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Abstract

Memory efficiency has been proven to be an important complexity parameter for
black-box reductions when the cryptographic primitive in question is memory sensi-
tive. New techniques for achieving memory-tight implementations have recently been
introduced, most notably the injectively-map then prf technique of Bhattacharyya.
This technique is used for simulating random oracles in the security proof of the
Cramer-Shoup version of the Hashed ElGamal scheme in the IND-CCA security game.
In this thesis we take this technique and apply it to the Twin Hashed ElGamal
scheme achieving a memory-tight proof with security equivalent to the CDH problem
in the random oracle model with only a small efficiency penalty. Furthermore we
also attempt to generalize the technique for any Key Encapsulation Mechanisms
based on Hash Proof Systems, but are unable to do this for the ElGamal case. We
do however in our attempt show that this scheme implemented with the ElGamal
HPS is memory-tight, albeit much less efficient than the Cramer-Shoup equivalent.

Keywords: Memory-tight Reduction, Hashed ElGamal, Twin Hashed ElGamal,
Hash Proof System

Sammendrag

I denne oppgaven ser vi på minnetetthet som en betingelse for sikkerhet i reduksjons-
baserte sikkerhetsbeviser. Minneeffektivitet er en viktig kompleksitetsparameter
for black-box-reduksjoner når det aktuelle kryptografiske primitivet er minnesen-
sitivt. Bhattacharyya har nylig introdusert en teknikk for å simulere tilfeldige
orakler i sikkerhetsbeviset til Cramer-Shoup-versjonen av Hashed ElGamal-chifferet
i IND-CCA-sikkerhetsspillet. I oppgaven bruker vi denne teknikken på Twin Hashed
ElGamal-chifferet og oppnår et minnetett reduksjonsbevis med sikkerhet tilsvarende
CDH-problemet i den tilfeldige orakelmodellen. Videre forsøker vi også å generalisere
teknikken for alle KEM basert på avtrykksikre systemer, men klarer ikke å gjøre
dette for ElGamal tilfellet. Vi klarer likevel å vise at den er minnetett.
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1 Introduction
Cryptographic reductions aim to be tight by transforming an adversary into an algorithm
with essentially the same resources as the initial adversary. This tightness of a reduction
is then the measure of all resources of the algorithm and how well they relate to those of
the adversary. Typically resources such as runtime and success probability are considered.
So for an adversary A, we transform A into an algorithm for solving a problem, say P ,
similar to the scheme S. For this reduction to be probability-tight we need the following:
If εS is the probability of A breaking the secure scheme S, we want εP ≈ εS, where εP

is the probability of the algorithm solving the problem P . We can by choosing relevant
parameters and showing that these are tight on the given reduction, ensure that the
scheme S is secure against the adversary A in a meaningful way.
In 2018 Auerbatch et al published their work on memory-tight reductions [ACFK17].
Therein they showed the importance of memory usage as a complexity parameter. A
reduction that is memory loose can solve memory sensitive problems easier and quicker
than the original adversary, meaning that one cannot rule out the possibility of the
existence of an even more efficient adversary than first assumed. This of course leads us
to conclude that the scheme in question must be further complicated, often by increasing
the sizes of ciphertexts, in order to make sure it is secure against the initial adversary
in terms of provable security through black box reductions. The hope would be to
conclude that no better adversary exists for the original security parameter. In addition
to shedding light on this overlooked complexity parameter Auerbatch et al also suggested
some general improvements to reduce memory leakage for reductions. However useful
these improvements are in simpler schemes most of the existing results are unfortunately
lower bounds on memory. Indeed they also conjectured that no memory-tight reduction of
the Hashed ElGamal scheme could exists. Yet in 2020 Rishiraj Bhattacharyya disproved
this conjecture using what they called injectively-map then prf technique, [Bha20]. Almost
simultaneously Ashrujit Ghoshal and Stefano Tessaro proved a claim that further supported
the conjecture, showing that memory usage of all reductions of the HEG scheme must
be lower bounded, [GT21]. Not very encouraging news for memory-tightness’ reputation
as important and worth of study. The main problem in regards to the HEG scheme is
the way the cryptographic Hash function is modelled and how a reduction must simulate
this in the random oracle model. It turns out that the two schemes are different in a
subtle but very important way, but both are referred to as HEG. To specify the HEG
scheme for which the injectively-map then prf idea of Bhattacharyya works, is in fact
the Cramer-Shoup variant of the original HEG, as presented in [CS01]. It is also worth
mentioning that Bhattacharyya’s work is done over groups with pairings, while Goshal
and Tessaro have shown their lower bound in the generic group model. In short, both the
work of Bhattacharyya and Goshal et al are true, rather than contradict each other, they
complement each other.
An important note to make in the pursuit of memory efficient adversaries is that it does
not necessarily make sense to impose such efficiency measurements on all pre-existing
schemes and problems. A big part of why memory often has been overlooked in the past
is that it is not evident when it is necessary. Problems that can be shown to be solved
faster when an algorithm has access to greater memory, are called memory sensitive. It is
for such memory sensitive problems that it is relevant to impose security proofs with this
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Figure 1: Graph showing impact of increased memory for an adversary against the Dlog
assumption running the best known algorithms for breaking Dlog [LLMP93, Pol75]. The
time and memory axes are in log scales and λ = 512. The gray area represents the time
and memory combinations that we know no efficient adversaries break Dlog, while the
"solvable" part we can not guarantee the non-existence of such adversaries. Original graph
from [ACFK17]

additional requirement. There are many examples of memory sensitive problems, some
of them are essential primitives in modern day cryptography. The Discrete Logarithm
assumption, Dlog for short [Sho97], the hardness of which is an essential building block
for the Diffie-Hellman assumptions, and much much more, is memory sensitive over finite
prime fields. It is quite drastically so that if an algorithm A has expected runtime O(2λ/2)
against the Dlog assumption with working memory of less than O(2λ/10), see Figure 1, it
can be shown to solve the problem in time O(2λ/5) by only slightly increasing the working
memory. Thus one can have an instance where by doubling the available memory of A, it
solves the Dlog problem in less than half the expected time. On the other hand 2-collision
resistance of a Hash function is not memory sensitive, but the classical way of proving
tightness for reductions in the random oracle model is to implement these Hash functions
by lazy sampling, [BR06], leading to increased memory usage. This is unfavourable if
the scheme itself is a memory sensitive problem, leading us to conclude that it would
be favourable to have some idea of how one could impose a memory efficient reduction
on any security problem if need be. Other problems that are memory sensitive shown
in [ACFK17] to name a few are Learning Parity with Noise, a security assumption that
is assumed to be post-quantum secure, using an algorithm presented in [BKW00], and
factoring using [LLMP93]. It is therefore imperative to investigate the impact memory
has on any cryptographic primitive and how we can improve or adjust security conclusions
thereafter.

Why is it of importance to find and prove memory-tight reductions for the Hashed ElGamal
scheme? First of all HEG is widely adopted in practice e.g, SECG SEC1, ISO/IEC 18033-2,
IEEE 1363a and ANSI X9.63. Secondly both of the HEG schemes mentioned are in the

2



random oracle model bounded by the GAP-DH assumption, [CKS08, ABR01], which in
turn is bounded by the Dlog assumption. So any conclusions on the security on either
one of the HEG schemes by black box reductions can’t be good and meaningful if not
memory-tight or at the very least taking this into account. Prior to the technique presented
by Bhattacharyya, earlier reductions have not been memory-tight. The classical ElGamal
scheme is known to be malleable and thus does not satisfy the notion of Chosen Ciphertext
Attack, referred to as CCA. The HEG scheme is roughly explained a cryptographic scheme
that deals with the problem of malleability by shifting the base scheme of ElGamal from a
Public Key Encryption, or a PKE, to a Key Encapsulation Mechanism, or KEM for short.
Such a KEM uses a key derivation function or a cryptographic Hash function to derive a
key, rather than choosing one at random and then padding it with a padding scheme. If H
is the cryptographic Hash function implemented in the ElGamal KEM defined in relation
to some cyclic group <g>= G, it would take as input a Z = gxy where x is the secret key
from the asymmetric key pair (sk, pk) obtained at setup. Y = gy is the ciphertext that
would be transmitted different for each encapsulation, obtained by choosing y uniform
at random. The key, K $← H(Z), would be the session key or shared secret. This differs
from the regular ElGamal scheme where the session key or shared secret would just be
Z itself. It is implementations of this Hash function in the random oracle model that
have been the major obstacle in achieving memory-tight reductions. Note that in the
Cramer-Shoup version of HEG the Hash takes in Y as an additional input before deriving
a key, K $← H(Y, Z). The reasoning for why this is of interest will become apparent later
as we give the details of the two separate schemes.

1.1 Our Work
By applying the injectively-map then prf technique to the Twin Hashed ElGamal scheme,
yet another version of the HEG scheme we refer to as TEG, we prove that this gives a
memory-tight reduction in the IND-CCA security game. One of the advantages of the
TEG scheme is that it achieves security under the ordinary CDH assumption in opposed
to the GAP-DH assumption without much loss of efficiency. We also present a version of
the HEG we refer to as the Hashed Proof System Hashed ElGamal, or HPS-HEG. The
purpose of this scheme was an attempt to generalize the technique of Bhattacharyya
so that a reduction could simulate the private evaluation function of a given HPS and
thus bounding the security of the scheme to the subset membership problem of the HPS.
Unfortunately we were not able to show this in the case of ElGamal and conclude that
this does not seem possible without a DDH oracle. However we did manage to prove that
this also gives a memory-tight reduction in the IND-CCA security game, bounded by the
GAP-DH assumption it is less efficient than the Cramer-Shoup HEG.

1.1.1 Memory-Tight Reduction for Twin Hashed ElGamal

The TEG scheme first introduced by [CKS08] is an extension of the regular HEG in that
the encapsulations produce two separate Diffie-Hellman tuples both fed as input to the
Key Derivation function. This means that the sizes of the key pairs of secret and public
keys (sk, pk) are doubled and the complexity of the Hash is also lightly increased. Other
than that the message and ciphertext spaces, that is group elements of G, and key

3



Key Generation HEG
01 (G, g, p)← Gen(λ)
02 x $← Z∗

p

03 X ← gx

04 pk ← (g,X)
05 sk ← (x)
06 return (pk, sk)

Key Generation TEG
07 (G, g, p)← Gen(λ)
08 x1

$← Z∗
p

09 x2
$← Z∗

p − {x1}
10 X1 ← gx1

11 X2 ← gx2

12 pk ← (g,X1, X2)
13 sk ← (x1, x2)
14 return (pk, sk)

Figure 2: Secret and public key generation for the Hashed ElGamal and Twin Hashed
ElGamal schemes. The oracle Gen generates a working algebraic group for this instance
of the scheme with word sizes of length λ, note that the length of λ is the same in both
schemes, hence also the group G, group generator g and prime order p are the same sizes.
The Key Derivation functions would then be H(Y, Z) and H(Y, Z1, Z2) respectively.

Key Generation HPS-HEG
01 (G, g, p)← Gen(λ)
02 g1 ← g
03 t $← Z∗

p

04 g2 ← gt
1

05 a1
$← Z∗

p

06 a2
$← Z∗

p − {a1}
07 sk ← (a1, a2)
08 pk ← (g1, g2, g

a1
1 · g

a2
2 )

09 return (pk, sk)

Figure 3: The Key generation algorithm for the HPS-HEG. The oracle Gen generates a
working algebraic group for the scheme with word sizes of length λ. G could be the same
as in Figure 2. Note that given g1 and g2 generating new (pk, sk) pairs will not affect the
fact of subset membership. It is the last part of pk we mostly will be referring to as the
actual pk for computations.

spaces all stay the same size. The interesting fact of TEG being bounded by the regular
Computational Diffie-Hellman assumption is due to a special trapdoor function, also
introduced in [CKS08]. This trapdoor function shows that any adversary playing the CDH
security game has the same advantage of breaking the CDH assumption as any adversary
playing the Strong Twin Diffie-Hellman security game, STDH. In the STDH game an
adversary has access to a Decisional Diffie-Hellman oracle, which returns 0 or 1 in the case
a presented tuple is a Diffie-Hellman tuple. The trapdoor function allows the reduction
simulating the STDH game to answer DDH oracle queries with a negligible probability of
giving false information, thus perfectly simulating the STDH security game. The regular
HEG is secure in the random oracle model given certain groups called Gap groups. These
are groups known to be secure in the GAP-DH assumption, and are defined in this manner.
An advantage of the CDH assumption is that it is a more general assumption for which
there are currently many known groups thought to be secure. This simplifies setup of the
scheme and makes the TEG more general than its cousin HEG. By applying the technique
of Bhattacharyya we show that TEG is memory-tight in the random oracle model using
specifically constructed PRFs. These PRFs use the available DDH oracle to injectively

4



map all Hash queries so that any reduction needn’t store queries or respective outputs, as
opposed to in the classical lazy sampling technique.

1.1.2 Memory-Tight Reduction for the HPS Hashed ElGamal

The HPS-HEG is very similar to a PKE presented in [HK09] built on the HPS introduced
in [CS98] which Hofheinz and Kiltz were able to prove is CCA in the standard model.
The scheme we present uses the public and private evaluation functions of the ElGamal
variant of a Hash Proof System for encapsulations and decapsulation. The interesting
twist of this construction is the fact that these two functions are both deterministic. The
general idea of a Hash Proof System is that given two evaluation functions and some
language L we always have Pub(pk, X, w) = Z = Priv(sk, Z) where Z is the outputted
evaluation key when X ∈ L. By modeling it as a KEM we are able to show that it is
secure and memory-tight in the IND-CCA security game, in the random oracle model.
This is very much related to security of the Cramer-Shoup HEG since we were not able to
remove the DDH oracle requirement from the reduction. The goal was to construct a PRF
using the private evaluation function of the HPS to injectively map queries, such that
a more general construction could be obtained, and security bound by the SM problem
of the HPS in question. A letter X = (gw1

1 , gw2
2 ) of the ElGamal HPS is in the language

L if w1 = w2. Thus any reduction against the SM problem, the problem of determining
whether X ∈ L, can simulate a language by generating their own set of (pk, sk), (see
Figure 3). By universality of the ElGamal HPS the probability of Z = Priv(sk, X /∈ L) is
1/p for a group G of order p. This means that a reduction could possibly map all H queries
by checking Z = Priv(sk, X) and likewise generate a Z for decapsulation queries when
simulating the IND-CCA security game. If at any point Z = Priv(sk, X∗) for the challenge
value X∗ in the SM problem, a reduction guesses that X ∈ L with probability (1− 1/p).
The problem that we could not solve is how to extract the fact that an adversary A
against the IND-CCA game breaks DDH if it never computes a good Z for X∗, a problem
that boils down to proving DDH =⇒ CDH.

1.2 Outline of Thesis
We start off by introducing in Section 2 some definitions and important preliminaries such
as hardness assumptions and the definition of memory-tightness. We expect the reader to
be familiar with the basics of cryptography and algebra, but include concepts that are
important for the coming schemes and give general definitions of cryptographic primitives
and black box reductions.

Then we introduce one of the techniques proposed by Auerbatch et al for memory
efficient implementation of Hash functions following up by giving a detailed explanation
on the two mentioned HEG schemes in Section 3. This will make clear why we on the one
hand can have a memory-tight reduction for HEG and simultaneously on the other have a
lower bound on memory.

Moving on to Section 4 we implement the technique of injectively-map then prf on
the TEG scheme only after giving proofs for the trapdoor function and other important
constructions such as the PRFs essential for the scheme.

In Section 5 we first prove that the ElGamal HPS is universal and has a SM problem

5



bounded by the DDH assumption. Continuing we split the proof of IND-CCA into two
steps. First we prove memory-tightness in the IND-CPA security game with a simple PRF
replacement, then prove security in IND-CCA with a similar PRF construction as in earlier
proofs. We also show briefly why we were not able to implement the private evaluation
function as an injective map to the technique of Bhattacharyya.

6



2 Definitions and Preliminaries
If G is a set, we denote by a $← G the act of uniformly choosing a from G. Algorithms are
represented as pseudo-code and are regarded as RAM’s. A RAM is an abstract machine
in the general class of register machines, it can indirectly address its registers, and has
its instructions in a so called finite-state portion of the machine. A RAM differs from
other standards like the Universal Turing Machine in that the UTM has its program in
its registers as well as its data, otherwise they are equivalent. All algorithms have access
to memory of word size λ and a constant number of registers which each hold one word.
The symbol λ is the security parameter and will be the main efficiency measurement tool;
the larger λ is, the less efficient the scheme.

Definition 2.1 (PPT). We say an algorithm or machine runs in probabilistic
polynomial-time (PPT) if the time it takes to execute the algorithm is bounded by a
fixed polynomial for its input size.

We differ between deterministic algorithms, a ← A(b), and probabilistic algorithms,
a $← A(b), where on input b for the deterministic case a is fixed, for the probabilistic
case the output of A is uniformly sampled. An algorithm A with oracle access to some
other algorithm O, referred to as an oracle, is denoted by AO. Stateful oracles have states
determining where they are in their pseudo-code, random coins and stored words, this is
denoted stO. This state is inaccessible for A, even if A has oracle access to O. We will
mainly be constructing schemes in the random oracle model [BR93].

Definition 2.2 (Random Oracle). An idealized function F : {0, 1}δ −→ {0, 1}η is said
to be a random oracle, if for all x ∈ {0, 1}δ, the output F (x) is independently and
uniformly distributed over {0, 1}η.

Algorithms, adversaries, machines, oracles and, later on, reductions are all the same
abstract entities, only differing in relation to each other. Results are proven in the
framework of code based games, following [BR06]. Games consist of algorithms, these
algorithms are further divided into oracles, with one main game running oracle and zero
or more stateful oracles. When all game playing algorithms have terminated the game
outputs either 1 or 0 and terminates. If the game is implemented with some function f ,
this is denoted by Gf .

Definition 2.3 For an adversary A playing a game G, we denote the probability of the
event that A wins the game G by

Pr[GA → 1].

The ⊥ symbol represents a general term for an undefined control sequence, and if output
during a game by any oracle, the game will terminate immediately, outputting 0.

Lemma 2.4 (The Difference lemma [BR06]). Let A,B, F be events defined in some
probability distribution, and suppose that A∧¬F ⇔ B∧¬F . Then |Pr[A]− Pr[B]| ≤ Pr[F ].

This is a standard and fundamental lemma for game playing proofs. We assume it is well
known and omit its short and simple proof.
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2.1 Primitives and Reductions
Definition 2.5 A cryptographic primitive P is a pair (FP , RP), where FP is a set of
computable functions f : {0, 1}∗ −→ {0, 1}∗, and RP is a relation of pairs (f,M), where
M is a machine that computes the function f . Additionally we summarize attributes of a
primitive.

• The set FP is required to contain at least one function that is computable by a
probabilistic polynomial-time (PPT) machine.

• The function f ∈ FP is an implementation of the primitive, and the implementation
is efficient if a machine M computes f in PPT.

• The relation RP is defined in accord with the specific criteria of breaking the
primitive P , and we say that a machine M P-breaks f if (f,M) ∈ RP , i.e satisfies
the relation on f .

• A secure implementation of the primitive P is an implementation f of P such that
there exists no machine M P-breaking f .

• The primitive P exists if there exists a secure and efficient implementation f .

In other words if there exists no PPT machine M such that (f,M) ∈ RP , then f is a secure
implementation of P . So P exists if for all f ∈ FP there exists at least one implementation
f such that no paring containing f and a PPT machine efficiently computing f can be
found in RP . The implementation f represented abstractly as a function will in specific
encryption schemes represent the generation, encryption and decryption functions. The
set FP also captures structural requirements such as correctness or length preserving. For
example we could have the primitive P represent a one way function. Then the function f
or implementation would be the one way function itself, satisfying length preserving and
correctness requirements normally posed upon such functions, and therefore is a structural
requirement of FP . The relation RP would then be the probability of a machine producing
an inverse to the function f , where the probability need only be non-negligible for M to
succeed. If we could show that the function f is efficient and no machine M satisfies the
relation on f , we can conclude that the one way function f is secure, hence P is indeed a
cryptographic primitive. Other examples of cryptographic primitives are hash functions,
PRFs, ElGamal encryption scheme, and so on.

Definition 2.6 A primitive P exists relative to an oracle Π if there exists an imple-
mentation f of P which is computable by a PPT machine with access to Π and such that
no such machine P breaks f .

Notation wise a PPT machine M with oracle access to some implementation f is denoted
M f and is regarded as an implementation in its own right. We call f and its related
primitive a reduction in the following sense.

Definition 2.7 There exists a Black Box Reduction from a primitive P = (FP , RP)
to a primitive Q = (FQ, RQ) if there exists PPT oracle machines M and N s.t:

• For every implementation f ∈ FQ we have that M f ∈ FP , which we call Correct-
ness.
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• Security. For every implementation f ∈ FQ and every machine L, if L P breaks
M f , then NL,f Q breaks f .

Relations for security notions of primitives are represented as games, adversaries and the
corresponding algorithms. We will be following this notion. A reduction of P can then
be viewed as an adversary B against its own security game Gg for some implementation
of the primitive Q for which it has oracle access to A. The implementation f must be
dependant on g in some fashion, and A is an adversary against Gf . As mentioned we will
stop differentiating between adversaries, algorithms and machines.

Example 2.8 Assume that we have an UF-CMA (UnForgeable Chosen Message Attack)
secure MAC := (Gen,Tag,Ver) and we wish to improve on security by hashing the message
m before we run the Tag function on m. Call this new MAC (Message AuthentiCator)
for MAC′ := (Gen′,Tag′,Ver′), defined in Figure 4. We view both MACs and the
Hash function H as implementations of cryptographic primitives, the primitives being the
abstract idea of a collision resistant hash or secure MAC. We define the security game that
A plays as follows: An adversary A is allowed to query the game running oracle, we’ll call
it ΠA, on valid tags for a messages mi of their choosing, and then obtains this tag ti. A
wins the UF-CMA game if it can produce a valid message-tag pair (m, t) where m /∈ {mi}i,
i.e has not been previously queried for a corresponding tag. For the sake of simplicity
the game ends once A presents a pair. This game is the relation defining security for our
UF-CMA secure cryptographic primitive MAC. There are two main ways for A to win its
game, either finding a collision on the hash H, or by breaking the underlying MAC. The
security of MAC′ is then strongly dependant on the security of the underlying MAC and the
Hash H. Inspecting H we could construct a new adversary B against the collision resistance
of H with oracle access to A such that if A wins its game, B can increase its chances of
winning its own hash collision game. We call B a reduction of A. We can already see
that B satisfies the security requirement for a reduction. The correctness follows from
the fact that the UF-CMA game uses the hash function, a reduction B need only simulate
the remaining oracles that A has access to, taking on the role of ΠA, simultaneous as
it interacts with its own game running oracle ΠB. The details of how B implements A
and simulates its oracle will effect the final probability estimate for the primitive in that
game. We let all such details for all relevant reductions be represented as p(λ), where we
assume for now that these details are somehow related to the security parameter. The
final advantage of A winning its game is bounded by the advantages of the reduction C
against UF-CMA of MAC and the reduction B against H. The last term is dependant on
the specific parameters used in implementing the different games, if the term is negligible,
we call the reductions tight and assuming the hash and MAC are secure in their own right,

Oracle Gen′(λ)
01 return Gen(λ)

Oracle Tag′(k,m)
02 t← Tag(k,H(m))
03 return t

Oracle Ver′(k,m, t)
04 h← H(m)
05 temp← Ver(k, h, t)
06 return temp

Figure 4: A UF-CMA secure MAC′ buildt on top of an existing MAC with an addition of a
hash function H. λ is the security parameter, k a key for the Tag function generated by
Gen. Ver returns 1 or 0, if the message-tag pair is valid or not respectively.
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we can conclude that the scheme MAC′ is secure. Note one of the reductions might still
be tight even if p(λ) isn’t negligible.

AdvUF−CMA
A,MAC′ ≤ AdvUF−CMA

C,MAC + AdvHash
B + p(λ).

2.2 Complexity Measures
Traditionally probability and time have been the two main parameters for tightness.
Indeed if a reduction is non-tight in probability, we cannot guarantee that there does
not exists an adversary breaking our original scheme given the same parameters. To
specify, lets say we wish to investigate whether our scheme S is secure against an arbitrary
adversary A with some predefined success probability εs. If the reduction of A is non-tight
in εp, P being the problem equivalent to the scheme S, we could have say εp >> εs then we
cannot guarantee that there does not exist some other adversary B with a higher success
probability εp ≥ εs∗ > εs in breaking S. If however one could show that there does not
exists any algorithm with success probability εp against problem P , then the conclusion is
that there should not exist any A with εs ≈ εp against S. The following definitions of
complexity measures of an adversary A can be found in [ACFK17, WMHT18].

Definition 2.9 (Success probability). For a primitive P we say that an adversary A
P breaks an implementation f with some probability or wins its security game Gf if

Advf
A := Pr[GA

f → 1] = ε,

for ε non-negligible. If the game Gf is a bit guessing game, we define the advantage as,

Advf
A :=

∣∣∣∣Pr[GA
f → 1]− 1

2

∣∣∣∣ .
A reasonable argument for the importance of the time parameter is that one does not
necessarily need to have something be kept a secret for eternity, but just long enough
so that some adversary cannot capitalize on the encrypted information. For example, a
professor teaching an elementary cryptography course having a final exam at date T , could
encrypt the solutions to the exam problems and hand out the encryption to the students.
If the underlying scheme has been proven to be secure against some adversary A lower
bounded by some time parameter εt ≥ T +L obtained by some sort of reduction, where L
is sufficiently large, the professor can quite confidently be sure that none of the students
will be able to break the security before well after the exam. Making the information
useless, or at the very least unhelpful in passing the course. Of course again assuming
that the resources available to the adversary in question is a good representation of the
resources accessible to the students.

Definition 2.10 (Time Complexity). The time complexity of an adversary A is the
number of computational steps performed by A in the worst case over all possible inputs
of size λ. When A plays security game G, the time complexity is denoted LocalTime(A)
and is the time complexity of A plus the number of queries A makes to its oracles.
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2.2.1 Memory-Tightness

Memory-tightness has been up until very recently an overlooked parameter for crypto-
graphic reductions. As discussed Auerbach et al showed that memory loose reductions
can have very meaningful impacts on security, and the definitions presented here follow
theirs. Some problems can be solved faster with more working memory, so if a reduction
is memory loose it can break the initial assumptions of security while it seemingly is tight
for both probability and time complexities. The key observation is that some problems
are what we call memory sensitive. These types of problems can be shown to be solved
faster with more working memory. In an instance of these problems where the reductions
memory is neglected, one would expect to find algorithms that have quite impactful
consequences on the security assumptions, while if the problem is not memory sensitive,
the impact will be negligible.

Definition 2.11 (Memory efficiency). The memory consumption of an adversary A is
the size, in words of length λ, of the code of A plus the worst-case number of registers
used in memory at any step in computation, over all inputs of bit-length λ and all random
choices. For an adversary A playing game G denote TotalMemory(A) to be the memory
required to run G with A. This includes, the memory needed to input and output to A,
the memory needed to input and output to each oracle in the game, and the memory
for the state of each oracle. Alternatively we denote by LocalMemory(A) the code and
memory only used by A, this includes input and output to A but excludes oracles and
their states.

Tying memory complexity together with tightness for traditional complexity parameters
we define efficiency for reductions as the following.

Definition 2.12 (Tightness). Given an adversary A against some game Gf we call a
reduction B against Gg, where f is dependent on g in some fashion, for tight or efficient
if the following hold:

Advf
A ≈ Advg

B,

LocalTime(A) ≈ LocalTime(B),

LocalMemory(A) ≈ LocalMemory(B).
Where any difference between the terms is shown to be negligible over the security
parameter λ.

Continuing on the example of a reduction above we present a quick example of a non-
memory efficient reduction C, but which is still probability and time tight. The reduction
is shown in Figure 5.

Example 2.13 The probability that the reduction C forges a valid message-tag pair and
the message is not found to be a hash collision with any other message, is the same as the
probability of A outright forging a pair. Indeed if (m∗, t∗) is a valid pair for MAC, then
(H(m∗), t∗) must also be a valid pair for MAC′. Every query made by A is forwarded to
ΠC, and its response returned. Only difference is C hashes messages before forwarding
them, so if we assume one query takes one time-step, we get qH additional time-steps.
For the memory estimate we count all lines in Figure 5 that store a variable temporarily.

11



Reduction CVer,Tag()
01 L = ∅
02 (m∗, t∗)← AH,Ver′,Tag′()
03 return (H(m∗), t∗)

Oracle Ver′(m, t)
04 h← H(m)
05 return Ver(m,h)

Oracle Tag′(m)
06 h← H(m)
07 return Tag(h)

Oracle H(m)
08 if ∃(m,h) ∈ L
09 h← L
10 else
11 h $← {0, 1}l

12 L = L ∪ {(t, h)}
13 return h

Figure 5: The reduction C from the example above against the underlying MAC, playing
the role of ΠA. C initiates A and simulates the H, Tag′ and Ver′ oracles as shown. Tag
and Ver are oracles run by C’s own game playing oracle ΠC. L is a set for storing hash
queries made by A, which at the start of the game is empty. l denotes the size of the
’hash space’, where we let l ≤ n for message space {0, 1}n (the security parameter dictates
the size of l; λ ≤ l).

In line 02 the reduction stores A’s output, requiring two registers, however these are
already counted in the LocalMemory(A) term as input and output must be counted
there as per our definition. We see further that in lines 04, 06, 09 and 11, the reduction
temporarily stores h. Since C never simulates these oracles simultaneous, it only needs
one register to temporarily store h. By further inspection we see that the two registers for
A’s output can handle all of the reductions temporary storage for h, so we omit the single
register counted entirely. The oracles Ver and Tag are run by ΠC and are not counted in
the reductions local memory. The reduction stores additionally a set L for all hash queries
made by A, following the standard way of modeling a random oracle. This however is
not memory efficient! For every query made by A the reduction checks to see if there
exists a previous query and corresponding hash value. If there exists no such pair, the
reduction chooses one at random and stores this new pair in L. If A never queries on the
same input twice the reduction needs as many registers as hash queries. Which first of all
is difficult to predict beforehand, but can have disastrous effects on the total amount of
registers. In the case where A makes one query every time-step, we must have registers
equal to two times the total number of times-steps used by A in addition to those needed
to run the base code of A. We end up with the final estimate being inefficient,

LocalMemory(C) = LocalMemory(A) + (2 · qH)λ.

λ is the security parameter, and as mentioned, the size of each register.

A quick note about the constant term qH. When we are bounding the time complexities of
reductions we often say that the constant term of qH has no effect on the overall efficiency,
we say that it has a negligible impact, and thus the reductions are tight. However for
memory complexity, as discussed, this term is no longer a negligible constant. Why then
does it have a drastically higher impact on the overall memory usage but is negligible
compared to the time parameter? The main difference is that in the LocalMemory(C)
term qH is a multiple of λ, hence it grows much quicker than qH by itself when λ increases.
The expected growth of qH in the LocalTime(C) term is upper bounded by O(qH) when
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A is efficient, so we would get O(qH) ≤ O(qH · λ). From a computer science point of
view, algorithms and computing machines exist physically and although our cryptographic
schemes model security abstractly, they are ultimately models for a real world security
setting. If we are able to bound the LocalMemory(C) by the minimum amount of
registers needed to run LocalMemory(A) and a constant number of registers, say d,
then this d stays the same however much we increase the security parameter. It is much
less practical to supply an algorithm an extra of qH registers, when each time we increase
λ the need for more storage rises.

2.3 Hardness Assumptions
The following cryptographic assumptions presented here model the base line for all our
schemes to come later on. All assumptions post this section will assume that these
problems are hard, as in no PPT algorithm can efficiently solve them. We also include
some definitions for useful cryptographic primitives.

2.3.1 Public Key Encryption

Two parties, Alice and Bob, want to send encrypted messages to each other, but their
communication channel is monitored by a third party, Eve. Our two parties are far
enough apart so as there is no other way on agreeing on a symmetric encryption key other
than using the insecure channel. Assume Eve is malicious so any attempt on agreeing
on a secret key for a symmetric encryption scheme in plaintext will be picked up and
the security of the system will immediately be compromised. The challenge then is how
can Alice and Bob publicly agree on a secret without Eve also obtaining it? The basic
idea of public key encryption or asymmetric encryption tackles exactly this. One party,
say Alice, uses a key generator providing one pair of keys, a secret key sk and a public
key pk. This key pk is used for encryption, while only the secret key sk can be used for
decryption. That means if Alice send pk to Bob, effectively also sending it to Eve, only
Alice will be able to decrypt any message Bob sends. Of course we assume that in this
example Eve only listens and does not actively try to thwart the communication in any
way. There would be no way of Alice to know whether they are receiving messages from
Bob or some third active party in this particular instance. PKE’s are therefore often used
in addition with signature schemes and underlying symmetric encryption schemes for
increased security and efficiency in dealing with more active threats.

Definition 2.14 A Public Key Encryption is three efficiently computable algorithms,
(sk, pk) $← Gen(λ), c $← E(pk,m), and m ← D(sk, c) defined over a message space M a
ciphertext space C and key sapce K. We additionally impose the following,

• (sk, pk) $← Gen(λ) is a probabilistic algorithm, sk is called the secret key, and pk is
called the public key.

• c $← E(pk,m) is a probabilistic algorithm, where m is a message and c is the
corresponding ciphertext.

• m ← D(sk, c) is a deterministic algorithm decrypting a ciphertext c back to its
original message m.
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• We require correctness in the sense that a key pair must decrypt c to the original
plain-text m, c = E(pk,m).

As Alice may publicize their public key for anyone to obtain it must be hard to compute
sk from pk. We require that for any pk there must be many possible choices of sk, each of
which are likely to be valid pairs. Once the keys have been generated and distributed,
Bob may send as many messages to Alice as they desire, with no loss of security. In fact
anyone who has pk may send messages to Alice.
All provable security hinges on certain hardness assumptions. Any cryptographic primitive
is, as mentioned earlier, defined in relation to a relation between an implementation and
an adversary. These relations reflect the type of security issues we are modelling for, and
might slightly vary from scheme to scheme. However there are some main assumptions
that are relevant for almost all Public Key Encryptions, these are called Chosen Planitext
Attack and Chosen Ciphertext Attack, CPA and CCA respectively.

Definition 2.15 (Chosen Ciphertext Attack). Let Gen(λ),E(pk,m) and D(sk, c) be
a PKE defined over a message space M, ciphertext space C and a key space K. Let A
be an adversary playing the Chosen Ciphertext Attack game defined as follows, where
b $← {0, 1} is chosen uniform at random by the game running oracle otherwise knows as
the challenger.

• The challenger computes (sk, pk) $← Gen(λ), and sends pk to A.

• A chooses or computes a sequence of queries, which can be of two types

– Encryption queries: A chooses message pairs of equal length (mi0,mi1), sends
the sequence to the challenger. We denote A’s total number of encryption
queries as qE. The challenger then computes ci

$← E(pk,mib), and sends each
ci back to A.

– Decryption queries: The adversary can choose any ciphertext ĉj not already
known to be an encryption of any earlier encryption queries and sends this to
the challenger. The challenger then returns mj ← D(sk, ĉj) to A. We denote
the total amount of decryption queries as qD.

• A ends the game by returning a bit b̂← {0, 1}. A wins the game if b̂ = b.

Further we let A be adaptive in that they may send one query at a time and then use
each answer to compute their next query and they may decrypt or encrypt in any order
of their choosing. The adversaries advantage is defined to be

AdvCCA
A :=

∣∣∣∣Pr[GA
CCA → 1]− 1

2

∣∣∣∣ ,
where Pr[GA

CCA → 1] is the probability of A guessing the bit b correctly.

A CPA secure PKE is defined in relation to an almost identical security game as shown
above. In the CPA security game we remove A’s ability to ask for decryption queries,
otherwise the games are identical. By further inspection we see then that if a PKE is CCA
secure, then it also CPA. Therefore we will for the most part only be interested in if our
schemes are CCA secure, knowing that the rest follows from this.

14



2.3.2 Key Encapsulations Mechanisms

Key Encapsulation Mechanisms, or KEM for short, are extensions of the PKE primitives.
They are often used to establish a secure symmetric key between parties in very much
the same way as PKE’s. A downside to PKE’s is that their relatively large keys can only
encrypt relatively small plaintexts, thus by increasing the size of the plaintext, the overall
efficiency is reduced. The solution of increasing the symmetric key size can have rough
consequences for the PKE key sizes, not to mention the symmetric encryption scheme itself.
Another approach is to take a small plaintext and pad it with a padding scheme so that
the resulting ciphertext is much larger, and thus safer to transmit. The receiver then uses
its asymmetric secret key to de-pad the ciphertext back into the smaller plaintext. The
downside to this approach is that when it comes to proving security of padding schemes,
most proofs are lacking. Traditionally for a padding scheme to be useful it has to be
easily reversible, meaning if an adversary gets their hands on the padded plaintext M
they essentially gain access to the original plaintext k. The solution and idea of a KEM is
to randomly generate or choose an element x and by using a Key Derivation Function or a
Cryptographic Hash, obtain a key k. The ciphertext-key pair (c, k) is derived from x, but
only c is transmitted as it is the actual encrypted message. In this case if an adversary
somehow obtains k learns nothing of the original plaintext x, and thus gains no knowledge
of the Key Derivation Function, making KEM’s more useful for purposes of security proofs.
This approach eliminates the need for padding altogether. A KEM uses the same type
of asymmetric key exchange as a PKE. The initiating party uses a public key to run the
KEM: The algorithm generates a pair (c, k), we say c is the encapsulation of k, transmits
c to the receiving party which decapsulates c back into k with their secret key and the
Key Derivation Function. If this k is a symmetric key, the two parties have successfully
established a more efficient means to private communication.

Definition 2.16 A Key Encapsulation Mechanism consists of three efficiently com-
putable algorithms (sk, pk) $← Gen(λ), (c,K) $← Encap(pk) and (K) ← Decap(sk, c),
defined over some non-empty key space K and ciphertext space C.

• (sk, pk) $← Gen(λ) is a probabilistic algorithm, sk is the secret key, and pk is the
public key.

• (c,K) $← Encap(pk) is the probabilistic encapsulation algorithm outputting a cipher-
text key pair. We say that c is the encapsulation of K.

• (K) ← Decap(sk, c) is the deterministic decapsulation algorithm outputting the
encapsulated key K from corresponding encapsulation c.

• We call the KEM δ-correct if Pr[Decap(sk, c) ̸= K|(sk, pk) ← Gen(λ); (c,K) =
Encap(pk)] ≤ δ.

Security of a KEM is defined by a Indistinguishable Chosen Ciphertext Attack security
game (IND-CCA), see Figure 6.

AdvIND-CCA
A :=

∣∣∣∣Pr[GA
IND-CCA → 1]− 1

2

∣∣∣∣ .
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Game(IND-CCA)
01 b $← {0, 1}
02 (sk, pk) $← Gen(λ)
03 (c∗,K∗

0 ) $← Encap(pk)
04 K∗

1
$← K

05 b̂← ADecap(c∗,K∗
b )

06 If b = b̂
07 return 1
08 else
09 return 0

Oracle Decap(c)
10 if c = c∗

11 return ⊥
12 K ← Decap(sk, c)
13 return K

Figure 6: The IND-CCA game for Key Encapsulation Mechanisms. A wins if it can
efficiently distinguish between a uniformly random chosen key K1 and the generated key
K0 output by the encapsulation algorithm. c∗ will in both cases be the encapsulation of
K0.

2.3.3 Diffie-Hellman Assumptions

All the following Diffie-Hellman assumptions are based on the Discrete Logarithm as-
sumption, or Dlog for short. The Dlog assumption roughly states that given gx it is hard
for any efficient PPT algorithm to factor out x in a reasonable amount of time [Sho97].
The security of the ElGamal scheme variants we shall be introducing later are all directly
bounded by the following Diffie-Hellman assumptions.

Definition 2.17 (Computational Diffie-Hellman). Let G be a cyclic group with
generator g and prime order p, let Z∗

p be the multiplicative group of integers defined in
relation to p. Given g, gx and gy for some unknown (x, y) $← Z∗2

p the CDH-assumption
states that the advantage of any efficient adversary A in producing gz where z = x · y is
negligible.

AdvCDH
A := Pr[GA

CDH → 1].

Definition 2.18 (Decisional Diffie-Hellman). Let G be a cyclic group with generator
g and prime order p, let Z∗

p be the multiplicative group of integers defined in relation
to p. Given g, gx, gy and gz for some unknown (x, y) $← Z∗2

p and unknown z ∈ Z∗
p the

DDH-assumption states that the advantage of an efficient adversary A in determining
whether z = x · y or z $← Z∗

p is negligible. In the security game the challenger chooses
b $← {0, 1} where b = 0 implies z = x · y and b = 1 implies z $← Z∗

p.

AdvDDH
A :=

∣∣∣∣Pr[GA
DDH → 1]− 1

2

∣∣∣∣ .

We refer to the tuple (gx, gy, gz) as a Diffie-Hellman tuple, or DH-tuple for short, when
z = x · y. Define the DDH oracle as an efficient algorithm answering queries on the
form (gx, gy, gz) with 1 if the tuple is indeed a DH-tuple, and 0 otherwise. The following
assumption allows an adversary access to this oracle during the security game.

Definition 2.19 (Gap-Diffie-Hellman). Let G be a cyclic group with generator g and
prime order p, let Z∗

p be the multiplicative group of integers defined in relation to p. The
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Gap-DH assumption states that an adversary A against the CDH-assumption with access
to a DDH oracle has negligible advantage in breaking the CDH-assumption.

AdvGap-DH
A := Pr[GADDH

CDH → 1].

The Gap-DH assumption does not hold in general, in fact it only holds for certain groups.
We call the groups for which the Gap-DH is hard for Gap-groups. Their construction is
defined by the Gap-DH, as in if the assumption holds, the group G is a Gap-group. The
GAP-DH assumption is very closely related to the Strong-DH, but the DDH oracles are
slightly different. In the GAP-DH assumption, an adversary can chose freely all parts of
the tuples presented to the DDH oracle. In the Strong-DH assumption the first element
X = gx is always fixed. This is also the case for the STDH assumption.

Definition 2.20 (Oracle Diffie-Hellman). Let A be an adversary playing a game
similar to that of the DDH game. Assume we have a similar group construction. For a bit
b $← {0, 1} the game plays as follows:

• The challenger draws (x, y) $← Z∗2
p , computes group elements (gx, gy). Then using a

cryptographic Hash function either computes:

– if b = 0: K0 ← H(gxy)
– if b = 1: K1

$← K

The challenger sends Kb, gx and gy to the adversary.

• A is given access to an oracle answering queries on the form Hy(gu) := H(guy), where
for a fixed y and input gu group element returns H(guy). The oracle is restricted
not to answer queries of the challenge value gx. A may issue as many queries as
they like, we denote the total number of queries as qHy .

• The game terminates when A outputs a bit b̂. If b̂ = b A wins the game.

The ODH assumption states that A’s advantage is negligible,

AdvODH
A :=

∣∣∣∣Pr[GA
ODH → 1]− 1

2

∣∣∣∣ .

This Oracle Diffie-Hellman assumption is essential for the security of the Hashed ElGamal
scheme, HEG, under the standard model. In the random oracle model this assumption is
implied by the GAP-DH assumption, and the security game is slightly modified so that A,
in addition to Hy, also gains access to the random oracle H and can query it on any group
element of their choosing. We shall see later that this implementation is the main point of
interest when proving memory-tightness of the HEG scheme. In fact it is the main reason
for the impossibility conjecture given in [ACFK17].
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Definition 2.21 (Strong Twin Diffie-Hellman). Let G be a cyclic group with generator
g and prime order p, let Z∗

p be the multiplicative group of integers defined in relation to
p. Given g, gx1 , gx2 , gy for unknown (x1, x2, y) $← Z∗3

p and access to a DDH oracle, the
STDH assumption states that the advantage of any efficient adversary A in producing gz1

and gz2 where z1 = x1 · y and z2 = x2 · y is negligible.

AdvSTDH
A := Pr[GA

STDH → 1].

2.3.4 Pseudo Random Functions

Pseudo Random Functions, or PRF’s, are deterministic functions that simulate randomness.
In addition to taking on input from the function domain, say X , the PRF also takes a
key value chosen uniform at random from some defined key space K. Formally we have
F : K ×X −→ Y , for a PRF F .

Definition 2.22 (Pseudo Random Function). Let Func[X ,Y ] be the set of all functions
f : X −→ Y . For a PRF F defined over (K,X ,Y) and an efficient adversary A we define
the security game of F as follows. At the start of the game, the game running oracle or
challenger, chooses a bit b $← {0, 1}.

• The challenger chooses a function as follows:

– if b = 0: k $← K, f ← F (k, .).
– if b = 1: f $← Func[X ,Y ].

• A submits a sequence of queries to the challenger on the form of elements from X .
We let A be adaptive and denote the total number of queries as q. The challenger
answers each query with y ← f(x).

• The adversary ends the game by sending a bit b̂← {0, 1} to the challenger. A wins
the game if b̂ = b.

We say that a PRF is secure if no A can efficiently distinguish the PRF from an arbitrary
function, i.e if A’s advantage is negligible,

AdvPRF
A :=

∣∣∣∣Pr[GA
PRF → 1]− 1

2

∣∣∣∣ .
2.3.5 Hash Proof Systems

Let L ⊆ X for some space X . We call L a language if there exists some function R(x,w)
that takes in a element x from X and a witness w such that R(x,w) = 1 if x ∈ L. We
call R a verifying function. The witness space will be defined in conjunction with R and
the relation which determines the structure of L.

Definition 2.23 (Hash Proof System). A Hash Proof System consists of three efficiently
computable algorithms (sk, pk) $← Gen(λ), z ← Pub(pk, x, w) and z ← Priv(sk, x). The
HPS is defined over a language L with a verifying function R and witness space W .
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• (sk, pk) $← Gen(λ) is a probabilistic key generator providing a secret-public key pair.

• z ← Pub(pk, x, w) is a deterministic public evaluation function that on given input
x ∈ X , witness w and public key pk returns a z ∈ Z.

• z ← Priv(sk, x) is a private evaluation function only accessible with the secret key
sk. This function is also deterministic and outputs a key z ∈ Z.

• For correctness we require that Pub(pk, x, w) = z = Priv(sk, x) for all x ∈ L and
public-secret key pairs (sk, pk). There are no restrictions or requirements for any
x /∈ L, also denoted x ∈ X/L.

When it comes to Hash functions we call a seeded Hash function Hs, with uniform random
seed s, for universal if for all x, Hs(x) is uniform random. An example of a seeded universal
Hash function is Hs(x) = s⊕ x. Not to be confused with a universal Hash function we
have a similar requirement for universality of a HPS. The Pub and Priv functions are
deterministic, and by correctness we know pk defines the action of Priv for all x ∈ L. So
the best we can do for universality’s sake is impose a similar notion as for the regular
hash function on all inputs x /∈ L to the HPS.

Definition 2.24 (Universality of HPS). We call a HPS universal or sound if for all
x /∈ L, i.e x ∈ X/L, and for all z ∈ Z the following holds:

Pr[Priv(sk, x) = z] = 1
|Z|

.

In other words the distributions of (pk,Priv(sk, x)) and (pk, z) are the same for z $← Z
and (sk, pk) $← Gen(λ).

If we know that both Priv and Pub are deterministic, and defined by pk, why would
imposing the requirement of universality on elements outside the language be of any use?
This is where this final, but very important security assumption for HPS comes in, the
Subset Membership problem, SM-problem. The SM-problem states that it is hard to
distinguish between an element of the language and an element outside of the language.
We formalize in the following security game.

Definition 2.25 (Subset Membership). Let L be a language and let SampleX /L and
SampleL be two efficiently computable probabilistic functions, returning an element x
from outside or inside the language L respectively. Let A be a PPT algorithm playing the
SM-problem security game defined as follows. The challenger chooses b $← {0, 1} at the
start of the game.

• The challenger chooses x∗ in the following fashion:

– if b = 0: x∗
0

$← SampleL, (x $← L), along with w, where w is a witness to the
fact that x ∈ L.

– if b = 1: x∗
1

$← SampleX /L, (x $← X/L).

The challenger sends x∗
b to A.
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• The adversary can query the challenger on elements x either outside the language
or inside the language. The challenger replies with SampleX /L and SampleL as
requested.

• The game terminates after A outputs a bit b̂← {0, 1}, winning if b̂ = b.

We require that |X/L| ≥ 2λ and say the SM-problem is hard if A’s advantage is negligible,

AdvSM
A :=

∣∣∣∣Pr[GA
SM → 1]− 1

2

∣∣∣∣ .

Now, a universal HPS with a hard SM-problem is very useful indeed. The fact that an
adversary cannot efficiently distinguish between x ∈ L and x

′ ∈ X/L means that from
their point of view, the functions Priv and Pub might as well be probabilistic with uniform
probability space. This motivated our attempt in using the HPS for generalizing the
injectively-map then prf method of memory-tight reductions introduced by Bhattacharyya.
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3 Achieving Memory Efficiency
According to the current literature problems are memory sensitive if there are algorithms
known to break these problem faster given more memory. t collision resistance of a
Hash function H for t = 2 is known not to be memory sensitive, but for t ≥ 3 more
memory is more good. The algorithm currently referenced as the best example of this
fact is a t ≥ 3 collision finder, which can be run by numerous parallel processors with
only added constant memory for each processor. In [JL09] Joux and Lucks present this
collision finding algorithm and show that the algorithm can find a 3-collision in N1−α

time steps given memory of Nα where α ≤ 1/3 and N being the cardinality of a finite
image for the hash in question. The time efficiency gained by using more memory is
capped at α ≤ 1/3, but when t increases, so does the potential for finding collisions faster
with parallel processors. This algorithm is shown to solve a t-collision problem in time
N (t−1)/t−s with N s processors each with access to memory of N (t−2)/t−s. This emphasizes
the importance for memory-tight Hash implementations when we are investigating security
of schemes dependant on multi collision resistance. The Hashed ElGamal scheme however
does not assume the need of any t-collision resistance Hash for t ≥ 3, but this scheme is
still memory sensitive. As mentioned in the introduction, it is the memory sensitivity of
the Dlog assumption that makes HEG memory sensitive. Even though it is not directly
the security of the Hash function that is susceptible when memory is neglected, it is often
implementations of Hash functions, as we saw in Figure 5, that might lead to greater
memory usage and as a consequence weaker overall security. It opens up for adversaries to
potentially exploit other more memory sensitive assumptions that build up a cryptographic
scheme. An important obstacle to overcome in obtaining memory-tight reductions is then
reducing the impact of the Hash function implementation. One solution presented in
[ACFK17], although not good enough by itself for solving the questions of memory for
HEG, is to swap out the Hash altogether with a PRF.

3.1 PRF in the Random Oracle Model
Imagine that a reduction B is simulating a Hash function for some adversary A while
B is playing its own security game. Each Hash query made by the adversary A to B
must be answered in such a way that if A ever queries on the same input twice, the same
output is returned back to A. In the Random Oracle model this is done by choosing an
output at random from the output space and storing it in some set or table, say L. Then
B can easily check the table L for outputs before answering future queries to make sure
that the reduction’s Hash simulation is consistent. This technique for modeling random
oracles is commonly referred to as lazy sampling. The table L grows linearly with the
number of Hash queries made by A. It is a source of huge increases to memory usage
and is therefore subject for alternative implementations. There are some pitfalls to be
avoided when dealing with these alternative implementations, the first of which is loss
of consistency. Lets say that in order to reduce the impact on memory by the storage
table L, it is removed entirely without any further modifications. This solves the need for
extra memory but opens up for consistency issues. Neglecting the table L altogether will
mean that each time A queries the Hash function they will get a different answer. Even
if A queries on the same input twice B has no way of checking what A has previously
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queried. This means that H is no longer well defined and will not be consistent enough for
A to use effectively. One possible solution to this, as Auerbach et al present, could be to
replace the random Hash with a PRF, see Figure 7. Then we would have regained the well
definiteness of the simulated Hash and decreased the need for qH extra registers down to
one single register for holding the PRF key. If the PRF is secure, i.e it is indistinguishable
from a random function, then this is a sufficient replacement. A will only be able to tell
the difference with advantage of AdvPRF

A , which would then be negligible. This is an easy
replacement and will work for many simple schemes using simple implementations of Hash
functions. However things get a bit more complicated when inspecting the reductions of
the HEG scheme.

Random Oracle H(x)
01 if H(x) ∈ L
02 return H(x)
03 else
04 H(x) $← Y
05 L = L ∪ H(x)
06 return H(x)

Random Oracle PRFk(x)
07 y ← F (k, x)
08 return y

Figure 7: Two implementations of a random oracle, on the left the standard lazy sampling
technique, on the right a memory efficient implementation with a PRF F : K×X → Y with
key k from key space K. Both oracles have input and output space X and Y respectively.

3.2 Reductions in the Security Proof of Hashed ElGamal
The Hashed ElGamal scheme, HEG for short, is a KEM made up of three efficiently
computable algorithms Gen, Encap and Decap as shown in Figure 8.

Oracle Gen(λ)
01 (G, g, p)← Gen(λ)
02 x $← Z∗

p

03 X ← gx

04 pk ← (g,X)
05 sk ← (x)
06 return (pk, sk)

Oracle Encap(pk)
07 (g,X)← pk
08 y $← Z∗

p

09 Y ← gy

10 Z ← Xy

11 K ← H(Z)
12 return (Y,K)

Oracle Decap(sk, Y )
13 x← sk
14 Z ← Y x

15 K ← H(Z)
16 return K

Figure 8: Hashed ElGamal Key Encapsulation scheme, denoted HEG, as presented in
[GT21]. In this version the Hash function H : G −→ K only takes in one group element,
Xy.

In the standard oracle model the original security proof of IND-CCA for HEG is shown secure
under the Oracle Diffie-Hellman assumption, ODH [ABR01]. In the random oracle model
it turns out this assumption is implied from the GAP-DH assumption. The proof given in
the random oracle model has a reduction B trying to break the GAP-DH assumption using
the ODH adversary A. B has access to a DDH oracle, but needs to simulate the A’s oracle
Hy without having access to y. The security game from Definition 2.20 with the minor
modification mentioned is simulated by B in Figure 9. B wins if it can output Z = gxy.
In this game B needs to answer queries to the random oracle H itself as well as to Hy,
remember that Hy(X) := H(Xy). Queries to Hy and H are simulated in the following way:
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• Hy(X): B first checks whether X = gx, if so it returns ⊥. Otherwise it continues
and checks if any previous query on X was made, if so it returns the same response.
If this is not the case it checks with its DDH oracle whether (X, gy, Z) is a DH-tuple
with any of the previous queries Z to H. If it turns out this is the case for some Z
it outputs H(Z) and stores this response with X for future queries. If none of the
previous checks are true, the reduction chooses a K uniform at random from the
image of H, B stores this response together with X, and finally outputs K.

• H(Z): B first checks with the DDH oracle whether (gx, gy, Z) is a DH-tuple, if this
is true B updates temp to be Z. Otherwise it does the same as before, only now
checking with the DDH oracle on inputs X to Hy stored in LHy instead of in LH.

By using the DDH oracle in this way B makes sure there are no discrepancies in the
consistency of the Hash outputs. If B where not to check the current query if a DH-tuple
with any other previous query exists, the adversary A could easily see that for Z = Xy,
Hy(X) = H(Xy) = H(Z) might not be consistent. Especially since the Hash responses are
uniform at random due to the random oracle model. This is not memory efficient. The
reduction needs extra storage of (qHy + qH)λ additional registers on top of the memory
needed to run A. Furthermore since all Diffie-Hellman assumptions naturally rely on the
hardness of the Dlog assumption, and we know that Dlog is memory sensitive it is clear
that current security assumptions of HEG are less meaningful than previously assumed.
This emboldens the requirement for memory efficient implementations of the HEG. Again
it is the random oracle Hash function causing headaches. We have already covered the
consistency problems caused if we were to remove the tables LHy and lH. Ideally we would
want to solve both the memory usage and the consistency problem, but why not just swap
out the Hash function with a PRF as before?
Lets say we swapped out the Hash function H with a PRF F . Now if the adversary queries
H on input Z the reduction would simply run F (k, Z) and return this answer. If A queries
on Z again, B gets the same value as before by running F (k, Z) a second time without
the need for storing the output. So far so good. The security game simulated by the
reduction needs to simulate both H and Hy as described above. Therefore when B gets
a Hash query on Z it would also have to check whether any previous query to Hy, say
X, is a DH-tuple with Z. The problem is that the reduction has no way of retrieving
previous Hash queries since it has no table to store them in! We are therefore still faced
with the same consistency problem as before. Without corresponding queries the DDH
oracle becomes useless in helping B distinguish between DH-tuples, except in the case
where Z = gxy, but this does not help B in simulating the security game needed to obtain
this Z. If B could somehow check themselves if Z = Xy it still would not be able to tell if
A had queried on Z or X earlier. Even so the security game becomes pointless since we
have assumed y to be secret and unknown to B. It is this particular construction of the
Hash function in the GAP-DH-ODH security game that led Auerbach et al in [ACFK17]
to conjecture that no memory-tight reduction for HEG as shown above exists. With
this scheme as presented Figure 8 together with the general group setting Ghoshal and
Tessaro were able to prove this conjecture [GT21]. However, with one minor modification
to this scheme we shall see that there does in fact exist a memory-tight reduction for
HEG, in particular the Cramer-Shoup version, and because of the modification it does not
contradict other works mentioned.
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Reduction BDDH(gx, gy)
01 K $← K
02 temp $← G
03 LHy

← ∅
04 LH ← ∅
05 b̂← AHv,H(K, gx, gy)
06 return temp

Oracle Hy(X)
07 if X = gx

08 return ⊥
09 else
10 if ∃X ∈ LHy

11 (X,K)← LHy

12 return K
13 elif ∃Z ∈ LH s.t 1← DDH(X, gy, Z)
14 (Z,K)← LH
15 LHy

= LHy
∪ (X,K)

16 return K
17 else
18 K $← K
19 LHy

= LHy
∪ (X,K)

20 return K

Oracle H(Z)
21 if 1← DDH(gx, gy, Z)
22 temp← Z
23 if ∃Z ∈ LH
24 (Z,K)← LH
25 return K
26 elif ∃X ∈ LHv s.t 1← DDH(X, gy, Z)
27 (X,K)← LHy

28 LH = LH ∪ (Z,K)
29 return K
30 else
31 K $← K
32 LH = LH ∪ (Z,K)
33 return K

Figure 9: B an adversary playing the GAP-DH security game utilizing an adversary A
playing the ODH security game as defined in Definition 2.19 and Definition 2.20 respectively.
B has access to its own DDH oracle answering queries on the form (X, Y, Z)← G3 returning
1 if and only if (X, Y, Z) is a DH-tuple. K is the image of the Hash function H. LHy and
LH are sets for storing Hash queries and Hash outputs initially empty. temp is the final
output of B and is updated if A ever queries H on Z = Xy, in which case B wins its
security game. The Hy function is defined to be Hy(X) := H(Xy) for a Hash function H
and any input X ∈ G except if X = gx, in which case it outputs ⊥.

3.3 Injectively Map then PRF
The Cramer-Shoup variant of HEG shown in Figure 10 has a minor modification to the
cryptographic Hash function, this scheme and the original proof of security was first
presented in [CS01]. Instead of only taking in the shifted public key Xy, the Hash in
addition takes the encapsulation Y as input. This results in a slightly less efficient version
of HEG, however the scheme in the random oracle model is shown to be bounded by
the GAP-DH assumption. This scheme also gives a possible reduction a solution to the
problem of supplying pairs of (Y, Z) to the DDH oracle discussed in the section above. The
reduction from HEG against the GAP-DH security game still needs to maintain consistency
in Hash and Decapsulation queries. The original reduction needs three storage tables to
maintain consistency, see Figure 11.

The first table L1 stores all full Hash queries made by A regardless of whether the pairs
are DH-tuples or not. In this section we call (Y, Z) a DH-pair w.r.t X = gx if (X, Y, Z)
is a DH-tuple. We will refer to the query as full if for any pair (Y, Z) there exists a
response K that the reduction has output in the past. The second table L2 saves pairs
that are known to be DH-tuples with respect to gx. This table is used for decapsulation
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Oracle Gen(λ)
01 (G, g, p)← Gen(λ)
02 x $← Z∗

p

03 X ← gx

04 pk ← (g,X)
05 sk ← (x)
06 return (pk, sk)

Oracle Encap(pk)
07 (g,X)← pk
08 y $← Z∗

p

09 Y ← gy

10 Z ← Xy

11 K ← H(Y, Z)
12 return (Y,K)

Oracle Decap(sk, Y )
13 x← sk
14 Z ← Y x

15 K ← H(Y, Z)
16 return K

Figure 10: The Cramer-Shoup variant of the Hashed ElGamal Key Encapsulation scheme
as presented in [Bha20]. Identical to the first version presented, however with one subtle
difference in the input of the Hash function H : G×G −→ K. In addition to Xy the Hash
function also takes as input the encapsulation Y .

queries as the reduction on input Y checks to see if there exists any Z for which (Y, Z)
is a DH-pair and outputs the corresponding K stored in L1. If there are no known Z
that have been queried for earlier, then there would be no pair (Y, Z) for which a key
value was previously given and the reduction does not cause any consistency problems
by outputting a randomly sampled K for this query. If there does exists such a Z then
it will already have been queried by the adversary in a Hash query, thus stored in L1.
L3 stores singular decapsulation queries Y and the corresponding key value K that was
returned for that query. The reduction B simulates the Hash and Decapsulation oracles
in the following way.

• H(Y, Z): On receiving input (Y, Z) from A the reduction first checks L1 to see if
they have answered this particular query in the past, if so it outputs the same K.
Then it checks to see if (Y, Z) is a DH-pair. If this is the case B checks to see if
Y = gy, and stores Z in temp accordingly. In either case the pair is stored in L2 as
a DH-pair. The reduction continues checking in L3 if any previous decapsulation
query on Y was answered, if so B outputs the same K and updates L1 with this new
full pair. If no earlier decapsulation query on Y was stored, the reduction chooses a
K uniform at random, updates L1 and outputs K. This last part is identical to the
rest of the procedure if it turns out (Y, Z) was not a DH-pair.

• Decap(Y ): B first checks and aborts if Y = gy, otherwise it does the following. It
first checks L2 to see if there exists a known DH-pair containing Y , if this is the
case it retrieves K from L1 and outputs this. If not it checks to see if an earlier
decapsulation query on Y was answered and outputs K accordingly. If none of the
above are true B chooses K uniform at random, stores (Y,K) in L3 and outputs
the key K.

By implementing these three tables this way the reduction B is able to maintain consistency
whenA’s queries are DH-pairs. Since as before if (Y, Z) is a DH-pair w.r.t X = gx we would
have H(Y, Z) = H(Y,Xy). As we have mentioned several times now this implementation
of lazy sampling is not memory efficient. A memory efficient reduction must somehow get
rid of these three tables L1, L2 and L3, but still maintain consistency. In order to tackle
this problem we construct a special PRF F̃ . For the proof of efficiency and the fact that
the construction is also a PRF we refer to the original construction found in [Bha20] or
our similar construction for which a proof can be found in Lemma 4.5.

25



Reduction BDDH(gx, gy)
01 K $← K
02 temp $← G
03 L1 = ∅
04 L2 = ∅
05 L3 = ∅
06 b̂← AH,Decap(K, gx, gy)
07 return temp

Oracle Decap(Y )
08 if Y = gy

09 return ⊥
10 else
11 if ∃Z s.t (Y,Z) ∈ L2
12 (Y,Z,K)← L1
13 return K
14 elif Y ∈ L3
15 (Y,K)← L3
16 return K
17 else
18 K $← K
19 L3 = L3 ∪ (Y,K)
20 return K

Oracle H(Y,Z)
21 if (Y, Z,K) ∈ L1
22 (Y,Z,K)← L1
23 return K
24 if DDH(gx, Y, Z) = 1
25 if Y = gy

26 temp← Z
27 L2 = L2 ∪ (Y,Z)
28 if (Y,K) ∈ L3
29 (Y,K)← L3
30 L1 = L1 ∪ (Y, Z,K)
31 return K
32 else
33 K $← K
34 L1 = L1 ∪ (Y, Z,K)
35 return K
36 else
37 K $← K
38 L1 = L1 ∪ (Y,Z,K)
39 return K

Figure 11: The reduction B playing the GAP-DH security game, A is an adversary against
the IND-CCA security game of the Cramer-Shoup variant of HEG. This security game is
in the random oracle model, hence any output K is initially chosen uniformly at random
from the key space K. temp is the final output of B, holding a guess for Z = gxy at
the start of the game. L1, L2 and L3 are storage tables empty at start. L1 contains all
answered queries of full pairs. L2 contains DH-tuples in respect to gx from earlier queries.
L3 is a set of decapsulation queries of Y that do not have any corresponding Z yet. DDH
is the decisional Diffie-Hellman oracle accessible to B. This game is very similar to the
ODH security game, however H is ever so slightly different.

Construction 3.1 ([Bha20]). Let DDH be the decisional Diffie-Hellman oracle defined
over a cyclic group G with generator g and prime order p and which for inputs X, Y, Z ∈ G
returns 1 if the input is a DH-Tuple, and 0 otherwise. For fixed X we define the function
F̃X : {0, 1}λ ×G×G −→ K as

F̃X(k, Y, Z) =
{
F (k, 0, Y, Z) for DDH(X, Y, Z) = 0
F (k, 1, Y, g) for DDH(X, Y, Z) = 1

Define F : {0, 1}λ × {0, 1} ×G×G −→ K as a PRF.

This PRF will act as our replacement for the random Hash H. For a fixed X, which the
reduction defines to be their challenge value gx and a PRF key k chosen at random from
some PRF key space, B can easily answer all decapsulation and Hash queries without
storing them for consistency. By the nature of the Diffie-Hellman attribute of tuples in
cyclic groups we are guaranteed that exactly one DH-tuple exists for any pair of (Y, Z)
w.r.t X. This means that when answering decapsulation queries B, not having access to
a comparable Z, simply replies with F (k, 1, Y, g) as detailed in Construction 3.1. In the
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Reduction BDDH(gx, gy)
01 k $← {0, 1}λ

02 K $← K
03 temp $← G
04 b̂← AH,Decap(K, gx, gy)
05 return temp

Oracle Decap(Y )
06 if Y = gy

07 return ⊥
08 K ← F (k, 1, Y, g)
09 return K

Oracle H(Y, Z)
10 if DDH(gx, Y, Z) = 1
11 if Y = gy

12 temp← Z
13 K ← F (k, 1, Y, g)
14 return K
15 else
16 K ← F (k, 0, Y, Z)
17 return K

Figure 12: A memory-tight reduction B playing the GAP-DH security game using A an
adversary against the IND-CCA of the Cramer-Shoup variant of HEG. A key feature of any
DH-tuple is that for X fixed there is only one Z ∈ G such that (X, Y, Z) is a DH-tuple.
This characteristic is what we refer to as the injectively-map part of Construction 3.1.

actual implementation of the scheme the game playing oracle ΠA has the secret key x,
and can always supply F̃ with a DH-pair (Y, Y x), the output is the same. If the adversary
A were to later query the Hash on a DH-tuple pair (Y, Z), B checks with its DDH oracle
to verify this, and can simply reply with the same F (k, 1, Y, g) knowing that there exists
no other possible Z for which this can be the case. Indeed during such a Hash query the
reduction also checks to see if Y = gy and stores Z in temp if this is the case, ensuring
it can win its own security game. In the case where the Hash query pair (Y, Z) is not a
DH-pair, the reduction returns F (k, 0, Y, Z) ensuring consistency by the nature of the
PRF if A where to query on the same input again. There will never be a collision of
DH-tuples and non DH-tuples resulting again from the nature of PRFs in general. The
reduction is shown in Figure 12, as we can see the three tables have successfully been
removed and B perfectly simulates ΠA. The reduction is therefore tight, in particular
memory-tight, and the conjecture in [ACFK17] is refuted!
At first glance the work done by Bhattacharyya and Ghoshal et al seem to contradict
each other. This is not the case. The main difference lies in their assumed base scheme of
HEG. The impact of the minor detail in the implementation of the Hash function opened
up for the memory efficient implementation of the special PRF constructed. In addition to
that the base schemes differ ever so slightly they both have different assumptions of the
base algebraic group G. In [GT21] they assume that G is modeled in the general group
model, this roughly means that a third party oracle does all group related calculations
for an adversary i.e the binary operation is not known to A. Their works are therefore
not contradicting but rather complementary of each other. We continue to build upon
the work of Bhattacharyya to build a memory efficient reduction of the Twin Hashed
ElGamal scheme, referred to as TEG.
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4 Memory-Tightness of Hashed Twin ElGamal
Both of the HEG’s mentioned so far are bounded by the hardness of the GAP-DH assumption
in the random oracle model. The GAP-DH assumption formalized in Definition 2.19 roughly
states that solving the CDH problem with access to a DDH oracle is hard given certain cyclic
groups, called Gap-groups. The motivation for the presented Hashed Twin Diffie-Hellman
ElGamal scheme, or TEG first presented in [CKS08], is to eliminate the dependency
on these types of groups altogether. By removing this dependency we achieve a more
general scheme and by using the injectively-map then prf technique of [Bha20] prove
that this scheme is also memory efficient. The loss in efficiency by essentially doubling
the complexity of the Hash inputs is manageable compared to the need of implementing
Gap-groups. In fact the plaintext and ciphertext lengths stay the same as in the original
Cramer-Shoup version of HEG. We show that the TEG scheme is secure up to the regular
CDH assumption even with a DDH oracle. The following lemmas give us the tools we
need to construct and prove security of the TEG scheme in the random oracle model.

4.1 Required Tools
First we present the main motivation and core principle for the construction of TEG. The
formal definition of the STDH assumption can be found in Definition 2.21.

Lemma 4.1 (Ordinary DH ⇔ Strong Twin DH, [CKS08]). Let G be a cyclic group
generated by g and with prime order p. Let A be an adversary against the ordinary
Diffie-Hellman assumption, also known as the Computational Diffie-Hellman assumption.
Further let B be an adversary against the Twin Diffie-Hellman assumption with access
to a Decisional Diffie-Hellman oracle. If one adversary solves its respective problem, the
other solves its own problem with the same advantage. i.e

AdvCDH
A = AdvSTDH

B .

Before we present the proof we must familiarize ourselves with an important trapdoor
test. In proving Lemma 4.1 we present two reductions each using the other to solve its
own problem. If we can show that they both perfectly simulate each others security
game, oracles and all, without any loss of consistency then they are equivalent. The
reduction solving the STDH assumption can easily run the CDH adversary and complete
its own challenge with the same advantage. The tricky part however arises when the
reduction playing the original CDH game wants to utilize the STDH adversary, as the STDH
adversary has access to a decisional Diffie-Hellman oracle which needs to be simulated.
This by the DDH assumption is no trivial task. However the following trapdoor test is
the tool needed to overcome this obstacle and simulate the DDH oracle without knowing
the secret values x1, x2 or y, all with a negligible probability of guessing wrong.

Lemma 4.2 (DH Trapdoor test, [CKS08]). Let G be a cyclic group generated by g
with prime order p. Assume (v, w, w̃) are random group elements given by some function
of u, where u is a group element. Let σ and τ be uniform over Zp and define ũ as below,

(σ, τ) $← Z2
p, ũ = gσuτ , (v, w, w̃)← f(u).
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Given the above the following hold,

(i) ũ is uniformly distributed over G and is also independent from u.

(ii) Let S be the event that (u, v, w) and (ũ, v, w̃) are both DH-tuples, and let T be the
event that w̃ = vσwτ . Then,

(a) Pr[S ∧ ¬T ] = 0.
(b) Pr[¬S ∧ T ] = 1/p.

Proof. (i) Let r ∈ Zp s.t gr = u, then ũ = gσ · grτ = gσ+rτ and since ũ ∈ G there exists
s ∈ Zp s.t s = σ + rτ . For fixed r, s is determined by the random variables σ and
τ , both of which are uniform over Zp. Thus since ũ is determined by s, it is also
uniformly distributed over G and independent from u.

(ii) As above let ũ = gs = gσ+rτ for r fixed.

(a) If S is true, then we must have that w = vr and w̃ = vs, but s = σ + rτ and implies
that w̃ = vs = vσ+rτ = vσwτ . Clearly Pr[S ∧ ¬T ] = 0 holds.

(b) By w̃ = vσwτ = vs−rτwτ = vs · v−rτwτ rewrite w̃ = vσwτ as

w̃v−s = (v−rw)τ . (1)

First look at the case when (u, v, w) is DH, but (ũ, v, w̃) is not. Then the right
hand side of (1) equals (v−r+r)τ = 1τ , but this implies that w̃ = vs which is a
contradiction to the fact that (ũ, v, w̃) is not a DH-tuple, hence this case cannot
happen. Now consider the opposite case, when (ũ, v, w̃) is DH. Then the left hand
side of (1) evaluates to 1 giving

1 = (v−rw)τ . (2)

v−r and w are both elements in the cyclic group G so the part of (2) inside the
parenthesis is also an element of G. Since G is cyclic and of prime order there exists
for all h ∈ G a n ∈ Zp s.t hn = h̃ ∈ G for any fixed h̃. Therefore the probability of
¬S ∧ T in this case amounts to the probability of τ = n where 1 = (v−rw)n. As τ is
uniform over Zp, which is the space of all choices for n, the probability of hitting a
fixed element is 1/p. The same argument applies when both tuples are not DH.

This trapdoor test essentially gives the reduction A in the following security game a
way to simulate B’s DDH oracle. The probability of A returning a false verification of a
DH-tuple is negligible and thus has a negligible impact on the simulation of the security
game, even though the secret values are unknown. We formalize in the following proof.
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Proof. (CDH ⇔ ST-DH). Let A and B be as defined in Lemma 4.1. First of all, if the
CDH problem is easy, then the Strong-Twin Diffie-Hellman problem is easy too. B can
simply utilize A to compute two sets of Z for (X1, Y ) and (X2, Y ) respectively, and returns
the outputs (Z1, Z2). Assuming that the X1 and X2 are independent from each other the
advantage is less than or equal to A’s advantage. For the next part of the proof we utilize
Lemma 4.2 to build the algorithm for the reduction A against the CDH assumption. Upon
receiving the challenge values (X, Y ), A uniformly chooses two variables (σ, τ) $← Z2

p,
defines u as X = X1, X2 as ũ = gσuτ and initiates B on (X1, X2, Y ). A answers DDH
queries on the form (Y, Z1, Z2) from B by checking if Z2 = Y σZτ

1 , and returns 1 if this is
the case 0 otherwise, making a mistake with probability at most 1/p, which is negligible.
Finally when B outputs (Z̃1, Z̃2) the reduction checks if Z̃2 = Y σZ̃τ

1 and outputs Z̃1. If
the equality does not hold it outputs a guess. A outputs the same Z̃1 as B therefore the
advantage of A is the same as the advantage of B unless if it outputs a guess, at which
point it has a probability of 1/p to succeed which is again negligible. We conclude,

AdvCDH
A = AdvSTDH

B .

See Figure 13 for reference.

Reduction A(X,Y )
01 σ $← Zp

02 τ $← Zp

03 X1 ← X
04 X2 ← gσ ·Xτ

1
05 (Z̃1, Z̃2)← BDDH(X1, X2, Y )
06 if Z̃2 = Y σZ̃τ

1
07 return Z̃1
08 else
09 Z∗ $← G
10 return Z∗

Oracle DDH(Y,Z1, Z2)
11 if Z2 = Y σZτ

1
12 return 1
13 else
14 return 0

Figure 13: A is an adversary trying to break the Computational Diffie-Hellman assumption,
B is an adversary against the Strong Twin Diffie-Hellman assumption. DDH is B’s
decisional Diffe-Hellman oracle simulated by A. The variables (X1, X2, Y, Z1, Z2) are
respectively the variables (u, ũ, v, w, w̃) from the Lemma 4.2, and by its proof this reduction
has the same advantage as B.

We have in some detail discussed how switching a Hash function with a PRF can improve
memory efficiency, and briefly mentioned that if the underlying PRF is secure, then the
difference is negligible. We formally prove these claims as they are essential for the main
theorem in this section.

Lemma 4.3 ([Bha20]). For all adversaries A playing game G with a random oracle H,
denoted GH, there exists an adversary B playing the PRF game against F such that in
game GF , where the random oracle is replaced by a PRF F , it holds that∣∣∣∣Pr

[
GA

H → 1
]
− Pr

[
GA

F → 1
]∣∣∣∣ ≤ AdvPRF

B,F .

LocalTime(B) = LocalTime(A) + LocalTime(G) + qH.
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LocalMemory(B) = LocalMemory(A) + LocalMemory(G).
qH denotes the maximum number of queries made to H by A during the game.
Proof. The only change in GA

F is the replacement of H, thus the first equation follows
directly from the difference lemma, Lemma 2.4, where AdvPRF

B,F represents the advantage B
has winning the PRF game against F . Time efficiency of B is the time it takes to run the
algorithm A, the time it takes to simulate the game G and, assuming any query made by
A takes one time unit, the amount of queries made to H by A, denoted qH. The reduction
does not run the hash oracle, rather it queries its own oracle F and relays the answer
back to A. The memory of the reduction B includes by definition the memory needed in
running A plus any extra registers needed to run the code of the original game G and
variables needed to simulate it.

The final tool needed before the presentation of the TEG scheme and completion of its
security proof is a construction of the function F̃ . This PRF embodies the injectively
map then prf technique discussed earlier, and is essential for memory-tightness. This
construction is a simple extension of the one given for the HEG in [Bha20], thus the
following construction, Lemma 4.5 and proof follows theirs closely.
Construction 4.4 Let DDH be the decisional Diffie-Hellman oracle defined over a cyclic
group G with generator g and prime order p and which for inputs X, Y, Z ∈ G returns 1
if the input is a DH-Tuple, and 0 otherwise. For fixed X1 and X2 we define the function
F̃X1,X2 : {0, 1}λ ×G×G×G −→ K as

F̃X1,X2(k, Y, Z1, Z2) =
{
F (k, 0, Y, Z1, Z2) for DDHX1,X2(Y, Z1, Z2) = 0
F (k, 1, Y, g, g) for DDHX1,X2(Y, Z1, Z2) = 1

Define F : {0, 1}λ×{0, 1}×G×G×G −→ K as a PRF. The proof of the following lemma
ensures us that F̃ is also a PRF, and that a reduction against F is memory efficient.

Reduction BF,DDH(g, p)
01 x1

$← Z∗
p

02 x2
$← Z∗

p − {x1}
03 X1 ← gx1

04 X2 ← gx2

05 b̂← AF̃(X1, X2)
06 return b̂

Oracle F̃(Y,Z1, Z2)
07 par ← ψX1,X2(Y,Z1, Z2)
08 K ← F(par)
09 return K

Figure 14: The reduction B against a PRF F . F is an oracle answering queries by B and
F̃ is A′s oracle run by B. The function ψ is run by B but during its run B queries its own
DDH oracle not run directly by B.

Lemma 4.5 If F is a PRF, then F̃ is also a PRF. Furthermore for every adversary A
against F̃ there exists an adversary B against F such that the following hold:

AdvPRF
B,F = AdvPRF

A,F̃

LocalTime(B) = LocalTime(A)) + q

LocalMemory(B) ≤ LocalMemory(A) + 11λ.
q is the number of queries made by A and λ denotes the size of the registers.
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Proof. For fixed X1, X2 ∈ G define the following function ψX1,X2 : G × G × G −→
{0, 1} ×G,×G×G as

ψX1,X2(Y, Z1, Z2) =
{

(0, Y, Z1, Z2) for DDHX1,X2(Y, Z1, Z2) = 0
(1, Y, 0λ, 0λ) for DDHX1,X2(Y, Z1, Z2) = 1

ψ is an injective function. To see this we only need inspect the DDH oracle. A tuple
(X = gx, Y = gy, Z) is a DH-tuple if and only if Z = gxy. Thus if (X, Y, Z ′) is also a DH-
tuple, we must have that Z ′ = gxy = Z. Now, we have that F̃ = F ◦ψ, F̃ (par) = F (ψ(par)),
and since ψ is injective and F is a PRF, F̃ is also a PRF. As for how the reduction works
see Figure 14 for reference. B initializes the PRF game by first choosing two elements
x1, x2 ∈ Zp uniformly random and storing these as the secret key sk. Then B computes
the public key pk = (X1, X2), initializes A and gives it the public key pk. When B receives
a query from A it checks whether both of the tuples are DH-tuples, and forwards this to
it’s own oracle F. Any answer from F is sent directly to A. When A returns a bit b̂, B
returns the same bit and terminates. This perfectly simulates the PRF game of F̃ and we
see that

AdvPRF
B,F = AdvPRF

A,F̃ .

We assume every query made by A takes one time unit, and that A makes at most q
queries to its oracle simulated by B. Thus we get that

LocalTime(B) = LocalTime(A) + q.

Finally the memory required by B is bounded by the local memory of the algorithm A
and registers for storing all variables presented in the reduction. We count the input to
B and all lines, for the oracle query (Y, Z1, Z2) to F̃ three registers are needed, plus the
memory for temporarily storing par and K. totaling at thirteen additional registers and
one bit, see Figure 14. Two register and one bit is included in A’s local memory, The
worst case memory of the reduction is then

LocalMemory(B) ≤ LocalMemory(A) + 11λ.

Since the maximum size of each word used is determined by the security parameter λ we
define the size of any one register to be at least one λ. As we only need a small constant
of extra memory for the reduction B we achieve memory efficiency.

The upper bound for memory shown here is a rather large increase of memory usage from
the original scheme presented in [Bha20]. Even though this is expected by the nature
of the construction, it could be more strictly bounded. However it is not clear from the
calculations presented by Bhattacharyya what and when certain variables are stored,
when registers are already included in other memory terms, or when registers can be
reused during a run of an algorithm. In this paper we write a reasonable overestimate
that is much clearer to interpret, and will describe in detail which registers are counted
and which ones we sweep under other memory terms. Because of this it is expected that
we count certain registers more than once, or miss out on reusable registers and thus lose
some efficiency. As we still only need a constant of extra memory, the memory-tightness
conclusions stay the same.

33



4.2 Proof of Memory-Tightness
The TEG scheme is presented in Figure 15. The proof follows the one given for the
Cramer-Shoup variant of HEG in [Bha20] closely. We have left out the time complexities
of the reductions as not to distract from the main result of memory-tightness. We present
our first main Theorem.

Oracle Gen(λ)
01 (G, g, p)← Gen(λ)
02 x1

$← Z∗
p

03 x2
$← Z∗

p − {x1}
04 X1 ← gx1

05 X2 ← gx2

06 pk ← (g,X1, X2)
07 sk ← (x1, x2)
08 return (pk, sk)

Oracle Encap(pk)
09 (g,X1, X2)← pk
10 y $← Z∗

p

11 Y ← gy

12 Z1 ← Xy
1

13 Z2 ← Xy
2

14 K ← H(Y,Z1, Z2)
15 return (Y,K)

Oracle Decap(sk, Y )
16 (x1, x2)← sk
17 Z1 ← Y x1

18 Z2 ← Y x2

19 K ← H(Y, Z1, Z2)
20 return K

Figure 15: Hashed Twin ElGamal Key Encapsulation scheme, denoted TEG. H : G×G×
G −→ K is a hash function.

Theorem 4.6 Let g be the generator of a cyclic group G of prime order p. Let DDH be
the Decisional Diffie-Hellman oracle on G, and let F : {0, 1}λ×{0, 1}×G×G×G −→ K
be a PRF. Let A be an adversary against the Hashed Twin ElGamal Key Encapsulation
scheme in the IND-CCA game with security parameter λ. Suppose A makes qH hash queries
and qD decapsulation queries. Then, in the random oracle model, there exists adversaries
B against the PRF F and C against the Computational Diffie-Hellman assumption such
that

AdvIND-CCA
A ≤ AdvPRF

B,F + AdvCDH
C .

Additionally we get the following memory bounds on the reductions,

LocalMemory(BF ) ≤ LocalMemory(A) + LocalMemory(Gen) + 27λ+ 1,

LocalMemory(CCDH) ≤ LocalMemory(A) + LocalMemory(F ) + 14λ+ 1.
The reductions are in other words memory-tight.

Proof. The sequences of games is presented in Figure 16.

Game G0. This is the IND-CCA game and we define the advantage of an adversary A as

AdvIND-CCA
A =

∣∣∣∣Pr[GA
0 → 1]− 1

2

∣∣∣∣ . (1)

Game G1. In game G1 we choose both K∗
0 and K∗

1 uniform at random from the key
space K. Hence from the adversary’s point of view the games are identical and we have

Pr[GA
0 → 1] = Pr[GA

1 → 1]. (2)

If the adversary somehow could detect the change it would also be able, in the original
game, to decide when Kb is random or real, with the same accuracy as in this game. So
in either case the advantage is the same.
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Games G0-G4
01 b $← {0, 1}
02 k $← {0, 1}λ // G2-G4
03 (pk, sk) $← Gen(λ)
04 y∗ $← Z∗

p

05 Y ∗ ← gy∗

06 Z∗
1 ← Xy∗

1
07 Z∗

2 ← Xy∗

2
08 K∗

0 ← H(Y ∗, Z∗
1 , Z

∗
2 ) // G0

09 K∗
0

$← K // G1-G4
10 K∗

1
$← K

11 b′ ← ADecap,H(pk, Y ∗,K∗
b )

12 if b = b′

13 return 1
14 else
15 return 0

Oracle Decapsk(Y )
16 if Y = Y ∗

17 return ⊥
18 Z1 ← Y x1 // G0-G2
19 Z2 ← Y x2 // G0-G2
20 K ← H(Y,Z1, Z2) // G0-G1
21 K ← F̃X1,X2(k, Y, Z1, Z2) // G2
22 K ← F (k, 1, Y, g, g) // G3-G4
23 return K

Oracle H(Y,Z1, Z2)
24 if H(Y,Z1, Z2) undefined // G0
25 H(Y,Z1, Z2) $← K // G0
26 return H(Y,Z1, Z2) // G0
27 if Z1 = Y x1 ∧ Z2 = Y x2 ∧ Y = Y ∗ // G1-G4
28 return K∗

0 // G1-G3
29 Flag = 1 // G4
30 Abort // G4
31 elif Z1 = Y x1 ∧ Z2 = Y x2 // G3-G4
32 K ← F (k, 1, Y, g, g) // G3-G4
33 else // G1-G4
34 if H(Y,Z1, Z2) undefined // G1
35 H(Y, Z1, Z2) $← K // G1
36 return H(Y,Z1, Z2) // G1
37 K ← F̃X1,X2(k, Y, Z1, Z2) // G2
38 K ← F (k, 0, Y, Z1, Z2) // G3-G4
39 return K // G2-G4

Figure 16: IND-CCA game of TEG. H is the encapsulation oracle accessible to A. F̃ and
F are PRFs only accessible to A through the encapsulation oracle. The notation of //Gi

denotes which part of the pseudo code that is active in each game, if no such tag exists
that part is always active.

Game G2. Replace the hash H with the PRF F̃ , described in Construction 4.4, for
encapsulation and decapsulation queries made by A. This function is otherwise inaccessible
to A. By the difference lemma:∣∣∣Pr[GA

1 → 1]− Pr[GA
2 → 1]

∣∣∣ ≤ AdvPRF
B,F̃ . (3)

Game G3. Following the construction the PRF F̃ is replaced by the PRF F . The lines 18
and 19 in Figure 16 ensure that the decapsulation oracle always returns F̃X1,X2(Y, Z1, Z2) =
F (k, 1, Y, g, g) during G2. Hence from the adversary’s point of view the game is unchanged:

Pr[GA
2 → 1] = Pr[GA

3 → 1]. (4)

Game G4. Line 09 and 10 in Figure 16 ensure both K∗
b are uniform random and since

the bit b is also uniform random the adversary’s advantage can be no better:

Pr[GA
4 → 1] = 1

2 . (5)
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Reduction CDDH(g,X1, X2, Y
∗)

01 pk ← (g,X1, X2)
02 k $← {0, 1}λ

03 K∗ $← K
04 temp $← G2

05 b′ ← AH,Decap(pk, Y ∗,K∗)
06 return temp

Oracle Decap(Y )
07 if Y = Y ∗

08 return ⊥
09 K ← F (k, 1, Y, g, g)
10 return K

Oracle H(Y, Z1, Z2)
11 if DDHX1,X2(Y,Z1, Z2) = 1
12 if Y = Y ∗

13 temp← (Z1, Z2)
14 else
15 K ← F (k, 1, Y, g, g)
16 else
17 K ← F (k, 0, Y, Z1, Z2)
18 return K

Figure 17: The reduction C against STDH, with access to its own DDH oracle, simulates
oracles Decap and H as shown, rewriting the temp variable in case A queries on a
Diffie-Hellman tuple pair. In the case where no such pair is obtained the reduction chooses
two random group elements and outputs these.

This is true because in this final version we abort the game if A queries the encapsulation
oracle on valid Diffie-Hellman tuples Y x1 = Z1 and Y x2 = Z2 when Y = Y ∗. Now the
adversary cannot compute H(Y ∗, Z∗

1 , Z
∗
2), and will never know if K∗

b is truly random or
not. When Y = Y ∗ the decapsulation oracle returns ⊥, ensuring that A cannot obtain
information from trivially decapsulating Y ∗. We apply the difference lemma again and
get that ∣∣∣Pr[GA

3 → 1]− Pr[GA
4 → 1]

∣∣∣ ≤ Pr[Flag = 1]. (6)

Flag = 1 is set when the adversary queries the encapsulation oracle on (Y, Z1, Z2) so that
the tuples (X1, Y, Z1), (X2, Y, Z2) are valid Diffie-Hellman tuples. This means that it has
successfully broken the Strong Twin Diffie-Hellman assumption, and is by construction
of G4, its only chance to win. To see this we construct the reduction C against the
Strong Twin Diffie-Hellman assumption, see Figure 17. The reduction C is initialized on
challenge values (X1, X2, Y

∗), it defines the public key as pk = (g,X1, X2), chooses a PRF
key k, picks K∗ uniformly random from the key space, and initializes A. On receiving
encapsulation queries from A, C first checks with its own DDH oracle if the tuples are
DH. It then checks if these tuples are valid tuples for the challenge variables (Y ∗ = Y ), if
this is the case, C returns the corresponding Z ′s and wins its game. If not, it computes
K using the prf F and returns K to A. By the end of the game if no true DH pair on
the challenge variables is obtained, the reduction outputs two randomly chosen group
elements. Applying Lemma 4.1 we get the following bound

Pr[Flag = 1] = AdvSTDH
C = AdvCDH

C . (7)

By summarizing all the equations, (1),(2),(3),(4),(5),(6),(7), and by Lemma 4.5, we
conclude that:

AdvIND-CCA
A ≤ AdvPRF

B,F + AdvCDH
C . (8)

Memory-Tightness. Finally we show the memory usage of the reductions B and C. By
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Lemma 4.5 we have

LocalMemory(BF ) ≤ LocalMemory(BF̃ ) + 11λ.

By Lemma 4.3

LocalMemory(BF̃ ) = LocalMemory(A) + LocalMemory(G2).

For G2 we count the needed registers to store sk and pk in line 03 in LocalMemory(Gen).
We count 7 registers for variables in lines 02, 04, 05, 06, 07, 09, 10, in Figure 16, plus one
bit for b. Line 11 is included in LocalMemory(A). For decapsulation and H queries we
need four additional registers. Summing up so far we get 11 registers and one bit. The
key generation algorithm from Figure 15 is needed in the setup of the game, and must
be included, totaling at LocalMemory(Gen) + 5λ, the needed registers for storing the
public and secret key are as mentioned absorbed into this term. Our estimate is then,

LocalMemory(G2) ≤ LocalMemory(Gen) + 16λ+ 1.

The three registers and one bit needed in line 11 of G2 we count in the local memory of
A, already accounted for. Thus adding up we get the BF ’s memory efficiency to be,

LocalMemory(BF ) ≤ LocalMemory(A) + LocalMemory(Gen) + 27λ+ 1.

Lastly we calculate the memory efficiency of C against the CDH assumption. From the
reduction in Figure 13 we count 6 registers for initialization and one bit for answering the
DDH oracle simulated by the reduction, additionally we count two registers for storing Z1
and Z2 but we include these registers in the local memory of the adversary against the
Strong Twin Diffie-Hellman assumption counted in line 5. Thus

LocalMemory(CCDH) ≤ LocalMemory(CSTDH) + 6λ+ 1.

To calculate CCDH we inspect CSTDH. Referring to Figure 17 we count 8 registers, the bit
b′ and 3 registers needed to initialize A included in A’s local memory, and gives us the
following estimate

LocalMemory(CSTDH) ≤ LocalMemory(A) + LocalMemory(F ) + 8λ.

Adding up we get our final estimate

LocalMemory(CCDH) ≤ LocalMemory(A) + LocalMemory(F ) + 14λ+ 1.

This completes the proof.
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5 Memory-Tightness of HPS Hashed ElGamal
The motivation for this section is to see if we can replace the injectively map part of
Bhattacharyya’s technique with a more general construction such as the Hash Proof
System. Hash Proof Systems, or HPS, have deterministic encryption algorithms. This is
of interest to us since this means that for every element X in the language L of the HPS
there is exactly one output Z, in other words it is an injective function when restricted on
L, (Definition 2.23). In Bhattacharyya’s technique it was precisely the one to one relation
between elements Y in the group G and the corresponding Diffie-Hellman element Z in the
DH-tuple (X, Y, Z) for a fixed X that made their construction possible. There happens
to exist an ElGamal variant of a HPS, so we naturally start with a KEM constructed from
this system, we will refer to it as the Hash Proof System Hashed ElGamal, or HPS-HEG
for short, see Figure 18. It is almost identical to the PKE presented in [HK09], and the
underlying HPS is a simplification of the scheme presented in [CS98].

Oracle GenHPS(λ)
01 (G, g, p)← Gen(λ)
02 g1 ← g
03 t $← Z∗

p

04 g2 ← gt
1

05 a1
$← Z∗

p

06 a2
$← Z∗

p − {a1}
07 sk ← (a1, a2)
08 pk ← (g1, g2, g

a1
1 · g

a2
2 )

09 return (pk, sk)

Oracle Encap(pk)
10 w $← Z∗

p

11 X ← (gw
1 , g

w
2 )

12 Z ← Pub(pk, X,w)
13 K $← H(X,Z)
14 return (X,K)

Oracle Pub(pk, X,w)
15 ga1

1 · g
a2
2 ← pk

16 Z ← (ga1
1 · g

a2
2 )w

17 return Z

Oracle Decap(sk, X)
18 Z ← Priv(sk, X)
19 K $← H(X,Z)
20 return K

Oracle Priv(sk, X)
21 (a1, a2)← sk
22 (X1, X2)← X
23 Z ← (Xa1

1 ·X
a2
2 )

24 return Z

Figure 18: A KEM based on a ElGamal variant of a HPS, we denote by HPS-HEG.
H : G×G×G −→ K is a Hash function. The group elements g1 and g2 are included in
Par = (G, g1, g2, p) given as public information after the HPS generator has generated
the key pair (pk, sk). When referring to the public key pk, we will mostly be referring to
h = ga1

1 · ga2
2 .

5.1 CPA proof of HPS Hashed ElGamal
As a starting point for future discussion, we prove that under the IND-CPA security game
the HPS-HEG is memory-tight by simply replacing the cryptographic Hash with a PRF in
the random oracle model. Because of Lemma 4.3 and the simplicity of the IND-CPA game
we can easily do this without the need for any special constructions or tricks. The HPS
used in our construction of the scheme in Figure 18, has a hard SM problem and fulfills
the definition of universality stated in Definition 2.25 and Definition 2.24 respectively.
Although we will not need the hardness assumption of SM to formally prove Theorem 5.2
we still state and prove both universality and the SM assumption before proceeding.

Lemma 5.1 ([CS98]). The ElGamal variant of the HPS presented in Figure 18 is a
universal HPS with SM problem bounded by the DDH assumption as shown,

AdvSM
B = AdvDDH

A .
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The memory used by the reduction against the DDH assumption totals at,

LocalMemory(A) ≤ LocalMemory(B) + 4λ.

Proof. For correctness of the HPS see that when X ∈ L, we must have Pub(pk, X, w) =
Z = Priv(sk, X) by,

pkw = ga1w
1 · ga2w

2 = gwa1
1 · gwa2

2 = Xa1
1 ·Xa2

2 .

When X ∈ X/L, thus w ̸= w
′ , we have universality. To see this fix X = (gw

1 , g
w

′

2 ) ∈ X/L,
we show that the distribution of (pk,Priv(sk, X)) is that of two independent and random
group elements. Take the function f : Z2

p → G2,

f(a1, a2) = (pk, Z) = (ga1
1 · ga2

2 , X
a1
1 ·Xa2

2 ).

This function is injective, and thus the output is completely determined by the input,
which are two independent and random group elements. We prove the above by inspecting
the function f̃ : Z2

p → Z2
p,

f̃(a1, a2) = logg1(f(a1, a2)) = (a1 + a2t, wa1 + w
′
a2t).

f̃ is a linear map can be represented by a linear transformation,

f̃(a1, a2) = M
(
a1 a2

)
, with M =

(
1 t
w tw

′

)
.

The determinant of M is

det(M) = tw
′ − tw = t(w′ − w) ̸= 0.

Hence there exists an inverse to M and f̃ is injective and therefore f is also. Finally we
bound the SM problem, see Figure 19. First see that AdvSM

B ≤ AdvDDH
A . By the left hand

side of Figure 19 this game perfectly simulates the DDH security game. Since X∗ is a
tuple of two, and g2 is a known group element to all parties in the SM security game,
B can easily construct a tuple of three which if in the case it is a DDH-tuple will mean
that X∗ ∈ L. In fact if it is not a DDH-tuple, then X∗ /∈ L. By Definition 2.18 B need
not simulate any oracles, thus the reduction simulates the DDH game perfectly. In the
opposite case AdvDDH

A ≤ AdvSM
B see the right hand side of Figure 19. Again the reduction

can easily construct a challenge value X∗ by the same arguments as before, this time
simulating a language L with Y . The Sample oracles can easily be simulated, but are
redundant as they don’t actually give any information that B does not know or cannot
obtain themselves assuming A includes g2 = Y in Par. We conclude that

AdvSM
B = AdvDDH

A .

Memory-tightness. The reduction A needs registers to store lines 06, 07 worth 3λ and
a single bit for line 08. In addition it needs enough memory to run B, this includes the
input and output to B, which covers two of the three registers needed to simulate the
Sample oracles and the single bit. Hence

LocalMemory(A) ≤ LocalMemory(B) + 4λ.
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Reduction B(X∗)
01 X ← X∗

1
02 Y ← g2
03 Z ← X∗

2
04 b̂← A(X,Y, Z)
05 return b̂

Reduction A(X,Y, Z)
06 g2 ← Y
07 X∗ ← (X,Z)
08 b̂← BSampleL,SampleX /L(X∗)
09 return b̂

Oracle SampleL()
10 w $← Z∗

p

11 XL ← (gw, Y w)
12 return (XL, w)

Oracle SampleX /L()
13 w $← Z∗

p

14 w
′ $← Z∗

p/w

15 XX /L ← (gw, Y w
′

)
16 return XX /L

Figure 19: On the left hand side is the reduction B against the SM problem utilizing an
adversary A playing the DDH security game as defined in Definition 2.18. X∗ = (gw

1 , g
w′
2 ),

where X∗
1 = gw

1 and X∗
2 = gw′

2 . The oracles SampleL and SampleX /L are oracles that B has
access to, but they are not needed and hence omitted here. B wins if it guesses the bit b
correctly, where b = 0 means that X∗ ∈ L. On the right hand side we have A playing the
DDH security game using B. In this game A has to simulate a language, thus we included
how A easily can do this by simulating the Sample oracles.

The matter of generalizing the injectively map with a private evaluation function seems
to be unachievable for the HPS-HEG scheme. The main problem is that in order to
construct a well defined reduction we must extract from A information for solving the
SM assumption, but A is not trying to break the DDH assumption when playing the
IND-CPA game, or IND-CCA game for HPS-HEG. We discuss this in more detail after we
first present our second main Theorem, where we must use the GAP-DH assumption.

Theorem 5.2 Let g be a generator of a cyclic group G of prime order p. Let F :
{0, 1}λ × G × G × G → K be a PRF. Let A be an adversary against the HPS-HEG in
the IND-CPA game with security parameter λ. If A makes qH Hash queries, then in the
random oracle model, there exists an adversary B against the PRF F and an adversary C
against the GAP-DH assumption such that

AdvIND-CPA
A ≤ AdvPRF

B + AdvGAP-DH
C + qH

p
.

Additionally we get the following memory bounds on the reductions,

LocalMemory(B) ≤ LocalMemory(A) + LocalMemory(Gen) + 15λ+ 1,

LocalMemory(C) ≤ LocalMemory(A) + LocalMemory(F ) + 3λ.

Proof. The sequence of games is presented in Figure 20 and follows the same pattern as
the proof for the TEG scheme.

Game G0. We start of with the definition of A’s advantage in the IND-CPA security
game,

AdvIND-CPA
A :=

∣∣∣∣Pr[GA
0 → 1]− 1

2

∣∣∣∣ . (1)
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Games G0-G3
01 b $← {0, 1}
02 k $← {0, 1}λ // G2-G3
03 (pk, sk) $← GenHPS(λ)
04 w∗ $← Z∗

p

05 X∗ ← (gw∗

1 , gw∗

2 )
06 Z∗ ← Pub(pk, X∗, w∗) // G0
07 K∗

0
$← H(X∗, Z∗) // G0

08 K∗
0

$← K // G1-G3
09 K∗

1
$← K

10 b̂← AH(pk, X∗,K∗
b )

11 if b̂ = b
12 return 1
13 else
14 return 0

Oracle H(X,Z)
15 if H(X,Z) undefined // G0
16 H(X,Z) $← K // G0
17 return H(X,Z) // G0
18 if Z = Priv(sk, X) ∧X = X∗ // G1-G3
19 return K∗

0 // G1-G2
20 Flag = 1 // G3
21 Abort // G3
22 else // G1-G3
23 if H(X,Z) undefined // G1
24 H(X,Z) $← K // G1
25 return H(X,Z) // G1
26 K ← F (k,X,Z) // G2-G3
27 return K // G2-G3

Figure 20: IND-CPA game of HPS-HEG presented in Figure 18. GenHPS is the HPS key
generator, H is a cryptographic Hash function, X = (gw

1 , g
w

′

2 ) where X ∈ L if w = w
′ for

a language L. Priv and Pub are the evaluation algorithms of the HPS both deterministic.
F is a PRF.

Game G1. Choose K0
$← K as in line 10 in Figure 20. Then the games G0 and G1 are

indistinguishable assuming H is a proper collision resistant cryptographic Hash function.

Pr[GA
0 → 1] = Pr[GA

1 → 1]. (2)

Game G2. In this step we swap out the Hash function with a PRF F . By Lemma 4.3,∣∣∣Pr[GA
1 → 1]− Pr[GA

2 → 1]
∣∣∣ ≤ AdvPRF

B . (3)

Game G3. In the third and final step we add the lines 20 and 21, aborting if an adversary
ever queries on a valid pair (X,Z) where X = X∗. Thus winning game G3 is strictly
bounded by the choice of the bit b, which is uniformly random over {0, 1},

Pr[GA
3 → 1] = 1

2 . (4)

Continuing the difference lemma gives,∣∣∣Pr[GA
3 → 1]− Pr[GA

3 → 1]
∣∣∣ ≤ Pr[Flag→ 1]. (5)

In the case of bounding Pr[Flag→ 1] we inspect the correctness of Priv and Pub. Since
X∗ ∈ L always is the case in G3 there is no way for A to obtain Z = Priv(sk, X∗) other
than to randomly guess Z or by computing Z = pkw∗ . A has access to ga1+ta2 and gw∗ , so
in computing Z for X∗ ∈ L they would have to solve the following,

Z = pkw∗ = g
(a1+ta2)w∗

1 .

This is equivalent to the CDH problem for y = a1 + ta2 and x = w∗. However in order
to construct a well defined CDH adversary using only A and staying memory-tight, we
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construct a reduction in Figure 21 against the GAP-DH security game. C Simulates a
language by choosing a t such that it can generate a challenge value X∗ = (gx

1 , (gx)t) for
g1 = g and g2 = gt. The reduction then proceeds to generate a public key pk = gy

1 · (gy)t

with unknown a1 = y = a2 as a simulated secret key. C does not need to know the actual
secret key sk = (y, y) as they can query their DDH oracle as shown to check whether,

Pub(pk, x) = pkx = gyx+tyx = Z = gxy+txy = Xy
1 ·X

y
2 = Priv((y, y), X∗).

For if the DDH oracle returns 1 on input (X1, pk, Z) we must have Z = pkx. The reduction,
knowing t and thus the inverse to (t+1), can easily obtain gxy by the following calculation,

Z(t+1)−1 = (gyx+tyx)(t+1)−1 = (gyx)
(t+1)
(t+1) = gxy.

C returns this gxy and wins its game with the same probability of A triggering line 20 in
Figure 20. Notice that in line 11 of Figure 21, the reduction C does not need X ∈ L, only
that X1 = gx, but the probability of C obtaining the correct Z when X /∈ L is qH/p. We
add the last summand to account for this,

Pr[Flag→ 1] = AdvGAP-DH
C + qH

p
. (6)

Our final bound is therefore,

AdvIND-CPA
A ≤ AdvPRF

B + AdvGAP-DH
C + qH

p
.

Reduction CDDH(g, gx, gy)
01 k $← {0, 1}λ

02 t $← Z∗
p

03 (t+ 1)−1 ← Z∗
p

04 X∗ ← (gx, gxt)
05 pk ← (gy · gyt)
06 K∗ $← K
07 temp $← G
08 b̂← AH(pk, X∗,K∗)
09 return temp

Oracle H(X,Z)
10 (X1, X2)← X
11 if DDH(X1, pk, Z) = 1
12 if X1 = gx

13 temp← Z(t+1)−1

14 K ← F (k,X,Z)
15 return K

Figure 21: CGAP-DH playing the GAP-DH security game, simulating the IND-CPA game
for A. F is a PRF and the output of C is temp a group element of G. Publicly known
elements, G, g, g2, p, gx, gxt and pk. The input X1 to the DDH oracle is the first part of
X = (X1, X2) and may vary.

Memory-Tightness. By Lemma 4.3 we get,

LocalMemory(B) ≤ LocalMemory(A) + LocalMemory(G2).

To bound LocalMemory(G2) we first start counting all needed registers. Firstly we need
enough memory to store the bit in line 01, one register to store the PRF key k in line
02, five registers to store the public and secret key from line 03, five more registers for
lines 04 through 10, counting two register for Kb, line 11 is included in A’s local memory.
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On top of that we also count four extra register for answering Hash queries in line 28,
that totals in fifteen registers and two bits. In addition to these registers we must have
enough memory to run GenHPS, (see Figure 18), totaling at LocalMemory(Gen) + 5λ
this includes the registers needed to store the key pair (pk, sk). The oracle Gen is the
group generating algorithm which outputs the group G, the generator g and the group
order p. Summarizing we get,

LocalMemory(G2) ≤ LocalMemory(Gen) + 15λ+ 1,

implying,

LocalMemory(B) ≤ LocalMemory(A) + LocalMemory(Gen) + 15λ+ 1.

Finally we bound LocalMemory(C) playing the GAP-DH security game. The memory
needed for the reduction from the IND-CPA security game to the GAP-DH game is counted
in Figure 21. We count eight registers through lines 01 to 07 and one bit for line 08.
To answer Hash queries four registers are needed, but five registers are included in
the memory term of the PRF F . Additionally four registers plus one bit is counted in
LocalMemory(A). This totals then at,

LocalMemory(C) ≤ LocalMemory(A) + LocalMemory(F ) + 3λ.

5.2 CCA proof of HPS Hashed ElGamal
In [CS98] the presented simplified scheme as a PKE is only CPA secure. This largely stems
for the fact that if an adversary obtains (pk, Z = Priv(sk, X /∈ L)) they can determine
the parts of pk, therefore Z ′ = Priv(sk, X ′

/∈ L) can no longer be universal if A knows
of a pair as described above. It then is a natural first step before we try and prove
IND-CCA security of HPS-HEG to see if the scheme suffers from the same weaknesses. In
the HPS-HEG as in the Cramer-Shoup version of the regular HEG, we obtain the key K
by using a cryptographic Hash function. This function takes as input the encapsulations
X which are elements in the HPS’s language, and the output of the evaluation functions
Z. As we have shown in Lemma 5.1 we have correctness, ensuring that if X ∈ L we also
obtain Z = Priv(sk, X) and thus K = H(X,Z). An important difference in the HPS-HEG
scheme than that of the one presented in [CS98] is that during the encapsulation and
decapsulation algorithms Z is never given to the adversary. To specify A can obtain any
Z they like, but the fact whether any of those particular Z’s are equal to Priv(pk, X /∈ L)
is never disclosed to A. We present three scenarios.

• A obtains K from the corresponding encapsulation X ∈ L. If A has a key
K, for which they know the encapsulation X, they still won’t be able to obtain the
corresponding Z unless they constructed X themselves at which point they have
the witness w and can compute Z = pkw, or break the cryptographic Hash security
assumptions. If they did not construct X the difficulty of obtaining the correct Z is
equivalent to solving the CDH problem:

X = (gw
1 , g

w
2 = gtw

1 ), Z = pkw = g
(a1+ta2)w
1 .

Neither will help them obtain a pair (X,Z = Priv(sk, X)) for X /∈ L.
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• A obtains K from the corresponding encapsulation X /∈ L. If they obtain
a key K from the corresponding encapsulation X /∈ L they still have to break the
security of the one-way Hash function in order to obtain Z, assuming they do not
know the secret key sk. Another way they could obtain Z is in the security game
of IND-CPA, A can query for encapsulations Ki ← H(X,Zi), if any of the Ki = K
then A knows that Zi = Priv(sk, X). The chance of this happening is somewhat
dependant on how we model the Hash and replacement PRF, but for the security
game mentioned universality gives us the probability i/p.

• A obtains Z = Priv(sk, X /∈ L) by constructing a pair (X,Z). A can construct
as many pairs of (X,Z) as they like, if they construct X ∈ L they can easily obtain
Z as mentioned. If we assume A does not know sk = (a1, a2) but has managed to get
their hands on a pair (X,Z = Priv(sk, X)) for X outside the language they can quite
simply calculate ga1

1 and ga2
2 if we presume they know w and w′ for Z = ga1w

1 · ga2w
′

2 .
It is clear that if A obtains this information we no longer have universality, for
they now know all combinations of (X,Z) pairs for X /∈ L by easily computing
Z = ga1w

1 · ga2w
′

2 . The bright side is that in order for A to obtain such a pair in the
first place they need to break the first instance of universality outright, which is
done with probability 1/p for any single pair.

5.2.1 Constructing a PRF

Before formally proving the IND-CCA of HPS-HEG we have to decide how to model the
Hash replacement, the PRF F . Starting with the familiar construction of Construction 5.4
we show that this is adequate in the IND-CCA proof. As was discussed in Section 3
one of the problems for a reduction playing the GAP-DH security game was answering
decapsulation oracles consistently when only Y = gy was given. The split PRF F̃ was
constructed so that the reduction did not need any corresponding input, and because of the
nature of the DH-tuples there was no chance of inconsistencies. A reduction against the
SM problem can always generate a key pair (sk = (a1, a2), pk = (ga1

1 · ga2
2 )) such that when

an adversary A playing the IND-CCA security game queries the decapsulation oracle on
X, the reduction can always compute a corresponding Z = Xa1

1 ·Xa2
2 for consistency. This

Z is never revealed to A since it will only be used as input for the Hash, for encapsulation
queries A must supply their own Z. A possible construction could be to remove the DDH
oracle altogether and replace it with the private evaluation algorithm Priv, and use this to
present a tight adversary against the SM problem of the HPS and bound the HPS-HEG
by the DDH assumption. This would be favourable in trying to construct a generalization
of Bhattacharyya’s approach using general HPS as reductions need only simulate the Priv
evaluation function as discussed. However none of the possible reductions we constructed
were able to extract from A, playing the IND-CCA security game, the fact that they could
tell the difference of elements in L and X/L. We specify in Remark 5.3. Furthermore
in the regular CDH security game a reduction still needs a DDH oracle to even check
if Z = Priv(sk, X) since the actual secret key would be sk = (y, y), which of course is
unknown.

Remark 5.3 Lets assume A is looking for a pair (X,Z = Priv(sk, X /∈ L)). It has access
to a decapsulation and encapsulation oracle as shown in Figure 22. A first queries the
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Decap oracle on an X /∈ L of their choosing. They then proceed to ask H for keys related
to the encapsulation X, choosing each Z freely. Notice that if Flag = 1 then A obtains
the key K = F (k,X, Z). By universality this happens with probability,

Pr[Flag→ 1] ≤ qH

p
.

We now disregard any assumptions about A and inspect C’s chance of solving the SM
problem as shown. If Flag = 1 then that must mean X∗ ∈ L with probability 1− qH/p.
In this case C wins its game with negligible probability of error. The problem arises
when Flag = 1 never is triggered. Although Flag = 1 implies X∗ ∈ L with negligible
probability of error, the opposite is not necessarily true. If this were the case then we
would have that A generates Z = pkw∗ without knowing w∗, t, or the secret key sk. This
is exactly the probability of breaking the CDH assumption, and there is no proof showing
that breaking DDH =⇒ breaking CDH, there are in fact groups for which this has been
dis-proven. We assume that A does not instantly obtain w∗ by recognizing that X ∈ L.

Reduction C(X∗)
01 k $← {0, 1}λ

02 a1
$← Z∗

p

03 a2
$← Z∗

p − {a1}
04 sk ← (a1, a2)
05 pk ← ga1

1 · g
a2
2

06 K $← K
07 b̂← AH,Decap(pk, X∗,K)
08 if Flag = 1
09 return 0
10 else
11 return 1

Oracle H(X,Z)
12 if Z = Priv(sk, X)
13 if X = X∗

14 Flag = 1
15 K ← F (k,X,Z)
16 return K

Oracle Decap(X)
17 if X = X∗

18 return ⊥
19 Z ← Priv(sk, X)
20 K ← F (k,X,Z)
21 return K

Figure 22: The reduction C playing the SM security game running A, an adversary playing
the IND-CCA game against HPS-HEG. By adding an extra step in the security game
of Theorem 5.2 right after switching to the PRF in G2; we choose X∗ from outside the
language and if we could show that C is a tight reduction, we could conclude that security
of HPS-HEG is bounded by the DDH assumption instead of the GAP-DH assumption by
Lemma 5.1. The probability that G4 aborts in the modified version of Figure 20 would
simply be qH/p in this case. This proof of security does not seem possible by Remark 5.3.

Construction 5.4 Let (GenHPS,Pub,Priv) be a HPS defined as in Figure 18 with public
key pk and language L over a cyclic group G with prime order p and generator g. Let
DDH be an oracle answering queries on tuples replying whether they are DH-tuples or not.
Define the function F̃ : {0, 1}λ ×G×G×G −→ K as,

F̃ (k,X, Z) =
{
F (k, 0, X, Z) for DDH(X1, pk, Z) = 0
F (k, 1, X, g) for DDH(X1, pk, Z) = 1

Define F : {0, 1}λ × {0, 1} ×G×G×G −→ K as a PRF.
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Lemma 5.5 If F is a PRF, then F̃ is also a PRF. Furthermore for every adversary A
against F̃ there exists an adversary B against F such that the following hold:

AdvPRF
B,F = AdvPRF

A,F̃ + q

p

LocalMemory(B) ≤ LocalMemory(A) + 5λ.

q is the number of queries made by A.

Proof. Follows by Lemma 4.5 and the similar proof in [Bha20]. The sumand q/p accounts
for the error when Z = Priv(sk, X /∈ L). For memory-tightness we count: additionally to
needing LocalMemory(A) the reduction needs to store g2, t, g, sk = (a1, a2), pk = ga1

1 ·ga2
2

and p. The bit output by B including one register for g2 and one register for pk is included
in LocalMemory(A). All registers needed to answer F̃ queries are counted in the PRF
F not run by B.

5.2.2 Proof of CCA security

Theorem 5.2 along with the discussion above gives a good starting point for proving
memory-tightness in the IND-CCA security game. Even though we unfortunately could
not generalize the technique of Bhattacharyya in this instance we still state and prove
memory-tightness of the HPS-HEG in our third and final main Theorem.

Theorem 5.6 Let g be a generator of a cyclic group G of prime order p. Let F :
{0, 1}λ×{0, 1}×G×G×G→ K be a PRF. Let A be an adversary against the HPS-HEG
in the IND-CCA game with security parameter λ. If A makes qH Hash queries and qD
decapsulation queries in the random oracle model, there then exists an adversary B against
the PRF F and an adversary C against the GAP-DH assumption such that

AdvIND-CCA
A ≤ AdvPRF

B,F + AdvGAP-DH
C + 2 · qH

p
.

Additionally we get the following memory bounds on the reductions,

LocalMemory(B) ≤ LocalMemory(A) + LocalMemory(Gen) + 20λ+ 1,

LocalMemory(C) ≤ LocalMemory(A) + LocalMemory(F ) + 6λ+ 1.

Proof. The sequence of games is almost identical to the one presented Figure 20 with
the addition of a decapsulation oracle as presented in Figure 23, and an extra game step
switching from F̃ to F as in Figure 16 of Section 4.
In G2 we have ∣∣∣Pr[GA

1 → 1]− Pr[GA
2 → 1]

∣∣∣ ≤ AdvPRF
B,F̃ , (1)

and thus by Lemma 5.5 the left hand side of (1) ≤ AdvPRF
B,F + qH/p.

In G3 we use the PRF F directly, adding similar lines as 31, 32, 38 in Figure 16 to H only
now checking with the private evaluation function as in Figure 20. As the only way for A to
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Oracle Decap(X)
01 if X = X∗

02 return ⊥
03 Z ← Priv(sk, X) //G0-G2
04 K ← H(X,Z) //G0-G1
05 K ← F̃ (k,X,Z) //G2
06 K ← F (k, 1, X, g) //G3
07 return K

Figure 23: The IND-CCA security game decapsulation oracle, Decap. The oracle rejects
any attempts to decapsulate the challenge ciphertext X∗, and always outputs consistently
in accord with H since the input (X,Z) to the key derivation functions in line 04 and
05, is unique up to each X by the secret key sk. In G3 the adversary only obtains the
decapsulated key K from H queries if they present a pair (X,Z = Priv(sk, X)), same as
before, thus the difference from G2 to G3 is unnoticeable to A.

obtain the decapsulated key K from queries to H is to present a pair (X,Z = Priv(sk, X))
we see this is exactly as in G2. Thus the games are identical,

Pr[GA
2 → 1] = Pr[G3 → 1]. (2)

In the final step of G4 we get as before,

Pr[GA
4 → 1] = 1

2 , (3)

and ∣∣∣Pr[GA
3 → 1]− Pr[GA

4 → 1]
∣∣∣ ≤ Pr[Flag→ 1]. (4)

We construct a reduction against the GAP-DH assumption using Construction 5.4. Notice
that multiple queries to the decapsulation oracle does not help A in breaking universality
as for all X /∈ L we have Pr[Z = Priv(sk, X)] = 1/p so having multiple key-non-letter-pairs
(K,X) and trying to find a Z for any of these, still amounts to be as hard as just trying
to find one Z for one pair (K,X) because Ki ̸= H(Xi, Zj) does not mean Ki ≠ H(Xl, Zj))
for i ̸= l. By (1), (2), (3), (4), Figure 24 and Theorem 5.2 we conclude that,

AdvIND-CPA
A ≤ AdvPRF

B,F + AdvGAP-DH
C + 2 · qH

p
.

Memory-Tightness. From Lemma 4.3 and Lemma 5.5 we get the following,

LocalMemory(BF ) ≤ LocalMemory(BF̃ ) + 5λ,

LocalMemory(BF̃ ) ≤ LocalMemory(A) + LocalMemory(G2).

By Theorem 5.2 and the fact that the registers covering Hash queries in G2 are adequate
to cover any decapsulation queries to Decap, we arrive at the same memory bound for
LocalMemory(G2),

LocalMemory(G2) ≤ LocalMemory(Gen) + 15λ+ 1.
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Reduction CDDH(g, gx, gy)
08 k $← {0, 1}λ

09 t $← Z∗
p

10 (t+ 1)−1 ← Z∗
p

11 X∗ ← (gx, gxt)
12 pk ← (gy · gyt)
13 a1

$← Z∗
p

14 a2
$← Z∗

p − {a1}
15 sk ← (a1, a2)
16 K $← K
17 temp $← G
18 b̂← AH,Decap(pk, X∗,K)
19 return temp

Oracle H(X,Z)
20 (X1, X2)← X
21 if DDH(X1, pk, Z) = 1
22 if X1 = gx

23 temp← Z(t+1)−1

24 if DDH(X1, g
t, X2) = 1

25 K ← F (k, 1, X, g)
26 else
27 K ← F (k, 0, X, Z)
28 return K

Oracle Decap(X)
29 if X = X∗

30 return ⊥
31 (X1, X2)← X
32 if DDH(X1, g

t, X2) = 1
33 K ← F (k, 1, X, g)
34 else
35 Z ← Priv(sk, X)
36 K ← F (k, 0, X, Z)
37 return K

Figure 24: The reduction C playing the GAP-DH security game running A, an adversary
playing the IND-CCA game against HPS-HEG. The reduction is very similar to the one
presented in Figure 21 but with an additional Decap oracle, split PRF as shown and a
pair (a1, a2) not used anywhere but to generate inputs to F when X /∈ L. The actual
secret key is sk = (y, y) unknown to C. During the call to the DDH oracle in line 31, the
reduction checks whether X ∈ L, for a fixed g2 this is true if and only if X ∈ L, again
the DDH oracle is not restricted on any input per the GAP-DH assumption and X1 is not
necessarily gx. The reduction simulates the IND-CCA game perfectly.

The memory bound for LocalMemory(BF ) is therefore,

LocalMemory(BF ) ≤ LocalMemory(A) + LocalMemory(Gen) + 20λ+ 1.

Inspecting Figure 24 we see that the reduction needs an addition of two registers to
store the simulated sk = (a1, a2) otherwise it is identical to Figure 21, with the registers
covering queries to H also covering decapsulation queries,

LocalMemory(C) ≤ LocalMemory(A) + LocalMemory(F ) + 6λ+ 1.

6 Concluding Remarks
As a starting point for our work we presented the two different schemes commonly
referred to as the Hashed ElGamal. In detail we discussed how the implementation of the
cryptograhic Hash function in the random oracle model opened up for the main technique
of Bhattacharyya. Knowing the details it was then a simple matter to understand why
the work of Ghoshal and Tessaro did not contradict this technique. We proceeded and
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used this for proving memory-tightness of the schemes following Section 3, the first of
which being our main result the Twin Hashed ElGamal in Theorem 4.6. We were able to
prove that this scheme eliminates the need for so called GAP groups under the GAP-DH
assumption and with a small increase to complexity achieved security under the regular
CDH assumption. The small increases to complexity were strictly contained to the Hash
function, the PRF following this and the public and secret key sizes. Otherwise the
message, ciphertext and key spaces all stayed the same as for the original HEG.

We also presented a modification of the original Hashed ElGamal scheme in Theorem 5.6
implemented with a Hash Proof System hoping that the deterministic evaluation functions
of the HPS could be a substitute for the Diffie-Hellman oracle in the construction of the
PRF as in Figure 22. Unfortunately we were not able to show that this could be done
in the specific instance of the HPS-HEG, but we did end up proving that the reductions
were still memory-tight. As for the usefulness of the HPS-HEG we have to conclude that
it is less secure and more complex than the regular Cramer-Shoup variant of the HEG
and that the proof of memory-tightness is more or less identical to the original proof
given by Bhattacharyya. Compared with the TEG, it is certainly not the best of the two
substitutes as far as we can tell.

For future projects it might still be interesting to see if Key Encapsulation Mechanisms
implemented with other Hash Proof Systems, for example a HPS based on quadratic
residuosity [Pai99], can use the technique of Bhattacharyya to achieve memory-tightness.
Other interesting projects could be to investigate how to improve, if possible, memory-tight
conclusions on primitives built upon for example Learning Parity with Noise.
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