
Hyttebiblioteket

Author:

Camilla Velvin

Supervisor:

Sverre Hendseth

TTK4551 Specialization project (7.5 SP)

Department of Engineering Cybernetics

Norwegian University of Science and Technology

13th December 2021

Problem statement

The student shall conduct a software development project in accordance with the

state of the art in software development, where the goal of the project is to make a

solution for sharing books. The system will handle publication of unwanted books,

show a list of available books and handle users’ collecting books.

To create a maintainable, working application to the student should

• Specify functional and non-functional requirements for the application.

• Explore different methodologies for use in a software development project.

• Do a literature search for different technologies, and find the best approach

for the given requirements.

• Develop an application satisfying the specified requirements.

i

Abstract

Today approximately 25% of Norwegians reads at a daily basis. To face the con-

stantly increasing need of books in addition to consideration for the climate changes,

it has in this project been created an application for book sharing, Hyttebiblioteket.

Hyttebiblioteket is an application for sharing books primarily among cabin areas.

The users are able to publish books that they no longer need and want. In dif-

ference from the existing solution is it possible for the user to put the book in a

mailbox and publish the book at the website with instructions for locations. This

way other users will be able to find and collect the book without arranging a meeting.

The specialization project started with mapping the users’ need and challenges today

regarding book sharing. This was done based on personal experience in addition to

exploring existing solutions and peoples opinions. With this information it was cre-

ated a requirement specification. The specification was then the foundation when

creating the general milestones for the project. Before implementation, different

technologies was explored to find the most fitting regarding the application require-

ments.

The application is available at https://folk.ntnu.no/camilve.

ii

https://folk.ntnu.no/camilve

Table of Contents

1 Introduction 1

1.1 Motivation and problem description 1

2 Theory 2

2.1 Exisiting solutions . 2

2.1.1 Finn . 2

2.1.2 BookCrossing . 2

2.1.3 Booksharing.app . 2

2.1.4 Little Free Library . 3

2.2 Software development methodology 3

2.3 Database . 5

2.4 Interaction design . 6

3 Requirement specification 7

3.1 Functional requirement specification 7

3.1.1 Register and login . 7

3.1.2 View available books . 7

3.1.3 Register books . 8

3.1.4 Collect books . 9

3.1.5 Deviations . 10

3.2 Non-functional requirements . 10

4 Implementation and design 11

4.1 Chosen software development methodology 11

4.2 Choice of technology . 12

4.2.1 Single Page Application . 12

iii

4.2.2 React with Typescript . 12

4.2.3 Backend . 13

4.3 User interface . 15

4.3.1 Color selection . 15

4.3.2 Inspiration for user interface 16

5 Results 18

5.1 Register and login . 18

5.2 View available books . 19

5.3 Register books . 21

5.4 Collect books . 23

5.5 Deviations . 23

5.6 Non-functional requirements . 24

6 Discussion 25

6.1 Evaluation of the process . 25

6.2 Evaluation of the technical implementation 25

6.3 Evaluation of the product . 26

7 Conclusion and further work 27

7.1 Conclusion . 27

7.2 Further work . 27

7.2.1 Usability testing . 27

7.2.2 Implementing missing and desired functionality 27

7.2.3 Develop mobile application . 28

Bibliography 29

iv

1 Introduction

1.1 Motivation and problem description

Today the world face big climate changes due to human influence, and to lessen

these changes we need to do changes. A larger part of the greenhouse gases comes

from fabrics producing items, and as individuals we can help decrease the climate

changes by reducing buying new stuff [1].

Since early 2000s books has become a bigger part of Norwegians life. Statistics Nor-

way says that in an average day in 2018 around 25% of Norwegians reads printed

books [2]. With the increase in reading it has, according to Norwegian bookstores

financial, been an increased turnover of books [3]. In addition to the increase in

buying books, most homes have today a bookshelf containing books which is no

longer read, collecting dust. In this project the task has therefore been to try to

develop an application that makes it easy to read used books, and share the books

that you no longer need.

There exist several different solutions for book sharing, but the motivation for creat-

ing a new different solution has been personal experience. Hyttebiblioteket is aimed

for cabin areas, as I several times have been sitting at our cabin longing to read a

book I have not read before. This will therefore be an essential consideration that

will influence the decision for this project.

1

2 Theory

2.1 Exisiting solutions

2.1.1 Finn

Today there exist different solutions for sharing books. In Norway the most common

solution is Finn. Finn is a maket place on the internet containing different ads and

services for private persons and companies. As a private person it is free to publish

items you no longer need, such that others can buy or get your items.

When entering Finn.no the user can scroll though different ads, and if something

looks interesting they can contact the owner to arrange hand over and payment, if

the owner wants payment [4].

2.1.2 BookCrossing

BookCrossing is a website created for sharing books. When a user wants to share

a book, it can be done in two different ways. The first, is that the book can be

published at the website, such that people can search and find books they want to

read, and contact the owner if the book is interesting. The other possibility is to

leave the book at a public place. This way anyone who finds the book can collect it.

To keep track of the books that is left at public places, the idea is that the finder

should register the book at the website [5]. BookCrossing is a popular website, and

in 2005 it was awarded People’s voice for best community websites and mobile sites

[6].

2.1.3 Booksharing.app

Another solution for book sharing that is under development is Booksharing.app.

The concept here is that users can publish printed books that they no longer need,

and by doing so they will earn ”Bookcoins”. When a user has earned Bookcoins

he/she gets access to other peoples books in the city. When finding an interesting

book the user can contact the book holder and send a request to take the book. If

the book holder confirms the request, it can be arranged a meeting and handing of

the book, as well as payment using Bookcoins [7].

2

2.1.4 Little Free Library

Little Free Library is an organization promoting book exchanges within neighbor-

hoods. The concept is that small ”libraries”, usually in the form of a bookcase, is

placed in a public place. In these bookcases everyone can leave books that they no

longer want and need, and everyone can read and collect the books in the library.

These libraries can be opened anywhere, with the landowners’ approval [8].

2.2 Software development methodology

Software development methodology refers to the process of planning, creating, test-

ing and deploying a project [9]. A methodology increases the quality of the system

[10], and contains a collection of procedures, techniques, tools and documentation

aids to help implementing a system and reduce the complexity of the process [11].

Today it exist many different methodologies for software development projects and

it is rapidly presented new ones. Each methodology has different strengths and

weaknesses, and will depend on the projects goal and scope, meaning that no meth-

odology will work efficiently for all projects. The two main categories within software

methodologies are ”traditional” and ”agile” [11].

The traditional methodology came first and the most famous is the Waterfall method

[12]. The Waterfall method is based on a sequential development process, by di-

viding the cycle into phases, where a phase can start after the previous phase is

completed (see Figure 1) [13]. The main advantage with Waterfall method is that

the cost, timelines and design is determined early in the project. On the other hand

this is also one of the main disadvantages. It is hard to allow new requirement, and

the Waterfall method does not incorporate any error corrections [14].

3

Figure 1: Waterfall methodology with the different phases [15].

Since the early 2000s the agile methodology has been an increasingly popular al-

ternative to traditional methodology [16]. The main difference between traditional

and agile methodology is that agile methods is iterative, where the project are split

into timeboxes called sprints. This means that requirements, plans and results are

rapidly evaluated such that the project responds quickly to changes [17]. In 2001

a group of well known software developers created the Agile Manifesto and a set

of principles as a contradiction against the traditional linear models [18]. By their

experience in software projects, they changed the project management by guiding

the projects based on the founding principles [19]:

• Individuals and interactions over process and tools

• Working software over comprehensive documentation

• Costumer collaboration over contract negotiation

• Responding to change over following a plan

The highest priority is to satisfy the costumer. With iterative and agile methodology

the costumer can get continuously deliverance of working software where review

and feedback is appreciated for evolving and development of the product as new

iterations is delivered (Figure 2).

4

Figure 2: Agile methodology [20]

Every project is different and there is no methodology that fits all. For projects

where the requirements are clear, or consist of big and complex teams the traditional

methodology might fit the project best. Projects that are unclear and tend to

change, the agile methodology might fit the project the best [21].

2.3 Database

A database is a structured collection of data, generally stored and accessed from a

computer. The main purpose of a database is to deliver accurate and consistence

data to the users, and in addition secure the data that is stored [22]. Today there ex-

ists several types of databases. The main two is relational (SQL)- and non-relational

(NoSQL) databases.

Rational database is based on the relational model where the data collections are

organized into tables with pre-defined relationships [23]. These tables uses primary

key to uniquely identifying an element, and finds the relations between the different

tables by adding a foreign key which is the primary key of the related element [24].

SQL (Structured Query Language) is supported by all relational databases and is

a tool for managing the database in addition to perform different operations on the

data [25]..

On the other side we have the non-relational databases. Instead of storing data

in tabular schemes these databases optimize the storage model, based on the re-

quirements of the type of data [26]. This indicates that a project with flexible

data models fits better in a NoSQL database, while SQL fits better with structured

data. Because of the ability to scale NoSQL databases it is often used in Big Data

applications, and some queries can therefore become faster with NoSQL.

5

2.4 Interaction design

Interaction design (IxD) is a field containing the relation between human and ma-

chine, where the main focus is to create applications that is easy to use [27]. In

software development systems it is important with a good user interface. Lack of

usability will frustrate the users and the system wont be used.

Interaction design is said to be an iterative process with repeated cycles. For best

result of the user experience in the iterative process one should follow different

principles [28]:

• Visibility. It is important that functionality of the system is visible, and is

communicating with the user what the system is capable of doing and how.

• Feedback. To give feedback is keeping the user updated on the system state.

The system confirm the user actions by giving informational feedback.

• Constraints. To minimize the possibility for user error, the system can set

constraints so that it is only possible to use the action when you should. For

example does not a HDMI cable fit into a USB port. This is a constraint

resolving the possibility to connect these cables wrong.

• Consistency. Is about creating things so that we have similar elements

achieving similar tasks.

• Affordance. By creating elements such that the user understands how to use

it. For example. a doorknob affords pulling or twisting.

In addition the Norwegian act relating to equality and a prohibition against dis-

crimination (§§17 to 19) [29] states that all websites, applications and machines

regarding information and communication technology (ICT) must follow universal

design.

6

3 Requirement specification

3.1 Functional requirement specification

The following is an overview of the functional requirements for the different parts of

the application. Functional requirements defines specification of the behaviour and

functionality for the application.

3.1.1 Register and login

Because the application needs to keep track of people adding and collecting books,

it requires a user profile. First the users should be able to register (FR1) with email

and login with username and password (FR1.1). This is to include most people,

because several elderly people does not have Google or Facebook. Later it should

also be possible to register and login with Google (FR1.4). This will simplify the

process, but because of the time limit this is will have a low priority.

ID Description Priority

FR1
A user should be able to register as a user of the

system.
High

FR1.1
The system should have authentication with user-

name and password.
High

FR1.2
The system should be able to send a new password

on mail when ”forgotten password”.
Medium

FR1.3
The system should have authentication with

Google.
Low

FR1.4
The user should have its own profile, and be able

to see and change it.
Low

Table 1: Functional requirements for register and login.

3.1.2 View available books

Since the purpose of the application is sharing books, it is necessary to show avail-

able books. Theoretically there can be many books in the database, such that for a

fast performance the user should be able to get published books in an area (FR2).

From a user perspective, the area should be centered around the users position such

7

that it is easy to find relevant books in the neighborhood. It can also be useful for

the users to see how far away the book is from the current location (FR2.1). For

later it should be possible to filter the books based on the distance (FR2.3). The

idea behind this is that the users can see books based on the length of their hike.

For simplicity the users should also see a map with available books centered around

current location (FR2.2 and FR2.4). The idea behind a map is that the users are

able to see books that could be found along the hiking route, or that the user can

plan the hiking route based on a book they want to read.

ID Description Priority

FR2
The system should show books that is published

in an area.
High

FR2.1
The system should show where a book is in com-

parison to the user position.
High

FR2.2
The system should show a map with marks where

there is books.
Medium

FR2.3
The user should be able to filter books based on

distance from current location.
Medium

FR2.4
The system should have a map where the user can

see their position in addition to books.
Medium

Table 2: Functional requirements for viewing available books.

3.1.3 Register books

To be able to share books the users also need to be able to register books that

they want to share with others. The users they should be able to publish a book

based on the current location (FR3). By this the users can easily post books where

they are. Since it is a known fact that GPS in some cases can be wrong, the ap-

plication should also have the ability to publish books with chosen location (FR3.3).

When registering a book it is natural that the user should be able to adminis-

trate it. The system should therefore have a list of all the user’s published books

(FR3.1) and the possibility to edit them (FR3.2).

8

ID Description Priority

FR3
The user should be able to add a book based on

current location.
High

FR3.1
The user should have an overview of all books that

he/she has published.
Medium

FR3.2
The user should be able to edit all the books

he/she has published.
Low

FR3.3
The user should be able to publish a book with

another location then current.
Low

Table 3: Functional requirements for registering books.

3.1.4 Collect books

When a user has found a book that he/she wants to read, and located the book, it

should be possible to register this in the application (FR4). For simplicity will the

book, in the first version, be deleted from the application when someone borrows it.

Later, the book should be set to borrowed and the original user should be able to

know who has the book (FR4.2), in addition should each user have an overview of

borrowed books (FR4.1). This is a safety for the publisher if they have books that

they do not want to give away.

For later it should also be possible to reserve a book (FR5) this is such that the

users can reserve a book before a hike and be sure that the book is still there when

arriving. For the first iteration this has low priority since it is not critical for the

main functionality to work.

ID Description Priority

FR4
A user should be able to register that he/she has

collected a book.
High

FR4.1
A user should be able to see all books they have

borrowed.
Low

FR4.2
A user should be able to see who borrowed their

book.
Low

FR5 A user should be able to reserve a book. Very low

Table 4: Functional requirements for collecting books.

9

3.1.5 Deviations

If a book in the application is not to find at given location, the user should be able

to send in a deviation (FR6). To handle a such deviation, the book needs to be

hidden from the rest of the users. The book holder should be alerted (FR6.1) such

that he/she can edit the position of the book, if it was misplaced, or be able to

delete the book if it is gone.

ID Description Priority

FR6
The user should be able to notice deviations, for

example books that are not at published location.
Very low

FR6.1
The system should alert a publisher if there is

deviations in his/hers published books.
Very low

Table 5: Functional requirements for deviations.

3.2 Non-functional requirements

ID Description Priority

NFR1
The application should work for the 4 most used

browsers.
High

NFR2

The system should have high maintainability, this

means that

• It is well documented, and clean code that

has comments where it is necessary.

• Easy to add new features in the system.

High

NFR3
The system interface should have responsive web

design so that it adapts to pc, tablets and mobiles.
High

NFR4
The application should follow the Norwegian uni-

versal design rules for websites [30].
High

Table 6: Non-functional requirements

10

4 Implementation and design

4.1 Chosen software development methodology

Normally in software development projects it is used agile and traditional processes

like Scrum, Kanban and Waterfall. These methods are adapted to several people,

and for this project where there is only one developer, the different methods contains

a lot of unnecessary activities and details.

During the development process it has been collected inspiration from different de-

velopment processes. Early in the process milestones for the project was created,

while every second week smaller, more concrete activities has been planned based

on current status of the project and upcoming milestone. The reason for general

milestones instead of concrete activity plans in the beginning, was lack of knowledge

about Firebase and Typescript, which made the time estimate of the project hard.

With the diagram of the general milestones and the current status of the project it

was created activities for the next two weeks in Trello, a web based tool for creating

boards. The board can be reminded of a Kanban board or a Scrum backlog, where

the activities are divided into which priority and status they have. Figure 3 shows an

example of the Trello board early in the development process. In addition to divide

the activities based on priority, it is also used colored labels stating the status of

the activity. Green label stated that the task was finished, yellow if it was started,

blue if it was a bug in the code that needed to be fixed and orange if the activity

was blocked.

11

Figure 3: An example of activities for a two week period in Trello

4.2 Choice of technology

4.2.1 Single Page Application

When developing a website or a web application, it exist two main design patterns;

single-page application (SPA) and multi-page application (MPA). The main differ-

ence is that single-page applications works inside a browser and does not require

reload during use [31]. In comparison will multi-page applications request a reload

of the application for each user interaction [32]. SPA is therefore much faster and

offers a better user experience, which simplified the choice of a single-page applica-

tion.

4.2.2 React with Typescript

Today JavaScript (JS) is one of the most used programming language for web de-

velopers. JavaScript can be used for complex web applications, and is the only

language that allows you to create both frontend, backend and mobile applications

[33]. Familiar framework such as React and Angular is build on JavaScript. The

key difference between React and Angular, is that Angular is a structural framework

mainly used for developing dynamic web apps, while React is mostly used when you

12

want to change data without reloading the page [34]. React is also, compared to

Angular, more focused on user interface and reusable components.

In 2012 came TypeScript (TS) as a new language for web development [35]. TypeScript

is a superset of JavaScript, meaning that it adds additional syntax to JavaScript

such as type-safety. The last years TypeScript has become one of the most popular

languages for writing web applications. This resulted in the choice to write the

application in React with Typescript.

React map library

One of the requirements stated that the user should be able to see a map contain-

ing current position and available books. React has several different solutions for

implementing a map. To narrow down the different possibilities, the most popular

libraries was researched. Because the different layout for the maps [36], the research

resulted in a comparison between two different implementations, Google Map React

and React Leaflet.

Both Google Map and Leaflet has a broad range of use-cases and is easy to im-

plement [37]. The main difference between Google Map React and React Leaflet is

that React Leaflet is not bounded to any particular mapping service, while Google

Map React uses Google Maps API [38]. This results in a more versatile with React

Leaflet. This, and due to the fact that Google Maps requires a billing account,

React Leaflet was chosen for this project.

4.2.3 Backend

To create a connection between the users and the application, it was necessary to

have an authentication of the users and a place to store the books. There are differ-

ent ways to save the necessary data for this application. The solutions that where

considered was Firebase, a part of the Google Cloud Platform [39], and MongoDB,

with a Node.js driver [40]. By comparison Firebase was the correct choice for this

application. A reason for this is that Firebase is easy to use, handles authentication

and is Cloud-hosted. While MongoDB gives higher performance and more possibil-

ities, it is higher requirements for publishing and implementation, which simplified

the choice of Firebase.

13

Firebase

Firebase is a Backend as a service (BaaS) platform developed by Google. BaaS

provide pre-written software for activity on the servers, such as user authentication,

database management, cloud storage and hosting [41]. This means that, instead

of creating a server side you can use Firebase for all server related tasks, such as

authentication and hosting [42].

Firebase Authentication

For the application it is important to know the identity of the user, for security

and for use on different devices. Firebase Authentication provides backend services,

SDKs and UI libraries to authenticate users in the application [43]. The Firebase

Authentication offers several different authentication methods. In the application

login with email is supported, other methods that could be implemented is for

example Google, Facebook and Twitter.

Cloud Firestore

To save book- and user-data the application use Cloud Firestore. Cloud Firestore

is a cloud-hosted NoSQL database from Firebase that stores files and documents

in a JSON format. As seen in Figure 4 the data is saved as fields in a document.

Documents are stored in a collection, a container used for organizing and building

queries for the data [44]. The documents support many data types, and therefore

makes it possible to point to other collections. This helps structure and logic of the

database, and in the application it makes it possible to split books based on users.

Figure 4: Structure in Cloud Firestore [44]

14

To secure the data in the application it is used Cloud Firestore Security Rules

together with Firebase Authentication (Figure 5). Firestore Security Rules provide

access control which protects the data in Cloud Firestore.

Figure 5: Diagram for interaction between client and BaaS for login and saving a
new book.

4.3 User interface

4.3.1 Color selection

To decide the color palette for Hyttebiblioteket, the tool Coloors from coloors.co [45]

has been used. This tool generates different color palettes based on a selected specific

color, general color or from scratch. To choose which color theme the application

should contain, it was decided to research how people interact with different colors

and what it is associated with. Green is associated with nature, environment, wealth

and finance [46], this suits the application because people at cabins is the main user

group. In addition is an idea behind the application to help the climate by reusing

15

books. The chosen color palette for Hyttebiblioteket can be seen in Figure 6.

Figure 6: Chosen color palette from Coloors [45] for Hyttebibloteket

4.3.2 Inspiration for user interface

The requirements specification (Section 3) contains some requirements of how the

application should look. The application should for example show a map with

marks where it is books. During the development of Hyttebiblioteket it has been

important to think about universal design. It has been focused on contrasts and

few disturbing elements, such that the application can be used regardless of eyesight.

The user interface for the application is inspired by existing solutions. One of

the solutions is Finn.no (Figure 7). This design is the inspiration for the map with

available books, with clickable marks for the available items. Tise (Figure 8) has

been another inspiration with their login screen and homepage.

Figure 7: Finn.no [4]. Inspiration for Hyttebiblioteket with clickable items on a
map.

16

Figure 8: Tise [47]. Inspiration for the login and ”how does the application work”.

17

5 Results

At the delivery time the application Hyttebiblioteket contains the possibility to

add, collect and publish books. The following will explain and show parts of the

application in relation to the requirements from Section 3.

5.1 Register and login

When entering the application the user will see the front page (Figure 9). Here the

user is able to register (FR1) or login with username and password (FR1.1). This

is created with Firebase Authentication through Firebase Cloud. It is implemented

a method to handle ”forgotten password” (FR1.2). If a user has forgotten their

password, they will receive a link on email to reset their password. This is solved

using a method from Firebase Authentication. This method will based on the email

from the user check if there exists a user with that email, and if so send an email

with a link for resetting the password outside the application.

�3 (Fulfilled) A user should be able to register as a user of the system.

�3 (Fulfilled) The system should have authentication with username and pass-

word.

�3 (Fulfilled) The system should be able to send a new password on mail when

”forgotten password”.

� (Not fulfilled) The system should have authentication with Google.

� (Not fulfilled) The user should have its own profile, and be able to see and

change it.

18

Figure 9: Front page of the application with possibility to register, login and ”for-
gotten password”.

5.2 View available books

When a user is logged in to the application it is possible to see all the available

books in the area (FR2) (Figure 10). The books is collected from the database

based on the user’s position (FR2.1), and a chosen distance (FR2.3). This is solved

creating queries that compares the Geohashes, a system for encoding the position

into a single Base32 string, for the locations.

In the application it is also possible to see a map containing the available books

(Figure 11). By using React Leaflet and its API it is created a map with markers

for available books (FR2.2) in addition to the user’s position (FR2.4).

�3 (Fulfilled) The system should show books that is published in an area.

�3 (Fulfilled) The system should show where a book is in comparison to the user

19

position.

�3 (Fulfilled) The system should show a map with marks where there is books.

�3 (Fulfilled) The user should be able to filter books based on distance from

current location.

�3 (Fulfilled) The system should have a map where the user can see their position

in addition to books.

Figure 10: The application shows available books in the area based on distance and
the user’s position.

20

Figure 11: The application shows a map with available books in the area based on
distance and the user’s position.

5.3 Register books

In the application it is possible to register books (Figure 12). When registering

a book the user should fill out information about the book and the location. By

default the location of the book is the user’s position (FR3), but it is also possible

to change the location by clicking the map (FR3.3).

For a logged in user the application will show a list of published books (FR3.1)

(Figure 13). By clicking a book it is possible to edit or delete it (FR3.3).

�3 (Fulfilled) The user should be able to add a book based on current location.

�3 (Fulfilled) The user should have an overview of all books that he/she has

published.

�3 (Fulfilled) The user should be able to edit all the books he/she has published.

�3 (Fulfilled) The user should be able to publish a book with another location

then current.

21

Figure 12: In the application the user can register a book. Where he/she can fill
out information about the book, in addition to the location of the book.

Figure 13: The application shows a list of the books the logged in user has published.
Clicking a book will allow the user to edit the book.

22

5.4 Collect books

When a user finds a book, he/she can see more information about the book in

addition to its location. When collecting the book, the user can then in the the

application register that he/she has collected a book (FR4) (Figure 14). When

doing so the application will delete the book and the collector will be the new owner

of the book, and can decide whether he/she wants to publish it later.

�3 (Fulfilled) A user should be able to register that he/she has collected a book.

� (Not fulfilled) A user should be able to see all books they have borrowed.

� (Not fulfilled) A user should be able to see who borrowed their book.

� (Not fulfilled) A user should be able to reserve a book.

Figure 14: In the application the user can get information about the book in addition
to the possibility to register that he/she has collected it.

5.5 Deviations

� (Not fulfilled) The user should be able to notice deviations, for example

books that are not at published location.

23

� (Not fulfilled) The system should alert a publisher if there is deviations in

his/hers published books.

5.6 Non-functional requirements

All the non-functional requirements has been achieved. All functionality of the ap-

plication has been tested in the four most used browsers; Google Chrome, Firefox,

Safari and Samsung Internet [48] (NFR1). In addition is the application tested for

responsive web design by testing the functionality and user experience on different

devices containing different screen width (NFR3).

The non-functional requirement NFR4 says ”The application should follow the Nor-

wegian universal design rules for websites”. A way this has been tested is through

the Google Chrome extension Lighthouse. Lighthouse generates a rapport containing

accessibility for the website, with an average of 96% for all pages, the test indicates

good accessibility. In addition, simple tests like functionality using 200% zoom and

screen reader has been performed.

24

6 Discussion

6.1 Evaluation of the process

As mention in Section 4.1 an inspiration of different development methodologies is

used in this project. In the beginning of the process it was created general mile-

stones. Because of lack of knowledge regarding Firebase and Typescript this suited

the project well, and most of the milestones where reached within their deadline.

During the process an unexpected problem, the flu, appeared. When realizing that

this resulted in a delay of the process it was simple to change the milestones and

create new ones.

By using elements from agile methodology simplified the organization and prior-

itizing of the tasks and simplified the adaptation of changes in the requirements. By

choosing a more traditional methodology this would have resulted in a significant

change of the process and perhaps the result.

6.2 Evaluation of the technical implementation

The application code has been structured such that the application is easy to ex-

pand with new features. This has been a requirement from the beginning as the

application is planned to expand as a part of a master thesis.

It has been developed a single page application with React Typescript. With use of

React Typescript it has been possible to create reusable components, which is easy

to read and understand. For the future and further development the code is there-

fore easy to expand or debug. Typescript works as a static type checker which has

simplified the debugging for type errors, but has also complicated the programming

due to the type declarations of third-party libraries.

By using services for authentication and data storage provided by Firebase as a

form of Backend as a service there was no need to implement a specified service.

With the current functionality and specified requirements for the application, the

necessary services is provided by Firebase. But if it in the future is required a lar-

ger expansion of the application the chosen architecture with Firebase can present

problems when the complexity of the queries increases.

25

6.3 Evaluation of the product

Section 5 described the results related the application compared to the requirements.

This shows that most of the functional and non-functional requirement were suc-

cessfully implemented. By creating a list with prioritized tasks made sure that the

application contains the most important requirements, such that even though all

functionality is not implemented, the first version is a working product located at

https://folk.ntnu.no/camilve.

When a book holder publish a book, it will in this version be the same as giv-

ing the book away for free. This has been one of the insecurities of the project, if

being able to lend out the book has been prioritized to low. From people interaction

it has been discovered that people has a lower threshold for giving away used books

more willingly than I first assumed. In addition has the implemented functionality

been more important to create a functionally application, showing that the priorit-

izing has been correct.

The application that has been developed is inspired of the existing solutions but

differs in how the users can find and collect books that is published, and how book

owners can give away unwanted books. The existing solutions, like Finn, Bookshar-

ing.app and BookCrossing, requires users to contact the book holder to plan a hand

over or shipping. The idea of Hyttebiblioteket is that it simplifies the process of

collecting and publishing books. A user does not have to contact the book holder

to arrange a meeting, and a book holder does not have to deal with the book after

publishing it. This can be useful as the application is meant for an area of cabins.

In addition differs Hyttebiblioteket from Little Free Library and BookCrossing in

the sense that a user can leave books anywhere and the application will help other

users to find the location of published books and which book it is.

26

https://folk.ntnu.no/camilve

7 Conclusion and further work

7.1 Conclusion

The goal of this specialization project was to invent and describe my concept for

book sharing, and to explore whether Hyttebiblioteket can simplify the process of

sharing books within cabin areas.

Based on existing solutions, peoples opinions and personal experience it has been

created a new application for book sharing, primarily within cabin areas. In the

application a user is able to see all available books in the area in addition to publish

books that they no longer need or use. The application differs from the existing

solutions by the possibility to leave books anywhere and that a user can collect

a book without meeting the owner. This functionality will most likely lower the

threshold for publishing unwanted books and simplify the process of finding new

available books to read at the cabin. As the functionality has not been tested with

relevant users, and it can therefore not be concluded that this application fulfills all

the needs.

7.2 Further work

7.2.1 Usability testing

To obtain information about how people interact and experience the application,

it should be performed usability testing. Usability testing could reveal information

about confusion and uncover potential for improvement, and would be a useful

tool for insight into how the user experience could improve in addition to feedback

regarding the concept of sharing books.

7.2.2 Implementing missing and desired functionality

Because of time limit there is functionality that is not implemented in the applic-

ation. The next functionality that should be implemented is that a book holder

should be able to decide whether he/she wants to give or lend out the book. If a

book holder only wants to lend out the book, he/she can track and recover their

book. By this it will also be possible for the book lenders to have a list of borrowed

books and the ability to republish these books.

27

Further should also the functionality regarding reservation of books be implemen-

ted. By doing so, the book lenders can reserve a book for a given time to ensure

the user that they have time to collect the book, without anyone else collecting it.

In addition should new functionality and requirements be implemented according to

the results from the usability tests.

7.2.3 Develop mobile application

Later it is also desired to create a mobile application. Even though the web ap-

plication works for mobiles and tablets today, will a mobile application enhance the

user experience. The reason for this is that mobile applications is created for small

screens compared to websites. The idea is also that a user has easier access to a

mobile application in addition to the application giving notifications.

28

Bibliography

[1] FN-sambandet. Klimaendringer. Retrieved 28 November 2021. 2019. url:

https://www.fn.no/tema/klima-og-miljoe/klimaendringer.

[2] Emma Schiro and Elisabeth Haraldsrud. En av fire leser bøker daglig. Re-

trieved 28 November 2021. 2019. url: https://www.ssb.no/kultur-og-fritid/

artikler-og-publikasjoner/en-av-fire-leser-boker-daglig.

[3] NORLI AS. Retrieved 28 November 2021. url: https://vainu.io/company/

norli-as-omsetning-og-finansiell/2275356/bedriftsinformasjon.

[4] Finn. Retrieved 14 November 2021. url: https://www.finn.no/.

[5] BookCrossing. Retrieved 14 November 2021. url: https://www.bookcrossing.

com/.

[6] Webby Awards. Community Websites and Mobile Sites. Retrieved 23 Novem-

ber 2021. url: https://winners.webbyawards.com/winners/websites-and-mobile-

sites/general-websites-and-mobile-sites/community?years=16.

[7] Booksharing.app. Retrieved 21 November 2021. url: https://www.bookcrossing.

com/.

[8] Little Free Library. Retrieved 23 November 2021. url: https://littlefreelibrary.

org/.

[9] Gianpaul Rachiele. Software Development Methodologies. Retrieved 29 Septem-

ber 2021. 2018. url: https://medium.com/@gianpaul.r/software-development-

methodologies-a856883a7630.

[10] L. Trussell. ‘Essential software development methodology’. In: IEEE Power

Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233). Vol. 1. 1999,

357–361 vol.1. doi: 10.1109/PESW.1999.747479.

[11] Cristina Venera GEAMBASU et al. ‘INFLUENCE FACTORS FOR THE

CHOICE OF A SOFTWARE DEVELOPMENT METHODOLOGY’. eng. In:

Accounting and management information systems 10.4 (2011), p. 479. issn:

1843-8105.

[12] Sarang Shaikh and Sindhu Abro. ‘COMPARISON OF TRADITIONAL AND

AGILE SOFTWARE DEVELOPMENT METHODOLOGY: A SHORT SUR-

VEY’. eng. In: International Journal of Software Engineering and Computer

Systems (Pahang) 5.2 (2019), pp. 1–14. issn: 2289-8522.

[13] Software Engineering — Classical Waterfall Model. Retrieved 11 October 2021.

2019. url: https : / / www . geeksforgeeks . org / software - engineering - classical -

waterfall-model/.

29

https://www.fn.no/tema/klima-og-miljoe/klimaendringer
https://www.ssb.no/kultur-og-fritid/artikler-og-publikasjoner/en-av-fire-leser-boker-daglig
https://www.ssb.no/kultur-og-fritid/artikler-og-publikasjoner/en-av-fire-leser-boker-daglig
https://vainu.io/company/norli-as-omsetning-og-finansiell/2275356/bedriftsinformasjon
https://vainu.io/company/norli-as-omsetning-og-finansiell/2275356/bedriftsinformasjon
https://www.finn.no/
https://www.bookcrossing.com/
https://www.bookcrossing.com/
https://winners.webbyawards.com/winners/websites-and-mobile-sites/general-websites-and-mobile-sites/community?years=16
https://winners.webbyawards.com/winners/websites-and-mobile-sites/general-websites-and-mobile-sites/community?years=16
https://www.bookcrossing.com/
https://www.bookcrossing.com/
https://littlefreelibrary.org/
https://littlefreelibrary.org/
https://medium.com/@gianpaul.r/software-development-methodologies-a856883a7630
https://medium.com/@gianpaul.r/software-development-methodologies-a856883a7630
https://doi.org/10.1109/PESW.1999.747479
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-classical-waterfall-model/

[14] Aiden Gallagher, Jack Dunleavy and Peter Reeves. The Waterfall Model:

Advantages, disadvantages, and when you should use it. Retrieved 11 Octo-

ber 2021. 2019. url: https : / / developer . ibm . com / articles / waterfall - model -

advantages-disadvantages/.

[15] Douglas Hughey. The Traditional Waterfall Approach. Retrieved 13 October

2021. url: https://www.umsl.edu/∼hugheyd/is6840/waterfall.html.

[16] Agile vs. Traditional Project Management Methodologies: Differences You Need

to Know. Retrieved 11 October 2021. 2019. url: https : / / medium . com /

@Workep/agile- vs- traditional- project- management- methodologies- differences-

you-need-to-know-e1c2bead24d1.

[17] Atlassian. What is Agile? Retrieved 13 October 2021. url: https : / / www .

atlassian.com/agile.

[18] Peter Varhol. To agility and beyond: The history—and legacy—of agile devel-

opment. Retrieved 13 October 2021. url: https://techbeacon.com/app-dev-

testing/agility-beyond-history-legacy-agile-development.

[19] Craig Larman. Agile and iterative development : a manager’s guide. eng. The

Agile software development series. Boston, Mass: Addison-Wesley, 2004. isbn:

0131111558.

[20] Stefan Rancic. What is Agile Development Methodology? Retrieved 13 Octo-

ber 2021. 2021. url: https : / / www . price2spy. com / blog / agile - development -

methodology/.

[21] Sandeep Kashyap. Traditional vs Agile Project Management Method: Which

One is Right for Your Project? Retrieved 03 November 2021. url: https :

//www.proofhub.com/articles/traditional-vs-agile-project-management.

[22] Elvis C. Foster and Shripad V. Godbole. ‘Introduction to Database Systems’.

In: Database Systems: A Pragmatic Approach. Berkeley, CA: Apress, 2014,

pp. 3–11. isbn: 978-1-4842-0877-9. doi: 10.1007/978-1-4842-0877-9 1. url:

https://doi.org/10.1007/978-1-4842-0877-9 1.

[23] Amazon. What is a Relational Database? Retrieved 25 October 2021. url:

https://aws.amazon.com/relational-database/.

[24] E Codd. ‘A relational model of data for large shared data banks’. eng. In:

Communications of the ACM 13.6 (1970), pp. 377–387. issn: 0001-0782.

[25] Kjell Toft Hansen and Tore Mallaug. Databaser. Gyldendal Norsk Forlag AS,

2008. isbn: 9788205381056.

30

https://developer.ibm.com/articles/waterfall-model-advantages-disadvantages/
https://developer.ibm.com/articles/waterfall-model-advantages-disadvantages/
https://www.umsl.edu/~hugheyd/is6840/waterfall.html
https://medium.com/@Workep/agile-vs-traditional-project-management-methodologies-differences-you-need-to-know-e1c2bead24d1
https://medium.com/@Workep/agile-vs-traditional-project-management-methodologies-differences-you-need-to-know-e1c2bead24d1
https://medium.com/@Workep/agile-vs-traditional-project-management-methodologies-differences-you-need-to-know-e1c2bead24d1
https://www.atlassian.com/agile
https://www.atlassian.com/agile
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://techbeacon.com/app-dev-testing/agility-beyond-history-legacy-agile-development
https://www.price2spy.com/blog/agile-development-methodology/
https://www.price2spy.com/blog/agile-development-methodology/
https://www.proofhub.com/articles/traditional-vs-agile-project-management
https://www.proofhub.com/articles/traditional-vs-agile-project-management
https://doi.org/10.1007/978-1-4842-0877-9_1
https://doi.org/10.1007/978-1-4842-0877-9_1
https://aws.amazon.com/relational-database/

[26] Microsoft. Non-relational data and NoSQL. Retrieved 03 November 2021.

2021. url: https : / / docs . microsoft . com / en - us / azure / architecture / data -

guide/big-data/non-relational-data.

[27] Anette Wr̊alsen. ‘Introduksjon til interaksjonsdesign’. Artikkel gitt i TDAT2003

Systemutvikling 2 med web-applikasjoner, NTNU. 2016.

[28] Helen Sharp. Interaction design : beyond human-computer interaction. eng.

Indianapolis, Indiana, 2019.

[29] Lov om likestilling og forbud mot diskriminering (LOV-2017-06-16-51). 2017.

url: https://lovdata.no/dokument/NL/lov/2017-06-16-51.

[30] uutilsynet. Nettsteder. Retrieved 03 November 2021. url: https : / / www .

uutilsynet.no/wcag-standarden/nettsteder/711.

[31] Single-page application vs. multiple-page application. Retrieved 28 November

2021. 2016. url: https://medium.com/@NeotericEU/single-page-application-vs-

multiple-page-application-2591588efe58.

[32] Ian Melnik. SINGLE PAGE APPLICATION (SPA) VS MULTI PAGE AP-

PLICATION (MPA): PROS AND CONS. Retrieved 28 November 2021. 20121.

url: https : / / merehead . com / blog / single - page - application - vs - multi - page -

application/.

[33] Javinpaul. Top 5 Programming languages for Web development in 2021. Re-

trieved 02 November 2021. 2021. url: https://medium.com/javarevisited/top-

5-programming-languages-for-web-development-in-2021-f6fd4f564eb6.

[34] Tomas Holas. Angular vs. React: Which Is Better for Web Development? Re-

trieved 03 November 2021. url: https://www.toptal.com/front-end/angular-

vs-react-for-web-development.

[35] CLEVERISM. TypeScript. Retrieved 03 November 2021. url: https://www.

cleverism.com/skills-and-tools/typescript/.

[36] Yasas Sri Wickramasinghe. Top 5 Map Libraries for React in 2021. Retrieved

23 November 2021. 2021. url: https://blog.bitsrc.io/top-5-map-libraries-for-

react-in-2021-20a37ff5234.

[37] Kevin Garcia. Choose one of these as the React map library for your next

project. Retrieved 23 November 2021. 2021. url: https://retool .com/blog/

react-map-library/.

[38] Victor Gerard Temprano. Google Maps API or Leaflet: What’s Best for your

Project? Retrieved 23 November 2021. 2016. url: https://www.codementor.

io/@victorgerardtemprano/google- maps- api- or- leaflet-- what- s- best- for- your-

project-faaev60vm.

31

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://lovdata.no/dokument/NL/lov/2017-06-16-51
https://www.uutilsynet.no/wcag-standarden/nettsteder/711
https://www.uutilsynet.no/wcag-standarden/nettsteder/711
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://merehead.com/blog/single-page-application-vs-multi-page-application/
https://merehead.com/blog/single-page-application-vs-multi-page-application/
https://medium.com/javarevisited/top-5-programming-languages-for-web-development-in-2021-f6fd4f564eb6
https://medium.com/javarevisited/top-5-programming-languages-for-web-development-in-2021-f6fd4f564eb6
https://www.toptal.com/front-end/angular-vs-react-for-web-development
https://www.toptal.com/front-end/angular-vs-react-for-web-development
https://www.cleverism.com/skills-and-tools/typescript/
https://www.cleverism.com/skills-and-tools/typescript/
https://blog.bitsrc.io/top-5-map-libraries-for-react-in-2021-20a37ff5234
https://blog.bitsrc.io/top-5-map-libraries-for-react-in-2021-20a37ff5234
https://retool.com/blog/react-map-library/
https://retool.com/blog/react-map-library/
https://www.codementor.io/@victorgerardtemprano/google-maps-api-or-leaflet--what-s-best-for-your-project-faaev60vm
https://www.codementor.io/@victorgerardtemprano/google-maps-api-or-leaflet--what-s-best-for-your-project-faaev60vm
https://www.codementor.io/@victorgerardtemprano/google-maps-api-or-leaflet--what-s-best-for-your-project-faaev60vm

[39] Firebase. url: https://firebase.google.com/ (visited on 31/10/2021).

[40] MERN Stack Explained. url: https://www.mongodb.com/mern-stack (visited

on 31/10/2021).

[41] Cloudflare. What is BaaS? — Backend-as-a-Service vs. serverless. Retrieved

31 October 2021. url: https : / / www . cloudflare . com / learning / serverless /

glossary/backend-as-a-service-baas/.

[42] Cris Esplin. What is Firebase? Retrieved 31 October 2021. url: https : / /

howtofirebase.com/what-is-firebase-fcb8614ba442.

[43] Firebase. Firebase Authentication. Retrieved 31 October 2021. url: https :

//firebase.google.com/docs/auth.

[44] Firebase. Cloud Firestore. Retrieved 31 October 2021. url: https://firebase.

google.com/docs/firestore.

[45] Fabrizio Bianchi. Coloors. Retrieved 12 November 2021. url: https://coolors.

co.

[46] Sarah Marshall. Color meaning and symbolism: How to use the power of color.

Retrieved 14 November 2021. url: https : / / www . canva . com / learn / color -

meanings-symbolism/.

[47] Tise. Retrieved 14 November 2021. url: https://tise.com/.

[48] MOST POPULAR WEB BROWSERS IN 2021. Retrieved 26 November 2021.

2021. url: https://www.oberlo.com/statistics/browser-market-share.

32

https://firebase.google.com/
https://www.mongodb.com/mern-stack
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/
https://howtofirebase.com/what-is-firebase-fcb8614ba442
https://howtofirebase.com/what-is-firebase-fcb8614ba442
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://coolors.co
https://coolors.co
https://www.canva.com/learn/color-meanings-symbolism/
https://www.canva.com/learn/color-meanings-symbolism/
https://tise.com/
https://www.oberlo.com/statistics/browser-market-share

	Introduction
	Motivation and problem description

	Theory
	Exisiting solutions
	Finn
	BookCrossing
	Booksharing.app
	Little Free Library

	Software development methodology
	Database
	Interaction design

	Requirement specification
	Functional requirement specification
	Register and login
	View available books
	Register books
	Collect books
	Deviations

	Non-functional requirements

	Implementation and design
	Chosen software development methodology
	Choice of technology
	Single Page Application
	React with Typescript
	Backend

	User interface
	Color selection
	Inspiration for user interface

	Results
	Register and login
	View available books
	Register books
	Collect books
	Deviations
	Non-functional requirements

	Discussion
	Evaluation of the process
	Evaluation of the technical implementation
	Evaluation of the product

	Conclusion and further work
	Conclusion
	Further work
	Usability testing
	Implementing missing and desired functionality
	Develop mobile application

	Bibliography

