deep learning methods on all three datasets. (2) Among three different
the performance of the all MAD techniques indicate the degraded performance
that can be attributed to the characteristics of the dataset. (3) The ReseNet101 and
Inception V3 based features indicate better performance over other DCNN features
on all three datasets. (4) Among the non-deep features, LBP and HoG schemes
indicate better performance over other non-deep features on all three datasets. (5)
The proposed method has indicated the best performance when compared to that
of the 13 different SOTA techniques on all three different datasets. Figure 8.5 (a)
shows the DET curves indicating the performance of the proposed method on all
three datasets evaluated in this work.

Table 8.2: Quantitative performance of the MAD algorithms on Experiment-2 (merged
dataset)

Algorithms D-EER(%)
BPCER@ APCER

=5% =10%
AlexNet-SVM [90] 9.70 17.32 9.36
GoogleNet-SVM [90] 10.87 21.35 11.98
InceptionV3-SVM [90] 8.69 14.59 7.51
ResNet101-SVM [90] 7.77 9.04 4.68
VGG16-SVM [90] 12.83 25.49 15.03
VGG19-SVM [90] 12.19 24.50 15.03
BSIF-SVM [98] 15.58 33.98 23.09
Steerable Pyramid-SVM
[90]

36.78 77.88 68.08

HOG-SVM [98] 11.32 20.69 12.52
Image Gradient-SVM
[54]

38.41 79.84 68.84

LBP-SVM [54] 36.58 73.42 63.98
PRNU [82] 36.88 76.84 65.35
LPQ-SVM [54] 15.03 30.28 19.82
Proposed Method 5.34 6.31 2.50

Table 9.4 indicates the quantitative performance of the proposed method on the
Experiment-2 in which all three datasets are merged. Based on the obtained results,
the deep features indicate better performance over non-deep techniques. Further,
the proposed method has indicated the best performance with D-EER = 5.34%
with BPCER = 6.31% @APCER = 5% and BPCER = 2.50% @APCER = 10%.
These obtained results further justify the robustness of the proposed method to the
increased number of samples with different image characteristics. Figure 8.5 (b)
shows the DET curves indicating the performance corresponding to the top five
best performing techniques including the proposed method.

Table 9.5 indicates the quantitative performance of the proposed method on the
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Table 8.3: Quantitative performance of the MAD algorithms on Experiment-3 (cross Data-
set)

Training Dataset Test Dataset Algorithms D-EER(%)
BPCER@ APCER
=5% =10%

Database-1 Database-2

Alexnet-SVM [90] 50 100 100
Resnet101-SVM [90] 50 100 100
HoG-SVM [98] 17.97 38.43 28.35
Proposed method 7.12 12.31 5.22

Database-1 Database-3

Alexnet-SVM [90] 19.63 32 24
Resnet101-SVM [90] 13.96 100 18
HoG-SVM [98] 20.24 50 30
Proposed method 13.76 32 16

Database-2 Database-1

Alexnet-SVM [90] 8.14 11.66 7.33
Resnet101-SVM [90] 9.82 16.33 9.66
HoG-SVM [98] 6.81 9 4.83
Proposed method 6.49 8.50 4.16

Database-2 Database-3

Alexnet-SVM [90] 19.83 38 34
Resnet101-SVM
[90][90]

13.76 26 16

HoG-SVM [98] 12.35 34 20
Proposed method 13.76 30 22

Database-3 Database-1

Alexnet-SVM [90] 50 100 100
Resnet101-SVM [90] 14.68 100 18.83
HoG-SVM [98] 14.52 32 19.16
Proposed method 14.40 36.16 19.50

Database-3 Database-2

Alexnet-SVM [90] 50 100 100
Resnet101-SVM [90] 17.27 100 100
HoG-SVM [98] 24.28 58.20 42.53
Proposed method 15.31 33.95 23.50
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Experiment-3 (cross-dataset evaluation). For simplicity, we have presented the res-
ults only for the top four best performing MAD techniques based on Experiment-1
and Experiment-2. Since we have three different datasets, we get six different
cases in which one dataset is enrolled and the remaining two datasets are probed.
Based on the obtained results, the proposed method shows improved performance
when compared with the SOTA methods. However, when dataset-3 is used as
the probe, the performance of the proposed method is comparable with the SOTA
methods. Figure 8.5 (c) shows the DET curves of the proposed method on all six
different cases of cross dataset comparison. For simplicity, we have indicated DET
curves for selected techniques, however, detailed quantitative results are presented
in Table 9.3, Table 9.4 & Table 9.5.

Thus, based on the extensive experiments carried out on three different datasets,
the proposed method has indicated the best MAD performance when compared
with 13 different SOTA techniques. Quantitative results obtained on three differ-
ent experiments shows the best performance of the proposed method, which justi-
fies the applicability of the residual noise computed based on the deep denoising
technique for the robust morphed face detection.

8.5 Conclusion
In this work, we propose a novel method based on denoising to identify the pres-
ence of a morph attack. Existence of residual noise that is obtained after getting
the difference of the face image with its denoised version indicates the presence
of morphing. Face image in HSV color space is denoised to obtain the difference
image that is obtained by subtracting the given image with its denoised version
in HSV color space. Difference obtained after subtraction is the residual noise
on which pyramid LBP is applied to get the spatial features with three level de-
composition. Further the spatial features are classified using SRKDA classifier to
reliably identify the given image as bona fide or morphed.

Extensive experiments are carried out on three different morphed face databases
(digital version). We present an evaluation on 13 different algorithms based on
deep learning and non-deep learning features. Among six different deep features
and seven different non-deep features our proposed method based on denoising
outperforms the existing techniques. Performance of the proposed method on
dataset-1 gives a D-EER of 3.83% with BPCER = 1.5% at APCER = 10% and
BPCER = 3% at APCER =5%. dataset-2 gives a D-EER of 4.85% with BPCER =
3.35% at APCER = 10% and BPCER = 4.85% at APCER = 5%. Finally dataset-3
presents a D-EER of 9.71% at BPCER = 8% at APCER = 10% and BPCER = 14%
at APCER = 5%. Quantitative results obtained on all three datasets indicates the
consistent performance that shows the robustness and reliabitlity of the proposed
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method.
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Raymond Veldhuis, and Christoph Busch. Detecting morphed face attacks using
residual noise from deep multi-scale context aggregation network. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). IEEE, March 2020.

9.1 Abstract
Along with the deployment of the Face Recognition Systems (FRS), concerns were
raised related to the vulnerability of those systems towards various attacks includ-
ing morphed attacks. The morphed face attack involves two different face images
in order to obtain via a morphing process a resulting attack image, which is suf-
ficiently similar to both contributing data subjects. The obtained morphed image
can successfully be verified against both subjects visually (by a human expert) and
by a commercial FRS. The face morphing attack poses a severe security risk to
the e-passport issuance process and to applications like border control, unless such
attacks are detected and mitigated. In this work, we propose a new method to re-
liably detect a morphed face attack using a newly designed demising framework.
To this end, we design and introduce a new deep Multi-scale Context Aggrega-
tion Network (MS-CAN) to obtain denoised images, which is subsequently used

131
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to determine if an image is morphed or not. Extensive experiments are carried out
on three different morphed face image datasets. The Morphing Attack Detection
(MAD) performance of the proposed method is also benchmarked against 14 dif-
ferent state-of-the-art techniques using the ISO30107-3 evaluation metrics. Based
on the obtained quantitative results, the proposed method has indicated the best
performance on all three datasets and also on cross-dataset experiments.

9.2 Introduction
An electronic Machine Readable Travel Document (eMRTD) is a governmental
document (e.g. an electronic Passport) that stores face biometric reference images
corresponding to the owner of the document. When a bona fide citizen makes
the application for an eMRTD in his respective country, the applicant provides
a passport photo that is taken by a photographer. Depending upon the type of
the application (online or in-person), the applicant submits his/her passport photo
either in digital or printed form, where printed passport photos are subsequently
scanned for the digitized eMRTD production process. The submitted passport
photo either in digital or re-digitized through scanning i.e. print-scan) is stored in
the eMRTD.

A malicious actor in such a setting can submit a morphed face image and obtain a
valid eMRTD leading to exploitation of intrinsic intra-class variation tolerance of
a Face Recognition Systems (FRS), which was revealed as a serious vulnerability
of FRS [22]. The morphed face image generated using the face image from an
attacker and a accomplice can easily be verified against both contributing subjects
with existing commercial FRS. Also a human expert such as a trained border guard
can be confused [185, 135, 54, 134, 29, 13, 186, 15]. This scenario becomes
critical, when attackers intentionally morph their face image with a non-blacklisted
subject, in order to gain access to a protected/secured area. This poses a severe
threat to the security and efficacy of border control or similar applications (using
eMRTD) and thereby, it is crucial to identify such morphed face images and to
prevent the attacks. A sample of morphed face image and the obtained comparison
scores using a commercial FRS is illustrated in Figure 9.1.

Motivated by the problem, several Morphing Attack Detection (MAD) techniques
to flag digital morphed face images and print-scanned morphed face images have
been proposed [135, 54, 13, 186, 15, 103, 98, 84, 104]. In this work, we focus on
detecting digital morphed face images as: (i) they can be easily generated in the
digital domain, (ii) digital images are used in several countries like New-Zealand,
Estonia, Ireland, etc. to issue/renew the documents and (iii) the constitute a low-
cost attack in digital domain. Further, it has to be noted that the digital morph
image is usually uploaded to an online passport application portal by the applicant
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Verification
Score
0.93

Verification
Score
0.94

Bona fide Bona fideMorph

Figure 9.1: Illustration of successful verification with morphed image in a COTS Face
Recognition System (FRS) operating at FAR = 0.01% (a) Subject 1 (b) Morphed face
image (c) Subject 2

and there is no human control to verify the authenticity of image as in a physical
passport application procedure.

Table 9.1: State-of-the-art digital MAD techniques

Reference Algorithm Type Algorithm
Raghavendra et al. [54] Texture based method Local binary pattern (SVM),

Binary Statistical Image Features (BSIF),
Image Gradient(IG)

Makrushin et al. [95] Quantized DCT coefficients Benford features
Hildebrandt et al. [81] Stir trace based scenario Multi-compressed Anomaly detection
Neubert [96] Image degradation approach Corner feature detector
Seibold et al. [64] Deep learning based approach VGG19, GoogleNet, AlexNet
Asaad and Sabah [97] Texture based scenario Topological data analysis approach
Scherhag et al. [98] Texture and frequency based method LBP, LPQ, BSIF, 2DFFT with SVM classifier
Debiasi et al. [104] Image Quality PRNU using Wavelet denoising
Raghavendra et al. [83] Deep CNN based method Feature fusion of fully connected

layers of VGG19 and Alex Net
Damer et al. [84] Deep and texture features Feature fusion of LBP and Openface Net
Ferrara et al. [85] Deep features AlexNet, VGG19, VGG16, ResNet50
Sushma et al. [4] Deep residual noise Color residual noise with SRKDA

9.3 Related Works
In this section, we summarize the existing MAD techniques in Table 9.1 for a
quick comprehension of the reader. As observed from Table 9.1, the most preval-
ent MAD techniques can be broadly divided into four algorithm types: (a) texture-
based (b) image quality based (c) deep learning-based (d) hybrid features (com-
bined/multiple features) based detection. The first work on detecting the morphed
face images based on micro-textures was presented in [54]. Following this work,
several other works are reported [103, 98] using the capability of micro-texture ex-
traction techniques that can effectively capture the variations to reflect the process
of morphing, which aids the morph detection task. Lately, the use of pre-trained
deep CNNs with different architectures are widely studied in [64, 83, 85]. Fur-
ther, the combination of deep features with handcrafted features is proposed in
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[84]. Recently, the spectral analysis of Photo Response Non-Uniformity has been
employed [104][80], to analyse modifications caused by the morphing procedure.
For a quick overview of the existing state of the art based on morph attack detec-
tion are presented in [142]. In the recent past several approaches based on hybrid
features and deep features are presented [91, 15, 117]. The combination of deep
features with handcrafted features is proposed in [84]. Recently, the residual noise
computed on the color channels using deep CNN based denoising is presented for
the reliable face morph detection [4].
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Figure 9.2: Block diagram of the proposed method. B denotes batch-normalization, M
represents the scale layer that adjusts the strength of the batch-normalization, L corres-
ponds to strength of the identity branch in batch-normalization.

9.3.1 Our Contributions

Intrigued by the effectiveness of the photo-response noise and it’s success in de-
tecting morphed attacks, we investigate to detect the noise of the morphing process
using a new approach. We assert that the strategy of localizing such a noise us-
ing learning approaches lead to better detection of morphing attacks. Thus, in this
work, we present a novel method for the face morphing attack detection by com-
puting the residual noise, which can be attributed to the morphing process. The
intuition behind resorting to such an approach of determining the noise using a
deep learning paradigm is due to three specific reasons, where the resulting noise
due to the morphing process can be: (i) random (ii) non-deterministic and abrupt
(iii) sparsely distributed.

Given such properties, we first focus on commonly characterized noise in the im-
age domain and the approaches to denoise them. The widely employed denoising
approaches include Wavelet Denoising (WD) [187], Block Matching and 3D filter-
ing (BM3D) [188], Multi-resolution Bilateral Filtering (MBF) [189] and Denois-
ing Convolutional Neural Networks (DnCNN) [131] which can intuitively cover
the possible noise in morphing process. A combination of all such denoising ap-
proaches can lead to better morphing attack detection, as asserted earlier. However,
the complexity in time and parameterization of each of these approaches can lead
to the cumbersome effort. In the light of the recent advancements in deep learn-
ing, we propose to aggregate the denoising approaches [187, 188, 189, 131] using
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a deep Multi-scale Context Aggregation Network (MS-CAN) such that the noise
in the morphed image can be easily determined, i.e., given the face image I , we
obtain the denoised face image Id using the MS-CAN. We then compute the re-
sidual noise Ir, which is employed to determine if the image I is morphed or not
(bona fide). Given the residual noise image, we adapt the pre-trained off-the-shelf
AlexNet to extract textural features. These features are then classified using a Col-
laborative Representative Classifier (CRC) to discriminate between the bona fide
and morphed image.

The key contributions of this work can therefore be summarized as:

• We present a novel method for detecting morphed face images based on the
deep textural features of residual noise from image.

• We introduce a deep Multi-scale Context Aggregation Network (MS-CAN)
for aggregating four denoising methods to consider various kinds of noise
characteristics.

• We present results and extensive experiments on three different face morph-
ing datasets, and benchmark the results for our proposed approach with 14
different state-of-the-art techniques.

The rest of the paper is organized as follows: Section 9.4 presents the proposed
method, Section 9.5 discusses the morphed face dataset used in this work, Section
9.6 discusses the quantitative performance of the state-of-the-art face Morphing
Attack Detection (MAD) together with the proposed method under different eval-
uation protocols. Finally, Section 9.7 draws the conclusion.

9.4 Proposed Method
As noted earlier, the morphing process can involuntarily introduce noise in the
resulting morphed image. The core of the proposed method is therefore to quantify
the morphing noise effectively given the recent work indicating the effectiveness of
noise characterization in detecting morphing attacks [104] The motivation of this
work is to explore the image denoising methods to quantify the noise and thereby
detect the face morphing attacks reliably. The residual noise obtained from the
image can enable reliable detection of no-reference (single image) based morph
images. The proposed approach for such motivation is provided in Figure 9.2,
which characterizes the noise pattern. The proposed method can be visualized in
two main parts: (a) aggregation of multiple denoising methods realized using MS-
CAN (b) feature extraction and classification, both of which are explained in the
section below.
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Figure 9.3: Realizing the multiple-denoising approach using a deep Multi-scale Context
Aggregation Network (MS-CAN). B denotes batch-normalization, M represents the scale
layer that adjusts the strength of the batch-normalization, L corresponds to strength of the
identity branch in batch-normalization.

9.4.1 Aggregation of multiple denoising methods realized using MS-CAN

Figure 9.3 shows the block diagram for realizing the aggregation of multiple de-
noising methods through deep MS-CAN. Given the RGB color image I , the first
step is to perform the denoising operation. Among several types of image de-
noising methods, we choose four complementary methods by considering their
performance and also the mode of operation (spatial/frequency/sparse). To this
extent, we have used the selected denoising methods that namely Wavelet Denois-
ing (WD) [187], Block Matching and 3D filtering (BM3D) [188], Multiresolution
Bilateral Filtering (MBF) [189] and DeNoising Convolutional Neural Networks
(DnCNN) [131]. Let ID1, ID2, ID3 & ID4 represent the denoised images corres-
ponding to WD, BM3D, MBF and DnCNN respectively. In the next step, we per-
form the aggregation to obtain a single denoised image that can represent the best
of all four denoising techniques. The aggregation of best-denoised parts within
the image is carried out through the wavelet-based image fusion technique, where
each denoised image is decomposed into sub-bands. As the pixel values in the sub-
bands from different denoising approaches are multiple. We employ the criteria for
selecting the best sub-band with the highest energy values for reconstructing the
final denoised image (using the inverse wavelet transform). We are motivated to
use wavelet-based image fusion as it can handle multi-resolution images. Further,
the image fusion strategy based on the selection of sub-bands with the highest en-
ergy allows us to retain the edge components preserved from multiple denoising
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methods.

Given the denoised image IDi, ∀i = {1, . . . N} where N represents the number
of denoising methods. The corresponding wavelet decomposition (with level 2)
of IDi results in four different sub-band images such as approximate sub-band{
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. The image fusion is performed by selecting the sub-band that corres-

ponds to the highest energy as: Sh1 = h
N(k)
1 , where k = maxNi=1

{
EN

h1

}
is the

index that corresponds to the highest energy. For example, if the highest energy for
the horizontal sub-band h1 is noted with the N th image denoising method, then it
is selected. We follow the same procedure for the remaining sub-bands to obtain
Sh2, Sv1, Sv2, Sd1, Sd2 and Sa. Finally the fused denoised image IF is obtained by
taking the inverse wavelet transform.

Considering the computational effort and the parameterization of the aggregation
of multiple denoising methods, we simply realize the operation of multiple de-
noising using a deep learning approach. It is shown in earlier works [190] [191]
that, approximated image processing operations using deep MS-CAN can result in
a highly accurate, robust and time-efficient technique. Inspired by such findings
in [190, 191], we design our architecture in a similar fashion for our aggregated
denoising approach. As indicated in Figure 9.3, the deep MS-CAN architecture
consists of 15 layers of 3 × 3 convolution layers with exponentially increasing
dilation factor. Thus, the dilation corresponding to the convolution layers are
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 1. Each convolution layer
in the network is connected to a point-wise non-linearity using the leaky rectified
linear unit (leaky-relu). Further, the adaptive normalization [191] is employed to
combine both batch normalization and identity normalization. As shown in the ar-
chitecture (see Figure 9.3), Bx (where x = 1, 2, . . . , 15, number of layers) repres-
ents the batch-normalization,Mx represents the scale layer that adjusts the strength
of the batch-normalization, Lx represents the scale layer to adjust the strength of
the identity branch. We then use the additional layer to combine both Mx and Lx.
The network is trained on input-output pairs that contain images from before and
after the proposed denoising operation. We further employ Mean Squared Error
(MSE) within regression loss function to estimate the learnability of the aggrega-
tion (approximation) operation.

L =
∑
i

IFi − ÎF
R

(9.1)

where, R is the number of responses, IFi is the target output and ÎF is the network
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prediction for response i.

Training details of MS-CAN

To effectively realize the generalizability of the proposed deep MS-CAN, we train
the network on natural images (including photos of people, building, natural scenes,
etc.) from IAPR TC-12 1. We further perform the proposed multiple denoising fu-
sion approach on this dataset to obtain the denoised image. We then train the deep
MS-CAN using pairs of normal-denoised image. The Adam optimizer is used with
a constant learning rate of 0.0001 and the training is carried out for 250 epochs res-
ulting in 1.2 million iterations. We subsequently use the trained deep MS-CAN to
perform the denoising operation and compute the residual noise that can be used
to detect a morphing attack as shown in the Figure 9.2.

Figure 9.4 illustrates qualitative results of the residual noise computed on bona fide
and morphed face images using deep MS-CAN. The variation in noise intensity
between bona fide and morphed image can be observed and this asserts our intu-
ition. These qualitative results further support our approach of detecting morphing
attacks based on residual noise despite learning from general image datasets.

Residual noise

Bona fide Denoised Bona fide

−

Residual noise

Morph Denoised Morph

−

Figure 9.4: Illustration of residual noise computation using deep MS-CAN

9.4.2 Feature extraction and detection

Given the residual image, we extract the deep textural features computed using a
pre-trained off-the-shelf AlexNet. We have used the features from fully connected
layer fc6 to compute the feature from the residual noise images. These computed

1https://www.imageclef.org/photodata
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Figure 9.5: Example images from (a) Dataset-1 (b) Dataset-2 (c) (a) Dataset-3

features are then classified using a Probabilistic Collaborative Representation Clas-
sifier (P-CRC) [192]. The P-CRC used in this work utilizes the Regularized Least
Square Regression (LSR) on the learned feature vectors versus the probe feature
vectors [192] formulated as:

F̂ = argminα ∥TrF − Dα∥22 + λ ∥α∥22+
ψ

K
∥Xα−XKαK∥22

(9.2)

Where, TrF is the feature vector of the test image, D is the learned collaborative
subspace dictionary using TrF , α is coefficient vector, X is the collection of the
training features corresponding to K classes and λ and ψ are the regularization
parameter.

Table 9.2: MAD performance on individual image denoising techniques and the proposed
method

Dataset-1 Dataset-2 Dataset-3
BPCER@ APCER BPCER@ APCER BPCER@ APCER

Algorithms D-EER(%) =5% =10% D-EER(%) =5% =10% D-EER(%) =5% =10%
BM3D [188] 15.03 40.50 22.50 25.04 55.59 42.16 14.37 32 26
WD [187] 27.96 42.83 31.50 31.35 81.34 67.53 18.01 46 34
MBF [189] 8.69 12.16 8.16 8.69 10.44 8.20 9.71 10 8
DnCNN [131] 19.82 42.83 31.50 24.96 54.85 44.77 19.83 54 38
Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8 4

Figure 9.6: DET curves depicting MAD performance of the individual image denoising
methods together with proposed method on different datasets
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9.5 Face Morphing Datasets
The proposed approach is validated empirically using three different morphed face
datasets employing different approaches for morphing and different composition
representing the wide possible variation in morphing process as detailed below.
The datasets are further used to benchmark the detection performance with State-
Of-The-Art (SOTA) Morphing Attack Detection (MAD) methods.

9.5.1 Dataset-1

This database compromises 179 unique subjects that include both male and female
participants from Asian and Caucasian ethnicity. This dataset is constructed using
a public dataset (a subset of the FRGC face database) and a private face dataset.
The whole database is divided into two partitions where the training set includes
89 disjoint and unique data subjects with multiple samples. The rest of the disjoint
subjects are used in the testing set comprising 90 unique data subjects. Facial
images are morphed using an open-source tool mentioned in [13]. Ultimately, the
training set is composed of 709 bona fide and 1255 morphed images and the testing
set is composed of 918 bona fide and 1354 morphed images. Figure 9.5 (a) shows
example images from Dataset-1.

9.5.2 Dataset-2

This morphing database is a derivative of the publicly available FRGC database
that compromises of 568 subjects. The entire database is divided into two parti-
tions that include a training set of 300 unique data subjects resulting in 300 bona
fide and 3041 morphed images. The testing set consists of 268 unique data subjects
resulting in 268 bona fide and 2739 morphed images. Contrary to Dataset-1, the
morphing process used for this dataset is based on the automatic facial landmark
and triangulation, as mentioned in [103]. It has to be noted that the face morphing
is performed only on the inner part of the face excluding the silhouette of the face
(i.e, hair and ear region). Examples from Dataset-2 can be seen in Figure 9.5 (b).

9.5.3 Dataset-3

This database is a derivative of the publicly available PutDB database [34] that
compromises 100 subjects. The entire database is divided into two different par-
titions consisting of 50 training and 50 testing unique data subjects. Morphing is
performed based on the automatic facial landmark and triangulation as described
in [103], that results in 50 bona fide and 254 morphed samples in the training set
and 50 bona fide and 244 morph samples in the testing set. Similar to Dataset-2,
only the inner part of the face is morphed. Figure 9.5 (c) shows example images
from Dataset-3.
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All three datasets are developed by following the morph data preparation steps, as
discussed in [13, 125]. Since all three datasets are constructed using source face
images from three different face datasets, this provides an opportunity to evaluate
the generalizability of the proposed method together with the SOTA methods.

9.6 Experiments and Results
In this section, we present the quantitative results of the proposed method together
with 14 different SOTA techniques for morphed face detection. Experimental res-
ults are presented using the ISO30107-3 [21] metrics such as Bona fide Presenta-
tion Classification Error Rate (BPCER(%)) and Attack Presentation Classification
Error Rate (APCER (%)) along with Detection-Equal Error Rate (D-EER(%)).
BPCER defines the proportion of bona fide presentations incorrectly classified as
morphing attack images and APCER defines attack images incorrectly classified
as bona fide images [21].

In this work, we have evaluated six deep learning-based SOTA, seven non-deep
learning based techniques and one hybrid method that use both deep and hand-
crafted features. In case of the deep learning techniques, we have used the pre-
trained network and computed the corresponding features that are further classified
using a linear Support Vector Machines (SVM). To this extent, we have considered
pre-trained CNN such as AlexNet [85, 90, 64], GoogleNet [90], Inception V3 [90],
ResNet101 [85, 90, 64], VGG16 [85, 90, 83] and VGG19 [85, 90, 83]. The deep-
learning techniques are used only as the feature extraction techniques owing to the
availability of the small datasets. In case of non-deep learning techniques, texture-
based techniques such as LBP [54], LPQ [54], BSIF [98], Steerable Pyramids [90]
together with image distortion based features such as Image gradients [54], hybrid
method [84], HoG [98] and PRNU [104] with linear SVM (except for PRNU) to
compute the detection performance. To effectively evaluate the performance of the
Morphing Attack Detection (MAD) schemes, we perform three different experi-
ments such as Experiment-1:- designed to evaluate the performance of the MAD
schemes when training and testing is carried out on the same dataset. Experiment-
2:- designed to evaluate the MAD schemes on the merged dataset in which all three
datasets are merged to one single dataset. This experiment provides an insight into
the MAD performance when the dataset is increased with respect to the number of
bona fide and morphed samples. Experiment-3:- designed to perform the cross-
dataset comparison in which one of the datasets is used for training and another
dataset is used for testing. This experiment will provide insights on MAD tech-
niques that are capable to operate on unknown data.

Table 9.2 indicates the performance of the proposed method and individual image
denoising methods used to build the proposed method. Figure 9.6 shows the DET
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curves for all three different morphed face datasets. To have a fair comparison,
we have used the same feature extraction and comparison schemes on individual
denoising schemes. Based on the results, it can be noted that the proposed method
has indicated the best detection performance on all three datasets demonstrating a
good robustness. The superior performance of the proposed method can be attrib-
uted to (a) the aggregated denoising and fusion scheme based on the best sub-band
selection (b) the robustness of MS-CAN in obtaining the noise of images trained
using natural images.

Table 9.3 indicates the performance of the proposed method together with 14 dif-
ferent state-of-the-art methods for Experiment-1 on all three datasets. Based on
the obtained results, it can be noted that (a) the use of deep-features indicate a
better performance on all three datasets when compared to non-deep feature based
techniques. (2) Among the deep features, the AlexNet and ResNet101 have indic-
ated an improved performance over other deep features. (3) Among the non-deep
features, HoG-SVM has indicated the best performance. (4) The proposed method
shows overall the best performance when compared to 14 different SOTA tech-
niques on all three different datasets.

Table 9.4 presents the quantitative results of the proposed and existing methods for
Experiment-2. Based on the obtained results, the deep features indicate better per-
formance over non-deep techniques. Further, the proposed method has indicated
the best performance with D-EER = 4.96% with BPCER = 5.01% @APCER =
5% and BPCER = 3.05% @APCER = 10%. These obtained results further justify
the robustness of the proposed method to the increased number of samples with
different image characteristics.

Table 9.5 indicates the quantitative performance of the proposed method for Exper-
iment - 3 (cross-dataset evaluation). For simplicity, we have presented the results
only for the top four best performing MAD techniques based on Experiment-1 and
Experiment-2. Since we have three different datasets, we get six different cases in
which one dataset is enrolled and the remaining two datasets are probed. Based
on the obtained results, the proposed method shows superior performance when
compared with the SOTA methods in all six cases.

Thus, based on the extensive experiments carried out on three different datasets
with three different performance evaluation experiments, we can conclude a su-
perior performance over 14 different state-of-the-art methods. The evaluation res-
ults demonstrate the robustness of the proposed method, which is attributed to the
proposed deep MS-CAN architecture. Further, realizing the proposed method us-
ing MS-CAN not only improved the robustness but also significantly improved
computational cost by a factor of 4, as four denoising operations learnt as a single
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coherent operation.

9.7 Conclusion
We have presented a novel method to detect face morphing attacks in a reliable
manner. The proposed method is based on quantifying the residual noise result-
ing from the effect of the morphing process. The morphing noise is quantified
using a aggregation of multiple denoising methods approximated using a deep
Multi-Scale Context Aggregation Network (MS-CAN). We then process the re-
sidual noise from deep MS-CAN to extract deep features computed using a pre-
trained AlexNet. The final decision is computed using the Probabilistic Collaborat-
ive Representation Classifier (P-CRC) learnt using the extracted features. Extens-
ive experiments are carried out using three different morphed face datasets with
three different performance evaluation protocols. The performance of the pro-
posed method is benchmarkd with the 14 different existing methods. The results
have shown that the proposed method significantly outperforms existing methods
on all three datasets for three different performance evaluation protocols.
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Table 9.3: Quantitative performance of the MAD algorithms on Experiment-1 (individual
dataset)

Algorithms

Dataset-1 Dataset-2 Dataset-3

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

D-EER(%)
BPCER@ APCER

=5% =10% =5% =10% =5% =10%
AlexNet-SVM [85, 90, 64] 5.50 3.5 2.33 7.08 8.95 4.85 11 22 12
GoogleNet-SVM [90] 9.63 13.66 8.83 11.95 22.38 14.55 42.23 100 77.23
InceptionV3-SVM [90] 11.66 18.83 12.33 8.21 11.94 8.20 11.94 26 16
ResNet-SVM [85, 90, 64] 5.51 6.16 4 6.48 6.10 4.74 13.76 32 22
VGG16-SVM [85, 90, 83] 13.31 25 16.83 14.50 28.35 18.28 21.86 100 36
VGG19-SVM [85, 90, 64] 12.49 22.66 15 12.32 22.38 14.17 24.50 52 40
BSIF-SVM [54] [98] 26.70 53 42 12.67 25.74 14.55 20.45 44 32
Steerable pyramid-SVM [90] 26.19 65.50 50 37.97 82.08 71.64 34.00 82 70
HOG-SVM [98] 10.37 19.83 10.50 12.30 23.50 14.92 11.91 26 10
Image Gradient-SVM [54] 17.34 38 26.50 25.24 51.86 39.92 31.98 72 60
LBP-SVM [54, 103, 85, 98] 18.67 39.16 28.16 9.31 14.55 8.20 22.06 62 38
PRNU [104] 26.51 43 55.66 39.89 96.26 92.91 35.62 94 94
LPQ-SVM [54] 17.30 43.66 28.66 13.43 26.11 16.41 20.24 56 38
Deep Residual Noise [4] 3.83 3 1.5 4.85 4.85 3.35 9.71 14 8
Proposed Method 3.24 3 1.67 2.63 1.11 1.11 7.89 8 4

Table 9.4: Quantitative performance of the MAD algorithms on Experiment-2 (merged
dataset)

Algorithms D-EER(%)
BPCER@ APCER

=5% =10%
AlexNet-SVM [85, 90, 64] 9.70 17.32 9.36
GoogleNet-SVM [90] 10.87 21.35 11.98
InceptionV3-SVM [90] 8.69 14.59 7.51
ResNet-SVM [85, 90, 64] 7.77 9.04 4.68
VGG16-SVM [85, 90, 83] 12.83 25.49 15.03
VGG19-SVM [85, 90, 64] 12.19 24.50 15.03
BSIF-SVM [54, 98] 15.58 33.98 23.09
Steerable Pyramid-SVM [90] 36.78 77.88 68.08
HOG-SVM [98] 11.32 20.69 12.52
Image Gradient-SVM [54] 38.41 79.84 68.84
LBP-SVM [54, 103, 85, 98] 36.58 73.42 63.98
PRNU [104] 36.88 96.84 94.11
LPQ-SVM [54] 15.03 30.28 19.82
Deep Residual Noise [4] 5.35 6.31 2.50
Proposed Method 4.96 5.01 3.05
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Table 9.5: Quantitative performance of the MAD algorithms on Experiment-3 (cross Data-
set) - D1-Dataset 1, D2-Dataset 2, D3- Dataset 3

Train Test Algorithms D-EER(%)
BPCER

@ APCER
=5% =10%

D1 D2

AlexNet-SVM [85, 90, 64] 50 100 100
Deep Residual Noise [4] 7.12 12.31 5.22
HoG-SVM [98] 17.97 38.43 28.35
Proposed method 10.44 16.04 10.44

D1 D3

AlexNet-SVM [85, 90, 64] 19.63 32 24
Deep Residual Noise [4] 13.76 32 16
HoG-SVM [98] 20.24 50 30
Proposed method 11.94 28 14

D2 D1

AlexNet-SVM [85, 90, 64] 8.14 11.66 7.33
Deep Residual Noise [4] 6.49 8.50 4.16
HoG-SVM [98] 6.81 9 4.83
Proposed method 4.66 4.66 2.88

D2 D3

AlexNet-SVM [85, 90, 64] 19.83 38 34
Deep Residual Noise [4] 13.76 30 22
HoG-SVM [98] 12.35 34 20
Proposed method 11.94 18 14

D3 D1

AlexNet-SVM [85, 90, 64] 50 100 100
Deep Residual Noise [4] 14.40 36.16 19.50
HoG-SVM [98] 14.52 32 19.16
Proposed method 8.62 10.83 7.67

D3 D2

AlexNet-SVM [85, 90, 64] 50 100 100
Deep Residual Noise [4] 15.31 33.95 23.50
HoG-SVM [98] 24.28 58.20 42.53
Proposed method 10.03 17.16 10.07
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10.1 Abstract
Face morphing attacks have demonstrated a severe threat in the passport issuance
protocol that weakens the border control operations. A morphed face images if
used after printing and scanning (re-digitizing) to obtain a passport is very chal-
lenging to be detected as attack. In this paper, we present a novel method to detect
such morphing attacks using an ensemble of features computed on the scale-space
representation derived from the color space for a given image. Given the limited
availability of datasets representing realistic morphing attacks, we introduce and
present a new print-scan image dataset of morphed face images. Experiments are
carried out on the two different datasets and compared with sixteen existing state-
of-art Morphing Attack Detection (MAD) mechanism based on single image MAD
(S-MAD). The proposed approach indicates a superior MAD performance on both
datasets suggesting the applicability in operational scenarios.

146
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10.2 Introduction
Face biometrics is widely deployed in secure border control applications, where
the identity of a person is verified either by an electronic passport or a national
identity card. While the face picture for the passport is captured in a few countries
under controlled conditions inside a trusted authoritative unit (e.g. Police Station),
for the majority of countries the applicant is asked to submit a face image. The
applicant can therefore provide any face picture that can resemble the applicant
to higher degree through morphing techniques. Morphing techniques seamlessly
transform one image contents to another image with high degree of resemblance
to challenge the Face Recognition Systems (FRS). Morphed images (as shown in
Figure 10.1) can be used to verify two or more identities with one single morphed
reference image as demonstrated in earlier works [13, 22, 135]. Not only do such
morphed images bypass the FRS, but also fool the human observers including
trained border guards [135] posing a severe threat to border control processes.
This situation makes morphing attacks a relevant risk that constitutes a significant
challenge [22].

Morphing Attack Detection (MAD) has been studied for the past couple of years
resulting in various algorithms that can be broadly divided in two types [91]:
(1) Single Image Morphing Attack Detection (S-MAD) techniques (a.k.a as No-
Reference MAD) and (2) Differential Morphing Attack Detection (D-MAD) tech-
niques. Among these two types, the S-MAD is more challenging as the decision
needs to be taken on ae single image without a trusted image available for the
same subject. Added to the magnitude of challenge, reliable detection mechan-
isms should address not only digital data formats, but also the print-scanned (re-
digitized) data formats, where the inherent/residual digital information of morph-
ing is lost in the process of printing and scanning.

The digital format of morphing image is expected to contain residues of the morph-
ing process and thus, most of the state-of-the-art MAD techniques are designed to
capture these effects, for instance PRNU [82]. The majority of MAD algorithms
are also limited to operate on the digital data format of morphing images[54, 101,
81, 95, 79]. The popular methods in this direction includes texture based schemes
like: Local Binary Patterns (LBP) [54], Binarized Statistical image features (BSIF)
[54], Frequency features [99], Image degradation measure features using StirTrace
algorithm [81], JPEG compression artefacts [95], PRNU [82], Benford’s features
[101], Specular reflection [79].

Considering the fact that, most countries use print-scanned face image for issuing
passport, very little focus has been given to detect such morphed images. In fact,
the use of print-scanned morphed images is commonly encountered in real-life
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MorphedSubject 1 Subject 2

Figure 10.1: Example of the face morphing

passport application as the applicant will submit the printed photo which is then
digitized using a scanning process and stored in the passport. It has to be noted that
detecting a printed-scanned face morph image is very challenging as the print-scan
process also introduces additional noise. The commonly employed approaches
to detect morphing attacks after printing and scanning include the texture-based
approaches Local Binary Patterns (LBP) [98], Binarized Statistical Image Features
(BSIF) [54], color textures, deep learning approaches [64, 83], high frequency
texture features [90, 91].

A set of other works in this direction have also explored multiple feature extraction
techniques to detect morphing attacks. In [83], an approach based on feature fu-
sion from pre-trained deep learning networks (AlexNet and VGG-19) is presented.
Experiments presented on both digital and print-scanned dataset indicate the reli-
able detection of morph attacks. In [13] a hybrid feature fusion was presented for
reliable face morphing attack detection. A framework proposed in [100], explores
the StirTrace based approach that detects the Face Morphing Forgery (FMF) by
using keypoint features, Benford features and fusion of both keypoint features and
Benford features. In [193], performance variation and robustness of various morph
detection algorithms on different datasets are studied. For the detection of morphs,
facial images are pre-processed then features are extracted. For this the facial im-
age is divided into 4×4 cells, then the textural features are extracted individually
and further fused to obtain a final feature vector. In addition to this, keypoint ex-
tractors and gradient estimators are employed and finally compared using SVM. In
[91] , the authors present a technique using color space features, where scale space
texture features are extracted and classified using spectral regression classifier. The
comparison score level fusion is finally carried out to detect the morphing attacks.
Dempster-Shafer theory for morph attack detection was also explored for detect-
ing morphing attacks [86] where individual morph attack detectors were combined
using Dempster-Shafer theory to improve the reliability of face morphing attacks
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[86]. The results obtained by employing this method indicates the improved de-
tection accuracy using multiple detectors rather than individual detectors. Another
approach in this direction also employed multi-detector fusion approach[84]. It
extracts both hand-crafted features using Local Binary Pattern Histogram (LBPH)
and CNN based features. Further both feature types are combined using feature
level fusion after z-score normalization.

The reported results indicate still high error rates, which further exemplifies the
difficulty in detecting a single image morphed face image after print-scan pro-
cess. Further, all the reported results are presented only on one source of the
printer. Thus the generalization of the state-of-the-art techniques is not evalu-
ated for multiple printers and scanners. In this work, we present a novel scheme
based on an ensemble of features that are classified individually using Collabor-
ative Representative Classifier (CRC) to detect reliably with an S-MAD approach
a morphed attacks even after the print-scan process. We assert that the use of the
multiple features can provide a complementary feature set that can be used to de-
tect the morphed face images efficiently. Motivated by this, we explore multiple
features in an ensemble classifier approach to detect morphing attacks in this work
resulting in the contributions as follows: (1) Presenting a novel method based
on an ensemble of features to detect based on a single image a morphing attack
after print-scan process. (2) Presenting a new dataset with high-quality print-scan
morphed face images to evaluate multiple state-of-art MAD mechanisms. (3) Re-
porting an extensive set of results on two different datasets (including the newly
introduced dataset) that are generated using two different print-scan process. Each
of these datasets is comprised of 1309 bona fide face images and 2608 morphed
face images. (4) The performance of the proposed method is benchmarked with
16 different state-of-the-art techniques using the IS0/IEC 30107-3 [21] metrics
with Bona fide Presentation Classification Error Rate (BPCER) computed at At-
tack Presentation Classification Error Rate (APCER) @5% and @10% together
with Detection-Equal Error Rate (D-EER%).

The rest of the paper is organised as follows: the proposed method is presented in
Section 10.3, discussion on experimental results are presented in Section 10.4 and
Section 10.5 draws the conclusion.

10.3 Proposed Face Morphing Attack Detection Technique
Figure 10.2 illustrates the block diagram of the proposed approach for single im-
age morphed face attack detection (S-MAD). The proposed method is structured
using five main functional units through which the face image is processed before
taking the final decision. Given the face image I , the first step is to represent the I
using two different color spaces such as YCbCr and HSV. We are motivated to use
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Figure 10.2: Block diagram of the proposed method
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MorphSubject 1 Subject 2

Dataset‐1

MorphSubject 1 Subject 2

Dataset‐2

Figure 10.3: Illustration of the example images (a) Dataset-1 (b) Dataset-2. The difference
in quality of images across both datasets can be observed in the illustration.

these two color spaces as earlier work[90] indicated that the use of multiple color
spaces can enhance the MAD accuracy by providing complementary information.
Let the extracted color space images be represented as Ici, ∀i = 1, . . . , 6. In the
second step, we extract the scale-space features that can capture the high-frequency
components from each of the color space image Ici. In this work, the scale-space
features are extracted using a Laplacian pyramid with 3 level decomposition. We
are motivated to employ the Laplacian transform since they have indicated a robust
(or saliency) features useful for MAD [91]. Let the scale spaces be presented as Icji
∀j = 1, 2, 3&∀i = 1, . . . , 6. In the next step, we perform the feature extraction on
individual scale-space images Icji using multiple feature extraction techniques. As
the use of more than one feature space can provide complementary features, we are
motivated to use three different feature extraction techniques namely: Local Bin-
ary Patterns (LBP), Histogram of gradients (HOG) and Binarized Statistical Image
Features (BSIF). These three different features are selected as morphing residues
can be detected based on the local (LBP) and global (BSIF) texture features to-
gether with the pixel gradients. Thus, it is our assertion that the use of these three
feature extraction techniques can capture complementary residual features that in
turn can be used to detect a morphed face image. The LBP features are extracted
from Icji using an image block of size 20×20 pixels with 10 pixel overlapping, the
BSIF features are extracted using a filter size of 15× 15 with 12 bit length which
are determined empirically. Let features extracted using LBP, BSIF and HOG be
denoted as: LIcji , BIc

j
i and HIcji respectively.

In the next step, we perform the classification of features independently to obtain
the morphing scores. In this work, we employed the Probabilistic Collaborative
Representation Classifier (P-CRC), which maximizes the likelihood ratio of a test
sample jointly with other classes to perform the classification [192]. The P-CRC
used in this work utilizes the Regularized Least Square Regression (LSR) on the
learned feature vectors versus the probe feature vectors [192] formulated as:
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F̂ = argminα ∥TrF − Dα∥22 + λ ∥α∥22 (10.1)

where the TrF is the feature vector of the probe image, D is the learned collabor-
ative subspace dictionary using TrF , α is coefficient vector and λ is the regulariz-
ation parameter. Let the morphing score corresponding to LIcji , BIc

j
i and HIcji

be SLIcji , SBIc
j
i and SHIcji respectively.

Finally, the morphing scores obtained from P-CRC are combined using the SUM
rule to compute the final score F as: F = SLIcji + SBIcji + SHIcji on which the
final decision is made to accept it as bona fide or morphed image.

Table 10.1: Quantitative results of the state-of-the-art and proposed method

Algorithm

Dataset-1 Dataset-2

D-EER(%)
BPCER @ APCER

D-EER(%)
BPCER @ APCER

=5% =10% =5% =10%
Deep Learning Based Approaches

AlexNet 12.64 59.66 29.50 40.02 83.50 74.83
DenseNet 12.99 70.83 35.83 15.82 33.00 22.16

GoolgleLeNet 12.99 72.50 48.50 19.34 44.00 31.16
InceptionV3 13.03 75.16 43.83 21.06 58.00 42.50

ResNet50 12.05 54.33 20.83 20.56 53.83 41.66
ResNet101 13.35 78.33 43.16 15.31 38.33 25.66

VGG16 12.49 49.50 22.16 16.33 40.83 24.83
VGG19 13.31 71.50 45.33 13.51 27.83 13.51

Non-Deep Learning Based Approaches
BSIF-SVM 14.21 96.50 87.16 23.34 50.33 41.16

Steerable Textures 11.66 48.33 16.50 31.49 76.66 63.83
Hybrid textures 7.47 12.00 4.83 9.32 14.33 8.66

HoG-SVM 13.85 87.50 63.00 18.48 35.00 25.33
IG-SVM 29.29 67.33 59.83 34.19 78.33 64.33

Color Textures 14.01 65.50 39.66 18.71 44.83 30.50
LBP-SVM 13.47 80.66 52.16 35.01 84.50 70.00
LPQ-SVM 14.13 88.88 76.33 27.65 80.83 67.00

Proposed Method 5.99 8.17 3.83 5.64 6.34 3.77

10.4 Experiments and Results
In this section, we present the experiments and results of the proposed scheme on
two different datasets. We also present a comparative analysis by benchmarking 16
different state-of-the-art techniques on both datasets. Further, all results of MAD
algorithms are presented following the IS0/IEC 30107-3 [21] metrics: Bona fide
Presentation Classification Error Rate (BPCER) and Attack Presentation Classi-
fication Error Rate (APCER). BPCER is defined as the proportion of bona fide
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presentations incorrectly classified as attacks while APCER is defined as the pro-
portion of attack presentations incorrectly classified as bona fide presentations. In
particular, we report the performance of the proposed method by reporting the
value of BPCER while fixing the APCER to 5% and 10% according to the recom-
mendation from IS0/IEC 30107-3 [21]. Besides, we also present the results with
Detection-Equal Error Rate (D-EER%) where BPCER = APCER. Extensive

(a) (b)

Figure 10.4: DET curves on (a) Dataset-1 (b) Dataset-2

experiments are carried out on the two different datasets such as Dataset-1: This is
the private database [90] with 1309 bona fide images and 2608 morphed face im-
ages. This dataset is collected using RICOH office printer following the procedure
mentioned in [90]. Dataset-2: This a new dataset collected in this work using
high-quality photo printer (Epson expression photo XP860). In order to have a
fair comparison, we have used the same images that are used to generate Dataset-1
to generate a new dataset. Thus, this dataset also has 1309 bona fide and 2608
morphed face images. This is one of the largest semi-public database containing
print and scanned morphed faces available for academic research purposes. Figure
10.3 shows the example of the bona fide and morphed images from both datasets.

Performance evaluation protocol: In order to effectively benchmark the perform-
ance of algorithms, we divide the whole dataset into two independent parts: Train-
ing set with 709 bona fide and 1255 morphed images. Testing set with 600 bona
fide and 1353 morphed images. The disjoint partition is made based on the in-
dividual subjects as mentioned in [54] where the subjects that are contained in
training set are not present in testing set. We have followed the same procedure for
both datasets to make sure that the same images are in the training and testing set.
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Table 10.1 indicates the quantitative performance of the proposed method together
with 16 different state-of-the-art methods on both Dataset-1 and Dataset-2. The
following are the important observations:

• In general, the performance of evaluated algorithms is degraded on the Dataset-
2 when compared to that of Dataset-1. This certainly indicates that with
newly introduced Dataset-2 it is more challenging to detect the morphed
image as a result of high quality print-scan process.

• Among the available state-of-the-art pre-trained deep learning techniques
[90] [64] [83] evaluated on both Dataset-1 and Dataset-2, the obtained per-
formance is highly similar. The limited performance of the pre-trained deep
learning networks can be attributed to the use of a small-scale dataset in
training robust networks.

• Among the available state-of-the-art non-deep learning techniques, the re-
cent methods based on Steerable Textures [90] and Hybrid textures [91]
indicate a good performance on Dataset-1. However, the performance of
these techniques degrades on the Dataset-2, indicating the poor generaliza-
tion capability of previously reported approaches.

• The proposed method has indicated the best but not ideal performance on
both datasets. The proposed method shows the performance of D-EER(%)
= 5.99% with BPCER = 8.17% @ APCER = 5% and BPCER = 5.64% @
APCER = 10% on Dataset-1. While on Dataset-2, the proposed method has
indicated a performance of D-EER(%) = 5.64% with BPCER = 6.34% @
APCER = 5% and BPCER = 3.77% @ APCER = 10%. It is interesting to
note that, the detection performance of the proposed method is consistent
across both datasets. This can be attributed to the complementary features
extracted using the proposed approach within ensemble of features.

• Figure 10.4 shows the DET curves of four different methods (for the sake
of simplicity) on Dataset-1 and Dataset-2. It is interesting to observe the
improved performance of the proposed scheme on both datasets that can be
attributed to the ensemble learning of multiple features and classifier.

10.5 Conclusion
Morphed face detection in a real-life scenario with no reference and only a single
morphed face image, which further has been print-scanned, remains a challenging
task. In this work, we have proposed a novel scheme to reliably detect print-
scanned morphed face images using an ensemble of features in a collaborative



10.5. Conclusion 155

manner. Given the image, the proposed method first extracts the two different
color spaces. In the next step, a scale-space representation using Laplacian trans-
form with 2 level decomposition is performed on each of these color images to
capture the high-frequency features. We then use the ensemble of features such as
Local Binary Patterns (LBP), Histogram of gradients (HOG) and Binarized Statist-
ical Image Features (BSIF). The ensemble of features is extracted independently
from every high-frequency image that is in turn provided to the P-CRC classi-
fier to obtain the individual morphing scores. Finally, the individual morphing
scores are fused using a simple sum rule to make the final decision on morph-
ing attack. Further, we have also introduced a new morphed face dataset with
high-quality print-scan images that is more challenging to detect. Extensive ex-
periments are performed on two different morphed face image dataset (including
the newly introduced dataset) reflects two different print-scan process to study the
scalability of previously published MAD mechanisms. The detection performance
of the proposed method is benchmarked with 16 different state-of-the-art meth-
ods that include both deep learning and non-deep learning methods. The proposed
method has indicated the best performance with D-EER (%) = 5.99% with BPCER
= 8.17% @ APCER = 5% and BPCER = 5.64% @ APCER = 10% on Dataset-1
and D-EER(%) = 5.64% with BPCER = 6.34% @ APCER = 5% and BPCER =
3.77%@ APCER = 10% on Dataset-2. The obtained results have demonstrated the
superior performance of the proposed method indicating the robustness to differ-
ent type of printers and reliability of MAD. The aspects of generalizability needs
further investigation with an evaluation on multiple datasets which will be carried
in future works.
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11.1 Abstract
Face recognition has been successfully deployed in real-time applications, includ-
ing secure applications such as border control. The vulnerability of face recogni-
tion systems (FRSs) to various kinds of attacks (both direct and indirect attacks)
and face morphing attacks has received great interest from the biometric com-
munity. The goal of a morphing attack is to subvert an FRS at an automatic border
control (ABC) gate by presenting an electronic machine-readable travel document
(eMRTD) or e-passport that is obtained based on a morphed face image. Since
the application process for an e-passport in the majority of countries requires a
passport photograph to be presented by the applicant, a malicious actor and an
accomplice can generate a morphed face image to obtain the e-passport. An e-
passport with a morphed face image can be used by both the malicious actor and
the accomplice to cross a border, as the morphed face image can be verified against
both of them. This can result in a significant threat, as a malicious actor can cross
the border without revealing the trace of his/her criminal background, while the
details of the accomplice are recorded in the log of the access control system. This
survey aims to present a systematic overview of the progress made in the area of

156
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face morphing in terms of both morph generation and morph detection. In this
article, we describe and illustrate various aspects of face morphing attacks, includ-
ing different techniques for generating morphed face images and state-of-the-art
morph attack detection (MAD) algorithms based on a stringent taxonomy as well
as the availability of public databases, which allow us to benchmark new MAD
algorithms in a reproducible manner. The outcomes of competitions and bench-
marking, vulnerability assessments, and performance evaluation metrics are also
provided in a comprehensive manner. Furthermore, we discuss the open chal-
lenges and potential future areas that need to be addressed in the evolving field of
biometrics.

11.2 Introduction
Biometrics is a technique for recognizing an individual based on unique biolo-
gical (e.g., face, fingerprint, iris) or behavioural (e.g., gait, keystroke style) char-
acteristics [156] [194]. With the drastic improvement in deep learning techniques,
biometric-based person identification and verification has emerged as a popular
technique that can be widely used for many secure access control applications.
The ease of capture and the suitability of face biometric characteristics have fur-
ther driven face recognition as a popular biometric modality in such applications.
Face recognition systems (FRSs) are widely deployed for various applications,
especially in secure access control for person identification and verification pur-
poses. Among several other applications, such as healthcare, law enforcement,
and e-commerce (banking), one of the most relevant applications is the border
control process, where the facial characteristics of a traveler are compared with a
reference in a passport or visa database to verify the claimed identity.

Although an FRS effectively distinguishes an individual from other subjects, the
FRS’s risk of being attacked to mislead or conceal an actual identity is a major
concern. As with all applications, the FRS is prone to various attacks, such as
presentation attacks, which have the goal of subverting the FRS by presenting an
artifact [133], where various types of attacks, such as electronic display attacks,
print attacks, replay attacks and 3-D face mask attacks, can be used [133] [195]
[196] [197] [198] [199] [200] [201] [202] [203]. In addition to these attacks, the
morphing attack has emerged in the recent past as a severe threat to the enrol-
ment process that successfully undermines FRS capabilities [22]. Face morphing
is defined as “a seamless transition of a facial image transforming a facial image
into another" [204] in the context of biometrics; two or more facial images can be
combined to resemble the contributing subjects. Morphing attacks raise a major
concern, as the morphed image represents the facial characteristics of both indi-
viduals contributing to the morphing process (for instance, an accomplice and a
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Figure 11.1: Example scenario illustrating the vulnerability of FRSs to morphed images
in border control.

malicious actor). Ultimately, the resulting morphed facial image can successfully
be verified with probe images from both contributing subjects, making it practic-
ally usable for various malicious actions. Therefore, this attack breaks the rule of
single ownership; for instance, an identification document such as a passport or
electronic machine-readable travel document (eMRTD) [205] has a unique link to
the data subject for whom the document was issued. The facial image stored in
the eMRTD or passport is compared with the person claiming identity document
ownership while crossing the border. If the enrolled facial image is determined
as a match with the live image, the data subject can cross the border. Thus, an
individual with malicious intent can exploit the face morphing attack and obtain
illegal access. Hence, a malicious person can easily cross a border using an eM-
RTD or passport if he/she has contributed to the morphed image that was used in
the passport application process.

Fig 11.1 illustrates an example scenario in border control where the facial image
of a malicious person is morphed with that of a look-like accomplice. As several
morphing software programs are freely available, even a nontechnical person can
perform morphing with ease. The accomplice can submit the generated morphed
image for passport enrolment at the passport issuance office. As the morphed im-
age’s facial features resemble those of the applicant’s face, the passport officer
approves the application. Ultimately, a malicious person can successfully use the
genuine passport, allowing him/her to achieve all foreseeable purposes (e.g., cross-
ing a border).

In most countries, the applicant submits a printed facial image to the passport
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office, allowing the possibility of providing a morphed image after printing and
scanning. However, some countries, such as New Zealand, Estonia and Ireland,
also accept a digital facial image for passport renewal [23]. Hence, an applicant
can submit a digital facial image to the Web portal. This practice raises a further
severe concern, as there is no trusted supervision while uploading the digital facial
image, and this opens the possibility of uploading a morphed image. The B1/B2
visa application for the United States also allows the applicant to upload a digital
facial image through the Web portal [206]. An applicant can use this opportunity
to upload a morphed image with the intent to perform illegal activity.

All such vulnerabilities of FRSs have made morphing research crucial in recent
years to avoid probable security lapses. Thus, several research projects have been
funded by the European Union and national research councils (e.g., SWAN [207],
ANANAS [208], SOTAMD [129] and iMARS [209]) to focus extensively on de-
veloping morph attack detection (MAD) algorithms. Motivated by the momentum
of the problem of morphing and its criticality, a dedicated conference has been ini-
tiated by Frontex, the European Border, and Coast Guard Agency [210], where a
MAD interest group gathered to discuss the challenges and advancements of MAD
techniques [211]. Furthermore, the U.S. National Institute of Standards and Tech-
nology (NIST) is, in parallel, conducting testing of MAD technology within the
framework of the Face Recognition Vendor Test (FRVT) under Part 4: MORPH -
Performance of Automated Face Morph Detection [212]. Both industrial and aca-
demic institutions are invited to submit their MAD algorithms to benchmark the
accuracy [212]. Similarly, the University of Bologna, as part of the SOTAMD pro-
ject [213], introduced a parallel face morphing evaluation platform to benchmark
the performance of the MAD techniques on a sequestered dataset.

The rest of this article is organised as follows: Section 11.3 presents a brief in-
troduction to face morphing attacks, and Section 11.4 discusses the face morph
generation techniques. Section 11.5 describes face morphing datasets, including
private and public datasets, Section 11.6 discusses human perception capabilities
in detecting morphed face images, Section 11.7 presents various automatic morph-
ing attack detection techniques, Section 11.8 presents the performance metrics
that are widely used to benchmark the performance of MAD methods as well as
the vulnerability of generated morphed images, Section 11.9 discusses the public
evaluation and benchmarking of MAD, Section 11.10 discusses open challenges
and potential future work and Section 11.11 gives the conclusion.

11.3 Face Morphing Attack
The morphing process can be defined as a special effect that transforms one image
into another image. Fig 11.2 illustrates the facial morphing process, where two
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Figure 11.2: Impact of face morphing on an FRS. As noted in the figure, the morphed
image can be verified equally against both contributing subjects with a high similarity
score from the FRS (1 being high similarity).

facial images are combined to generate a single morphed image. Morphing can be
achieved easily by using one of the numerous and freely available tools, such as
MorphThing [214], 3Dthis Face Morph [67], Face Swap Online [215], Abrosoft
FantaMorph [143], FaceMorpher [216], and MagicMorph [217]. The morphed
image possesses near-identical features to those of both subjects contributing to
generating the morph when subject preselection is applied (e.g., look-alike mode)
[13].

Furthermore, when processed with care, the morphed image does not possess many
visible artifacts, and thus, a human observer may fail to detect image manipulation
based on morphing. In practice, this leads to a situation where a passport officer
may not be able to detect the morphing attack despite being an expert in facial
comparison [29, 134]. This makes it reasonable for a criminal with malicious
intent to be able to use a passport enrolled with a morphed image and cross a
border without challenge. Figure 11.1 illustrates the vulnerability of FRSs when
attacked with morphed images in a border control scenario.

11.4 Face Morph Attack Generation
Face morphing has been widely used for more than a decade, especially in the
video animation industry [218], but the attack potential against FRSs has been
noted recently [22]. Morphs can be generated using various techniques, from
simple image warping to recent generative adversarial networks (GANs) [48, 51,
52, 219, 220, 56, 53, 49, 2]. The most widely used morph generation methods are
based on the landmark-based technique [221, 54, 14, 80], where morphing is car-
ried out by combining the images with respect to corresponding landmarks. Recent
works eliminate the constraints of landmarks by simply relying on deep network
architectures [15, 2]. Figure 11.3 shows a taxonomy of face morphing generation
methods that indicates the broad classification of the available techniques as (a)



11.4. Face Morph Attack Generation 161

11

Face Morph 
generation methods

Deep Learning 
basedLandmark based

GIMP/GAP Face FusionOpenCV MorGAN StyleGAN

Figure 11.3: Taxonomy of face morph generation techniques

Table 11.1: Face Morphing Generation Methods: Advantages and Limitations

Face Morph Advantages Limitations
Generation Method
Facial Landmark-
based

- Availability of open-source tools.
- Generates high quality morphing images.
- Successfully deceives the COTS FRS.
- Easy and seamless generation of
morphed images by an automatic process.

- Requires manual intervention to ensure
high-quality face morphing generation.
- Needs post-processing to reduce
ghosting effects and double edges.
- Data subject selection is
crucial to deceive the COTS FRS.

Deep Learning-
based

- No need for manual intervention.
- Seamless generation with acceptable image
quality.
- Does not show double edges in the gener-
ated images.
- Reasonably successful in deceiving the
COTS FRS.
- Several open-source tools.

- Requires a complex learning procedure.
- Does not always generate high-quality
morphed images.
- Highly prone to geometric distortions.
- Requires careful pre-selection of data
subjects based on age, gender and ethnicity.
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landmark-based and (b) deep learning-based approaches.
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Figure 11.4: Illustration of face morph images generated using different methods

11.4.1 Landmark-based Morph Generation

Landmark-based morph generation works by obtaining landmark points on facial
regions, e.g., the nose, eye, and mouth. These landmark points obtained from
both faces are warped by moving the pixels to different, more averaged positions.
Different procedures for warping exist, including free-form deformation (FFD)
[222, 223], deformation by moving least squares [62], deformation based on mass-
spring models [63], and Bayesian framework-based morphing [140]. Ruprecht et
al. [59] proposed performing warping by moving the pixel points of both con-
tributing subjects to the nearest landmark point. Delaunay triangulation was later
proposed, where the pixels of both contributing facial images are distorted and
moved to different directions to generate triangles [95, 141, 81, 64, 98, 88]. Im-
ages that are to be morphed are blended by considering the blending factors or the
morphing factor. Face morphing applications employ a morphing factor of 0.5 to
generate high-quality and useful morphs that can resemble both contributing sub-
jects equally, to which the COTS FRS is vulnerable [54, 13, 83]. As the morphing
process translates landmarks and the associated texture, there may be some mis-
aligned pixels that contribute to noise generating artifacts and ghost-like images
and making the images unrealistic in appearance (i.e., easy for a human observer
to detect). Hence, certain post-processing steps, such as image smoothing, image
sharpening, edge correction, histogram equalization, manual retouching, and im-
age enhancement improve the brightness and contrast and can reduce or minimise
the artifacts generated during the morphing process [64, 65, 66].

Face morph generation using open-source resources such as GIMP/GAP and OpenCV
also relies upon landmarks. While open-source software based on GIMP/GAP and
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OpenCV can generate morphs, significant effort must be made to post-process the
generated images to eliminate artifacts. Several commercial solutions, such as
Face Fusion [142] and FantaMorph [143], can also be used to generate large-scale
morphed images with reasonable post-processing effort. The reader is further re-
ferred to Scherhag et al. [142], where all the publicly available morphing tools
(both open-source and commercial) are listed.

11.4.2 Deep Learning-based Morph Generation

Recent improvements in deep learning-based techniques have given rise to morph
generation approaches based on generative adversarial networks (GANs) [15] [1].
In general, GAN-based methods synthesize morphed images that are generated by
sampling two facial images in the latent space of the deep learning network. The
MorGAN architecture for morph generation basically employs a generator that
consists of encoders, decoders and a discriminator. The generator is trained to gen-
erate images with dimensions of 64 × 64 pixels. Another recent approach based
on StyleGAN architecture [137, 1] has improved the morph generation process
both by increasing the spatial size to 1024×1024 and by increasing face quality.
The pretrained StyleGAN achieves this by embedding the images in the interme-
diate latent space. The use of identity priors to enable high-quality morphed face
generation was also proposed in [2] and illustrates the increased threat to FRSs
by GAN-based morphs. Fig 11.4 provides sample facial morphs generated using
the landmark-based technique and MorGAN- and StyleGAN-based methods. It
can be noted from Fig 11.4 that deep learning-based approaches, especially with
MIPGAN-I and MIPGAN-II, indicate a superior quality of the morphed face im-
age compared to that of landmark-based morphed face generation.

11.5 Databases for Morphing Attack Detection
Given various kinds of attack generation mechanisms and the relevant attack po-
tential determination metrics, many datasets have been generated, ranging from
public to sequestered datasets with various attack strengths. This section sum-
marizes the different face morph databases that are used in the existing works. A
summary of the different datasets is provided in Table 11.2 from existing works
that are typically used to benchmark both the vulnerability of FRSs and the per-
formance of MAD techniques.

The first face morph database was introduced by Ferrara et al. [22], in which the
authors employed landmark-based face morph generation using GIMP/GAP tools.
This dataset has a small set of digital images consisting of only 14 morphed images
generated from 8 bona fide subjects, including both male and female participants.
The morphed images in this database are only in digital format and the database is
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not available publicly. This dataset was extended by Ferrara et al. [135] using the
landmarks and GIMP/GAP tools. The extended dataset consists of approximately
80 morphed face images, with 10 male and 9 female participants. The database is
in digital form and is not publicly available.

The first large database with different ethnicities (Caucasian, Asian, European,
American, Latin American, and Middle Eastern) was introduced by Raghavendra
et al. [54] and employs facial landmarks and the GIMP/GAP morph generation
technique using the GNU image manipulation tool. This database consists of
450 morphed face images generated using 110 subjects of different ethnic back-
grounds. This database contains only digital images and has not been made public.

Table 11.2: Public and Private Face Morph Image Databases

Reference Morph Genera-
tion Type

Morph Gener-
ation Method

Digital/Print-
scan

Bona fide & Morph Public/Private

Ferrara et al [22] Landmark-based GIMP/GAP Digital Morph: 14 Private
Ferrara et al [135] Landmark-based GIMP/GAP Digital Morph: 80 Private
Raghavendra et al [54] Landmark-based GIMP/GAP Digital Morph: 450 Private
Makrushin et al [95] Landmark-based Automatic gen-

eration (dlib
landmark)

Digital Complete morph: 1326,
Splicing morph: 2614

Private

Scherhag et al [98] Landmark-based GIMP/GAP Digital and
Print-scan

Bona fide: 462
Morph: 231

Private

Raghavendra et al [13] Landmark-based GIMP/GAP Digital and
Print-scan

Bona fide: 1000
Morph: 1423+1423

Private

Raghavendra et al [83] Landmark-based GIMP/GAP Digital and
Print-scan

Morph: 362 Private

Gomez-Barrero et al [224] - - Digital Morph: 840 Private
Dunstone [225] - - Digital Morph: 1082 Public
Ferrara et al [119] Landmark-based Sqirlz morph Digital and

Print-scan
Morph: 100 Private

Damer et al [15] GAN-based GAN Digital Morph: 1000 Private
Raghavendra et al [90] Landmark-based GIMP/GAP Digital and

Print-scan
Bona fide: 1272
Morph: 2518

Private

Scherhag et al [80] Landmark-based OpenCV, Face-
Fusion, Face
Morpher

Digital and
Print-scan

Bona fide: 984+984+529
Morph: 964+964+529

Private

Ferrara et al [14] Landmark-based Triangulation Digital Morph: 560 Private
Scherhag et al [115] Landmark-based OpenCV, Face-

Fusion, Face
Morpher, UBO
morpher

Digital and
Print-scan

Bona fide: 791+3298
Morph: 791+3246

Private

Singh et al [116] Landmark-based OpenCV Digital and
Print-scan

Morph: 588 Private

Venkatesh et al [3] Landmark-based UBO morpher Digital Morph: 10538+3767 Private
Venkatesh et al [1] GAN-based StyleGAN Digital Bona fide: 1270

Morph: 2500
Private

Raja et al [38] Landmark-based UBO morpher Digital and
Print-scan

Bona fide: 300+1096
Morph: 2045+3073

Sequestered

NIST-FRVT-MORPH et al
[128]

Landmark-based Automatic gen-
eration

Digital and
Print-scan

Low-quality morph: 1183
Automated morph: 39113
High-quality morph: 492

Sequestered

Makrushin et al. [95] employed automatic morph generation tools to generate
high-quality morph images. They employed a triangulation method based on 68
facial landmarks extracted using the dlib library [226]. Two different morph gen-
eration techniques, namely, complete morph (consisting of the facial geometry of
both facial images) and splicing morph (the pixels representing the face are clipped
out from the input faces), were used. A splicing morph is generated to address the



11.5. Databases for Morphing Attack Detection 165

pixel discontinuity caused by warping two images in complete morphs. This data-
base consists of approximately 1326 complete morphs and 2614 splicing morphs
generated from 52 data subjects consisting of 17 females and 35 males. This data-
base consists of face morph images in digital format only and has not been made
public.

The first print-scan face morph database was presented by Scherhag et al. [98].
The authors employed the landmark-based GIMP/GAP technique for morph gen-
eration. This database consists of 231 morphed images generated from 462 bona
fide images. This database is private and contains digital and print-scan (or re-
digitized) images, for which HP Photosmart 5520 and Ricoh MPC 6003 SP print-
ers were employed.

Raghavendra et al. [13] later introduced a new face morph dataset consisting of
both digital and print-scan images. The face morphs were generated using an auto-
matic tool, OpenCV, that is publicly available. This database generates morphed
face images along with averaged face images and hence has a set of 1423 + 1423
morphed face images. Along with the database, Raghavendra et al. [13] provided
an evaluation protocol by defining independent sets for development, training and
testing partitioning. The print-scan morphed face images were obtained by em-
ploying a Ricoh MPC 6003 SP printer. This database is private. This dataset was
extended to 2518 morphed face images and 1273 bona fide images [90].

Gomez et al. [224] introduced a new face morph dataset that consists of 840
morphed face images generated from 210 subjects. This database is private and
has only digital morphed face images.

Ferrara et al. [119], [85] introduced a face morph database based on the Sqirlz
morphing technique. This dataset has 100 morphed images in both digital and
print-scan forms. This database has not been made public for research purposes.
Scherhag et al. [80] introduced a face morphing dataset that was generated using
different morphing tools, such as OpenCV, FaceFusion and FaceMorpher. This is
a private database that consists of both digital and print-scan samples of morphed
images and is composed of 964 + 964 + 529 morphed face images generated
from subjects contained in the FRGCv2 and FERET databases. Another database
by Scherhag et al. [115] employs landmark-based morph generation techniques
that include OpenCV, FaceMorphed, FaceFusion and the UBO morphing method.
This database consists of approximately 791+3246 morphed face images from the
FERET and FRGCv2 databases. This private database consists of morphed face
images in both digital and print-scan formats. Another database by Ferrara et al.
[14] employs triangulation with the dlib landmark method of morph generation.
This is a private database that consists of 560 digital morphed face images. The
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only publicly available morphed face dataset was introduced by Biometix [225],
which consists of 1082 morphed face images in digital form. However, informa-
tion on the morphed image generation method involved is not available.
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Figure 11.5: Taxonomy of MAD techniques

Singh et al [116] provided another database that employs the OpenCV-based morph
generation technique to generate facial morphs. This was the first dataset in-
troduced for probe images captured live from ABC gates with different lighting
conditions, which is relevant for differential morphing attack detection. This data-
base consists of both digital and print-scan enrolment images generated using an
EPSON XP-860 printer and scanner. This dataset consists of 90 morphed face
images and is not available to the public.

Damer et al. [15] introduced the first face morphing database consisting of deep
learning-based morph images. The generated deep learning-based database is
compared with landmark-based morphs. The authors employed 68 landmark points
extracted from dlib for landmark-based morph generation and GAN architecture
for deep learning-based morph generation. This database consists of 1000 morphed
face images; however, the GAN-based morphs are of size 64×64, which does not
meet ICAO standards. This database is private and has only digital morphed face
data. Another database by Venkatesh et al. [1] employs deep learning-based morph
generation. The authors employed the StyleGAN network to generate synthetic
morph images by mapping the input images into the latent space. This database
consists of 2500 morphed images generated using 1270 bona fide images. It has
only digital morphed face images and is not publicly available.

Venkatesh et al. [3] introduced another database that consists of morphed face
images under ageing as the first database of its kind. The authors employed the
UBO morphing method from the University of Bologna that employs dlib and
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68 landmark points for morph generation [14]. This database consists of 14305
(10538+3767) morphed face images aged by 2 to 5 years. This database has
morphed face images in digital form and is not open to the public.

Raja et al. [38] presented the sequestered Bologna-SOTAMD face morphing data-
set used in a recent public competition and benchmarking on the Bologna Online
Evaluation Platform (BOEP), following the FVC-onGoing series [227]. The data-
set comprises images from 150 data subjects collected in three different geographic
locations with varying ethnicity, gender and age. Face morphing is carried out us-
ing six different techniques followed by automatic and manual post-processing to
override the artifact results from face morphing. The dataset also includes prin-
ted and scanned versions with different printers, and the enrolment images follow
the ICAO standards for passport images. The probe images are taken from vari-
ous ABC gates and gate emulations. The database consists of 5748 morphed face
images and 1396 bona fide face images.

11.5.1 Discussion

Although there exist several morphing datasets, the majority of them are private
due to data protection regulations and licensing conditions. Even for publicly
available face databases that are used to create face morphing datasets, the li-
censing conditions limit the redistribution of the generated morphed face datasets;
therefore, most of the above datasets are not openly available. For the time being,
the best way to compare new morphing detection methods with already published
approaches is to submit the methods to the two ongoing benchmarks, either the
SOTAMD benchmark at the university of Bologna, which was reported by Raja et
al. [38], or the U.S. NIST-FRVT-MORPH benchmark, which was reported by Mei
et al. [128]. Note that in both cases, a sequestered dataset is used.

11.6 Human Perception and Morphed Face Detection
The threat of morphing attacks is known for border crossing and ID management
scenarios. Therefore, the success of a morphing attack depends on deceiving
human observers, particularly ID experts and border guards. A practical scen-
ario for a border crossing includes border guards, who compare the passport of
a traveler containing a photograph (printed from a data page or digitally extrac-
ted from a chip) with the physical appearance of the traveler. Thus, the border
guard considers the facial similarity of the traveler to the reference data in the
passport to make his/her final decision. Several studies in the literature have in-
dicated the effectiveness of morphed images in deceiving expert human observers
[135, 134, 228, 28, 29, 95, 229, 230, 231]. Early investigations on human per-
ception analysis of morphed images were reported by Jäger et al. [231], where
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different experiments were performed to benchmark the ability of human observ-
ers to detect face morphing and its dependency on various parameters (i.e., dif-
ferent alpha/morphing factors). While this was an interesting study, the human
observers in the experiments were students who were not trained to compare hu-
man faces. Furthermore, this work was based on only a single image and did not
provide any reference images for the human observers. A similar analysis was
provided by Kramer et al. [29], where a single image was provided before request-
ing a decision on morphing. Despite being different in terms of the underlying
benchmarking mechanism, both works reported difficulty in detecting morphed
face images for human observers.

Investigating the impact of morphing on FRSs and human observers simultan-
eously, Ferrara et al. [22] studied the detection ability of human observers and
correlated it with automatic FRSs. Unlike the previous work, the human observers
in the work of Ferrara et al. [22] included both trained border guards and nonspe-
cialists who were asked to compare a morphed face image with a bona fide face
image to make the decision. The analysis reported a challenge in detecting morphs
even when the examiner, for instance, a border guard, was trained. Robertson
et al. [134] further studied the morph detection ability of humans by comparing
live face images to morphed face images with and without rudimentary training.
The study reported improved performance in morph detection by human observ-
ers when provided with rudimentary training in detecting artifacts [28]. Similarly,
Kramer et al. [29] investigated the role of face image quality (of the morphed
image produced) on human perception and concluded that high-quality morphed
images are more difficult for humans to detect.

A similar Web-based experiment simulating border control was presented by Mak-
rushin et al. [229], who studied human perception analysis by both skilled and
unskilled humans and further extended [230] to obtain more unbiased and realistic
images. In both cases, skilled humans (who have knowledge of morphed face im-
ages) show the best performance in detecting a morphed face image. Summarizing
the works on human perception analysis, it is noted that both skilled and unskilled
human observers often fail to detect morphed face images. However, it is also
noted that considerable training of human observers can improve morphed face
detection [230, 28].

11.7 Face Morph Attack Detection Techniques
Noting the limitations of human observers, a number of automatic MAD approaches
have been proposed in the recent past. In this section, we summarize the MAD
techniques since the introduction of face morphing attacks on FRSs [22]. The
available MAD techniques can be classified into two major types: (1) single image-



11.7. Face Morph Attack Detection Techniques 169

based MAD (S-MAD) and (2) differential image-based MAD (D-MAD). Figure
11.5 shows the taxonomy of approaches in both MAD categories reported to date.

11.7.1 Single Image-based MAD (S-MAD)

The goal of S-MAD is to effectively detect a face morphing attack based on a
single image presented to the algorithm. Fig 11.6 illustrates a real-life example
for S-MAD in a passport application scenario, where a facial image is submitted
by the applicant for biometric enrolment in the passport application process. This
submitted image is checked to potentially detect a morph of a suspect image. The
passport application can be initiated by the applicant either physically or when
submitting his/her facial image through a Web service [23, 24, 232, 139]. Thus,
depending on the use case, the morphed image can be one of two types: (a) digital
or (b) re-digitized (also commonly referred to as print-scan). S-MAD is challen-
ging, as it is expected to be robust to image quality variations, different types of
sensors (cameras), different types of morph generation tools and different types of
print-scan processes (e.g., the equipment and parameter set chosen for the printing
and scanning process).

Bona fide

Morph

Passport Application

Passport Application 
Form

Full Name: --------------------
------- --------------
Address: -----------------------
------------------

S-MAD

Figure 11.6: Example illustrating single image-based morph attack detection in a passport
application scenario.

As shown in Figure 11.5, the existing S-MAD techniques can be further classi-
fied into five subtypes based on the features employed: (1) texture feature-based
S-MAD, (2) quality-based S-MAD, (3) residual noise-based S-MAD, (4) deep
learning-based S-MAD, and (5) hybrid approaches for S-MAD. Table 11.3 sum-
marizes the existing S-MAD techniques. In the next section, we briefly discuss the
existing S-MAD techniques for the convenience of the reader.
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Table 11.3: State-of-the-art S-MAD

Reference Detection Approach Algorithm Database
Type

Raghavendra et al. [54] S-MAD Texture-based approach

Local Binary Pattern (LBP)-SVM, Binary Statistical

DigitalImage Features (BSIF)-SVM, Image Gradient (IG)-
SVM

Makrushin et al. [95] S-MAD Quantised DCT co-efficients Benford features Digital

Neubert et al. [96] S-MAD Image degradation approach Corner feature detector Digital

Seibold et al. [64] S-MAD Deep learning-based approach VGG19, Google Net, Alex Net Digital
Raghavendra et al. [13] S-MAD Texture-based approach LBP, LPQ, BSIF, colour textures Print-scan
Asaad et al. [97] S-MAD Texture-based approach Topological data analysis approach Digital
Scherhag et al. [98] S-MAD Texture- and frequency-based ap-

proach
LBP, LPQ, BSIF, 2DFFT with SVM classifier Digital

Print-scan
Raghavendra et al. [83] S-MAD Deep CNN-based approach Feature fusion of fully connected layers of VGG19 and Alex

Net
Digital
Print-scan

Kraetzer et al. [99] S-MAD Image life cycle model Keypoints (SIFT, SURF, ORB, FAST, AGAST) and loss of edge
operators (Canny and Sobel)

Digital

Hildebrandt et al. [81] [233] S-MAD StirTrace-based approach Multi-compression anomaly detection Digital
Debiasi et al. [104] S-MAD Image degradation Photo Response Non-uniformity (PRNU) Digital
Raghavendra et al. [90] S-MAD Steerable features Luminance component extraction Print-scan
Hildebrandt et al. [81] S-MAD StirTrace StirTrace face morph forgery detection Print-scan
Seibold et al. [79] S-MAD Image degradation Specular reflection Digital
Makrushin et al. [101] S-MAD Quantised DCT co-efficients Benford features extracted from quantised DCT co-efficients Digital
Neubert et al. [102] S-MAD Morph pipeline footprint detector Benford features extracted from quantised DCT co-efficients Digital
Spreeuwers et al. [103] S-MAD Texture-based approach LBP-SVM, Down-up sampling Digital
Scherhag et al. [88] S-MAD

D-MAD
Feature difference-based ap-
proach

Pre-processing and feature extraction using texture descriptors
, keypoint extractors, gradient estimators and deep learning-
based method

Digital

N Damer et al. [84] S-MAD Multi-detector fusion LBPH, Transferable deep-CNN Digital
Ferrara et al. [85] S-MAD Deep learning AlexNet, VGG19, VGG-Face16, VGG-Face2 Print-scan
Scherhag et al. [87] S-MAD Multi-algorithm fusion Texture descriptors (LBP, BSIF), Keypoint extractors (SIFT,

SURF), gradient estimators (HoG), Deep neural network
Digital

Debiasi et al [104] S-MAD PRNU PRNU DFT magnitude histogram and PRNU DFT energy Digital
Seibold et al. [105] S-MAD Complex multi-class pre-training VGG-19 network Digital
Damer et al. [106] S-MAD Texture and deep learning based Anomaly detection using LPQ and VGG features Digital

Venkatesh et al. [4] S-MAD Colour denoising-based approach Denoising Deep Convolutional Neural Network Digital

Scherhag et al. [80] S-MAD PRNU Spectral features and spatial features Print-scan
Makrushin et al. [86] S-MAD Dempster-Shafer Theory KeyPoints (SIFT, SUFT, FAST, ORB, AGAST, High Dim LBP,

GoogleNet, VGG19
Digital

Raghavendra et al. [91] S-MAD Scale space approach Colour scale space features Print-scan
Neubert et al. [107] S-MAD Frequency and spatial domain fea-

ture space approach
Discrete Feature Transformation (DFT) , SURF, SIFT, ORB,
FAST, AGAST, Canny edge, SobelX, SobelY)

Digital

Seibold et al. [89] S-MAD Style Transfer-based approach LBP, BSIF, Image degradation, Deep neural network (VGG19) Digital
Venkatesh et al. [5] S-MAD Colour denoising-based approach Context Aggregation Network Digital
Venkatesh et al. [6] S-MAD Ensemble-of-features-based ap-

proach
LBP, HoG, BSIF Print-scan
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Texture Feature-based S-MAD The first work on using texture features was presen-
ted by Raghavendra et al. [54]. Following the initial work, several approaches were
proposed, as indicated in Table 11.3. The popular texture-based methods include
local binary patterns (LBPs) [74], local phase quantization (LPQ) features [75]
and binarized statistical image features (BSIFs) [76]. Furthermore, these texture
features were extracted for different color channels [13] to obtain a robust detec-
tion performance. Variants of LBPs and BSIFs as well as histogram of oriented
gradients (HOG) features, scale-invariant features (SIFT) [77] and speed-up ro-
bust features (SURF) [78, 98, 99, 86, 87] have also been widely explored in the
reported works. The use of micro-texture-based methods has shown reasonable
performance on both digital and print-scan types of S-MAD. While superior ac-
curacy has been reported for digital S-MAD with texture-based features, the main
limitation of these techniques is in their generalizability across different image
qualities, imaging sensors and print-scan processes [38].

Quality-based S-MAD The quality-based techniques largely analyse image qual-
ity features by quantifying the image degradation to identify a given image as
morphed or bona fide [81, 79, 80, 82]. Several features, such as double-compression
artifacts, photograph response non-uniformity (PRNU), corner and edge distor-
tions, reflection analysis and meta information in the images, are commonly used
to detect distortion in a morphed image. Although these techniques have shown
good performance on digital data, they have limited performance on print-scan
data. However, the generalization ability of these techniques has yet to be studied
for different print and scan versions in the current literature [80, 38].

Residual Noise-based S-MAD Residual noise-based methods are designed to ana-
lyze pixel discontinuities that may be greatly impacted by the morphing process.
The basic idea of this approach is to extract noise patterns by subtracting the given
image from the denoised version of the same image. The noise patterns obtained
are further analyzed to detect morphing. The first work in this area was introduced
in [4] based on CNN-based denoising on color channels. Furthermore, the residual
noise is effectively captured using the deep CNN approach [5]. The use of residual
noise has shown considerably good performance in terms of generalization capab-
ilities across different digital datasets. However, these techniques have not been
evaluated on print-scan face morphed datasets.

Deep Learning-based S-MAD The success of deep learning approaches for image
classification tasks has motivated researchers to embrace deep convolutional neural
networks (CNNs) for face MAD. All existing works are based on pre-trained net-
works and transfer learning. The first work in this direction was based on using
pretrained networks such as AlexNet and VGG18, in which the features are fused
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and classified to detect a morphing attack [83]. Following this, several deep CNN
pre-trained networks, such as AlexNet, VGG19, VGG-Face16, GoogleNet, Res-
Net18, ResNet150, ResNet50, VGG-Face2 and OpenFace [85], [84], [5], [89],
[87], [88], [64], [86], have been explored. Although deep CNNs have shown bet-
ter performance than hand-crafted texture descriptor-based MAD methods on both
digital and print-scan data, the generalization capability of these approaches is
limited across different print and scan datasets [115].

Hybrid S-MAD Hybrid approaches are based on multiple feature extractors or
classifiers that are combined to detect face morphing attacks. Several approaches
have been proposed that combine features, morphing detection scores or decision
scores [6], [84], [86], [87], [90], [91]. As these approaches combine more than
one feature extractor and classifier, the MAD performance is generally superior to
that of single-mode MAD techniques. Despite the superior performance, the com-
putational cost is high, and generalization of the approach is not well established
with respect to different types of print-scan processes.

A summary of advantages and limitations is given in Table 11.4 for all types of
S-MAD techniques for reference.

Passport image

ABC gate image

D-MAD
Bona fide

Morph

Figure 11.7: Example illustrating differential image-based morphing attack detection (D-
MAD) in a passport control scenario

11.7.2 Differential Image-based MAD (D-MAD)

The objective of D-MAD approaches is to make a decision regarding whether a
suspect image is morphed or bona fide when a corresponding image captured in a
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Table 11.4: S-MAD Techniques: Advantages and Limitations

Feature Type Advantages Limitations
Texture Features - Easy to implement.

- Low computational cost.
- Good performance when trained and
tested with the same morph data types
(digital/print-scan).
- Effective on digital morph face data

- Lacks generalisation capabilities across
both image resolution and morph data type
(digital/print-scan).
- Sensitive to image resolution.
- Degraded performance with print-scan
data.

Image Quality Fea-
tures

- Easy to implement.
- Low computational cost.
- Less sensitive to accurate segmentation of
the face region.
- Can be used with different morph data types
(digital/print-scan).

- Lacks generalisation across both im-
age resolution and morph data types
(digital/print-scan).
- Sensitive to compressed data.
- Not a reasonable performance across dif-
ferent face morph data types (digital/print-
scan).

Hybrid Features - Good detection performance across differ-
ent morph data types (digital/print-scan).
- Good detection performance when trained
and tested with the same morph data type
(digital/print-scan).
- Reasonable generalisability performance
for different morph data types (digital/print-
scan).

- Difficult to implement, as it requires
hyper-parameter tuning.
- High computational cost.
- Requires optimisation of several hyper-
parameters.

Residual Noise Fea-
tures

- Easy to implement.
- Low computational cost.
- Highly accurate detection performance on
digital morph data type.
- Less sensitive to face region.
- Generalisation ability across different im-
age resolutions.

- Applicable only to the digital morph data
type.
- Promising results for high-resolution im-
ages.
- Sensitive to image compression.

Deep CNN features - Good performance when trained and tested
with the same morph data type (digital/print-
scan).
- No need to train CNN from scratch, as deep
CNN shows good detection performance.

- High computational cost.
- Lacks generalisation across different face
morph data types (digital/print-scan).
- Training CNN from scratch requires large
database.
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Table 11.5: State-of-the-art D-MAD

Reference Detection Approach Algorithm Database
Type

M Ferrara et al. [119] D-MAD Demorphing Demorphing by image subtraction Print-scan
M Ferrara et al. [119] D-MAD Demorphing ap-

proach
Face verification Digital

U Scherhag et al. [114] D-MAD Landmark-based
approach

Distance-based and angle-based feature extraction with
Random Forest, SVM without kernel and SVM with
radial basis function classifier

Digital

U Scherhag et al. [88] S-MAD
+ D-MAD

Feature difference-
based approach

Pre-processing and feature extraction using texture
descriptors, keypoint extractors, gradient estimators
and deep learning-based method

Digital

N Damer et al. [84] D-MAD Multi-detector fu-
sion

LBPH, Transferable deep-CNN Digital

J M Singh [116] D-MAD Deep learning SfS Net, AlexNet
Digital
+ Print-scan

N Damer et al. [113] D-MAD Landmark shift Landmark detection, shift representation Digital
F Peng et al. [117] D-MAD Face restoration by

demorphing GAN
Symmetric dual-network architecture Digital

U Scherhag et al. [115] D-MAD Deep Face Repres-
entation

ArcFace Network, FaceNet algorithm Digital
+ Print-scan

C Seibold et al. [234] D-MAD Deep Learning Layer-wise Relevance Propagation (LRP) Digital

D Ortego et al. [112] D-MAD Demorphing,
Deep CNN-based

Auto-encoders Digital
+ Print-scan

S Soleymani et al. [120] D-MAD Deep learning Siamese network Digital
S Soleymani et al. [121] D-MAD Deep learning Appearance and landmark disentanglement Digital
S Autherith et al. [122] D-MAD Analysis of geo-

metric facial fea-
tures

Facial anthropometry-based facial feature comparison Digital

Table 11.6: D-MAD Techniques: Advantages and Limitations

Algorithm Type Advantages Limitations

Feature difference

- Easy to implement. - High computational cost.
- Reasonable detection performance across
varying image quality and resolution.

- Detection performance is sensitive to the
type of image data and features.
- Detection performance is sensitive to the
segmentation of the face region.

Demorphing

- Easy to implement. - Performance is sensitive to the facial pose
and imaging conditions.

- Moderate computational time. - Requires constrained image data.
- High detection accuracy with constrained
conditions.

- Fails with facial pose and lighting vari-
ations.

- Can visualise the demorphed face if the sus-
pect image is morphed

- Prior knowledge of the blending factor (or
alpha factor) is required.
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trusted environment is available. The D-MAD technique is well suited to the bor-
der crossing scenario, where the suspected morph image can be obtained from the
passport and can then be compared against the live captured face image (or trusted
image) from the ABC gates [112]. Fig 11.7 illustrates the application of D-MAD,
specifically in a border control scenario. A taxonomy of D-MAD techniques is
presented in Figure 11.5, and they can be divided into two broad types: (1) feature
difference-based D-MAD and (2) demorphing. Table 11.5 summarises the existing
D-MAD techniques, which are briefly discussed as follows

Feature Difference-based D-MAD The basic idea of this approach is to subtract the
features computed on both the suspected morph image and a live image captured
in a trusted environment. The features are further classified by computing the
difference in the feature vectors to detect a morphing attack. To this end, several
feature extraction techniques are studied, which involve texture information, 3D
information, gradient information, landmark points and deep feature information
[115], [116], [84], [114], [113]. Based on the reported results, the deep CNN
features have shown the best performance [115]. The majority of the existing
works are reported for use cases with digital images, except for a recent work in
which a print and scan dataset was explored with improved results [115, 212].

Demorphing Face demorphing techniques invert the morphing procedure and re-
veal the component images that are used to generate the morphed image. The first
proposal in this area was that of Ferrara et al. [119], which was designed to work
with landmark-based morph generation. Recent work along these lines is based on
using deep CNNs [112] [117]. These techniques are robust when the image quality
is good; however, the detection performance degrades when a face image is cap-
tured in real-life conditions with pose and lighting variations that are commonly
encountered in ABC gates. Table 11.6 presents the advantages and limitations of
existing D-MAD techniques.

11.8 Performance Metrics
In this section, we discuss the performance evaluation metrics that are widely used
in the literature and publicly available competitions to benchmark the performance
of MAD techniques.

11.8.1 Vulnerability Assessment of FRSs

For a morphed image to be deemed a significant threat to an FRS, it is neces-
sary to establish the threat potential. Most works determine the threat potential
by measuring the vulnerability of FRSs. We therefore provide a brief overview
of suitable metrics for establishing the relevance of morph attacks through vulner-
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ability metrics. The goal of face vulnerability analysis is to measure whether the
generated morphed face image can be verified against all contributory data sub-
jects. Thus, when a morphed face image is enrolled into an FRS and probed with
another image from a contributing subject, the FRS must successfully verify all
contributory subjects corresponding to the preset verification threshold. In most
works, the threshold of the FRS is adjusted to correspond to a false match rate
(FMR) of 0.1% following the guidelines of FRONTEX [126].

16

Figure 11.8: Threats of morphed images with respect to comparison scores against both
contributing subjects. The figure illustrates that morphed images crossing the threshold of
0.5 (i.e., those lying in quadrant Q-III) are effective attacks with a more severe threat to
the FRS than those in Q-II and Q-IV.

Fig 11.8 illustrates an example of the vulnerability plots that represent the scattered
data of comparison scores from FRSs. The sample vulnerability plot is simplified
for visualisation purposes to provide an illustration of the vulnerability analysis.
Fig 11.8 can be interpreted using four different quadrants. The first quadrant (bot-
tom left quadrant)Q−I indicates that the morphed image is not verified as belong-
ing to either of the two contributing data subjects. Thus, a large number of com-
parison scores in the first quadrant indicates that the morph generation method is
not strong enough to deceive the COTS FRS (in other words, the morphed image is
not a severe threat). The second quadrant (top left quadrant) Q− II indicates that
the morphed image can be verified as data subject-2 (one of the contributing sub-
jects) only. Therefore the morphed images pose an intermediate-strength threat.
The third quadrant (top right quadrant) Q− III indicates that the morphed image
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is verified as both contributing data subjects (subject-1 and subject-2). Thus, the
larger the number of comparison scores in this quadrant, the greater the threat and
vulnerability of the analysed FRS with respect to morphed images. The fourth
quadrant (bottom right quadrant) Q − IV indicates that the morphed image can
be verified as data subject-1 only. Therefore, the morphed images again pose an
intermediate-strength threat to the FRS.

To mathematically quantify the vulnerability of an FRS to morphed face images,
the metrics below have been developed and adapted in the literature.

Mated Morph Presentation Match Rate (MMPMR) This metric was initially pro-
posed by Scherhag et al. in [125]. It defines the proportion of morphed images
verified with its contributing images.

MMPMR =
1

M
·

M∑
m=1

{[
min

n=1,...,Nm

Sn
m

]
> τ

}
, (1)

whereM is the number of morphed images andNm is the total number of subjects
contributing to morph m. Sn

m is the comparison score for mated morph for morph
m of the nth subject, and τ is the threshold of the FRS at a chosen False Match
Rate (FMR).

The rationale of MMPMR is that a morphing attack succeeds if all contributing
subjects are verified successfully against the morphed image. MMPMR considers
multiple comparisons, which are related to multiple authentication attempts. This
may not always be the case. A successor of the MMPMR metric named the fully
matched morph presentation match rate (FMMPMR) was introduced by Venkatesh
et al. [3] to address the quadrants employed for vulnerability assessment, as shown
in Figure 11.8. The details of the FMMPMR are provided below.

Fully Mated Morph Presentation Match Rate (FMMPMR) This metric defines the
proportion of morphed images verified with their contributing subjects again under
the condition that the morphed image is verified successfully against both contrib-
uting subjects [3]. This metric further takes into account both pairwise compar-
isons of contributing subjects and the number of attempts compared to MMPMR
and is described as follows:

FMMPMR =
1

P

∑
M,P

(S1PM > τ)AND(S2PM > τ) . . . AND(SkPM > τ)

(11.1)
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Figure 11.9: Illustration of morph attacks in conjunction with the strength of the FRS. As
noted from the figure, the genuine and impostor distributions of the comparison scores are
clearly separated, indicating the strength of the FRS while indicating the vulnerability to
morph attacks, as most of them cross the pre-defined threshold of 0.5 at a chosen FMR =
0.1%.

where P = 1, 2, . . . , p represents the number of attempts made by comparing
all probe images from the contributing subject against the M th morphed image,
K = 1, 2, . . . , k represents the number of data subjects contributing to the con-
stitution of the generated morphed image (in our case, K = 2), SkPM represents
the comparison score of the Kth contributing subject obtained in the P th attempt
(in this case, the P th probe image from the dataset) corresponding to the M th

morph image and τ represents the threshold value corresponding to FMR = 0.1%.
The FMMPMR metric verifies the morphed image with its contributing subjects
and takes into account the number of attempts. It is therefore a relevant and real-
istic metric to quantify the vulnerability and establish the true attack strength of a
morph generation method.

Joint Evaluation of an FRS and Vulnerability to Morph Attacks In addition to Fig
11.8, we note that the FRS can have a high recognition accuracy (i.e., biometric
performance) but can also have a high vulnerability to morphing attacks. It is there-
fore essential to first evaluate the biometric performance of the FRS according to
international standard ISO/IEC 19795-1 [235] and subsequently evaluate its vul-
nerability by using the preset threshold (e.g., FMR = 0.1%). We illustrate a chosen
COTS FRS in Fig 11.9, where one can see the success of the morphing attack for a
selected threshold (τ ) of 0.5, corresponding to FMR = 0.1%. We conclude that
the real strength of an FRS cannot be established unless good recognition perform-
ance and robustness with respect to morphing attacks are analysed and reported.
For this reason, Scherhag et al. [125] established a relative measure that combines
the recognition accuracy with vulnerability measures, and this metric is referred to
as the relative morph match rate (RMMR(%)). Specifically, when τ is employed
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to obtain either the MMPMR or FMMPMR, as discussed earlier, the RMMR can
be defined as follows [125]:

RMMR(τ)MMPMR =1 + (MMPMR(τ))

− [1− FNMR(τ)]
(11.2)

RMMR(τ)FMMPMR =1 + (FMMPMR(τ))

− [1− FNMR(τ)]
(11.3)

where FNMR indicates the false rejection rate (FNMR) of the FRS under con-
sideration obtained at the threshold τ .

11.8.2 MAD Performance Metrics

The robustness of MAD algorithms is measured using the performance metrics
defined in the International Standard ISO/IEC 30107-3 [21] and is applicable to
reporting the morphing attack detection performance. Since the MAD perform-
ance can be visualised as a binary classification problem, the following metrics are
widely used to benchmark MAD algorithms:

• Attack presentation classification error rate (APCER): Defines the pro-
portion of attack samples incorrectly classified as bona fide face images.

• Bona fide presentation classification error rate (BPCER): Defines the
proportion of bona fide images incorrectly classified as attack samples.

However, it is not possible to optimise both the APCER and BPCER jointly; it is
thus natural to set (or fix) either the BPCER or APCER and report the result with a
dependency of the other metric (either the APCER or BPCER). Most works have
reported results by setting a pre-defined security level (e.g., indicating the max-
imum proportion of morph accepts they can tolerate) and then fixing the APCER
accordingly at values of @1%, 5% or 10% [83, 212, 38]. As shown in Fig 11.10,
MAD Algorithm 3 would be preferred at a given APCER of 5% or 10% in the
benchmark compared with the other two algorithms.

11.8.3 Joint Evaluation of MAD Algorithms and Vulnerability

In a real-life scenario, an FRS may operate with a MAD subsystem in integrated
processing. For a successful attack, it is therefore important that the morphed face
image can invade the enrolment process and can match to probe images from the
contributing subjects. To quantify the vulnerability in the presence of a MAD, a
metric called the Actual mated Morph Presentation Match Rate (AMPMR) was
recently proposed in [39] and can be written as follows:
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Figure 11.10: Sample illustration of the detection accuracy of MAD algorithms at differ-
ent operating points with a detection error tradeoff curve (DET). As noted from the figure,
MAD Algorithm 3 performs best at a chosen APCER of 5% or 10%.

AMPMR(thfa, thmad) =
1

N

N∑
i=1

((( min
j=1,..Mi

SCij) > thfa)AND(SCmad−i > thmad))

(11.4)

where the total number of morphed images is denoted by N. SCij is the face re-
cognition score of the ith morphed image when compared to a probe sample of the
jth contributor. Mi is the number of contributors to the morphed image. SCmad−i

is the MAD score of the ith sample. Based on these metrics, higher values of the
AMPMR indicate more severe vulnerability.

11.9 Public Evaluation and Benchmarking
In this section, we summarize evaluations that publicly benchmark morphing at-
tack detection performance. At the time of this writing, there are two such bench-
marks: 1) The Face Recognition Vendor Test (FRVT) Part 4: MORPH - Perform-
ance of Automated Face Morph Detection [128] and 2) Bologna-SOTAMD: Eval-
uation of Differential MAD and Single Image MAD [38]. These benchmarks have
provided a common platform that includes datasets, evaluation protocols and the
computational environment. The platforms provide a trustworthy assessment of
submitted algorithms. Below, we briefly describe the databases used in each plat-
form and the performance achieved by various algorithms that are presented.
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11.9.1 NIST-FRVT Part 4: MORPH - Performance of Automated Face Morph
Detection

The FRVT MORPH test was introduced in June 2018 to provide a common plat-
form for independent testing of MAD face technologies and to ensure a common
assessment methodology. The dataset used in the evaluation was created using
different morphing methods with the objective of identifying low-quality morph-
ing (generated using freely available tools), automated morph generation (gener-
ated using an automatic tool without human intervention) and high-quality morph
generation (generated with commercial morphing software and additional post-
processing that is carried out to mask potential artifacts). The evaluation is carried
out for both S-MAD and D-MAD techniques. However, the probe data used in
the D-MAD evaluation are not effectively obtained from ABC gates. Several al-
gorithms are evaluated, and the majority of the participants in the competition
to date are from academic institutions. Most of the submissions for S-MAD are
based on texture features, while for D-MAD, both face demorphing and differen-
tial feature-based techniques are evaluated. Based on the recent evaluation report,
it can be noted that

1. None of the algorithms has indicated a reliable detection performance meet-
ing the FRONTEX operational requirement [126], and thus, face morphing
attack detection remains a challenging task.

2. The quality of morph generation has a direct impact on the performance of
both S-MAD and D-MAD techniques.

In the S-MAD category, the use of hybrid features [91] has shown better perform-
ance than other MAD methods, while among the methods in the D-MAD category,
the approach of latent feature differences based on ArcFace features [115] has at-
tained the best detection performance.

11.9.2 Bologna-SOTAMD: Differential Morph Attack Detection

The Bologna-SOTAMD benchmark was opened for evaluation in 2019 and provided
a common evaluation platform to benchmark D-MAD techniques. The Bologna-
SOTAMD D-MAD benchmark consists of a database collected in the European
SOTAMD project [129] using real ABC gates. The morphing was carried out us-
ing automated approaches with both open-source and commercial software. Sev-
eral MAD techniques have been benchmarked, which include both face demorph-
ing and feature difference methods, and the details of the evaluation protocol and
the performance of various submitted algorithms can be found in [38]. Among
the multiple algorithms evaluated, it can be noted that the existing D-MAD tech-
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niques are not robust enough to detect face morphing attacks in accordance with
the FRONTEX operational requirement [126], highlighting the challenge of MAD
again. The use of the feature difference-based D-MAD technique shows better
performance than face demorphing techniques. The best result, a detection equal
error rate (D-EER) of 3.36 %, has been reported on digital data, and D-EER = 3.36
% has been reported on print-scan data.

11.9.3 Bologna-SOTAMD: Single Morph Attack Detection

The Bologna server has also hosted a public benchmark for S-MAD since 2020.
The S-MAD dataset was constructed using high-quality passport images similar
to those used in real passports. The morphed images were generated using both
commercial (FantaMorph, FaceFusion) and open-source (triangulation with facial
landmarks) face morphing software. Post-processing was carried out using auto-
matic and manual processes to reduce the artifacts generated using the face morph-
ing software. For more information on the database and evaluation protocol, see
[38]. As evaluation started only recently, few algorithms have been benchmarked
on the Bologna S-MAD platform. The baseline performance reported a D-EER of
37.10% and 38.99% on print-scan and digital morphed images. These preference
measures indicate the challenges in detecting face morphing images using S-MAD
techniques.

11.9.4 Discussion of Public Evaluation

Based on the above discussion of publicly available benchmarks and competitions,
it can be noted that the reliable detection of face morphing attacks remains chal-
lenging. The performance of S-MAD is severely degraded compared to that of
D-MAD. This can be attributed to the availability of additional information (an-
other image) that can be used to make the final decision. The interesting outcomes
of these competitions indicate that the use of the hybrid feature-based S-MAD
technique has shown improved generalizability across various morph generation
methods. At the same time, the feature difference method used in the context of
D-MAD has shown a more robust performance on both benchmarks.

11.10 Open Challenges
The research topic of face morphing and detection has received great interest from
both research and governmental stakeholders. This has resulted in intensive re-
search activities around studying the vulnerability of COTS FRSs and the devel-
opment of several MAD techniques to reliably detect such attacks. However, there
are still several challenges and open issues that need to be addressed. In the next
section, we present these challenges and open issues in the field of face morphing
attack detection.
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Figure 11.11: Example of print-scan images and post-processed images. The variation
in the data quality across different printers and scanners is notable, which challenges the
MAD algorithms.
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Unavailability of Large-Scale public datasets with variation The unavailability of
large-scale face morphing datasets reflecting real-life scenarios hinders the devel-
opment of robust MAD. Furthermore, considering the different modes of morph
attacks (digital and print-scan), it is necessary to generate and evaluate MAD al-
gorithms on digital and print-scan datasets. However, the generation of large print-
scan databases is quite expensive and tedious. Additionally, these databases cannot
be shared publicly due to licensing restrictions or to privacy and General Data Pro-
tection Regulation (GDPR) [236] concerns. Hence, there is a limitation in access-
ing the existing morphing databases. Although the publicly available benchmarks
now host large-scale databases, those datasets can only test submitted MAD al-
gorithms. They cannot aid the further development of MAD algorithms. However,
the systematic generation of morphed face images with various types of morph-
ing software combined with different types of print-scan processes must result in
large-scale databases that will become available for researchers in order to achieve
significant progress in MAD.

Generalizability of MAD techniques The generalization of MAD techniques is cru-
cial in achieving reliable performance in real-life border control scenarios. How-
ever, the existing MAD techniques are evaluated only on known types of face
morph generation techniques and known sources of re-digitisation (printer and
scanner types), except in NIST-FRVT Part 4: MORPH - Performance of Auto-
mated Face Morph Detection and Bologna-SOTAMD. Fig 11.11 illustrates the
variation in morphed image quality due to different types of printers and scanners.
The performance reported in the benchmarking study [128], [227], [38] also indic-
ated the degraded performance of MAD techniques on both D-MAD and S-MAD
when tested on unknown sources of generation. More significant degradation is
noted with S-MAD methods, which is attributed to learning-based systems that
can learn a decision policy based on known data. These factors limit the applic-
ability of learning-based MAD techniques if they are not trained on a large-scale
dataset with all real-life variants. Thus, it is essential to devise a MAD approach
that is robust in detecting face morphing attacks.

Selection of Data Subjects for Morphing In earlier studies, morphed images were
generated by randomly selecting the contributing data subjects. It is a well-established
assumption that a morphing attack will be more successful with both human ob-
servers and machines (FRSs) if the candidate data subjects are selected based on
a look-like measure. Some recent works [237], [13], [238], [3] describe the selec-
tion of data subjects in the morphing process. However, in the systematic study
of these existing methods regarding the impact on FRS vulnerability, the detection
performance of both human observers and automatic MAD detection methods still
needs to be investigated.
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Variation with Face Co-Variates The critical aspect that is not systematically stud-
ied with MAD is the role of face co-variates, which include age, gender, ethnicity,
identification factors, image post-processing and image quality. A preliminary
study on the effect of ageing on morphing vulnerability and detection was presen-
ted in [3] and has revealed the influence of ageing on face morphing vulnerability.
The variation of face co-variates has a greater influence on S-MAD techniques,
while for D-MAD techniques, the imaging quality plays a vital role. As the images
are captured using an ABC gate in D-MAD, the influence of varying illumination
due to day and night light settings needs to be investigated. Additionally, images
captured live at an ABC gate may be acquired with eyeglasses or hair occlusions,
and this has not yet been investigated. Thus, it is essential to benchmark both
D-MAD and S-MAD techniques in a real-life scenario with all those co-variates.
Another aspect that has not yet been investigated with regard to its impact on MAD
is potential face beautification. It is expected that face images are beautified prior
to applying for a passport in many countries [239]. As the beautification process
changes the image properties, it is essential to understand both vulnerability and
MAD for this particular problem.

Performance Metrics Considering that face morphing attack detection is emer-
ging as a new operational problem, there has been only a slow convergence to-
wards harmonized testing and reporting. Publicly available benchmarking and
competitions have employed ISO/IEC metrics [21] to benchmark the detection
performance of MAD techniques. However, there are no standardized metrics yet
to evaluate the vulnerability of FRSs with respect to morphing attacks. Further-
more, the available vulnerability metrics, such as FMMPMR and MMPMR, are
not feasible for use in operational scenarios, including ABC gates and passport
application scenarios. Therefore, there is a strong need for a standardized vul-
nerability evaluation metric incorporating experience from both practitioners and
researchers working on face MAD. The availability of an international standard
using ISO/IEC, together with commonly used vulnerability metrics, is discussed
in Section 11.8, and this needs further effort.

Component-Based Morphing Almost all literature has studied face morphing as a
holistic problem with full-face image morphing. Qin et al. [39] introduced partial
face morphing, including a preliminary study on morphing only specific regions of
the face. Extensive experiments indicate that partial morphing of the eye and nose
poses a severe threat to commercial face recognition systems [39]. However, the
systematic evaluation of high-quality face images has yet to be studied together
with the impact on human expert observers (for example, border guards and super-
recognizers).
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Identical Twins and Look-Alikes The influence of morphing on identical twins and
look-alikes is an interesting problem that needs systematic study within the scope
of morphing. The vulnerability of FRSs to face morphing images generated from
identical twins and similar subjects needs to be studied on large-scale databases.

User convenience The design of user-convenient (or user-friendly) MAD systems
plays a crucial role in making detection subsystems deployable in real-time applic-
ations. Thus, there is a need to design face MAD systems that allow minimal user
intervention (from both operators and applicants). This fact needs to be considered
when designing D-MAD techniques that are tailored for ABC systems.

11.11 Conclusion
FRSs have gained a large amount of trust for security-related applications. How-
ever, morphing attacks on FRSs can be a hindrance to establishing a secure society.
Furthermore, various morphing attack detection techniques have been proposed by
several researchers to effectively detect morphed images. However, improvements
in deep learning and machine learning techniques have resulted in the generation
of high-quality morphs using various new techniques. Hence, generalizing MAD
methods is still predicted to be far in the future considering the basic challenge
of obtaining large public databases with variations and different morph genera-
tion techniques. In this article, we detail the advancement of different types of
morph generation techniques. Along with a brief overview of the different types
of morphing attack detection techniques, the corresponding performance metrics
are reported. We also provide a brief discussion of the challenges faced in this field
in developing a robust technique to detect morphs, which serves as a reference for
future work.
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