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Abstract

The potential use cases for small unmanned aerial vehicles (UAVs) are ever-increasing
as they have become significantly more capable and cheaper over the past decades. One
area where they could provide meaningful contributions is in search and rescue (SAR)
missions, where they could help speed up the search for victims.

Landing is a common challenge for all autonomous UAV missions. This thesis aims
to land a Parrot Anafi quadcopter UAV autonomously on a helipad mounted on the DNV
ReVolt marine vessel at sea.

The thesis breaks down the landing problem into perception, control, and mission plan-
ning. For perception, two different computer vision algorithms are combined in a model-
based Kalman filter to estimate the relative position between the Anafi and the helipad.
The control system used is a cascaded structure of position, velocity, and attitude control,
where different velocity and position control methods are investigated. The thesis finally
investigates whether artificial intelligence (AI) planning is a suitable form of mission plan-
ning for this problem.

The thesis concludes that the perception and control system was reliable enough to land
the UAV on an entirely or nearly stationary helipad, indoors and with the helipad mounted
on the ReVolt at sea. However, for landings where the helipad moved significantly, more
accurate position estimation and a better-suited guidance system are necessary to land
reliably.

The thesis demonstrates that AI planning could be used in this problem to generate a
valid action sequence to solve a mission based on predefined goals. However, the actual
effectiveness of such algorithms could not be determined due to the missions tested being
insufficiently complex.
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Sammendrag

De potensiale bruksområdene for ubemannede droner (UAV-er) fortsetter å øke etter-
som de har blitt betydelig mer kapable og billigere i løpet av de siste tiårene. Ett område
hvor UAV-er kan bidra positivt er innenfor søk og redningsaksjoner, hvor de kan hjelpe til
å effektivisere søket etter ofre.

Landingen er en felles utfordring for alle autonome UAV-oppdrag. Målet med denne
oppgaven er å lande en Parrot Anafi UAV-drone autonomt på en landingsplattform montert
på det maritime fartøyet DNV ReVolt.

Oppgaven bryter ned landingen i oppfattelse, regulering, og oppdragsplanlegging. In-
nen oppfattelse brukes to forskjellige datasynalgoritmer sammen i et Kalman-filter for å
estimere den relative posisjonen mellom UAV-en og landingsplattformen. Reguleringssys-
temet som brukes er en kaskaderegulator med posisjon-, hastighet-, og vinkelregulering,
hvor bruk av forskjellige posisjons- og hastighetsregulatorer utforskes. Til slutt undersøker
oppgaven hvorvidt algoritmer basert på kunstig intelligens for oppdragsplanlegging (AI
planning) kan brukes for å planlegge oppdragene til en slik type UAV.

Oppgaven konkluderer med at oppfatnings- og reguleringssystemene var pålitelige nok
til å lande UAV-en på en helt eller delvis stasjonær landingsplattform, både innendørs og
med landingsplattformen montert på DNV ReVolt-båten på sjøen. I de landingene der
landingsplattformen beveger seg betydelig kreves imidlertid mer nøyaktig oppfatning og
bedre reguleringssystemer for å kunne lande pålitelig.

Oppgaven demonstrerer at AI planning kan brukes i dette problemet til å generere en
gyldig sekvens med handlinger som løser et oppdrag basert på forhåndsbestemte mål. Imi-
dlertid kunne ikke den faktiske effektiviteten til slike algoritmer bedømmes da oppdragene
i denne oppgaven ikke var kompliserte nok.
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Preface

This thesis is written in the spring of 2022 and is the conclusion to my master’s de-
gree in Cybernetics and Robotics at the Norwegian University of Science and Technology
(NTNU) in Trondheim, Norway.

During the final years of my studies, I have specialized in the field of autonomous
systems, which has developed into an area of great personal interest. I believe autonomous
systems have the potential to have a meaningful impact on society in a positive way if used
correctly. This, along with the fascination for the underlying technical concepts, is my
main motivation for pursuing this field.

My motivation for choosing this thesis was the hands-on opportunity to combine multi-
ple different elements of autonomous systems such as guidance, control, state estimation,
computer vision, and mission planning into one complete system that can be tested in
real-world experiments on a small quadcopter drone. Another motivational factor is the
potential for the project to have an eventual real-world impact, as it works towards the end
goal of creating an autonomous drone system capable of aiding human rescuers in search
and rescue missions at sea.

The project is a continuation of the work done by Peter Bull Hove [1] and Thomas
Sundvoll [2], who in their master’s theses explored the use of computer vision for estimat-
ing the pose of a quadcopter when landing on a helipad. Sundvoll started the project by
creating a helipad and developing pose estimation algorithms based on traditional com-
puter vision methods, while Hove continued the project by combining the methods of
Sundvoll with deep learning-based computer vision in a Kalman filter. Specifically, the
part used from Hove is the deep learning-based pose estimation system, while the physical
helipad designed by Sunvoll along with its Gazebo model is used as the landing platform
in this thesis.

This thesis is also a direct continuation of my specialization project [3], where I ported
the works of Hove and Sundvoll to the modern Anafi quadcopter drone and added new
techniques for pose estimation using traditional computer vision. The contributions from
that project that are used in this thesis are an interface between the Robot Operating Sys-
tem and the Anafi quadcopter that has been further modified in this thesis, a corner iden-
tification algorithm for finding known points on the helipad in an image, and scripts for
recording perception output for evaluation.

Anastasios Lekkas from the Department of Engineering Cybernetics (ITK) at NTNU
has been my academic supervisor during this thesis. He has helped shape the course and
aims of the thesis and provided valuable high-level insight and guidance during the entire
project.

Miguel Hinostroza, also from ITK, has generously provided me with an implementa-
tion of the Graphplan algorithm, along with a valuable insight into the field of AI planning.
He has also helped with assistance and insight during the experiments with landing on the
DNV ReVolt vessel.

Tom Arne Pedersen and Christopher Strøm from DNV have supplied me with the DNV
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ReVolt vessel for testing autonomous drone landings on a boat and have generously helped
with tests both on land and at sea.

Paolo De Petris from ITK has supplied me with access to the Arena52 autonomous
drone lab at NTNU, and has greatly assisted with the setup and use of its motion capture
system.

Terje Haugen at ITK has provided me with a portable power generator to use to power
the laptop when testing outside where no power outlets are available.

The department has also provided me with two Parrot Anafi FPV quadcopters for the
project, along with a Komplett Khameleon P9 Pro laptop.

Software released by Parrot used are the Olympe API 3.0.0 for interfacing with the
Anafi on the laptop and the Parrot-Sphinx 1.8 using Gazebo 7.0.1 for flying the Anafi in
simulation.

Other open-source software used in this thesis include Python 3.6.9, ROS Melodic
with rospy 1.14.12, darknet ros from Legged Robotics [4], and Python libraries OpenCV
4.5.4-dev, SciPy 1.5.4, NumPy 1.19.5, and scikit-learn 0.24.2.

All figures in this thesis are created by the author unless stated otherwise.
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1
Introduction

This chapter presents the background and motivation underlying this thesis, as well as
relevant previous work. It also states the objectives of the thesis and what specific contri-
butions have been made.

1.1 Background and Motivation
The accelerating advance of technological progress is enabling technology to solve more
and more problems in society. One field benefiting from the increased availability of com-
puting power is the field of autonomous robotics, aimed at relieving humans of jobs clas-
sified as dull, dirty, or dangerous [6]. Relieving humans of dangerous jobs is particularly
promising, as this can reduce the threat of loss of life for those involved.

Another reason for relieving humans of certain jobs is that autonomous robotics may
outperform humans at specific tasks. An example of this is the area of self-driving cars,
which bear the promise of one-day reducing road accidents due to self-driving cars even-
tually outperforming human drivers. Much of autonomous robotics is part of the field
of artificial intelligence, where some tasks are already closing in on human performance,
such as object detection [7], and others have already surpassed human performance, such
as playing the game of Go [8].

Jobs are also not binary between being done by humans or autonomous robots. Hy-
brid solutions are possible where autonomous robotics is an asset to the human operator
to increase efficiency. Search and rescue (SAR) missions are one such area where the
use of autonomous robotics could be beneficiary. When searching for a victim during a
SAR mission, time is the main factor determining the survival rate of the victims [9], and
therefore having autonomous solutions to help speed up the search phase of these missions
could save lives.

An area of autonomous robotics that could assist rescuers during SAR missions is by
using small unmanned aerial vehicles (UAV)s. UAVs have seen much commercial and
academic interest over the past years and have been applied in various civil applications
such as agriculture, construction and infrastructure inspection, delivery of goods, SAR
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missions, and surveillance [10]. For use in SAR missions, these drones could be flown
by an operator or be completely autonomous, where having an autonomous UAV has the
benefit of letting the operator focus on other tasks. Using such an autonomous UAV has
been shown to be able to reduce the search time the rescuers use to find a victim, such as in
[11] where the authors show that using an autonomous UAV helps to find mission persons
in avalanches faster.

Although the potential for autonomous UAVs for such missions are high, the chal-
lenges are also many. The UAV must be an asset to the rescue team and not a liability,
meaning the system must be robust and reliable enough to require minimum human in-
tervention. All different aspects of the mission, such as takeoff, searching, and landing,
must therefore be autonomous, where notably landing the UAV can be challenging due to
limited time and space. This problem has therefore been an active area of research for over
a decade [12].

Creating a fully autonomous UAVs for SAR missions is challenging due to the different
subsystems that need to be implemented such as perception, control, and mission planning.
Relevant works in these areas include deep neural network (DNN) based object detection
[13, 14], UAV control using various methods such as a proportional–integral–derivative
(PID) controller [15] or model predictive control (MPC) [16], mission planning using the
Graphplan algorithm [17], using reinforcement learning to hover and land on a moving
platform in [18, 19], and state estimation of a UAV relative to a moving platform [20].

A quadcopter is a type of UAV which has four propellers mounted in an X-shape. This
propeller configuration means the drone has high maneuverability and can take off and
land vertically, thus not requiring long runways, as is the case for fixed-wing drones. The
availability of such UAVs has increased a lot in recent years, with prices falling and perfor-
mance increasing. Modern quadcopters are often equipped with high-resolution cameras,
sophisticated control systems, and collision avoidance while still being affordable to the
general public, such as the drones from DJI1 and Parrot2. The capability and availability
of such drones make them suitable for experimentation across multiple new domains, such
as assisting in a SAR mission through an autonomous search.

This thesis aims to investigate different problems related to creating an autonomous
UAV system capable of participating in a marine SAR mission. A commercially available
Parrot Anafi drone is used for testing and demonstrations. The reason for using such a
drone is that it comes ready-to-fly meaning all effort can be put into creating the necessary
software.

1.2 Previous work

1.2.1 Work on the project

This thesis follows the work done by Peter Bull Hove and Thomas Sundvoll in their re-
spective master’s theses [1, 2], as well as the specialization project [3] written by the author
prior to this thesis.

1https://www.dji.com/
2https://www.parrot.com/en
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In [2], the author designed a landing platform and a system for estimating the pose of
a drone relative to the platform. The landing platform design replicated regular landing
platforms used for helicopters while still having distinctive features that a computer vi-
sion pose estimation system could utilize. It was made to be mounted on top of DNV’s
autonomous research vessel ReVolt with the eventual goal of performing a landing at sea.
The author also created a computer model of the landing platform to be used in simulation.
The pose estimation system utilized traditional computer vision (TCV) techniques such as
color segmentation, edge detection, and corner detection to determine the drone pose. Ex-
periments showed promising results in the simulator, but the results were not transferable
to real-life experiments where the pose estimates were found to be unreliable. Reasons
for these poor results were identified to be changes in lighting conditions, the presence of
wind, and noisier images than in the simulator.

This work was expanded in [1], where the author added a deep neural network based
computer vision (DNN-CV) pose estimation system, which were combined with the TCV
approach from [2] and the drone’s onboard sensors in a Kalman filter (KF). The results
showed that the DNN-CV pose estimation gave noisier estimates than the TCV approach
by [2], but worked in real-world experiments, contrary to the TCV approach, which only
worked in simulation.

The experiments performed in [1] and [2] were performed on an AR.Drone 2.0 quad-
copter developed by the French drone company Parrot3. This drone was released in 2010
and is equipped to perform both indoor and outdoor flights but does not have a Global
Positioning System (GPS) sensor for absolute position measurements. In [1], the author
found that this drone did not perform well outdoors, and this limited the extendability of
the simulation results in real life. This was found to be due to the outdated and limited
hardware on the AR.Drone 2.0, and the author recommended using an upgraded drone
platform to test the system in real-world experiments.

Much of the work in this thesis is based on the specialization project written by the
author [3] which upgraded the drone platform to a modern Parrot Anafi, manufactured
by the same company as the AR.Drone 2.0. The project created a Robot Operating Sys-
tem (ROS) interface similar to the ROS interface ardrone autonomy [21] available for the
AR.Drone 2.0. The project also built upon the work in [1, 2] by porting the DNN-CV pose
estimation from [1] to the Anafi platform, and by developing a new TCV pose estimation
system based on the work in [2]. The DNN-CV pose estimation system proved to work
well after being ported to the Anafi, while the new TCV system did not work in real-world
experiments due to noisy images.

1.2.2 Perception and control for autonomous UAVs

There has been much work previously done regarding the field of autonomous UAVs.
Mathematical modeling of quadcopter drones has been investigated in multiple sources

such as [22, 23], where the authors also develop PID controllers for stabilizing the drone.
More advanced control techniques has also been investigated, such as MPC [24], and
reinforcement learning [18, 19].

3https://www.parrot.com/en
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The perception problem of pose estimation on drones has also been covered in the
literature, where [25] presents a pose estimation system using visual odemtry and an ex-
tended Kalman filter (EKF), while [26] demonstrates the use of simultaneous localization
and mapping (SLAM) to navigate a quadcopter indoors.

Regarding autonomous drone landings, [20] proposes a visual pose estimation system
for autonomous landings on a moving platform. The authors use fiducial markers in a
homography-based approach along with an EKF to estimate the pose of the UAV while
using PID controllers to control the drone. Their experimental setup includes the same
AR.Drone 2.0 as used by [1] and [2], and demonstrates good accuracy when landing on
a moving target. The experiments of [20] are however only performed indoors with no
external disturbances, so based on the conclusion by [1], these good results will likely not
be achievable outdoors using the same drone.

Vision-based landing on a moving target was also explored in [27], where the authors
also use fiducial markers for corrections in an EKF. They use a more advanced drone
platform (DJI M100) and use MPC for controlling the drone. They also tested the system
outdoors in a gentle breeze, where the drone managed to perform an accurate autonomous
landing successfully.

1.2.3 UAVs in SAR missions

A survey on the use of UAV systems for civil applications, including SAR missions, is
presented in [10]. The authors highlight that one of the main benefits of using UAV sys-
tems in SAR missions is reducing costs, as money is wasted each year on traditional SAR
missions using helicopters. The authors also highlight the benefit of using a UAV system
in chaotic and disaster-stricken areas where the UAV can provide network communication
and medical supplies in inaccessible areas. One of the main challenges listed is having
a robust system capable of operating in hostile weather, as this often accompanies SAR
missions.

In [11], the authors demonstrate that the use of an autonomous drone equipped with
an avalanche beacon can effectively perform a grid-search over an avalanche and speed up
the search for buried persons. In [28], the authors use a UAV in order to locate bodies in
disaster-struck areas, which often lack infrastructure and resources in the initial moments
after a disaster hits. The authors also demonstrate in simulation how a UAV could help
carry medical, food, and water supplies to the located victims. This delivery could be
considerably faster than delivering the supplies manually, something which could save
lives because of the time criticality discussed in [9].

A review on UAV systems for marine SAR missions is presented in [29]. Here the au-
thors discuss the benefits of using UAV systems both for the rescue team and for the victim
in need of rescue. UAVs capable of operating in hostile weather can be used to localize
victims quickly and safely, reducing the unnecessary time the rescuers have to spend in
the hostile weather conditions while searching for the victims. A UAV can cover large
distances and provide better situational awareness by delivering aerial images, something
which can be beneficial in locating victims that have fallen overboard in an emergency on
a ship. The authors also discuss how UAVs can be used to carry out flotation devices for
the victims once they are located, increasing the chances of survival until help arrives.
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The EU-ICARUS project [30] was a project aimed at creating autonomous tools for as-
sisting humans in UAV missions. These tools include UAVs as well as unmanned surface
vehicles and unmanned ground vehicles, with a focus on collaboration between the differ-
ent vehicles. Similarly, the EU project INGENIOUS is an ongoing project aimed at aiding
the first responders during their operations [31], where SINTEF is developing micro UAVs
for indoor localization in GPS-constrained environments [32].

1.3 Objectives
The overall objective of this thesis is to make further progress towards the end goal of
having a fully autonomous UAV system for use in marine SAR missions. Within this
broad goal, this thesis is mainly concerned with the problem of creating a UAV system
capable of landing the Anafi UAV autonomously on a landing platform attached to a boat.

To achieve this, several areas of autonomy are examined, including perception, control,
and mission planning. The perception problem is a continuation and adaptation of the
work done in the previous two master’s theses [1, 2] and the specialization project [3].
The control problem is examined from the ground up due to the different interfaces of
the Anafi UAV used in this project and the AR.Drone 2.0 used in [1, 2]. This thesis will
compare different perception and control methods to determine which is most suited for
the problem of landing autonomously on the landing platform. For mission planning, the
thesis investigates whether artificial intelligence (AI) planning algorithms can be applied
to this domain and if such algorithms can be suited for this type of autonomous UAV SAR
system.

These objectives can be summarized by the following questions related to perception,
control, and mission planning which this thesis attempts to solve:

• What type of perception system is suited for estimating the Anafi’s position relative
to the landing platform while landing?

• What type of control system is suited for landing the Anafi reliably on the landing
platform?

• Can AI planning algorithms be used for mission planning for autonomous UAVs
used in SAR missions?

1.4 Contributions
The contributions made in this project are as follows in chronological order as they appear
in the report, with further elaboration upon each point below:

• The release of the anafi ros4 software package for interfacing with Parrot Anafi
drones using ROS.

• Using homography-based pose estimation based on finding known features, with
feature detectors optimized using hyperparameter optimization (HPO).

4https://github.com/mfalang/anafi_ros
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• Integrating the DNN-CV system from [1] and homography-based pose estimation
in a model-based KF.

• Comparing two different velocity control methods for the Anafi based on a dynamic
model of the drone and a PID controller.

• Comparing two different guidance laws for position control of the Anafi based on
pure pursuit (PP) target tracking and point stabilization using a PID controller.

• Using the Graphplan algorithm to generate an action sequence given a set of goals
for the Anafi to achieve, and creating a system to execute these actions, thereby
giving the Anafi the ability to handle complex missions.

• Integrating the perception, control, and mission planning into a unified system and
testing it in real-world experiments including landing on the DNV ReVolt vessel at
sea.

The anafi ros ROS package is an improvement of the Anafi Olympe application pro-
gramming interface (API) and ROS interface created in the specialization project preced-
ing this thesis [3]. This package allows for controlling and monitoring the Anafi through
the use of standardized ROS topics. It has been released in a standalone version on Github
to make it available to be used in other projects as well.

The specialization project preceding this thesis [3] implemented a homography-based
pose estimation system, but the system was not reliable enough to work in real-world
experiments. This was due to the system not being able to detect the known points on the
helipad landing platform, which this thesis addresses by using a circle detector to filter
out only the helipad and then a corner detector to find the known points in the image.
The parameters of both detectors are optimized using HPO in the form of a grid search to
improve the correct detection rate.

The total perception system developed for this thesis is a model-based Kalman filter
based on the constant velocity (CV) model, using the homography-based pose estimation
described above, DNN-CV system developed in [1], and velocity measurements from the
Anafi as corrections. As the perception system is used during landings, it estimates the
relative position between the drone and the helipad.

To control the position of the Anafi, the internal attitude controller of the Anafi is used
in a cascaded system with a velocity controller and guidance law. The velocity controller
generates attitude setpoints for the Anafi’s internal attitude controller, and here a model-
based open-loop calculation of the attitude is tested along with a PID velocity controller.
Similarly, one level up, the guidance law generates velocity setpoints for the velocity con-
troller based on the current position error. Here the simple pure pursuit (PP) target tracking
guidance law is tested along with a point stabilization PID guidance law.

To plan the missions for the Anafi to execute, the AI planning algorithm Graphplan is
used to generate an action sequence. The action sequence is generated based on some given
mission goals, and action plans for missions of varying complexity are generated. Each
action plan consists of the same basic actions in specific orders, and a mission executor is
then implemented to follow the given action sequence.

Finally, the thesis integrates the perception, control, and mission planning systems into
one system, which is extensively tested in real-world experiments. Autonomous landings
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are tested with the helipad attached to the DNV ReVolt vessel on land and at sea, as well
as a short mission where the drone simulates a search in one area before returning to the
landing platform to land. Autonomous landings where the helipad is moving are also
tested to determine the capabilities of the perception and control systems.

The main contributions made in this thesis are the contributions integrating the differ-
ent measurements in the perception system, investigating velocity and guidance control
methods suitable for landing the drone, demonstrating the use of the Graphplan algorithm
for mission planning of autonomous UAVs, as well as testing the complete system by
landing on the DNV ReVolt.

1.5 Outline
This thesis begins with Chapter 2 presenting the theory and necessary background material
for the work done in this thesis. Chapter 3 then presents the experimental setup used in
this thesis before Chapter 4 presents the methodology used for developing the different
subsystems in this thesis. Chapter 5 presents and explains the results from testing the
various parts of the system individually and together, both in simulation, the NTNU drone
lab, and outside on the DNV ReVolt. Chapter 6 discusses these results and gives an overall
assessment of the system, before Chapter 7 concludes the thesis with some closing remarks
outlining potential future work on the project.
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2
Theory

This chapter presents the necessary theory underlying the work done in this thesis. The
chapter starts with basic quadcopter modeling before explaining the topics used in per-
ception (computer vision, hyperparameter optimization, and Kalman filtering). Then the
topics needed for the control part of this thesis are presented before the necessary mission
planning theory is presented last.

2.1 Quadcopter modeling
This section is based on the quadcopter modeling from the preceding specialization project
[3], with the addition of the camera frame and modeling aerodynamical effects.

2.1.1 Basic quadcopter motion
A quadcopter is a UAV with four propellers mounted in an X-shape, as seen in Fig. 2.1.
A separate DC motor drives each propeller, and all propeller speeds can be controlled
separately by applying variable voltages to each motor. The thrust generated by each motor
is linearly dependent on the square of the propeller rotation speed [16], and is denoted Fi
in Fig. 2.1. The motors all generate a moment opposite their direction of rotation, which
is why diagonal motors rotate in the same direction, and non-diagonal motors rotate in
the opposite direction, as this is the only configuration that cancels out the total moments
created by all the motors.

The attitude of the quadcopter can be controlled by generating different amounts of
thrust for each motor [33]. The relationship between the forces Fi and the resulting
attitude-behavior for roll, pitch, and yaw separately is listed below, where any attitude
motion can be reached by combining the relationships:

• Pitch

– Forward: F1 = F2 < F3 = F4
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Figure 2.1: Model of a quadcopter UAV. Positive angles defined counter-clockwise in body frame.

– Backward: F1 = F2 > F3 = F4

• Roll

– Right: F1 = F4 > F2 = F3

– Left: F1 = F4 < F2 = F3

• Yaw

– Clockwise: F1 = F3 > F2 = F4

– Counter-clockwise: F1 = F3 < F2 = F4

Position is controlled by controlling the attitude of the drone. Given that positive an-
gles are defined counter-clockwise, the drone flies forwards and backward given negative
and positive pitch angles, respectively. Similarly, it flies right and left given negative and
positive roll angles, respectively. The upward and downward motion is controlled by vary-
ing the total thrust of all the motors, where increasing and decreasing the thrust move the
quadcopter upwards and downwards, respectively.

2.1.2 Frames of reference
Two frames of reference are used to describe the motion of the quadcopter. The first is a
frame attached to the drone, which describes linear and angular velocities. The second is
a stationary frame of reference for describing the position and attitude of the quadcopter.

The stationary frame chosen will be the north, east, down (NED) frame, denoted {n},
which is a frame attached to an imaginary tangent plane fixed at a given position on Earth,
and has the following axis as defined in [34]:
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• xn - Points towards true north.

• yn - Points towards true east.

• zn - Points downwards normal to Earth’s surface.

As this frame is based on a tangent plane fitted to Earth’s surface, it is not suitable for
global navigation due to Earth’s curvature. However, this effect is negligible for local
navigation, meaning the frame is well-suited for quadcopter control.

The frame attached to the quadcopter is the body frame, denoted {b}, fixed to the origin
of the quadcopter, which is useful for describing the velocity of the quadcopter. Its axes
can be seen in Fig. 2.1 and are defined as in [34]:

• xb - Longitudinal axis pointing forward through the nose of the quadcopter.

• yb - Transversal axis pointing right.

• zb - Normal axis pointing down.

For quadcopters with a camera, the camera frame {c} is useful for describing objects
seen in the camera. It’s origin is in the center of the image plane, with axes defined as in
[35]:

• xc - Right in the image plane.

• yc - Down in the image plane.

• zc - Normal to the camera plane, i.e. straight out of the camera.

To convert coordinates from one coordinate frame to another, the rotation and transla-
tion between the frames must be known. The general expression for a rigid body transfor-
mation for converting a point from frame {1} to frame {0} is defined as in [36]

p1 = R0
1 + t01 (2.1)

where R0
1 is the rotation matrix from frame {1} to {0}, and t01 ≡ t00→1 is the translation

from the origin of frame {0} to the origin of frame {1} expressed in frame {0}.

2.1.3 Aerodynamical modeling
As the drone flies, it will be affected by aerodynamical effects. One of the main effects
will be air resistance experienced by the drone when flying, known as drag. The general
equation for drag can be found in [37] as

FD =
1

2
ρV 2ACD (2.2)

where V is the drone’s speed, A the area exposed to the wind, CD the drag coefficient,
and ρ is the air density.

Given the shape of a quadcopter and how it tilts to fly, the area A and the drag coef-
ficient CD will change with different tilt angles. A simplification of this model is to use
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a linear model such as the one given in [23]. Here the drag force along a given axis i is
linearly proportional to the drone speed in that axis:

FDi
= divi (2.3)

where di is the drag coefficient for axis i.
Given that this model is a linearization of Eq. (2.2), it will be accurate at low velocities

only. At higher velocities, other aerodynamical effects become significant, such as thrust
changing with the angle of attack, blade flapping, and airflow disruption, and these have
been examined in [38] and [39].

2.1.4 Equations of motion
The general equations of motion for a UAV with n propellers is found in [16]. These equa-
tions of motion include external forces that can be neglected, assuming that the quadcopter
is flying unhindered and without wind. Assuming the drone is flying at low speeds, the
aerodynamical forces FDi

will be assumed to follow the linear drag model from Eq. (2.3)
without any other aerodynamical effects. The authors in [16] assumed that the low-level
attitude control of the UAV is handled by a fast onboard control system, which simplifies
the attitude equations to first-order models. Given these assumptions and specifying n = 4
propellers in the result from [16], the following equations of motion for a quadcopter can
be found

ṗn = vn

v̇n =
1

m

(
Rnb

4∑
i=0

FTi
−Rnb

4∑
i=0

FDi

)
+

 0
0
−g

 (2.4)

ϕ̇ =
1

τϕ
(kϕϕref − ϕ)

θ̇ =
1

τθ
(kθθref − θ)

ψ̇ = ψ̇ref

(2.5)

where pn is the quadcopter position in the NED frame, vn is the quadcopter linear velocity
in the NED frame, Rnb is the rotation matrix between NED and body, FTi the thrust force
from propeller i, g is the gravitational acceleration, kϕ, kθ and τϕ, τθ are dc-gains and time
constants for roll and pitch closed-loop dynamics, and ϕref , θref , ψ̇ref are respectively
roll reference angle, pitch reference angle, and commanded yaw rate [16].

2.2 Computer vision
This section is based on the computer vision section in the preceding specialization project
[3], with modifications to present the necessary background material needed in this thesis.
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2.2.1 Traditional computer vision
Computer vision has been an active field of study since the 1970s, and its goal is to describe
the world seen in one or more images [40]. During the recent decade, the field has seen
an emergence of deep neural network (DNN) based computer vision approaches based
on using a general model trained to solve a specific problem. This method differs from
the classical computer vision approach of analyzing the problem domain to find a suitable
solution, which can now be labeled as traditional computer vision (TCV) [41].

This section will elaborate on the part of TCV concerned with finding the pose of the
camera relative to points in the real world, known as the Perspective from N points, or
perspective-n-point (PnP) problem [42]. The two main steps in this problem are:

1. Feature detection and identification: Finding point correspondences between 3D
points in the real world and 2D pixel points in the image.

2. Pose calculation: Determine the transformation between these point correspon-
dences to determine the camera pose.

and these will be further elaborated upon after establishing the basic camera model used
throughout this thesis.

Pinhole camera model and camera intrinsics

A mathematical model of a camera is necessary to describe how 3D points in the real
world are projected into pixel coordinates in the image plane. One such model is the pin-
hole camera model where light from the scene passes through an infinitely small pinhole to
form an inverted image in the image plane [43]. This simple model is only an approxima-
tion due to the pinhole not being infinitely small in practice. Mathematically, the pinhole
is known as the optical center C. The distance from the camera center to the image plane
is known as the focal length f , which together with C make up the intrinsic properties of
the camera.

The focal length projects a 3D point into camera coordinates with origin in the center
of the image plane. As the focal length is given in millimeters, it must be multiplied with
the pixel density sx and sy to get the mapping in terms of pixel coordinates. The image
coordinate origin is chosen to be in the top left corner of the image. Therefore the optical
center cx and cy must be used to offset the pixels into image coordinates instead of camera
coordinates.

The general relationship between 3D points and pixel coordinates can be put on matrix
form by introducing the concept of homogeneous coordinates ũ =

[
ũ ṽ w̃

]⊺
, which

have the same dimension as 3D points. The relationship between the homogeneous pixel
coordinates

[
ũ ṽ w̃

]⊺
and regular pixel coordinates

[
u v
]⊺

is u = ũ/w̃ and v = ṽ/w̃.
The mapping of a 3D point

[
X Y Z

]⊺
from world to homogeneous pixel coordinates will

then be as in [35] ũṽ
w̃

 =

sxf 0 cx
0 syf cy
0 0 1


︸ ︷︷ ︸

K

XY
Z

 . (2.6)
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The matrix K is known as the camera calibration matrix [35], which encompasses the
intrinsic properties of the camera.

Feature detetion

Feature detection is the process of finding features or objects of interest in the image. It
can be used for different purposes, such as stitching together two images or generating a
3D point cloud based on the features in multiple images [40]. In the case of PnP problems,
the features that need to be found are the location of the known 3D points in the image.
This requires that the neighborhood around the feature is easily distinguishable and known
in advance. One way of ensuring this is by using fiducial markers with specific patterns
that are unique and will not be found anywhere else, such as AprilTags [44]. Another
option is using a generic feature detector to find features and then determine later which
of these features are the actual points of interest. In this case, different feature detectors
aimed at different types of features exist.

A commonly used detector is a corner detector, and corners are good features as they
can be localized, meaning that the exact location of a corner can be identified [43]. An
example of applications where this is useful is when stitching together images where de-
tecting the same corners in both images is necessary to determine where they overlap.
Another case is when features are tracked across multiple images to determine the motion
of the camera, such as is the case in ORB-SLAM [45].

One of the classical corner detectors is the Harris corner detector [46]. The Harris cor-
ner detector combines information about the magnitude of the gradients in both directions
and how the total gradient swings in a local neighborhood [43]. A corner should have
large gradients in both directions, and the gradient should swing sharply in a local neigh-
borhood, and this is used in a scoring function to determine if a point is a corner or not.
The Shi-Tomasi corner detector builds on the same principles but with a different scoring
function which was shown to provide better results than the Harris detector [47]. Other
examples of much-used feature detectors are the scale-invariant-feature-transform (SIFT)
feature detector [48], which in contrast to the Harris and Shi-Tomasi detector work well on
images of different scale, and the features from accelerated segment test (FAST) feature
detector [49] which is more suited for real-time applications due to its fast runtime.

Two other types of feature detectors are edge detectors and line detectors. As edges
and lines are continuous, they are not suited for the same applications as corner detectors
as they do not describe unique points in the image. Edge detectors are typically found by
computing the gradient of the image, while lines can be detected using a Hough transform,
or Canny edge detector [40].

Similar to edges and lines, circles in an image can be found using a circle detector.
One way of detecting circles is by using the Hough transform from above in an alternative
way. Detecting circles using the Hough transform involves first finding all edges in an
image, then creating circles from all of these edge points with a given radius [50]. If many
enough of these circles intersect in a given point, then there is a circle with the given radius
in that point. To detect circles of different sizes, the algorithm can be run multiple times
with a varying radius to search for.
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Camera pose estimation

Given established correspondences between image points and 3D world frame points, the
transformation between these points must be found to determine the camera pose rela-
tive to the world coordinates. As stated above, this is known as the PnP problem, and in
general, the world coordinates can be in any known configuration. Solutions to this prob-
lem include for example using the direct linear transformation (DLT) in combination with
nonlinear optimization to minimize the reprojection errors [42].

In the particular case where the 3D world points are planar, meaning they all lie in the
same plane, the problem is simplified and can be solved by using the concept of homog-
raphy [42]. Homography is the method of computing the 2D projective transformation
between two planes [35], where the planes can be, e.g. two images or one image and a
physical plane. The transformation will be an estimate of the relative pose between the
two planes, so given that one plane is the image plane and the other is a physical plane, the
camera pose relative to the known points in the physical plane can be found.

The goal of homography is to estimate the homography matrix H, which transforms
a set of 2D points in the real world into image coordinates. The rotation and translation
describing this transformation can then be extracted from H.

To derive the homography matrix, first define X =
[
X Y Z

]⊺
to be any point in the

world frame of reference, and Xc =
[
Xc Y c Zc

]⊺
to be the corresponding point in the

camera frame of reference. The general relationship between these two points will then be

Xc = RX + t (2.7)

=

r11 r12 r13
r21 r22 r23
r31 r32 r33

X +

t1t2
t3

 (2.8)

=

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1

 (2.9)

where R is the rotation between them, and t is the translation between the origins of
each point. Using the assumption that the physical point lies on a plane, X becomes
X =

[
X Y 0

]⊺
, and the equation simplifies to

Xc =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
0
1

 (2.10)

=

r11 r12 t1
r21 r22 t2
r31 r32 t3

XY
1

 . (2.11)

Defining the points x =
[
x y
]⊺

as x := (u − cx)/sxf and y := (v − cy)/syf , the
following relationship between x and X can be found similarly to the derivation in [35]
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x =
Xc

Zc
=
r11X + r12Y + tx
r31X + r32Y + tz

y =
Y c

Zc
=
r21X + r22Y + ty
r31X + r32Y + tz

.

(2.12)

This equation can be put on matrix form by converting x to homogeneous coordinates
x̃ = [x̃ ỹ z̃]T such that

x̃ =

x̃ỹ
z̃

 =

r11 r12 t1
r21 r22 t2
r31 r32 t3


︸ ︷︷ ︸

H

XY
1

 = H

XY
1

 (2.13)

where H is the homography matrix. To find H, the system in Eq. (2.12) is first transformed
into a linear system by using the DLT as in [35]

Ah = 0 (2.14)

where

A =

A1

...
An

 ,Ai =

[
Xi Yi 1 0 0 0 −Xixi −Yixi −xi
0 0 0 Xi Yi 1 −Xiyi −Yiyi −yi

]
(2.15)

h =
[
r11 r12 tx r21 r22 tx r31 r32 tz

]⊺
. (2.16)

The vector h can then be solved for using the singular value decomposition (SVD) A =
UDVT where h will correspond to the last column of V [35].

Although H has 9 entries, it is uniquely defined only up to scale, meaning it has 8
degrees of freedom. As each 2D point has 2 degrees of freedom, the minimum number of
2D point correspondences n needed to determine H uniquely is n = 4 [35].

As H is uniquely defined only up to scale, the resulting matrix H found from the SVD
will in general not be equal to the H matrix in Eq. (2.13). This scale ambiguity can be
solved by imposing the constraint that the columns of H corresponding to the columns
of R must be of length 1, and then finding the scaling factor. This means the values
for t and the first two columns of R can be found by dividing the elements of H by
this scale factor. However, this scale factor means there are two possible solutions for R
and t, where only one will represent the actual transformation. To differentiate between
the two, the 3D points X can be transformed back into the camera frame using the two
transformations, and the valid transformation will be the one where the 3D points have a
positive Z-coordinate, meaning they are in front of the camera.

Once H has been uniquely determined, given the structure defining H in Eq. (2.13),
the translation vector t as well as the first two columns of R can be directly extracted.
To reconstruct R from its first two columns, the property that all rotation matrices are
orthogonal can be used [34]. This means that the last column of R can be calculated as
the cross product of the two first columns
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R3 = R1 ×R2 (2.17)

which completes the calculation of the relative pose R and t between the camera and the
physical plane.

Pose refinement

The homography matrix H estimated using the DLT can be further optimized using an op-
timization method such as Levenberg-Marquardt (LM) optimization. LM optimization is
a variation of the Gauss-Newton method for solving least-square minimization problems,
which gives faster convergence, and regularization when the problem is overparameterized
[35].

Both the Gauss-Newton and LM optimization require an objective function to be min-
imized, denoted E(p), where p is the parameter vector to be optimized. The objective
function can be written as

E(p) =

n∑
i=1

ri(p)
2 (2.18)

where ri(p) is a residual function which outputs a scalar value based on the parameter
vector p. The goal of both methods is to iteratively update p in order to minimize E(p),
i.e. calculate a step δ which is used to update the estimate p̂ using the update rule

p̂← p̂+ δ. (2.19)

The Gauss-Newton method approximates the Hessian of the objective function in order
to calculate the step δ. First, the Jacobian containing the partial derivatives of p̂ is found,
and this will be an n × m matrix where n is the number of residuals in the objective
function, and m is the number of parameters in p. The Hessian is approximated as H ≈
JTJ [35]. The step in the Gauss-Newton method δGN can then be found by solving the
linear system

JTJδGN = −JT . (2.20)

Solving this system requires inverting JTJ which could become singular and cause the
method to fail. The LM method avoids this by instead solving the system

(JTJ+ µI)δLM = −JT (2.21)

where µ > 0 is a parameter that ensures that JTJ + µI is always invertible. The LM
method also evaluates the proposed step δLM by checking if this step decreases the objec-
tive function. If it does not, then µ is updated increased until a step δLM that decreases
the objective function is found. Each iteration that decreases the objective function simi-
larly decreases µ. This parameter µ in effect makes the LM method switch between acting
like the Gauss-Newton method and the gradient descent method [35]. When µ is small
(JTJ + µI)δLM ≈ JTJδLM and the method resembles the Gauss-Newton method giv-
ing it a fast convergence. When µ is large (JTJ+ µI)δLM ≈ µδLM , and the update rule
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becomes based on gradient descent which is in general not recommended, but will ensure
that the objective function decreases. This adjusting of µ to change the behaviour of the
LM method makes it robust and well-suited for iterative least-squares optimization.

2.2.2 Deep neural network-based computer vision
Deep learning (DL) is a subset of machine learning based on the concept of an artificial
neural network (ANN), which is a programming paradigm inspired by the functioning of
the human brain [41]. In contrast to conventional programming, where the programmer
specifies how the computer solves a problem, approaches based on ANNs are instead
made to learn from observations and figure out their own solutions [51]. A general ANN
consists of an input layer, one or more hidden layers with neurons, and an output layer,
where weights and biases connect adjacent layers. A deep neural network (DNN) refers to
the case where the ANN has two or more hidden layers. DNNs are much used in computer
vision since they allow the network to break down a complex classification problem into
smaller manageable parts [51].

When training a DNN, the goal is to find the network weights and biases that minimize
the error of the output [51]. A cost function based on the weights and biases is used to
define the total output error between the predicted and actual output of the network. The
gradient of this function is used to perform gradient descent to update the weights and
biases, resulting in a higher accuracy of the network. As the parameters in a DNN can
reach many million [14], the training process is computationally expensive and typically
optimized to run on a dedicated graphics processing unit (GPU), or multiple, to increase
performance.

Computer vision is one application where deep learning and DNNs show great promise,
as such approaches have been the state of the art in image classification since the intro-
duction of the AlexNet network [13]. These types of networks are typically convolutional
neural networks (CNNs), which consist of convolutional layers which detect features in an
image, pooling layers that reduce the dimension of the output of the convolutional layers,
and fully connected layers to classify the image based on the features extracted earlier in
the network [41].

Convolution in image processing is the technique of combining multiple pixel values
into one using a weight matrix, and this is much used in traditional computer vision to
extract features and filter images. In CNNs, these weight matrices are learned to allow the
network to extract the features that give the best detection results.

In computer vision, there is a distinction between image classification and object de-
tection. In image classification, the input image is classified into one of several predefined
categories, e.g. when classifying a handwritten digit, the output will be a value from 0 to
9. On the other hand, object detection takes an image and tries to find all instances of each
category in the image, e.g. finding all bikes, buses, and other cars in the image coming
from an autonomous car.

YOLOv4 object detector

One type of object detector is the you only look once (YOLO) v4 detector [14]. YOLOv4
is a bounding-box prediction algorithm, meaning it estimates the position of each element
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in the image by placing a box around it, as seen in Fig. 2.2. Along with the bounding box
are the category the detector believes the object belongs to and its certainty.

YOLOv4 has been designed for real-time applications and offers state-of-the-art ac-
curacy and frames per second (FPS) performance. Both training and inference (returning
bounding boxes for a given input image) can be performed on a single GPU, meaning
YOLOv4 is well suited for real-time applications where clusters of GPUs are unavailable.

Figure 2.2: Object detection using YOLO v4 on a test image with person, dog and horse. This
image has been created using the YOLO detector on a sample image provided in Darknet network
backbone implementation [5].

2.3 Hyperparameter optimization
As much of today’s research in the fields of machine learning and artificial intelligence
involves complex models with many hyperparameters, the field of hyperparameter opti-
mization (HPO) aimed at automatically optimizing these parameters has seen increased
activity in recent years [52]. Automating this task has the benefit that it reduces human
effort, improves the performance of the machine learning model, and increases the repro-
ducibility of the results compared to a manual search [52].

The HPO problem can be defined as finding the optimal set of hyperparameters λ∗

by evaluating different values on λ on a training and validation dataset, Dtrain and Dval

respectively. Given the model A which relies on N hyperparameters, Λ can be defined as
the configuration space, meaning all the possible configurations of theN hyperparameters.
Given some cost function V which evaluates the performance of the hyperparameters λ,
the problem can be formally defined as

λ∗ = argmin
λ∈Λ

V(Aλ, Dtrain, Dval). (2.22)
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There exist many different methods for HPO, where the simplest forms are the black-
box approaches where no prior knowledge is needed about how the performance changes
based on the hyperparameters. Examples of black-box approaches include grid search,
random search, and Bayesian optimization. Grid search searches a predefined search area,
and random search searches a random search area, both to find the best combination of
parameters in the configuration space. Bayesian optimization is an iterative method that
builds a model based on the previous parameters and then determines which points to test
next, and has been used effectively in tuning the hyperparameters of neural networks [52].

There are multiple challenges that must be considered when performing HPO, two of
them being the cost of the evaluation function and the configuration space complexity.
The evaluation function might be very costly, taking weeks or months in extreme cases to
evaluate [53], e.g. in the training of deep neural networks, and this may not be feasible due
to time constraints in the project. The configuration space might also be very complex with
many different hyperparameters, where it is difficult to know which parameters actually
affect the performance and what the reasonable range for the given parameters should
be [52]. This means that the best hyperparameters found λ∗ might not be the optimal
parameters after all.

2.4 Kalman filtering

This section explains the theory behind the Kalman filter (KF) as well as the extension of
the filter for non-linear filtering in an extended Kalman filter (EKF). However, only the
standard KF was used in this thesis.

2.4.1 Models

A Kalman filter is a recursive filter that can be used to estimate the states of linear and non-
linear systems [34]. The filter consists of two models: a process model and a measurement
model. The two models can be summarized in state-space form as

xk = Axk−1 +Buk + vk vk ∼ N (0,Q) (2.23)
zk = Cxk +Duk +wk wk ∼ N (0,R) (2.24)
x0 ∼ N (x̂0,P0). (2.25)

Here, A and B are the matrices defining the noise-free state transition xk−1 → xk given
the previous state estimate xk−1 and the current system input uk, and vk is the process
noise, which is assumed Gaussian with zero-mean and variance Q. For the measurement
model, the matrices C and D relate the measurement zk to the state xk and input uk, and
wk is the measurement noise, which is assumed Gaussian with zero-mean and variance R.
Finally, the initial state is normally distributed around the initial estimate x̂0 and the initial
covariance estimate P0. These models follow the Markov assumption that each state is
only dependent on the previous state, while each measurement is only dependent current
state [54].
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Given these models, the Kalman filter will be the optimal solution to the problem of
estimating the state x̂ given the process and measurement noise. However, the requirement
that the models are linear will not always be satisfied in real life. In the case of nonlinear-
ities, the models can be linearized around each estimate, in which case the filter is called
an extended Kalman filter (EKF). The equations describing the transition xk−1 → xk are
now described by the nonlinear function f(xk−1,uk), in addition to the nonlinear func-
tion h(xk,uk) relating the measurements to the state. The rest of the equations are the
same as the linear case and can be summarized as follows

xk = f(xk−1,uk) + vk vk ∼ N (0,Q) (2.26)
zk = h(xk,uk) +wk wk ∼ N (0,R) (2.27)
x0 ∼ N (x̂0,P0). (2.28)

Assuming that the system obeys the Markov assumption, these equations can be linearized
around the previous posterior estimate x̂k−1 and the current prior estimate x̂k|k−1 [54].
The linearization can be performed by using a Taylor expansion as in [54], which will
result in the matrices F and H being the Jacobians of the nonlinear functions f and h as
follows

F(x̂k−1,uk) = Fk =
∂

∂xk−1
f(xk−1,uk)

∣∣∣∣
xk−1=x̂k−1

(2.29)

H(x̂k|k−1,uk) = Hk =
∂

∂xk
h(xk,uk)

∣∣∣∣
xk=x̂k|k−1

. (2.30)

2.4.2 Filtering
The Kalman filter algorithm conceptually involves two steps: (i) Given a current estimate,
predict the next state estimate based on the system model, and (ii) update this prediction
based on data from new measurements. To make sure that the posterior estimate is opti-
mal, the covariance Pk of the estimate is also predicted and updated at each step. When
predicting without any measurements to correct the prediction, called dead-reckoning, the
covariance estimate will grow due to the model uncertainty Q. When a new measurement
arrives, the covariance will be reduced, as the estimate is now more confident due to it
being a mix of the prediction and measurement.

In the prediction step, both the predicted state x̂k|k−1 and the predicted state covari-
ance Pk|k−1 are calculated. These are calculated based on the nonlinear transition function
f(xk−1,uk), the linearized transition matrix F(x̂k−1,uk), and process model covariance
Q.

x̂k|k−1 = f(xk−1,uk) (2.31)
Pk|k−1 = FkPk−1F

⊺
k +Q (2.32)

The innovation ν is defined as the error between the predicted measurement zk|k−1

and the actual measurement zk [54], where both are defined as follows
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zk|k−1 = h(x̂k|k−1,uk) (2.33)
νk = zk − zk|k−1. (2.34)

The goal of the filter is to fuse the state prediction with the measurement in an optimal
way, and this is done by adding a weighting of the innovation to the predicted state. This
weighting is known as the Kalman gain W [54], and this gain will be optimal in the
linear case under the assumptions described above. The optimality proof is lost in the case
of the EKF due to the linearization, but EKFs still show excellent performance in most
navigation systems [34]. The Kalman gain is calculated based on the predicted covariance
Pk|k−1, and the innovation covariance Sk which is a result of Pk|k−1 and the measurement
covariance R. The equations for the innovation covariance Sk and Kalman gain Wk can
be summarized as follows

Sk = HkPk|k−1H
⊺
k +R (2.35)

Wk = Pk|k−1H
⊺
kS

−1
k . (2.36)

This gain Wk form the basis for the update rules of the Kalman filter together with
the predicted state and covariance. Both the posterior state and covariance estimates are
updated using update rules as defined as in [54]

x̂k = x̂k|k−1 +Wkνk (2.37)
Pk = (I−WkHk)Pk|k−1 (2.38)

where I is the identity matrix with the same dimension as the number of states in the
system.

2.5 Guidance and control
A fundamental part of autonomy is how the autonomous robot interacts with the environ-
ment to achieve its goals. This can be, e.g. the voltage applied to the motors of a robot
arm or the engine velocity and steering wheel angle in an autonomous car. When the goal
of the system is to move from one position to a given position autonomously, the two main
parts of the problem are (i) computing the path or trajectory that will lead the system to
the given position and (ii) being able to follow that path. These two problems are known
in the literature as guidance and control [34].

2.5.1 Guidance
Guidance provides a methodology for the motion behavior needed for the achievement of
motion control objectives [55]. Different types of guidance systems include point stabiliza-
tion, trajectory tracking, target tracking, and path following [34], where point stabilization
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is a special case when the desired position is constant. In trajectory tracking, the goal is
to follow a time-varying trajectory, whereas path following is time-invariant, meaning the
system only needs to follow the path regardless of the time it takes to do so. Target track-
ing is used when there is no information about the path or trajectory, such as following
an object with an unknown movement pattern. Target tracking can also be used to track
stationary objects, making it analogous to point stabilization [55].

When performing points stabilization, the guidance system can be a simple propor-
tional–integral–derivative (PID) position controller. This controller can also be used for
trajectory tracking, given that the system response is faster than the trajectory [34]. Refer-
ence models are typically used for trajectory tracking, and these are elaborated on below.
Different guidance laws can be used in target tracking when following a moving object.
The simplest is the pure pursuit guidance law, which is inspired by a predator chasing a
prey in the animal world [34]. Here the desired velocity vnd in the NED frame is

vnd = −κ pn − pnt
∥pn − pnt ∥

(2.39)

where κ > 0 is a constant.
The more advanced line-of-sight (LOS) guidance law computes the desired course

angle that will lead the system onto an imaginary line between a reference point and the
target [34]. This type of guidance is useful for underactuated systems such as marine
vessels and fixed-wing aircraft, which move horizontally by changing their heading angle.
For more details regarding LOS guidance, see [34] and [55] for marine applications, and
[37] for UAV applications.

2.5.2 Reference models
The reference is the input to the control system and specifies desired responses, e.g. for
the desired position, velocity, or attitude. This reference can be stationary in the case of
point stabilization or can be varying in the case of target tracking where the reference will
be changing as the target moves [34]. In the case of a varying reference, if the reference is
computed at discrete intervals, it will have jumps where it changes instantaneously. This
can be unwanted in a control system because it can lead to aggressive maneuvering and
cause the control system to go into saturation.

A reference model can be used to smooth the reference signal out. The simplest refer-
ence model is simply a low-pass filter that smooths out the reference signal [34], and this
corresponds to a reference model of order 1. The order of the filter determines both the
complexity and how many smooth states it will compute. A 1. order reference model for
velocity will only produce a smooth trajectory for the velocity, while a 3. order reference
model will produce a smooth trajectory for velocity, acceleration, and jerk. When using a
velocity reference model, it should be of at least order 2 to obtain smooth reference signals
for both velocity and acceleration [34].

To achieve accurate tracking using the reference model, the reference model must have
a lower bandwidth than the system dynamics [34]. This means that the system dynamics
are faster than the reference model dynamics, which means the system will be able to track
the reference well. The parameters defining the behavior for a 2. order reference model are
the relative damping ratio ζ and the natural frequency ωn. Increasing the natural frequency
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increases the response time of the model, while the relative damping ratio determines if
the system is under-, over-, or critically damped. An underdamped system with ζ < 1 will
have oscillations, while an overdamped system with ζ > 1 will have a slow response with
no oscillations.

The general differential equations for a 2. order reference model with n states is as
given in [34]

ν̈d + 2∆Ων̇d +Ω2νd = Ω2r (2.40)

where νd is the desired velocities for each state, ν̇d the desired accelerations for each state,
and r the raw velocity references for each state. The matrices ∆ and Ω are defined based
on the relative damping ratios and natural frequencies for each state as follows

∆ = diag{ζ1, ζ2, ..., ζn}
Ω = diag{ωn1 , ωn2 , ..., ωnn}.

(2.41)

This can be put on state space form by defining xd = [ν⊺
d ν̇⊺

d ]
⊺, as done in [34]

ẋd = Adxd +Bdr (2.42)

where

Ad =

[
0n×n In
−Ω2 −2∆Ω

]
, Bd =

[
0n×n
Ω2

]
. (2.43)

The velocity and acceleration signals for a 2. order reference model is shown in
Fig. 2.3. Here, it can be seen that increasing the reference model’s natural frequency
increases its response time. A faster model follows the reference trajectory more accu-
rately but at the expense of requiring a higher acceleration. When designing a reference
model for a specific system, a trade-off between response time and maximum allowed
acceleration must be made.

2.5.3 Control using successive loop closure
Control is the action of controlling the system’s actuators to achieve a given control ob-
jective, in this case reaching a setpoint, trajectory or path given by the guidance system
[34]. Different control methods can be used for this, such as the traditional PID controller,
nonlinear control methods such as integrator backstepping and and feedback linearization
[56], or methods based on optimization such as the linear quadratic regulator (LQR) or
model predictive control (MPC) [57].

In the case of a PID controller, a linear model or transfer function mapping the input
to the output signal is required. In some cases, such as controlling the position of a DC
motor [58], this mapping can be easily found, and a single PID controller will be able to
guide the system to the desired output. However, the mapping from input to output may
be nonlinear or overly complicated in other cases. In such a scenario, it can be beneficial
to split the problem into several simple controllers in succession rather than designing one
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Figure 2.3: Comparison of two velocity reference models using with different natural frequencies
ωn.

complicated controller for the entire problem, and this idea is known as successive loop
closure [34, 37].

A block diagram showing successive loop closure with an inner and outer loop is
shown in Fig. 2.4. Here, from the outer loop’s perspective, the inner loop is a unity gain,
and this is the main assumption in successive loop closure design. For this assumption
to be satisfied, the inner loop has to, in theory, have an infinitely fast response, while
in practice, 5-10 times faster than the outer loop is sufficient, meaning the inner loop
bandwidth is 5-10 higher than the outer loop [34, 37].

Examples of successive loop closure applied to small fixed-wing UAVs can be found
in [37]. Here successive loop closure is used in a lateral course hold autopilot, and a longi-
tudinal altitude hold autopilot. In the lateral case, the outer loop is a course controller with
a roll controller as the inner loop. For the longitudinal case, the outer loop is the altitude
controller with a pitch controller as the inner loop. Similar applications of successive loop
closure can be found for marine crafts and underwater vehicles in [34].
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(a) Inner and outer control loop.

(b) Outer loop under assumption used in successive loop closure.

Figure 2.4: Block diagram showing the assumption underlying successive loop closure.

2.6 AI planning
AI planning, also known as automated planning and scheduling, is an area of artificial
intelligence (AI) which chooses and organizes actions based on their expected outcome
[59]. The agent is defined as the system interacting with the environment, and it chooses
its actions based on the goal of reaching some predefined objective [60]. The first algo-
rithm created to solve the AI planning problem was the STRIPS algorithm developed at
Stanford Research Institute in 1971 [61], and since the field has seen the development of
various different planning algorithms and techniques such as graph-based planners, tem-
poral planners, and stochastic planners [59, 60].

2.6.1 Domain, actions and goals
To formalize the problem of AI planning, the following three inputs are defined as in [62]:

1. Initial state: The state of the agent in the world at time zero.

2. Goal: The desired end state of the agent.

3. Domain problem: Description of the possible actions that can be performed by the
agent.

Formalizing these inputs in a standard language has the advantage that it makes compar-
ing AI planning algorithms easier, and to this end, the planning domain definition language
(PDDL) has been created [63]. To define a simple domain, the propositions or state vari-
ables are first defined. These can be thought of as variables that can either be true or false,
e.g. if the agent is in a specific location or not. Each action is then defined with a precondi-
tion and effect. The precondition defines what proposition must be true or false to perform
an action, e.g. the action of moving from location 1 to location 2 predicates that the agent
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is in location 1 to start. The effect defines what happens to the state variables after the
action is performed, e.g. when moving from location 1 to location 2, the state variable for
location 1 will be changed to false, and the state variable for location 2 to true.

2.6.2 Planning graphs and the Graphplan algorithm

An AI planning problem can be formulated using a concept known as planning graphs.
Planning graphs are data structures that are used to estimate if a set of propositions is
reachable from the initial state and, if so, with which actions [62]. A simple example of
this could be a scenario where there are emails that have to be read and replied to, and
a planning graph for this problem can be seen in Fig. 2.5. Here the states define having
a new email available (”Have(email)”) and having read the email (”Read(email)”). The
possible actions are to read the email (”Read email”) and to reply to the email (”Reply
email”). Lines directly between two states represent inactions, or no-operations, i.e. if
there is an email available and the agent does nothing, the email is still available. The
dashed lines represent mutex states, which are two states that are mutually exclusive, i.e.
in this example, it is impossible to have read an email and be finished with it since it must
be replied to first.

Replying to an email requires that the email is already read, and the email will be
considered done when it has been replied to. If the goal of the agent is not to have any
emails, given that it started with one email, a solution for this problem can be seen to be the
sequence of actions of first reading the email and then replying to it, highlighted in Fig. 2.5.
This planning graph thus represents the simple problem of reading and replying to emails.
Although this is a trivial case, the methodology is the same for a general problem with any
number of state variables and actions.

Figure 2.5: Example of a planning graph. Here ”∼” represents the ”not” operator.

Given a general planning problem that can be expressed in such a planning graph, the
Graphplan [17] algorithm can be used to traverse the graph to find the set of actions that
will bring the agent into the goal state.

Graphplan involves two main components: Forward planning graph expansion and
backward searching the planning graph [59]. The graph is expanded during the forward
expansion until either a solution may be found or that graph has reached a fixed point. A
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solution may be found if the last layer of state variables includes the goal state, while a
fixed-point means the next layer of state variables is the same as the current. Given a layer
including the goal state variables to start from, the planning graph can be searched to see
if there is a valid set of actions from the initial state to this goal state.

These two components form the basis of the flow of the algorithm, which starts by
expanding until it finds a layer where a solution may be found, and then if no solution is
found from this layer it continues expanding until one is found. The termination criterium
for the algorithm is reached when further expansion of the graph will not yield more pos-
sible solutions, which is evaluated by checking if the same exact nodes are checked in
two layers in a row. The complete algorithm and explanation can be found in [59], and is
summarized through the following steps:

1. Expand planning graph until solution may be found or solution cannot be found at
all.

2. While no solution is found, expand the graph by one layer and test again until found.
If no nodes change between two layers, terminate.

If there exists a solution to the planning problem, the Graphplan algorithm can be
proven to find it [59].
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3
Experimental setup

This chapter describes the experimental setup used throughout the testing done in this
thesis. Apart from new tests using the DNV ReVolt vessel, the setup used in this thesis
is essentially the same as the one used in the specialization project preceding this thesis,
meaning several sections are based on [3].

3.1 Parrot Anafi
The hardware platform used as a basis for the experiments in this thesis is an Anafi FPV
quadcopter, seen in Fig. 3.1. This is a 315 g drone with four rotors and one dynamically
stabilized camera, released in 2018 by the French drone manufacturer Parrot. The most
relevant aspects of the drone will be summarized below, while the full specifications can
be found in [64].

Figure 3.1: Parrot Anafi FPV.
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3.1.1 Camera
The Anafi includes one camera stabilized in 3 axes through a hybrid of software stabiliza-
tion and a mechanically stabilized 2-axis gimbal. The gimbal can also be used to tilt the
camera a total of 180° in a given direction, e.g. straight up, ahead, or down.

The drone can capture high-quality video and images stored locally or lower-quality
video streamed live to a smartphone or computer. Table 3.1 shows the resolutions and
framerates in frames per second (FPS) for both modes, as well as the bitrate and end-to-
end latency when streaming.

Table 3.1: Camera specifications.

Camera mode Resolution FPS Bitrate Latency
Local storage 4096× 2160 24 - -
Wi-Fi streaming 1280× 720 30 5 Mb/s 280 ms

3.1.2 Sensors
Besides the camera, the additional sensors included on the Anafi are:

• IMU with

– 3-axis gyroscope

– 3-axis accelerometer

• Magnetometer

• Barometer

• GPS sensor

• Ultrasonic sensor

The output of these sensors is not directly available and is instead used in the internal state
estimation on the drone.

3.1.3 State estimation
The internal state estimation of the Anafi features an 18-state extended Kalman filter (EKF)
with the following states:

• Postion in NED frame (x,y,z)

• Velocity in body frame (x,y,z)

• Attitude (phi, theta, psi)

• Horizontal wind (x,y)
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• Accelerometer biases (x,y,z)

• Gyroscope biases (x,y,z)

• Barometer bias (z)

The only measurements made available externally are the attitude in the body frame, and
the velocity converted into the NED frame. Additionally, to calculate the ground distance
covered, the drone will merge the EKF position estimate with an optical flow estimate
from the camera.

3.1.4 Low-level control
The drone includes an inner control loop running at 200Hz that includes separate PID
controllers for altitude, horizontal position, and attitude. The outputs of the internal state
estimation are used as the measurement in the control loops, meaning that the position
controller will make wind compensations.

3.1.5 Interface
The drone can be accessed and controlled using either the Parrot FreeFlight 6 app1 on a
smartphone, using the Parrot Skycontroller 32, or by using the Parrot Olympe application
programming interface (API) [65] from an Ubuntu computer. The common communi-
cation interface to the drone is Wi-Fi, where the Anafi sets up an access point that the
smartphone, controller, or computer connects to. When controlling the drone from a com-
puter through Olympe, using Wi-Fi directly gives a severely limited range and decreases
the quality of the signal. To avoid this, the Skycontroller 3 can be connected to the com-
puter and used as a relay point between the computer and drone as seen in Fig. 3.2, which
improves the signal strength and quality. Using the Skycontroller 3 as a relay allows for
controlling the drone from a computer with the same operating range as when flying it
directly with the Skycontroller, which is up to 4 km [66].

The Olympe API provides methods of both commanding and monitoring the Anafi
through the use of ARSDK messages. An ARSDK message can be either a command or
a response. The commands are sent to change the drone’s behavior, while the responses
report back the current state of the drone.

The commands related to motion control are attitude control, relative position control,
and global position control. The drone accepts new setpoints for the local and global
positions once its internal estimation system considers the current setpoint reached, while
new attitude setpoints are always accepted every 50 ms. The attitude setpoints provide
the same control as a standard radio controller, namely control of the roll and pitch angles,
yaw rotational rate, and throttle. They will default back to stabilized hovering if no setpoint
is received after 50 ms. The drone also has build-in commands for takeoff and landing,
where the takeoff command makes the drone take off and hover at around 1m. The land
command automatically lands the drone regardless of initial altitude.

1https://www.parrot.com/en/apps-and-services
2https://www.parrot.com/us/support/anafi/how-does-the-skycontroller-3-work
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Figure 3.2: Image showing the Anafi connected to the computer using the Skycontroller 3 as a relay.

The motion-related responses are the Anafi’s attitude in the body frame, and velocity
measurements in the NED frame regularly sent at 5 Hz, as well as the global position
from the GPS sensor, regularly sent at 1 Hz. The measurements triggered regularly are
not meant for closed-loop command control, and the velocity measurements have been
observed to be about 1 s delayed compared to the actual drone velocity. In addition to this,
the Olympe API also provides various other information about the drone, such as battery
information, gimbal attitude, current flying state, and saturation limits for maximum angles
and velocities. The API also provides live access to the Anafi’s camera, both for taking
discrete images in high resolution and for lower-resolution streaming.

Note that Parrot performed a significant upgrade of all of their software in November
2021, so the version now available online differs from the version used in this project. The
version used in this project is Olympe 3.0.0.

3.1.6 License and insurance
From January 1st, 2021, the Civil Aviation Authority (CAA) of Norway has updated the
rules and regulations regarding the use of drones, following the new rules from the Eu-
ropean Union [67]. These new rules require that the pilot of all drones weighing more
than 250 grams, or any drone with a camera, register and receive their A1/A3 certificate
and insure the drone. The certificate can be received by following an online course and
exam provided by the CAA, and the insurance can be bought as valuables insurance in an
insurance company.

3.1.7 Parrot-Sphinx simulator
Parrot-Sphinx [68] is a simulator released by Parrot for its drones and is based on the
Gazebo simulator, introduced in [69]. The simulator includes a model for the Anafi drone
and a framework for connecting to the drone through a simulated Wi-Fi interface. This
means that the only difference when connecting a simulated drone and a real drone is the
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IP address the computer connects to, meaning all other functionality is independent of the
environment used.

This simulator was also upgraded in November 2021 to include the use of the Unreal
Engine to render realistic environments for the drone. As with the new Olympe API,
this project does not use this new version of Parrot-Sphinx, and instead uses the previous
version, which does not support the use of the Unreal Engine. The version used in this
thesis is Parrot-Sphinx 1.8, which is almost identical to the standard Gazebo simulator in
the way that it operates.

To simulate the helipad used for takeoff and landing, a model has been provided in [2],
and this can be imported into Gazebo. The floor of the simulation is made into a concrete
pattern by using a standard model in Gazebo. The overall setup can be seen in Fig. 3.3.

Figure 3.3: Screenshot of Anafi drone hovering above helipad in Parrot-Sphinx simulator.

The simulator provides information about the pose of the different models in the scene
through Gazebo topics which can be subscribed to using the shell command-line tool
parrot-gz, which works identically to Gazebo’s gz3 tool. This information can be
parsed to extract and save the ground truth pose of the drone and the helipad.

3.2 Landing platform
To be able to land on a boat, a landing platform, hereby referred to as the helipad, has been
designed and manufactured in [2]. The author also created a Gazebo model of the helipad
to be used in simulation, as mentioned above. The physical and simulated helipad can be

3http://manpages.ubuntu.com/manpages/bionic/man1/gz.1.html

32

http://manpages.ubuntu.com/manpages/bionic/man1/gz.1.html


3 Experimental setup 3.3 Physical testing on the ReVolt

seen in Fig. 3.4. The helipad has a total diameter of 80 cm, with an ”H” in the middle
spanning 1/3 of the total diameter on the long side and 1/4 of the total diameter on the
short side. It also has a yellow circle with a diameter of 50 cm and an arrow to indicate
the orientation of the helipad. The helipad is designed to be mounted on the DNV ReVolt
autonomous marine vessel.

Figure 3.4: Physical and computer model of the helipad.

The features are designed to be distinct in both form and color, which makes the images
of the helipad easier to work with in computer vision. The design is minimalistic and
resembles the standard design of helipads. The landing pad does not include variable-
sized features like the ones used in [20], meaning the drone needs to be at a certain altitude
before it can use images of the helipad for pose estimation.

3.3 Physical testing on the ReVolt
A scale model of the proposed autonomous electric ship DNV ReVolt4 vessel was kindly
provided by DNV in Trondheim to use for realistic testing.

The helipad was mounted on top of the ReVolt, as seen in Fig. 3.5, and experiments
were carried out both on land and at sea. The testing on land was carried out in an open
parking lot with minimal obstacles. The more realistic tests at sea were carried out close to
the outlet of river Nidelva in Trondheim, where the exact position can be seen in Fig. 3.6.
During the sea tests, the ReVolt was controlled manually by having two people standing
in the water and holding it in place.

3.4 Development environment setup
The base platform for the development and experiments has been a Komplett Khameleon
laptop computer, whose specifications can be seen in Table 3.2. The manufacturer de-

4https://www.dnv.com/technology-innovation/revolt/
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Figure 3.5: Helipad mounted on ReVolt vessel for drytesting and seatrials.

Table 3.2: Computer specifications and software versions used in this thesis.

Computer specifications
Manufacturer Komplett
Computer type Laptop
Model name Khameleon P9 Pro
CPU Core i7-9750H
RAM 32 GB
GPU GeForce RTX 2070

Software versions
Ubuntu 18.04 Bionic Beaver
Python 3.6.9
ROS Melodic
Olympe API 3.0.0
Parrot-Sphinx simulator 1.8
Nvidia drivers 495.44
Cuda 10.2

signed the computer to restrict performance severely when not connected to a power
source. For this reason, a petrol-driven Honda EX500 generator provided by ITK at NTNU
was used when testing outside where there was no access to a power outlet.

Table 3.2 also shows the versions of the different software used in this thesis. As
mentioned, the Olympe API and the Sphinx simulator received a major upgrade in 2021,
but the versions used in this thesis are the versions prior to this upgrade.

The Olympe API requires the use of Python 3 as well as Ubuntu 18.04 or 20.04, and the
version of the Parrot-Sphinx simulator used requires Ubuntu 18.04. The Robot Operating
System (ROS) version available for Ubuntu 18.04 is ROS Melodic, which by default uses
Python 2. This cross-dependency problem has been avoided by using Python 3 with ROS
Melodic, which works out of the box as long as no packages with support only for Python
2 are used. All Python 2 dependent ROS packages have therefore been avoided, meaning
that ROS Melodic is compatible with Python 3.
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Figure 3.6: Location of seatrials in Trondheim.

Nvidia and Cuda drivers are necessary for running the YOLO object detector with high
performance, as the detector utilizes the computer’s GPU when possible.

This project uses Git Large File Storage to store all repository dependencies in one
place and can be found on Github5.

3.5 Qualisys motion capture system

Motion capture systems capture the movement of real-world objects and describes them in
a 3D virtual environment. There are multiple ways of achieving this, but the state-of-the-
art systems today are optical motion capture systems [70]. Marked-based optical motion
capture systems use reflective markers that reflect infrared light, and multiple cameras then
capture this reflection. By attaching multiple markers to an object, the object’s orientation
can also be obtained by tracking the motion of all of the markers simultaneously.

One manufacturer of such systems is Qualisys, and their reported accuracy is down

5https://github.com/mfalang/autodrone
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to 1mm positional and 0.1° for orientation6. This means this motion capture system can
provide a reliable ground truth pose of the drone and helipad when markers are attached
to them. This can then be used, e.g. to validate the results from other pose estimation
techniques [20], or to provide reliable feedback when developing a new control system
[24].

3.5.1 Marker placement and model creation

A Qualisys motion capture system7 installed in NTNU’s drone lab will be used to get the
ground truth pose of the drone and helipad in real-world experiments. Reflective markers
are placed at various places on the Anafi drone body and around the edge of the helipad,
using smaller markers on the Anafi due to space and weight limitations. The markers are
placed asynchronously around the axes of the objects to avoid getting ambiguous poses
which could result in incorrect outputs from the system. 9 markers are placed on the Anafi
because these smaller markers are harder for the system to detect. They are placed on the
top, back, battery, and at the end of each leg, while for the helipad, 5 markers were placed
around the edge. The marker placements can be seen in Fig. 3.7.

Figure 3.7: Anafi and helipad with attached optical markers.

To set up the motion capture system, the program Qualisys Track Manager8 is used.
Here there is defined a body called ”anafi” for the markers related to the Anafi and a
”helipad” model for the helipad. These objects will then be recognized by the motion
capture system each time it sees the given configuration of markers, meaning that the
configuration of the markers must remain constant throughout the testing.

6https://cdn-content.qualisys.com/2019/09/AN_Cybernetics.pdf
7https://www.qualisys.com/
8https://www.qualisys.com/software/qualisys-track-manager/
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3.5.2 Retrieving the pose
A ROS wrapper around the Qualisys software makes the system output the pose of the
objects through ROS topics. The computer with the motion capture system is connected
to the same network as the computer controlling the drone, which also starts a ROS core.
The motion capture computer is then set up to use the ROS core on the drone computer,
meaning the topics will become available here.

As ROS messages are timestamped, it is important that the drone computer and the
motion capture computer have synchronized clocks. The Network Time Protocol provides
an interface to do this, but the availability of this service has proved to be unreliable on the
motion capture computer. Therefore, the measurements are re-timestamped upon arrival
at the drone computer to be consistent with the other timestamps coming from the drone
computer.
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4
Methodology

This chapter explains the work done in this thesis. It starts with a section on the general
software development and the anafi ros package before presenting the work done in com-
puter vision, control, and mission planning. Some intermediary results are presented here
instead of in the results chapter as they are not the main focus of this thesis.

4.1 Software development
This section highlights the software development strategy used when developing this the-
sis on the Parrot Anafi. The foundation for this development was laid in the preceding
specialization project [3], and the following contents will summarize the overall system
architecture, design philosophy, drone interface, and changes made from the specializa-
tion projects.

4.1.1 System architecture
The system architecture used in this thesis can be seen in Fig. 4.1. Here each rounded
square represents a ROS node, where the nodes are

• Drone interface - Interface exposing Olympe functionality to ROS.

• Mission planner - Generating action sequence based on predefined mission goals.

• Perception - Estimating drone pose based on images and sensor output.

• Control - Overall system for executing an action sequence from the mission planner
consisting of the two submodules

– Mission executor - Responsible for executing and monitoring each action in
the action sequence.

– Guidance - Moving the drone to a desired position setpoint.
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• Ground truth parser - Takes ground truth data from either the Sphinx simulator or
the motion capture system and converts it into common frames of reference.

• Output saver - Saves ground truth and estimation outputs for later use and analysis.

Nodes added in this thesis are the mission planner, ground truth parser, and control system
with guidance and mission execution.

Figure 4.1: Software architecture describing high level interactions between the different modules
in the system.
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4.1.2 Design objectives
This thesis builds upon the same design objectives used in the preceding specialization
project [3] which will be summarized below.

The overall design goal of the software in this thesis is to create a code base that is
suitable for further development on the project in the future. Given that this may involve
different algorithms, drone platforms, and test environments, the following three design
objectives are identified as important to facilitate future development:

1. modularity

2. platform independence

3. testability

Modularity

Modularity here refers to dividing functionality up into separate blocks with standard in-
terfaces. This makes it easier to maintain the code base as it allows for fixing, updating,
reworking, or replacing different modules independently without worrying about other
parts of the code breaking. In this project, the different components mission planner, con-
trol, perception, drone interface, ground truth, and output saver are split into separate ROS
packages. This means that e.g., the perception system could be updated without the risk
of affecting the control system. One of the design philosophies of ROS is to allow the use
of external libraries in ROS by adding lightweight wrappers [71]. The code in this thesis
attempts to achieve this by placing all specific ROS code in one file, which is then using
the algorithms defined in separate libraries.

Platform independence

Platform independence here refers to developing a code base capable of running on dif-
ferent hardware without having to make modifications to the algorithms used. This inde-
pendence is essential as the project is likely to transition to using a different drone in the
future, where the results from the Anafi must be easily transferable. Platform indepen-
dence is here achieved by creating a drone interface ROS package that encapsulates all
drone-specific information and presents a standardized interface to all the other modules
which interface with the drone. All parameters specific to the drone such as mass, camera
parameters, and image dimensions, are standardized and published to a ROS parameter
server1 so that they are accessible by the other modules. ROS topics serve as the commu-
nication channel between the user and the drone, relaying both commands and responses
to and from the Olympe API.

The algorithms used in this thesis can then be used on a new drone by creating a new
drone interface using the same standard interface as the other modules. There might be
drone-specific details to each drone that makes the drone interfaces have to be somewhat
different, but following this philosophy will nevertheless result in code that is as platform
independent as possible.

1http://wiki.ros.org/Parameter%20Server
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Testability

Testability here refers to being able to test algorithms in a simulator and real-world ex-
periments without any changes to the algorithms themselves. Although the simulation
environment will never be able to replicate real-world conditions fully, it might uncover
bugs and mistakes before they reach real-world experiments, reducing the chance of faulty
software causing the drone to crash. The drone interface is made to provide a standardized
interface regardless of the environment to make it possible to use the same code both in
simulation and real-world experiments. In this way, the perception and control algorithms
are oblivious to whether they are run in a simulation or a real-world experiment.

Having ground truth measurements to evaluate the performance of the algorithms is
essential both in simulation and real-world experiments. For the simulation, an interface
between the Sphinx simulator and ROS was created in [3] to extract the ground truth pose.
In real-world experiments in the drone lab, these measurements are available through the
motion capture system. The output of both of these systems is converted to appropriate ref-
erence frames and saved, meaning that the ground truth data from the simulator is directly
comparable to that from the motion capture system.

4.1.3 Anafi ros Olympe ROS bridge

The anafi ros ROS package is a continuation and improvement of the drone interface cre-
ated in [3]. The interface has tried to replicate the drone interface [21] used for controlling
the AR.Drone 2.0 in the two master’s theses preceding this project [1, 2].

When using the Skycontroller as a relay for connection, the interface allows for switch-
ing piloting modes from the Olympe API to the Skycontroller. This is used as a failsafe to
resume control of the drone when necessary in real-world experiments, making the inter-
face safer to use.

As mentioned in Section 3.1.5, communication with the Parrot Anafi happens through
the Olympe API using ARSDK messages, where command messages allow changing some
state on the drone, while response messages allow reading back the current state of the
drone. These messages are relayed over ROS topics as discussed above.

The command topics can be seen in Table 4.1, and have been left unchanged from
[3]. The Anafi has built-in takeoff and land commands, meaning these topics invoke these
commands directly. The topic for setting the attitude is most relevant when performing
control and should be supplied with new data at 20Hz, which is the rate at which the drone
accepts new attitude setpoints. The topic for setting the relative position uses the onboard
position controller on the Anafi, which is useful for moving short distances. However, it
is not suited for real-time control as the drone itself determines when the desired position
has been achieved and does not accept new setpoints while executing a movement. Setting
the saturation limits can also be done in-flight, which could be useful if different levels of
aggressiveness are required for different maneuvers.

2Common ROS message, see http://docs.ros.org/en/lunar/api/std_msgs/html/msg/
Empty.html

3Custom message type drone interface msgs/AttitudeSetpoint
4Custom message type drone interface msgs/PositionSetpointRelative
5Custom message type drone interface msgs/SaturationLimits
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Table 4.1: Command topics for ROS Olympe bridge.

Topic name Message type Use

takeoff Empty2 Arrival of a message triggers
Olympe takeoff command.

land Empty
Arrival of a message triggers
Olympe land command.

set attitude AttitudeSetpoint3
Attitude setpoint for internal
attitude controller (ϕ, θ, ψ̇, ż).

set position relative PositionSetpointRelative4
Position setpoint for internal
relative postion controller
(∆x,∆y,∆z,∆ψ).

set saturation limits SaturationLimits5
Updates the saturation limits for
tilt angle, tilt speed, yaw speed
and vertical speed.

Similarly, the output topics relaying the response messages from the Anafi can be seen
in Table 4.2. Here, contrary to [3], all telemetry data is bundled together as this is updated
synchronously at 5Hz from Olympe. As Olympe provides no information about when new
data arrives, the interface regularly polls the latest drone response and checks if the polled
velocity differs from the previous velocity published on the topic. Due to there always
being some noise, the two following measurements will never be completely the same
even when the drone is stationary. The GPS measurements are put in a separate topic, as
this response message is only provided from the drone at 1Hz, where a similar technique
as with the telemetry is used to check when a new measurement is available. The image
topic is the topic that published the most often, as the drone streams video at up to 30 FPS.
An improvement made in this thesis is checking the images for errors using internal error
checking of Olympe, and then removing these images from the camera stream. As the
images typically include more errors while the drone performs maneuvering, the image
topic here publishes less frequently due to more images being rejected.

Table 4.2: Output topics for ROS Olympe bridge.

Topic name Message type Use

telemetry AnafiTelemetry6

Telemetry from the Anafi: Drone attitude
(ϕ, θ, ψ), body velocity (vx, vy, vz), altitude
relative launch (zr), gimbal attitude (ϕg, θg,
ψg), battery information, and flying state.

gps NavSatFix7 Satellite fix status, position (longitude,
latitude, altitude), and position covariance.

image rect color Image8 Image, image dimensions, and encoding.
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4 Methodology 4.2 Perception

Figure 4.2: Diagram showing the interface between a ROS node and a physical or simulated Anafi
drone by the anafi ros Olympe ROS bridge developed for this thesis.

The functionality of the drone interface is split up into four threads as seen in Fig. 4.2.
One thread listens for and relays commands to the drone, while three separate threads relay
information about telemetry, GPS measurements, and images. Using multiple threads
increases real-time performance and creates a more robust system where the drone will
still be able to accept commands if one of the output threads crashes unexpectedly.

4.2 Perception

4.2.1 Traditional computer vision

The traditional computer vision (TCV) part of the perception system attempts to estimate
the pose of the drone by solving the perspective-n-point (PnP) problem discussed in Sec-
tion 2.2.1. The system is based on the work done in the preceding specialization project
[3], but addresses some of the shortcomings and issues with the previous system, in par-
ticular shortcomings related to corner detection and real-time performance.

The main problem in [3] was that the system was not able to detect the 13 total corners
of the helipad ”H” and arrow as the strongest features in the image in real-world exper-
iments. This was concluded was due to jitter in the images, improper tuning of the Shi-
Tomasi detector, and no image segmentation to filter out all features outside the helipad.
In this thesis, the image jitter problem was severely reduced by using the SkyController 3
as a data relay instead of a direct Wi-Fi interface and removing images based on Olympe’s
internal error check.

The corner detector is also tuned using a grid search strategy as suggested in [3], and a
segmentation system using a circle detector based on the Hough transform is implemented.
This thesis uses an OpenCV implementation of the homography-based pose estimation and

6Custom message type drone interface msgs/AnafiTelemetry
7Common ROS message, see https://docs.ros.org/en/api/sensor_msgs/html/msg/

NavSatFix.html
8Common ROS message, see http://docs.ros.org/en/noetic/api/sensor_msgs/html/

msg/Image.html
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subsequent optimization to increase the real-time performance, as this implementation is
more optimized than the solution in [3]. Each improvement is further discussed below.

Figure 4.3: Helipad with metric distances and corner definitions.

Helipad segmentation

Segmenting the image to only contain the helipad is important to ensure that no features
outside the helipad are incorrectly detected. In the specialization project, this was at-
tempted using green color segmentation, but this was unsuccessful due to the edges of the
segmented image having too much noise [3]. Color segmentation was also used in the first
master’s thesis written on this project [2], but as shown in the next master’s thesis, this
proved to be too sensitive to varying lighting conditions making it unsuitable for flying
outside [1]. Due to these shortcomings, this thesis will segment the helipad based on the
Hough transform circle detector. The OpenCV implementation HoughCircles9 is used
to detect the circles, where the image is first converted to grayscale.

The system will attempt to detect the circle in the inner part of the orange circle of the
helipad, marked in cyan in Fig. 4.3. This circle is used as it is the only complete circle
on the helipad, as the outer rim of the helipad has motion capture markers placed around
it. Segmenting out an image only containing the corners c0, ..., c4 can therefore be done
by creating a mask from this circle and increasing the radius by 40% to include the arrow
corner as well. Increasing the radius can safely be done as the overall helipad radius is
about 60% larger than the yellow circle radius.

9https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.html#
ga47849c3be0d0406ad3ca45db65a25d2d
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Using such a strategy was attempted in the specialization project, but the parameters
for the HoughCircles function giving the desired circle detected were never found [3].
However, in this thesis, this problem is automated using a grid search.

The grid search algorithm requires defining a cost function Vcircle, which in turn
requires a measure to evaluate whether the detected circle is the correct one. Images
from flying in the drone lab are therefore labeled with the correct circles using a program
developed to store the center and radius of the labeled circle for each image. A total of 151
images with the drone flying at different altitudes and orientations were labeled, where two
such images from the labeling process can be seen in Fig. 4.4.

Figure 4.4: Two sample images labeled with the ground truth circle.

Given the ground truth and estimated circle center c =
[
x y
]⊺

and ĉ =
[
x̂ ŷ
]⊺

, and
radius r and r̂, the estimation error of a single image is defined to be the distance between
the centers plus the absolute value of the radius error

ecircle = ∥c− ĉ∥+ |r − r̂|. (4.1)

The overall cost function Vcircle for all the images is defined as the mean of the error
across each image

Vcircle =
1

N

N∑
i=1

ecircle,i. (4.2)

Grid search is performed using the Scikit-Learn library for machine learning in Python
[72]. Although there are several more advanced hyperparameter optimization (HPO) meth-
ods available, grid search is chosen because of its simplicity.

Although there has been added functionality for testing all the parameters used in the
HoughCircles function and using different types of blur, only some of the parameters
are searched due to the exponential complexity increase when adding more parameters
to the search grid. In addition, the runtime of the HoughCircles function is highly
dependent on the combination of parameters, meaning testing lots of parameters is not
feasible. All the blur parameters have been fixed, meaning the images are blurred using
Gaussian, Median and Bilateral blur.

Some of the HoughCircles parameters have also been fixed as these can be deter-
mined based on the specific problem. These fixed parameters include the minimum and
maximum radius of the circles detected, set to 50 and 500 pixels, respectively, accounting
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for the approximate smallest and largest circles where all 13 corners can be visible and de-
tectable in the image. Similarly, the minimum distance between two circles has been set to
1000 pixels to ensure only one circle is detected in the image. The parameter determining
the inverse ratio of the accumulator resolution to the image resolution has also been fixed
at 1 as it seemed to have little effect on the performance.

The changed parameters are two method-specific parameters, where one is a part of
the internal Canny edge detector used by the Hough circle transform, and the second
is a parameter determining the voting threshold of the accumulator threshold. These
parameters are by OpenCV referred to as ”param1” and ”param2” which they will be
referred to in this thesis. The values tried searched for both param1 and param2 are
[20, 30, 40, 50, 60, 70, 80, 100]. These values resulted in 64 different combinations to try
for all of the images when training, which totaled 105 images. The test set used in the grid
search is then the remaining 46 images.

Corner detection

Corner detection is here used to detect the 12 corners of the helipad ”H” and the ar-
row, to then be able to later identify the four outer corners of the helipad ”H” and the
arrow, marked in red in Fig. 4.3. Different feature detectors have been tested, such as the
FAST and SIFT feature detectors, but the Shi-Tomasi and Harris detectors from OpenCV’s
goodFeaturesToTrack function10 are used in this thesis. Although FAST and SIFT,
and FAST in particular, have better real-time performance, the goodFeaturesToTrack
function has the advantage that it can return the n strongest features detected. This is par-
ticularly useful in this project as it is beneficial to only detect the corners of the helipad ”H”
and arrow to then determine which detected feature correspond to which corner c0, ..., c4.

The detector is tuned using a grid search strategy as suggested in [3]. The corner
detector uses a labeling method similar to the circle detector. All 13 corners are labeled
and saved with the correct coordinates in each image, where two such images can be seen
in Fig. 4.5. The same dataset of 151 images is labeled, and each image is segmented to
include only the corners and the arrow using the circle detector described above.

Figure 4.5: Two sample images from corner labeling.

When the detector returns an estimate including 13 different points, the 13 points are
matched to the 13 ground truth points using the k-nearest neighbor classifier from Scikit-

10https://docs.opencv.org/3.4/dd/d1a/group__imgproc__feature.html#
ga1d6bb77486c8f92d79c8793ad995d541
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Learn11 with k = 1. The error for a single image is then defined as the average error
between each pair of corresponding ground truth points p =

[
x y
]⊺

and estimated points
p̂ =

[
x̂ ŷ
]⊺

ecorner =
1

13

13∑
i=1

∥pi − p̂i∥ . (4.3)

The overall cost function Vcorner across all the images is similarly as for the segmentation
defined as the mean of the errors across each image

Vcorner =
1

N

N∑
i=1

ecorner,i. (4.4)

The problem of exponentially increasing computational complexity is present here as
well. However, luckily the goodFeaturesToTrack function uses more or less the
same time computing features based on all the different sets of parameters. The func-
tion also includes a parameter for choosing which of the Harris and Shi-Tomasi detec-
tor is used. Most of the parameters are searched, except for the maximum number of
corners, fixed at 13 since this is the number of corners desired, and the free parame-
ter k in the Harris detector as it seemed to make little impact on performance and was
fixed to reduce computational complexity. For more information about the parameters in
goodFeaturesToTrack, see the OpenCV documentation12. The images were also
blurred a fixed amount using a Gaussian filter.

This results in a total of 4620 parameters to search. The training dataset is reduced
compared to when finding the segmentation parameters as each ground truth image here
also has to be accompanied by a mask to segment out the helipad, meaning the memory
usage is increased. To avoid memory problems, the overall size of the training set is
reduced to 37 images, while the test dataset consists of the remaining 114 images.

Corner identification

Given that the 13 corners found by the corner detector are the correct ones, it must be
identified which corners correspond to the corners of the helipad ”H” and the arrow.

The general algorithm developed for identifying the point correspondences between
the image and the 3D points seen in Algorithm 1 was developed in the preceding special-
ization project and is left conceptually untouched in this thesis. The algorithm is based
on using the known geometry and metric distances of the helipad to identify the corners
c0...c4, defined as seen in Fig. 4.3. Assuming the corner detector returns the 13 corners
corresponding to all 12 corners on the ”H” and the one corner on the arrow, the distance
between all the points can be used to identify the points. These distances are stored in a
13 × 13 matrix. The largest distances can be seen to be between c4 and c0, and between
c4 and c1, and this can be used to identify the arrow and the two lower corners of the ”H”.

11https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

12https://docs.opencv.org/3.4/dd/d1a/group__imgproc__feature.html#
ga1d6bb77486c8f92d79c8793ad995d541
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If these distances are not the same, the 13 corners are not correct, and no correspondences
can be found.

The arrow corner can be uniquely identified from the two largest distances since it will
appear in both distances. The other two corners can then be identified by computing where
they are in relation to the arrow (if they are below, above, left, or right) and then comparing
their x or y pixel values.

Having identified the two bottom corners of the ”H”, the two top ones c2, c3 can be
identified by calculating the expected distance to them from c0. Knowing the pixel and the
metric distance between c0 and c1 from the pixel coordinates and metric measurements in
Fig. 4.3, the ratio between pixel distances in the image and metric distances in 3D can be
calculated. Using this ratio, the expected pixel distance between c0 and c2 and c0 and c3
can be calculated. The points c2 and c3 can then be found from the matrix of distances by
looking up the expected distances in the distances from c0 and extracting the point indices.

This approach then identifies 5 point correspondences in the image, which is enough
to solve the PnP problem.

Algorithm 1 Finding corners of ”H” and arrow based on corners from corner detector.
Algorithm developed in [3].

1: Let u be pixel coordinates of corners found from corner detector (shape 13× 2)
2: Let X be 3D coordinates of the points to identify on the helipad (shape 5× 2)
3: procedure IDENTIFYCORNERS(u,X)
4: Let D be a new (13× 13) matrix
5: Compute distance between all points in u and store in D
6: Find corners corresponding to the 2 largest distances dx, dy in D
7: if dx ̸= dy then ▷ Consistency check
8: return ∅
9: end if

10: Find c4 as corner appearing in both dx, dy ▷ Arrow corner
11: Let cx, cy be the other two remaining corners appearing in dx, dy
12: Identify c0, c1 based on location of cx, cy w.r.t. c4
13: Let dpx, dm be the pixel and metric distance between c0 and c1
14: r ← dpx

dm
▷ Ratio between pixel distance and metric distance

15: Find expected distance d02, d03 using r and metric distances X
16: Identify c2, c3 as the corners corresponding to d02, d03 in c0-row of D
17: Find d03, d12 from D
18: if d03 ̸= d12 then ▷ Consistency check
19: return ∅
20: end if
21: return {c0, c1, c2, c3, c4}
22: end procedure
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Pose estimation

Given the 5 point correspondences between the pixel coordinates and 3D distances of the
outer corners of the helipad ”H” and the arrow, the pose of the camera relative to the heli-
pad can be computed by solving the PnP problem. One of the main issues in the preceding
specialization project was that the runtime of the homography and optimization algorithms
were slow due to these being custom made [3]. Especially the Levenberg-Marquardt (LM)
optimization was slow, taking around 350 ms to improve the pose estimate. To improve
the runtime, the more optimized OpenCV implementation is used in this thesis.

The OpenCV function solvePnP13 was used with the SOLVEPNP_ITERATIVE
flag set. Using this flag means that the function will create an initial pose estimate by
solving the PnP problem and then optimize this estimate using LM optimization. The im-
plementation of solvePnP also uses the homography-based solution to the PnP problem,
given that the 3D points are planar. This means that this function works similarly to the
custom implementation made in the specialization project with homography and LM op-
timization, meaning the results should be comparable, and the rest of the code used will
still be compatible.

4.2.2 Deep neural network-based computer vision

In [1], the author developed a pose estimation system using a deep neural network (DNN)
based pose estimation system using the YOLO object detector. This system has been
adapted to be compatible with the rest of the code in this thesis, but the algorithms them-
selves have been largely left unchanged. The same DNN-based computer vision (DNN-
CV) system was used in the preceding specialization project, and therefore this section is
largely based on the same section from [3].

Object detection

Object detection is performed using YOLO v4 as in [1], with the same trained weights and
network parameters supplied by the author. Different weights are used for the simulation
and the physical Anafi, and no further training of the model is done for either case.

The backbone used for the YOLO v4 detector is the Darknet neural network framework
[5], which has been made available as a ROS package darknet_ros [4]. The ROS
package used in this project is a fork of [4] that has been modified to support YOLO v4,
available on Github14.

The detector is trained to recognize three different classes: the overall helipad, the ”H”,
and the arrow. Each detection is returned as a bounding box containing the pixel coordi-
nates of the lower-left and top-right corner of the bounding box rectangle encapsulating
the object.

13https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#
ga549c2075fac14829ff4a58bc931c033d

14https://github.com/tom13133/darknet_ros
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Position estimation

The bounding boxes are used to determine the pixel coordinate of the center of the helipad,
”H”, and arrow. The radius of the helipad is also estimated using the bounding box of the
entire helipad. This estimated center and radius are then used to estimate the drone’s
position.

The algorithm for estimating the drone position relative to the helipad can be seen in
Algorithm 2. Knowing the center and radius of the helipad, the drone’s position can be
found by using the similar triangles that arise from using the pinhole camera model. Here
the height of the drone relative to the helipad can be found first by using the metric and
pixel radius of the helipad and the camera focal length. When this height is known, it can
then be used in a similar way to find the horizontal positions as well. This algorithm was
originally proposed in [2] and later used in [1].

Algorithm 2 Estimate position from DNN-CV detections. Algorithm based on [1], and
originally proposed in [2].

1: Let cx, cy be the pixel position of the helipad center
2: Let r,R be the helipad pixel radius and metric radius respectively
3: procedure ESTIMATEPOSITION(cx, cy, r, R)
4: Let f be the camera focal length (in pixels)
5: Let ox, oy be the pixel coordinates of the image center
6: Let rx, ry, rz be the camera offset from center of orientation in meters
7: ẑ ← Rf

r ▷ Estimate z using similar triangles
8: dx ← ox − cx
9: dy ← oy − cy

10: x̂← −( ẑdxf + rx) ▷ Estimate x using similar triangles

11: ŷ ← −( ẑdyf + ry) ▷ Estimate y using similar triangles
12: ẑ ← ẑ + rz
13: return x̂, ŷ, ẑ
14: end procedure

4.2.3 Model-based Kalman Filter
This section explains the implementation of a Kalman filter (KF) for estimating a reliable
position estimate by fusing the measurements from the TCV and DNN-CV systems, the
sensor output from the Anafi, and a dynamic model. The KF used in the master thesis
previously written on this project [1] is not used because the code was specific to the
AR.Drone 2.0’s sensors and interface.

This thesis aims to use a model-based KF to estimate the helipad position relative to the
drone body frame. The reasoning behind this unorthodox choice of coordinate frames is
that this makes guidance easier when tracking the helipad to prepare the drone for landing,
as then the position estimate from the KF can be directly interpreted as the position error.

The need for a model-based filter arises as the internal EKF on the Anafi only outputs
attitude and velocity measurements at 5Hz, but the internal control system accepts set-
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points at 20Hz, as discussed in Section 3.1.5. The rate of the KF is set to 25Hz to make
sure it is faster than the control system, meaning a recent position estimate will always be
available for feedback in the control system.

States

The filter used in this thesis is kept as simple as possible to reduce the development com-
plexity to allow for faster real-world experimental testing of the complete system. There-
fore, the only states included are the helipad position relative to the drone body frame pbh
and the drone velocity in the body frame vbd. Thus defining the state vector x to be

x =
[
xbh ybh zbh vbd,x vbd,z vbd,z

]⊺
. (4.5)

Constant velocity model

The dynamic model used in the filter is the constant velocity (CV) model. The CV model
assumes that the velocity does not change between samples, meaning the velocity at the
previous timestep is used for predicting the motion until the next measurement is available.
This model might quickly diverge for a drone performing intensive maneuvers but could
yield adequate accuracy given that the maneuvers are slow and the model is corrected fre-
quently enough. When landing the drone in this thesis, slow speeds are desired to achieve
a controlled landing, and with corrective measurements arriving at 5Hz, it is reasonable to
believe that this simple model is accurate enough.

The equations of motion describing the constant velocity model in 3 dimensions are
based on the equations for the planar case found in [54], and can be summarized as follows

ẋ = Ax+Gn, A =

[
03×3 −I3
03×3 03×3

]
,G =

[
03×3

I3×3

]
, (4.6)

where n is process noise which is assumed to be white noise. The white noise is charac-
terized by a diagonal covariance

D =

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

 , (4.7)

where (σx, σy, σz) represent the amount of acceleration the drone is expected to undergo
in each of the three axes.

Measurements

The measurements used as corrections in the KF are:

• Drone body velocity vbd from Anafi internal EKF.

• Helipad position pbh from TCV system.

• Helipad position pbh from DNN-CV system.
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As seen, the measurements arrive from three different sources. As these arrive at inde-
pendent frequencies, they need individual measurement matrices to independently update
the filter based on each measurement. The measurement matrices are based on the states
described above and can be summarized as follows

Htelemetry =
[
03×3 I3

]
(4.8)

Htcv = Hdnncv =
[
I3 03×3

]
. (4.9)

Tuning

The tuning parameters used in the KF are shown in Table 4.3. The initial position is zero,
and the covariance is small as it is assumed that the drone always starts at rest in the middle
of the helipad. The uncertainty parameters were chosen based on trial and error, where the
given parameters resulted in a combined estimate where no single measurement dominated
the others.

Table 4.3: Kalman filter initial values and tuning parameters.

Initial position
x y z vx vy vz

x0 0 0 0 0 0 0
Initial uncertainty

σx σy σz σvx σvy σvz
P0 0.01 0.01 0.01 0.01 0.01 0.01

Model uncertainty
σx σy σz σv,x σv,y σv,z

CV-model 0.03 0.03 0.03 0.01 0.01 0.01
Measurement uncertainty

Measurement σx σy σz σv,x σv,y σv,z
Velocity - - - 0.4 0.4 0.4

TCV position 0.5 0.5 0.5 - - -
DNNCV position 0.5 0.5 1 - - -

4.3 Coordinate frames

This section will briefly describe the coordinate frames used in this thesis and the con-
versions between them. The different frames are the NED frame, helipad frame, camera
frame, and the drone body frame, illustrated in Fig. 4.6. The coordinate frames associated
with each system in this thesis are summarized in Table 4.4. The helipad frame is not used
by any of the algorithms that ended up in the final part of this thesis. However, it is a frame
that can be useful for local navigation when landing, and is left in the thesis as a future
reference.
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Figure 4.6: Coordinate frames NED {n}, helipad {h}, drone body {b}, and camera frame {c}.

4.3.1 Conversions

Although converting coordinates between the different frames, in general, involves the
complete rigid-body transformation described in Section 2.1, several factors simplify the
transformations in this thesis. Each conversion will therefore be described below.

NED to helipad frame

Translating from the NED frame to the helipad frame makes it easier to monitor and vi-
sualize the drone’s position relative to the helipad. This conversion involves a translation
thn between the origins of the frames, as well as a rotation Rh

n based on the attitude of
the helipad in the NED frame. If the helipad is assumed to be level with the ground at all
times, the rotation reduces to a rotation around the helipad yaw angle only. The general
expression for a point in the helipad frame can then be given as

ph = Rz,ψh
pn + thn. (4.10)
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Table 4.4: Table showing the coordinate frame outputs of different system used in the thesis.

System Output reference frame
TCV pose estimates camera {c}
DNN-CV pose estimates camera {c}
Kalman filter body {b}
Motion capture system NED {n}
Parrot-Sphinx simulator ground truth NED {n}

Camera to drone body frame

As the position estimates coming from the TCV and DNN-CV systems are defined in
the camera frame, they must be transformed into the body frame before they are used in
the Kalman filter. Converting from the camera frame to the body frame involves a rotation
around the camera gimbal attitude relative to the body frame Rb

c, and a translation between
the camera frame origin and the body frame origin. In this thesis, the camera gimbal is
set to always point straight down along the z-axis of the drone body frame, and this is
internally controlled by the Anafi. Therefore, it is assumed that this alignment is valid
throughout the flying, which simplifies the rotation between the two frames to a single
rotation of 90° counterclockwise around the z-axis, as can be verified from Fig. 4.6. The
conversion thus becomes

pb = Rz,90p
c + tbc (4.11)

where tbc is the camera offset along each body axis, estimated to be around 70mm in the
x-axis and 0mm in the y- and z-axis.

NED to drone body frame

Converting from NED to body is necessary to convert the ground truth data from the simu-
lator and motion capture system to the body frame in order to evaluate the state estimation
which is handled in the body frame. The transformation from NED to body is defined as a
full rotation around the drone attitude expressed in the NED frame Rb

n = RΘ, as well as
a translation between the origin of the NED frame and the drone tbn.

pb = Rz,ψRy,θRx,ϕ︸ ︷︷ ︸
Rb

n

pn + tbn. (4.12)

4.4 Guidance and control
A guidance system is needed to align the drone with the helipad while landing. The limi-
tations of the Anafi onboard position control system discussed in Section 4.1.3 necessitate
the need for a custom guidance system based on the Anafi’s internal attitude control sys-
tem instead. The final guidance system will consist of three parts: (i) the Anafi internal
attitude controller, (ii) a velocity controller, and (iii) a guidance system.

54



4 Methodology 4.4.1 Velocity control

The velocity controller will be responsible for converting a 3D velocity reference into
the attitude commands for the internal attitude controller. Similarly, one level up, the
guidance system will generate a velocity reference for the velocity controller based on the
current target location. The overall structure of the entire guidance and control system can
be seen in Fig. 4.7.

Figure 4.7: Control system architecture showing the layered structure of the overall guidance sys-
tem. The feedback signals for position and velocity control have been omitted for the sake of sim-
plicity.

4.4.1 Velocity control
As the attitude controller takes desired roll ϕd, pitch θd, yaw rate ψ̇d, and climb-rate vbz,d,
the velocity controller must generate ϕd and θd from the desired horizontal velocities vbx,d
and vby,d, while no action is needed for the vertical velocity vbz,d as this is already an input
to the control system. The drone will move using roll and pitch only, meaning no action is
necessary for the yaw rate.

Two methods are proposed for generating the horizontal references for the Anafi’s in-
ternal attitude controller: (i) a model-based method and (ii) a PID controller. Both systems
are evaluated by viewing the drone’s response in simulation and real-life experiments when
applying the varying step response smoothed by a second order velocity reference model
as the input. The reference input can be seen in Fig. 4.8. A limit of ±5° is set on both roll
and pitch to avoid aggressive maneuvers.

Model-based

As the Anafi provides no way to directly determine the thrust force of the motors, it is here
assumed that the drone is flying in level flight to be able to determine this force analytically,
as suggested in the specialization project preceding this thesis [3]. During level flight, the
drone does not move vertically, meaning that the total vertical force Fz produced by the
drone’s engine must be equal and opposite the gravitational force G acting on the drone.
Given information about the drone’s current roll and pitch attitude, the horizontal forces
Fx and Fy produced by the drone can be derived. Combining this with linear drag forces in
both horizontal axes Dx and Dy yields the forces in each axis. The forces acting on one of
the horizontal axes during level flight can be seen in Fig. 4.9. Due to the symmetrical rotor
configuration of a quadcopter, the roll and pitch dynamics will be decoupled, meaning their
dynamic equations can be developed separately. The general dynamic equation for an axis
i and angle α, (i, α) ∈ [(x, θ), (y, ϕ)], can be computed trigonometrically as follows
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Figure 4.8: Horizontal velocity references used to evaluate velocity controllers.

mabi =
∑
j

Fj = Fi −Di (4.13)

= mg tanα−Di (4.14)

= mg tanα− divbi (4.15)

where abi is the body acceleration in axis i, di is the drag coefficient for the linear drag
model in axis i, vbi is the body velocity in axis i, m is the drone mass, and g is the gravita-
tional acceleration.

The acceleration abi is where the information about the desired velocity will come in.
By viewing this as the desired acceleration of the system and then discretizing it assuming
the timestep ∆t = 1 s, the desired acceleration becomes

abi ≈
∆vbi
∆t

=
vbi,d − vbi

1
= vbi,d − vbi := ∆vbi,d. (4.16)

Plugging this into Eq. (4.15) and solving for the given angle α ∈ [θ, ϕ] gives the following
equations for ϕd and θd
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Figure 4.9: Forces acting on the quadcopter along the axis i. The length of the arrows are chosen to
indicate a level flight at constant velocity.

θd = arctan

(
1

mg
(mvbx,d + dxv

b
x)

)
(4.17)

ϕd = arctan

(
1

mg
(mvby,d + dyv

b
y)

)
. (4.18)

The coefficients dx and dy in the linear drag model from [23] are unknown in this equa-
tion, and therefore need to be estimated. The unknown parameters can be estimated by fly-
ing the drone and recording the acceleration and velocity it experiences for each attitude.
As only velocity measurements are available for the motion capture system, the accelera-
tion is obtained by differentiation and then smoothed out using a Savitzky-Golay filter15

to remove noise caused by differentiation. After sampling sufficiently many acceleration,
velocity, and attitude correspondences, the coefficients are estimated using least-squares
optimization from SciPy16.

Here the residual function r is defined as the error between the estimated and actual
attitude angles given a certain velocity and acceleration. This can be viewed as evaluating
how close the calculated desired attitude for a given velocity is to the actual attitude that
achieves that velocity.

r(di, ai, vi, α) = α̂(di, ai, vi)− α. (4.19)

This procedure is done for both the x-axis where α = θ, and the y-axis where α = ϕ.
The same dataset is used to estimate both parameters, and this is recorded while flying the

15https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.
savgol_filter.html

16https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
least_squares.html
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drone horizontally in both axes. The resulting estimated drag coefficients found from the
least-squares optimization can be seen in Table 4.5. The y-component can be seen to be
slightly larger than the x-component, as more of the drone body is directly exposed to the
wind in the y-axis than the x-axis due to the Anafi’s slender shape.

Table 4.5: Resulting linear drag coefficients from least-squares optimization.

Estimated linear drag coefficients
d̂x 0.08063504
d̂y 0.09929089

Once the drag coefficients dx and dy are estimated, the desired attitude can be com-
puted for a given velocity, hence completing the model.

PID controller

The second proposed method for computing the desired attitude given a desired velocity
is using a PID controller. Given the internal attitude controller of the drone, this velocity
control system will follow the successive loop closure methodology. Defining the errors
between the desired and actual velocity along the two axes to be

ex = vbx,d − vbx
ey = vby,d − vby,

(4.20)

the control law for the x and y-axis will be respectively

θd = Kp,xex +Ki,x

∫ t

0

ex +Kd,xėx

ϕd = Kp,yey +Ki,y

∫ t

0

ey +Kd,y ėy.

(4.21)

As the Anafi does not expose the raw data from its internal IMU, no information about
the drone’s acceleration is directly retrievable. Therefore, the derivative of the error ėi has
to be obtained by differentiating the difference between the current and previous error with
respect to the timestep of the controller, which is 0.05 s due to the control system running
at 20Hz. If the error contains noise, then this noise will be amplified when differentiating
it, which could be solved by introducing filtering techniques such as the ones discussed in
[73], but this is not investigated in this thesis. Similarly, numerical integration is performed
to compute

∫ t
0
ei, where the integral is approximated as a sum of the previous errors. The

differentiation and integration techniques for axis i are therefore defined as

ėi ≈
ei,k − ei,k−1

∆t
(4.22)∫ t

0

ei ≈
k∑
j=0

ei,j∆t. (4.23)
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The PID gains used for the controller can be seen in Table 4.6. These were found by
trial and error where the goal was to obtain a steady response that was sufficiently fast (the
results will be shown in Chapter 5). The controller used was a PI controller with a small
integral gain to help reach the setpoint in the case of disturbances or unmodeled dynamics.
The error integral was saturated at the same values as roll and pitch to avoid instability due
to integrator windup in the controller. The derivative term was not used as this was found
to cause instability.

Table 4.6: Table showing the PID gains used for the velocity controller.

kp ki kd

X-axis 7 0.1 0
Y-axis 7 0.1 0

4.4.2 Guidance and altitude control
The main objectives of the guidance system in this thesis are to track the helipad and con-
trol the drone’s altitude to prepare for landing. Two methods are examined for horizontal
tracking: (i) target tracking using the pure pursuit (PP) guidance law and (ii) point sta-
bilization using a PID controller. A PID controller is used for altitude control, as it is
assumed that the helipad will not move vertically and therefore the PID controller should
work well. A limit of±0.3m/s is set for the horizontal velocity references, and±0.1m/s
for the vertical velocity reference to avoid aggressive maneuvers.

The errors are defined equally for the horizontal guidance and altitude control. As
the drone’s perception system estimates the helipad position in the drone body frame, the
position errors are defined in this frame as well as follows

ex = xbh,d − xbh
ey = ybh,d − ybh
ez = zbh,d − zbh.

(4.24)

When tracking the helipad horizontally, the desired positions of the helipad xbh,d and ybh,d
will always be 0. The desired altitude zbh,d is typically larger when approaching the helipad
and then lower when descending for landing after it is aligned horizontally.

Both horizontal methods are evaluated by how well they manage to stabilize above a
stationary helipad in real-world experiments.

Pure pursuit

Using the errors defined in Eq. (4.24), the pure pursuit guidance law computes the desired
velocity as

vbd = κ
eb

∥eb∥
, eb = [ex ey]

⊺ (4.25)
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and here the sign of the desired velocity vbd is positive due to the error definitions used in
Eq. (4.24). This guidance law is tuned using the parameter κ > 0, where larger values
cause the drone to approach the helipad faster and smaller values slower.

Point stabilization using a PID controller

This method involves using a separate PID position controller for setpoint regulation in
each axis. Given that the motion of the helipad is sufficiently slow compared to the motion
achievable by this controller, the drone will be able to track the helipad. Given the structure
of the overall control system seen in Fig. 4.7, the system will be a successive loop closure
with a total of three loops for attitude, velocity, and position. Due to the need for the inner
loops to be sufficiently fast compared to the outer loop, this also forces this outermost PID
controller to be slow, placing another constraint on the speed of the helipad.

The equations for computing the desired velocities in each axis are similar to Eq. (4.21)
for the velocity controller

vbx,d = Kp,xex +Ki,x

∫ t

0

ex +Kd,xėx

vby,d = Kp,yey +Ki,y

∫ t

0

ey +Kd,y ėy

(4.26)

where the derivative and integral errors are defined as in Eq. (4.22) and Eq. (4.23) respec-
tively.

The gains used by the PID guidance system can be seen in Table 4.7. These were found
by trial and error where the goal was a controller that was as responsive as possible with
minimal oscillations (the results will be shown in Chapter 5). It was found that a simple P
controller was sufficient.

Table 4.7: Table showing the gains used for the horizontal PID guidance system.

kp ki kd

X-axis 0.5 0 0
Y-axis 0.5 0 0

Altitude control

Similarly to the horizontal case, the desired vertical velocity is computed as

vbz,d = Kp,zez +Ki,z

∫ t

0

ez +Kd,z ėz. (4.27)

The gains used for the altitude controller can be seen in Table 4.8. Only a P-controller
is used here as well, as this proved to work well. This low gain was used to ensure a stable
and controlled descent when landing.
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Table 4.8: Table showing the gains used for the PID altitude controller.

kp ki kd

Z-axis 0.2 0 0

4.5 Mission planning and execution

This thesis uses the Graphplan algorithm to generate a high-level action sequence for the
drone given a predefined mission, and a mission executor to execute and monitor each
action in this sequence. The Graphplan algorithm has been kindly supplied by Miguel Hi-
nostroza from ITK at NTNU. His implementation features different heuristics for search-
ing the planning graph for a solution, and the method used for this thesis is a breadth-first
search since the problems and missions here are relatively simple.

The work regarding mission planning in this thesis will be a simple proof of concept
regarding the use of AI planning for autonomous drones and for autonomous drones used
in search and rescue (SAR) missions.

First, the domain and domain variables will be defined, followed by three different
mission problems for the mission planner to solve. The final part of this section will focus
on mission execution, i.e. how the drone follows the action sequence generated by the
mission planner.

4.5.1 Domain and problem definitions for the Graphplan algorithm

The Graphplan algorithm requires (i) a domain consisting of domain variables and legal
actions and (ii) a problem definition to solve by finding a valid action sequence. Before
these are defined, some assumptions are made about the missions in this thesis to make
them feasible for a proof of concept.

Mission assumptions

The goal of the missions is to search for victims in predefined locations and drop lifebuoys
once the victims are found. First, it is assumed that there are three locations that the drone
can be in, where location 1 is the location of the helipad, and locations 2 and 3 are the
locations of two areas where the drone will perform a search.

The drone is assumed to be a SAR drone capable of carrying a lifebuoy which can
be dropped after searching and finding a person in one of the search locations. For the
scenarios here, it is assumed that the search will be successful and that the drone will
therefore always drop a lifebuoy after searching. The drone also has a finite battery that is
expected to be enough for searching in one location at a time and which must be replaced
before searching the other location.

It is also assumed that the drone must be tracking the helipad prior to landing, which
means the drone must align itself with the helipad before landing when arriving at location
1.
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4 Methodology 4.5.1 Domain and problem definitions for the Graphplan algorithm

Domain variables

The drone’s domain/state variables, also known as propositions, can be derived based on
the mission assumptions stated above. The domain variables can be seen in Table 4.9.
The state of the drone is defined by the states describing the drone’s location, whether it
has a battery and a lifebuoy, and if it is tracking the helipad or has landed. The state of
the mission is defined by the states indicating whether an area has been searched and if a
lifebuoy has been dropped in that area.

Table 4.9: Domain variables for a proposed autonomous drone operating in a SAR mission.

Type Variable
Drone location drone 1, drone 2, drone 3
Has battery batt, no batt
Carrying lifebuoy buoy, no buoy
Search status location i searched{i}, not searched{i}
Dropped buoy status location i dropped{i}, not dropped{i}
Tracking status tracking, not tracking
Landed status landed, not landed

Actions

The possible actions the drone can perform are listed in Table 4.10. The drone can move
between locations, search a location, drop a lifebuoy in a location, resupply battery and
lifebuoy at the helipad, track the helipad to prepare for landing, takeoff, and land. The
preconditions listed are the domain variables that must be set for the action to take place.
The effects are what variables are added or deleted after the action is finished. As the
drone is assumed to always drop a lifebuoy after searching, and the battery only lasts for
one search at a time, one of the effects of dropping the lifebuoy is that the battery must be
replaced.

Missions

A total of three missions of varying complexity are used to test the Graphplan algorithm.
The missions are defined based on an initial state of the domain variables and a goal which
is the desired state of the domain variables after the mission is finished. The three missions
defined for this thesis can be seen in Table 4.11.

The first mission is a simple mission where the goal is to take off and land on the
helipad. In the second mission, the goal is to search area 2 and land back at the helipad,
while in mission three, the goal is to drop a lifebuoy at areas 2 and 3 before landing back
at the helipad. The first two missions are tested in real-life experiments, while the last
mission is used as proof of concept that the Graphplan algorithm can find a valid action
sequence for a more complicated mission.
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Table 4.10: Possible actions the drone can perform. ”∼” means to delete a domain variable.

Action Symbol Preconditions Effects
Move drone Move{ij} drone i drone j

Search location Search{i} drone i, batt, buoy,
not searched{i}

searched{i},
∼not searched{i}

Drop lifebuoy Drop{i} drone i, batt, buoy,
searched{i}

no batt, no buoy,
dropped{i}, ∼batt, ∼buoy,
∼not dropped{i}

Resupply battery
and lifebuoy Resupply

drone 1, no batt,
no buoy

batt, buoy, ∼not batt,
∼not buoy

Track helipad Track
drone 1, not tracking,
not landed tracking, ∼not tracking

Takeoff Takeoff drone 1, batt, buoy not landed, not tracking,
∼landed

Land Land
drone 1, not landed,
tracking

landed, ∼tracking,
∼not landed

Table 4.11: Three missions of increasing complexity used to generate action sequences using Graph-
plan.

Mission 1
Initial state drone 1, batt, buoy
Goal drone 1, landed

Mission 2
Initial state drone 1, batt, buoy, not searched2
Goal drone 1, landed, searched2

Mission 3
Initial state drone 1, batt, buoy, not searched2, not searched3
Goal drone 1, landed, dropped2, dropped3

Action sequences

When supplied with the missions in Table 4.11, the Graphplan algorithm generated the ac-
tion sequences seen in Table 4.12, and these can be verified to achieve the given goals. The
computation time dramatically increased from the least to the most complicated mission,
with mission 3 using 280.85ms to compute. This is not a problem in this thesis because
the mission planner has no real-time requirement since the action sequence will only be
generated once prior to takeoff.

4.5.2 Mission execution

A mission executor has been implemented to execute and monitor the actions in the action
sequence generated by the Graphplan algorithm. A flowchart describing the behavior of
Graphplan and the mission executor can be seen in Fig. 4.10. The executor accepts an
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Table 4.12: Table showing the generated action plans for each mission along with the computation
time the Graphplan algorithm used to generate them.

Mission Action sequence Time
1 Takeoff - Track - Land 0.39ms
2 Takeoff - Move12 - Search2 - Move21 - Track - Land 2.12ms

3
Takeoff - Move12 - Search2 - Drop2 - Move21 - Track -
Land - Resupply - Takeoff - Move13 - Search3 - Drop3 -
Move31 - Track - Land

280.85ms

action sequence from Graphplan and then executes each of these actions in order. Each
action is implemented as a separate method, where the method itself notifies the mission
executor of completion by returning.

Figure 4.10: Flowchart describing behavior of the mission executor.

The ”Move drone” action uses the internal relative position controller on the Anafi.
The locations to move to can be predefined in a config file that supports using both relative
position coordinates and GPS coordinates. However, since GPS guidance has not been
implemented in the drone interface, only relative coordinates can be used.

The completion criteria are specific to each action. For the ”Takeoff” and ”Move
drone” actions, the completion criteria are that the drone is in the ”hovering” flying state, as
it will be in flying state ”takingoff” and ”flying” while not done with these commands. For
the ”Track helipad” action, the completion criterium is defined as being close enough to the
helipad center horizontally and vertically to use the onboard land command of the Anafi
to land safely. The actions ”Search location”, ”Drop lifebuoy”, and ”Resupply battery and
lifebuoy” complete immediately as they have not been implemented as part of this thesis.
The ”Land” action completes immediately after invoking the onboard land command on
the Anafi to avoid problems with the system not exiting if a landing fails in the real-world
experiments.
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5
Results

This chapter presents results from testing the perception, control, and mission planning and
execution systems, including the results from the real-world experiments with the DNV
ReVolt. Each result builds upon the previous, as the guidance system uses the perception
system, and the mission planning and execution experiments use both the perception and
control systems.

5.1 Perception

5.1.1 Corner detection and identification

This section presents the results of the different parts of the traditional computer vision
(TCV) system. First, the results of the hyperparameter optimization (HPO) for the heli-
pad segmentation and corner detection are presented, and then corner identification and
subsequent pose estimation.

Hyperparameter optimization for segmentation and corner detection

The grid search results and parameters found from the HPO for the Hough circle detector
can be seen in Table 5.1. Using a training set of 105 images, the total search duration
lasted 19 minutes and 54 seconds. Much of this time was found to be due to inefficient
parameter combinations resulting in detection times of more than 1 second per image,
while the detection time with the optimal combination was 260 ms per image. The mean
prediction errors can be seen to be similar for both the training set and the test set, with a
slightly higher error on the test set.

Two example images segmented using the set of parameters found from the grid search
can be seen in Fig. 5.1. Overall, 95.4% of the images had correct circle detections across
different altitudes and orientations. An example of one of the 7 misdetected images out
of the 151 total images can be seen in Fig. 5.1, where the detected circle is too large. All
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misdetections were of this kind and occurred at different altitudes and orientations. No
direct cause of these errors was apparent in the results.

Table 5.1: Table showing the results from the grid search for finding hyperparameters for the Hough
circle detector. Results are from flying indoors at different altitudes and orientations but with con-
stant lighting conditions.

Datasets
Training set size 105 images
Test set size 46 images

Grid search results
Total combinations tested 64
Total search duration 19 min 54 s

Detection time per image
Mean 260 ms
Standard deviation 71 ms

Prediction error
Training set 9.90 pixels
Test set 12.94 pixels

Parameters found
param1 40
param2 70
Results using parameters found on entire dataset
Misdetections across both datasets 7/151
Correct detection percentage 95.4%
Mean detection time 179 ms
Median detection time 117 ms
Maximum detection time 2529 ms

(a) Misdetection. (b) Correct detection.

Figure 5.1: Figure showing helipad segmentation performed a few images from the test set. Note
that the detected circle radius has been increased by 40% to include the helipad arrow in the seg-
mentation.

When running the detector on the whole dataset, the mean detection time was 179ms,
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but the median detection time was 117ms due to some images taking much longer to pro-
cess. The maximum detection time for an image was more than two seconds at 2529ms.
As this was investigated more, it was found that out of the total 150 images, 11 of the
images used more than 300 ms to detect the circle, and 3 images used more than 1.5 s.
The majority of the images that took the longest were taken at low altitude, with the circle
either close to or partially outside the image edge.

Similarly, the results of the HPO for the corner detection can be seen in Table 5.2.
Here the training set is significantly smaller than the test set due to memory limitations, as
discussed in Section 4.2.1. The detection time per image is significantly shorter than for
the circle detector at 16ms. The detection time was also found to be more constant across
the different parameter combinations than for the circle detector. The Harris detector was
found to give better results than the Shi-Tomasi.

Table 5.2: Table showing the results from the grid search for finding hyperparameters for the
OpenCV goodFeaturesToTrack corner detector. Results are from flying indoors at different
altitudes and orientations but with constant lighting conditions.

Datasets
Training set size 37 images
Test set size 114 images

Grid search results
Total combinations tested 4620
Total search duration 25 min 16 s

Detection time per image
Mean 16 ms
Standard deviation 2 ms

Mean prediction error
Training set 2.94 pixels
Test set 8.71 pixels

Parameters found
Block size 7
Gradient size 17
Min distance 1
Quality level 0.0001
Use Harris detector Yes

Results using parameters found
Misdetections across both datasets 9/151
Correct detection percentage 94.0%
Mean detection time 18 ms
Median detection time 17 ms
Maximum detection time 30 ms

The mean prediction error can be seen to be about three times larger for the test set
compared to the training set. Fig. 5.2 shows corner detection performed on six different
images in the test set, three of which include misdetections of the corners and three are
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correct detections. Across the whole dataset, 90.1% of the images had the correct corners
identified. 15 of the 151 total images had misdetected corners, and all the misdetections
were identified to fall into one of the following categories: (i) incorrect segmentation of
the helipad (thus an error from the circle detector propagating), (ii) corners being too close
to the edge, or (iii) the helipad being too far away. Four of the errors were due to incorrect
helipad segmentation, two due to the corners being too close to the image edge, and the
remaining three were due to the helipad flying at too high an altitude. It was also found
that high altitudes were a bigger problem than incorrect image segmentation in the case
where both were present.

(a) Misdetection due to bad segmentation. (b) Misdetection due to corner too close to image edge.

(c) Misdetection due to helipad being too far away. Im-
age has been scaled and cropped, and numbers removed
to highlight result.

(d) Correct detection far away from helipad.

(e) Correct detection medium distance to helipad. (f) Correct detection very close to helipad.

Figure 5.2: Figure showing corner detection on a few sample images from the dataset. Most errors
were due to bad segmentation, but the detector also suffered at high altitudes, and if a corner was
close to the edge.
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The overall success rate was 94%, and the detector was able to find the corners in
all different altitudes and orientation combinations apart from the three cases mentioned
above. 7 of the total 9 misdetections were due to errors propagating from incorrect he-
lipad segmentation, meaning most corners were correctly detected once the helipad was
correctly segmented.

When run on all the images in the dataset, the mean and median detection times were
very close at 18ms and 17ms, respectively, while the maximum detection time was 30ms.
Due to the small variation, no types of images were found to perform notably worse than
the rest.

Corner identification

The results from identifying the arrow and the 4 outer corners of the ”H” using Algorithm 1
are presented here. As no ground truth labeling system has been created for the corner
identification, the results are based on a visual inspection of the identified corners (arrow,
lower left, lower right, upper left, upper right) to see if these coincide with the correct
corners.

The results from running the corner identification algorithm across the entire dataset
can be seen in Table 5.3. The runtime of the algorithm was consistent across all identifi-
cations at 22ms as this was the mean, median and maximum runtime.

43 images were misidentified across the whole dataset, meaning that the arrow and four
outer corners of the ”H” were not identified correctly. As the corner identification relies
on the corner detection, the corner detector errors will carry over into these results and
account for 11 of the 43 misclassifications. The largest source of errors was misidentifying
the upper left and right inner corners of the ”H” as the upper outer corners. This accounted
for 74.4% of the total errors, and these errors were frequent when the drone was flying
at a high altitude. The last type of error found was when the corner detector found the
correct corners, but the corner identification algorithm could not produce a valid result.
This happened in 2 of the 43 total misdetections. Examples of the different error types can
be seen in Fig. 5.3, along with a few successful corner identifications.

Table 5.3: Table showing the results from identifying the arrow and outer corners of the ”H” based
on 13 corner detections from the corner detector.

Dataset
Total number of images 151

Results using parameters found on entire dataset
Misdetections across both datasets 43/151
Correct detection percentage 71.5%
Mean detection time 22 ms
Median detection time 22 ms
Maximum detection time 22 ms

Distribution of error types
Top left and/or right corners of ”H” identified on inner corners 32/43 (74.4%)
Incorrect corners detected from corner detector 11/43 (20.9%)
Corners correctly detected, but not able to find valid identification 2/43 (4.7%)
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(a) Misidentification of top corners of ”H”. Image has
been cropped to highlight effect.

(b) Misidentification of motion capture marker detected
as arrow.

(c) No solution found when all 13 corners are correct. (d) Correct detection close to helipad.

(e) Correct detection medium distance to helipad. (f) Correct detection farther away from helipad.

Figure 5.3: Figure showing successful and failed identifications of the features on a few sample
images from the dataset. Most misidentifications were due to misidentifying the top corners of the
”H”, as well as errors coming from corner detection earlier in the pipeline.

5.1.2 Position estimation
This section will present the results from the different position estimation systems devel-
oped. First, the position estimates from the TCV system will be presented, then from the
deep neural network-based computer vision (DNN-CV) system, and then the Kalman filter
(KF) results will be presented with and without the TCV and DNN-CV measurements as
corrections. The qualitative behavior of each system will be presented along with a quanti-
tative comparison of all the methods based on the root mean square error (RMSE) of each
system with respect to the ground truth.

The drone was flown in a predefined pattern based on the Anafi’s relative position
controller. The pattern flown was a square, with piece-wise ascent and descent and a
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rotation at the end. The ground truth position of this pattern, along with labels showing
each movement of the drone, is shown in Fig. 5.4.

Figure 5.4: Flight pattern used to test perception system. Drone flown inside in the drone lab where
ground truth is from the motion capture system.

Traditional computer vision

The results from the TCV position estimation system can be seen in Fig. 5.5a. For the x-
axis, there seems to be a small vertical offset and some time delay, but overall the estimate
follows the ground truth well. The y-axis suffers from a larger offset, as does the z-axis,
although harder to see in Fig. 5.5a as the z-axis has a different scale than the two other
axes. The cause of these offsets was not found, and it was attempted to correct for them
manually. Manual correction fixed the problem in these tests but caused other problems in
other experiments, so this solution was discarded.

The z-axis estimate can also be seen to be unstable at the lower altitudes around 20
and 80 seconds, and this is due to the corner misidentifications mentioned above. The
estimates can also be seen to only be available from around a 1m altitude, as this is the
altitude where all the helipad features are visible.

The RMSE for each of the axis as well as the combined RMSE can be seen in Table 5.4.
The error was smallest in the x-axis at around 11 cm, while larger in the y- and z-axis, both
at around 20 cm. The overall RMSE across all the axes was 17.58 cm.
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(a) TCV pose estimate vs. ground truth. (b) DNN-CV pose estimate vs. ground truth.

(c) KF with only CV model vs. ground truth. (d) KF with only CV model vs. ground truth with stan-
dard deviation.

(e) Complete KF vs. ground truth. (f) Complete KF vs. ground truth with standard devia-
tions.

Figure 5.5: Figure showing helipad position relative to the drone body frame pb
h estimates from the

TCV, DNN-CV, and Kalman filter systems. The complete filter performs the best, but suffers from
offsets in the TCV and DNN-CV systems.
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Table 5.4: Root mean square error for each position estimation system when flying in a predefined
square. Input data to each system is recorded from the same flight.

RMSE for each position estimation system
TCV DNN-CV KF CV model KF complete

X 11.03 cm 7.95 cm 6.92 cm 8.42 cm
Y 20.30 cm 6.14 cm 9.12 cm 8.84 cm
Z 19.84 cm 33.64 cm 32.16 cm 21.36 cm

Total 17.58 cm 20.27 cm 19.71 cm 14.20 cm

Deep learning based computer vision

The results from the DNN-CV position estimation system can be seen in Fig. 5.5b. Simi-
larly to the TCV system, the estimates are only available from around a 1m altitude. Here
both the x- and y-axis follow the ground truth well, but the z-axis suffers from a large
offset. The offsets in the estimates come from the bounding boxes detected by the YOLO
detector not aligning correctly with the helipad edges. This effect is most pronounced in
the z-axis, where the detected bounding box is significantly larger than the actual helipad,
causing the estimates to assume the drone is closer to the helipad than it is.

This is reflected in the RMSE values seen in Table 5.4, where the x- and y-axis have
RMSE values of around 8 cm and 6 cm respectively, while the z-axis has a value of 33 cm.
This results in an overall RMSE of 20.27 cm, which is slightly higher than for the TCV
system. However, most of the the error comes from the large z-offset, meaning the hori-
zontal position estimation is significantly more accurate in the DNN-CV system than the
TCV system.

Kalman filter

The results from using the KF with only the constant velocity (CV) model can be seen in
Fig. 5.5c. Here, only the velocity measurements from the drone are used to correct the CV
model, so this system is, in effect, a pure prediction system. The results can therefore be
assumed to have the same general shape as the ground truth but with some offsets. This is
indeed what can be observed from Fig. 5.5c. The shape of all the axes follows the ground
truth well and even manages to catch the small spikes that happen each time the drone
initiates a movement, which was not detected by the TCV or DNN-CV systems. With no
corrective measurements, the covariance of the filter is also expected to grow continuously,
as is observed in Fig. 5.5d.

Another issue that comes from a lack of corrective measurements is that the drone only
estimates the helipad position based on its own velocity. This means that the estimate can
be reasonable in a case such as Fig. 5.5c where the helipad is stationary, but if the helipad
moves, the filter has no way of knowing, and therefore the estimate will be off. However,
due to its accuracy over a short time frame, it can be a viable model for the KF despite its
simplicity. The RMSE values for the KF with only the CV model in Table 5.4 can be seen
to be solid in both horizontal axes, while larger in the z-axis.

The results from adding both the TCV and DNN-CV measurements as corrections can
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be seen in Fig. 5.5e. The RMSE values in Table 5.4 show that the complete filter performs
the best out of all the methods, with a total RMSE of 14.20 cm. This is better than any of
the other systems by themselves, and the main takeaway here is that the horizontal estimate
is affected negatively by the large biases from the TCV system, but that the TCV system
gives some improvement to the vertical estimate.

Due to the velocity predictions, the filter can be seen to follow the spikes in posi-
tion. Fig. 5.5f also shows that the covariance is growing initially until there are available
measurements from the TCV and DNN-CV systems, but then remains constant due to the
periodical arrival of new measurements.

5.2 Guidance and control
This section will present the results from the velocity controller and guidance system.
Here, results from both the simulator and real-world experiments are shown, as the simu-
lator was used to verify that the various control methods were correctly implemented and
tuned.

5.2.1 Velocity control
For the velocity controller, both the model-based and the PID controller are tested. The
same velocity reference trajectory is used to compare both methods, and the same exper-
iments are validated both in simulation and real-world experiments. As this is a velocity
controller meant to be used inside a guidance system, the essential part is not following
the reference trajectory precisely but showing robust performance.

Model-based controller

The results from testing the linear drag model model-based controller can be seen in
Fig. 5.6. The velocity in both simulation and real-world experiments, seen in Fig. 5.6a
and Fig. 5.6c respectively, show a similar response. The response is significantly delayed
compared to the reference trajectory, resulting in neither of the responses reaching the
complete reference velocity before it changes.

The generated attitudes references can be seen in Fig. 5.6b and Fig. 5.6d. The actual
attitude follows the reference well for both simulation and real-world experiments, apart
from a time delay also here. This delay comes from the time delay of the velocity mea-
surements from the Anafi. The generated attitude references stay within their bounds of
±5° and show a controlled response.

Overall, the controller based on the linear drag model can be seen to work pretty well.
The computed attitude references are relatively smooth, and the subsequent output velocity
somewhat manages to reach the desired values.

PID controller

Similarly, the results from using the PID velocity controller can be seen in Fig. 5.7. Com-
pared to the model-based controller, the velocity response is slightly faster, meaning the
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(a) Simulation velocity vs. reference. (b) Simulation attitude vs. reference.

(c) Real-world velocity vs. reference. (d) Real-world attitude vs. reference.

Figure 5.6: Figure showing the velocity and attitude response for the model-based velocity con-
troller in simulation and real-world experiments.

drone is closer to reaching the velocity setpoint. As the drone setup is the same as for the
model-based controller, the response also here suffers from time delays as seen in Fig. 5.7a
and Fig. 5.7c.

The generated attitudes references seen in Fig. 5.7b and Fig. 5.7d are also here smooth
and never saturated, but with the same delays as in the model-based controller.

Overall, the PID velocity controller works well, with a relatively fast velocity response.
Due to the faster velocity response, this controller was chosen as the controller used in all
other experiments.

5.2.2 Guidance and position control

The output of the Kalman filter with all measurements is used as feedback when aligning
the drone with the helipad for testing the pure pursuit (PP) target tracking and PID point
stabilization methods. The output of the perception system pbh can be interpreted as the
position error when trying to align horizontally with the helipad.
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(a) Simulation velocity vs. reference. (b) Simulation attitude vs. reference.

(c) Real-world velocity vs. reference. (d) Real-world attitude vs. reference.

Figure 5.7: Figure showing the velocity and attitude response for the PID velocity controller in
simulation and real-world experiments.

Pure pursuit

The results from using the PP guidance law in the simulator can be seen in Fig. 5.8. In
Fig. 5.8a the estimated position error is plotted alongside the ground truth error, and an
offset, as discussed in the perception results above, is present. The position error can be
seen to decrease rapidly to zero as the drone approaches the helipad but then oscillate
around the reference indefinitely. These results are using a value κ = 0.2 for the tuning
parameter in the PP guidance law, and different values were tried. A smaller value resulted
in less, but still persistent, oscillations and a slow approach speed to the helipad. Similarly,
a larger value resulted in a fast approach and bigger oscillations. Due to these oscillations,
the PP guidance law was not tested in real-world experiments.

The poor performance is to be expected as the PP guidance law is based on just arriving
at or hitting a target moving at speed. In these tests, the helipad was stationary, and the
goal was to remain constantly above it, so the method is not well suited. It might fare
better if the helipad was moving, but as this is not possible to test in the simulator and not
feasible in real-world experiments indoors due to the risk of crashing, this has not been
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investigated.

(a) Simulation position error vs. ground truth. (b) Simulation velocity vs. reference.

Figure 5.8: Figure showing the estimated and ground truth position error and velocity response for
the pure pursuit guidance law in simulation. Drone never stabilizes above the helipad.

PID controller

The PID point stabilization guidance law fared better, as can be seen by the results in
Fig. 5.9. The position error for the simulated results can be seen in Fig. 5.9a, and here
the error can be seen to converge smoothly to zero (although not quite to zero due to
the offset from the perception system). This controlled response is also reflected in the
velocity references, which can be seen in Fig. 5.9b to be saturated at first, but then flatten
off smoothly to zero.

These promising results were carried over into real-world experiments, where the po-
sition error can be seen in Fig. 5.9c. Here, the offset between the perception output and
the ground truth position error is smaller than in the simulator because the Kalman filter
is tuned based on real-world data. The response can be seen to not be as smooth as in
the simulator, with some small oscillations around the reference, reflected in the velocity
references in Fig. 5.9d as well. The controller gain was attempted lowered to remove the
oscillations, but this resulted in a too slow controller that could not follow the helipad once
it was moving. Nevertheless, the oscillations are minor, and the overall response is con-
sidered adequate for tracking the helipad. This method was therefore chosen to be used in
further experiments.

5.3 Mission planning and execution
This section will present the results from testing the complete system with perception,
guidance and control, and mission planning and execution. First, testing inside where
ground truth measurements are available will be performed to see if the overall system
manages to execute Mission 1 (Takeoff - Track - Land) while the platform is moving.
Then, the overall system will be tested in its intended environment outside where the
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(a) Simulation position error vs. ground truth. (b) Simulation velocity vs. reference.

(c) Real-world position error vs. ground truth. (d) Real-world velocity vs. reference.

Figure 5.9: Figure showing the estimated and ground truth position error and velocity response for
the PID setpoint controller guidance law in simulation and real-world experiments. Drone stabilizes
in both environments, with some more oscillations in the real-world experiments.

helipad is attached to the DNV ReVolt vessel. During these experiments, both Mission 1
and Mission 2 (Takeoff - Move12 - Search2 - Move21 - Track - Land) will be tested, both
while the ReVolt is on land and at sea.

5.3.1 Landing on a moving platform

First, to test the guidance system’s ability to land on a moving platform, two tests were
designed. In both tests, a rope was attached to the helipad and it was pulled along the
floor. While the helipad was moving, the drone was tasked with landing autonomously on
it following Mission 1. The first experiment tests the drone’s ability to react to fast and
short movements of the helipad, while the second tests the drone’s ability to land on the
helipad when it is moving slowly and constantly.

In the first experiment, the helipad is moved fast and discretely in random directions
for short periods and then left stationary a bit before moving again. The helipad is moved
like this until the drone is close to landing, and then the helipad is left stationary. The
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results from this experiment can be seen in Fig. 5.10, where the 3D trajectory of the drone
and helipad can be seen in Fig. 5.10a. As can be seen, the drone is able to follow the
helipad while descending, with some overshoot at certain areas. Nevertheless, the drone
manages to land autonomously on the platform close to the center. All the outputs of the
perception system during this experiment can be seen in Fig. 5.10b. The overall accuracy
is decent, and it can be seen that the system manages to observe the fast movements and
correct for them. The z-position can be seen to flatten out at certain points, correspond-
ing to when the helipad moves sharply. The reason for this is that the drone pauses the
descent until realigned horizontally. The TCV system is seen to suffer more from misde-
tections in this case when the helipad and drone are moving, and this is due to more corner
misidentifications.

In the second experiment, the helipad was moved along the floor at a slow, constant
velocity in only one direction, as seen in Fig. 5.11a. In this experiment, the helipad also
moved during the entire mission, even during the drone landing. As seen in Fig. 5.11b,
the drone oscillated a bit around the helipad center, but descended at a constant pace and
managed to land right in the middle of the helipad as seen in Fig. 5.11a.

Overall, these two experiments demonstrate the guidance system’s ability to land the
drone on a moving target, given that the movement is either slow or that the drone is given
time to catch up.

(a) Helipad and drone trajectory. (b) Perception output during landing.

Figure 5.10: Figure showing the 3D trajectory and perception output of the drone while landing on
discretely moving helipad (stationary during the final landing). Drone shows some oscillations when
realigning with the helipad.

5.3.2 Landing on the DNV ReVolt

The final experiments done in this thesis were executing Mission 1 and 2 with the helipad
attached to the DNV ReVolt. This is the most realistic testing scenario concerning the
ultimate goal of performing autonomous search and rescue (SAR) missions at sea.

The system was first tested with the ReVolt resting on a boat trailer on land. This
allowed the ReVolt to be pulled along to test landing on a moving target similar to the tests
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(a) Helipad and drone trajectory. (b) Perception output during landing.

Figure 5.11: Figure showing the 3D trajectory and perception output of the drone while landing on
continuously moving helipad (moving during the final landing). Drone shows minor oscillations,
and descends continuously.

presented above. At sea, for practical reasons, the ReVolt was kept in a shallow spot where
its motion could be controlled by hand and using ropes. Due to the limited space of this
shallow spot, the ReVolt could not be moved horizontally, but the vessel could be made to
roll from side to side to better replicate the real-world motion the vessel would experience
while at sea.

The land and sea experiments were done on different days, but the weather conditions
were similar, with cloudy weather and temperatures around 10 °C. There was occasionally
more sun and wind during the land testing, but not enough to significantly affect the results.

A total of 10 tests were carried out for the land tests and a total of 6 at sea. Although
not enough to make definitive claims about the system, these tests give an indication of its
overall performance. The results from all the tests have been summarized in terms of the
number of successful landings in Table 5.5, and the results from each test will be discussed
below.

Land experiments

The drone managed to land on the ReVolt in each experiment when the boat trailer was
stationary. One example of such a landing can be seen in Fig. 5.12 where the drone took
off and landed back on the helipad. The output of the perception system shows that the
drone oscillates slightly around the helipad center but manages to find it and lands close to
the center.

Mission 2, where the drone flew away a small distance and then back, also worked
well when the ReVolt was stationary. The drone was flown 2m away from and back to
the ReVolt, and the relative position control on the Anafi proved reliable enough that the
drone could see the helipad once back, thereby enabling the tracking and landing to work.

However, when the ReVolt was moving outside in these experiments, the promising
indoor results from the drone lab could not be replicated. As seen in Table 5.5, only 1
of the 5 total experiments where the ReVolt was moving resulted in a successful landing.
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Table 5.5: Rate of successful landings on the ReVolt for the land and sea experiments.

Land experiments
Mission type Successful landings
Mission 1, ReVolt stationary 4/4
Mission 2, ReVolt stationary 1/1
Total - ReVolt stationary 5/5
Mission 1, ReVolt moving continuously 0/4
Mission 1, ReVolt moving discretely 1/1
Total - ReVolt moving 1/5

Sea experiments
Mission type Successful landings
Mission 1, ReVolt stationary 1/1
Mission 2, ReVolt stationary 2/2
Total - ReVolt stationary 3/3
Mission 1, ReVolt rolling 0/2
Mission 2, ReVolt rolling 1/1
Total - ReVolt rolling 1/3

The successful landing was also after the helipad stopped moving for the final part of the
descent, meaning the drone was never able to follow the continuously moving ReVolt well
enough to manage to land.

It was found that the drone always lagged behind the moving ReVolt by about 1m and
was never able to stay horizontally aligned until the ReVolt came to a stop. Misdetections
in the DNN-CV perception system were also present, making the drone unable to realign
itself once the helipad was not in the image as it detected other parts of the ReVolt as the
helipad.

It was attempted to change the landing system to only descend once horizontally
aligned, and pause the descent until realigned if the horizontal error grew above a cer-
tain threshold. Using this resulted in the drone never descending due to it always lagging
a distance behind the moving helipad.

Another discovery was that the drone was sometimes unable to initiate a landing due
to incorrect altitude measurements. It was found that the vertical DNN-CV measurements
flattened out around 0.7m, meaning that the overall vertical estimate remained constant
even while the drone was descending past this point. This caused the drone to descend
close to the helipad but not initiate its internal landing command as it thought it was higher
up. To avoid this, the Kalman filter was changed to only use the horizontal DNN-CV
measurements for correction when the drone was below 0.7m, and predict the final part
of the descent using the velocity measurements.

Sea experiments

Similar results were found when testing the system at sea. The drone was able to land on
the ReVolt during all the experiments where the vessel was kept stationary. As in the land
experiments, it was found that both Mission 1 and 2 gave equally good landings when the
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(a) Perception output. (b) Helipad landing result.

Figure 5.12: Figure showing the perception output and resulting landing on the helipad from exe-
cuting Mission 1 while the ReVolt was stationary on land. All perception systems produce similar
estimates and the drone lands continuously.

drone was stationary, as the tracking system was able to rediscover and track the helipad
in Mission 2.

However, the introduction of rolling motion into the ReVolt caused problems. In one
of the experiments, the drone could never start descending because of a large offset in the
perception data. In the other test of Mission 1, the drone started descending until close to
the helipad but lost track right before landing and could not regain it due to misdetections
from the perception system.

In the very last experiment, Mission 2 was tested with rolling motion, and this time it
worked, as can be seen by the perception output and resulting landing seen in Fig. 5.13.
The perception system can be seen to estimate the position well when the helipad is not
in view, as the Kalman filter estimate and DNN-CV estimate align well when the helipad
reappears in view. The TCV system can be seen to suffer a lot in this scenario, with only
very infrequent measurements available and a significant bias in the y-axis compared to
the DNN-CV measurements.

Overall, the landing can be seen to be successful as the drone lands very close to the
helipad center. However, as this still only accounts for 1/3 of the experiments where the
ReVolt was rolling, the system does not fare well when the helipad experiences significant
motion.
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(a) Perception output. (b) Helipad landing result.

Figure 5.13: Figure showing the perception output and resulting landing on the helipad from ex-
ecuting Mission 2 with the ReVolt at sea an rolling. The TCV system fails to produce reliable
estimates, but the perception system is saved by accurate measurements from the DNN-CV system
and predictions from the velocity measurements.

83



6
Discussion

This chapter discusses the results from the perception, control, and mission planning and
execution systems. The results and observations from the real-world experiments with the
DNV ReVolt and in the drone lab are also discussed, with some closing remarks connecting
the results to the underlying goal of autonomous search and rescue missions.

6.1 Perception

6.1.1 Traditional computer vision
The traditional computer vision (TCV) system was demonstrated to work to a limited
degree as it was able to produce pose estimates in real-world experiments. However, the
main problems with the system were that

• overall runtime was slow and inconsistent

• correct corner identification was sparse when testing outside

• position estimates had offsets in all axes

The circle detection was the main factor affecting the runtime of the TCV system, as
this had a median run time 117ms in addition to using multiple seconds on certain images.
The reason for this slow runtime could be the parameters used in the Hough circle detector,
where the range of pixels to detect circles in was set to [50, 500]. Although this allows for
segmentation at different altitudes, it also drastically increases the search space for the
detector. To narrow down this search space, an expected range for the circle radius could
be determined from the current altitude estimate of the drone. This would, however, not
make the system completely independent from the state estimation of the drone, which
could be a problem. To still have an independent system, a different circle detector could
be used, such as a YOLO detector for seeing the helipad, similar to what is already used
in the DNN-CV system. This detector would be faster, and the detection time would be
independent of the size of the helipad in the image without requiring any prior knowledge.
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The 5 known corners that were the final result of the corner detection pipeline were
only rarely found when flying outside in real-life situations. The pipeline suffers from
errors propagating from one step to the next, as corner detection fails when helipad seg-
mentation fails, causing the corner identification to fail as well. The corner identification
also introduced its own errors by frequently misidentifying the top corners of the ”H”
when the drone was far away and sometimes producing a valid result even when the cor-
ners found from the corner detector were not the correct ones. The algorithm could be
made more robust by introducing more consistency checks between the distances of the
points and using different metrics to determine the top two corners of the ”H”. One way
to completely bypass this pipeline is by using fiducial markers such as AprilTags [44] that
are easy to detect and identify. These could be placed inside the ”H” on the helipad and
thereby retain the classic helipad design when viewed from far away. Another benefit of
this is that the pose estimation would be available at lower altitudes, as it is now only
available above a certain altitude due to the large size of the helipad features.

The cause of the offsets in the position estimates was not found. It was attempted to
compensate for the offsets manually, but they were found to be varying when performing
different types of tests with different maneuvers, so this had no effect. The cause of these
offsets will have to be investigated more.

6.1.2 Deep neural network-based computer vision
The DNN-CV position estimation worked better than the TCV estimation system, due to
faster and more frequent detections from the YOLO detector. The main problems with this
system were

• offsets due to incorrect bounding box sizes

• false detections of the helipad

• incorrect altitude estimation at low altitudes

The offsets in the estimates were most pronounced in the z-axis. They were due to the
YOLO detector estimating too large bounding boxes for the helipad, thereby making the
helipad appear closer than it is. These errors could be rooted in the labeling process of the
images used to train the detector. Therefore, the detector could be retrained by using new
training data that can be labeled automatically to ensure the labels are accurate.

Another advantage of retraining the detector is reducing the number of false detections.
During the real-world experiments, it was found that the detector detected parts of the
ReVolt as the ”H” and helipad perimeter. This caused the drone to be unable to regain
tracking once the helipad was out of view as the DNN-CV system claimed the helipad was
still below the drone. The detector is trained on images from the AR.Drone 2.0, which has
severely lower image quality the Anafi, meaning worse detection results are to be expected
when used on the Anafi.

The detector was also not able to estimate the drone’s altitude once it was below around
0.7m. This was due to the YOLO detector only being able to create bounding boxes the
size of the image, meaning if the helipad went outside the edge of the image, the detector
would report a bounding box corresponding to the case when the helipad was inside the
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image view. This means the altitude estimates remained constant as the drone descended
past this threshold, leading to these estimates having to be removed as corrections in the
Kalman filter. A solution to this would be using the DNN-CV system only for approxi-
mate position estimation when the drone is sufficiently far away and then turning off the
estimates in favor of more suitable methods once the drone is close to the helipad.

6.1.3 Kalman filter
The Kalman filter (KF) was able to fuse the TCV, DNN-CV and drone velocity mea-
surements to produce a combined estimate with a reasonable estimated uncertainty. The
predictions using the constant velocity (CV) model and velocity measurements from the
drone were accurate over short periods, while the position measurements from the TCV
and DNN-CV systems were able to correct the predictions. There were, however, some
factors limiting the performance of the filter, the main ones being

• inaccurate position measurements from TCV and DNN-CV

• time delayed velocity measurements from the Anafi

• only local navigation reliant on having the helipad in view

The underlying reason for inaccuracies in the KF was the poor position measurements
from the TCV and DNN-CV systems. The large biases in these measurements propagated
into the KF as well, and as the filter has no estimation of these biases, the final estimates
were inaccurate. These biases could be estimated if the filter had additional accurate po-
sition measurements, but it is believed that a better solution is to remove the errors in the
measurements themselves.

Time-delayed velocity measurements from the Anafi also proved troublesome for the
filter, as the velocity reported by the Anafi could be as much as 1 second delayed compared
to the ground truth. This meant that during a change in velocity, the estimates with a shorter
delay from the DNN-CV system would be counteracted by the CV model as no change in
velocity had been recorded yet. This issue was most significant when tracking the helipad
for landing, as this involved many small changes in the velocity. After completing the
experiments, it has been noted that the Anafi sends some telemetry data, including velocity
measurements, along with the images streamed from the drone. This data then arrives
at the same frequency as the images at close to 30Hz, and based on a quick inspection
seems to have less of a delay than the measurements arriving at 5Hz. Updating the drone
interface to use these measurements instead would improve the prediction accuracy due
to an increased amount of measurements and improve the time delay consistency of the
measurements in the filter, as all measurements are now based on data from the same
image.

The final limiting factor of the filter is that the navigation is only local and dependent
on having the helipad in view to get corrections. The disadvantage of this is that the drone
cannot fly far away from the helipad without losing it due to the predictions from the
CV model not being accurate over extended periods of time. Solutions to this would be
introducing additional states in the filter for navigation in, e.g. the NED frame, using GPS
measurements as corrections. Another issue is that any movement of the helipad while
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outside of the drone’s camera view is not detected and would lead to the drone losing
track once it returns to where it thinks the helipad is. Here the filter could be additionally
expanded by tracking the NED position of the helipad as well and incorporating some
mechanism of correcting these estimates from external sources.

6.2 Guidance and control

6.2.1 Velocity control
Velocity control on the Anafi worked well in simulation and real-world experiments using
both the model-based open-loop method and the PID method, where the PID method was
ultimately chosen as it provided a slightly faster and smoother response. However, the
main limitations to the velocity controller on the Anafi were

• transmission delays

• delayed velocity measurements feedback

Transmission delays mean the drone’s response is delayed compared to the reference.
This makes aggressive trajectory tracking with temporal constraints infeasible for the
Anafi if the trajectory changes too quickly. For trajectory tracking, slow and controlled
maneuvers should instead be used. Another option is to use path following where no time
constraints are placed on the drone to reach the given positions.

The large delays in the velocity measurements used as feedback for the PID controller
are also undesired as they could cause instability in the control system. The chance of
instability increases the more aggressive maneuvers are attempted, meaning that the drone
should be limited to slow maneuvers to mitigate this problem. In any case, the large mea-
surement delays are still undesired and should be reduced by updating the drone interface
as described above.

6.2.2 Guidance
Using the pure pursuit (PP) target tracking guidance law proved infeasible for stabiliz-
ing above the helipad, so the point stabilization PID guidance law was used instead as it
showed promising results. This system of successive loop closure with the velocity con-
troller stabilized the drone around the helipad center, although with some oscillations when
testing in real-world experiments. The main problems with the guidance system were

• oscillations when stabilizing

• constantly trailing behind when helipad moving

Horizontal tracking of the helipad worked well when it was stationary or when the
drone was given time to catch up with it. However, significant oscillations were observed
when first approaching the helipad, an effect that was more profound when the helipad
was moving and stopping. A contributing factor to this could be the time delay of the po-
sition estimate from the Kalman filter used to calculate the next reference. Reducing this
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would likely increase the performance of the system. Reducing the gains on the controller
was tried, but this resulted in a response that was too slow. The integral and derivative
parts of the controller were not used due to the good response the system showed in the
experiments when using just a P-controller. Investigating the use of the integral and deriva-
tive terms could help improve the performance in real-world experiments with wind and
helipad movement.

The guidance system was able to land the drone on a moving platform inside in the
drone lab, but not outside on the ReVolt where the drone trailed too far behind the helipad
and never caught up with it. The results indicate that this caused by the guidance system,
as the perception system is constantly estimating an offset that the guidance system is
never able to close. This can be due to the P-controller used, and adding integral effect
might improve the tracking. Another option is using guidance laws based on following
moving objects that may be better suited. The PP guidance law might have been able to
catch up with the helipad, but the oscillations would still be present when trying to land,
so this would still be infeasible. Another option could be to investigate the line-of-sight
(LOS) guidance law, where the drone attempts to align itself with the helipad. Using a
PID controller for altitude control would still be feasible given that the helipad only moves
horizontally.

6.3 Mission planning and execution

6.3.1 Graphplan
The Graphplan algorithm was able to generate action sequences for all three missions
designed in this thesis. The algorithm quickly generated the plans and was well suited to
generate a flight plan prior to takeoff.

Although the third mission was a bit more complicated and required some resupplying,
all three missions were, in fairness, simple missions where using the Graphplan algorithm
is strictly speaking unnecessary. However, the results show that it is possible to define
a domain and create missions for an autonomous UAV, where the Graphplan algorithm
would be able to generate a plan regardless of the mission complexity. The algorithm
could, e.g. be particularly useful in the case where there are multiple UAVs involved in
a search and rescue (SAR) mission, similar to its demonstrated use in coordinating two
warehouse robots picking up cargo in [59].

The algorithm could then find a mission plan that coordinates the actions of different
UAVs such that they collectively solve a complex mission. An example of this could be
that when first arriving at a scene, multiple UAVs could be coordinated to search a large
area to increase the situational awareness of the responders. Then once more information
about the situation is known, the goals could be updated accordingly, and the UAVs could
be coordinated to best serve the needs of this specific mission.

6.3.2 Mission execution
The mission executor managed to execute the action sequences from the Graphplan algo-
rithm well. The system of defining standardized actions for the drone to perform proved to
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work well and makes it possible for the drone to handle complex missions with the same
simple mission executor.

However, the one action that saw problems was when descending to land on the he-
lipad. A necessary improvement made was to have the drone stop descending once the
horizontal error was above a certain threshold, where descending did not resume until re-
aligned. This increased the chance of the system regaining alignment with the helipad, but
an even more robust system would still be desirable. E.g. a system that could evaluate
the quality of the perception system output would be beneficiary, as the drone could as-
cend and restart the landing if the perception output was unreliable. This would help avoid
missing the helipad due to the false position estimates discussed above that originate from
false detections of the helipad, as happened in the experiments where the drone trailed the
helipad and descended past it during the final part of the landing.

6.4 Real-world experiments
Despite the issues with the different subsystems mentioned above, the overall system was
able to successfully complete

• autonomous landings on the ReVolt while stationary at sea and land

• autonomous landing indoors on a moving platform

Achieving the overall thesis goal of landing the Anafi on the ReVolt proved that the
system was robust enough to work in the intended environment. However, the system did
have issues landing on the ReVolt while it was moving on land or rolling in the water.
While moving on land, the issue lies with the guidance system not being able to follow the
ReVolt and always lagging behind. The system did manage to land on the platform while
it was moving when tested indoors, but this could be due to fewer disturbances and the
helipad moving at a slower speed than the ReVolt.

Based on this knowledge, some conclusions can be drawn concerning the objective of
investigating what type of control system is suited for landing the Anafi reliably on the
helipad. The experiments indicate that using a PID controller for the underlying velocity
control of the system is a viable option and something that would likely perform even
better with less measurement delay on the velocity measurements used for feedback. The
experiments also show that using a PID controller for position control is a viable option for
landing on the platform when it is fully or nearly stationary, even when tested outside and
at sea with environmental disturbances. In the case of a non-stationary helipad, however,
a different guidance law capable of following the helipad without trailing it is required for
the drone to land.

Conclusions can also be made about the objective of investigating what type of per-
ception system is suitable for estimating the Anafi’s position relative to the helipad. The
complete perception system was successful in the sense that it produced position estimates
for the drone frequently and accurately enough to allow it to land on the helipad. The
position estimates from the TCV and DNN-CV systems provided the Kalman filter with
position corrections, while the constant velocity model with velocity measurements was
able to accurately predict the motion of the Anafi during short periods when the helipad
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was not in view. This indicates that using computer vision techniques in a Kalman filter is
a viable method of estimating the position of a UAV relative to a helipad of known appear-
ance. The Kalman filter design implemented is, however, accurate only when the helipad
is parallel to the ground. This is reflected in the experiments at sea, where the ReVolt was
rolling from side to side, causing the filter to estimate that the horizontal error was too
large to start descending in two of the three experiments. This suggests that if the UAV is
landing on a helipad with more complicated dynamics than just translational motion, the
helipad dynamics should be included in the filter to give accurate position estimates of the
UAV relative to the helipad.

The investigation into whether AI planning could be used for mission planning of au-
tonomous UAVs in SAR missions has been done on a more conceptual level than the other
two objectives. The Graphplan algorithm was demonstrated to be able to compute action
plans for the different mission goals defined in this thesis, and the two first missions were
tested successfully in real-world experiments on the ReVolt. However, as stated above, the
benefit of using such an algorithm for mission planning might be more significant for a
more complicated system with more advanced missions or multiple UAVs. Based on the
results from using Graphplan in this thesis, it can be concluded that AI planning can be
used for mission planning of a single UAV. However, further research into the topic is nec-
essary as the low mission and domain complexity in this thesis prevents truly evaluating
the potential of such methods for this application.

6.5 Towards use in search and rescue
The results and contributions of this thesis will now be related to the underlying theme of
marine SAR missions using an autonomous UAV with a boat as a base of operations. The
work in this thesis provides contributions toward the part of the problem related to landing
the drone once the mission is finished, but multiple other subsystems must be implemented
for the system to be able to have any meaningful contributions in a SAR system. The base
systems, in addition to the ones implemented in this thesis, needed to carry out a search
mission are

• local navigation for travelling larger distances

• path planning for effectively searching an area

• detection for finding victims during the search

Local navigation is necessary for the drone to be able to fly to a search area as well
as return to the boat. For this GPS sensors for position measurement and communication
with the boat as described above can be incorporated into the Kalman filter.

When arriving at the search area, an efficient search plan must be generated. The liter-
ature on the subject should be investigated to find the most efficient patterns that maximize
the chance of finding victims fast.

Detection of victims can be done by using a standard camera with object detection
based on, e.g. the same YOLO detector as used in this thesis. The detector could be
trained on images of floating objects, where one such large dataset was recently released
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[74]. It can also be beneficiary to use thermal imaging when discovering bodies, and this
could similarly be paired with some form of object detection.

It is also important that the drone used is properly equipped to handle the mission. It
has to be able to handle harsh environmental conditions such as severe wind and rain, as
these often accompany such missions. To this end, the Anafi drone is not suited as it is
not waterproof and not designed for flight in particularly windy conditions. It also has a
short battery life, meaning that it would not be able to carry out a substantial search before
having to replace its battery. It is also beneficial for the drone to carry a payload in the
form of a lifebuoy that can be dropped at command, another feature the Anafi lacks.

The existing system implemented in this thesis would also have to be improved for the
system to be used in SAR missions. The perception system would need improved accuracy
and decreased delay and be robust enough to work with potentially limited visibility and
varying lighting conditions. The control system must be robust enough to land on the boat
while at sea with potentially harsh conditions, contrary to the experiments in this thesis
where the motion of the ReVolt was calm and controlled due to manually moving it by
hand. Mission planning and execution is also an important area that would have to be
robust with failsafe mechanisms and multiple scenarios planned due to the uncertainty of
such missions.

Overall, this thesis explores the foundations of some of the fundamental systems needed
in such SAR systems, but more development and experimentation would need to be done
for these to be used in an actual SAR mission.
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7
Conclusion and future work

This chapter concludes the thesis by summarizing the findings from the results and discus-
sion chapters before outlining potential future work based on the results obtained in this
thesis.

7.1 Conclusion
This thesis has investigated methods within the fields of perception, control, and mission
planning with the end goal of having a complete system capable of landing an unmanned
aerial vehicle (UAV) autonomously on a boat. The experiments were carried out using
a Parrot Anafi quadcopter drone which landed on a helipad attached to the DNV ReVolt
vessel.

The perception system proposed was composed of two different computer vision po-
sition estimation techniques combined in a model-based Kalman filter. The first computer
vision system developed was based on traditional computer vision (TCV) techniques, in-
cluding corner detection and homography-based pose estimation, and was a continuation
of the work done in the specialization project preceding this thesis [3]. Hyperparameter
optimization (HPO) was in this thesis introduced to make the corner detection more reli-
able. It was used to find the best parameters for a Hough circle detector that segmented
out the helipad and a corner detector that detected the corners and ”H” on the helipad.
Using HPO was found to improve the rate at which the known corners of the helipad ”H”
and arrow were found and identified in the image, but the system struggled due to varying
runtimes of the circle detector and few correct identifications when testing outside. It was
suggested to use a deep neural network (DNN) based circle detector instead to improve
detection accuracy and decrease runtime, as well as using fiducial markers placed on the
helipad to make the known points easier to detect and identify. The homography-based
pose estimation system showed promising results when the known points were found but
suffered from offsets in all axes.

The other computer vision position estimation technique used a deep neural network-
based computer vision (DNN-CV) method from [1]. This method is based on determining
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the drone position based on detecting the helipad with the YOLO object detector and was
shown to produce frequent estimates in indoor and outdoor real-world experiments. How-
ever, the method was found to include offsets, particularly in the z-axis position estimates,
due to the detector estimating the size of the helipad bounding boxes to be too large.
Another issue was false detections of the helipad, causing the drone to lose track of the
helipad if it was not in view of the camera. It was suggested that both of these issues could
be mitigated by retraining the YOLO detector on new images from the Parrot Anafi, as the
current detector is only trained on lower-resolution images from the AR.Drone 2.0 used
by [1]. A final issue was found to be that system was unable to estimate the altitude when
more than the entire helipad was in the camera view, as the bounding boxes were unable
to estimate the actual size of the helipad. It was therefore concluded that the DNN-CV
system should be used for position estimation only when the drone is farther away from
the helipad and not during the final parts of the landing.

The TCV and DNN-CV systems were combined with velocity measurements from the
drone in a model-based Kalman filter using the constant velocity (CV) model for predic-
tions. The performance of the filter was found to be sufficiently accurate to be used in
feedback to land the drone on the helipad, and the overall accuracy was better than for the
TCV and DNN-CV systems by themselves. The main cause of inaccuracies in the filter
was the inaccurate measurements from the TCV and DNN-CV systems as well as time-
delayed velocity measurements used to update the CV model. Although the CV model
could accurately predict the motion of the drone on its own over short periods of time, the
large delay from the velocity measurements caused conflict with the less delayed DNN-
CV measurements. This was most notable when there was a significant change in the
drone’s velocity, such as at the start of a maneuver. It was concluded that using velocity
measurements accompanying the images streamed from the drone would mitigate this is-
sue as these measurements appear to be less time delayed. One of the limitations of the
implemented filter was that the estimation was limited to having the helipad in view most
of the time and requiring the helipad to be stationary while not in view of the camera. To
allow the drone to travel farther away from the helipad and still return, it was suggested
to extend the position estimates to also include the drone position in the NED frame using
GPS measurements. It was also suggested to estimate the helipad position in the NED
frame as well with methods for updating this estimate when the helipad is not in view of
the camera.

The overall control system proposed was a system based on individual controllers for
attitude, velocity, and position, combined using successive loop closure. The attitude con-
troller was internal on the Anafi, while methods for the velocity and position controller
were developed and compared.

For velocity control, the goal was to generate the attitude reference needed to achieve
a given velocity reference. The first method tested for this was an open-loop model-based
solution for calculating the reference based on the forces acting on the drone. The veloc-
ity response from using this method was pretty good but a little slow. A PID controller
was also tested to generate this attitude reference, and this showed similar results to the
model-based method, but with a slightly faster and smoother response. The PID method
was therefore chosen. Regardless of the method used, the main issues with the velocity
controller were transmission and measurement delays. The transmission delays meant the
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drone motion was delayed compared to the commanded references. Therefore, it was con-
cluded that target tracking with aggressive maneuvering should be avoided as the delays
could cause instability. A similar argument was made regarding the delays in the feedback
measurements, as these could also cause instability. These measurement delays could also
be reduced by updating the drone interface to use the more reliable velocity measurements
accompanying the images sent from the Anafi.

For position control, the goal was to generate the velocity references needed to align
the Anafi with the helipad horizontally and descend the drone towards the helipad for land-
ing. Two methods were investigated for the horizontal tracking of the helipad, namely, the
pure pursuit (PP) guidance law and point stabilization using a PID controller. The PP
guidance law was found to oscillate around the helipad center without stabilizing and was
therefore not used. The PID method proved to be able to align the drone with the helipad
well when the helipad was fully or nearly stationary. It suffered from some oscillations
when stabilizing in the real-world experiments, and a contributing factor to this was iden-
tified to be the time delay of the position estimates from the Kalman filter. The PID con-
troller was also not able to track the helipad well when it was moving at significant speeds,
as the drone always trailed behind the helipad. For vertical control, a PID controller was
used, and this was found to regulate the altitude well during landings.

It was investigated if the use of AI planning could be used for the mission planning
of such an autonomous UAV. Specifically, the AI planning algorithm Graphplan was used
to generate action sequences to solve three missions of different complexity based on a
set of defined domain variables specific to the problem at hand. The algorithm was able
to compute valid action sequences solving all three missions, thereby demonstrating that
the use of this algorithm is feasible in such a scenario. Using such a system of generating
standardized actions to execute was found to be beneficial as it allowed for a simple mis-
sion executor that could handle missions of any complexity. It was, however, discussed
that the missions defined were not complicated enough to fully evaluate the potential of
using this algorithm in this domain. The potential upsides of using the algorithm could
be better evaluated by having more complicated missions with possibly multiple UAVs. It
was identified that further research is necessary to make any definite conclusions about the
effectiveness of AI planning for autonomous UAVs for SAR missions.

Landing the Anafi on the helipad using the complete system of perception, control,
and mission planning and execution was tested inside in the drone lab, where motion
capture ground truth was available, and outside landing on the DNV ReVolt vessel while
on land and at sea. The drone was able to land on the helipad successfully in all cases
where the helipad was stationary. Inside the drone was also able to land on the helipad
while continuously moving slowly, but these results could not be replicated when tested
outside, as here the drone constantly trailed behind the helipad and was therefore not able
to land on it. This was concluded to be because of the guidance system only being a
point stabilization system and therefore not being able to follow a moving helipad. It
was therefore concluded that the successive loop closure using a PID position controller
and velocity controller used in this thesis is sufficient for landing the drone reliably at a
stationary helipad. However, better-suited guidance laws would have to be used to allow
the drone to land on a helipad with significant movement. The perception system was
able to determine the drone’s position in the experiments when the helipad was parallel
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to the ground but struggled when the helipad was mounted on the ReVolt while rolling at
sea. It was therefore concluded that the current perception system using computer vision
in this Kalman filter is adequate for estimating the drone’s position relative to the helipad
while landing if the helipad is parallel to the ground. However, the filter would have to be
modified to include the dynamics of the helipad to handle landings at sea reliably.

The results of the thesis were discussed in relation to the overall use case of using
autonomous UAVs in SAR missions. It was found that additional capabilities were needed
in addition to the ones in this thesis for the system to have a meaningful contribution
to SAR missions. These included navigating in larger areas, path planning for effective
search, and detection of victims in the water. It was also concluded that the Anafi UAV
used in this thesis is not suited for such missions due to its short battery life, lack of
water and heavy wind resistance, and inability to carry supplies such as a lifebuoy which
could be delivered to victims in the water. The systems implemented in this thesis were
also found to need further improvements to be reliable enough to use in SAR missions.
Both the perception and control systems would have to be more robust to handle harsh
conditions, and the mission planner would have to be able to handle mission uncertainty.

7.2 Future work
This section will now briefly discuss the future work that the author has identified as po-
tential areas of improvement for the project. The future work will be split into perception,
control, and mission planning, as these are the areas investigated in this thesis, as well as
some ideas to other areas of improvement. The ideas are summarized in Table 7.1.

For perception, the shortcomings of the TCV and DNN-CV systems should be ad-
dressed. The Kalman filter should be extended to model the dynamics of the helipad as
well to aid in landings at sea, while also incorporating GPS measurements to be able to
navigate greater areas around the helipad.

For control, the most significant improvement would be finding a new guidance law
that allows the drone to follow the helipad without trailing some distance behind, allowing
the drone to properly land on a moving platform.

Future work regarding mission planning involves further evaluating whether AI plan-
ning algorithms such as Graphplan are suitable for this type of application, which could be
done by increasing the mission complexity. In addition to this, it could be advantageous to
have a robust mission planner able to handle multiple mission scenarios, so developing a
mission controller capable of dynamically adapting the mission as it unfolds is a promising
area of future research.

For the anafi ros interface, a necessary improvement is to use the velocity and atti-
tude measurements accompanying the images rather than the ones currently used. For the
system to be used in SAR missions, the work in this thesis would have to be ported to a
waterproof drone, as well as creating a complete search system, including path planning
to search an area and object detection to detect victims in the water. Finally, some exper-
iments that could be useful to attempt are landing the drone on the ReVolt while floating
and moving freely at sea, as the ReVolt was held in place manually during the experiments
in this thesis.
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Table 7.1: Possible areas of future research.

Perception

TCV

• Use DNN-based object detector to segment helipad.
• Test using fiducial tags instead of corners as known

points in homography pose estimation.
• Find cause of offsets in estimates.

DNN-CV
• Retrain detector based on images from the Anafi to

avoid false detections.
• Remove estimates at low altitudes.

KF
• Extend states to estimate drone attitude and the motion

of the helipad as well.
• Estimate position in NED frame using GPS sensor.

Guidance and control

Guidance
• Experiment with different guidance laws to be able to

track the helipad while moving.

Mission planning

General
• Increase mission complexity to properly evaluate

Graphplan potential.
• Make mission planner adaptive.

Other

Drone interface
• Use attitude and velocity measurements accompany-

ing images.

Search and rescue
• Port results to waterproof drone.
• Implement path planning to search for victims.
• Implement object detection of victims.

Experiments
• Test landing on ReVolt while floating freely at sea.
• Test landing on ReVolt while moving freely at sea.
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