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Abstract

Climate change, and the resulting focus on the green transition is rapidly changing the

structure and characteristics of the power systems around the world. The implementation

of microgrids are facilitating renewable power production in the power system, by allowing

for smaller components of local production and storage such as solar panels and batteries.

These microgrids need intelligent control schemes in order to regulate the power, frequency,

voltage and currents within the system. Artificial neural networks (ANNs) are proposed

as one option for microgrid control with the use of machine learning.

The objective of this thesis is to develop and test a simulation model of a hybrid microgrid

with an artificial neural network based centralised controller, and compare the performance

to a more traditional power management based power flow algorithm. This was to be done

with the overarching goal being the assessment and identification of future possibilities as

well as challenges around the use of ANNs in microgrid controls.

The research started with the development of a Simulink model of a microgrid system

consisting of solar panels, a battery, an electric vehicle, constant and variable loads. The

power flow algorithm was produced, and the microgrid was simulated with a base case

consisting of standardised solar and load curves. In parallel, an ANN was developed with

the results from the simulation of the base case being used for the training. The two

control systems were simulated for three cases each: a base case, a case with irregular

irradiance and a case with irregular load.

The results indicated that when provided the same previously unseen input, the ANN

based control system managed to adjust the output values towards a more optimal solution

compared to the power flow algorithm. The complex structure of the ANN creates and

identifies its own patterns that is able to provide expected output values even if the

situation is different from the training data. However, as this project only tested a few

cases, the ultimate usability of ANN as a centralised controller cannot be concluded.

Nevertheless, the result indicate that this may be a viable option for a more secure and

effective control system for power management in the future.
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Sammendrag

Klimaforandringer, og det resulterende fokuset p̊a fornybar energi forandrer stadig struk-

turen og karakteristikken til kraftsystem rundt om i verden. Implementeringen av mikron-

ett fasiliterer for fornybar energi ved å tilrettelegge for lokal energiproduksjon og lagring

med blant annet solceller og batterier. Disse mikronettene krever intelligente kontroll-

systemer for å kunne regulere kraftflyt, frekvens, spenning og strøm i systemet. Kunstige

nevrale nett er foresl̊att som en mulighet for mikronett kontroll ved bruk av maskin læring.

Målet med denne oppgaven er å utvikle og teste en simuleringsmodell av et hybrid mik-

ronett med et kunstig nevralt nett-basert sentralisert kontrollsystem, og sammenlikne den

med en mer tradisjonell kraftflyt-basert algoritme. Dette blir gjort med det overværende

m̊alet å vurdere og analysere systemet for å identifisere b̊ade fordeler og utfordringer rundt

bruken av nevrale nett for mikronett kontroll.

Prosjektet startet med utviklingen av en Simulink-modell av et mikronett best̊aende av

solceller, et batteri og en elektrisk bil i tillegg til variabel og konstant last. En kraftflytsal-

goritme ble laget, og mokronettet ble simulert med et basistilfelle som bestod av normale

sol- og lastforhold. Parallelt ble det utviklet et nevralt nett der resultatene fra simulerin-

gen av basistilfelle ble brukt til opplæringen. De to kontrollsystemene ble simulert for

tre tilfeller hver: et basistilfelle, et tilfelle med uregelmessig innstr̊aling og et tilfelle med

uregelmessig belastning.

Resultatene indikerte at n̊ar gitt den samme tidligere usynlige input dataen, klarte det nev-

rale nett-baserte kontrollsystemet å justere utgangsverdiene mot en mer optimal løsning

sammenlignet med kraftflytsalgoritmen. Den komplekse strukturen til det nevrale nettet

skaper og identifiserer sine egne mønstre som er i stand til å gi forventede utgangsverdier

selv om situasjonen er forskjellig fra treningsdataene. Siden dette prosjektet bare testet

noen f̊a tilfeller, kan den endelige brukbarheten av nevrale nett som et sentralisert kon-

trollsystem ikke konkluderes. Resultatet tyder likevel p̊a at dette kan være et brukbart

alternativ for et sikrere og mer effektivt kontrollsystem for kraftstyring i fremtiden.
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1 Introduction

1.1 Evolution of the Power System

The world is in constant change, with new challenges every year affecting the way the

worlds population live their everyday lives. The largest and most demanding challenge

of recent time has been climate change and how the power demand can be supplied by

renewable energy sources in order to reduce emissions. Figure 1.1 shows how the develop-

ment of renewable energy sources (RES) has been for the last 10 years in addition to how

large the share of coal- and renewable power production has developed as a percentage of

total power production in the world.[1]

Figure 1.1: Renewable power development over the last 10 years.[1]

In contrast with the large centralised non-renewable power production of old, solar-, wind-

and hydropower is dependent on nature in order to produce power. These natural resources

are not always available on demand compared to the fossil fuel power plants. Although

hydropower can be regulated quite easily, it is still dependent on sufficient water in the

reservoirs which with more extreme weather trends is not always a guarantee. As more

RES are implemented in the power system, a larger focus on proper storage and regulation

is needed in order to maintain a stable power system with sufficient power to feed the

demand at all times.[1, 2]
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In addition to the challenges associated with the increase of RES in the power system

is the fact that most of these also are distributed energy resources (DERs). The most

common placement of a solar panel is on the roof of buildings, providing power directly

to the local area. This results in decentralised power production, which at the rate of

implementation is shifting the dynamic of the power system as a whole at a rapid pace.

Figure 1.2 shows an example of how these DERs can be connected, and how a centralised

controller is connected to all the elements.[1, 2]

Figure 1.2: Commonly used microgrid components.[3]

As a the power system dynamic has been changing, microgrids has risen in popularity.

As the microgrids often are able to operate either by itself or connected to a main grid,

the system needs to be able to regulate the internal power flow to provide stability in the

system. Achieving such a balance can be a challenge, especially with intermittent power

sources, and warrants the need for a centralised controller uses measured values from the

system, processes them and provides an output for the regulation of the system. If proper

stability can be achieved, the implementation of microgrids can provide energy security

from central system faults, lower electricity prices and integration of sustainable energy

production.[4, 5, 6]

Over the past 5-10 years, artificial intelligence (AI) and machine learning has been taken

to new heights, with a rapid rate of research and development. While artificial neural

networks have existed for over 60 years, the research, development and applications of

such system have advanced significantly in recent years. The use of different types of

AI allows for processing complicated calculations with the use of the high computational

power of the computers available. Figure 1.3 shows how a small ANN with three inputs,

two hidden layers and one output could look like.[6, 7]

2



Figure 1.3: The structure of a basic ANN.[8]

The ANN uses a complex network of simple processing units which are trained by a

database of training data. The structure of a neural network is quite different to traditional

calculation methods, by having many simple calculations in a mesh of nodes. The structure

of the neural network in addition to its learning process makes the path between input

and output significantly different to traditional calculations. These factors make ANNs

quite interesting and may result in a method of calculation that can be more reliable in a

wide spectrum of calculations. Examples of this may be situations with corrupt or missing

data, in addition to values from unforeseen circumstances that the programmers may not

have taken into consideration.[6, 7]

3



1.2 Motivation and Purpose

With the increasing complexity of the power system, the need to look for ways to reinvent

or improve the performance of the control systems becomes apparent. As there is a rapid

rate of research and interest in AI-technology and how it can be used, this becomes a point

of interest when looking at some of the challenges the future power system will encounter.

If traditional methods of control can be replaced by various types of AI systems, the

transition from a centralised grid structure to a greener, more sustainable decentralised

structure may transpire at a faster rate. With climate change as the main driving factor,

any technological advancements that may help drive this green transition forward should

be given extensive attention.

On top of facilitating the implementation of renewable energy sources, the AI based control

system can address several other challenges within the current system. The possibility

of producing usable results with missing, or vastly different input data than expected

can increase the resilience of cyber-attacks, natural disasters or poor signals which may

lead to loss of power in the present system. The use of microgrids in general can also

allow for houses, neighbourhoods or whole cities to become largely self-sufficient, reducing

the dependency on transfer of power over large distances. This may reduce the need

for developing larger power transfer capacities across countries, as more power can be

produced locally.

These future microgrids needs to be able to adjust local production and storage in order to

maintain the microgrids stability when disconnected from the grid, while also seamlessly

connecting to the grid and contributing to the stability of the main grid when needed.

Properly researched, stable, predictable and reliable local control system will be imperative

for the wide implementation of such microgrids. Even with the promising characteristics

of ANNs, a substantial amount of research and testing is needed before such systems can

be implemented, highlighting the motivation for this thesis.
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1.3 Project Description and Objectives

This masters thesis is the result of the work done in the final semester of the Energy and

Environmental Engineering degree, and serves as a project going more deeply into one

specific research area. The thesis is a continuation of the specialization project completed

in the autumn of 2021, where more in depth theory and state of the art research was done

as a preparation for this thesis. In addition to this, a thesis with similar scope from 2021

was used as a basis for this project with the goal of improving on the existing work and

moving the research on this area further.

The overall goal of this thesis can be defined as the following:

Developing and testing the performance of a hybrid microgrid

system with an Artificial Neural Network based centralised power

control

Several course objectives were identified in order to achieve the goal of the thesis:

• Obtain the required theoretical knowledge to develop a model of a microgrid with the

needed power electronic components in order to carry out simulations with different

centralised controllers.

• Develop a power flow algorithm as a centralised controller in order to obtain training

data for an artificial neural network.

• Develop, train and test an ANN to function as the centralised controller of the mi-

crogrid, and compare the performance of the two controllers with different scenarios.

By completing these objectives, this thesis hopes to contribute to the research field of AI

in future power systems. With simulations of the general concept of ANN as a centralised

controller, positive trends and results can be identified, while challenges and problems

that needs to be addressed in future work can be determined.
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1.4 Related Research

Previous research on the subject of ANN based power management control has been

completed, with varying areas of focus. The general concept and applications of AI-

techniques in smart grids and renewable energy systems were outlined in [9], including

ANNs, fuzzy logic, expert systems and genetic algorithm.

In [10], a simple hybrid microgrid centralised controller was created and tested. The

thesis concluded with the system partially working, but with poor power quality and

several proposed improvements. An ANN based neural network control of a standalone

DC microgrid was researched in [11], where the proposed controller was able to maintain

the voltage stability, and manage the power sharing of the DC microgrid. [12] has reviewed

DC microgrid control with ANN and a fuzzy logic controller, resulting in successful voltage

regulation of the simulated system.

Other parts of the microgrid system have been assessed with regards to areas of use for

Artificial Intelligence. One example of this is study on solar power forecasting in [13] where

the ANN was used to mitigate the uncertainty of solar power production. Lastly, [14]

studied frequency control in microgrid communities, using the MATLAB’s Deep Learning

ToolboxTM to develop a feed forward neural network which was successfully used for

determining the optimal PID controller parameters.
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1.5 Structure of Thesis

This thesis is separated into the five following chapters:

Chapter one describes the general introduction of the thesis, project description and ob-

jectives. Additionally, the motivation and purpose of the project is included with a brief

review of existing literature on the subject.

Chapter two gives an overview of a general microgrid. This includes background and theory

of the configuration of a microgrid along with the most used power electronic components

and their controls. In addition to this, the simulation model and simulation cases used in

this thesis are presented.

Chapter three explains the development of the power flow algorithm needed for acquiring

training data for the ANN including all assumptions and specifications serving as the

basis for the algorithm. Furthermore, the end of the chapter contains the results from

simulating the microgrid with the power flow algorithm as the centralised controller with

a brief discussion on the controllers performance.

Chapter four gives the background and theory on artificial neural networks, in addition

to explaining how the nerual net used in this thesis was developed. The simulation results

from simulating the microgrid with the ANN as the centralised controller is included in

this chapter, along with a discussion of the results in comparison to the simulations in

chapter three.

Chapter five includes the concluding remarks from the work depicted in this thesis accom-

panied with reflections on possible further work.

The state of art and related work were reviewed in the project preceding this thesis [6]. As

the identification of relevant background material was carried out last semester, there are

areas where no new relevant material was found during the work on this thesis. Chapter 2.1

and 2.2 is presented as presented in the previous project. As this thesis is a continuation

of the previous project, some sections may contain parts of the previous project along with

amendments and additions based on the continued work. These will be cited appropriately.
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2 Microgrid Systems

There are several aspects of theory that needs to be taken into consideration when con-

structing, controlling and simulating a microgrid. To properly get an understanding of

what the challenges are, a comprehensive explanation of the system topology, with energy

production, storage and loads, is needed. In addition to this, an overview of which power

electronic components are needed and how this all can be controlled is required. The

following chapter will explain these areas of research and give a wider background for the

problems tackled in this thesis.

2.1 System Topology

A microgrid is a combination of distributed energy resources, energy storage systems

(ESS) and a variety of loads. There are several ways to set up a microgrid, and there

can be large variations in which components it consists of. Some of the most common

components in microgrids are battery energy storage systems (BESS), solar panels, wind

turbines, hydrogen production and electrolysis in addition to a large variety of constant

and variable loads. The use of components that previously only have been considered

loads as flexible energy sources is also an area being researched and developed. One

example of this is an electric vehicle (EV) which can function as both a load and a storage

system. A microgrid can operate by itself (Island mode) or connected to a power grid

(Grid connected mode). The goal of a microgrid is to internally regulate the power flow

and deliver energy in a smart, sustainable and intelligent way with the use of intelligent

monitoring and control, while functioning as a single component with regards to the main

grid.[15, 16]

2.1.1 Types of Microgrid

The power structure of a microgrid can be set up in several different ways. A system with

only DC power systems can work in a DC microgrid. This can also be done with AC

systems in an AC power grid. The most common solution is a hybrid AC/DC microgrid

which can have loads, storage and production resources of both DC- and AC-type. The

hybrid microgrid can have a wide variety of configurations, but is usually consisting of

one DC subgrid and one AC subgrid connected by an inverter. Illustrations of how the

different types of microgrid can be set up is shown in Figure 2.1, 2.2 and 2.3. A hybrid

microgrid system will often require a smaller amount of converters which can allow for a

cheaper and less complex system.[15]
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Figure 2.1: AC microgrid.[15] Figure 2.2: DC microgrid.[15]

Figure 2.3: A hybrid microgrid.[17]

2.1.2 Island Mode

When a microgrid is operating in island mode, the system has to fully provide the power

needed by the loads at all times while regulating the frequency and voltage levels which

can be challenging at times. Having enough storage capacity to guarantee power supply

when power production is reduced is one of the challenges of an islanded system. Modern

microgrids often consist of renewable and variable power sources, which can challenge the

stability of the system. An islanded microgrid can be both a standalone system in a remote

area with no option of connecting to a main grid, or a system that has the option of being

connected to or disconnected from the main grid. A system that disconnects from the

main grid may do so for several reasons spanning from economic gain, the desire for self

sufficiency, planned maintenance, or poor power quality of the main grid. A microgrid can

also be disconnected from the main grid due to unplanned faults in the system.[15, 16]
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2.1.3 Grid Connected Mode

A grid connected microgrid is connected to the main power grid, but may operate in several

different ways depending on the settings of the control system. A microgrid can either be

set up to only receive additional power from the grid or to be able to sell excess power

back to the grid. When connecting to the main grid, the microgrid needs to synchronise

the frequency to the grid to be able to transfer power without technical difficulties. This

can be done in several ways, like using a droop controller or artificial intelligence methods

[18]. The power sharing inside the microgrid while connected to the main grid can also be

varied based on different control system priorities.[9]

2.2 Energy Production, Storage and Loads

A microgrid usually consists of a combination of loads, production and storage, and this

combination can vary largely from microgrid to microgrid. However, there are some com-

ponents that often are included.

2.2.1 Distributed Energy Resources

The definition of distributed energy resources are power producing units located closer

to the consumer. These are often smaller in scale compared to the power producing

units traditionally connected to the main power grid. Renewable energy sources are being

increasingly used around the world and are becoming an integral part of the microgrid

systems in place today, and likely in the future.[4]

The most used energy resources in modern microgrids are solar panels, which have had

a rapid price reduction in the past few decades[19]. Solar panels are easy to place on

buildings where there usually is available space. Hydropower, wind power and hydrogen

electrolysis are also often used.[4]

2.2.2 Storage Solutions

Storage solutions are often implemented in order to increase the power balance in a system.

This is an important part of modern microgrids which usually have RES with intermittent

and unpredictable power production. A storage system can store excess power when the

demand is lower and contribute with power when there is a power need in the system. The

most common storage system is a BESS, but many other technologies can also be used.

Examples of these are production of hydrogen, kinetic, thermal and chemical storage.
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The cost of the system is usually substantially increased by implementing storage devices.

This highlights the importance of proper scaling of components to reduce costs as much

as possible while still working as intended.[15]

2.2.3 Loads

Loads can vary greatly from microgrid to microgrid depending on what applications the

power is needed for. These loads can be constant, variable or follow certain patterns and

can be on both the AC and DC side. Having an understanding of what types of loads, what

load profile they have and the scale of them is important to size a microgrid properly and

to get the proper performance without oversizing components. The use of variable storage

and load solutions is also possible. One example of this is an electric vehicle that usually

charges and functions as a load, but can be utilised for discharging power if needed.[15]

2.3 Power Electronic Components

One essential demand seen with the increasing number of distributed power sources is the

need for effective power electronic components. These components are needed to control

voltage and frequency, ensuring stability in the grid. For a hybrid microgrid system, a

combination of DC-DC converters and DC-AC inverters are needed and each one with

internal control systems tuned to unify and stabilise the system. This subject was more

extensively covered in the specialisation project as part of the research for the development

of the microgrid, and is therefore a smaller part of this thesis.[6]

2.3.1 DC-DC Converters

In DC systems, the different components often have a substantial difference in rated voltage

levels. With batteries, loads and local energy production, DC-DC converters make sure the

voltage levels can be maintained at the desired levels. The most common types of DC-DC

converters are boost-converters, buck-converters and bidirectional boost-buck converters.

The boost converters increase the voltage level from a low value to a larger one, while

the buck converter steps the voltage level down from a large value to a low value. The

bidirectional boost-buck converters can be used both to step up and down the voltage level,

and can also switch the current flow direction. The main applications of boost converters

are in regulated DC power supplies, renewable energy sources and electric vehicles.[20, 21]
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Each DC-DC converter needs a control system tuned to the desired function, which can

vary greatly depending on the type of system. For a solar PV system with a boost con-

verter, a fitting control system can be one using maximum power point tracking (MPPT)

which regulates the voltage levels for optimising the power output. In addition to this

there may be a need to control the voltage level of a system. This is especially important

in an islanded microgrid where the voltage level is more volatile. In this case a voltage

controlled DC-DC converter is appropriate. In other cases such as the connection of an

electric vehicle, a current controlled DC-DC converter may be more fitting.[21]

2.3.2 DC-AC Inverters

When connecting a microgrid with DC elements to the main grid, there is a need for a DC-

AC inverter. This inverter takes a DC signal and turns it into an AC signal. Depending on

what type of DC supply is provided, the inverter can function as a current source inverter

(CSI) or voltage source inverter (VSI). The way the inverter is built, and the number of

bridges determines the output.[6, 20]

The inverter consists of a three bridges of IGBTs, which turn on and off based on a signal

provided from a control system fed through a Pulse Width Modulator (PWM) which

compares a desired sinusoidal signal with a triangular wave with frequency equal to the

switching frequency.[6, 20]

In addition to the inverter and the inverter control, an LCL filter is needed to work as a

low pass filter. This eliminates the harmonics from the output signal from the inverter and

consists of a two inductors in series with the inverter on the AC side, and one capacitor

bank in parallel between the two inverters.[6, 22]
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2.4 Microgrid Control

With an increasing number of renewable energy systems, decentralised energy resources

and intermittent production comes a new set of requirements for the control structure of

the power system. At a certain point, the amount of smaller components in the power

system will become large enough to be required to take part in the frequency and voltage

regulation of the main grid as well as microgrids. As a result, many power inverters will

be connected to the power grid with each requiring a decentralised control structure in

order to properly regulate the power flow between renewable energy sources and the power

grid.[23, 24]

There are several layers of control structure needed for a microgrid. Both DC-AC and

DC-DC converters need local control systems ensuring the intended operation. The DC-

DC converters are often tuned with a simple control scheme which is set up to provide a

certain output current or voltage. They can also be configured to control power output or

ensure a stable voltage level at the DC bus.[23, 24]

In general, an AC-coupled microgrid can have two main states that affect how the control

system functions: grid connected mode and island mode. For a grid connected microgrid,

the microgrid can function in dispatched power mode, and undispatched power mode.

When working in dispatched output power mode, the microgrid behaves like a controllable

power source or load. This can provide the grid with support or load management. In

this operating mode, the voltage and frequency is provided by the grid, and the current

is controlled to regulate the input or output power. When on undispatched power output

mode, the storage systems are usually charged and the distributed energy resources are

operated in maximum power point (MPP) mode.[6, 24]

When a microgrid is operated in island mode, the stability of the system must come from

internal control schemes. Options for control of such a system includes the droop method,

master-slave method and power balancing using a model predictive method. The droop

method is the most common, and functions by emulating the behaviour of a synchronous

generator. In a synchronous generator, the voltage and frequency output varies with the

real and reactive power output.[6, 24]
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2.4.1 Main Controller

A grid connected microgrid will always need a main controller in order to connect and

disconnect from the grid based on the state of the production and demand of the local

system. The main controller can both include automated processes in addition to im-

plementing software allowing to manually control the system in maintenance cases. The

main controller will always rely on some type of data from the power system components,

and will therefore have some sort of communication system with different sensors in the

microgrid. These sensors may be located far apart, leading to the system being exposed

to faults in the communication lines from situations like natural causes and cyber attacks.

As neural networks are trained black box models, they may not be as affected by a loss of

signal as traditional systems which use power flow equations for microgrid control.

There are are also several other elements that can be included in a main controller. Any

lower level control system that needs a situation-dependent reference value may also receive

this from the main controller. Examples of uses for this can be to specify the power

reference for a VSI with droop control, or the current reference for a buck-boost converter

between an EV and a DC bus. The main controller may also have a variety of priorities,

such as enabling and disabling storage components at certain states of charge, or times of

day in addition to controlling the power flow both in the system and from one system to

the grid.[25]

2.4.2 Self-synchronised Universal Droop Controller

The objective of a grid-connected inverter is to properly regulate the power flow between

the two sides of the inverter which often is the local microgrid and the main grid. When

operated in set mode, the inverter sends the desired amount of real and reactive power to

the grid. The inverter can also be operated in droop mode, which adjusts the amount of

exchanged real and reactive power based on the voltage and frequency of the grid. By being

able to operate in set and droop mode for both real and reactive power, the inverter can

contribute fully in both voltage and frequency regulation of the grid. This is an element

which will be more important with the increased decentralisation of power production,

ensuring the grid can remain within its operating limits even with more volatile local

production.[18]
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A synchronisation unit is required in order for an inverter to be grid connected. This is

to ensure that the output voltage is equal to the grid voltage, or at least close enough to

prevent large inrush currents when connecting to the grid. A widely used synchronisation

component is the Phase Locked Loop (PLL). Unfortunately, having many PLLs in a system

may lead to competition between the units, decreasing the overall performance. In addition

to this, as the PLLs are non-linear, these systems often tend to be more complicated and

can cause instability.[26]

In order to forego the use of a PLL, a new type of droop controller called the self-

synchronised universal droop controller (SUDC) has been proposed in [23]. The SUDC

uses the basic established structure of a universal droop controller, and also functions in

the same way when in island mode. Figure 2.4 shows the structure of the SUDC.[23]

Figure 2.4: Block diagram of the proposed SUDC.[23]

Table 2.1 shows how the switches are set in the different operational modes. In the self-

synchronisation mode, the terminal voltage is synchronised with the grid voltage. This is

done by introducing a virtual impedance which generates a virtual current. The virtual

current is related to the difference between the terminal voltage and grid voltage, and will

be zero when the two voltages are equal.[23]

P-mode and Q-mode are set modes for the real and reactive power respectively. In these

modes the real grid current is fed through the control system, and the desired power can

be set. The voltage level will settle at a constant value in the steady state when P and

Pset are equal, while the frequency settles at a constant value in the steady state resulting

in Q = Qset.[23]
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PD-mode and QD-mode are the droop modes for real and reactive power. These modes

allow for the real and reactive power sent to the grid to be automatically adjusted based on

the frequency and voltage of the grid. An additional resynchronisation mechanism has been

proposed in [27], which reduces the amount of transient overcurrents when reconnecting

to the grid after operating in island mode.[23]

Table 2.1: System operation modes of the SUDC.[23]

Mode Switch SC Switch SP Switch SQ

Self-sync mode s OFF OFF
P-mode, Q-mode g OFF OFF
PD-mode, Q-mode g ON OFF
P-mode, QD-mode g OFF ON
PD-mode, QD-mode g ON ON
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3 Simulation Model

As one of the main goals of this thesis was to test the control system of a microgrid, a

simulation model was needed. Both MATLAB® and Simulink® has advanced function-

ality for simulating electric power systems and implementing custom code while having

several neural network toolboxes. Initially, the ANN was to be developed with python and

integrated in the Simulink® model. However, upon further research the Deep Learning

ToolboxTM for MATLAB® proved sufficient, which also allowed for a more streamlined

simulation process.

In addition to including the most necessary elements of the microgrid such as the power

production and storage, the choice of also including some smaller DC-DC converters and

their controls was made. This was done for the added learning benefit of having more

realistic components compared to making ”perfect” elements, while avoiding the creation

of a system that only works in ideal conditions.

As this thesis is within the same scope of a thesis from 2021, many of the elements and

their respective specifications have been continued from the previous work with a goal of

easier continuation of the research subject with regards to this thesis, last years and any

future research. However all specifications have been reconsidered carefully in order to

assess if more optimal components and configurations were available.

3.1 Model Overview

The model consists of a hybrid AC-DC microgrid connected to the main grid. The mi-

crogrid contains one AC bus and one DC bus separated by an DC-AC inverter and a circuit

breaker. The DC side of the microgrid includes a Solar PV array, a stationary battery

and an electric vehicle. The solar panels is the main power provider of the microgrid, with

the two batteries adding the flexibility of having both added loads or added production

in the system. As the solar panels only produce power in the day, some sort of storage

component is essential in order to increase the self sufficiency of the microgrid system.

With the increased acquisition of electric vehicles around the world, the possibility of using

EVs as an added power source is becoming increasingly relevant. This is in contrast to

the current situation where EVs mostly act as an added load.

A line diagram of the model is shown in Figure 3.1, showing how the EV, BESS and PV is

connected to the DC-bus and the loads and grid is connected to the AC-bus. In addition

to this, an inverter is connected to the line between the DC- and AC-buses. The full

Simulink® model is shown in Appendix A.
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Figure 3.1: Line diagram of the hybrid microgrid.

3.2 Power Production, Storage and Loads

On the DC side of the microgrid, the components are all connected in parallel to the DC

bus. The solar PV array has a power rating of 17.5 kW at 25°C, while the two batteries

have a power rating of 9 kW each. The specifications for the DC components are given in

Table 3.1. The irradiance input for the solar panels in the different cases can be found in

Appendix B.

Table 3.1: Specifications of DC-components

Parameters Value

Solar PV Power per panel 220 W
Parallel 8
Series 10
Vmax 390 V
Imax 45 A
Pmax 17.5 kW

BESS Rated Voltage 240 V
Pmax 9 kW
Pmin -9 kW
Capacity 400 Ah

EV Rated Voltage 240 V
Pmax 9 kW
Pmin -9 kW
Capacity 400 Ah

On the AC side, a load consisting of a base load of 10 kW and a variable load between

0 and 10 kW are connected in paralell to the AC bus. There are two circuit breakers

on the AC side of the microgrid. The first breaker, S1, is between the grid and the AC

bus, and the other, S2, is between the Inverter and the AC bus. This allows for switching

between the two main operating modes of the system where the two switches always will

have opposing status.
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When S1 is closed and S2 is open, the AC load is provided from the power grid, while the

rest of the microgrid is islanded. In this mode, any production from the solar panels are

absorbed by the two batteries. Conversely, if S1 is open and S2 closed, the main grid is

disconnected and the AC loads are supplied by the power production from the DC side of

the microgrid.

3.3 Control Systems

The Simulation model includes several different control systems in order to properly regu-

late the different parts of the system. These controllers are divided into the main controller

and the secondary controllers. The whole Simulink® model can be found in Appendix A.

There are two different main control systems in this model in order to address the ob-

jectives of the thesis. The first one is the power flow algorithm based controller which

contains an specially tailored algorithm which takes in data from the microgrid, calculates

the power flow situation and provides reference values for two secondary control systems

and the grid switch. The power flow algorithm is explained in detail in Chapter 4.

The second main controller is the ANN based control system, which is designed to take

in the same inputs and provide the same outputs as the power flow algorithm, but with

the use of a neural network instead of algorithms and equations. Only one of these will

be used to control the microgrid for each simulation.

The secondary control systems are the individual control schemes connected to the con-

verters and inverters of the system. A DC-DC boost converter is connected to the solar

PV array, which uses an MPPT algorithm. This setup ensures that the solar panels are

providing the maximum power available at all times. In the EV subsystem, the battery is

connected to a DC-DC bidirectional converter with current control. This allows for active

control of power flow both from and to the EV battery, by adjusting the current reference.

The last secondary control system on the DC side of the microgrid is the BESS with

another DC-DC bidirectional converter. This converter is tuned to function as a grid

forming voltage controller, ensuring that the voltage level of the DC system is kept at the

desired value despite the varying power flow from the other components.

In addition to the above mentioned control systems, a self synchronised universal droop

controller is included. This controller adjusts the gate signals to the DC-AC inverter which

controls how power is transferred from the DC to the AC side of the microgrid. The SUDC

model is based on the design given in [23].
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3.4 Simulation Cases

In order to properly test the AI based control system of the microgrid, three cases was

created. These cases will illustrate the performance of the system in the different cases, and

will allow for assessing the system properly. Case 1 is the base case simulating ”normal”

operations, case 2 has variable solar irradiance and case 3 has variable load. From these

simulations, the voltage and power at the PCC will be assessed, as well as the EV current

and the power flow to and from the other components of the system.

These cases were chosen based on the desire to look at the two main factors that affect the

power flow of a microgrid system. The first is the amount of locally produced power, which

often comes from solar panels. Since a variety of both natural and unnatural elements can

obstruct the sun from the PV panels, the production can vary between full production

and no production in a short time period.

The second large factor of the power balance of such a system is the power demand. In

addition to a base load that is mostly constant, an added variable demand is dependent on

lifestyle, weather, day of week or holidays. Furthermore, coincidences can happen where

many loads unwittingly are connected at the same time.

3.4.1 Case 1: Base Case

The base case uses the solar irradiance curve from the 20th of April 2018 in Oslo, with a

load varying between 12 and 16 kW throughout the day. This day was chosen based on

it having quite a large amount of irradiance, while still not being the middle of summer.

This would give an indication of how much the solar power production will be from spring

to fall, while staying below the yearly maximum values. The chosen day also includes a

slight decrease in the middle of the day, making the example more realistic as most days

will have some clouds or other obstructions reducing production at some point.

The load is based on data from Statnett showing the power demand in Norway during a

weekday in April. The scale of the data was adjusted to fit with the microgrid system,

while keeping the general trend of the demand the same. The focus area when deciding

the load curves was to have the general trend somewhat similar to a realistic system while

scaling it to fit the rest of the microgrid rather than having a perfect recreation of a real

load.
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3.4.2 Case 2: Irregular Solar Irradiance

For the second case, the irradiance curve is changed in order to assess how the system is

able to handle a sudden loss in local power production. As the solar panels are dependent

on sunlight to produce power, a very realistic case would be that the weather changes,

resulting in a change in production. In Norway, this can be a light passing cloud cover

or more heavy weather with rain or snow. The precipitation may also affect the power

production when landing on the solar panels.

A new set of datapoints was created for simulating the variable solar conditions. In the

variable case, the irradiance is identical to the base case until 08:00, where it begins to

deviate. Figure 3.2 illustrates the base case compared to case 2. The figure shows that

the irradiance is decreased to values between 40 and 160 W/m2. From 13:00 to 14:00 the

irradiance is back at the normal level before decreasing down to around 100 W/m2. After

17:00 the irradiance is the same as the base case.

Figure 3.2: Comparison of the irradiance between the cases
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3.4.3 Case 3: Irregular Load

Even though it is possible to quite accurately estimate the power demand for most days

based on historical data, the exact values may differ substantially because of external

factors. With the increased focus on energy prices in Norway, individual consumers have

started to adjust their power consumption depending on how expensive it will be. This

may lead to less demand for certain hours, while having an increased demand at other

times. In addition to this, people do not live their lives in the same way each day, and

some variations in power consumption should be expected.

Figure 3.3 shows the normal load curve compared to the variable load. The normal load

curve only varies between 12 and 16 kW, and illustrates how a power system with a large

share of mostly constant loads are quite predictable. The load in the base case is lowest

in the night with the largest peak in the morning and one smaller peak in the afternoon.

The variable load is adjusted to have higher peaks in the morning and the afternoon, in

addition to a reduction in the load during the middle of the day. The variable load is also

never lower than 10 kW, as this is assumed as the constant part of the load which always

stays the same.

Figure 3.3: Comparison of the load between the cases
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4 Power Management based Optimal Power Flow

Algorithm

This section contains the content related to the power management based optimal power

flow algorithm. Firstly the theory and basis used for the creation of the algorithm is

explained, with the assumptions and specifications used. Secondly, the simulation results

from simulating the microgrid with the power flow algorithm is presented for the three

different cases. Lastly, a discussion of the results and method of creating and simulating

the model with the power flow control is included, reflecting on how this part of the thesis

was resolved.

There are two reasons for needing such a power flow algorithm in this thesis. Firstly,

in order to be able to assess the ANN performance, a more traditional control system is

needed as a baseline. In addition to this, the development of an ANN requires a database

of training data. In many cases of artificial intelligence training, the required databases

of training data is publicly available. One example of this is image recognition tasks.

However, when the inputs, outputs and application of the ANN is specifically tailored to a

certain task this data is not publicly available and a database needs to be constructed.[6]

In most cases, the amount of training data needed is greater than what is possible to

create manually. An algorithm tailored to the specific requirements can be created to

solve this problem. This algorithm can be run as many times as necessary with different

input values to create a large enough database to train the ANN properly.[6]

4.1 Structure

The power flow algorithm is designed to run at each simulation timestep in Simulink with

the inputs of the algorithm being the outputs from the microgrid. These describe the state

of the microgrid, and is used as a basis for predicting the state of the microgrid in the next

time step. The values describing the state of the microgrid are the loads, solar irradiation,

EV-switch and the state of charge for the BESS and the EV. The predicted state of the

microgrid is further used to calculate the output values which are the ones used to control

the microgrid. These are the grid switch (Sgrid), the active power reference to the control

system of the VSC (PV SC,ref ) and the current to the EV (IEV,ref ). A flowchart showing

the function of the power flow algorithm is shown in Figure 4.1.[6]
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The load and irradiance predictions for the next timestep are based on actual data gathered

from Statnett and PVGIS while the switch states, power flow and reference values are set

based on optimal power flow and the model specifications given in Table 4.1.

The Simulink simulation was run with the optimum power flow algorithm, and the input

and output was recorded for each simulation timestep. The recorded input and output

values of the simulation is randomised and the needed training data is extracted and used

to train the ANN.

Figure 4.1: Flowchart of predictive power flow model
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4.2 Model Specifications

Table 4.1: Assumptions and specifications of the power flow algorithm.[6]

Category Assumptions

Solar PV - The temperature is constant at 25 °C

- The power produced in grid connected mode is only provided to the
DC system.

- Maximum power output is 17.5 kW

BESS - The battery only provides power to the AC load when in island mode

- Maximum input/output power is 9 kW

- The battery is only charged with the power from the solar PV

- Initial state of charge is set to 50%

EV - The EV-switch is disconnected at certain times of the day. At this
time it is not part of the system.

- The EV discharges 20 % of maximum battery capacity when discon-
nected from 08:00-16:00 and 10 % for the second disconnection from
18:00-20:00.

- Maximum input/output power is 9 kW

- The battery is only charged with the power from the solar PV

- Initial state of charge is set to 50%

Grid Switch - Is only closed when the net power of the system is negative.
(Microgrid is unable to be self-sufficient)
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4.3 Objective Functions

An OPF model can be used to optimize a certain objective function within the specified

criteria. The criteria are constraints that the objective function is subject to. A general

OPF problem can be mathematically formulated as shown in Equation 4.1. x is the state

variable vector, and u is the control variable vector. The f is the objective function while

g is the power balance equations and h is the system constraints.[28].

Min

f(x,u)

Subject to:

g(x,u)

h(x,u)

(4.1)

There are several ways to solve such an optimisation problem as stated in Equation 4.1.

The different techniques use a broad range of mathematical approaches. Some examples

of these are stochastic programming, decomposition methods, linear programming, mixed-

integer programming and artificial intelligence methods. The power flow algorithm in this

thesis uses linear programming.[28]

The main goal of the optimum power flow algorithm is to ensure that there is a balance

between the power produced and the power consumed by the loads. As a result of this,

the objective function can be written as follows when the system is operating in island

mode:

Min (
n∑

i=1

PG
i −

n∑
i=1

PL
i ) (4.2)

Island mode:

PG = [PPV , PEV , PBESS ]

PL = [PEV , PBESS , Pcl, Pvl, Ploss]

(4.3)

The two batteries are given as both loads and generating units as they can both provide

power to the system and receive power from the system.

When the system is grid connected, the grid and the loads are connected to the AC-bus

where the power to the loads is provided by the grid. The resulting generated power is

only from the PV system and all the produced power is consumed by the two batteries as

given in Equation 4.4.

26



Grid connected mode:

PG = [PPV ]

PL = [PEV , PBESS ]

(4.4)

4.3.1 OPF System Constraints and Variables

The equations for the system constraints are as given in Table 4.1 and Equation 4.5.

SOCEV,min ≤ SOCEV ≤ SOCEV,max

SOCBESS,min ≤ SOCBESS ≤ SOCBESS,max

−PEV,max ≤ PEV ≤ PEV,max

−PBESS,max ≤ PBESS ≤ PBESS,max

(4.5)

The control variables of the OPF are the variables used to control the microgrid and in-

cludes the grid switch, the current reference for the electric vehicle and the power reference

of the VSC. These can be seen in Equation 4.6.

u = [Sgrid, PV SC,ref , IEV,ref ] (4.6)

Table 4.2: System constraint variables and other specifications.

Specifications Value

SOCBESS\EV,min 1 %

SOCBESS\EV,max 99 %

PBESS\EV,max 9 kW

SV SC,max 20 kVA
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4.4 Predictions

4.4.1 Solar Power Prediction

The solar irradiance calculation of the power flow algorithm was based on a real solar

irradiance curve from 20 April 2018 in Oslo. This was downloaded from PVGIS and

contained hourly values for the solar irradiance throughout the day in an array. As the

timesteps of the simulation may vary, a new array was created with the difference in

irradiance from one hour to the next. This is shown in Equation 4.7.

SIdiff (i) = SI(i+ 1)− SI(i) (4.7)

As there may be a desire to change the step size of the calculation, a new array is created

with length equal to steps ∗ 24, where the value of the variable ”steps” is the number

of times between each hour the irradiance value is updated. A higher value results in a

more continuous curve between any two given hours, while a low value results in a more

stepped curve. As the irradiance data is given hourly, the resulting array has a linear

change between each full hour. The value calculated for the next timestep is based on the

current irradiance with an added value based on the integral of the irradiance curve and

the step size.

The main power flow model checks the relationship between the timestep of the simulation

and the step. As a result the correct irradiance for each timestep is used, even when

changing the simulation sample time.

The resulting power production from the PV panels is calculated with the following equa-

tion:

PPV =
SI

1000
· Ppanel ·Ns ·Np (4.8)
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4.4.2 Variable Load Prediction

The variable load is constructed to emulate the use of a household, with peaks in the

morning at 08:00 and in the afternoon at 17:00-21:00. The load curve is based on the base

case as specified in subsubsection 3.4.1. The load prediction for each timestep is calculated

in the same way as the solar irradiance, with the same step size as specified earlier.[6]

4.4.3 EV and BESS State of Charge Prediction

The prediction of the state of charge is calculated based on the grid switch and the net

power. Equation 4.9 shows how the SOC(t+∆t) is calculated.

SOC(t+∆t) = SOC(t) +

∫ t+∆t
t Idt

Cref
∗ 100% (4.9)

For cases when both the BESS and the EV are connected, the power flow both to and

from the two batteries will be shared. If any of the two batteries are below 30%, it will

not discharge. The maximum current flow from the each battery is limited by maximum

power divided by the voltage of the battery, I =
9000W

240V
= 37.5 A.

When the microgrid operates in island mode, the power flows from the solar PV panels

to the two batteries, with 1/3 of the power going to the BESS and 2/3 to the EV. This is

controlled by adjusting the EV reference based on 4.10, while the voltage control system

of the BESS adjusts the power flow in order to absorb the excess power in the system to

uphold the correct voltage level. The power distribution when charging both batteries was

based on prioritising the charging of the EV in order for it to have a high enough SOC to

drive when needed.

I =
2

3
· PPV − Pcl − Pvl − Plosses

VEV
(4.10)

If the EV is disconnected, the current to the BESS will be as seen in Equation 4.11. If

the grid is connected, the loads and the losses are neglected because the grid will supply

power to the loads. Only the losses in the VSC are considered, and are calculated from

the current flow and the internal resistance.[6]

I =
PPV − Pcl − Pvl − Plosses

VBESS
(4.11)
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4.5 Algorithm Output

As previously mentioned, the outputs of the power flow algorithm are the grid switch

Sgrid, PV SC,ref and IEV,ref . The current to the EV and the power reference for the VSC

depends on whether the microgrid is in grid connected or island mode, which means this

must be decided first. This is calculated by taking the max production and subtracting

the load and losses.

4.5.1 Grid-Connected Mode

When grid-connected, the DC bus is isolated, and the power production from the solar

panels are consumed by the two batteries. This means that there is no power flowing

across the inverter, resulting in PV SC,ref = 0. The reference current is calculated by

Equation 4.12.

IEV,ref =
PEV

VEV
(4.12)

PEV will depend on the state of charge, and the EV-switch. When the EV-switch is off,

PEV = 0. When the EV-switch is on, and the state of charge on the EV is less than 100

% the power to the EV will depend on the state of the BESS. If the SOC of the BESS is

100 %, PEV = −PPV , and if the SOC of the BESS is less than 100 % PEV = −PPV · 2
3

with the rest going to the BESS. It is important that the SOCmax is set to a number that

allows full charge for one step without crossing the limit for the battery.[6]

4.5.2 Island Mode

When in Island mode, the goal is for the output values to create balance the system. For a

balanced system, the power production and demand needs to be equal. PV SC,ref is there-

fore set equal to the estimated power demand from the algorithm as seen in Equation 4.13.

The reference value is sent to the internal control system of the inverter, making sure the

correct amount of power is transferred to the AC-bus.

PV SC,ref = Pvl + Pcl + Plosses (4.13)

30



When the power reference needed for power balance is calculated, the power demand

from the EV and the BESS can be estimated based on the power demand and the local

power production. The Solar PV panels will produce the maximum amount based on the

irradiance and is calculated from Equation 4.8. As a result, the combined power required

from the EV and BESS can be stated as:

Pneed = PV SC − PPV (4.14)

If both batteries have a sufficient SOC, and are connected, the current reference of the EV

will be set as given in Equation 4.15, while the BESS will discharge an equal amount of

power as the EV in order to keep a stable voltage in the DC grid. If any of the constraints

stated in subsection 4.3 are violated in order to achieve power balance while in island

mode, the grid switch is connected, and the values are recalculated based on the equations

given under grid connected mode.

IEV,ref =
Pneed

2
(4.15)
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4.6 Simulation Results

Below are the results from simulating the power flow algorithm based control on the

microgrid for one whole day. When doing the simulations, it became evident that the

power flow algorithm did not correctly control the battery settings with regards to the

SOC. Because of time limits, the size of the batteries was increased. This prevented the

SOC to fall below the limits during the day, allowing for simulating without the results

being affected by this mistake.

4.6.1 Case 1: Base Case

For the base case, the power flow algorithm chooses to connect to the main grid three times

during the course of 24 hours, which can be seen in Figure 4.2. The first connection is very

brief and occurs when the EV disconnects at 08:00. The two other times the controller

connects the microgrid to the main grid are at 16:00 and 19:00. The power reference goes

to zero when the grid switch is turned on and the current reference is zero for the period

where the EV is disconnected from the grid which is from 08:00 to 17:00

Figure 4.2: The output values from the simulation of case 1 with the power flow algorithm
as the centralised controller.
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The variable load and solar power follows the specified inputs for the simulation, as shown

in Figure 4.3. The EV power follows the load until the solar panels start producing power

before disconnecting at 08:00. In the period before the disconnection of the EV, the BESS

follows the same power output as the EV which adds up to the total demand from the

load. The BESS increases when the EV disconnects to compensate for the power need.

When the solar power increases, the demand from the BESS decreases and vice versa.

The BESS changes to consume power in the period of grid connection between 16:00 and

17:00. This does not happen when the grid is connected at 19:00 as there is no solar power

production at this point.

Figure 4.3: Measured values from the microgrid from the simulation of case 1 with the
power flow algorithm as the centralised controller.
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The voltage at the point of common coupling is mostly nonfluctuating and set to 400 V,

which can be observed in Figure 4.4. There are three large peaks, of which the first appears

when the SUDC is enabled. After this, both the DC voltage and the voltage at the PCC

is mostly steady until the slight moment of grid connection at 08:00, which creates a small

amount of transient values and ripples in the three plots. The two other peaks of larger

voltage and current can be found at the point of switching from grid connected mode to

island mode. Lastly, the DC voltage drops rapidly in the last grid-connected mode, before

quickly jumping back to 650 V when islanded.

Figure 4.4: Measured values from the microgrid from the simulation of case 1 with the
power flow algorithm as the centralised controller.
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4.6.2 Case 2: Irregular Solar Irradiance

The output values from the power flow algorithm acting as the centralised controller for

case 2 can be seen in Figure 4.5. These output values are identical to the ones from the

previous simulation case.

Figure 4.5: The output values from the simulation of case 2 with the power flow algorithm
as the centralised controller.
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When looking at Figure 4.6, the solar power output follows the expected trend from the

irradiance input. The EV power remains similar to the base case, while staying below its

maximum output power limit. The EV does however not charge at any part of the day,

which is unsustainable. The BESS increases the power output to compensate for the lack

of power production from the solar panels, but does however increase past the 9 kW limit

of the battery. Even though the BESS has negative power output at small periods of time,

these are short and large peaks resulting in little charging. As a result, neither the EV or

the BESS receives any power during this 24 hour period.

Figure 4.6: Measured values from the microgrid from the simulation of case 2 with the
power flow algorithm as the centralised controller

.
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The voltage level at the PCC is mostly constant at 400 V, except for the same peaks as

seen in the previous case. Figure 4.7 shows how the current varies with the power demand

of the load, and goes to zero when the grid is connected as no current travels from the

DC to the AC bus. The control system struggles to keep the DC voltage at 650 V with

the voltage decreasing both from 10:00 to 12:00 and from 19:00 - 21:00 as could be seen

in the previous case as well.

Figure 4.7: Measured values from the microgrid from the simulation of case 2 with the
power flow algorithm as the centralised controller

37



4.6.3 Case 3: Irregular Load

For the third case, Figure 4.8 shows the three output values from the power flow based

centralised controller. These are identical to the previous two cases.

Figure 4.8: The output values from the simulation of case 3 with the power flow algorithm
as the centralised controller.
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Figure 4.9 contains the measured values from several components in the microgrid. The

variable load has peaks of 20 kW in the morning and evening with the lowest values at

the base load of 10 kW around midnight and midday. The solar power follows the same

trend as the irradiance input, with more power when the sun is higher in the sky, and

a decrease because of clouds at 12:00. The EV power follows the EV reference, which is

based on the load and local power production.

In this case, the BESS can be seen to increase slightly above its maximum output limit

in the period from 06:00 to 09:00 and around 18:00. Both the BESS power and the grid

power experiences transients at the time of grid switching.

Figure 4.9: Measured values from the microgrid from the simulation of case 3 with the
power flow algorithm as the centralised controller

.
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The voltage at the PCC is plotted in Figure 4.10 and shows the same three large peaks as

seen before, in addition to some noise in the period from 12:00 to 15:00. The same period

for the DC voltage plot shows a large increase in voltage, with a sharp decrease in voltage

from 19:00 to 21:00. The VSC current shows the same trend of increasing and decreasing

with the load curve from Figure 4.9 in addition to transients at the time of switching for

the grid switch.

Figure 4.10: Measured values from the microgrid from the simulation of case 3 with the
power flow algorithm as the centralised controller

.
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4.7 Discussion of Results

When considering the performance of the of the power flow algorithm based controller and

its development, certain objectives can be considered. The main goal of the controller was

to identify the power balance and decide if the power demand can be supplied internally,

or if the main grid is needed. When this is done, the second most important function is

to provide reference values for the EV and VSC in order for them to operate optimally to

achieve a balanced power flow.

As the batteries was scaled up to prevent the SOC to fall below the specified limits, the

general system becomes slightly less realistic. This change allows the two batteries to

discharge at all times during the day, which is unsustainable in a practical use case. A

proper system should strive to achieve net zero discharge during a day, or in a period

of a couple of days in order to perform similarly over time. This could result in the

microgrid being less self sufficient over one day of simulation, but in turn becoming more

self sufficient over time. Smart battery deployment is an important factor that is needed

for a well performing system, and is an area that could be independently researched.

The EV is disconnected at the exact same time each day, which also is the time of day

with the most solar power production. For simplicity, the settings of this control system is

tuned to only charge the batteries from the local solar production and not from the grid.

This results in a system which only discharges from the battery. In a case where the EV

is charged at the user’s workplace, this could be a realistic scenario.

However, it would be more realistic to tune the system to charge the two batteries from

the grid when grid connected, in addition to being able to connect the grid in order to

charge. A smart battery management system can also be tuned to charge the batteries

at times with lower energy prices, and focusing on discharging at times with high energy

prices. Nevertheless, this was not the focus area of this thesis, as the performance of the

ANN based centralised control was not dependent on smart battery deployment.

The transient values that appear when connecting and disconnecting the grid are not

desired in such a system, but will not affect the objectives for this thesis. This is mainly

because the goal of the thesis is not to create an optimal microgrid system, but rather to

assess the challenges and possibilities of ANN based centralised control. These transients

can be caused by several components in the microgrid, but can most likely be largely

mitigated by implementing a re-synchronisation element to the SUDC, as mentioned in

section 2.4.2.
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The results provided in the previous section shows that the system does achieve the two

main objectives for the base case, but struggles when the input values are different to what

is expected. This can be observed in the three output values of the centralised controller

which are identical in the three cases.

However, the measured power flow, current and voltage levels of the microgrid system

are not the same in the three cases. The reason for this is the function of the secondary

control systems such as the voltage controlled bidirectional controller for the BESS. The

case with low local production and the case with irregular loads have different values for

net power (production - demand) in the system at various times of the day.

The period between 10:00 and 15:00 behaves quite differently in the three cases, even

with similar central control output and is therefore an interesting area to highlight when

analysing the function of the power flow algorithm. In this period the EV is disconnected

which leaves the solar power production and the BESS to provide enough power to the

load. With normal solar production as in case one and three, the solar power production is

above 10 kW for the whole period allowing the BESS and solar panels to produce enough

power for the loads. For case one, this results in a stable voltage level for that period.

When the power flow algorithm provides mistaken outputs, the secondary control systems

that use the output values are affected. The function that decides if the BESS is in charge

or discharge mode, uses PV SC,ref as an input. As a result, case three shows that even

though the solar power production is higher than the load, the BESS is not charging. This

creates an excess of power, resulting in an increase of DC voltage.

Lastly, case two has a different challenge. As the load is the same as case one, PV SC,ref

is correct, but with the reduced solar power production the net power produced is not

enough to supply the load. The internal control of the BESS increases in an attempt

produce enough, surpassing the specified limit, but is still not able to supply enough

power. As a result, the voltage level decreases in this period.

Even though these results are sub-optimal with regards to the performance of the OPF,

they are still highly valuable. The main goal for this thesis is to create an artificial neural

network that can be used as a centralised controller. As the base case provides the desired

output, this allows for the comparison of performance based on the measurements from

the microgrid.

In addition to this, the above results show how the power flow algorithm was unable to

handle the variety of inputs to provide feasible results. As long as the ANN is trained on

data from a simulation with an acceptable centralised controller, the base case can be used

as a baseline for the two control systems while case two and three can be compared to see
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how the two systems handle a variety of input values. As one of the motivational factors

for using ANN is the possibility of achieving acceptable results with a varying or missing

inputs, the poor results from case two and three allow for assessing this exact theory.
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5 Power Management based Artificial Neural Network

The following chapter contains the introduction, background and appropriate theory on

artificial neural networks relevant for this thesis. A description of how the ANN was

developed and trained is also covered along with the results from simulating the microgrid

with the ANN as the centralised controller. Lastly, a discussion of the performance of the

ANN, and how it compares to the performance of the power flow algorithm is included.

As the research on ANNs was started in the previous project, some paragraphs containing

background and theory on ANNs are provided as shown in the previous project while some

have been modified or amended with added research.

With increasing research, more complex problems and the fast development of techno-

logical practises, the world of artificial intelligence and machine learning is becoming an

integral part of our society. There are several types of AI, but the one researched in this

paper is the artificial neural network. The following chapter gives an overview of the

research done on existing papers about ANNs based on the overall goal of the project.

The state of the art of artificial neural networks were reviewed in the project preceding

this thesis, which serves as a basis for subsections 5.1-5.4, along with varying degree of

amendments and additions based on new insights from the recent months.

5.1 What is an ANN?

The human brain consists of a collection of more than 10 billion interconnected neurons.

Each neuron has a threshold of electric potential, which when reached sends or fires a signal

of activation. These signals are used by the brain to complete computationally complex

tasks with the use of massive parallelism, a highly parallel computing structure, and

the capability of imprecise information-processing. This non-linear, dynamic interaction

process among the neurons are what is often referred to as intuitive thinking in humans.

The artificial neural networks builds on this biological structure, and differs from the

conventional computing machines which often employ a complex set of equations, requires

a certain input and follows a given path.[29, 30]

The ANN allows using very simple computational operations to solve complex problems

that conventional computers may struggle to do. The structure of each individual neuron

is quite simple, and has a limited function. The power of the systems lies in the network of

large amount of interconnected neurons. In contrast to traditional computational methods

where the rules and equations are given in the neural network is trained, which makes the

system more adaptive and flexible in addition to being able to develop and learn and reach

a higher accuracy. However, as the system is trained by the use of input and output values,
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the inner functions of the ANN remain unknown. This is called a black box model, where

the exact process that happens in between the input and output is concealed.[29, 31]

5.2 Architecture

To understand how to build a neural network, the general architecture of the network

must be explained. The architecture describes the different layers of the network, with

the amount of layers, neurons and their connections. For the most basic problems a

single layer structure, which only has one layer of input neurons and one layer of output

neurons, can be used. This type of ANN may be limited in performance because of the

lack of complexity leading to the wide use of multilayered ANNs. The basic architecture

of a multilayered ANN consists of three types of neuron layers. These are the input layer,

the hidden layer/layers and the output layer. Each neuron has a value between 0 and 1,

and all neurons in one layer are connected to each neuron in the next layer. An example

of a multilayered artificial neural network with one hidden layer is shown in Figure 5.1.[6,

30]

Figure 5.1: An example of a multilayered artificial neural network.[30]

The number of neurons in the input and output layer can vary depending on the problem.

For image recognition for example, each neuron in the input layer can represent one pixel

each. For a power system, the input values can be anything from a switch state to a

current measurement as long as the value is between 0 and 1. Which inputs that are used

and how they should be represented is one of the first challenges of making an ANN.[32]

The output layer depends on what the desired result of the calculations by the ANN is.

For a number recognition software, this could be 10 neurons from 0 to 9, while for a

simpler calculation the output layer may only have one neuron with binary ”yes” or ”no”

result. For power electronic systems this would often be switch states, expected power

production, reference voltage or current, or other signals. The number of output neurons
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will therefore vary largely from one ANN to another.[32]

The hidden layers are more complex and variable and can consist of one or more sets of

neurons and one or several layers. Designing the structure of the hidden layers is more

challenging than deciding the input and output layers. It is not possible to sum up the

design process of the hidden layers in a few simple rules. Instead, researchers in the field

of neural networks have developed many design heuristics for the hidden layers. This

can guide people in the design process to get a desired behaviour from their network.

One example of this is how the amount of layers affect the training time of the neural

network. However, there may be several different ANN architectures that give a similar

result which often triggers the need for trial and failure by iterating through different

setups and assessing the performance.[6, 32]

5.3 Computations

The ANN method to be used in this thesis is a feed-forward configuration where the signals

travel from the input layer through the network to the output layer, with no feedback loops.

Each neuron in a given layer receives a signal with the value from all the neurons in the

previous layer. Each received value in combination with a weight and a bias is used to

decide the value of the selected neuron. How the weights and biases are set and adjusted

is explained later in this thesis. Figure 5.2 shows the fundamental structure of a neuron,

with Equation 5.1 and 5.2 showing the mathematical expressions.[6, 30, 32, 33]

Figure 5.2: The fundamental structure of a neuron.[33]

U =

m∑
j=1

WjXj (5.1)

y = φ(U + b) (5.2)
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As can be seen in the above equations, the output value from each neuron is dependent on

four elements. The input values to the neuron, the weights for each input value, the bias

of the neuron and the activation function. The input values are the output values from

the previous layer, which either is the input values of the ANN or the previous hidden

layer for a feed-forward neural network. In other types of ANNs such as a recurrent neural

network, the input values may also be from all the other layers in the ANN.[32, 33]

Each input value, X, is the signal from one single other neuron in the system. Each of

these signals are multiplied with a weight which works as an indication of the importance

of that signal. The neuron signals with a larger value for W will have a larger impact on

the value of the neuron, compared to the signals with a lower weight.[32]

After all the input values and weights are summarised, a bias is added. This bias allows

for adjusting the resulting value from all the input signals and weights up or down. In

biological terms where the neurons either fire or not, a large bias would lower the threshold

for the neuron to fire. The bias in combination with all the weights allow for a large

variation of possible adjustments affecting the final value of each individual neuron. In

this way, a network with several layers and neurons becomes quite complex, while still

using simple multiplication and addition at each step. Modern Graphic Processing Units

(GPUs) have the ability to process multiple matrix computations in parallel, which allows

for training and running large neural networks without it being too complex and time

consuming.[6, 34]

The resulting value after the sum of the input and weights with the added bias can be

very large or small. As a result, an activation function is needed to decide when the

artificial stimulation value of input signals are large enough to fire the neuron. In ANNs,

the neurons are not required to be binary, but can be a wide variety of values. As a result

of this, several different activation functions have been developed, each with different

characteristics. Three of the most used activation functions are the Sigmoid function, the

Rectified Linear Unit (ReLu) function in addition to the binary Step function function.[35]

a) Step function b) Sigmoid function c) ReLu function

Figure 5.3: Commonly used activation functions
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Equation 5.3 shows the equations for each of the three functions in Figure 5.3:

φa(x) =

 1, x ≥ 0

0, x < 0
φb(x) =

1

1 + e−x
φc(x) = max(0, x) (5.3)

The step function is mostly used when there is a need for a binary output which is either 0

or 1, and is the activation function that is the most similar to how the biological neurons

operate. The Sigmoid function also provides a value between 0 and 1, though not binary.

This function allows for a variable output between 0 and 1, and is therefore useful in the

last layer before the output layers in situations where a decimal value between 0 and 1

is desired. However, the function suffers from a situation called the vanishing gradient:

a situation where the derivatives of the function, which contributes to the updating of

weights and biases, reduces to zero in the saturation area. This reduces the contribution

of the first layers and lowers the accuracy of the neural network. Because of this, the

Sigmoid function is mostly used in the output layers of a system.[35]

The ReLu function is also commonly used as its derivative is either 1 or 0, thus mitigating

the problem of the vanishing gradient. In addition to this, the linear nature of the function

allows for faster convergence and training because of the ease of computing compared to

the exponential functions used in other activation functions.[35]

When looking at a network with a large number of neurons in the previous layer, the value

of neuron 0, (with a zero-based numbering) in layer 1 can be calculated by Equation 5.4.

The superscript corresponds to the layer number while the subscript corresponds to the

neuron number in each layer.[6, 32, 36]

x
(1)
1 = φ(w0,0 · x(0)0 + w0,1 · x(0)1 + ...+ w0,n · x(0)n + b1) (5.4)

This equation is repeated for each neuron in the layer. The values for all the neurons can be

added as a matrix, as shown in Equation 5.5, which can be compressed into Equation 5.6

where X is the matrix of all the xn values of the neurons in layer n. W is the matrix of

weights, and B is the matrix of biases.[6]

X(1) = φ




w0,0 w0,1 · · · w0,n

w1,0 w1,1 · · · w1,n

...
...

. . .
...

wk,0 wk,1 · · · wk,n




a
(0)
0

a
(0)
1
...

a
(0)
n

+


b0

b1
...

bn



 (5.5)
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X(1) = φ(WX(0) + b) (5.6)

As a result, the calculation of the values for all the neurons in the next layer, based on

all the neurons in the previous layer with the respective weights and biases can be done

with a quite simple matrix multiplication. This ends up making the code for the neural

network quite simple, in addition to utilising the potential of matrix optimisation libraries

in various programming languages.[6, 32]

5.4 Learning

One of the most important parts of the artificial neural network is the ability to learn.

This allows for training the system, and is what is needed to achieve a network that gives

the expected results. The learning consists of giving the system training data, where the

network is provided an input, followed by the ANN providing an output. This output

value is compared to the correct value, and the neural network then adjusts its internal

values to reduce the chance of this mistake happening again.[6, 30, 32]

With the forward-propagating system as proposed in this thesis, the adjustments that can

be made by the artificial neural network are to the weights and the biases. This can be

done by a back-propagation adjustment, where depending on the result and how wrong

the ANN was, the system backtracks from the output and adjusts the weight and biases

for the neurons back towards the start up or down depending on how they contributed to

the result.[29, 31]

To achieve this, a cost function is implemented to quantify how well the goal was achieved.

The cost function is shown in Equation 5.7, where n is the total number of training inputs,

X is the vector of all the outputs from the network when d is the input and y(d) is the

desired output of the network. y(d) and X will be the same dimensions. w and b are the

weights and biases respectively.[6, 32, 36]

C(w, b) ≡ 1

2n

∑
d

∥y(d)−X∥2 (5.7)

This cost function is often called the quadratic cost function or the mean square error.

The cost function will always be a non-negative number and it will be a large number

if the difference between the desired output and the calculated output is large while it

approaches zero for a better performing network. From this cost function, the gradient

∇C can be decided by Equation 5.8.[6]
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∇C ≡
(
∂C

∂v1
, . . . ,

∂C

∂vm

)T

(5.8)

In this equation, ∇C is a vector with the gradient value for all the weights and biases v.

This gives the neural network a number quantifying how each weight and bias should adjust

to get a lower value in the cost function. This will also give a higher value for adjustment

to the neurons that contribute more to a wrong answer, and a smaller adjustment to the

neurons that are contributing to the correct answer.[6, 37]

Since the goal of the cost function is to reach a low value, the adjustment of the weights and

biases must be the negative of the gradient value. The resulting expression for the change

in values for the vector v containing all the weights and biases is shown in Equation 5.9,

where η is the learning rate which determines the step size. Larger steps may reach a low

value faster, but may overshoot the target and oscillate more.[6, 37]

∆v = −η∇C (5.9)

When running such a learning structure the simulation calculates an average cost function

based on all the training data, which is then used to calculate the gradient vector. This

method ensures that all the training data is taken into consideration when deciding how

to adjust the weights and biases. If this is not done, one adjustment of the weights and

biases may only be good for reaching one type of result, and not for making the whole

neural network better. By doing this many times with thousands or millions of training

values, the system will gradually learn and improve the results.
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5.5 ANN Model

There are many ways to develop an ANN model. The method explained in this chapter

points the neural network in the direction of the closest local minimum, which is not

necessarily the global minimum. This can result in the cost function reaching a point where

all further adjustments decreases the accuracy, while the system is still not functioning as

intended. This means that what initial values are placed on the weights and biases can

have an effect on the result.[6]

5.5.1 Development and Specifications

The artificial neural network was developed and trained within MATLAB® using a com-

bination of original code and existing functions. The first step of the process was simulat-

ing the microgrid in Simulink with the power flow algorithm as the centralised controller.

Data from the simulation of the power system was registered at a rate of 1000 datapoints

per hour and saved to a matrix containing the input and output values. This number was

chosen based on several tests with varying number of datapoints until the performance

increase of additional datapoints stagnated.

Following this, the data was separated into the three different datasets needed: one for

training, one for validation and one for testing. The training data consisted of 70% of the

values while the validation data and test data each consisted of 15% each. This was based

on the middle ground of the most common distributions, which are 80/10/10, 70/15/15

and 60/20/20, where the largest percentage is the training set with equal sized validation

and testing sets. The data was randomised once when saved from the simulation and once

before training the ANN in order to make sure the ANN was trained by samples in a truly

random order. By not doing this, there is a risk of the ANN results being sub optimal.

At this stage, the data has been properly processed, separated and ready for the actual

training of the artificial neural network. The process of training the network is done with

the Deep Learning ToolboxTM in MATLAB®, where several aspects of the ANN can be

specified. Figure 5.4 shows the process of development. The loop inside the dotted box is

done by the built in deep learning functions, while the two boxes on the outside is done

manually.
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Figure 5.4: Training, validation and testing process of the ANN.[38]

As artificial neural networks are black-box models, the inner workings of the neural network

is unknown. This means that one can get both similar and vastly different results from

simple changes when training an ANN. In addition, as there is a wide range of applications

for ANN, the optimal setup will vary greatly depending on the scope of the task. Because

of this, the approach chosen for the development of the ANN was to begin with a set of

basic variables and test many alternative structures to see which ones improve the results.

The performance can be seen by comparing the output of the power flow algorithm and

the ANN with the same input values as well as looking at the root mean square error

(RMSE) to make sure it is low without overfitting.

In this project, more than 100 neural nets with different configuration properties were

trained and tested. The chosen iteration of the neural net was one with three hidden

layers with 16 neurons each, with a ReLu layer after each of the hidden layers. The net

was trained with 24000 samples, with a learning rate of 0.1 resulting in an RMSE of 0.063.

The training function used the stochastic gradient descent method (SGDM), and took 2

minutes to train. Figure 5.5 shows the training progress in MATLAB®.
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Figure 5.5: RMSE per epoch of the ANN training process

After training the net, the input values from the testing dataset were sent through the

neural net. The resulting output values was then compared to the target values and the

plotted in order to identify how large the general error of the neural net was from the test

values. Figure 5.6 shows the chart, where each point is the difference between the target

value and output value. As all output values are per unit, the difference will be a number

between 1 and 0, where lower values implies an accurate prediction.

Figure 5.6: Logarithmic histogram of the error between neural net outputs and target
values
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5.6 Simulation Results

5.6.1 Case 1: Base Case

The following are the results from simulating the microgrid with the ANN as the centralised

controller with normal irradiance and load. Figure 5.7 shows that the microgrid is able to

provide enough power from the local production for most of the day. The grid switch is

turned on (switch state at 1) at three times during the day, once briefly at around 8:00,

once from 16-17 and from 19-21. The power reference to the VSC starts at around 10 kw

with a trend of peaks in the morning at 07:30 and 17:00. At 8:00 the power reference does

not reach zero, even though the grid is connected, and at 16:00 the power reference has a

more gradual decrease down to zero. The power reference is mostly inverse proportional

to the grid switch with the PV SC,ref going towards as the grid switch goes to 1.

Figure 5.7: The output values from the simulation of case 1 with the ANN as the centralised
controller.
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Figure 5.8 shows measurements of the power flow to and from several of the components

in the system. The Variable load receives between 10 and 16 kW over a day, with 10 kW

being the base load as well as peaks in the morning end evening. The solar power output

follows the trend of the irradiance. The EV and BESS power increases gradually with the

load increase until approximately 06:00, where the solar power reduces the demand from

the two batteries. The EV power is reduced to close to zero in the period that the EV is

disconnected, but with some small fluctuations above and below zero. This also happens

in the second period when the EV disconnects at around 19:00.

The BESS largely follows the EV power until the EV disconnects, and increases the power

output to compensate for the missing EV. The power output is negative from the BESS at

16:00 and slightly at 08:00 the BESS charges, which aligns with the times where the grid

is connected as can be seen in Figure 5.7. At the times of disconnection and connection

to the grid, the BESS has some sharp peaks and bottoms before settling at the desired

value.

Figure 5.8: Measured values from the microgrid from the simulation of case 1 with the
ANN as the centralised controller

.
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When looking at the point of common coupling in Figure 5.9, the three phase voltage is

consistently at approximately 400 volts, except for three peaks over the 24 hours. The

first peak can be seen at the start, and the second and third can be seen to occur when

the microgrid disconnects from the grid. Both the voltage at the PCC an the DC voltage

are mostly stable, with ripples at the time of connection and disconnection to the grid.

The current goes to zero when connected to the grid, as there is no power flow from the

DC side to the AC side when grid connected. The DC voltage decreases rapidly to close

to 500 V between 19:00 and 21:00.

Figure 5.9: Measured values from the microgrid from the simulation of case 1 with the
ANN as the centralised controller

.
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5.6.2 Case 2: Irregular Solar Irradiance

When the irregular solar irradiance is applied, neural network decides to connect the grid

four times. In addition to the three periods as in the base case, an added period in the

middle of the day is included in this case as there is reduced local power production. The

neural net manages to follow the trend of the power reference, by setting the value towards

zero when grid connected. In this case, however, the actual power reference only reaches

zero in the last period of connecting to the grid. The current reference follows the power

reference trend, but as Figure 5.10 illustrates, the current reference changes between -8 A

and 3 A instead of staying at zero as the EV is disconnected at this point.

Figure 5.10: The output values from the simulation of case 2 with the ANN as the cent-
ralised controller.
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Figure 5.11 shows the power flow of the elements of the microgrid. The solar power is

greatly reduced compared to the base case between 09:00 and 13:00. The load is the same

as the base case, and the EV power follows the EV reference from Figure 5.10. When

looking at the power from the BESS and grid, they both follow the desired trend when

switching between island mode and grid connected mode. The same two plots also show

the BESS go slightly above its maximum discharge at 9 kW when connecting to the grid.

A similar trend can be seen with the grid power, where there are high peaks around the

connection and disconnection points of the grid switch.

Figure 5.11: Measured values from the microgrid from the simulation of case 2 with the
ANN as the centralised controller

.
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The same trend as previously stated can be seen on the voltage at the PCC, and the

current at VSC in Figure 5.12. The transient overvoltage occurs when disconnecting from

the grid as well as overcurrents both at connection and disconnection. The DC voltage

does also have a similar trend with a mostly steady level in both island mode and grid

connected mode, but with some oscillations and sharp peaks at the time of switching

before stabilising.

Figure 5.12: Measured values from the microgrid from the simulation of case 2 with the
ANN as the centralised controller

.
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5.6.3 Case 3: Irregular Load

As can be seen in Figure 5.13, the grid is connected for three periods, the first of which is

slightly longer than previously seen in the other cases, as the load in the morning hours is

higher. The power reference stays at around 15 kW in the middle of the day, even though

the load is significantly lower in this case. In addition to this, the reference struggles to

reach zero when the grid switch is turned on.

Figure 5.13: The output values from the simulation of case 3 with the ANN as the cent-
ralised controller.
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Figure 5.14 illustrates how the power to the variable load and solar power is in this case.

The EV power follows the reference value given, with some added transients. The BESS

power increases above the output power limit at the same time of the load peaks, and the

the grid power to the load experiences transients when switching the grid switch.

Figure 5.14: Measured values from the microgrid from the simulation of case 3 with the
ANN as the centralised controller

.
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The voltage at the PCC is quite steady at 400 V throughout the whole day, with small

peaks when disconnecting the grid. Figure 5.15 shows that the DC system struggles to

keep the DC voltage at a 650 volts, with it dipping below 600 V at 07:00 and 20:00 in

addition to increasing to over 650 volts at 14:00.

Figure 5.15: Measured values from the microgrid from the simulation of case 3 with the
ANN as the centralised controller

.
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5.7 Discussion of Results

There are many points of interest when looking at the development of the ANN. Firstly,

the process of choosing the architecture and training must be considered. With the large

variation in areas of use, determining the starting values and structure for the ANN can

be demanding. As a consequence, the result and the performance of the ANN may be

affected by what values were chosen as a start, and how many times the neural net was

tested and changed before reaching the final iteration.

Finding the optimal configuration is difficult and time consuming, as a neural net with a

low RMSE does not necessarily result in a better system across several cases. With each

simulation of the microgrid taking from a couple of ours to one whole day to complete

depending on the complexity of the neural net, time was a limiting factor in the iteration

process. However, it is worth noting that the neural net does not need to be optimal or

perfect in order to provide valuable data for the project.

The training process of the ANN was done in MATLAB®, but there may be other software

or libraries for other programming languages that may allow for a better training process.

PyTorch and TensorFlow are two such deep learning frameworks that may have provided

a better result, but the use of Python in combination with Simulink® may also have

resulted in a more time-consuming and problematic process.

5.7.1 ANN vs Power Flow Algorithm as a Centralised Controller

As the main objective of this thesis is to assess how an AI based centralised control

system for a microgrid performs, a comparison between the methods simulated in this

thesis is needed. First, the output values from the controller is compared between the

two methods in the two cases. In addition to this, a comparison of the measured values

from the microgrid is shown to illustrate how the performance of the centralised controller

affects the rest of the system.

Comparison of Output Values

Figure 5.16 shows a comparison of the switch state and PV SC,ref for the three cases. The

blue plots are the output from the ANN based control, and the orange plots are from the

power flow algorithm based control.
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Figure 5.16: The output values for Grid Switch and PV SC,ref for all the simulations.

One general point to take away from the power flow algorithm was the inability of provid-

ing a different result based on the input. This was considered and implemented in the

programming of the algorithm, but did not work as intended. As a result, the switch state

and power reference to the VSC from the power flow algorithm is equal in all three cases.

The ANN was trained solely on values from simulating the base case in order to be able to

test the two other cases on two systems that was set up on the same basis. Subsequently,

the ANN and OPF switches the grid switch at the exact same time, while PV SC,ref is very

close to similar.

However, when moving to the second case where the solar irradiance is reduced in the

middle of the day, the difference between the two methods are quite pronounced. As the

power flow algorithm does not register the reduced local production, it fails to identify

the need for the main grid in order to achieve power balance. Conversely, the ANN based

control does identify the need for added power in the two periods of reduced solar power,

resulting in the grid being connected for four additional hours.
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With the ANN correctly recognising the need of help from the grid to supply additional

power, and in turn adjusting the reference value towards zero, the use case of ANN based

control is illustrated. In all the training, testing and validation data, the microgrid operates

in island mode in this period of the day. In spite of this being a completely new situation

that the network of neurons never has seen before, a pattern is recognised and the ANN

gives an acceptable output.

The last case also proves that the ANN manages to identify that the load is higher than in

the base case. It must be noted that even though the trend aligns with the load profile of

case three, the scale is not correct. The peak of the load is around 20 kW and the lowest

point in the middle of the day is 10 kW. In comparison, the peak of the PV SC,ref is around

17.5 kW and the bottom at 14 kW, exhibiting how the ANN manages to get the trends

correct, but struggles to accurately get values that are far away from the base case.

The outputs are, however, not perfect as the PV SC,ref never reaches zero in case two

for the two periods of grid connection in the middle of the day. This may be an effect

of overfitting, where the system is trained to be too similar to the base case, resulting

in reduced accuracy in other cases. This can likely be reduced by further tuning of the

system as well as using training data from several cases instead of just one.

At this point, the system is generally well versed to handle cases that are similar to the

base case, with the accuracy decreasing for the cases with a larger variety. This will be an

important element to take into consideration in further development of such systems, as a

live AI based control system is expected to perform in a similar manner in all simulations.

Comparison of microgrid values

An important factor that needs to be assessed in such a system as in this thesis is the

voltage level at the point of common coupling. Figure 5.17 shows Vpcc for all the cases

with the two different control systems.

One element that can be seen in all the plots is the sharp peak in voltage that occurs at

the time of disconnecting the microgrid from the main grid. As this is not an element

that is affected directly from the centralised controller, but rather from the SUDC it does

not affect the results of this thesis. The existing research available on resynchronisation

of SfUDCs can help mitigate such signals.
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Figure 5.17: The measured Vpcc from all the simulation cases.

In general, the Vpcc is quite similar in all the cases, except for the peaks generated from the

additional switching of the grid switch in case two. In addition to this, there is slightly less

noise on the ANN controlled cases. This does not necessarily mean that the centralised

controller is working perfectly in any of the cases, as other secondary controllers can have

an effect on the general voltage level of the system. If the SUDC is operating in droop

mode, the controller will compare Vpcc to a reference value, thereby adjusting the voltage

level towards the desired value even if the PV SC,ref is slightly wrong. Additionally, the

BESS functions as a voltage controller at the DC bus which also can affect the voltage

level at the PCC.
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6 Conclusion

With the rapidly changing power system structure, the need for reconsidering how these

systems are controlled increases. In this project, a microgrid model of a hybrid microgrid

was constructed, containing common components such as local production, loads and

storage in addition to the required converters. A power management based power flow

algorithm was created to serve as a baseline for a centralised controller, in addition to

provide training data for an ANN based centralised controller. The two controllers were

simulated for three cases each: one base case, a case with variable irradiance and a case

with variable load.

In general, the results from the work completed in this thesis confirm that there are large

possibilities within the field of AI based power system control, and especially with the use

of artificial neural networks. These neural nets show the ability to identify patterns and

situations that are unknown or new to the system, and provide a realistic and expected

output. The performance of the ANN based control proved to be superior to the power

flow algorithm in the two cases with irregular load and solar irradiance, confirming the

theory that the implementation of ANNs can improve performance. + Even though the

general concept and motivation was confirmed for this thesis, the test was only conducted

for a limited simulation period. Subsequently, there are numerous elements needing con-

sideration prior to the ANN being implemented in a real life scenario in order to ensure a

predictable and stable performance over a variety of cases.

Firstly, the training procedure conducted in this project used data from the simulation of

one day. This resulted in an ANN with a satisfactory performance on the base case, but

with a decreasing accuracy with cases that are less similar to the base case. Secondly, the

power flow a algorithm did not manage to account for the SOC in the batteries, resulting

in a substantial net discharge of the two storage elements in the microgrid.

All things considered, the project achieved its main goal which was to propose, test and

assess the performance an ANN based control development of a microgrid system. The

results have highlighted the promising prospect of ANN based control systems, while also

identifying multiple challenges and considerations of this research field, allowing for further

development and research.

67



6.1 Future Work

With regards to future research, multiple elements of this thesis that can be continued

or improved in order to further develop the knowledge and understanding on AI based

control systems for microgrids. As for the ANN, several features have large potential for

further development. The first of which is the basis for the training data used for training

the ANN. In this thesis, an algorithm was created and used on the simulation of the

microgrid with the output and input values of that simulation being used as the training

data. Unfortunately, the algorithm did not work as expected, and should therefore be a

focus area for further improvement. Even though a comparison between the methods are

possible even with sub-optimal results, it does not allow for an assessment of the absolute

performance of the methods.

In addition to improving the algorithm for the accumulation of training data, a consider-

ation of the contents of the training data should be completed. This thesis confirms some

of the functionality, but with a reduced overall quality. By making a dataset containing

the resulting values of simulations of several cases, the performance of the ANN control-

ler with unknown situations may be increased. This may also reduce overfitting, as the

dataset contains values from a variety of cases.

With regards to the two storage elements in the microgrid in this thesis, several aspects

can be reconsidered and improved. This thesis did include a simple, and partly unrealistic

battery deployment scheme. Further work should look at how artificial neural networks

can be used to implement a smarter and more optimal battery scheme. This can include

battery deployment based on energy costs, net zero discharge and charge during a certain

period or to be used as a peak shaving mechanism in order to reduce the maximum load

in the system.

This thesis uses a feed forward neural network with three hidden layers. There are,

however, several other types of neural networks that could be considered and tested with

such a microgrid such as the recurrent neural network. In addition to looking at other

types of neural network as a centralised controller, neural networks can also be considered

used on the secondary controllers. This thesis has illustrated that the performance of the

microgrid system is dependent on several elements, and as the same perks of the ANN

structure applies to the secondary controllers, this is an area that could be looked more

into.
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A The Simulink Model

A.1 Overview

Figure A.1 shows a screenshot of the general Simulink model used for the simulations.

The microgrid is on the lower half and two control sub-systems on the top. The left side

of the microgrid is the DC side, with the three DC components highlighted in red. The

orange block is the inverter, and the green block is the LCL filter. The two switches are

shown in grey, in addition to the main grid. Lastly the AC load is shown in the red block

on the right side. The main controller and the SUDC are highlighted in orange.

Figure A.1: The model of the simulated microgrid.
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A.2 Main Controller

Figure A.2 shows the main controller sub-system. The input values are in the yellow sub

system and the two green blocks are the controllers. The top one is the ANN based central

controller and the bottom one is the power flow algorithm based centralised controller.

Figure A.2: The two main controllers used in the simulation model.

A.3 DC subsystems

Figure A.3, A.4 and A.5 show the the three DC subsystems.

Figure A.3: The simulation model of the BESS subsystem.
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Figure A.4: The simulation model of the PV subsystem.

Figure A.5: The simulation model of the EV subsystem.
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B Load and Irradiance Values

Table B.1: The values for the load [kW] and the irradiance [W/m2] for the three cases

Base Case Case 2 Case 3
Hour Load Irradiance Load Irradiance Load Irradiance

1 10 0.0 10 0 10 0
2 10.8 0.0 10.8 0 10.8 0
3 10.95 0.0 10.95 0 10.95 0
4 11.45 0.0 11.45 0 11.45 0
5 11.5 0.0 11.5 0 11.5 0
6 12.5 27.8 12.5 27.83 14.5 27.83
7 14.6 243.3 14.6 243.26 18.7 243.26
8 16.5 421.9 16.5 421.94 20.4 421.94
9 16.85 593.7 16.85 470 19.5 593.66
10 15.18 710.8 15.18 100 15 710.82
11 14.82 775.6 14.82 160 13.5 775.56
12 14.5 638.9 14.5 40 12.4 638.94
13 13.9 757.0 13.9 755 10.8 756.98
14 13.5 618.4 13.5 610 10 618.44
15 14.1 493.6 14.1 130 10.5 493.59
16 14.3 345.4 14.3 100 12.16 345.43
17 14.9 131.9 14.9 131.92 14.43 131.92
18 16.8 48.7 16.8 48.7 18 48.7
19 16.5 15.8 16.5 15.81 18.9 15.81
20 15.6 0.0 15.6 0 17 0
21 14.46 0.0 14.46 0 15 0
22 13.5 0.0 13.5 0 13.5 0
23 12.5 0.0 12.5 0 12.5 0
24 11 0.0 11 0 11 0
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C Power Flow Algorithm

1 function Output_test = OPF6_test...

2 (t_pu, SOC_bess_pu, SOC_ev_pu, P_vl_pu, EV_switch, Irr_pu)

3 %Input - This timesteps values from the microgirid.

4 %Output - Iev_ref, Pvsc,ref and Grid switch based on predictions.

5

6 %Initialize values

7 Ts = 5e-6 ;

8 delta_t = Ts ;

9 delta_t_hour = delta_t;

10 %Base to real values

11 t = t_pu*24 ; %To simulate 24 hours. 1 second simulation per hour

12 SOC_ev_0 = SOC_ev_pu *100 ; %State of Charge EV-Battery

13 SOC_bess_0 = SOC_bess_pu * 100 ; %State of Charge Battery

14 P_vl = P_vl_pu * 20000 ; % Power from variable load

15 Irr_0 = Irr_pu *1000 ; %Solar irradiance

16 step = 10 ;

17

18

19 %Constraints

20 SOC_max = 99 ;

21 SOC_min = 1;

22 S_VSC_max = 20000 ;

23 P_batt_max = 9000; %Same limits for both batteries

24 P_batt_min = -9000 ; %Same limits for bothe batteries

25 Batt_cap = 250 ; %

26

27 %Base values

28 Vn = 650 ; %V

29 Sb = 20000 ; %VA

30 fb = 50 ; %Hz

31 Vb = (1/sqrt(3))*Vn ; %V

32 Ib = (2/3) * (Sb/Vb) ; %A

33 wb = 2*pi*fb ;

34 Zb = Vb/Ib ;

35 Cb = 1/(wb*Zb);

36
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37 Negative_trigger = 0 ;

38 Positive_trigger = 0 ;

39

40

41 %Predict PV

42 P_pv_max = 220 ;

43 Ns = 8 ;

44 Np = 10 ;

45 P_pv = (Irr_0/1000) *P_pv_max * Ns * Np ;

46

47 %Loads

48 P_cl = 0 ; % implemented the constant load into the variable load

49 P_losses = Ib ^2 * 0.4 ; %Zb

50

51 %Create load curve for solar irradiance based on step time

52 %if t < Ts

53 Load_c = Load_calc(Ts, step);

54 %figure(1)

55 %plot(1:size(Load_c,2),Load_c);

56 %f = size(Load_c,2);

57

58 Irr_c = Irr_calc(Ts,step) ;

59 %figure(2)

60 %plot(1:size(Irr_c,2),Irr_c);

61 %f = size(Irr_c,2);

62 %end

63

64

65

66 function [Load_curve] = Load_calc(Ts, steps)

67

68 load1 = [0.8, 0.15, 0.5, .05, 1, 2.1, 1.9, .35, -1.67, -.36,...

69 -.32, -.6, -.4, 0.6, .2, .6, 1.9, -.3, -.9, -1.14, -.96, -1, -1.5, -1] ;

70 init = 10 ;

71 Time = 0 ;

72 Load_curve = zeros(1,24*steps) ;

73 p = 2 ;

74 for a = 1:24

74



75 for b = 1:steps

76 if a ==1 && b==1

77 Time = Time + Ts ;

78 Load_curve(p-1) = init ;

79 else

80 Time = Time + Ts ;

81 Load_curve(p) = Load_curve(p-1) + load1(a)/steps;

82 p = p + 1 ;

83 end

84 end

85 end

86

87 end

88

89 %Creates an array of estimated irradiance with as many steps as specified

90 function [Irr_curve] = Irr_calc(Ts, steps)

91

92 irr2 = [0, 0, 0, 0, 0, 27.83, 215.43, 178.68, 171.72, 117.22, 64.74,...

93 -136.62, 118.04, -138.04, -124.85, -148.16, -213.51, -83.22, -32.89, -15.81, 0, 0, 0, 0] ;

94

95 Time = 0 ;

96 Irr_curve = zeros(1,24*steps) ;

97 p = 2 ;

98 for a = 1:24

99 for b = 1:steps

100 if a ==1 && b==1

101 Time = Time + Ts ;

102 Irr_curve(p-1) = 0 ;

103 else

104 Time = Time + Ts ;

105 Irr_curve(p) = Irr_curve(p-1) + irr2(a)/steps;

106 p = p + 1 ;

107 end

108 end

109 end

110

111 end

112
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113

114

115 %-------------------simulation functions (predictions for t+dt)

116 %% What to do when p_net is positive

117 function [positive_out] = positive()

118 %Divide unused power equally between battery and EV

119 %Give to only one if other is full or disconnected

120

121 if SOC_bess < SOC_max && SOC_ev< SOC_max && EV_switch == 1

122 P_bess = (-P_PvMinusLoad)/2 ;

123 P_ev = (-P_PvMinusLoad)/(2) ;

124 elseif SOC_bess<SOC_max && (SOC_ev==SOC_max || EV_switch == 0)

125 P_bess = -P_PvMinusLoad ;

126 P_ev = 0 ;

127 elseif SOC_bess==SOC_max && SOC_ev<SOC_max && EV_switch == 1

128 P_bess = 0;

129 P_ev = -P_PvMinusLoad;

130 else

131 P_bess = 0 ;

132 P_ev = 0 ;

133 end

134

135

136 %Check if the distributed power violates any limits.

137 %When P_net is positive, there will only be charging, so negative values

138 if P_ev < P_batt_min

139 if P_bess < P_batt_min

140 %If both batteries take too much power, set it at

141 P_excess = - (P_ev + P_bess - (2*P_batt_min)); %This will be the power...

142 %not able to use

143 P_ev = P_batt_min ;

144 P_bess = P_batt_min ;

145 %Note = P_excess + " is unused in DC system" ;

146 else

147 P_excess = - (P_ev - P_batt_min) ; %This is excess power in system

148 P_ev = P_batt_min ;

149 %Note = P_excess + " is unused in DC system" ;

150 end
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151 else

152 if P_bess < P_batt_min

153 P_excess = - (P_bess - (P_batt_min)); %This will be the power...

154 %not able to use

155 P_bess = P_batt_min ;

156 %Note = P_excess + " is unused in DC system" ;

157 else

158 P_excess = 0 ;

159 %Note = "The system is operating within its limits" ;

160 end

161 end

162

163

164 positive_out = {P_ev, P_bess, P_excess} ;

165

166 %positive_out_string = {P_ev, P_bess, P_excess, Note} ;

167 %positive_out = cellstr(positive_out_string);

168 end

169

170 %% what to do when p_net is negative

171 function [negative_out] = negative()

172

173 %Divide power need between battery and EV (edit V6) only if the EV

174 %and bess has more than 30% SOC

175 %Take from only one if other is empty or disconnected

176

177 if SOC_bess > SOC_min && SOC_ev > SOC_min && EV_switch == 1

178 if SOC_ev > 30

179 if SOC_bess > 30

180 P_bess = -P_PvMinusLoad*(1/3) ; %Will be positive values

181 P_ev = -P_PvMinusLoad*(2/3) ;

182 else

183 P_ev = 0 ;

184 P_bess = 0 ;

185 end

186 else

187 if SOC_bess > 30

188 P_bess = -P_PvMinusLoad ; %Will be positive values
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189 P_ev = 0;

190 else

191 P_ev = 0 ;

192 P_bess = 0 ;

193 end

194 end

195

196 elseif SOC_bess > SOC_min && (SOC_ev <= SOC_min || EV_switch == 0)

197 P_bess = -P_PvMinusLoad ; %Will be positive

198 P_ev = 0 ;

199 elseif SOC_bess <= SOC_min && SOC_ev > 30 && EV_switch == 1

200 P_bess = 0;

201 P_ev = -P_PvMinusLoad;

202 else

203 P_bess = 0 ;

204 P_ev = 0 ;

205 end

206

207 %Check if the distributed power violates any limits.

208 %Since P_net is negative, there will only be discharging

209 %If power need from batteries are larger than max, we need to connect

210 %to grid to provide enough power for the loads.

211 %This would also trigger charging from solar power

212 if P_ev > P_batt_max

213 if P_bess > P_batt_max

214 %If both batteries provide too much power, set it at max

215 P_need = (P_ev + P_bess - (2*P_batt_max)); %This will...

216 %be the power not able to provide

217 P_ev = P_batt_max ;

218 P_bess = P_batt_max ;

219 %Note = P_need + " #1 is needed in the system" ;

220 else

221 P_need = (P_ev - P_batt_max) ; %This is needed extra power in system

222 P_ev = P_batt_max ;

223 %Note = P_need + " #2 is needed in the system" ;

224 end

225 else

226 if P_bess > P_batt_max
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227 P_need = - (P_bess - (P_batt_max)); %This will be te needed extra power

228 P_bess = P_batt_max;

229 %Note = P_need + " #3 is needed in the system" ;

230 %Note = "TEST" ;

231 else

232 P_need = 0;

233 %Note = "The system is operating within its limits" ;

234

235 end

236 end

237

238

239 if P_need ~= 0

240 if EV_switch == 1

241 P_ev = -P_pv*(2/3) ;

242 P_bess = -P_pv*(1/3) ;

243 else

244 P_bess = -P_pv ;

245

246 end

247 end

248

249

250

251

252 negative_out = {P_ev, P_bess, P_need} ;

253

254 end

255

256 %% Calculations for this hour. Used to predict next hour.

257 %Find net power

258 %Give the battery power 1 or 0 depending on state of charge

259 if SOC_bess_0 > SOC_min

260 SOC_bess_t = 1;

261 else

262 SOC_bess_t = 0;

263 end

264 if SOC_ev_0 > SOC_min
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265 SOC_ev_t = 1;

266 else

267 SOC_ev_t = 0;

268 end

269

270

271 % Change the level of discharge from the EV based on SOC.

272 % - No discharge if battery level is less than 30%

273 % - Max power if above 40%

274 if SOC_ev_0 <= 30

275 P_ev = 0;

276 else

277 P_ev = EV_switch * SOC_ev_t * 9000 ; %Either 9kW or 0kW output

278

279 end

280

281 if SOC_bess_0 <= 30

282 P_bess = 0;

283 else

284 P_bess = SOC_bess_t * 9000 ; %Either 9kW or 0kW output

285 end

286

287 %If the max available power production can compensate for the demand, grid

288 %swich has been off prefious hour.

289 P_net_max = P_pv - P_vl - P_cl - P_losses + P_bess + P_ev ;

290 %P_net_max = 0 --> Just enough power vs demand

291 %P_net_max > 0 --> More than enough power prod, consider charging battery

292 %P_net_mac < 0 --> Not enough power prod. Need grid connection.

293

294 %Start predicting the input values for t + delta_t

295 t= t + delta_t ;

296

297 %Set voltage level from bess and EV

298 V_battery = 240 ;

299

300 %Find current and then state of charge for t+dT in the two batteries

301

302 if P_net_max >= 0
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303 if EV_switch == 1

304 I_ev_t = (P_ev)/(V_battery);

305 I_bess_t = (P_bess)/(V_battery);

306 else

307 I_ev_t = 0 ;

308 I_bess_t = (P_bess)/(V_battery) ;

309 end

310 else

311 if EV_switch == 1

312 I_ev_t = -2/3*(P_pv/(V_battery)) ;

313 I_bess_t = -1/3 *(P_pv/(V_battery)) ;

314 else

315 I_ev_t = 0 ;

316 I_bess_t = -P_pv/(V_battery) ;

317 end

318 end

319

320 SOC_ev = SOC_ev_0 - delta_t_hour*(I_ev_t/Batt_cap) ; % SOC + h * A/(Ah)

321 SOC_bess = SOC_bess_0 - delta_t_hour*(I_bess_t/Batt_cap) ;

322

323 %Predicted solar irradiance and load

324

325 g = round(t*step)+1 ; %Making the index match the time.

326 if g > 24*step

327 g= round(t*step);

328 end

329

330 %test = Irr_c ;

331 Irr_1 = Irr_c(g) ;

332 P_vl = Load_c(g)*1000 ;

333

334 %update P_pv

335 P_pv = (Irr_1/1000) *P_pv_max * Ns * Np ;

336

337

338 %Total load

339 P_load_1 = P_cl + P_losses + P_vl ;

340
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341 %Predicion of EV switch status

342 if (t >= 0) && (t <8 )||(t >= 17) && (t < 19) ||(t >= 21) && (t <= 24)

343 EV_switch = 1;

344 else

345 EV_switch = 0 ;

346 end

347

348 %When solar pv and load prediction is done, we can find if batteries need

349 %discharge or charging next hour. But first we also need to see if both

350 %batteries can discharge fully.

351 %- We check state of charge in t+dt to see the discharge rate of the

352 %batteries

353 % - We use the same calculation as previous timestep but with the

354 % updated SOC:

355

356 % Change the level of discharge from the EV based on SOC.

357 % - No discharge if battery level is less than 30%

358 % - 50 % of max output if battery level is between 30 and 40%

359 % - Max power if above 40%

360 if SOC_ev <= 30

361 P_ev = 0;

362 else

363 P_ev = EV_switch * SOC_ev_t * 9000 ; %Either 9kW or 0kW output

364 end

365

366 if SOC_bess <= 30

367 P_bess = 0;

368 else

369 P_bess = SOC_bess_t * 9000 ; %Either 9kW or 0kW output

370 end

371

372 P_PvMinusLoad = P_pv - P_load_1 ;

373 P_net_prev = P_pv -P_load_1 + P_ev + P_bess ;

374

375 %trigger functions to see if batteries are needed to supply the load

376 if P_PvMinusLoad >= 0 || P_net_prev >= 0

377 Out = positive() ;

378 else
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379 Out = negative() ;

380 end

381

382

383 P_ev = Out{1} ;

384 P_bess = Out{2} ;

385

386

387 I_ev = P_ev/V_battery ;

388

389 %Calculating the net power of the system if the batteries were needed to

390 %make sure the power output is enough based on their

391 P_net = P_pv + P_bess + P_ev - P_load_1 ;

392

393 %Deciding what to do with the grid switch based on p_net

394

395 if P_net >= -1

396 Grid_switch = 0;

397 P_vsc = P_load_1 ; % /S_VSC_max

398 else

399 Grid_switch = 1; %Connected to the grid.

400 P_vsc = 0 ;

401 end

402

403 P_vsc = double(P_vsc);

404

405 t = t/24 ;

406 SOC_ev = SOC_ev/100 ;

407 SOC_bess = SOC_bess/100 ;

408

409 %Back to PU

410 I_ev = (I_ev + 75)/150

411 P_vsc = P_vsc/20000

412 Output = [Grid_switch, I_ev, P_vsc] ;

413

414 end
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