
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Håvard Melheim

Generating rationally solvable
instances of NP-hard logic puzzles

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
June 2022

M
as

te
r’s

 th
es

is

Håvard Melheim

Generating rationally solvable
instances of NP-hard logic puzzles

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Task

Title: Generating rationally solvable instances of NP-hard logic puzzles

Student: Håvard Melheim

Supervisor: Sverre Hendseth

Description
On a simple level, Sudoku, as well as other similar logic puzzles provide an en-
tertaining pastime. More interesting is the fact that though these puzzles in their
general forms are NP-Complete, instances can be made to be solvable without
the need for guesswork. In this project, the candidate will investigate such logic
puzzles, and techniques for their creation. A puzzle generator will also be imple-
mented, as well as an app for puzzle solving.

• Choose a logic puzzle to focus on, and explain its rules.
• Investigate and explain computational complexity theory based on the se-

lected puzzle.
• Implement a puzzle generator, capable of generating instances of the selec-

ted puzzle that are solvable to a human.
• Implement an app to solve the generated puzzles.
• Discuss the choices made when implementing the app, such as frameworks

and languages used.

iii

Abstract

Nurikabe, a pen-and-paper logic puzzle named for a spirit from japanese folklore,
is an entertaining pastime that benefits the brain. Like many other similar puzzles
it is also NP-Hard in its general form. In this project, the computational complex-
ity of Nurikabe has been investigated, both in its general form, and in its more
specific, solvable form, which is how it is commonly presented in newspapers and
the like. Furthermore, the possibility of developing a generator algorithm cap-
able of generating solvable instances of Nurikabe has also been investigated and
discussed.

To perform these investigations, a set of techniques that can be used to solve
Nurikabe boards has been established. Based on these, a prototype Nurikabe gen-
erator has been developed, using the Haskell programming language. A web app
that simplifies the use of this generator has also been developed, as well as an app
that allows users to solve Nurikabe puzzles. These were both developed using the
C# programming language.

The developed generator has been proven to be able to generate puzzles of
non-trivial difficulty, that are furthermore guaranteed to be uniquely solvable to
humans, using the established techniques.

Likewise, the developed app has been proven to allow solution of Nurikabe
puzzles of any size, in an intuitive and user-friendly way.

To conclude, implementing a generator capable of generating Nurikabe puzzles
solvable to a human solver is most definitely possible. The usability of such a gen-
erator is however much dependent on the size of the boards being generated, as
the computational complexity of the Nurikabe problem makes keeping the gener-
ator performant a challenge.

v

Sammendrag

Nurikabe, en form for logisk hjerntrim oppkalt etter en ånd fra japansk folklore, er
et underholdende og enagsjerende tidsfordriv. I likhet med mange lignende spill er
det dessuten NP-hardt i sin generelle form. I denne oppgaven har kompleksiteten
til Nurikabe blitt undersøkt, både i dets generelle form og i dets mer spesifikke,
løsbare form som ofte er brukt i aviser og lignende. Videre har mulgheten for å
utvikle en generasjonsalgoritme, i stand til å generere løsbare Nurikabe-brett, blitt
undersøkt og diskutert.

For å utføre disse undersøkelsene ble et sett med teknikker, som kan brukes til
å løse Nurikabe-brett, bestemt. Basert på disse har en prototype Nurikabe gener-
ator blitt utviklet, ved hjelp av programmeringsspråket Haskell. En web-app som
forenkler bruken av denne generatoren har også blitt utviklet, i tillegg til en app
som lar brukere løse Nurikabe-brett. Begge disse er utviklet ved hjelp av program-
meringsspråket C#.

Den utviklede generatoren har vist seg i stand til å generere brett av ikke-
triviell vanskelghetsgrad, som dessuten er garantert å være unikt løsbare for men-
nesker, ved hjelp av de etablerte teknikkene.

Den utviklede appen har videre vist seg i stand til å la brukere løse Nurikabe-
brett av enhver størrelse på en intuitiv og brukervennlig måte.

For å konkludere har altså arbeidet med dette prosjektet vist at generasjon av
Nurikabe-brett som er løsbare for mennesker uten tvil er mulig. Brukbarheten til
en slik generator avhenger likevel i stor grad av størrelsen til brettet som gener-
eres, ettersom kompleksiteten til Nurikabe-problemet gjør det vanskelig å holde
generatoren effektiv.

vii

Contents

Task . iii
Abstract . v
Sammendrag . vii
Contents . ix
Acronyms . xi
1 Introduction . 1

1.1 About the task . 2
1.2 The structure of this report . 3

2 Background and Theory . 5
2.1 Computational complexity . 5

2.1.1 Problems . 5
2.1.2 The P class of problems . 8
2.1.3 The NP class of problems . 9
2.1.4 The NP-C Class of Problems . 9
2.1.5 The NP-H Class of Problems . 10
2.1.6 NP-completeness proof . 10

2.2 Nurikabe . 11
2.2.1 Rules and definitions . 11
2.2.2 Computational complexity of Nurikabe 13

2.3 Technologies . 16
2.3.1 The .NET platform . 17
2.3.2 The Xamarin framework . 18
2.3.3 The Haskell programming language 24

3 Development . 29
3.1 Nurikabe solution techniques . 29

3.1.1 Beginner techniques . 30
3.1.2 Advanced techniques . 35

3.2 The puzzle generation algorithm . 42
3.2.1 Completed board generation . 42
3.2.2 Placing numbers . 44

3.3 The puzzle generator implementation 46
3.3.1 Data structures . 46
3.3.2 The completed-board generator 47
3.3.3 Implemented techniques . 48

ix

x Håvard Melheim: Placeholder

3.3.4 The Nurikabe solver . 50
3.3.5 The full generator . 53

3.4 The puzzle generator web app . 54
3.4.1 Haskell DLLs . 55
3.4.2 Hosting . 56

3.5 The “MasterGame” app . 56
3.5.1 Models . 57
3.5.2 Views . 57
3.5.3 Viewmodels . 58
3.5.4 Nurikabe implementation . 59

4 Results . 61
4.1 The puzzle generator . 61

4.1.1 Difficulty of generated boards 61
4.1.2 The performance of the generator 64

4.2 The generator web API . 65
4.2.1 Hosting . 68

4.3 The “MasterGame” app . 68
4.3.1 User interface . 68
4.3.2 Board generation . 74

5 Discussion . 75
5.1 The puzzle generator . 75
5.2 The generator web API . 76
5.3 The “MasterGame” app . 76

6 Conclusion . 79
Bibliography . 81
A Summary of the proof of the Nurikabe problem being NP-complete . 83

A.1 Proof of NP membership . 83
A.2 Proof of NP-hardness . 83

A.2.1 Nurikabe wire design . 84
A.2.2 Nurikabe signal-splitter design 84
A.2.3 Nurikabe NOT-gate design . 86
A.2.4 Nurikabe OR-gate design . 86
A.2.5 Composite logic gates . 86
A.2.6 Polynomial time reducibility . 88

B Attachments . 89
B.1 Structure of the attached source code 89

B.1.1 Generator . 90
B.1.2 MasterGame . 92

B.2 App and installation . 94

Acronyms

ADT Abstract Data Type. 46, 47

API Application Programming Interface. 2, 3, 17, 18, 54, 56–58, 65–67, 74, 76

ASCII American Standard Code for Information Interchange. 7

ASP Active Server Pages. 2, 16–18, 54, 55

AWS Amazon Web Services. 56

CLR Common Language Runtime. 17

DLL Dynamic Link Library. 55, 56, 76, 92

DTO Data Transfer Object. 20, 57, 90, 94

GHC Glasgow Haskell Compiler. 55

HTML HyperText Markup Language. 20

IO Input Output. 27

JSON JavaScript Object Notation. 66

LINQ Language Integrated Query. 18

MVVM Model-View-ViewModel. 19, 20, 56

NP Nondeterministic polynomial time. xi, 1, 6, 9, 10, 13–16, 42, 64, 65, 79, 83,
88

NP-C NP-complete. 1, 6, 9, 10, 83

NP-H NP-hard. 6, 10

OS Operating System. 17, 94

xi

xii Håvard Melheim: Placeholder

P Polynomial time. 6, 8, 9

UI User Interface. 18–20, 22, 66

URL Uniform Resource Locator. 67

XAML eXtensible Application Markup Language. 18, 19, 81

XML eXtensible Markup Language. 18

Chapter 1

Introduction

Sudoku is perhaps the most famous pen-and-paper logic puzzle in the world, and
its rules for filling out a board of (normally) 9×9 cells with the numbers 1-9 will
be familiar to many. However, this does not mean that Sudoku is the only pen-
and-paper logic puzzle that exists; far from it! Numerous puzzles exist that can be
solved using only a pen, a piece of paper, and the brain.

An example of another puzzle of this sort, is Nurikabe, named for a japanese
spirit that manifests itself as an invisible wall that impedes travellers in the night.
The puzzle Nurikabe, which also goes by the names Cell Structure and Islands in
the Stream, consists of filling out a rectangular board of cells, much like Sudoku.
In Nurikabe however, the cells are not marked by the numbers 1-9, but rather
by either black or white color, indicating whether the cell is water or an island
respectively. See figure 1.1 for an example solution of a simple Nurikabe board.
The rules of the game will be explained in more detail in chapter 2 of this report.

Interesting about Sudoku, Nurikabe, and many other puzzles of the same sort,
is that their solutions are in general NP-complete (NP-C)[1]. In spite of this, it is
perfectly possible to generate instances of these puzzles that are solvable to a
human, using nothing but rational inference. It is these instances that have been
investigated through this project.

Figure 1.1: An example of a simple Nurikabe board being solved, from left to
right, according to the rules and techniques that will be explained below in
chapters 2 and 3.

1

2 Håvard Melheim: Placeholder

1.1 About the task

The main purpose of this project was for the candidate to develop and hone their
skills as a software developer. Being exposed to new programming languages and
frameworks, and getting a deep dive into already familiar ones through a larger-
scale project, enabled this. It also served to expand the candidate’s perspectives
about their own role in future projects, as well as their strengths and weaknesses
as a developer. As a framework to facilitate this growth, the development of a
Nurikabe puzzle, generator capable of procedurally generating puzzles solvable
by humans, was chosen. The reasons for this were many; for one, the candidate
had an interest in such logic puzzles, and was therefore motivated by the oppor-
tunity to work with them. Additionally, the implementation of such a generator,
and associated game app, enabled the candidate to utilize multiple skills and dis-
ciplines, ranging from algorithm development, to the development of apps and
even web APIs.

As this project would result in an app to solve Nurikabe puzzles, a framework
for developing such an app had to be chosen and used. Though many mobile
app frameworks exist, it was in this project decided to use Microsoft’s Xamarin
framework to develop the app. This was chosen for several reasons; for one, it
is an open-source, completely free framework, meaning there would be no finan-
cial obstacles or issues with copyright to deal with. A second reason was that the
framework is inherently cross-platform, meaning it could be used to develop apps
for both Android and iOS. Taking only these two properties into account, several
frameworks were still equally well suited to this project however. In addition to
Xamarin, Facebook’s React Native, building on Javascript, and Google’s Flutter,
using the Dart programming language, as well as many others fulfill these cri-
teria. The reason why Xamarin was chosen from among these, was that it would
allow for the use of the C# programming language, something the candidate had
interest in.

It was also decided to implement the puzzle generator in Haskell, based on
suggestions from the supervisor, as well as promising initial results. Pattern re-
cognition, as well as powerful list comprehension and concise logic seemed well
suited to the needs of the generator. Also, the functional, recursive nature of the
language seemed well aligned with the step-by-step nature of the puzzle solver
the generator would be based on. Furthermore, Haskell, as well as functional pro-
gramming in general, was new to the candidate, and so provided an excellent
option to expand their competence and learn a new way of thinking.

This generator was furthermore decided to be contained in a web app, built
using the C# programming language, but this time using the ASP.NET Core frame-
work. This would allow the app to access the generator without having to neces-
sarily contain it. Doing this would enable the candidate to delve into the world of
web APIs, and also decouple the generator from the solver app in a natural way.

Chapter 1: Introduction 3

1.2 The structure of this report

This report is split into three main parts. The first of these, found in chapter 2,
covers the necessary theory and background information needed to understand
the Nurikabe logic puzzle and its complexities. This part also covers the informa-
tion and theory needed to develop the generator, such as background information
about technologies, frameworks and languages used.

The second part, found in chapter 3 details the actual development process;
from the development of the generator algorithm, to the development of a Nurikabe
app for puzzle solving, and a web API for interfacing between the two. Also in-
cluded in this chapter is a list of Nurikabe solution techniques, used by the gener-
ator to verify the solvability of generated puzzles. This section could arguably also
be placed in chapter 2 as a part of the background information about Nurikabe.
But as these techniques were formulated by the candidate for this project, and
based on their personal experience solving Nurikabe boards, this section was more
appropriately placed in chapter 3 as a part of the work performed to develop the
generator.

The last part is found in chapters 4 and 5. Chapter 4 shows the results of
the project, including both the app and web API, as well as the generator itself.
Chapter 5 discusses the more abstract results of the project, such as the candidate’s
development as a software developer.

Chapter 2

Background and Theory

In this chapter, theory and other background information relevant to this project
will be presented and discussed. This includes theory about computational com-
plexity and complexity classes, as well as more practically oriented background
information about the technologies used throughout the project. Additionally, the
Nurikabe logic puzzle will be more thoroughly examined, by looking at its defin-
itions, rules and common practices, as well as an in-depth analysis of its compu-
tational complexity.

2.1 Computational complexity

According to the Encyclopaedia Britannica, computational complexity is “a meas-
ure of the amount of computing resources (time and space) that a particular al-
gorithm consumes when it runs”[2]. In other words, it is a measure of how much
time and memory a given computer would need to solve a given problem. This
measure can be used to classify problems into several classes.

In this section, some of these classes will be explained. The classifications
presented in this chapter will also form the basis for the investigation into the
computational complexity of Nurikabe, as will be performed below, in section
2.2.2. See figure 2.1 for an illustration of how the complexity classes relevant to
this report relate to each other.

2.1.1 Problems

Before delving into the different classes of problems, a formal definition of what
exactly a problem is needs to be established. According to Cormen et al, an abstract
problem Q can be defined as a binary relation on a set I of problem instances and
a set S of problem solutions[3, p. 1054]. As an example, for a game of Sudoku, a
problem instance is a set of given numbers along with their positions in the grid.
A problem solution would then be a complete set of numbers and corresponding
positions such that all positions in the grid are assigned a number according to
the rules of Sudoku. In general, there could be multiple solutions for a single

5

6 Håvard Melheim: Placeholder

Figure 2.1: Venn diagram illustrating the relationships between the different
classes of problems. Note that all problems in P are necessarily also in NP. The
same also holds true for problems in NP-C which are the inersection of problems
in NP and NP-H.

Chapter 2: Background and Theory 7

problem instance, or none at all, however in the case of Sudoku, the rules ensure
that there is always exactly one solution to a given problem. The actual problem
itself in this example, is then the relation that associates each problem instance
with the corresponding solutions.

These abstract problems can be divided into so-called decision problems and
optimization problems, where decision problems are problems having a simple
yes/no solution. That means, decision problems are a special case of the abstract
problems above that maps the set of instances I to the solution set S = {0, 1}.
For example, in the case of Sudoku, a decision problem could be to determine
whether or not a given board has a valid solution. Optimization problems on the
other hand, are problems where some value has to be minimized or maximized,
i.e. the solution set S is equal to some minimum or maximum value, or the set
of parameters producing said minimum or maximum value. An important detail
about optimization problems is that they can often be recast as decision problems
that are no harder to compute[3, p.1054].

Another special case of the abstract problem defined above, is the so called
concrete problem. A concrete problem is defined by Cormen et al as a problem
whose instance set is the set of binary strings[3, p. 1055]. That is, the instance set
has somehow been encoded to the set of binary strings, {0,1}∗, where {0,1}∗ is the
set of all strings composed of symbols from the set {0, 1}. For example, an abstract
problem taking a single natural number as its input can be easily converted to a
concrete problem by encoding the natural numbers as binary strings. That is, the
instance set is encoded from {0, 1,2, 3,4, ...} to {0,1, 10,11, 100, ...}. Likewise, the
ASCII code encodes alphabetic characters to binary strings and back.

Formal-language theory

To better express the relationship between decision problems and the algorithms
that solve them, formal-language theory can be used. According to this theory,
an alphabet Σ is a finite set of symbols. A language L over Σ is then any set of
strings made up of symbols from Σ[3, p. 1057]. As an approachable example
of this, the Latin alphabet is, as suggested by the name, an alphabet, consist-
ing of the symbols Σ = { A, B, C, ..., X, Y, Z}. A language over this alphabet
is then English, with L being the set of all words in the English language. An-
other alphabet, of greater interest to this report is Σ = {0,1}, where any set of
values representable as binary strings can be a language, such as for instance
L = {0,1, 10,11, 100,101, 110,111, ...}, which is the language of binary repres-
entations of natural numbers.

Going back to decision problems, a concrete decision problem Q can now be
said to have instance set S ∈ {0, 1}∗. That is, any binary string is an instance of Q.
Of interest are only the strings for which Q evaluates to true however, meaning that
Q can be expressed as a language L overΣ= {0, 1}, with L = {x ∈ Σ∗ : Q(x) = 1}.

Using this notation allows the algorithms that solve decision problems to be
accurately represented. We say that an algorithm A accepts a string x ∈ {0, 1}∗

8 Håvard Melheim: Placeholder

if the algorithm, given x as input, outputs A(x) = 1, or in other words that the
decision problem instance x evaluates to yes or true. Furthermore, the language
accepted by A is the set of strings that the algorithm accepts, i.e. the language
L = {x ∈ {0, 1}∗ : A(x) = 1}. Conversely, A recjects a string x if A(x) = 0. Note
that if an algorithm A accepts a language L, this does not necessarily mean that A
rejects all strings x /∈ L; other outcomes are possible, such as for instance that A
loops infinitely when given x as input.

This gives rise to the definition of a decided language: a language L is said
to be decided by an algorithm A if every binary string in L is accepted by A and
every binary string not in L is rejected by A. Finally, a language L is accepted in
polynomial time by an algorithm A if L is accepted by A, and in addition all binary
strings x ∈ L are accepted in polynomial time. A similar definition exists for a
language L being decided in polynomial time, with the only difference being that
x needs to be decided, rather than only accepted, in polynomial time[3, p. 1058].
The concept of polynomial time will be explained in the next section.

Using this formal-language theory, it is also possible to formally define a com-
plexity class: a complexity class is a set of languages, membership in which is de-
termined by some complexity measure of algorithms that determine whether some
string x belongs to a language L in the given complexity class. An example of such
a complexity measure could for instance be running time.[3, p. 1059].

2.1.2 The P class of problems

The Polynomial time (P) class of decision problems consists of problems that are
solvable in polynomial time. In other words, the P class of problems encompasses
all problems that, for some input of size n and some constant k, can be solved in
time O(nk)[3, p. 1049]. Many sorting- and searching algorithms are in the P class.

More formally the complexity class P is the set of concrete decision problems
that are polynomial-time solvable[3, p. 1055]. A function f : {0, 1}∗ → {0,1}∗ is
said to be polynomial-time solvable if there exists a polynomial-time algorithm A
that, given input x ∈ {0,1}∗, produces output f (x)[3, p.1056].

A definition also exists using the formal-language theory detailed above, stat-
ing that:

P = {L ⊆ {0, 1}∗ : there exists an algorithm A that decides L in polynomial time}.

Problems in the P class are generally considered tractable, i.e. simple, or easily
solved. Even problems whose best known algorithm takes time O(n100) to solve
are considered tractable, despite the long running time. The reasoning behind
this is of a philosophical nature, rather than mathematical, and has to do with the
following points:

Firstly, in general, once the first polynomial-time algorithm for a problem has
been found, more efficient algorithms often follow, meaning that the algorithm
requiring O(n100) might not be the best known algorithm for very long. Secondly,
polynomials are closed under addition, multiplication and composition, giving

Chapter 2: Background and Theory 9

polynomial-time solvable problems some nice properties. For instance, if the out-
put of one polynomial-time algorithm is fed into the input of another, the result-
ing, composite algorithm is polynomial[3, p. 1054]. This is beneficial as it means
that any problem that can be reduced to a polynomial-time solvable problem in
polynomial time, is itself polynomial-time solvable.

2.1.3 The NP class of problems

The Nondeterministic polynomial time (NP) class of decision problems consists of
those problems that are “verifiable” in polynomial time[3, p. 1049]. This means
that a proposed solution to an NP class problem can be verified to be correct or
incorrect in time polynomial in the size of the input to the problem. That is, the
proposed solution can be verified in O(nk) for an input of size n and some constant
k. Note that this classification imposes no restrictions on the time needed to solve
the problem; only on the time needed to verify a solution once it has been found.

Using formal-language theory, a language L belongs to NP if and only if there
exists a two-input, polynomial-time algorithm A and a constant c such that

L = {x ∈ {0,1}∗ : there exists a certificate y with |y|= O(|x |c)
such that A(x , y) = 1}.

If this holds, A is said to verify the language L in polynomial time[3, p.1064].
Intuitively, this means that any problem in P is also in NP, as verifying a solu-

tion cannot be asymptotically harder than simply solving the problem. In other
words, P ⊆ N P. It has not as yet been proven that P ̸= N P, though the common
perception is that that P and NP are not the same class.

2.1.4 The NP-C Class of Problems

The NP-complete (NP-C) class of problems can informally be defined as the set of
problems in NP that are as “hard” as any problem in NP[3, p.1050]. This means
that if any problem in NP-C can be solved in polynomial time, then every problem
in NP-C can be solved in polynomial time. To explain this, the concept of reducib-
ilty, which formalizes the notion of one problem being as “hard” as another, first
needs to be introduced.

Reducibility

Intuitively, a problem Q is said to be reducible to Q′ if any instance of Q can “easily”
be converted to an instance of Q′, and that the solution to this converted instance
provides a solution to the original instance of Q.

A more formal definition can be expressed using formal-language theory: a
language L1 is polynomial-time reducible to a language L2 if there exists a polynomial-
time computable function f : {0, 1}∗ → {0,1}∗ such that for all x ∈ {0,1}∗,

10 Håvard Melheim: Placeholder

x ∈ L1 if and only if f (x) ∈ L2[3, p. 1067]. Here f is denoted the reduction func-
tion and a polynomial-time algorithm F that computes f is a reduction algorithm.
This relationship between two languages L1 and L2 is written as L1 ≤p L2.

NP-Completeness

Using the above definition of polynomial-time reducibility, along with formal-
language theory, the NP-C class of problems can be formally defined. A language
L ⊆ {0,1}∗ is NP-Complete if L ∈ N P and L′ ≤p L for every L′ ∈ N P[3, p. 1069].
In other words, a problem Q is NP-Complete if, and only if, it is in NP and all
problems in NP are polynomial-time reducible to Q.

As polynomials are closed under addition, multiplication and composition, as
explained above, this means that if an algorithm can be found that solves some
problem in NP-C in polynomial time, all problems in NP can be solved in polyno-
mial time and hence P = N P.

2.1.5 The NP-H Class of Problems

The definition of NP-hard (NP-H) problems is very similar to the definition of NP-C
problems, but somewhat less restrictive. Where an NP-complete language is any
language L ∈ N P, where L′ ≤p L for every L′ ∈ N P, an NP-hard language is
any language L where L′ ≤p L for every L′ ∈ N P[3, p.1069]. In other words, a
problem Q is NP-hard if any problem in NP can be reduced to Q in polynomial
time.

This means that N PC ⊂ N PH. Interestingly, this also means that as an NP-hard
problem does not itself have to be in NP, the NP-H class of problems does not have
to be restricted to decision problems. The most common definitions do consider
NP-H to only encompass decision problems however, and so this definition will be
used for the remainder of the report.

2.1.6 NP-completeness proof

The process for proving that a language L is NP-complete and/or NP-hard is rel-
atively straightforward. To prove that L is NP-hard, it is sufficient to demonstrate
that L′ ≤p L for some L′ ∈ N PH. Even though the definitions allow any problem
in NP-H to be used as L′ in this proof, problems in NP-C are typically selected. To
also prove that L is NP-complete, it must also be shown that L ∈ N P.[3, p. 1078]

The first of these proofs follows from the fact that polynomials are closed under
addition, as well as from transitivity. It is known that all languages L′′ ∈ N P are
polynomial-time reducible to any language L′ ∈ N PH. If it can be shown that L′

is polynomial-time reducible to L, it is implicitly shown that all languages L′′ are
polynomial-time reducible to L, hence L is NP-hard.

The second proof follows simply from the above definition of NP-complete
problems.

Chapter 2: Background and Theory 11

2.2 Nurikabe

As a basis for the app developed in this project, the logic puzzle known as Nurikabe
will be used. Nurikabe is commonly classified as a pencil puzzle or pencil-and-paper
puzzle, as it is typically presented on a piece of paper, and solved by drawing on
the paper with a pencil[4].

2.2.1 Rules and definitions

A Nurikabe board consists of a grid of cells. This grid is usually square or rectan-
gular, though it could also take other shapes, such as, for instance, the shape of
a + sign. Some of the cells in the Nurikabe grid contain a single natural number,
and the objective of the game is to fill out all the unnumbered cells as either black
or white, according to the following rules[4]:

1. White cells are denoted island cells, and black cells are denoted water cells.
2. All cells containing numbers are island cells, and the number in the cell

determines the size (in number of cells) of the island. Islands are groups of
orthogonally connected white (island) cells.

3. Islands always contain exactly one numbered cell
4. Different islands are always separated by water cells horizontally and ver-

tically, though not necessarily diagonally.
5. All water cells make up a single area of orthogonally connected cells, i.e.

there are no isolated bodies of water. (See figure 2.2 below).
6. Water cells cannot be connected in a way that forms a pool, i.e. a 2×2 area

of water cells. (See figure 2.3 below).

12 Håvard Melheim: Placeholder

(a) This solution is invalid due to a black
cell, marked by a red outline, being isol-
ated. That is, it is not orthogonally con-
nected to the rest of the black cells.

(b) This solution is valid as there are no
isolated black cells.

Figure 2.2: A simple Nurikabe board with two potential solutions. One is invalid
however, as it contains an isolated black cell.

(a) This solution is invalid as it contains
a 2× 2 “pool” of black cells, marked by
a red outline.

(b) This solution is valid as there is no
2× 2 area of all black cells.

Figure 2.3: A simple Nurikabe board with two potential solutions. One is invalid
however, as it contains a 2× 2 area of all black cells.

Chapter 2: Background and Theory 13

In addition to the above rules, some definitions are in order, to accurately
describe the game and its components and mechanics:

1. Known cells: Cells that by some inference are known to be island cells
are denoted known island cells. Likewise, cells that by some inference are
known to be water cells are denoted known water cells. Cells that are not
known island cells and not known water cells are denoted unknown cells.

2. Complete island: A complete island is an island consisting of a number of
known island cells equal to the size of the island, as given by a numbered
cell. Conversely, an island consisting of a number of known island cells less
than the size of the island, as given by a numbered cell, is denoted an in-
complete island. Islands that do not contain a numbered cell are always in-
complete islands. In a completed Nurikabe board, all islands are complete.

3. Isolated water region: An isolated water region, or isolated region, is a re-
gion of orthogonally connected water cells that is not orthogonally connec-
ted to every other water cell in the board. In a completed Nurikabe puzzle,
there are no isolated water regions.

4. Numbered island: A numbered island is an island, complete or incom-
plete, that contains a numbered cell. Conversely, an unnumbered island is
an incomplete island that does not contain a numbered cell. In a completed
Nurikabe puzzle, there are no unnumbered islands.

5. Hint: A hint is the number in a numbered island, along with the numbered
cell itself, describing the completed size of an island.

6. Island growth potential: The growth potential of an island is the complete
size of the island, given by the island’s hint, minus the current size of the is-
land, in number of currently marked, connected island cells. In other words,
the growth potential of an island is the number of island cells that have to
be connected to the island to make it complete. Unnumbered islands have
undefined growth potentials.

It is also common practice to mark known island cells with a single dot in the
center of the cell. Though not strictly necessary to complete the game, this is done
to differentiate between cells that are known to be island cells, and cells that are
as yet undetermined. This practice will be used throughout this report, and in the
developed app.

Furthermore, for a Nurikabe board to be considered a valid puzzle, it is com-
monly agreed that it should have only a single, unique solution, and that it should
be possible to find this solution using only rational inference, and no trial-and-
error, or bifurcation as it is sometimes called.

2.2.2 Computational complexity of Nurikabe

Generalized Nurikabe, i.e. Nurikabe where the board can be of any size, has been
proven to be NP-complete multiple times, for instance by Holzer et al[4], and by
McPhail[5]. As such, a complete proof of this will not be made here, though a
summary of the proofs by Mcphail and Holzer et al can be found in appendix A.

14 Håvard Melheim: Placeholder

As explained above, in section 2.1.4, a problem cannot be NP-complete without
also being in NP. This means all NP-complete problems, like all NP problems, have
to be decision problems. To fit this definition, the Nurikabe problem has in both
the two mentioned proofs been stated approximately as follows:

Problem 1: Given an n×m board of either unknown- or numbered cells B, does
there exist an n×m board B′ that solves B?

Here, solving a Nurikabe board is defined as follows:

Definition 1: A board B′ is said to solve a board B if B′ is a board of no unknown
cells that adheres to the rules of Nurikabe, as stated in section 2.2.1, and all known

cells in B are part of B′.

Clearly, Problem 1 being stated as a decision problem means that neither pa-
per explicitly proves anything about the complexity of solving a Nurikabe board.
Rather, they only determine that deciding whether or not a given board has a solu-
tion is NP-complete, and therefore also NP-hard.

A more interesting problem is therefore defined as follows:

Problem 2: Given an n×m board of either unknown- or numbered cells B, what, if
any, n×m board B′ solves B?

Note that this problem is not a decision problem, as it does not result in a
“yes” or “no” answer, but rather in a solved Nurikabe board (if a solution exists).
This problem can therefore not be NP-complete, as it is not in NP. It also cannot
be NP-hard, for the same reason. But even if the problem cannot formally belong
to any of the complexity classes discussed in this report, some interesting points
can still be made about its complexity, using these classes.

Intuitively, the problem of solving a Nurikabe board, as stated in Problem 2
above, can be said to be as “hard” as an NP-hard problem. This is because an
algorithm that solves Nurikabe boards can be no faster, at least in the asymptotic
sense, than an algorithm determining whether or not a solution exists for the same
board; if it was, why not just use the solving algorithm to determine the existence
of a solution? Thus, because problem 1 above is NP-complete, problem 2 must
be at least as hard, in terms of asymptotic time requirement. This intuitive proof
closely mirrors the intuitive proof of P ⊆ N P, as stated in section 2.1.3, as the the
solution algorithm could easily be repurposed as a verification algorithm.

More formally, if we let L1 be problem 1 above, and L2 be problem 2, then
the following holds: any instance of L1 can be transformed to an instance of L2
in polynomial time. In fact, as both problems take any unsolved Nurikabe board
as input, their instance sets are identical, and so no transformation is needed.
Furthermore, any solution of L2 can be transformed into a solution of L1 by the
simple transformation:

Chapter 2: Background and Theory 15

f : B→ {0,1} (2.1)

f (b) =

¨

1, if b is a solved board

0, otherwise
(2.2)

Here, B is the set of all possible solutions L2 can produce. That is, it is the, pre-
sumably infinite, set of all possible solved Nurikabe boards, as well as a special
case for unsolvable boards, for instance an empty board, or something similar.

The complexity of this transformation will depend on the representation of B,
and in particular on the representation of the special case of an unsolvable board.
Due to the NP-completeness of L1 however, which guarantees that a solution is
verifiable in polynomial time, we can say that the above transformation is, at
worst, polynomial itself. This is due to the fact that in the worst case, being that the
algorithm solving L2 outputs a seemingly solved board regardless of the solvability
of the input board, the transformation f will consist of deciding whether b is a
solution to the input board, which is proven to be polynomial.

As the transformation f is, in the absolute worst case, polynomial, we can say
that L1 ≤p L2, meaning that L2 fits definition of an NP-hard problem as far as
“difficulty”, or complexity, is concerned, even if it cannot formally be classified as
one. It can therefore be truthfully stated that solving a Nurikabe board is then at
least as complex as any NP-hard problem.

Complexity of solvable boards

Having answered the question of the complexity of generalized Nurikabe boards,
the question about the complexity of human-solvable boards naturally follows. For
the same technical reasons as with the problem in definition 2 above, solving a
human-solvable Nurikabe board cannot, strictly speaking, be neither NP-complete
nor NP-hard. It can however still be interesting to investigate the complexity of
solving such a board, as compared to the definitions of these complexity classes.

One might assume that the complexity of human-solvable Nurikabe boards is
in some way affected by the restrictions imposed on them, being that they should
always have a unique solution, and that that solution should be possible to find
using only rational inference. However, what actually breaks the complexity of
such a puzzle is the fact that it is no longer generalized, and can no longer be of
any size.

Consider for instance a human-solvable Nurikabe board of size 10×10. As this
board is of a fixed, known size, it could theoretically be solved by a program that
has every possible instance of a 10×10 Nurikabe board stored in its memory, and
mapped to its solution. The board could then be solved in constant time, O(1),
by simply looking up the board. This will hold true for any given size of Nurikabe
board. In other words, any given instance of Nurikabe, even without the added
restrictions on human-solvable boards, is solvable in constant time.

16 Håvard Melheim: Placeholder

That said, a human cannot be expected to memorize every possible instance of
Nurikabe boards of size 10×10, or any size for that matter. Furthermore, a human
is, in theory, capable of solving a Nurikabe board of any size, and can therefore be
considered a generalized Nurikabe solver, unlike the specialized solver imagined
above. Likewise, the techniques employed by human solvers, as will be explained
in chapter 3, do not rely on assumptions about solvability to work. That is, these
techniques will work regardless of whether a board has multiple, one, or no solu-
tions; at least until the point where a board can be deemed unsolvable or a split
between multiple solutions is identified. These assumptions are, in other words,
only present to increase the enjoyment of the solver; it is after all no fun to solve
a puzzle only to find out it is unsolvable.

Looking more closely at the NP-completeness proof for generalized Nurikabe,
in the papers by McPhail[5] and Holzer et al[4], it is clear that the Nurikabe board
components used in these proofs do in fact comply with the technique restrictions
normally only applied to human-solvable boards. That is, the components, when
combined to form a complete, logic circuit-analogous, puzzle, are solvable using
only the techniques emplyed by human solvers. This means that a human solver
would be capable of “solving” any such puzzle, in the sense that they could, using
nothing but rational inference and enough time, identify whether the puzzle has
zero, one or multiple solutions.

This means that the NP-completeness proofs for Nurikabe, and by extension
the above proof of the complexity of solving a board, still hold for strictly human-
solvable boards. Any board solvable to a human is at least as “hard” to solve as
any NP-hard problem.

This might seem counter-intuitive, as smaller, human-solvable boards can be
solved very quickly, both by humans and computers alike. This does however not
break the above proof, nor does it prove that P = N P. This is because a problem
being NP-hard does not in any way mean that a specific instance of the problem
must be very hard to solve. Indeed, as explained above, any given instance of
Nurikabe is theoretically solvable in constant time to a solver specific to the input
size of the problem. Even for generalized solvers, such as humans, small instances
of a problem might be very quickly solved. It is only as the size of the problem
grows, in this case as the board size increases, that the NP-hardness comes into
play, causing a generalized solver to take increasingly long to find a solution.

2.3 Technologies

As was explained in the introduction (chapter 1) of this report, the .NET platform,
along with the Xamarin framework, was chosen to develop the app in this pro-
ject. Furthermore, Haskell was chosen as the language of the generator, with an
ASP.NET Core web app serving to simplify calling it. In this section, these techno-
logies will be examined more in depth, with a basis in how they were used in the
project

Chapter 2: Background and Theory 17

2.3.1 The .NET platform

.NET is an open-source platform, developed and maintained by Microsoft. As
such, there are vast amounts of documentation and resources available online,
as well as a large developer community, with Microsoft claiming there are as
many as 5,000,000 .NET developers world-wide[6]. Additionally, the .NET plat-
form is cross-platform, and multiple implementations of the platform exist, provid-
ing compatibility with several different Operating Systems (OS’s). These are:

• .NET, previously called .NET Core, the base .NET implementation compatible
with websites, servers, and console apps on Windows, Linux, and macOS.
• .NET Framework, supporting websites, services, desktop apps and so on spe-

cifically on Windows.
• Xamarin/Mono, supporting apps on all major mobile operating systems,

such as Android and iOS.

Each of these implementations further support the use of the following program-
ming languages:

• C#, a simple, object-oriented and type-safe programming language.
• F#, a programming language intended for writing succinct, robust and per-

formant code.
• Visual Basic a more approachable language with simple syntax for writing

type-safe, object-oriented apps.

Regardless of language and implementation, .NET provides a common base
set of Application Programming Interfaces (APIs) called .NET Standard, and the
platform has its own package manager called NuGet, that allows for installation
of additional libraries. OS specific APIs can also be exposed by the corresponding
implementation. For instance, the Windows specific implementation .NET Frame-
work includes APIs for accessing the Windows Registry.

Included with every implementation of the .NET platform, is the Common Lan-
guage Runtime (CLR). This run-time environment provides several services to the
programmer, the most important of which being memory management and ser-
vices that enable communication between different languages; first and foremost
the different languages that are a part of .NET, but also other, external languages.
Code that is managed by this run-time is commonly referred to as managed code,
as opposed to unmanaged code that is not.

ASP.NET

ASP.NET is an extension of the .NET platform, specifically designed for building
web apps. It adds several features to the base .NET framework that simplifies
building web apps and web APIs. Among these features are: a framework for pro-
cessing web requests, a web-page templating syntax called Razor, an authentica-
tion system, as well as libraries for common web patterns and editor extensions
to provide syntax highlighting and similar features. [7]

18 Håvard Melheim: Placeholder

ASP.NET Core is the successor to ASP.NET, and has the added benefits of being
open-source and cross-platform.

C#

As mentioned above, part of the reason for choosing the .NET platform, was to
learn the C# programming language. C# is a high-level, object-oriented and type-
safe programming language, used to build applications that run in .NET. Unsur-
prisingly, it has its roots in the C family of programming languages, and as such
shares some basic syntax with C, C++ and other similar languages.

In addition to being an object-oriented language, C# is component-oriented,
providing language constructs to enable the creation and use of software compon-
ents. Furthermore, the language has features to aid in creating robust and durable
applications, such as garbage collection to automatically reclaim unused memory,
nullable types to guard against unallocated variables, and exception handling.

The language also supports lambda expressions to support more functional
programming techniques, Language Integrated Query (LINQ) syntax to simplify
data handling independently of source, and asynchronous operations to support
distributed systems. [8]

2.3.2 The Xamarin framework

As mentioned in chapter 1, it was for this project decided to use Microsoft’s Xamarin
framework, building on .NET and C# to develop the app.

Xamarin is an extension of Microsoft’s .NET platform, containing tools and lib-
raries for creating apps for Android, iOS, macOS, etc. As Xamarin is an abstraction
layer that manages communication of shared code with underlying platform code,
the majority of written code can be shared between these platforms, and Microsoft
claims that an average of 90% of an application is shared across platforms[9].

Xamarin is further divided into Xamarin.Android, Xamarin.iOS, Xamarin.Essentials
and Xamarin.Forms. Xamarin.Android handles compilation of C# applications
for Android devices, with Xamarin.iOS providing the same functionality for iOS
devices. Xamarin.Essentials provides cross-platform APIs for native features, such
as file management. Lastly, Xamarin.Forms is a cross-platform UI framework that
allows for the creation of apps and UIs for several platforms using a single code
base.

In the following sections, some important concepts of app development in the
Xamarin framework will be presented. For the most part, especially for the user
interface elements, these concepts were learned by following the offical Microsoft
tutorial series for Xamarin.

XAML

The eXtensible Application Markup Language (XAML) is an XML based language
created by Microsoft, that allows instantiating and initializing objects, as well as

https://docs.microsoft.com/en-us/xamarin/get-started/
https://docs.microsoft.com/en-us/xamarin/get-started/

Chapter 2: Background and Theory 19

organizing those objects in parent-child hierarchies, without using code. Though
it is adapted to several technologies within the .NET platform, it is mostly used to
define the layout of UIs.

In Xamarin.Forms, XAML allows developers to define their app’s UI using
markup rather than actual code. Though this is not necessary, as UIs can also
be created purely through code, using XAML is usually more succinct and read-
able. XAML is also well adapted to the MVVM pattern commonly found in Xamarin
apps, which will be explained below.

As XAML is a markup language and not a full-fledged programming language,
it cannot contain any actual code. Therefore, all event handling must take place
in the so-called code-behind; a code file associated with the XAML layout. As an
example, the XAML UI can define a button’s size, positioning and style, but not
what happens when the button is pressed. For this, a handler method in the code-
behind is required. Typically an app consists of several XAML files; one for each
page of the app, as well as some defining common properties and styles, such as
the app’s primary- and secondary color. [10]

MVVM

The process of creating an app using Xamarin usually involves creating a UI and
some code-behind, called the business logic, that handles events and commands to
and from the UI. This approach might lead to issues, however, with tight coupling
between UI controls and business logic, increasing the difficulty of making UI
modifications and of testing.

The Model-View-ViewModel (MVVM) pattern is designed to help alleviate these
issues by separating business logic from the UI. It also improves code re-use op-
portunities, and makes apps easier to develop and maintain.

The MVVM pattern has three main components; the model, the view, and the
view model. Figure 2.4 shows how these components are connected, and can
intuitively be explained as the view “knowing about” the view model, and the
view model “knowing” about the model, but the inverse being hidden. That is,
the model is unaware of the view model, and the view model is unaware of the
view.

Figure 2.4: Figure illustrating the MVVM pattern[11].

The view in the MVVM pattern is responsible for defining the structure, layout
and appearance of the user interface. The view is usually defined in XAML and

20 Håvard Melheim: Placeholder

has a very limited code-behind that does not contain any business logic. There
might be some UI logic in some cases however, to handle visual behaviours such
as animations.

The view model in the MVVM pattern implements the properties and com-
mands that the view is bound to. It will also serve to notify the view of state
changes by invoking the corresponding events. As an intuitive way of understand-
ing this, what a button does is defined in the view model, but how the button looks
to a user is defined in the view.

In addition to this data binding, the view model handles connections between
the view and any model classes it requires. This sometimes involves directly expos-
ing these classes to the view, so that the view can bind directly to the data in the
model class. Other times, it requires the view model to perform data conversions
on the data from the model class, to make it easier for the view to utilize.

Lastly, the models in the MVVM pattern are entirely non-visual classes that
contain all the data and functionality of the app. An example of a model could
for instance be a Data Transfer Object (DTO) used when communicating with a
database, or a more functional part of the app. [11]

User interface

The Xamarin.Forms framework contains many predefined UI components, called
controls, that can be used to build an app. These controls are hierarchically divided
into four subgroups: pages, layouts, views and cells[12].

Pages take up most, if not all, of the screen when they are displayed. A control
page is usually the top-level visual component of any page of an app, and will serve
as a container for other controls, structuring them against each other. A Content
page is the simplest form of page and only contains a single view or layout. A
Flyout page is another page that, unlike the content page, manages two panes with
information; one much resembling the content page, and another representing a
menu, or list of actions that can be accessed from the side of the screen. Other
examples of pages are navigation pages, carousel pages and tabbed pages[13].

Layouts in Xamarin.Forms are specialized subtypes of views that act as con-
tainers for views and other layouts, and is capable of structuring these views and
layouts within itself. Some layouts can only have a single child, such as Con-
tentViews, and their derivative Frames which can display a border around their
child. Other layouts can have multiple children, such as StackLayouts, which pos-
itions its children in a single stack either vertically or horizontally, and Grids, that
position their children in a grid of rows and columns[14]. Figure 2.5 displays how
a stackLayout can structure its children vertically.

In Xamarin.Forms, View is a common term for UI objects, that are often called
controls or widgets in more graphical programming environments. Some views
are designed to present information to a user, such as Labels containing blocks
of text, Images that display images, such as in figure 2.6a, and WebViews that
can display webpages or HTML content. Other views allow the user to initiate

Chapter 2: Background and Theory 21

Figure 2.5: Emulator screenshot of simple stackLayout, displaying different align-
ment and expansion properties of labels. Note that labels have been given a gray
background in order to more easily show their alignment and expansion proper-
ties.

22 Håvard Melheim: Placeholder

commands, mainly various forms of Buttons like the one in figure 2.6b. Some
views are used for setting values of different types, such as CheckBoxes for boolean
values and Sliders for doubles. There are views for editing text, such as Entry and
Editor, as can be seen in figure 2.6c, and others that indicate activity, such as a
ProgressBar. Lastly there are views that display collections, such as CollectionView
and ListView that both display scrollable lists of items[15]. See figure 2.6d for an
example of a collectionView.

Finally, Cells are template UI elements that are used to display items in a table.
Cells are used exclusively with the ListView and TableView views, and are used to
customize how entries are displayed, e.g. as TextCells, ImageCells or EntryCells.
[16].

Chapter 2: Background and Theory 23

(a) Emulator screenshot of a simple im-
age app, displaying a single image of a
Baboon.

(b) Emulator screenshot of a simple but-
ton app, displaying a single button with
a light blue background and red border.

(c) Emulator screenshot of a simple ed-
itor app, displaying an editor used to
enter and edit multiline text.

(d) Emulator screenshot of a simple col-
lectionView app, Displaying a collection-
View of monkeys, with the Howler Mon-
key selected.

Figure 2.6: Emulator screenshots of apps displaying various views.

24 Håvard Melheim: Placeholder

2.3.3 The Haskell programming language

According to the official Haskell wiki, Haskell is a polymorphically statically typed,
lazy, purely functional programming language[17]. The language is named after
Haskell Brooks Curry, whose work in mathematical logic serves as the foundation
for Haskell, and other functional programming languages.

Functional programming

As mentioned, Haskell is a purely functional programming language, as opposed
to an imperative programming language. A “normal” imperative language, like C,
C# or Python, would run a program by executing a series of statements in order,
thus altering some global state. This means that variables can be assigned values,
only to be reassigned some different value at a later point. More importantly it also
means that functions, or methods, can have side effects, such as writing something
to a console, or altering some global variable. Haskell on the other hand, like
all functional languages, runs a program by evaluating a series of expressions.
Where functions in imperative languages define what a computer should do, in
Haskell they merely state what something is. This means that functions in Haskell
are restricted to only computing some value and returning it, without any side
effects. Because of this restriction, a function called with the same parameters
will always return the same result, a concept called referential transparency. This
concept simplifies the process of proving that a function is correct, and allows for
more complex functions to be built by combining simpler ones[18].

Lazy programming language

In addition to being functional, Haskell is also a lazy programming language. This
means that unless specifically told otherwise, Haskell won’t perform any compu-
tations, be they function calls or variable assignments, until the result of the com-
putation is needed elsewhere. By evaluating expressions this way, it is possible to
bypass undefined values, such as the results of infinite loops, and it is possible to
process formally infinite data structures. As an example of this, Haskell enables a
programmer to work on infinite lists, by simply deferring the evaluation of each
element until it is actually needed by the program[18]. Another advantage of lazy
programming languages, is in terms of efficiency, as values are not calculated un-
less they are, in fact, needed by the program. In most imperative languages for
example, evaluation is eager, meaning they would, in most cases, execute all state-
ments written by the programmer, regardless of the statements significance to the
final result. Lazy languages like Haskell on the other hand, would completely skip
any written expressions that aren’t necessary to compute the desired result.

Chapter 2: Background and Theory 25

Statical typing

The fact that Haskell is statically typed means that variable types are checked at
compile-time, rather than run-time. This allows type errors to be caught before
a program actually runs, and saves resources by not having to allocate memory
for values of unknown types at run-time. One might assume that this means that
variables in Haskell must be given a specific type by the programmer. This is how-
ever not the case thanks to type inference, a mechanism that lets Haskell figure
out the type of a variable without it being explicitly stated, based on the functions
performed with the variable as a parameter or as a returned value. [18]

Polymorphic typing

Haskell implements polymorphism at a very high level. This means that variables
are not constrained to being of a single type, but can take on any type allowed
by the functions the variables are part of. As an example, the head function in
Haskell, with type declaration head :: [a] -> a, will return the first element of a
list, regardless of the type of the list’s elements. This is an example of parametric
polymorphism, as opposed to ad-hoc polymorphism[19]. With ad-hoc polymorph-
ism, a value can take on several different types, defined by some constraint, but
not all. In this case, the variable or function must be given a separate definition
for each of the types it can take on. The variable or function can therefore not take
on absolutely any type, as is the case with parametric polymorphism. In Haskell
this is implemented through the use of type classes, which allows for ad-hoc poly-
morphism where the function is not defined separately for each possible type, but
is rather only defined once, and imposes constraints by demanding that variables
are of types that instance certain type classes; meaning that they provide imple-
mentations for certain standard functions.

Type classes

In Haskell, a type class is “a sort of interface that defines some behaviours”[18]. In
other words a type class defines some behaviours that all members of the type class
need to implement. An example of this is the Eq type class which defines the (==)

function (note also that in Haskell, (==) is simply a function like any other, and not
a special operator as it would be called in many imperative languages). This means
that for a type to be part of the Eq type class, it has to provide an implementation
of the (==) function. This is very conducive to a high level of polymorphism, as it
allows functions to restrict variables’ type classes (called class constraints), rather
than types, and so enabling functions to be called on any type that is a member of
the given type class. Continuing with the Eq example, the elem function in Haskell,
with type declaration elem :: (Eq a) => a -> [a] -> Bool, constrains its input type
to be an instance of the Eq type class, allowing it to use the (==) function to check
whether some value exists in a list.

26 Håvard Melheim: Placeholder

Note that a single Haskell type can be a member of, or instance, multiple dif-
ferent type classes.

Monads

Attempting to answer the question of what a monad is, is a difficult endeavor,
as evidenced by the sheer multitude of forum posts and articles that attempt to
answer the question. This section will therefore make no attempt to explain this,
as that would likely require an entire thesis of its own. Instead, this section will
focus on how, and for what, monads are used in Haskell.

In Haskell, Monad is a type class. Specifically, it is a type class whose members
are not concrete types, such as Int or String, but rather type constructors[18]. Type
constructors are special types that take a concrete type as a parameter, and “wraps
around it”. Examples of type constructors are the list ([]) type, that produces a
sequence of elements of some single type, and the Maybe type that contains either
a single element of some type, or Nothing.

The Monad type class defines several functions that must be implemented
by its member types[18]. Of note are the functions return and (>>=). The first of
these, with type declaration return :: a -> m a function, simply wraps an element
of some concrete type a in a monad instance type m. The second function, with
type declaration (>>=) :: m a -> (a -> m b) -> m b, often referred to as bind, takes
a value wrapped in a monad, called a monadic value, m a, and a function that that
accepts a value of type a and returns a monad of some other type b, and returns
a monad of type b. The Monad type class defines more functions than these, but
these are given default implementations, and are rarely used in practice, so won’t
be detailed here.

The bind function is very useful in practice, as it enables a programmer to
chain monadic functions. As an example, consider a function that takes two strings
as input and returns a Maybe String value. It could for instance be a function that
returns a string of all characters that appear in both input strings if any exist, and
Nothing if not. Using this function to compare three, or more, strings would prove
cumbersome, as it would require first comparing two of the strings, before using
pattern matching, or a similar construct, to unpack the result. This result would
then have to be compared with the next string, before unpacking the result again,
and so on. Using bind instead, which is possible because Maybe is an instance of
the Monad type class, would greatly simplify this procedure. Using bind would
allow the result of the first comparison, i.e. a Maybe String value, to be passed
back into the comparison function without having to manually unpack it first. Due
to the implementation of the bind function the Maybe monad defines, this also
means that if the first two strings return a Nothing when compared, all subsequent
calls will return Nothing, without having to do any comparisons. This is obviously
correct, as if no characters are common between the first two strings, no characters
can be common to all the compared strings.

To further simplify chaining monadic functions, Haskell also introduces the

https://stackoverflow.com/questions/44965/what-is-a-monad
https://stackoverflow.com/questions/2704652/monad-in-plain-english-for-the-oop-programmer-with-no-fp-background/2704795#2704795
https://towardsdatascience.com/monads-from-the-lens-of-imperative-programmer-af1ab8c8790c

Chapter 2: Background and Theory 27

so-called do-notation. Using this notation (through the use of the do keyword)
allows monadic values to be bound to seemingly non-monadic variables using
the <- binding. These variables can then be used as inputs to functions as if they
were simple non-monadic values, with Haskell taking care of chaining the bind
functions “under the hood”.

All the above features allow Haskell to mimic some of the functionality of
imperative programming languages, without compromising its functional nature.
As mentioned, Haskell allows no side-effects, and functions must be referentially
transparent. This would seemingly indicate that many useful operations, such as
IO operations are not possible; writing something to the console is, after all, a
side-effect, and getting input from the console breaks referential transparency, as
a user might choose to input different values at different times. By wrapping such
operations in a monad (in this case the IO monad), they are allowed, in spite
of them “breaking the rules” of normal Haskell. The reason why this is allowed,
is that many monads, such as the IO monad, are one-way monads, meaning that
values may enter the monad, but not return from it. That is, an IO monad can
be created from a string, but a string cannot be extracted from an IO monad.
This means that failure, which is always a risk when dealing with side-effects and
non referentially transparent functions, is completely contained within the monad
operations, often indicated by an enclosing do, and thereby separated from the rest
of the code.

Unlike the IO monad, the Maybe monad is not a one-way monad, as its value
can be extracted in many ways, for instance through pattern matching. This means
that “illegal” operations, i.e. operations with side-effects etc., are not allowed
within the Maybe monad.

The Foreign library

The way that Haskell handles memory and stores data differs strongly from how
it is done in many other languages. In particular it differs from how it is done
the C family of languages, which unsurprisingly includes C#. This means that a
Haskell program cannot normally interface with a program written in a C-family
language.

Using Haskell’s Foreign library however, introduces certain new data types,
type classes and functions that enable such an interfacing. Of particular interest
are the data types in the Foreign.C.Types module. These data types mirror the
standard data types used in Haskell, and even shares names with them, only pre-
pended by a capital “C”. For instance, the module exposes the data type CInt,
which corresponds to the common Haskell type, Int, only occupying memory
in a way that resembles C-family languages. Similar types also exist for strings,
doubles, chars, and so on.

Another important part of the Foreign library, is the Storable module, which
introduces the Storable type class. This type class allows its instances to be written
to memory and referenced, by pointers, in a way that is compatible with C-family

28 Håvard Melheim: Placeholder

languages. Doing so enables parts of memory to be shared between programming
languages in a useful way, but it does come with the caveat that memory used this
way has to be manually handled by the programmer; i.e. it has to be manually
allocated before being utilized, and manually freed once it is no longer needed.

Chapter 3

Development

In this chapter, the process of developing the Nurikabe puzzle generator will be
detailed. This includes the preliminary work done to develop an algorithm cap-
able of generating puzzles, the actual implementation of this algorithm, and the
containment of the resulting program in a web app. The development process
resulting in the MasterGame app is also covered in this chapter.

3.1 Nurikabe solution techniques

Based on the rules and definitions in section 2.2.1, some techniques for solving
Nurikabe puzzles were inferred. These are presented below, grouped into to lists
by the perceived difficulty of each technique. These lists of techniques provided
the basis for a solver implemented as part of the puzzle generator in this project.
Note that these lists are not exhaustive, and other techniques might (and very
likely do) exist. For the most part, composite techniques, resulting from the com-
bination of two or more of the listed techniques (or alternatively multiple steps of
the same technique), have been omitted for brevity. These composite techniques
would likely not require a separate implementation in a computerized solver in
any event, meaning they are of little interest in this report.

Note that the figures illustrating the different techniques presented in this
section do not necessarily comply with the full set of Nurikabe rules, as they are
only meant to be examples of techniques in isolation. Attempts at solving these
boards should therefore not be made, as a valid solution might not exist.

29

30 Håvard Melheim: Placeholder

3.1.1 Beginner techniques

These techniques are mostly trivial and will be easily applicable by even com-
pletely fresh Nurikabe solvers.

1. Completed islands: When an island is complete, all cells orthogonally con-
nected to the island that are not themselves part of the island, are known
to be black (water cells). See figure 3.1.

a. As a special case of this, numbered cells containing the number 1 are
always known to be surrounded orthogonally by water cells.

(a) Two completed islands are marked
by red outlines.

(b) Here, the two completed islands
have been surrounded by water cells.

Figure 3.1: A part of a simple Nurikabe board, exemplifying the completed is-
lands technique.

Chapter 3: Development 31

2. Island separation: In accordance with rule 4 above, cells orthogonally ad-
jacent to two or more different islands must be water cells to ensure the
islands are separated (see figure 3.2). Two special cases of this rule exist:

a. If two numbered cells in the same column or row of the grid are sep-
arated by a single cell, that cell must be water.

b. If two numbered cells are diagonally adjacent to each other, the two
cells connecting them orthogonally must be water cells.

(a) Two sets of two numbered cells shar-
ing adjacent cells are marked by red out-
lines.

(b) Here, the shared adjacent cells are
made water cells in order to ensure is-
land separation.

Figure 3.2: A part of a simple Nurikabe board, exemplifying the island separa-
tion technique.

32 Håvard Melheim: Placeholder

3. Island expansion: If an incomplete island can only expand to a single cell,
that cell must be part of the island. See figure 3.3.

4. Water expansion: If an isolated water region can only expand to a single
cell, that cell must be a water cell. See figure 3.3.

(a) An incomplete island that can only
expand to a single cell, and an isolated
water region that can only expand to a
single cell are marked by red outlines.

(b) Here, the incomplete island has been
expanded to become a complete island,
and the isolated water region has been
expanded to no longer be isolated.

Figure 3.3: A part of a simple Nurikabe board, exemplifying the island expansion
and water expansion techniques.

Chapter 3: Development 33

5. Surrounded cell: If an unknown cell is surrounded by either all island cells
or all water cells, the cell must be of the same type as the cells surrounding
it. See figure 3.4.

(a) A cell surrounded by water cells
and a cell surrounded by island cells are
marked by red outlines.

(b) here, the previously marked cells
have been filled in to match the type of
their surrounding cells.

Figure 3.4: A part of a simple Nurikabe board, exemplifying the surrounded cell
technique.

6. Pool avoidance: If a 2×2 area of cells consists of 3 water cells, the last cell
must be an island cell, according to rule 6 above. See figure 3.5.

(a) Two unknown cells that are part of
2 × 2 areas with three water cells are
marked by red outlines.

(b) Here, the unknown cells have been
made island cells to avoid 2×2 pools of
water cells.

Figure 3.5: A part of a simple Nurikabe board, exemplifying the pool avoidance
technique.

34 Håvard Melheim: Placeholder

7. Unreachable Cells: If an unknown cell is unreachable to all numbered is-
lands in the board, the cell must be a water cell. A cell is unreachable to an
island if the traversable distance between the island and the cell is greater
than the growth potential of the island. The traversable distance between
an island and a cell is here defined as the shortest path from the island
to the cell that only traverses unknown cells, or island cells belonging to
unnumbered islands. See figure 3.6.

(a) An unknown cell is marked by a red
outline.

(b) Here, the shortest traversible dis-
tance between the island and the un-
known cell has been marked by a red
line. Note that other paths exist, but
none that are shorter. The unknown cell
has been marked as a water cell, as the
distance between the cell and the island
is 4, whereas the island’s growth poten-
tial is only 3.

Figure 3.6: A part of a simple Nurikabe board, exemplifying the unreachable
cells technique.

Chapter 3: Development 35

3.1.2 Advanced techniques

These techniques are more advanced than the beginner techniques and as such
might take some practice before they can be reliably applied.

1. Water connectivity: If an isolated water region can only be connected to
the rest of the water cells through a single cell, that cell must be a water
cell. This is a generalization of technique 4 above. See figure 3.7 for a visual
explanation.

(a) Three cells that are part of the only
path that connects the two isolated wa-
ter regions are marked by a red outline.

(b) Here, the three cells have been
penned as water cells to ensure the two
isolated regions can be connected.

Figure 3.7: A part of a simple Nurikabe board, exemplifying the water connectiv-
ity technique.

36 Håvard Melheim: Placeholder

2. Island expansion 2: If an incomplete numbered island can expand in a
number of directions given by x , and for some subset of x − 1 of those
directions the island can not expand enough to be completed, the Island
must expand in the direction not part of the subset.

a. As a special, explanatory case of this, imagine an incomplete numbered
island can expand in two directions. If one of these directions contains
fewer connected unknown cells than necessary to complete the island,
the island must expand in the other direction. See figure 3.8.

(a) One of two potential expansion cells
of the number 3 cell is marked by a red
outline. The island cannot expand more
than one cell in this direction.

(b) Here the other expansion cell has
been marked as an island cell, to ensure
that the island can grow to its complete
size.

Figure 3.8: A part of a simple Nurikabe board, exemplifying the island expansion
2 technique.

Chapter 3: Development 37

3. Island expansion 3: If an incomplete numbered island only lacks one cell to
be complete, and can only expand from a single cell to one of two diagonally
adjacent cells, the cell that is orthogonally adjacent to both of these cells,
and diagonally adjacent to the island cell, must be a water cell.

a. As a special, explanatory case of this, imagine an incomplete numbered
island consisting of a single, numbered cell, containing the number
two. If this cell can only expand to one of two diagonally adjacent
cells, either because the island is adjacent to a wall, or because of
known water cells, the cell that is diagonally adjacent to the island
cell, and orthogonally adjacent to both potential expansion cells must
be a water cell. See figure 3.9

(a) A number two cell and its only two
expansion cells have been marked by a
red outline.

(b) Here, the cell that is diagonally adja-
cent to the number 2 cell, and orthogon-
ally adjacent to both its expansion cells
is marked as a water cell. This is known
because the cell cannot be an island cell
without breaking the 2-hinted island, re-
gardless of which of the expansion cells
it contains.

Figure 3.9: A part of a simple Nurikabe board, exemplifying the island expansion
3 technique.

38 Håvard Melheim: Placeholder

4. Island separation 2: If a numbered island is separated orthogonally from
an unnumbered island by a single cell, and the size of the unnumbered
island is greater than or equal to the growth potential of the numbered
island, the cell separating the islands must be water (see figure 3.10) . This
is more advanced special case of the island separation technique (Beginner
technique 2).

(a) A numbered island of size 2 and with
hint 3 has been marked by red outline,
as well as an unnumbered island of size
1. Note that the numbered island has
growth potential 3− 2= 1.

(b) Here the cell separating the two pre-
viously marked islands has been marked
as a water cell. As the previously marked
numbered island had a growth poten-
tial of 1, and the unnumbered island a
size of 1, the two could not be connec-
ted without increasing the numbered is-
land’s size to 4, thereby breaking the
hint, and consequently the puzzle.

Figure 3.10: A part of a simple Nurikabe board, exemplifying the island separ-
ation 2 technique.

Chapter 3: Development 39

5. Unreachable cells 2: If a cell is reachable according to the definition above
in beginner technique 7, but the islands that can reach said cell can only
do so by connecting to a different numbered island, the cell is deemed un-
reachable, and therefore marked as a water cell. See figure 3.11.

a. In a similar case to the above, if a cell is reachable only by islands that
would have to connect to some unnumbered island to reach it, and said
unnumbered island would render the combined island incapable of
reaching the cell, the cell is deemed unreachable and therefore marked
as a water cell. The combined island could be rendered incapable of
reaching a cell either because its growth potential becomes too small
to reach the cell, or because the unnumbered island is greater than the
numbered island’s growth potential, thereby disallowing connection.
See figures 3.11c and 3.11d.

40 Håvard Melheim: Placeholder

(a) Here, a numbered island with
hint 4, and an unknown cell are
marked by a red outline. The
numbered island has a growth po-
tential of 4 − 1 = 3 cells, meaning
the marked unknown cell is within
reach, along the path marked by
a red line. Also note that the un-
known cell is unreachable to the 3-
hinted island.

(b) Here the previously unknown
cell has been marked as a water cell,
as it could not be reached by the 4-
hinted island without connecting it
to the 3-hinted island.

(c) Here, a 4-hinted island, and an
unknown cell are marked by red
outlines. As before the numbered is-
land has a growth potential of 3,
and the marked unknown cell is
technically within reach. Note that
the marked unknown cell is un-
reachable to the unmarked 3-hinted
island.

(d) Here, the previously unknown
cell has been marked as a water cell,
as it could not be reached by the
4-hinted cell without connecting it
to a separate unnumbered island,
marked by a red outline. This con-
nection would force the 4-hinted is-
land to have a size of 5 to reach
the unknown cell, thus breaking the
puzzle.

Figure 3.11: A part of a simple Nurikabe board, exemplifying the unreachable
cells 2 technique. Note that figure 3.11b corresponds to a single step in the solu-
tion of figure 3.11a, and likewise for 3.11d and 3.11c.

Chapter 3: Development 41

6. Pool avoidance 2: If a 2× 2 square of water- or unknown cells consists of
cells that are reachable to at most a single, common numbered island, said
island has to encompass at least one of the unknown cells to prevent a 2×2
pool of water cells. This is a generalization of beginner technique 6

a. As a special case of this, if only a single possible path exists for the 2×2
square of water- or unknown cells to be reachable, said path is entirely
composed of island cells. See figure 3.12 for an example of this.

(a) a 3-hinted island of size 1, as well
as a 2× 2 square of unknown cells have
been marked by a red outline.

(b) Here, the path connecting the 3-
hinted island to the 2× 2 square of un-
known cells has been marked as island
cells, as this was the only way for the 3-
hinted island to reach the square, and
thereby prevent a 2 × 2 pool of water
cells.

Figure 3.12: A part of a simple Nurikabe board, exemplifying the pool avoidance
2 technique.

42 Håvard Melheim: Placeholder

3.2 The puzzle generation algorithm

Developing the Nurikabe puzzle generator algorithm, which needed to be cap-
able of generating uniquely solvable puzzles, posed several challenges. Significant
among these was the challenge of how to guarantee that a generated puzzle not
only had a unique solution, but a unique solution that was possible for a human
solver to find. A computer running a brute force algorithm would be capable of
finding the solution to any solvable puzzle through simple trial and error if given
enough time, even if this would be an NP-hard problem. A human solver on the
other hand would not have this ability, and so measures would need to be taken
to ensure that any generated puzzle was humanly solvable. These measures took
the form of the solution techniques described in section 3.1. If these techniques
were somehow encoded in way that a computer could use them, they could be
used to verify that a puzzle would be solvable by a human solver.

Another issue was how to control the difficulty of a generated puzzle. A very
simple solution to this problem would be to only consider board size when determ-
ining difficulty, and simply state that larger boards make for more difficult puzzles.
It was however desirable to extend this solution somewhat, to give greater control
of the difficulty of a puzzle, but also to limit the size puzzles would have to be to
be considered difficult. Once again the answer came in the form of the techniques
described in section 3.1, as a puzzle requiring more complex solution techniques
intuitively is more difficult to solve.

For the actual generator algorithm, it was decided to take a two-part approach:
a completed puzzle would first need to be generated according to the rules de-
scribed in section 2.2.1. The algorithm would then have to place numbered cells
and remove all cell markings, while simultaneously ensuring that the resulting
puzzle was uniquely solvable by a human. These two sub-problems will be ex-
plored in the following sections.

Note that these sections only cover the general methodology of the generator
algorithm. For the actual implementation of this algorithm in Haskell, see section
3.3.

3.2.1 Completed board generation

Two approaches were considered to generate a completed puzzle board. Common
to both was that a board size was given, presumably by some difficulty selection
in the app.

Starting with an empty board

The first approach involved starting with an empty board, i.e. a board of all un-
known cells. A random cell would then be selected as a form of “seed cell”, and
marked as a water cell. The water region would then be “grown” randomly from
this cell. This would be done by randomly assigning all cells orthogonally adja-
cent to a water cell as either water or island cells in a recursive manner, until there

Chapter 3: Development 43

were no more cells for the water region to grow into. This assignment would have
to be made in such a manner that if the water region at any point could only ex-
pand into a single cell, that cell would have to be a water cell. If any unknown
cells remained after this recursion, they would all be assigned island cells. This
had to be done because any cell still unknown after the recursion would not be
orthogonally adjacent to any water cells, and therefore could not be a water cell
without creating an isolated water region.

The benefits of this approach would be that the water region would be con-
tiguous by design, as a water cell could only be assigned in a position orthogonally
adjacent to another water cell. It would also be relatively easy to ensure that no
2 × 2 pools of water cells were generated by simply checking, whenever a cell
was to be assigned, if that cell would form a 2× 2 area of water cells, and if so
assigning the cell as an island cell.

On the other hand, this method would present some challenges as well. There
would, for instance, be no way of directly controlling the size of islands, nor the
number. There would also be a chance that the algorithm would get stuck, in
that it might assign island cells in such a way that the water region becomes
unable to grow further, as can be seen below in figure 3.13. This would in turn
result in unacceptably large islands. These problems could however be alleviated;
either by modifying the probability of an assigned cell becoming a water cell, thus
affecting both the size and number of islands stochastically, or by checking island
sizes after finishing the recursive call, and rerunning the algorithm on any islands
deemed to large by some metric, by converting their cells back to unknown cells
and restarting the recursive call.

Starting with a board of all water cells

The second approach that could produce a completed board involved starting with
a board of all water cells, and then generating islands randomly within that board.
This could for example be done by recursively checking for 2× 2 pools of water
cells and if one was found, making one of its cells an island cell, before growing
the island to some predetermined size from there.

The advantages of this approach would be that it would grant a much higher
degree of control over the size and shape of islands, which might in turn grant
greater control over the difficulty of the final puzzles. This approach would also
guarantee that no “pools” exist by design.

There would however also be some significant drawbacks to using this method
compared to the first one. Chief among these would be the fact that this approach
would not guarantee a single, contiguous water region on its own. This would
have to be rectified somehow, perhaps by checking, for each island cell assigned,
if the assignment created an isolated water region. If so, the last assignment would
have to be undone. Whatever form this rectification would take, it would likely
interfere with an island’s ability to grow to its predetermined size, as there might
be no legal way to expand an island to its full, predetermined size without creating

44 Håvard Melheim: Placeholder

Figure 3.13: The water region in this Nurikabe board has become stuck. The
numbers in red describe the order in which the water cells have been assigned.
Note that after the assignment of cell 4, the cell above it could still be assigned
as an island cell, as the water region could still expand to cell 5. When cell 5 is
then assigned however, the region is unable to grow further, and we end up with
an unacceptably large island at the top of the board.

isolated water regions. This might not be a significant problem, but it would lessen
the degree of control over island size and shape that this approach initially benefit
from.

Due to the major drawbacks with the latter of these two approaches, it was
decided to move forward with the first approach, letting the water region grow
from an empty board.

3.2.2 Placing numbers

As with the completed board generation, two approaches were considered for how
to place numbered cells on the board to finalize the puzzle. These approaches are
very similar in nature, and both relied on assigning numbers, before removing
some information and checking if the resulting board was solvable using the tech-
niques described in section 3.1. Both methods would therefore rely on a solver,
using the aforementioned techniques, being implemented.

Chapter 3: Development 45

Removing all markings

The first approach would start with a completed board, produced by the approach
described in the previous section (3.2.1). Each island in this board would then
have a single numbered cell assigned, with each numbered cell’s number equal
to the size of the island, for obvious reasons. All other markings would then be
removed from the board, and the aforementioned solver would attempt to solve
it. If the solver succeeded in solving the board, the numbered cell assignments
would be kept, and the puzzle would be finished. If the solver was unable to solve
the puzzle on the other hand, that would indicate that the given numbered cell
assignments did not produce a human-solvable puzzle. The numbered cells would
then be reassigned, and the solver would retry. This would continue until either
the solver succeeded in solving the puzzle, thus producing a finished puzzle, or
until all combinations of numbered cell placements had been attempted, at which
point the puzzle could be concluded to be insolvable by a human regardless of
numbered cell assignments, and the generator would start from scratch with a
new board.

Intuitively, it seems this approach might allow for finished puzzles with mul-
tiple possible solutions, as it at no point checks for them. However, if the solver
used strictly adheres to the techniques described in section 3.1, it would be in-
capable of solving a puzzle with multiple solutions, as it only assigns cells a type
when they are absolutely certain to have that type. In other words, if there are
any ambiguous cells, as there would have to be for multiple solutions to exist, the
solver would be unable to assign them, and so would deem the puzzle unsolvable.

Removing markings one at a time

The second approach to placing numbered cells would start much like the first by
randomly assigning numbered cells in islands, once again with each numbered
cell’s number equal to the size of its island. This approach would then randomly
remove a single marking from the board before checking, using the solver, whether
the resulting board would be solvable. If so, the generator would remove a single
new marking, over and over, until either all markings had been removed, and the
finished puzzle had been proven solvable, or until a marking was removed that
rendered the board unsolvable. If this occurred, the generator would return to the
completed board, and reassign the numbered cells, before retrying. And as with
the previous approach, this would go on until either a combination of numbers
was found that resulted in a solvable puzzle, or until all combinations had been
attempted and a new board would be attempted.

This approach might prove more time-efficient in some cases where a board
might very quickly be determined to be unsolvable. In most cases however, this
approach would be vastly more inefficient than the first approach, due to the sheer
number of calculations needed. An improvement might be made by stating that
the algorithm need not check that a board is solvable for each removed marking,
but rather only check that the board may be returned to its previous state (I.e. with

46 Håvard Melheim: Placeholder

the last removed marking still in place). This would however drastically increase
the implementation complexity. It would also make it much harder to guarantee
that a puzzle deemed unsolvable by the algorithm was actually unsolvable, and
not just unsolvable through the specific path checked by the algorithm.

Due to the relative simplicity of the first approach, it was decided to proceed
with this, and attempting to solve each instance of a complete board from scratch,
rather than iteratively.

3.3 The puzzle generator implementation

As explained in chapter 1, it was decided to implement the Nurikabe generator
and solver in Haskell. In this section, the process of implementing the different
parts of the generator will be explained, including the more prominent challenges
and problems that arose, as well as their solutions.

3.3.1 Data structures

The first step taken in implementing the puzzle generator was defining several
data structures to simplify and clarify the operations performed. These data struc-
tures were, to varying degrees, based on Abstract Data Types (ADTs) that could
be extracted from the rules of Nurikabe as explained above in section 2.2.1. These
ADTs were:

• Cell: An ADT describing a single cell in a Nurikabe board, in terms of its po-
sition, its type (I.e. island, water or unknown), and its number, if it contains
one.
• Board: An ADT describing an entire board of cells, of varying size.

Along with these ADTs, several other data structures and -types were defined,
to clarify the implementation, and to provide consistent and suitable levels of
abstraction. Examples of these structures and types are:

• Coordinate: A type alias consisting of a tuple of two integers, denoting a
position in a Nurikabe board as a coordinate.
• CellType A custom data type taking one of three possible values: White,

Grey or Black, used to denote the type of a cell. Note that for this data type,
a color based typing of cells was used, rather than the more formal typing
used in this report, to help with visualizing results. The colors chosen corres-
pond to the colors of a physical Nurikabe board, with Black corresponding
to water cells, White to Island cells and Grey to unknowns. Note again the
need for a Grey cell type to denote cells that are as yet of undetermined
type, even though in an actual board, such cells would in fact be white.
• Region a type alias consisting of a list of cells. This was used to denote a

connected region of cells of identical type in a board.
• Island a type alias consisting of a Region. Note that though this type was, by

definition, completely interchangeable with the Region type above, it was

Chapter 3: Development 47

included to differentiate between regions that could be of any type, and
regions that were known to be islands.

Having defined these data structures and -types, the ADTs above could easily
be implemented; the Cell as a custom data type containing a Coordinate, a CellType
and potentially a number. Seeing as not all Cells would have numbers, this was
implemented as a Maybe Int, to provide clarity and to avoid having to use a specific
number to denote unnumbered cells. The actual definition of the Cell data type
can be seen below:

data Cell = Cell {position :: Coordinate,
number :: Maybe Int,
cellType :: CellType} deriving(Eq)

The CellType data type was simply declared as data CellType = White | Grey | Black.
The Board type was implemented as a type alias for a two-dimensional ar-

ray of Cells, I.e. as a list of lists of Cells. In practice, this was defined simply as
type Board = [[Cell]].

3.3.2 The completed-board generator

With all the necessary data structures and types defined, it was time to develop
the first part of the generator algorithm, as detailed above in section 3.2.1. For the
most part, this implementation matched the procedure explained in said section;
the entire water region was grown from a single cell, using a random number
generator to decide which Grey cell to expand to, and in some cases to decide
what type it should be assigned. Some additions were made however, to improve
the quality of the produced board, in the hopes that it would produce a better
puzzle. The first of these additions was to check the size of the largest island in
the board, after a completed board had been produced. If this island was found
to be larger than some number (which was eventually chosen to be equal to the
length of the shortest side of the board) the entire island would be converted
back to Grey cells, before restarting the generation, thus splitting the island into
smaller islands. This was done to alleviate the point made in section 3.2.1, that
unacceptably large islands could result from the algorithm becoming stuck with
only a single cell left to expand to.

Another addition that was made, was to add another restriction to the assign-
ment of cell types. Initially, the method would decide the type of a cell according
to this rule: if the cell was part of a potential pool of water cells, i.e. it was sur-
rounded by an L-shape of black cells, the cell would be assigned White. Otherwise,
if the cell was the only cell the Black region could expand to, it would be assigned
Black. Lastly, if neither of these conditions were met, the cell was assigned a type
randomly based on some probability distribution passed in to the method. This
distribution was found to have adequate results at a value of 0.75, meaning cells
were assigned as Black three times for every time on was assigned as White. After

48 Håvard Melheim: Placeholder

implementing this method, it was discovered that the shape of islands, and not
only their sizes, were important to the solvability of a board, with longer, nar-
rower islands more often resulting in solvable boards. It was therefore decided
to add a third check to the assignment of cell types, before letting the cell be
randomly assigned. This check consisted of checking the neighbourhood of the
assigned cell for L-shapes of White cells, much like the the first check checked for
pools of Black cells. If a cell was inside such a shape, it would be assigned black,
thus preventing larger sections of White cells from forming. By adding this check
after the two first checks in the cell assignment, the method could favour longer
narrower islands, without compromising the more strict rules of the board. The
final implementation of the CellType assignment looked as follows:

cellType
| isCellPotentialPool board pos = White
| length expandableNeighborhood == 1 = Black
| isCellPotentialDryLand board pos = Black
| otherwise = randomType

3.3.3 Implemented techniques

The next step in developing the generator, was to implement the solution tech-
niques. Unfortunately only the beginner techniques described in section 3.1.1
were implemented, due to a lack of time, meaning that the developed solver would
only be capable of solving relatively simple boards. The following sections describe
how the different techniques were implemented. The code implementations of the
techniques can be found in the attached code. See appendix B.1 for the structure
of this code.

Completed islands

The completed islands technique was implemented simply by checking the size of
a given island, and, if the size corresponded to a numbered cell in the island, to
mark all unknown cells orthogonally adjacent to the island as water cells.

Island separation

The island separation technique was somewhat more complex in its implement-
ation. An elegant solution was however found to be checking the unknown cells
bordering every island in the board; any cell appearing in the border of more than
one island was marked as water. Care had to be taken to only check the borders of
numbered islands however, as known island cells could appear in the board due
to other techniques, such as the pool avoidance technique. These unnumbered
islands could then not be separated from other islands, as they would have to join
up with a numbered island to complete the board.

Chapter 3: Development 49

Island- and water expansion

The island- and water expansion techniques were implemented by grouping all
known island- and water cells into regions and checking their borders, i.e. their
orthogonally adjacent neighbour cells, for any cells the region could be expanded
into. Any region that was incomplete and could only expand to a single cell was
expanded to said cell. Some issues with this first implementation quickly presen-
ted themselves however. One such issue, resulting from the fact that all regions
had to be mapped out before any were expanded, was that when a region was
expanded, it might connect itself to another region, thus altering the resulting
region’s size and shape. The first implementation did not check for this, and so
would occasionally end up erroneously expanding a region.

A second issue arose from the fact that the first implementation expanded
regions in random order. This, combined with the phenomenon described above
wherein a region might not be the same when being expanded as it was when
discovered, meant that the water region might be completed before all discovered
water regions were expanded, resulting in an already complete water region being
expanded into a cell that was in actuality supposed to be an island cell.

These issues were easily fixed by ensuring that any region to be expanded
was first mapped out entirely to compensate for any changes to the regions size
at its discovery. An additional check of the completeness of the region was then
made to guarantee that a complete region could not be expanded. This complete-
ness check for islands merely consisted of checking whether a numbered islands
size corresponded to its hint, whereas for water regions, it consisted of checking
whether only a single water region existed, and if so checking whether its size was
equal to the total size of the board minus the sum of all hints in the board.

Surrounded cell

The surrounded cell technique was simply implemented by checking the ortho-
gonal neighbours of every unknown cell in the board. If all such neighbours of an
unknown cell were of the same type (and not unknown), the unknown cell was
marked as the same type as all of its neighbours.

Pool avoidance

The pool avoidance technique was likewise implemented by checking the ortho-
gonal and diagonal neighbourhood of every unknown cell for L-patterns, such as
the ones seen above in figure 3.5. As this pattern indicated a potential 2× 2 pool
of water cells, any cell found to have such a pattern in its neighbourhood was
marked as an island cell.

50 Håvard Melheim: Placeholder

Unreachable cell

This technique proved quite a bit more complex in its implementation than the
others implemented up to this point. Initially an attempt at implementation was
made where every unknown cell had its Manhattan distance to every numbered is-
land in the board calculated. If an unknown cell was found, where, for all numbered
islands, the distance between the cell and the island was greater than the growth
potential of the island, the unknown cell would be considered unreachable, and
marked Black. While this did not result in any incorrect cell markings, the simpli-
fications made in implementation meant the method was of little to no practical
value.

A more complex approach was therefore taken, where the area around each
unknown cell was expanded through all connected unknown cells incrementally,
and at each step comparing the distance traversed to the growth potential of any
islands encountered at that step. If any island was found with a growth potential
greater than or equal to the distance traversed, the cell was deemed reachable,
and the algorithm stopped. If the expansion continued until no more steps could
be taken, i.e. the entire area reachable by the cell through unknown cells was
discovered, the cell was deemed unreachable, and marked Black.

This implementation proved much more valuable than the last, but it was
later discovered that it could in fact wrongly mark cells as unreachable, due to
the fact that it disallowed expansion through unnumbered islands. This meant
that islands could be deemed unreachable when they were in fact reachable, as
can be seen below in figure 3.14. Fixing this issue once it had been identified was
a simple matter of allowing the method to expand through island cells belonging
to unnumbered islands, resulting in a correct implementation once again.

3.3.4 The Nurikabe solver

Having implemented a sufficient number of techniques to solve simple Nurikabe
boards, these techniques were then combined into two different solvers: an “easy”
solver, that utilized the completed islands, island separation, and island- and water
expansion techniques, and a “medium” solver that utilized the same techniques,
as well as the surrounded cell, pool avoidance, and unreachable cell techniques.

The solvers were implemented recursively in a step-wise manner. Each of these
steps consisted of chaining together the utilized techniques in order of their ap-
pearance in section 3.1.1. This chaining was performed in such a way that if a
technique produced an altered board, meaning the technique had successfully
performed a step in the soltution of the board and marked some cells as either
Black or White, the produced board was returned without performing subsequent
techniques. This was done because the earlier techniques were, in general, sim-
pler in their implementation, meaning that utilizing these techniques to a larger
degree would result in a potentially faster solver.

The board returned from such a step was then checked for completion, by
checking the total number of Grey cells in the board; a board with no Grey cells

Chapter 3: Development 51

Figure 3.14: An example Nurikabe board with a falsely unreachable cell. Using
the second implementation of the unreachable cell technique explained above,
the unknown cell marked by a red outline would be considered unreachable, due
to the unnumbered island positioned between the 5-hint and the unknown cell.
In reality, this cell would be very much reachable, by joining the 5-hinted island
with the unnumbered island.

was considered solved. If the board was solved, it was returned from the solver
in its solved form, and if not, another step through the chain of techniques was
performed. If a step at any point returned an unaltered board, indicating that
none of the techniques had managed to alter the board, the board was considered
unsolvable, and an empty board (i.e. an empty list) was returned from the solver.

To keep track of whether or not a board had been changed by a technique, a
data type, called Monitor was implemented with two value constructors: Changed
and Unchanged. These value constructors could then be wrapped around some
other type; in this case, a Board. The reason for implementing this data type was
to improve the efficiency of the solvers, by not having to perform multiple com-
parisons of two boards in each step of the solver to determine whether the board
had been changed. Instead, the Monitor constructor of the board could simply be
checked.

In addition to implementing the above data type, it was desirable to make it
an instance of the Monad type class, in order to simplify the chaining of techniques
in each solver step. This proved impossible however, due to the fact that it was de-

52 Håvard Melheim: Placeholder

sirable for any operation on an already changed board to simply return the same
changed board with no modifications, to conform with the reasoning explained
above. This was incompatible with the Monad type class’ declaration of the bind
function, (>>=) :: m a -> (a -> m b) -> m b, as there was no way of making the de-
sired definition, Changed a >>= _ = Changed a, conform with this type declaration; it
would return a monad of the same type as was input, rather than of some other
type b, defined by the input function.

Because the Monad type class was inapplicable to the situation at hand, an-
other type class, the Modifiable type class, was implemented, that closely matched
the functionality of the Monad type class, but allowing instances to be of a single
type. It was defined as follows:

class Modifiable m where
(>\=) :: m a -> (a -> m a) -> m a
(>\\=) :: m a -> (a -> m a) -> m a
extract :: m a -> a

As can be seen, this type class defined two functions, (>\=) and (>\\=), as well as
an extract function that would simply return the value from the “pseudo monad”.
Both the (>\=) function and the (>\\=) function were intended to function much the
same as the Monad type class’ bind function; the (>\=) function would only allow
the alteration of Unchanged variables, whereas the (>\\=) function would allow
the alteration of any Monitor variable, but would keep a Changed constructor
regardless of whether or not the applied function modified the value. The Monitor
data type instanced the Modifiable type class by implementing the above functions
as follows:

instance Modifiable Monitor where
(>\=) (Changed x) _ = Changed x
(>\=) (Unchanged x) f = f x

(>\\=) (Changed x) f = Changed $ extract (f x)
(>\\=) (Unchanged x) f = f x

extract (Changed a) = a
extract (Unchanged a) = a

Using this new type class, the solvers could elegantly chain techniques in the
desired way. As an example of this, a step of the “medium” solver was simply
implemented as follows:

Chapter 3: Development 53

mediumStep board =
let

completedBoard = complete board
separatedBoard = completedBoard >\= separate
expandedBoard = separatedBoard >\= expand
surroundedBoard = expandedBoard >\= surround
poolAvertedBoard = surroundedBoard >\= avertPools
unreachableBoard = poolAvertedBoard >\= unreachable
result = unreachableBoard

in
result

The Monitor data type and the Modifiable type class, as well as the fully im-
plemented solvers, can be found in the attached code. See appendix B.1 for the
structure of this code.

3.3.5 The full generator

Having implemented both the completed board generator, and the needed solv-
ers, it was time to combine them into a generator capable of generating a solv-
able Nurikabe puzzle from scratch. Initially it was attempted to simply generate a
board, using the complete board generator from section 3.3.2, randomly placing
hints in the generated islands, and then attempting to solve the resulting board.

More often than not, this resulted in unsolvable boards, as only a single place-
ment of hints was attempted. The generator was therefore enhanced to attempt
every possible placement of hints in order, and returning the first one that proved
solvable. This somewhat improved the generator, making it result in solvable
boards more often, and was so used in a first version of the generator. This would
also keep generating new boards until a solvable board was found, in order for
the generator to always return a solvable board.

It was later found that this implementation was still too unreliable, and spent
unacceptably long attempting hint placements in inherently unsolvable boards.
This was especially true for larger boards. A second version of the solver was
therefore implemented with an added reliability insurance. This implementation
would, as before, generate a completed board, before attempting all possible
placements of hints. However, this implementation would not give up if a board
was found to be unsolvable. Instead, it would attempt to make the board solv-
able. To do this, any board found to be unsolvable would have a single island cell,
taken from the largest island in the board, reassigned as a water cell, making sure
to not violate the rules of the game. This measure was implemented because ex-
perience showed that boards with larger islands were in general harder to solve,
and therefore more often resulted in unsolvable boards. Splitting the largest is-
land in a board was therefore deemed a fitting way to improve the chances of
finding a solvable placement of hints.

54 Håvard Melheim: Placeholder

If, after reassigning an island cell as water, the board was still unsolvable, the
search would continue in a recursive, breadth-first manner. In other words, a new
island cell would be reassigned as water, before again attempting all possible hint
placements. After all legal island cells had been attempted reassigned, two island
cells would be reassigned, and so on.

Though this added complexity did increase the worst-case run time for gener-
ating a single board, in practice, the added reliability more than made up for this,
by ensuring that generator would run far fewer times. In most cases, the generator
would now produce a solvable board for the first generated completed board. The
generator was therefore considered complete to be used by the app.

The final generator was split into three different functions in Haskell: gener-
ateEasySeededBoard, generateMediumSeededBoard and generateHardSeededBoard.
Each of these functions took three inputs: a board size, in the form of a tuple of
two Ints, a distribution in the form of a Double, that described the relative probab-
ility of a cell being randomly assigned as a water cell, and a seed, for the random
generators, in the form of an Int. Each of the three functions returned a tuple
of consisting of to values of type Board, where one value represented the gener-
ated, unsolved board, and the other the solved version of the same board. Note
that though the entrypoint for the hard generator was completed, its solver, and
therefore generator, was left unfinished due to a lack of time.

3.4 The puzzle generator web app

To interface between the game app, and the generator, it was, as mentioned in
chapter 1, decided to implement the generator in a web app, callable by the app.
This web app was built using ASP:NET Core, and written in C#. It consisted of
three API endpoints: /GenerateSeeded, /GenerateUnseeded and /GenerateMultiple-
Boards.

All of these endpoints took several input values, through the query. Common
for all the endpoints were: a string indicating the desired difficulty of the gener-
ated board, i.e. either “Easy”, “Medium” or “Hard”, two integers defining the size
of the board to be generated, and a single integer, with default value 10, indicat-
ing how long, in seconds, the generator should attempt to generate a board for
before giving up. The /GenerateSeededBoard additionally took an integer seed as
input, and the /GenerateMultipleBoards took an integer number of boards to gen-
erate. Note that the difficulty of boards was passed as a string, in spite of being
used as an enumerated type, or enum, in the actual program. This was done to
avoid having to use literals (sometimes called “magic numbers”), that in no way
signalled their significance, in the API as enums are typically treated as integer
values.

Chapter 3: Development 55

3.4.1 Haskell DLLs

In order for the web app to be able to call the generator functions from Haskell,
some way of interfacing between the two had to be utilized. This took the form
of .NET’s Platform Invoke, or P/Invoke as it is commonly called. This technology,
which is a part of the .NET Standard library, allows managed code, in this case
the ASP.NET web app, to call functions from unmanaged code, in this case the
Haskell generator functions.

For the Haskell functions to be callable to the C# code through the use of P/In-
voke, the Haskell program had to first be compiled into a Dynamic Link Library
(DLL). This was done relatively simply by adding a few flags to the Haskell com-
piler, GHC. Returning boards from the generator to be used in C# code quickly
proved challenging however, as the variable size boards couldn’t be returned dir-
ectly. Instead, the boards had to be written to, and kept in, memory in Haskell,
and a pointer to the memory area occupied by the board returned to C#. The
boards then had to be read from memory in C#, before the memory could finally
be freed in Haskell.

As explained in section 2.3.3 however, memory management is quite different
in Haskell and C-family languages. This meant that simply writing the data struc-
tures to memory was not enough for them to be accessible in C#; first they had
to be made to comply with the C way of handling memory. This was no easy feat,
as it involved converting the previously defined data types to types consisting of
C-compliant base types, and to then make them referenceable by instancing the
Storable type class.

Creating the C-compliant types was, in itself, no major challenge, as it mostly
involved rewriting the previously defined types using the types imported from the
Foreign.C library. Making these types referenceable proved more of a challenge
however, as doing so manually would require intimate knowledge of the work-
ings of Haskell pointers and memory management. As this was not something
the candidate possessed, it was instead decided to utilize a tool, in the form of a
command, included with GHC: hsc2hs.

To use this tool, a .c and .h file, called ExportTypes.c and ExportTypes.h respect-
ively, were first created. In these files, structs corresponding to the data types to
be exported from Haskell, were created. These files were then imported into a .hsc
file (ExportTypes.hsc), serving as a sort of bridge between Haskell and C. In this
file, the new data types, using Foreign.C base types, were defined, and made in-
stances of the Storable type class by referencing the structs defined in C and using
some syntax specific to .hsc files. Calling the hsc2hs command with this file as in-
put produced a normal Haskell file, called ExportTypes.hs which correctly defined
the desired data types, and made them instances of Storable. This file could then
be imported by the Haskell program, and its data types used to interface between
Haskell and C#.

With these types complete, all that remained was to define the functions that
would make up the actual interface. This was done in the HaskellInterface.hs file.

56 Håvard Melheim: Placeholder

Here, the functions to generate boards were declared and implemented, as well
as helper functions to allow allocation and freeing of memory for boards, and
functions to allow accessing boards and cells from pointers. The entire program
was then compiled into a .dll file, ready to be called from C#.

Moving on to the C# side of things, P/invoke could now be used to import
functions from the Haskell interface. To do this, a Haskell run-time first had to be
initialized, using the hs_init() function that was exposed in the DLL by default. To
ensure this initialization was only executed once, and to hide the implementation
details from the rest of the .NET web app, all communication with the Haskell DLL
was performed from within a singleton class, called HaskellRuntimeSingleton. This
class also exposed all the functions needed from the Haskell interface to the rest
of the .NET app.

Boards were then generated in the web app, by calling the appropriate gener-
ator function, which would return a pointer to a structure of two boards; one
solved and one unsolved. This pointer was then used to get pointers to indi-
vidual cells in each board from Haskell, before these cell pointers were unpacked
into a Cell struct, and placed into the appropriate board, taking the form of two-
dimensional arrays. All these operations were performed from within the Board
class in C#, which also ensured that the memory occupied by the board in Haskell
was freed once the class instance in C# was no longer in use.

3.4.2 Hosting

For the app to be able to generate boards on demand, the web app containing
the generator would have to be hosted somewhere, in a way that allowed the
app to consume it’s API. To do this, several approaches were attempted, ranging
from hosting the web app as a server-less API in Amazon Web Services (AWS), to
hosting it as a full on server.

The Haskell interface DLL made this difficult however, due to the requirements
it imposed on the machine running it. In the end, none of the attempted hosting
methods proved capable of calling functions from the DLL, not even when it was
compiled as a .so file and run on Linux. It was therefore decided to cut losses, and
simply manually export some generated boards to the final app, for demonstration
purposes.

3.5 The “MasterGame” app

As explained in chapter 1, the Nurikabe game app, eventually simply called “Mas-
terGame”, was implemented using the Xamarin framework. Specifically, it was
implemented in Xamarin.Forms, the cross-platform implementation of Xamarin.
The app was furthermore developed using the MVVM architecture, which meant
that it was separated into models, views and view models. The source code for
the app can be found in the attached code file, the structure of which is explained
in appendix B.1.

Chapter 3: Development 57

3.5.1 Models

The app contained several model classes, mostly concerned with cells, boards and
their interactions. To implement cells in the app, three separate classes had to
be implemented: a BoxCell class, a LabelCell class and an ImageCell class. These
were separated in order to properly utilize the different Xamarin views that would
be needed; BoxViews for cells that were uniformly black or white, i.e. water- or
unknown cells, Images for dotted cells, i.e. Island cells, and Labels for hint cells. A
third cell class, NurikabeCell was also implemented to combine the different types
of cells, so that a cell could change from one to another. This was done by making
an instance of the NurikabeCell class contain either an instance of LabelCell, if it
was a numbered cell, or one instance of BoxCell and one of ImageCell if it was
not. By detecting long and short presses on the cell (if it was not numbered) the
NurikabeCell could then be toggled between displaying the ImageCell, signifying
it was an island cell, or a black or white BoxCell, indicating it was a water- or
unknown cell respectively.

The board functionality was also split into three parts. A DTO class, called
NurikabeBoardDto was used to deserialize boards returned by the generator. The
Board class, that was initially intended to be used to call the web API, was later
repurposed to reading boards from local .json files. This class also maintained the
actual board arrays themselves, and handled operations on them, for instance in
connection with solving. That is, when a board was being solved in the app, the
Board class would keep track of the state of the board being solved, by modifying
the types of the boards cells. The Board class was in turn used by the higher-
level NurikabeBoard class, that inherited from the Xamarin Grid view. This class
handled boards on the app level, by controlling their sizes, and what type of cell
should be displayed where in the grid.

Lastly, there was the GeneratorClient class, which was intended to be used to
consume the web API of the generator. When it was decided to not implement any
form of hosting of the generator API however, this class was no longer used.

3.5.2 Views

The views in the final app, of which there were six, were implemented by first
defining the layout of the page in the .xaml file, before defining any needed logic
in the code-behind file. As view models were also implemented, there was, for the
most part, no need for any such logic, with these files containing only the default
function calls handling page initialization. The “Nurikabe Menu Page”, serving as
the main menu for the app, was the only exception to this, as it needed a few
extra code lines in its code-behind to be called every time the page appeared.
These code lines would ensure that some values in the page’s view model were
correctly updated, to allow a “Continue” button to be displayed only under the
correct circumstances.

All views in the app were implemented as ContentPages, and navigation between
them was performed in part by the use of a flyout menu, and in part by using a nav-

58 Håvard Melheim: Placeholder

igation stack. The flyout menu enabled navigation between the app’s main menu
page, and two information pages that displayed information about Nurikabe and
its rules and some information about the context of the app.

Of these, the page containing information about Nurikabe and its rules proved
somewhat tricky to implement, due to the amount of text displayed on the page.
Initially, this page was implemented by displaying the rules in a numbered list
in a ListView, which was nested inside a StackLayout along with the rest of the
text, in the form of Labels. However, this meant that while most of the page was
stationary, the part that contained the rules could be scrolled, which proved a
very unpleasant user experience. The rule list was therefore updated to be a list
of specially formatted Labels in a StackLayout, along with the rest of the text. This
StackLayout was itself contained within a ScrollLayout, meaning that the entire
page could be scrolled, rather than only parts of it, something that proved a much
nicer user experience.

Where the flyout menu was used to navigate between the different informa-
tion pages of the app, the navigation stack enabled navigation between the main
menu and the different views used in selecting a board to be played, as well as
in actually playing the board. This navigation was performed in the view model
corresponding to each page, and was activated through the use of buttons on the
page, that were, for the most part, defined in the .xaml file.

3.5.3 Viewmodels

The final app contained a view model for most of the views. Only the “About
Nurikabe” and “About this project” pages lacked one, as these pages only contained
text, and needed no business logic. For the most part, the view models were relat-
ively simple, both in their functionality and implementation. They handled button
commands, which mostly consisted of navigation using the navigation stack, and
instantiated model classes to be displayed in the views. Some more complex logic
was however also present.

In the view model corresponding to the “Nurikabe Game Page”, inputs to the
page had to be interpreted in a somewhat complex way. For instance, the view
model had to decide whether or not to create a new NurikabeBoard instance, or
if it should load a previously created instance. Furthermore, if a new board was
to be created, i.e. read from file, the view model had to know what difficulty
board to read, and at which index in the file. Functionality was also added that
would allow the view model to generate a board by calling a web API, though this
was, for reasons explained, not used. The app’s “back” button also had to have
its functionality overridden for this page, to ensure that the app always returned
to the main menu after it being pressed. Lastly, this view model had to be able to
read and write boards to and from the app’s global context, in order to load and
save a board in progress.

Likewise, the view model corresponding to the “Index Selection Page” also
needed some more complex functionality, to determine how many levels were

Chapter 3: Development 59

available for a given difficulty, and then to show a button for each of those levels.
This was implemented by calling a static function from the Board model class,
which read the file corresponding to the difficulty passed to the index selection
page, and returned the number of boards in it. A list of buttons, the same length
as the number of boards found, was then instantiated, and each was bound to
a command that would navigate to the game page, passing along the difficulty
and index of the board to be displayed. The list of buttons was then displayed as
Xamarin Buttons in a CollectionView in the .xaml file.

The view model corresponding to the Nurikabe menu page was somewhat sim-
pler, but still required logic to determine whether or not to display the “Continue”
button, as mentioned above.

3.5.4 Nurikabe implementation

The actual game logic was relatively straight forward to implement. It consisted
of the NurikabeCell class detecting long and short presses on cells in the boards,
and then changing said cell’s state. This state change was performed both in the
NurikabeCell class, to adjust how the cell was displayed, but also in the board
array in the Board class, so that it would mirror the shown board. Any update
to a cell would also trigger a solve check in the Board class, that would check if
the unsolved board had placed water cells in exactly the same positions as in the
solved board. If so, the board was considered solved, and a pop-up displayed to
the user, before bringing them back to the main menu.

For complete instructions on how to navigate the app and play the game, see
section 4.3. For instructions on how to install the app on an Android device, see
appendix B.2.

Chapter 4

Results

In this chapter, the results of the project will be presented, both in regards to the
Nurikabe puzzle generator, and the “MasterGame” app. For more abstract discus-
sion about these results, and for results regarding the candidate’s development as
a software developer, see chapter 5.

4.1 The puzzle generator

In this project, a Nurikabe generator, capable of generating puzzles solvable by
humans, was created. The generator was written in a functional way, using the
Haskell programming language. Overall, the generator therefore fulfills the ob-
jectives of the project in a satisfactory way. The source code for the generator can
be found in the attached .zip file; see appendix B.1 for an overview of the structure
of the attached code.

4.1.1 Difficulty of generated boards

The developed generator had fully implemented methods to generate “easy” and
“medium” boards. Examples, displaying such generated boards, and demonstrat-
ing their solvability, can be found below in figures 4.1 and 4.2. Note that these dif-
ficulty levels were defined based on personal experience and convenience, rather
than some more concrete difficulty measure, and other classifications might there-
fore be equally correct.

The “easy” board generator utilized techniques 1-4 in section 3.1.1, whereas
the “medium” board generator utilized the full list of beginner techniques in the
same section. Given more time, a “hard” board generator would also have been
implemented using both the full list of beginner techniques in section 3.1.1, as
well as the full list of advanced techniques, as described in section 3.1.2. The
“medium” board generator would likely also be extended to utilize some of the
easier of the advanced techniques. As it stands however, there was not enough
time to implement the needed techniques, and the “hard” board generator there-
fore stands unfinished.

61

62 Håvard Melheim: Placeholder

(a) The generated, unsolved
board.

(b) Applying the completed
islands technique allows all
cells orthogonally adjacent
to a 1-hinted cell to be
marked as water.

(c) Applying the island-
and water expansion tech-
niques, allows the 2-hinted
island to be completed, and
some more water cells to be
marked.

(d) Applying the expansion
techniques yet again, now
on the isolated water region
on the left of the board,
the 3-hinted island begins to
form.

(e) By continuing to use the
expansion techniques, the
3-hinted island, and with it
the board, is completed.

Figure 4.1: A Nurikabe board, of difficulty “easy”, and size 5×5, generated by the
developed generator, and solved using the techniques described in section 3.1.1

Chapter 4: Results 63

(a) The generated, unsolved
board.

(b) Applying the completed
islands technique allows
all cells orthogonally ad-
jacent to a 1-hinted cell
to be marked as water.
The island- and water
expansion techniques then
allow some more cells to be
marked.

(c) Here, we use the com-
pleted island technique to
mark the first 2-hinted is-
land as complete. We also
use the unreachable cell
technique to mark some
more cells as water in the
right half of the board.

(d) We use the pool aver-
sion technique, followed
by the completed island
technique to complete the
second 2-hinted island.

(e) Applying the pool
avoidance technique just
below the second 2-hinted
island, followed by the un-
reachable cells technique
creates a new potential
pool in the bottom right of
the board. Avoiding this by
using the pool avoidance
technique completes the
first 4-hinted island.

(f) By applying the expan-
sion techniques, followed
by the pool aversion tech-
nique, before applying the
expansion techniques yet
again, we complete the last
4-hinted island. With that,
the board is complete.

Figure 4.2: A Nurikabe board, of difficulty “medium”, and size 7× 7, generated
by the developed generator, and solved using the techniques described in section
3.1.1

64 Håvard Melheim: Placeholder

Note that the developed generator in no way guarantees the difficulty of a
generated board. In fact, as explained in section 3.3.5, a generated board might
artificially be made easier, in order for it to be solvable. Comparing the boards in
figures 4.1 and 4.2 however, it is clear to see that the “medium” board is noticeably
more difficult to solve than the “wasy” board. This can be justified intuitively by
simply looking at the boards. It can however also be justified more concretely;
in the example solutions of the two boards, it is clear that the “medium” board
takes more steps, i.e. technique applications, to solve, which would translate to a
longer solve time for a human solver. Additionally, the “medium” board requires
more different techniques to solve. This would also translate to a longer solve time
for a human solver, as more time would be needed to decide which technique to
apply in a given situation.

This difference in difficulty is, naturally, not unrelated to the size difference
between the two boards. One could even go so far as to claim that the size differ-
ence is the sole explanation for the increased number of required solution steps
in the “medium” board, though this would be hard to verify. Regardless, the dif-
ference in size cannot reasonably explain the larger number of different solution
techniques required to solve the “medium” board. It can therefore be argued that
the generator succeeds in generating boards of varying difficulty, and not only by
modifying board size.

4.1.2 The performance of the generator

As far as the performance of the generator is concerned, it can be said to be sat-
isfactory. Generating small to medium size boards is relatively quick; “easy” 5×5
boards are consistently generated in less than one second, and “medium” 7 × 7
boards rarely take longer than a few seconds to generate.

That said, the generator does not scale well with size, and even 8× 8 boards
of “medium” difficulty take drastically longer to generate. Also the variation in
generation time seems to increase with the board size, meaning larger boards
deviate more from their average generation time.

Many factors will contribute to this poor scalability. Presumably, the most signi-
ficant of these is the fact that the generator relies on applying solution techniques
to determine the solvability of a generated board. This means that the generator
will necessarily scale very poorly, as solving a board in this manner is, as was
shown in section 2.2.2, NP-hard. Few measures, short of proving that P = N P
(which is far beyond the scope of this project), would improve this scalability. A
major redesign of the generator algorithm, removing the need for solving boards,
might also serve to improve the scalability, but even at the conclusion of this pro-
ject it is still uncertain whether such an algorithm could even possibly exist.

Two other factors that contribute significantly to the scalability issue can how-
ever be identified, which might be more easily amendable. The first of these is the
island size restriction implemented in the generator, as described in section 3.3.2.
This restriction allows larger boards to contain larger islands, something that,

Chapter 4: Results 65

from experience, has a two-sided effect: For a given set of solution techniques,
it decreases the chance that a generated board is solvable, for any assignment of
hints. Conversely, it also means that solving a larger board is more likely to re-
quire more advanced techniques. This, in turn, means that the generator will be
less likely to deem a board solvable the larger it is, thus increasing the average
generation time.

The second factor, which is closely linked with the first, is the reliability meas-
ure implemented as described in section 3.3.5. As mentioned in said section, this
measure increased the worst-case run-time of the generator, in order to increase
it’s reliability. That said, the average run-time was observed to decrease for reason-
ably sized boards, i.e. about 5×5 for “easy” boards and 7×7 for “medium” boards.
When increasing the board size however, the run-time quickly worsened with this
reliability measure implemented. This is likely because, as mentioned above, the
odds of a board being solvable for a given set of techniques decreases as the size
of the board increases. Without adding more solution techniques, simply increas-
ing the size of the board will in other words often result in a board that remains
unsolvable in spite of the reliability measure’s best efforts, thus increasing the run-
time. This is evidenced by the fact that generating an “easy” board of size 7× 7
takes drastically longer than generating a “medium” board of the same size. Even
in situations where the reliability measure was able to make a board solvable, this
would likely require more reassignments of cells for larger boards, something that,
given the measure’s poor worst-case run-time, would worsen generation times.

Based on the factors explained above, some improvements can be suggested,
that might improve the scalability of the generator. The most important of these
would be to implement the remaining solution techniques described in section
3.1.2, and use these when generating larger boards. As mentioned above, 7 × 7
boards are drastically faster to generate using the full set of beginner techniques,
i.e. “medium” difficulty, than with only a smaller subset, i.e. “easy” difficulty. This
means it stands to reason that larger boards will similarly be generated faster with
more solution techniques available.

Additionally, redesigning the restriction on maximum island size, either by
having a more variable limit, or by implementing some other restriction, perhaps
on island shape as well as size, might increase the odds of a generated board being
solvable. This would in turn reduce the generation time for boards of a given size.

Having suggested these improvements, it should however be restated that,
though they might be very successful in decreasing generation-times for relatively
small boards, their effect on the overall scalability of the generator will likely be
marginal. This is, as explained above, due to the NP-hardness of solving boards,
something that could not easily be circumvented.

4.2 The generator web API

As explained in section 3.4, the finished generator was integrated as part of a
web API. This enabled the generator to be used in a simple, intuitive way; espe-

66 Håvard Melheim: Placeholder

cially when paired with a simple, auto-generated User Interface (UI), made using
Swagger (See figures 4.3 and 4.4).

When called with correctly formatted parameters, for instance as shown in
figure 4.4a, the web API returned a human-solvable board, compliant with the re-
quested board size and difficulty. The returned board was furthermore formatted
as a JSON string, meaning it could relatively easily be utilized from various dif-
ferent programs, such as the developed app. Part of such a response can be seen
below in figure 4.4b.

(a) Here, all the available endpoints are listed.

(b) Here, the /GenerateMultipleBoards endpoint has been expanded, displaying the re-
quest parameters. Similar request interfaces existed for both the GenerateSeeded and Gen-
erateUnseeded endpoints.

Figure 4.3: The auto-generated user interface of the web API.

Chapter 4: Results 67

(a) The request sent to the API. Note the request URL at the bottom, where the parameters
have been added.

(b) The response from the API; a human-solvable Nurikabe board, generated based on
the parameters sent in the request. Note that the entire response is not shown here; the
“UnsolvedBoardArray” continues past the edge of the screen, and is followed by a “Solved-
BoardArray”, containing the solution to the generated board.

Figure 4.4: An example of a request to the API and the returned response.

68 Håvard Melheim: Placeholder

4.2.1 Hosting

As it stands, the web app is not hosted online in any way. Attempts were made to
achieve this, but as explained in section 3.4.2, these did not bear fruit, mostly due
to the fact that the web app needed to integrate the Haskell program that consti-
tuted the actual generator. Therefore, the only way to use the generator currently,
is to run the .NET program locally. This program, in the form of a Visual Studio
solution, can be found in the attached code. See appendix B.1 for the structure of
the attached code.

4.3 The “MasterGame” app

The developed app, eventually simply called “MasterGame”, enabled a user to
solve generated Nurikabe puzzles, and so fulfilled the objectives of the project.
The app consisted of an intuitive, if minimalistic, user interface, and all the func-
tionality necessary to solve Nurikabe puzzles. Unfortunately, to build the app for
iOS would require access to a mac, something that was not available to the can-
didate during this project. The finished app is therefore only available on Android
devices. For instructions on how to install the finished app from the attached .zip
file, see appendix B.2.

4.3.1 User interface

Upon first opening the app, the user will be greeted by a main menu, as shown in
figure 4.5a. From here, pressing the “New Game” button will lead to the difficulty
selection screen, as can be seen in figure 4.6a. Choosing a difficulty, by pressing
one of the buttons, will then lead to a level selection screen, as seen in figure 4.6b.
Note that, as previously explained, the “hard” difficulty is not fully implemented,
and so attempting to press this button will not have any effect.

Chapter 4: Results 69

(a) The app’s main menu if no puzzle is
currently in progress.

(b) The app’s main menu if a puzzle is
currently in progress; in this case, Level
3 of the “medium” puzzles.

Figure 4.5: The app’s main menu.

70 Håvard Melheim: Placeholder

(a) The app’s difficulty selection screen. (b) The app’s level selection screen.

Figure 4.6: The app’s puzzle selection screens.

Having chosen a level from either the “easy” or “medium” selections, The game
screen is then displayed, as can be seen in figure 4.7 below, and the game can be
played. To interact with the game screen, i.e. to play the game, both long and short
presses of the screen can be used; short presses will toggle the pressed cell’s type
assignment between being unknown and water, whereas long presses will toggle
it between being unknown and island. How these different assignments look in
the app, can be seen in figure 4.8a below.

Pressing the back button, i.e. the small, left-facing arrow in the top left corner
of the screen, will cause the app to return to the main menu; only now a “Con-
tinue” button will also be shown as can be seen in figure 4.5b. Pressing this button
allows the user to return to an unfinished game. Finishing a puzzle will display a
pop-up, as seen in figure 4.8b below.

Chapter 4: Results 71

(a) The app’s game screen, showing a
fresh, “Easy” difficulty board.

(b) The app’s game screen, showing a
fresh, “Medium” difficulty board.

Figure 4.7: The app’s game screen.

72 Håvard Melheim: Placeholder

(a) The app’s game screen, showing a
“Medium” difficulty puzzle in progress.
Note how the different cell types are dis-
played: unknown cells as white boxes,
water cells as black boxes, and island
cells as white boxes with a central dot.

(b) The app’s game screen, showing the
pop-up alert that appears when a puzzle
is solved.

Figure 4.8: The app’s game screen.

From the main menu, pressing the top-left button consisting of three vertical
lines, often called a hamburger-menu due to its shape, will open the app’s flyout
menu, as can be seen in figure 4.9a below. From this menu, it is possible to navig-
ate between the main menu, and the app’s two info pages: the “About Nurikabe”
page, and the “About This Project” page.

The “About Nurikabe” page, that can be seen in figure 4.9b below, displays
the rules of Nurikabe puzzles, as well as the app’s interface for solving them. The
“About This Project” page displays a short statement about the context of the app,
and can be seen in figure 4.9c below.

Chapter 4: Results 73

(a) The app’s flyout menu,
allowing a user to navigate
between the main menu and
the info screens.

(b) The “About Nurikabe”
info screen, displaying
useful information about
Nurikabe, and how to use
the app.

(c) The app’s “About This
Project” info screen, display-
ing a brief statement about
the context of the app and
this project.

Figure 4.9: The app’s flyout menu and info screens.

74 Håvard Melheim: Placeholder

4.3.2 Board generation

As mentioned, the app was originally intended to consume a web API exposing
endpoints that allowed for generation of puzzle boards. Doing so would serve
to nicely decouple the app from the generator, something that was desirable so
that the generator’s at times poor run-time wouldn’t affect the performance of
the app. Consuming a web API in an asynchronous manner would, after all, be
an easily cancellable action if it proved to take too long. Due to the difficulties
explained earlier in this chapter however, the web API could not be hosted, and
so consuming it from the app was not possible.

Separating the app from the generator would also serve the purpose of sim-
plifying the app’s design and development, something that was ideal due to the
candidate’s lack of experience developing mobile apps. Because of this, and due to
a suspicion that the difficulties with hosting the web app would also be present in
the app, it was decided not to attempt integrating the generator directly into the
app. Once the web API fell short, a few boards were therefore manually imported
into the app in the form of .json files instead. The “Level selection screen”, called
“IndexSelectionPage” in the code, was added at this point to enable selecting a
puzzle board from a list.

In spite of the finished app having no automated way to generate new boards,
the objectives of the project were still considered fulfilled, as an app enabling a
user solve Nurikabe puzzles had been developed. Additionally, the root cause of
the problems was mainly the incompatibility of two different technologies, resolv-
ing which was considered outside the scope of this project.

Chapter 5

Discussion

The goals of this project were to create a generator program capable of generating
human-solvable instances of the nurikabe logic puzzle, as well as to create an app
that allows solving such puzzles. Both of these goals were in turn intended to
serve the overarching purpose of improving the candidate’s skills as a software
developer. In this chapter, the degree to which these goals have been achieved
will be discussed.

5.1 The puzzle generator

As far as the generator is concerned, it can be said to function at an adequate level,
as relatively simple boards can be generated at appropriate sizes in decent time.
There is however much room for improvement. First and foremost, the implement-
ation of more advanced solution techniques would enable the generator to create
more difficult (and, as explained in section 4.1, larger) boards. Additionally, the
generator algorithm itself could likely be improved, increasing its reliability and
efficiency. Some means that might achieve this were introduced in section 4.1, but
as efficiency was not a focus of this project, it was not prioritized heavily in the
development.

As mentioned, the final generator lacked the ability to generate boards harder
than what was defined as “medium” difficulty. In spite of this, the generator can
still be said to have achieved it’s purpose. For one, the objective of the project was
never to generate the hardest possible Nurikabe puzzles, but rather to investigate
if, and how, an program procedurally generating puzzles could be developed. The
“easy” and “medium” difficulty boards that have been generated serve as proof of
concept of this. Admittedly, implementing a way to generate harder puzzles might
have made the resulting app more engaging, but this was again not the purpose
of the project, and so would not affect the results or conclusion of it.

75

76 Håvard Melheim: Placeholder

5.2 The generator web API

Integrating the generator in a web API, that would enable the solver app to gen-
erate boards on demand, proved difficult. Both the compilation of the Haskell
code to a DLL usable by the web app, and the hosting of said web app proved
troublesome, with the second problem remaining unsolved at the conclusion of
this project. These problems both arose from the fact that the generator itself was
written in Haskell, a language that is, at its base, incompatible with the C family
of programming languages, and thereunder C#. It could therefore be questioned
whether choosing to use this language for the generator was an optimal decision.
If the main objective of this project was to develop an app to be published, the
answer to this question would likely by a definitive no; opting to implement the
generator, in its entirety, in C# would likely be more prudent. As the overarching
goal was not the publication of an app however, but rather for the candidate to
hone their skills as a developer, the benefits of choosing Haskell likely outweighed
the costs.

Importantly, the use of the Haskell language served to introduce the candid-
ate to purely functional programming, and with it a skill-set that will undoubtedly
be beneficial to a developer. Being aware of the patterns and techniques of func-
tional programming will grant insight into alternative ways of solving problems,
something that is always an advantage, even when using imperative languages.

Additionally, by introducing the challenges mentioned above, the use of Haskell
allowed the candidate to try their hand at solving development problems that lie
outside the realm of programming; namely making different, inherently incom-
patible, technologies work with each other. Facing, and attempting to solve, such
a challenge will surely benefit the candidate in the future. Even if the solution
in this case was only a partial success, the experience will serve to improve the
candidate’s ability both to compare technologies and choose between them. The
experience might also help the candidate combine technologies, that may not be
designed to work together, if the need should arise.

All told, the created web app can, in spite of its lacking integration, be con-
cluded to have aided in achieving the goals of the project.

5.3 The “MasterGame” app

The developed app is likewise acceptable in its function. It’s main purpose has
been achieved in a fully satisfactory way, as it, in general, allows users to solve
Nurikabe puzzles of any size and difficulty. However, due to challenges discussed
above, and in chapter 4, the app was unable to generate puzzles on demand, in-
stead including some pre-generated boards in local files. This meant that the app
did not, in practice, enable users to solve puzzles of any size, but only of fixed,
predetermined sizes, despite the functionality being fully implemented and func-
tional in the app. Likewise, the app contained code that would allow the consump-
tion of a web API that generated boards of any size, but this remains unfinished

Chapter 5: Discussion 77

and untested at the conclusion this project, again due to the challenges discussed
above.

As far as the user interface of the app is concerned, it is fully functional, though
it lacks polish. All buttons work as intended, and allow navigation around the app,
but the appearance of these buttons, as well as the rest of the app, is, for lack of
a better word, boring. At the conclusion of the project, the app only uses the
default colors, designs, and icons of Xamarin components. That said, the focus of
the project was not, as previously stated, to develop an app to be published, but
rather to allow users to solve Nurikabe puzzles. The outwards appearance of the
app was therefore not prioritized in the development.

Likewise, the development of the app served to give the candidate experience
with app development, and to familiarize them with new technologies, such as
the Xamarin framework. It can therefore be said to have contributed to the over-
arching goal of developing the candidate’s skills as a developer.

Chapter 6

Conclusion

Through the work on this project, the pen-and-paper logic puzzle known as Nurikabe
has been investigated. It’s computational complexity has been thoroughly ex-
amined, and techniques for its solution have been developed. A generator pro-
gram, capable of generating Nurikabe puzzles solvable to a human, has also been
developed, along with an app enabling a user to solve these generated puzzles.

The developed generator serves to prove that it is possible to procedurally
generate Nurikabe puzzles that can be solved by humans, even if this generation,
like the Nurikabe problem itself, is NP-hard. It also stands to reason that this
holds true for the many other logic puzzles that are in their general form NP-
hard or NP-complete. Furthermore, the puzzles generated by the generator are
non-trivial in their solutions, seemingly indicating that there is potential for a
computer program to generate puzzles at a similar level as humans are capable
of, even if they might lack the artistic sense of a human generator.

Even though the generator does fulfill its main objective of generating human-
solvable puzzles, it is not without flaws, by any means. For the generator to be of
any practical use in, for instance in a published app, it would need some significant
improvements. For one, it would need to have its efficiency improved, as the cur-
rent version takes unacceptably long to generate anything larger than a medium
sized board. Another area with room for improvement is where the difficulty of
the produced puzzles is concerned. The current generator lacks implementation
for the harder Nurikabe techniques, and is therefore unable to generate puzzles
requiring these techniques to solve. Additionally, the current version sacrifices dif-
ficulty for reliability, by simplifying boards that are unsolvable in order to make
them solvable. This means there is no way to guarantee that a generated board
is as difficult as the generator’s settings would imply, with the exception of board
size, which only has a small effect on overall difficulty.

The developed app likewise succeeded in fulfilling the objectives of the project.
This app is in some ways more completely implemented than the generator in that
it enables the solution of Nurikabe boards of any size and difficulty. It is however
not perfect, and improvements could be made also here. For instance, the visual
elements of the app could use some more work to be more appealing, and easy

79

80 Håvard Melheim: Placeholder

on the eyes. Likewise, the interface between app and generator would also need
more work, on both ends, to be fully functional.

Just as the concrete, technical objectives of the project were achieved, so too
was the overarching goal of improving the candidate’s skills as a software de-
veloper. Through the work on the project, the candidate was exposed to several
new technologies, frameworks and languages, expanding their proverbial toolbox
of development skills. They were also exposed to new ways of thinking about, and
solving, problems, something that is an advantage in all aspects of engineering,
and not just software development. The project can therefore be concluded to
have been very successful in achieving the intended goals.

Bibliography

[1] G. Kendall, A. Parkes and K. Spoerer, ‘A survey of np-complete puzzles,’
2008.

[2] E. Britannica, ‘Computational complexity,’ 2021. [Online]. Available: https:
//www.britannica.com/topic/computational-complexity.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
algorithms, 3rd ed. MIT Press Ltd, 2009.

[4] M. Holzer, A. Klein and M. Kutrib, ‘On the np-completeness of the nurikabe
pencil puzzle and variants thereof,’ 2008.

[5] B. P. McPhail, ‘The complexity of puzzles: Np-completeness results for nurikabe
and minesweeper,’ The Division of Mathematics and Natural Sciences, Reed
College, Dec. 2003.

[6] Microsoft, Why choose .NET, https://dotnet.microsoft.com/en-us/
platform/why-choose-dotnet, Accessed: 10.05.2022.

[7] Microsoft, What is ASP.NET, https://dotnet.microsoft.com/en- us/
learn/aspnet/what-is-aspnet, Accessed: 10.05.2022.

[8] Microsoft, A tour of the c# language, https://docs.microsoft.com/en-
us/dotnet/csharp/tour-of-csharp/, Accessed: 21.03.2022.

[9] Microsoft, What is xamarin? https : / / docs . microsoft . com / en - us /
xamarin/get-started/what-is-xamarin, Accesssed: 22.03.2022.

[10] Microsoft, Xamarin.forms XAML basics, https://docs.microsoft.com/nb-
no/xamarin/xamarin-forms/xaml/xaml-basics/, Accessed: 22.03.2022.

[11] Microsoft, The model-view-viewmodel pattern, https://docs.microsoft.
com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/
mvvm, Accessed: 22.03.2022.

[12] Microsoft, Controls reference, https://docs.microsoft.com/en- us/
xamarin/xamarin-forms/user-interface/controls/, Accessed: 04.04.2022.

[13] Microsoft, Xamarin.forms pages, https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/controls/pages, Accessed:
04.04.2022.

81

https://www.britannica.com/topic/computational-complexity
https://www.britannica.com/topic/computational-complexity
https://dotnet.microsoft.com/en-us/platform/why-choose-dotnet
https://dotnet.microsoft.com/en-us/platform/why-choose-dotnet
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet
https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://docs.microsoft.com/en-us/xamarin/get-started/what-is-xamarin
https://docs.microsoft.com/nb-no/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/nb-no/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/pages
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/pages

82 Håvard Melheim: Placeholder

[14] Microsoft, Xamarin.forms layouts, https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/controls/layouts, Accessed:
04.04.2022.

[15] Microsoft, Xamarin.forms views, https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/controls/views, Accessed:
04.04.2022.

[16] Microsoft, Xamarin.forms cells, https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/user-interface/controls/cells, Accessed:
04.04.2022.

[17] H. community, Introduction, https://wiki.haskell.org/Introduction,
Accessed: 12.05.2022.

[18] M. Lipovača, Learn You a Haskell for Great Good! Accessed: 12.05.2022.

[19] H. community, Polymorphism, https://wiki.haskell.org/Polymorphism,
Accessed: 12.05.2022.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/layouts
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/layouts
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/views
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/views
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/cells
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/user-interface/controls/cells
https://wiki.haskell.org/Introduction
https://wiki.haskell.org/Polymorphism

Appendix A

Summary of the proof of the
Nurikabe problem being
NP-complete

In this section, the proof of NP-completeness for Nurikabe will be briefly summar-
ized. For the full proof, see Holzer et al[4] or McPhail[5].

First and foremost, a decision problem needs to be stated, of which to prove
the NP-completeness. This is done in section 2.2.2 and so will not be restated here.

A.1 Proof of NP membership

From here, the proof of the NP-completeness of Nurikabe consists of first proving
that the problem is NP. McPhail proves this by describing an algorithm that can
verify a solution to a Nurikabe board in time O(N3) where N = n × m. As this
proves a solution to the Nurikabe problem can be verified in polynomial time, it
is concluded that the Nurikabe problem is in fact NP.

A.2 Proof of NP-hardness

Next, it must be proved that the nurikabe problem is NP-hard. This is done by prov-
ing that a known NP-complete problem can be reduced to the Nurikabe problem
in polynomial time. If such a reduction is possible, the Nurikabe problem must
be NP-C. To perform this proof, McPhail uses the Circuit-SAT problem, whereas
Holzer et al uses the planar 3SAT problem. Both of these reductions involve show-
ing that a Nurikabe board can be used to create a boolean circuit, consisting of
signal-bearing wires, signal splitters and several different logic gates. To this end,
it is proven that a Nurikabe board can be used to represent any logic gate. Holzer
et al[4] proves this for wires, signal-splitters, NOT and OR-gates as follows:

83

84 Håvard Melheim: Placeholder

A.2.1 Nurikabe wire design

A wire is constructed from a Nurikabe board, by letting hints with value 2 carry
a signal horizontally as shown in figure A.1 below. Note that, as is clear from
figure A.1, several of these wires could be chained together to form longer wires.
Holzer et al also design further signal components, including input units, as well
as a phase shifter, to ensure that wires can be positioned in a way that enables
the components to follow. These components have however not been included
here for berivty’s sake, but can be found in the paper[4]. Included there are also
designs of components solely used to construct a complete Nurikabe board from
these components; i.e. easily, uniquely solvable rectangular board components
that can be fit in between the logic components to create a complete, solvable
Nurikabe board.

(a) An unsolved wire
board with two possible
solutions.

(b) Here, the cell in posi-
tion A4 has been marked
as an island cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Note
the leading island cells of
both the 2-hinted cells in
positions B4 and H4; these
indicate a true value.

(c) Here, the cell in posi-
tion A4 has been marked
as a water cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Note
the trailing island cells of
both the 2-hinted cells in
positions B4 and H4; these
indicate a false value.

Figure A.1: Nurikabe boards displaying how a signal-bearing logic wire could be
built as a Nurikabe board. Note that the unsolved board in A.1a has two possible
solutions, and exactly one is correct based what is input on the leftmost 2 hint, in
cell A4. The two-cell island that cell B4 is part of can therefore be considered the
input of the wire, and the two-cell island that cell H4 is part of, can be considered
the output, as it’s second cell will vary with the input.

A.2.2 Nurikabe signal-splitter design

Next, Holzer et al design a signal-splitter, to enable duplication of a signal. It is
constructed as shown below, in figure A.2. Again, it is clear how this component
can be made to interface with other components by the use of a two-cell island
“interface”.

Chapter A: Summary of the proof of the Nurikabe problem being NP-complete 85

(a) An unsolved signal-
splitter board with two
possible solutions.

(b) Here, the cell in posi-
tion A7 has been marked
as an island cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Again
note the leading island
cells of the three 2-hinted
cells in positions B7, F2,
and F12; these indicate a
true value.

(c) Here, the cell in posi-
tion A7 has been marked
as a water cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Again
note the trailing island
cells of the three 2-hinted
cells in positions B7, F2,
and F12; these indicate a
false value.

Figure A.2: Nurikabe boards displaying how a logic signal-splitter could be built
as a Nurikabe board. Note that the unsolved board in A.2a has two possible solu-
tions, exactly one of which is correct depending what is input on the leftmost 2
hint, in cell A7. The island containing cell B7 can therefore be considered the
input, and the islands containing cells F2 and F12 can be considered the output.

86 Håvard Melheim: Placeholder

A.2.3 Nurikabe NOT-gate design

Figure A.3 below shows how Holzer et al designed a Nurikabe board that could
be used as a logic NOT-gate.

(a) An unsolved NOT-gate
board with two possible
solutions.

(b) Here, the cell in posi-
tion A4 has been marked
as an island cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Note
that the leading island cell
of the 2-hinted island con-
taining cell B4 leads to a
trailing island cell in the
island containing cell H4;
This indicates that a true
input causes a false output.

(c) Here, the cell in posi-
tion A4 has been marked
as a water cell, and all
other cells marked accord-
ing to the only solution
that is now possible. Note
that the trailing island cell
of the 2-hinted island con-
taining cell B4 leads to a
leading island cell in the
island containing cell H4;
This indicates that a false
input causes a true output.

Figure A.3: Nurikabe boards displaying how a signal-inverting logic gate, or NOT
gate, could be built as a Nurikabe board. Note that the unsolved board in A.3a
has two possible solutions, exactly one of which is correct based what is input
on the leftmost 2 hint, in cell A4. The two-cell island that cell B4 is part of can
therefore be considered the input of the wire, and the two-cell island that cell H4
is part of, can be considered the output, as this island’s second cell will vary with
the input.

A.2.4 Nurikabe OR-gate design

Figure A.4 below shows how Holzer et al designed a logic OR-gate in the form of
a Nurikabe board.

A.2.5 Composite logic gates

Using the logic gates described above, it is now possible to create any desired logic
gate. For instance, a NAND gate can be constructed simply by applying a NOT-gate
to the inputs of an OR-gate, as evidenced by table A.1 below:

From here, an AND-gate can be constructed similarly easily by negating the
output of a NAND-gate, as evidenced by table A.2 below:

Chapter A: Summary of the proof of the Nurikabe problem being NP-complete 87

(a) An unsolved OR-gate
board, with four total pos-
sible solutions.

(b) true OR true: Here,
the cells in positions E1
and E13 have both been
marked as island cells,
making both inputs true.
All other cells have then
been marked according to
the only solution that is
now possible. The island
cell in position L7 now in-
dicates a true output.

(c) true OR false: Here,
the cell in position E1 has
been marked as an island
cell, while the one in posi-
tion E13 has been marked
as a water cell, making the
inputs true and false re-
spectively. All other cells
have then been marked ac-
cording to the only solu-
tion that is now possible.
The island cell in position
L7 now indicates a true
output.

(d) false OR true: Here,
the cell in position E1 has
been marked as a water
cell, while the one in pos-
ition E13 has been marked
as an island cell, making
the inputs false and true
respectively. All other cells
have then been marked ac-
cording to the only solu-
tion that is now possible.
The island cell position L7
now indicates a true out-
put.

(e) false OR false: Here
the cells in positions
E1 and E13 have both
been marked as water
cells, making both inputs
false.All other cells have
then been marked accord-
ing to the only solution
that is now possible. The
island cell in position
N7 now indicates a false
output.

Figure A.4: Nurikabe boards displaying how a logic OR-gate could be built as a
Nurikabe board. Note that the unsolved board in A.4a has four possible solutions,
exactly one of which is correct for each combination of inputs on the top and
bottom 2 hinted islands, in cell E1 and E13. The two-cell islands that cells E2
and E12 are part of can therefore be considered the inputs of the wire, and the
two-cell island that cell M7 is part of, can be considered the output, as it’s second
cell will vary with the input.

88 Håvard Melheim: Placeholder

X Y ¬X ∨¬Y) X ∧̄Y

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

Table A.1: Truth table for an input-negated OR-gate, as well as a NAND-gate.
Note how the negated OR-gate produces the same output as the NAND-gate.

X Y ¬X ∧̄¬Y X ∧ Y

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

Table A.2: Truth table for a negated NAND-gate as well as an AND-gate. Note
how both gates produce the same output.

Similar proofs can be made for any desired logic gate. See for instance the
appendic of Mcphail[5].

A.2.6 Polynomial time reducibility

From here, both Holzer et al[4] and McPhial[5] proceed to prove how the above
transformations, from logic gate to Nurikabe board, can be performed in polyno-
mial time. Likewise it is proved that combining these components into any given
boolean circuit can be done in polynomial time, thereby proving that the Nurikabe
problem is NP-complete.

Appendix B

Attachments

B.1 Structure of the attached source code

Submitted along with this report, is a .zip file, called “code.zip”, containing the
source code for the programs developed in the project: the MasterGame app, the
generator and the web app. At the top level, this file contains, within the code
folder, three items: the Generator folder, containing the source code for the gen-
erator program and web app, the MasterGame folder, containing the source code
for the “MasterGame” app, and the “mastergame.MasterGame.apk” file, being the
actual developed app. In the following sections, the structure of the source code
folders will be explained. Note that not all included files and folders will covered,
as some are merely included as part of the Visual Studio solution, and have there-
fore not been directly used in the project. These files are represented by “...” in
the below directory trees.

89

90 Håvard Melheim: Placeholder

B.1.1 Generator

The structure of the Generator folder is as follows:

• Generator/

◦ Controllers/

− GenerateController.cs

◦ Program.cs
◦ ...

• Generator.Application/

◦ Board/

− Board.cs
− HaskellRuntimeSingelton.cs

◦ HaskellGenerator/
◦ ...

• Generator.Common/

◦ Exceptions/

− BoardTimeoutException.cs
− UnsovableBoardException.cs

◦ ...

• Generator.Dto/

◦ BoardDto.cs
◦ ...

• Generator.sln

Here, the Generator folder acts as the entrypoint of the web-app, specific-
ally through the “Program.cs” file. The “GenerateController.cs” file is the code file
containing the actual endpoints of the web app. The Generator.Application folder
contains the actual generator functionality, including both the .NET components
found in the sub-folder Board, as well as the generator written in Haskell, which
can be found in the HaskellGenerator sub-folder. This sub-folder will be explored
more in-depth below.

The Generator.Common folder contains various functionality used throughout
the web-app, main in the form of the exceptions found in the Exceptions sub-
folder. The Generator.Dto folder contains the DTO used to construct the .json string
representing a board. Lastly, the “Generator.sln” file serves as the solution-file for
the Visual Studio project these files constitute.

Chapter B: Attachments 91

HaskellGenerator

The structure of the HaskellGenerator is as follows:

• Board/

◦ Board.hs
◦ Cell.hs
◦ Generator.hs
◦ Modifier.hs
◦ Monitor.hs

• Nurikabe/

◦ Easy.hs
◦ Generator.hs
◦ Hard.hs
◦ Medium.hs
◦ Nurikabe.hs

• Region/

◦ Incomplete.hs
◦ Island.hs
◦ Region.hs
◦ Water.hs

• Techniques/

◦ AvertPools.hs
◦ Complete.hs
◦ Expand.hs
◦ Separate.hs
◦ Surround.hs
◦ Unreachable.hs

• Test/

◦ AvertPools.hs
◦ Complete.hs
◦ Expand.hs
◦ Generator.hs
◦ Nurikabe.hs
◦ Separate.hs
◦ Surround.hs
◦ Unreachable.hs

• HaskellInterface.hs
• ...

Here, the Board folder holds files containing the lowest-level functionality of
the generator, such as the definitions of the Board and Cell data types, as well as

92 Håvard Melheim: Placeholder

the Modifiable type class. These files also handle basic operations on boards, such
as generating complete, unnumbered boards (in “Generator.hs”) and reassigning
cells (in “Modifier.hs”).

The Nurikabe folder contains the solvers of different difficulty, as well as the
generator functionality utilizing these solvers to generate puzzle boards.

The Region folder contains code that operates on boards on the region level;
i.e. operations that operate on entire islands, water-regions, or unknown regions.

The Techniques folder unsurprisingly contains the implementations of the dif-
ferent solution techniques that were implemented.

The Test folder contains some of the tests that were written to test the differ-
ent solution techniques, as well as the more composite solution- and generation
functions.

Lastly, the “HaskellInterface.hs” file serves as the entrypoint into the Haskell
code for the web app, and exposes the functions and types necessary to use it. also
included in HaskellGenerator folder, though not included in the above directory
tree, are several files that served to aid in the creation of the DLL used in the web
app, such as the “ExportTypes” files detailed in section 3.4.1.

B.1.2 MasterGame

The structure of the MasterGame folder is as follows:

Chapter B: Attachments 93

• MasterGame/

◦ MasterGame/

− Assets/

· Boards/
· ...

− Common/

· Dtos/NurikabeBoardDto.cs

− Models/

· Boards/
· → Boards.cs
· → NurikabeBoard.cs
· Cells/
· → BoxCell.cs
· → ImageCell.cs
· → LabelCell.cs
· GeneratorClient.hs

− ViewModels/

· IndexSelectionViewModel.cs
· NurikabeDifficultySelectionViewModel.cs
· NurikabeGameViewModel.cs
· NurikabeMenuViewModel.cs

− Views/

· AboutNurikabePage.xaml(.cs)
· AboutThisProjectPage.xaml(.cs)
· IndexSelectionPage.xaml(.cs)
· NurikabeDifficultySelectionPage.xaml(.cs)
· NurikabeGamePage.xaml(.cs)
· NurikabeMenuPage.xaml(.cs)

− App.xaml(.cs)
− AppShell.xaml(.cs)
− ...

◦ MasterGame.Android/

− ...

◦ MasterGame.iOS/

− ...

• MasterGame.sln

94 Håvard Melheim: Placeholder

As can be seen above, the MasterGame sub-folder contains three folders: Mas-
terGame, MasterGame.Android and MasterGame.iOS. Of these, only the Master-
Game sub-folder is of much interest, as the MasterGame.Android and MasterGame.iOS
sub-folders only contains files needed to build the app for Android and iOS devices,
and were therefore rarely used directly in the project. The MasterGame sub-folder
on the other hand contains the code base for the developed app.

The Assets sub-folder contains the garphical assets used in creating the app,
i.e. pictures, as well as the imported boards, in the Boards sub-folder.

The Common sub-folder contains the DTO used to import and deserialize the
boards from the .json files. This DTO mirrors the one found in the generator web
app.

The Models sub-folder contains the so called business logic of the app; that
is, it contains the core functionality that isn’t necessarily directly concerned with
visual appearance. Here, the classes containing the functionality for the boards
and cells can be found, as well as the classes used to wrap these objects in dis-
playable base classes. An example of this is the Boards class (in the “Boards.cs”
file) containing the functionality for reading, maintaining and modifying boards,
being wrapped in the NurikabeBoard class (in “NurikabeBoard.cs”) that inherits
the Xamarin.forms Grid class, thereby making the boards displayable.

The ViewModels sub-folder contains the view models of the app, tying the dis-
played views to the model backend.

Lastly, the Views sub-folder contains the views of the app. This includes a .xaml
file declaring the visuals of each page, and a .xaml.cs code-behind file.

The MasterGame folder also contains the “App.xaml”, “App.xaml.cs”, “App-
Shell.xaml” and “AppShell”.xaml.cs files, serving as the entrypoint of the app, and
containing some default Xamarin logic, associated with navigation, styling and so
on.

Finally, the top-level MasterGame folder also contains the “MasterGame.sln”
solution file, used by Visual Studio as the entrypoint for the solution.

B.2 App and installation

The developed app can be found as the “mastergame.MasterGame.apk” file in
the attached “code.zip” file. This is a .apk file, meaning it can only be installed
on phones, and other devices, using the Android OS. Also note that the app has
only been tested on emulators for Android versions 11 and 12, and on a physical
device running Android 12. The app might work for other Android versions, but
this cannot be guaranteed.

To install the app, simply follow the instructions below:

1. Connect the phone (or other device) the app is to be installed on, to a com-
puter, with the .apk file downloaded and extracted from the .zip file. Ensure
that exchanging files with the device is enabled.

2. Copy the .apk file to a known location on the device.

Chapter B: Attachments 95

3. Locate the .apk file on the device, and tap it once.
4. A prompt will appear, asking if you want to install the app; press “install”.
5. The app will now begin installing. After a moment, a new prompt may ap-

pear, stating that Play Protect does not recognize the developer of the app.
This can safely be ignored. Press “install anyways”.

6. The app will now finish, and can be open by pressing “open” on the prompt
that appears, or by locating the app on the device.

7. After the app is installed, a last prompt may appear, asking if the app should
be sent to Play Protect to be scanned. This is not necessary, and choosing
“send” or “don’t send” will have no effect on the app.

8. The app can now be used. Enjoy!

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Håvard Melheim

Generating rationally solvable
instances of NP-hard logic puzzles

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
June 2022

M
as

te
r’s

 th
es

is

	Task
	Abstract
	Sammendrag
	Contents
	Acronyms
	Introduction
	About the task
	The structure of this report

	Background and Theory
	Computational complexity
	Problems
	The P class of problems
	The NP class of problems
	The NP-C Class of Problems
	The NP-H Class of Problems
	NP-completeness proof

	Nurikabe
	Rules and definitions
	Computational complexity of Nurikabe

	Technologies
	The .NET platform
	The Xamarin framework
	The Haskell programming language

	Development
	Nurikabe solution techniques
	Beginner techniques
	Advanced techniques

	The puzzle generation algorithm
	Completed board generation
	Placing numbers

	The puzzle generator implementation
	Data structures
	The completed-board generator
	Implemented techniques
	The Nurikabe solver
	The full generator

	The puzzle generator web app
	Haskell DLLs
	Hosting

	The ``MasterGame'' app
	Models
	Views
	Viewmodels
	Nurikabe implementation

	Results
	The puzzle generator
	Difficulty of generated boards
	The performance of the generator

	The generator web API
	Hosting

	The ``MasterGame'' app
	User interface
	Board generation

	Discussion
	The puzzle generator
	The generator web API
	The ``MasterGame'' app

	Conclusion
	Bibliography
	Summary of the proof of the Nurikabe problem being NP-complete
	Proof of NP membership
	Proof of NP-hardness
	Nurikabe wire design
	Nurikabe signal-splitter design
	Nurikabe NOT-gate design
	Nurikabe OR-gate design
	Composite logic gates
	Polynomial time reducibility

	Attachments
	Structure of the attached source code
	Generator
	MasterGame

	App and installation

