
Confidentiality and Integrity for Sensor D
ata in the Cloud-IoT Architecture

H
åkon Tjom

sland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Håkon Tjomsland

Confidentiality and Integrity for
Sensor Data in the Cloud-IoT
Architecture

Master’s thesis in Communication Technology and Digital Security
Supervisor: Colin Boyd, NTNU IIK
Co-supervisor: Håvard Skåra Mellbye, Disruptive Technologies
June 2022M

as
te

r’s
 th

es
is

Håkon Tjomsland

Confidentiality and Integrity for Sensor
Data in the Cloud-IoT Architecture

Master’s thesis in Communication Technology and Digital Security
Supervisor: Colin Boyd, NTNU IIK
Co-supervisor: Håvard Skåra Mellbye, Disruptive Technologies
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Confidentiality and Integrity for Sensor Data in the
Cloud-IoT Architecture

Student: Håkon Tjomsland

Problem description:

Cloud-IoT is an emerging paradigm involving IoT sensors sending data through cloud
services to end-users. The cloud services can collect, handle, and analyze sensor
data from IoT sensors, which reduces the complexity for the end-user. However, this
solution introduces security problems because the cloud service should check the
integrity of the data without having access to it. End-users must trust the sensor
data sent from IoT sensors after being transmitted through different systems, services,
and communication channels. This project investigates suitable methods to achieve
integrity for a cloud service while ensuring integrity and confidentiality for end-users.

Motivated by the mentioned challenge, this thesis involves analyzing encryption
modes, solution design, high-level implementation, and validation to suggest a solution
to the problem. The project will explore challenges and solutions for encryption
in IoT devices and research and analyze encryption modes suitable for such an
architecture. Authenticated Encryption (AE) algorithms are the main candidate
solutions for this project as they achieve both integrity and confidentiality. This
thesis will assess independent keys for controlling integrity and confidentiality and the
challenges involved in key management. The result of this thesis will be a contribution
towards solving the integrity and confidentiality challenges in the mentioned cloud-IoT
architecture.

Date approved: 2022-02-25
Responsible professor: Colin Boyd, NTNU IIK
Supervisor(s): Håvard Skåra Mellbye, Disruptive Technologies

Abstract

Internet of Things (IoT) devices are widely established and useful in vari-
ous industries. IoT sensors can retrieve information such as temperature,
humidity, and proximity. Because IoT sensors collect a large amount
of data that is difficult to manage locally, the cloud-IoT architecture
has arisen. Sensors transmit data to a cloud, where it can be stored
and analyzed. Allowing cloud services to handle this makes it easy for
end-users to retrieve sensor data. Even though this design has numerous
advantages, it also introduces security issues regarding the data. How
can end-users trust the security of sensor data sent through different com-
munication channels, systems, and services? Additionally, as the cloud
handles and stores the sensor data, it must know that it communicates
with a sensor and receives actual data and not noise. Thus, the cloud
should be able to verify the data’s accuracy and consistency.

This master thesis aims to achieve confidentiality and integrity of
sensor data for end-users while ensuring integrity for the cloud party
in the cloud-IoT architecture. The cloud-IoT paradigm’s challenges are
the vast attack surface and the constrained devices. IoT sensors usually
have limited computational power, memory space, battery power, and
bandwidth. The restrictions make it hard to implement security mecha-
nisms while also fulfilling cost and performance criteria. This project has
followed the design cycle, where research and design have been the main
focus of designing a solution suitable for the cloud-IoT architecture. Due
to uncertainties of newly developed lightweight algorithms and the lack
of standardized lightweight encryption schemes for IoT sensors, the main
focus has been Authenticated Encryption with Associated Data (AEAD)
algorithms. The thesis has looked at different approaches to achieving
the confidentiality and integrity requirements.

Different solutions are proposed, involving double AEAD, AEAD with
additional MAC, and splitting keys in ChaCha20-Poly1305 and EAX.
Splitting keys lets sensors exchange one key, where it is split into an
integrity part and a confidentiality part. If the cloud only receives the
integrity part, it can verify data without decrypting it. The different
solutions are compared and discussed in terms of performance, security
level, and constraints. Also, the thesis discusses how key management is
affected by the different solutions. Due to the many advantages of the
ChaCha20-Poly1305 solution with split keys, it was validated through
implementation and simulation to predict how it will interact in the
real-world cloud-IoT architecture.

Sammendrag

Tingenes internett, kjent som Internet of Things (IoT) på engelsk, er vidt
etablerte enheter som er nyttige i ulike bransjer. IoT-sensorer kan hente
informasjon som temperatur, fuktighet og berøring. Siden IoT-sensorer
samler inn store mengder data som er vanskelig å administrere lokalt, har
sky-IoT-arkitekturen oppstått. Sensorer overfører data til en nettsky, hvor
det kan lagres og prosesseres. Å la skytjenester håndtere sensorene, gjør
det enkelt for brukere å motta sensor-data. Selv om denne arkitekturen
har mange fordeler, introduserer den også sikkerhetsproblemer. Hvordan
kan sluttbrukere stole på sikkerheten til sensor-data sendt gjennom uli-
ke kommunikasjonskanaler, systemer og tjenester? I tillegg, når skyen
håndterer og lagrer sensordataen, må den vite at den kommuniserer med
en sensor og mottar faktisk data og ikke støy. Dermed bør skyen kunne
verifisere dataens nøyaktighet og konsistens.

Denne masteroppgaven har som mål å oppnå konfidensialitet og integri-
tet på sluttbrukernes sensor-data samtidig som den sikrer integritet for
sky-enheten i sky-IoT-arkitekturen. Sky-IoT-paradigmets utfordringer er
den enorme angrepsoverflaten og de simple enhetene. IoT-sensorer har van-
ligvis begrenset beregningskraft, minneplass, batteristrøm og båndbredde.
Restriksjonene gjør det vanskelig å implementere sikkerhetsmekanismer
samtidig som de oppfyller kostnads- og ytelseskriterier. Dette prosjektet
har fulgt en designsyklus, hvor forskning og design har vært hovedfokus
for å designe en løsning som passer for sky-IoT-arkitekturen. På grunn
av usikkerhet knyttet til nyutviklede lettvektsalgoritmer og mangelen på
standardiserte lettvektskrypteringsordninger for IoT-sensorer, har hoved-
fokuset vært på algoritmer av krypteringsformen autentisert kryptering
med tilknyttet data (AEAD). Oppgaven har sett på ulike tilnærminger
for å oppnå konfidensialitet og integritet.

Ulike løsninger er foreslått i denne oppgaven, blant annet løsninger
som involverer dobbel AEAD, AEAD med ekstra MAC, og splitte nøkkel
i ChaCha20-Poly1305 og EAX. Å splitte nøkler lar sensorer utveksle én
nøkkel, der den er delt inn i en integritetsdel og en konfidensialitetsdel.
Hvis skyen bare mottar integritetsdelen, kan den verifisere data uten å
dekryptere dem. De ulike løsningene sammenlignes og diskuteres med
hensyn på ytelse, sikkerhetsnivå og begrensninger. I tillegg diskuterer
oppgaven hvordan nøkkel-håndtering påvirkes av de ulike løsningene. På
grunn av de mange fordelene med ChaCha20-Poly1305-løsningen med
delte nøkler, ble den validert gjennom implementering og simulering for
å forutsi hvordan den vil samhandle i den virkelige sky-IoT-arkitekturen.

Acknowledgements

This thesis was submitted concerning finalizing a master’s degree in Com-
munication Technology and Digital Security at the Norwegian University
of Science and Technology in Trondheim. The thesis was written in the
spring of 2022 and built on a preceding project [Tjo21] from the fall of
2021.

I want to thank my supervisors, Colin Boyd and Håvard Skåra Mellbye,
for guidance and valuable feedback along the way. Also, I would like to
thank TikZ [Jea16] for the vector graphics used or modified to create
cryptographic figures.

Last but not least, I would like to thank my partner and family for
their love and support. Also, gratitude goes out to all my friends for
some enjoyable years in Trondheim.

Håkon Tjomsland

Contents

List of Figures xi

List of Tables xiii

List of Symbols xv

List of Acronyms xvii

1 Introduction 1
1.1 Cloud-IoT . 1
1.2 Motivation . 2
1.3 Objective . 4
1.4 Methodology and Thesis outline . 5

2 Background and Related Work 7
2.1 Potential attacks and threats . 7
2.2 Resource limitations in IoT sensors 9
2.3 Current research . 11

2.3.1 Lightweight cryptography . 12
2.3.2 Lightweight cryptography today 13

2.4 Cryptography . 15
2.4.1 Symmetric-key cryptography 15
2.4.2 Public-key (asymmetric-key) cryptography 21

2.5 Message Authentication Codes (MACs) 23
2.5.1 Hash-based Message Authentication Code (HMAC) 24
2.5.2 CBC-MAC and CMAC . 25
2.5.3 Poly1305 . 26

3 Key Management 29
3.1 Cryptographic keys . 29

3.1.1 Key lifecycle . 30
3.2 Key generation . 32
3.3 Key distribution . 34

vii

3.3.1 Alternative 1: Key Wrapping 35
3.3.2 Alternative 2: ECDH Key Exchange 35
3.3.3 Alternative 3: Key Evolution scheme 36
3.3.4 Key distribution in the cloud-IoT architecture 37

4 Authenticated Encryption 39
4.1 Authenticated Encryption (AE) . 39

4.1.1 CBC and HMAC . 40
4.1.2 Authenticated encryption in the cloud-IoT architecture . . . 41

4.2 Authenticated Encryption with Associated Data (AEAD) 44
4.2.1 CCM . 46
4.2.2 GCM . 47
4.2.3 EAX . 52
4.2.4 ChaCha20-Poly1305 . 54

4.3 Implementations on IoT sensors . 56
4.4 Comparison of the AEAD schemes 57

5 Design 61
5.1 Achieving confidentiality and integrity 61

5.1.1 Using two independent keys for different operations 62
5.1.2 Splitting a key into integrity key and confidentiality key . . . 63

5.2 Suggestions for different solutions . 64
5.2.1 Double AEAD . 64
5.2.2 AEAD with additional MAC 66
5.2.3 ChaCha20-Poly1305 with split keys 68
5.2.4 EAX with split keys . 74

5.3 Discussion of the solutions . 75

6 Implementation and Validation 81
6.1 Implementation . 81

6.1.1 ChaCha20 and Poly1305 . 81
6.1.2 ChaCha20-Poly1305 with split keys 82

6.2 Running the code with test vectors 84
6.2.1 Authenticated encryption . 84
6.2.2 Authenticated decryption . 86

6.3 Simulation and validation . 87
6.4 Performance . 89

7 Discussion and Conclusion 91
7.1 Discussion . 91
7.2 Conclusion . 93
7.3 Further work . 95

References 97

List of Figures

1.1 Cloud-IoT architecture [Tjo21]. 2
1.2 Confidentiality and integrity in the cloud-IoT architecture. 4

2.1 Tradeoff in cryptography for IoT sensors. 10
2.2 Illustration of the initial ChaCha20 state. 17
2.3 A ChaCha quarter round. 18
2.4 The round function in Advanced Encryption Standard (AES). 19
2.5 Cipher Block Chaining (CBC) mode encryption. 20
2.6 Counter (CTR) mode encryption. 20
2.7 Illustration of Hash-based Message Authentication Code (HMAC). . . . 25
2.8 Illustration of CBC-Message Authentication Code (MAC). 26

3.1 The four phases of the key-management lifecycle, including key states. . 32

4.1 Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC [Tjo21]. 40
4.2 CBC-HMAC encryption. 42
4.3 CBC-HMAC decryption. 42
4.4 Distribution of keys using CBC with HMAC 43
4.5 Authentication and encryption of data in Authenticated Encryption with

Associated Data (AEAD) [Tjo21]. 44
4.6 The encryption process of AEAD algorithms. 45
4.7 Illustration of the Counter mode with CBC-MAC (CCM) mode. 47
4.8 The Galois/Counter Mode (GCM) mode using CTR encryption and

GHASH authentication. 48
4.9 Illustration of GCM encryption. 49
4.10 Illustration of Galois Message Authentication Code (GMAC) authentica-

tion. 51
4.11 Encrypt-then-Authenticate-then-Translate (EAX) mode authenticated

encryption. 53
4.12 The ChaCha20-Poly1305 algorithm [ChaPol]. 55

5.1 Confidentiality and integrity in the Cloud-IoT architecture. 62

xi

5.2 Key distribution when splitting keys into confidentiality and integrity
parts. 63

5.3 Architecture with double AEAD encryption. 65
5.4 Keys and algorithms needed to protect the data in this architecture. . . 66
5.5 Authenticated encryption with GCM mode and GMAC authentication. 67
5.6 Flowchart of the authenticated encryption in the cloud-IoT architecture

with ChaCha20-Poly1305. 69
5.7 Authenticated encryption in the modified ChaCha20-Poly1305 algorithm

using two keys, Km and Kc. 72
5.8 MAC verification in the modified ChaCha20-Poly1305. 73
5.9 The modified ChaCha20-Poly1305 decryption algorithm using two keys. 73
5.10 The modified EAX decryption algorithm using two keys. 75

6.1 Screenshot of the output after the simulation of scenario S1 is run. . . . 88

List of Tables

2.1 Operations of a ChaCha20 quarter round. 17
2.2 Block cipher modes of operation in symmetric-key encryption. 19
2.3 The use of public-key cryptography. 22
2.4 Key size equivalency in symmetric and asymmetric algorithms. 22

3.1 Security strength of cryptographic algorithms. 34
3.2 Comparison of key distribution alternatives Key Wrapping, ECDH Key

Exchange, and Key Evolution. 38

4.1 Summary of the comparison of CCM, EAX, GCM, and ChaCha20-
Poly1305 (Cha-Pol). 59

5.1 The inputs of the modified ChaCha20-Poly1305 algorithm 70
5.2 The inputs of the modified EAX algorithm 75
5.3 Average throughput (MiB/s) for AEAD encryption of different packet

sizes [SLdP+19b]. 78
5.4 Comparison of key sizes, block-cipher calls, and ciphertext expansions of

the design solutions from Chapter 5. 80

6.1 Performance time of authenticated encryption and authenticated decryp-
tion in seconds. 89

xiii

List of Symbols

AD Associated Data.

C Ciphertext.

IV Initialization Vector.

K Cryptographic key.
Kc Confidentiality key.
Km MAC key.
KS Keystream.

M Message.
µC Microcontroller.
µP Microprocessor.

N Nonce.

P Plaintext.

T Authentication tag (MAC tag).

xv

List of Acronyms

3DES Triple Data Encryption Standard.

AD Associated Data.

AE Authenticated Encryption.

AEAD Authenticated Encryption with Associated Data.

AES Advanced Encryption Standard.

CBC Cipher Block Chaining.

CBC-MAC Cipher Block Chaining-Message Authentication Code.

CCM Counter mode with CBC-MAC.

CMAC Cipher-based Message Authentication Code.

CTR Counter.

DH Diffie-Hellman.

DSA Digital Signature Algorithm.

E&M Encrypt-and-MAC.

EAX Encrypt-then-Authenticate-then-Translate.

ECB Electronic Code Book.

ECC Elliptic-Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDSA Elliptic Curve Digital Signature Algorithm.

EtM Encrypt-then-MAC.

xvii

GCM Galois/Counter Mode.

GMAC Galois Message Authentication Code.

HMAC Hash-based Message Authentication Code.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IPsec Internet Protocol Security.

IV Initialization Vector.

KDF Key Derivation Function.

KEK Key-Encryption-Key.

MAC Message Authentication Code.

MCU Microcontroller Unit.

MITM Man-in-the-Middle.

MtE MAC-then-Encrypt.

NIST National Institute of Security and Technology.

NTNU Norwegian University of Science and Technology.

OMAC One-key MAC.

PPRF Puncturable Pseudorandom Function.

PRF Pseudorandom Function.

RAM random access memory.

RFC Request For Comments.

ROM read-only memory.

RSA Rivest-Shamir-Adleman.

SSH Secure Shell Protocol.

SSL Secure Sockets Layer.

TLS Transport Layer Security.

WPA2 Wi-Fi Protected Access 2.

Chapter1Introduction

This chapter will introduce the project and explain the overall goal and process of
the master thesis. The first section introduces the cloud-IoT paradigm and presents
the challenge this thesis will focus on solving. Next, the chapter will explain the
motivation and utilization of this project. In the light of the challenge and the
motivation, the chapter will define the scope and state the research questions this
thesis will answer. Lastly, the chapter presents the process of this work and the
thesis outline to give the reader a good overview of what lies ahead.

1.1 Cloud-IoT

Most people have heard of the term "Internet of Things" (IoT) today. IoT refers
to physical devices that use internet access to collect and distribute data. IoT
devices are becoming increasingly popular, and experts predict that their number
will continue to increase in the near future. 5G technology is projected to expand the
popularity of IoT gadgets even further [WCS+18] as it introduces more use areas.

IoT sensors capture data such as temperature, proximity, humidity, water detec-
tion, and touch events from their surroundings. The sensors produce a large amount
of data that consumers can use in various ways to improve the efficiency, safety, and
sustainability of buildings and infrastructure. Smart homes and smart cities rely
on IoT sensors to benefit industries, healthcare, corporate offices, transportation,
regional enterprises, and agriculture.

An IoT sensor usually includes a Microcontroller Unit (MCU). This little unit
is a small computer that runs on a small chip. Because of their small sizes, they
have many limitations, such as limited computational power and memory. These
limitations reduce the number and type of applications and cryptographic algorithms
supported in IoT sensors. Section 2.2 will go into more detail about such constraints.

Cloud computing is a good way to analyze data, handle and manage data streams,

1

2 1. INTRODUCTION

Figure 1.1: Cloud-IoT architecture [Tjo21].

and increase availability to end-users [LL15]. Without cloud computing, one must
create a local system where all sensor communication occurs locally, such as in a
building. This option is usually not favored because it demands a lot of power,
maintenance, and resources. In cloud computing, sensors communicate and deliver
sensor data to the cloud. Third parties often run the cloud solution, where services
can process, analyze, and store this sensor data. The cloud-IoT architecture allows
end-users to fetch and read the sensor data from the cloud. The system simplifies the
retrieval and management of all sensor data for private individuals and businesses.
Many applications exist for the cloud-IoT solution, leading to more optimal homes
and workplaces. Figure 1.1 illustrates a typical architecture for such a system. The
cloud gateways are an intermediate part that provides connectivity and allows the
sensors to communicate transparently with the cloud.

1.2 Motivation

Despite its mentioned benefits, the cloud-IoT paradigm also introduces new issues.
Data privacy, authorization, confidentiality, authentication, and access control are
examples of such problems [MA20]. The attack surface in such a system is quite
extensive, and one must implement security mechanisms to avoid attacks such as
packet sniffing, Man-in-the-Middle (MITM), and spoofing attacks. Section 2.1 will
elaborate on possible attacks and threats. This project will focus on protecting the
security of sensor data throughout the communication and address the following
problem: how can an end-user trust data from a sensor bought off the shelf after
passing through multiple communication channels, migrations, caches, and storage
to the customer’s systems?

When it comes to information security, one often addresses the CIA Triad to
secure data [PJW10]. It focuses on three principles: Confidentiality, Integrity, and
Availability. To avoid the attacks mentioned, one must address confidentiality and

1.2. MOTIVATION 3

integrity. The report will not focus on availability because it concerns the system’s
uptime, which requires different mechanisms. The project will focus on confidentiality
and data integrity to protect sensor data. In this report, data integrity will involve
both data authenticity and integrity. There are sometimes different interpretations
of the terms, but they are usually implemented in the same way in cryptography.

In the cloud-based IoT architecture, sensor data are transmitted over the air
and stored in databases. Further, end-users can retrieve sensor data from the cloud.
With robust encryption schemes, the sensor data can be transferred to the customer
securely, as attackers do not have the resources to decrypt the ciphertexts sent over
the air. Additionally, by introducing a MAC, we ensure message integrity.

There is another challenge as well. In addition to fulfilling encryption and integrity
for the end-to-end communication between the sensor and the end-user, the cloud
service must also verify the data integrity. Since the cloud service handles the data
streams from IoT sensors, it must know that it communicates with a sensor and
receives actual data and not noise. Also, if an attacker performs a MITM attack
where it masquerades as a cloud gateway, it could send corrupted data to the cloud.
The cloud stores the data, and end-users can use it as a backup service. If the cloud
stores a lot of encrypted data without being able to read the data or verify the
integrity, it could, in the worst case, be storing manipulated data without being
aware of it. If that is the case, no one discovers the data manipulation before an
end-user tries to validate the data integrity. This is especially problematic if the data
is stored in the cloud over a longer period before the end-user extracts the data. If
the information is manipulated or affected by noise, the parties must discard the data.
Such scenarios can potentially lead to the loss of critical data. As sensors do not have
the capability of storing the data, it will be gone forever. Also, the cloud service may
require metadata from sensors to perform data processing. Such metadata can be
information about sensors, type of data, or timestamps. If the cloud cannot read the
sensor data because of encryption, it must rely on metadata sent in the clear. Due to
threats like MITM attacks and spoofing that can tamper with or fake the metadata,
the cloud party should verify the integrity to ensure data accuracy and consistency.
An integrity check in the cloud would assure the parties that the data is correct and
prevent the cloud entity from processing or storing corrupt data or metadata.

The motivation is to check the data integrity twice, once for the cloud service
and again for the end-user. Overall, the system should meet the confidentiality and
integrity requirements listed below.

Confidentiality and integrity requirements:

1. Sensor data should be end-to-end encrypted between the sensor and the end-user
(confidentiality).

4 1. INTRODUCTION

Figure 1.2: Confidentiality and integrity in the cloud-IoT architecture.

2. The end-user must be able to validate the consistency, trustworthiness, and
accuracy of the sensor data it receives (integrity).

3. The intermediate entity, the cloud, must be able to validate the consistency,
trustworthiness, and accuracy of the sensor data it receives without reading or
disclosing sensitive data (integrity).

A solution that meets all three requirements would let the end-user trust sensor
data sent through multiple communication channels, systems, and storage on its way
from a sensor to the end-user. Also, it would let the cloud party securely handle the
sensor data.

1.3 Objective

This project aims to ensure that a third party can maintain a cloud service that
handles many users’ sensor data while guaranteeing data security. The sensor data
must be protected for the end-user to trust the data received. Therefore, the thesis
will research ways to meet the confidentiality and integrity requirements mentioned
above in the cloud-IoT architecture. Figure 1.2 illustrates how communication should
be secured. While improving the security, the system should be easy to use both for
end-users and management in the cloud. The end-users should retrieve the sensor
data while the managers monitor and maintain the system.

The research questions from the project are maintained from [Tjo21] and are
presented below. The overall research question in this thesis is:

RQ: How can end-users trust the security of IoT sensor data sent through
different communication channels, systems, and services?

The research question can be divided into smaller and more specific research
questions that will be addressed in this thesis:

1.4. METHODOLOGY AND THESIS OUTLINE 5

RQ1: What type of cryptography and which algorithms should be used?

RQ2: How can the chosen solution fulfill integrity for a third party in the cloud and
achieve integrity and confidentiality for end-users?

RQ3: How does key management affect possible solutions?

RQ4: What advantages and disadvantages does the solution introduce compared to
other schemes?

The main focus of the master project is a design problem, designing a solution
that solves the problem stated in this report. The thesis will address the research
questions mentioned above and answer them. As authenticated encryption includes
confidentiality and integrity, it is the main focus of this thesis.

1.4 Methodology and Thesis outline

This section describes the methodology and presents the outline of the thesis. It
explains how the thesis will answer the research questions and discusses the purpose
behind every chapter. The chapters describe the method of work of this thesis in
chronological order. The following procedures are covered in this project: research
and preparation, design, comparison, implementation, and validation. All chapters
build on the previous ones and contribute to answering the research questions.

This report consists of 7 chapters in total. This thesis is a continuation of a
pre-project [Tjo21]. Because of this, small parts in Sections 1.1, 2.1, 2.2, 4.1, and 4.4
are taken from or build on the project preceding this thesis. Figures 1.1, 4.1, and 4.5
originate from this project.

In order to answer the research questions RQ1-RQ4 and fulfilling the confi-
dentiality and integrity requirements from Section 1.2, there is a need for some
background knowledge. Chapter 2 will research the state-of-the-art of IoT devices
and cryptography. The chapter will explore constraints and threats that must be
considered throughout the thesis and look at cryptographic primitives to solve the
integrity and confidentiality challenges. To find what algorithms are most suitable for
IoT sensors, symmetric-key encryption, asymmetric-key encryption, and MACs will
be researched and discussed. The chapter will explain the most important algorithms
that the thesis works on in the next chapters. The goal of Chapter 2 is to give
sufficient knowledge that the next chapters can build on.

Chapter 3 aims to answer research question RQ3 concerning the key management
in the cloud-IoT architecture. Key management has many concerns and is a broad
subject. Therefore, only the most relevant concerns in the scope of this thesis are

6 1. INTRODUCTION

covered. The chapter discusses the key generation and distribution in detail with
different concerns regarding the cloud-IoT architecture.

After studying algorithms, key management, and the state-of-the-art for IoT
sensors, Chapter 4 starts adapting and applying knowledge and standards to the
cloud-IoT situation. The chapter addresses authenticated encryption as it is one
of the main focuses of this thesis. Authenticated encryption can combine separate
confidentiality and integrity algorithms or be AEAD algorithms that achieve both
in the same operations. This chapter will introduce the most common algorithms
relevant to fulfilling the confidentiality and integrity requirements. Additionally, the
chapter discusses the possibility of separating keys in AEAD so the actors can check
the integration and confidentiality separately. It seems interesting to investigate if
this is possible and useful. The preferred solution should not break the standards as
it could reduce the security strength of the algorithms. Chapter 4 aims to learn about
the properties of different authenticated encryption approaches and what is suitable
for the cloud-IoT architecture to fulfill the integrity and confidentiality requirements.
At the end of this chapter, the thesis has answered RQ1 and provided knowledge
towards answering RQ2

Further, Chapter 5 will propose different designs to fulfill the confidentiality
and integrity requirements. The chapter will discuss different solutions and their
advantages and disadvantages. As a continuation of Chapter 4, the chapter will
look at authenticated encryption and solutions separating keys of AEAD algorithms,
all this with RQ3 and the key management aspects from Chapter 3 in mind. The
chapter will compare the different approaches and discuss tradeoffs between the
suggested solutions. As a result, Chapter 5 answers both research questions RQ2
and RQ4.

Lastly, Chapter 7 will sum up the work in this thesis and explain how the thesis
has fulfilled all research questions. The chapter will discuss and reflect on the work
done and propose future work that would be interesting to research.

Chapter2Background and Related Work

This chapter looks at the state-of-the-art when it comes to security in IoT sensors and
the cloud-IoT paradigm. Discussion of both challenges and current research in this
field occurs in the following sections. As the thesis aims to secure sensor data, this
chapter will first look at challenges and constraints to outline the current situation
and investigate recent research and solutions. Since the cloud-IoT architecture
includes many possible exploitations if not secured properly, the first section will
look at the attack surface in the system. Further, the next section discusses the
resource limitations in IoT sensors. Such sensors are usually resource-constrained
devices, which introduces complexity when implementing cryptographic schemes in
this architecture. Lastly, the chapter will focus on current research and related work
to find the best approach to achieve confidentiality and integrity for the sensor data.

2.1 Potential attacks and threats

There are many possible threats in a cloud-IoT architecture. In such an architecture,
attack points could be local user devices, IoT sensors, cloud gateways, and the
cloud service, consisting of databases, administration, and virtual machines. Typical
attacks on such a system could be packet sniffing, MITM attacks, spoofing, and cloud
attacks [ROC+20]. Additionally, one must consider side-channel attacks that target
the implementation of cryptographic algorithms. The following section will further
describe the attacks to understand what must be prevented.

Packet sniffing Packet sniffing occurs when attackers intercept data over commu-
nication channels. Packet sniffing is of significant risk if the data is sent in cleartext
or encrypted using weak encryption mechanisms that the attacker could break.

Man-in-the-Middle (MITM) attack We have a MITM attack if an attacker is
positioned somewhere between the IoT sensor and the end-user during transmission.
This scenario allows an attacker to eavesdrop and potentially tamper with the data.

7

8 2. BACKGROUND AND RELATED WORK

A MITM attack can, for instance, happen if IoT sensors communicate with the cloud
through cloud gateways. Here, an attacker could pretend to be a cloud gateway and
alter the data sent from sensors toward the end-user. Another possibility is that
employees working with monitoring or development in the cloud service could read
and tamper with the data before sending it to the end-user.

Spoofing A spoofing attack happens if a user or a program impersonates somebody
else by falsifying data. Here, an attacker can pretend to be another user or IoT
device by altering the MAC or IP address and retrieving or sending confidential
data. Also, in the case of nonce reuse, an attacker can pretend to be a valid user by
replaying a message. Section 2.4.1 explains the latter case in more detail.

Cloud attacks Attackers could get unauthorized access to data or resources in
the cloud by exploiting vulnerabilities in APIs or other services. Another possible
cloud attack could be if a legitimate cloud user acts maliciously and leak credentials
or other important data.

Side-channel attacks Side-channel attacks exploit information acquired from the
system. Side-channel attacks target specific implementations and not abstract algo-
rithms. Attackers can perform physical information leakages and exploit information
from, for instance, electromagnetic radiation, power consumption, or timing informa-
tion [Sta10]. Such attacks do not require tampering with the sensor but can occur by
only observing the behavior of the devices. Side-channel attacks can also be invasive.
If attackers physically acquire a cheap sensor, they might extract cryptographic keys
from the sensor. IoT sensors usually do not have physical protection. Extracting
keys is not an easy job, but it is possible. Therefore, one should consider this when
assessing potential attacks and threats. If someone steals a long-term key, it will
disclose non-authorized data that should be kept secret from the attacker. However,
this depends on the type of sensor, and the consequences vary. If sensor data are
encrypted using a scheme that ensures forward secrecy, the session keys will not
be compromised if the attacker obtains the long-term key. Forward secrecy will be
discussed further in Chapter 3.

This project will consider attacks targeting packets sent over the air through the
cloud until it reaches the end-user. Such attacks are packet sniffing, MITM attacks,
and spoofing. The mapping of potential risks underlines the importance of finding
the answer to the question; how can the end-user trust the sensor data received? One
must create a system that prevents attackers and unauthorized users from accessing
or tampering with sensor data.

2.2. RESOURCE LIMITATIONS IN IOT SENSORS 9

2.2 Resource limitations in IoT sensors

To ensure that the data is protected against both passive and active threats, it
should be encrypted and authenticated. Implementing cryptographic algorithms is a
challenging task for IoT devices because of their resource limitations. The capabilities
of a sensor depend on the MCU. The microcontroller determines capabilities such as
cryptographic operations, performance, and memory. Therefore, possible challenges
with encryption schemes in IoT devices can be limited computational power, little
random access memory (RAM) and read-only memory (ROM), low battery power,
real-time response, and low bandwidth [TRK20] [SSM+17]. Not all sensors even
have an internal clock, which can be a challenge in cryptography as the sensors
cannot relate to time. The challenges exist because IoT sensors are physically small,
low-power technologies with limited resources. The smaller the sensor, the lower
the computational power, the smaller battery, and thus less extensive support for
advanced encryption schemes. The list below states possible challenges for constrained
devices such as IoT sensors.

– Limited computational power: Many IoT devices struggle with performance
as they use low-speed processors. Therefore it is hard to perform expensive
operations in terms of computation power.

– Limited memory space: Because of resource limitations, tiny devices have
limited memory storage. Limited memory makes it hard to run applications
and computations that require a lot of memory storage.

– Low battery power: IoT devices are low-power devices with limited battery
life. The devices must save as much energy as possible and only be active when
necessary. One should therefore avoid performing operations that require a lot
of battery power.

– Real-time response: IoT sensors that serve real-time applications must
respond quickly. Then it is essential to increase the throughput and lower the
delay. One should therefore avoid time-consuming operations.

– Low bandwidth: Sometimes, IoT networks operate in an area of low band-
width. Therefore, one must consider the data size to ensure that the most
important data gets through.

Ensuring sufficient security for IoT devices is challenging because of several
conflicting requirements. Achieving good performance, attaining a battery life of
many years, and reaching a sufficient security level requires different measures and
implementations. One should consider this while also contemplating the tradeoff
between security, cost, and performance. An IoT sensor with adequate security

10 2. BACKGROUND AND RELATED WORK

Security

Physical

Algorithmic

Performance

Throughput

Energy

Low Cost

Area

Power

Software security
functions

m
ore

less

Ha
rd

wa
re

se
cu

rit
y

fu
nc

tio
ns

m
or

e

les
s

Type of architecture
µC µP

Figure 2.1: Tradeoff in cryptography for IoT sensors.

implementation might withstand attacks but can sometimes be too expensive in cost
and performance. In contrast, a cheap sensor with a weak security implementation
could have great performance metrics but are vulnerable to attacks. Figure 2.1
illustrates tradeoffs for IoT sensors in terms of cost, security, and performance.
The type of architecture distinguishes between µC and µP. The first is based on a
microcontroller (µC) with peripherals on the same chip. The latter architecture uses
a microprocessor (µP), a more powerful CPU with external peripherals.

When considering a tradeoff between security, cost, and performance in resource-
constrained devices, one should consider the following properties according to National
Institute of Security and Technology (NIST) [MBTM17]:

Physical properties:

– Area: The physical area that is necessary to implement cryptographic primitives.
One considers both the complexity and the size of digital electronic circuits. It
is desired to have a low physical area.

– Memory: The amount of ROM and RAM that is needed. The lower the memory
consumption, the better.

– Implementation: Algorithms can be implemented on software, hardware, or
both. The best approach depends on the use case, resources available, the
desired functionality, and what characteristics to focus on.

2.3. CURRENT RESEARCH 11

– Energy: The energy consumption in digital circuits should be as low as possible.

Performance properties:

– Latency: The latency is measured in seconds and should be minimal.

– Throughput: The amount of data processed per clock cycle or time unit. The
throughput should be as high as possible.

– Power: The power consumption defines how much power is needed to use the
circuit and perform operations. This property should be as low as possible.

Security properties:

– Minimum security strength: One must consider the number of operations
required to break the algorithm. The security strength depends on the algorithm
and cryptographic key.

– Attack models: Such cryptanalysis considers different cryptographic attack
scenarios where the attacker has various system access. One should consider
attack models such as known-plaintext and chosen-ciphertext attacks.

– Side-channel resistance requirements: As mentioned in Section 2.1, the attacker
can extract secrets from devices in side-channel attacks. One should address
and prevent as many side-channel attacks as possible by implementing sufficient
physical, technological, and algorithmic security.

The challenge is to find cryptographic schemes that require low computational
power and consume the least possible energy while simultaneously providing sufficient
security with acceptable performance. Such issues are researched extensively in the
cryptographic community.

2.3 Current research

The rapid growth of the IoT devices has made it hard to keep up with security. There
is a need to develop new cryptographic algorithms to ensure effective end-to-end
communication in general IoT communication. The algorithms must be suitable for
low-power devices and fulfill all security requirements. Research regards both new
algorithms and adaptations of existing algorithms. The research that focuses on
cryptography for constrained devices with big limitations is lightweight cryptography
[BP17]. The term lightweight has many meanings and may differ when looking at

12 2. BACKGROUND AND RELATED WORK

algorithms with different properties designed for different environments. However,
the main focus of lightweight cryptography is that such encryption methods feature
low computational complexity.

2.3.1 Lightweight cryptography

The problem today is a lack of standardized lightweight encryption schemes designed
for IoT sensors. Although some regular algorithms can perform lightweight operations,
there is a need for dedicated lightweight algorithms. Most cryptographic algorithms
are designed for desktop and server settings, not resource-constrained environments.
There is a lot of research and suggestions regarding lightweight algorithms. Still, it
is hard to know what schemes are secure and how interoperable they are in different
protocols and systems. Many divergent use cases, environments, constraints, and
algorithms make lightweight cryptography hard. This section will look at various
aspects of lightweight cryptography and outline today’s state-of-the-art.

One can implement lightweight cryptography in both hardware and software. The
implementation of cryptographic primitives relies on different metrics. Hardware
implementations depend on throughput, latency, memory, and power consumption.
Software implementations depend on code size, throughput, and memory (RAM)
consumption [BP17]. Cryptographic algorithms run on the MCU in a software
implementation, while some operations can be hardcoded in the circuit in hardware
implementation. Generally, cryptography implemented on hardware is the best
approach for performance.

There are several categories of lightweight cryptography. This thesis will divide
lightweight cryptography into two sub-categories: lightweight implementation of
regular algorithms and dedicated lightweight algorithms. Constrained devices today
often use regular standardized algorithms if they support lightweight implementa-
tions. AES is an example of this. Standard algorithms that support lightweight
implementations will be discussed later in this chapter. Although AES is one of
the most used approaches today, dedicated lightweight algorithms are needed. Both
organizations and researchers are currently working towards standardizing more
lightweight algorithms.

The start of lightweight cryptography

Lightweight cryptography is not a new phenomenon but has been researched for
many years. Several algorithms designed in the 80s and 90s were lightweight and
aimed at devices with low computational power, such as cell phones, car keys, and
satellite phones. A5/1 and A5/2 were stream ciphers used in the cellular phone
standard GSM. They were considered lightweight ciphers but are now broken. IoT
devices are usually more constrained today than cell phones and require even lighter

2.3. CURRENT RESEARCH 13

cryptography. Nevertheless, even though devices have become smaller, the sensors
and MCUs have improved, and their capabilities have evolved due to Moore’s law
[ML16].

In early cryptography, it was normal to keep the algorithms secret. However,
the algorithms were often leaked or reversed, which led to people breaking them.
Today, one no longer keeps the algorithms secret as cryptography usually follows
Kerckhoffs’s principle. This principle says that the system should still be secure if
the public knows everything about a cryptosystem except the key [Sma16]. This
approach has introduced interoperability and created a more open cryptographic
community resulting in many cryptographic proposals and standards.

2.3.2 Lightweight cryptography today

In the last years, academics have published many lightweight algorithms. There
are lightweight encryption schemes proposed both for cloud computing and IoT
devices. Some suggestions for IoT environments are a lightweight attribute-based
encryption scheme [YCT15], Hybrid Lightweight Algorithm (HLA) [SSM+17], and
lightweight encryption for smart homes using identity-based encryption [SBSD16].
Many proposals introduce advantages, but some also bring disadvantages, such as
poor scalability or the introduction of new attacks.

There are a lot of public institutions that work on lightweight cryptography.
ISO/IEC has published standards that involve lightweight cryptography. The ISO-
standard ISO/IEC 29192-2:2019 includes algorithms such as PRESENT and CLE-
FIA [ISO29192]. PRESENT is an ultra-lightweight block cipher developed based
on hardware optimization, designed for low-power devices where chip efficiency
is needed [BKL+07]. However, there are several attacks introduced on the ultra-
lightweight block cipher [BN14] [Lee14]. Sony developed CLEFIA intended for digital
rights management, such as advanced copyright protection [Sony]. Additionally,
Cryptography Research and Evaluation Committees (CRYPTREC), started by the
Japanese Government, established a Lightweight Cryptography Working Group in
2013 [Gro+17]. The group aims to help users make technical decisions and select
appropriate lightweight algorithms in constrained environments. CRYPTREC aims
to recommend standardized algorithms, not to standardize lightweight algorithms
formally.

In 2013, the National Security Agency (NSA) released two lightweight block
ciphers called Simon and Speck. The purpose of the algorithms was to secure
constrained environments [BSS+13]. National Security Systems (NSS) use Simon
and Speck in highly constrained environments where using AES-256 is not possible
or supported [NSAcyber]. In 2014 NSA attempted standardizing Simon and Speck,
but ISO did not approve it due to uncertainty about whether it was trustworthy.

14 2. BACKGROUND AND RELATED WORK

NSA refused to answer some questions regarding the algorithms. It was speculations
that the NSA knew about weaknesses and exploitations that they kept secret from
the public. NSA later put the algorithms in the public domain and published over
70 papers to conclude that the algorithms are secure [RDJ+17] [NSAcyber]. In 2018,
Simon and Speck were included in the ISO standards ISO/IEC 29167-21 [ISO29167-
21] and ISO/IEC 29167-22 [ISO29167-22]. Both are air interface standards for radio
frequency identification (RFID) devices.

There are many literature proposals regarding lightweight cryptography, but
not many systems use lightweight algorithms today. Some common cryptographic
standards have use cases overlapping with use cases of lightweight cryptography. NIST
has approved two cryptographic standards for block ciphers in resource-constrained
environments: AES and Triple Data Encryption Standard (3DES) [MBSM16]. NIST
is working on a deprecation timeline for 3DES, where they recommend that all users
migrate to AES [CSRC17]. Therefore, one should avoid 3DES. Despite much research
on new lightweight algorithms, AES is still the popular choice for constrained devices.
The algorithm uses operations seen as lightweight and is therefore suitable for IoT
sensors. AES is standardized by ISO and recommended by several public institutions
such as NIST, CRYPTREC, and NESSIE (New European Schemes for Signatures,
Integrity, and Encryption). Protocols such as Bluetooth, Wi-Fi Protected Access
2 (WPA2), and Zigbee (IEEE 802.15.4) use AES frequently [IEE20][LDS09][BP17].
AES is standardized for use in most areas because of its versatility, as many platforms
and different use cases support the algorithm. Therefore, many implementations
are currently building on the algorithm in constrained environments rather than
implementing a newly proposed algorithm.

The work towards standardizing more lightweight cryptography

Work is being done to create and standardize lightweight block ciphers with smaller
block sizes, smaller key sizes, simpler rounds, simpler key schedules, and minimal
implementations [SSM+17]. NIST is currently working on finding lightweight algo-
rithms suitable for constrained environments such as sensor networks. They examine
both new AEAD schemes and new hashing schemes. In March 2017, NIST published
a report on lightweight cryptography where they stated the following [MBSM16]:

The landscape for lightweight cryptography is moving so quickly that a
standard produced using the competition model is likely to be outdated prior
to standardization. Therefore, the most suitable approach for lightweight
cryptography, in terms of timeline and project goals, is to develop new
recommendations using an open call for proposals to standardize algo-
rithms.

2.4. CRYPTOGRAPHY 15

According to the mentioned report, NIST wants to create a portfolio of lightweight
algorithms and modes suitable for use in constrained devices. The organization
intends to bind algorithms to profiles, where each profile contains metric ranges and
algorithms goals. Such profiles would simplify implementation as different algorithms
correspond to profiles that describe various characteristics. NIST has been working
with a selection process of lightweight algorithms for the last few years. The agency
has been through 2 rounds of reviews and announced in 2021 [TMC+21] that it is
starting on the final round with ten finalists remaining.

When it comes to lightweight cryptography today, one can easily be confused.
There are many literature proposals, but none are currently widely used. One should
not implement a scheme that is not proven secure by trusted authorities or lacks
trial or research. As there are no clear recommendations or standards in lightweight
cryptography that stand out and are tailored to the problem stated in this report, it
is reasonable to look at the lightweight implementation of regular algorithms. This is
because they are more widespread than other proposed lightweight schemes, and the
world’s leading organizations and institutions focusing on cryptography recommend
such algorithms.

2.4 Cryptography

This section will look at standardized algorithms widely used in cryptosystems today.
The aim is to filtrate out the algorithms that are not suitable for constrained devices
and examine those that could meet the integrity and confidentiality requirements
stated in Section 1.2. It is important to get an overview of the cryptographic
algorithms to answer the research questions this thesis addresses.

In modern cryptography, one distinguishes between asymmetric-key cryptography
and symmetric-key cryptography. Symmetric-key cryptography uses one shared key
to encrypt and decrypt messages, while entities in asymmetric-key cryptography
possess one public and one private key. Asymmetric-key cryptography is also known
as public-key cryptography. This section will look at both mentioned types of systems.

2.4.1 Symmetric-key cryptography

In symmetric-key cryptography, the sender and receiver must possess the same key.
The reason is that the same key both encrypts and decrypts a message. Symmetric-
key algorithms achieve confidentiality, which makes the private data unreadable
to attackers. There are two ways to implement symmetric-key algorithms: stream
cipher or block cipher. The first one processes the data bit by bit, while the second
process data blocks. Both techniques will be described, but firstly the cryptographic
term nonce will be explained, as symmetric cryptography diligently uses nonces.

16 2. BACKGROUND AND RELATED WORK

Nonce The nonce (N) is a unique, random, or pseudorandom number. The nonce
is short for "number used once" assigned to the data to be protected. A nonce is
needed as it introduces randomness and prevents replay attacks. A nonce must
only be used once per key. Otherwise, attackers can, at worst, replay, decrypt or
spoof messages [VP17] [CWE-323]. If systems allow for nonce reuse, an attacker
could replay different messages because the messages are valid more than once.
Consequently, an attacker can intercept communication between two parties and
spoof messages by sending the messages masqueraded as one of the valid users.
Cryptographic algorithms often use the nonce as an Initialization Vector (IV) in
the initial state. If algorithms use the same nonce and key on several messages, the
attacker can decrypt a message in the worst case. Let us assume a stream cipher
that encrypts two plaintexts, P1 and P2, into C1 and C2 using the same K and N .
The encryption performs the following operation: C = (P ⊕ (K, N)). The symbol ⊕
represents the logical operation XOR (exclusive OR). Then, an attacker can perform
the following computation: C1 ⊕ C2 = (P1 ⊕ (K, N)) ⊕ (P2 ⊕ (K, N)) = P1 ⊕ P2.
As the encryption uses the same nonce, there is no randomness in the encryption
when using the same key. The result of XOR-ing two ciphertexts is the same as
XOR-ing two plaintexts since XOR-ing K and N with oneself becomes the same. If
the attacker in the example knows P1, it is possible to disclose other plaintexts such
as P2.

Stream ciphers

A stream cipher can encrypt and decrypt a plaintext by XOR-ing the plaintext with
a pseudorandom bit-stream, called keystream, bit by bit. Pseudorandom defines
numbers generated by a deterministic algorithm but look statistically random. The
definition of a stream cipher is:

Pi ⊕KSi = Ci (2.1)

The Pi is the i-th bit of the plaintext, the KSi represents the i-th bit of the
pseudorandom keystream, and Ci is the i-th bit of the ciphertext. Of the many
stream ciphers published throughout the years, ChaCha20 [LCM+16] has become
a much-used stream cipher in known protocols such as Transport Layer Security
(TLS).

ChaCha20 is a stream cipher that generates a keystream block and XOR it with
the plaintext to generate the ciphertext. In order to understand the algorithm, we
first have to look at how it generates the keystream. ChaCha20 calls a function
referred to as the ChaCha20 block function. This function takes a key (K), nonce
(N), and a block counter (ctr) parameter as input and outputs 64 pseudorandom
bytes, as illustrated below:

ChaCha20_block_function(K, N, ctr) −→ 64 byte block of random bytes

2.4. CRYPTOGRAPHY 17

c c c c
k k k k
k k k k

ctr n n n

Figure 2.2: Illustration of the initial ChaCha20 state.

Table 2.1: Operations of a ChaCha20 quarter round.

a + b d⊕ a d <<< 16
c + d b⊕ c b <<< 12
a + b d⊕ a d <<< 8
c + d b⊕ c b <<< 7

The block function performs several quarter rounds on the ChaCha state. A ChaCha20
state has 16 values of 32 bits represented in a 4 × 4 matrix. The 16 values of the
initial ChaCha20 state come from the following: the four first values are constants
(c), the next eight comes from the key (k), the thirteenth value is the block counter
(ctr), and the last three are from the nonce (n). Figure 2.2 illustrates the initial
ChaCha20 state presented as a matrix.

A quarter round operates on 4 of the 16 values with operations involving addition,
XOR, and bit rotation. Each value in the matrix will go through 20 rounds; hence
the name ChaCha20. This means that 80 quarter rounds are performed in total
(each round operates on four integers, and there are 16 integers, 20 · 4 = 80). Figure
2.3 illustrates a ChaCha quarter round, where ai, bi, ci, and di is the four 32-bit
values. The operations in the figure is ⊞ = addition, ⊕ = XOR, and <<< = bit
rotation to the left. Table 2.1 lists all operations performed in a quarter round.

When the ChaCha20 block function outputs a 64-byte string of pseudorandom
values, we have a key block that can be XOR-ed with a plaintext block to create the
ciphertext. Key blocks can be concatenated into a keystream if the block function
is called several times and the counter parameter ctr increases every time. The
ChaCha20 encryption function performs the operation described in Equation 2.1.

Block ciphers

Block ciphers are suitable and much used for IoT devices [WDH+19]. Block ciphers
encrypt and decrypt data in blocks of fixed lengths. As mentioned earlier, the most
used and approved 128-bit block cipher is AES. The algorithm works on a 4x4 array
of bytes, performing four steps in 10-14 rounds on the bytes of data. The number of
rounds depends on the size of the key. The four steps are XOR-ing the output with a

18 2. BACKGROUND AND RELATED WORK

ai bi ci di

≪ 16

≪ 12

≪ 8

≪ 7

ai+1 bi+1 ci+1 di+1

Figure 2.3: A ChaCha quarter round.

byte of the round key from the last round (AK), substitution of bytes (SB), shifting
rows (SR), and mixing columns (MC). Figure 2.4 shows the four steps in an AES
round. The widespread usage of the algorithm is because of the low-computational
operations and its hardware support in processors. A hardware implementation of
AES has performance advantages in terms of power and calculation [HH18], which
makes it suitable for constrained devices such as IoT sensors. There are also other
block ciphers that might be an alternative. Such block ciphers are GIFT-COFB,
Romulus, and TinyJAMBU. They are all qualified for the last round of the NIST
lightweight cryptography competition [TMC+21].

The last paragraph discussed the advantages of AES. However, one important
detail is that the encryption only takes a single block at a time. This restriction
reduces the flexibility, as all messages must be of the same size. Also, the same
plaintext will always lead to the same ciphertext for the same key if someone maps
plaintexts and ciphertexts together. The use of block cipher modes of operation will
avoid such problems. Such modes are used together with a block cipher to ensure
confidentiality, integrity, or both. Modes of operation can operate on several blocks

2.4. CRYPTOGRAPHY 19

Round function f

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

wi−1 xi yi zi wi

Figure 2.4: The round function in AES.

Table 2.2: Block cipher modes of operation in symmetric-key encryption.

Mode of
operation

Confidentiality Integrity Status today

ECB X Not secure
CBC X Dropped by TLS 1.3
CTR X Underlying algorithm used by

other schemes
CCM X X Used in TLS 1.2 and 1.3
GCM X X Used in TLS 1.2 and 1.3

in series and introduce a nonce to make identical messages distinguishable. Using
block cipher modes of operation is therefore preferred. There exist a lot of different
modes. Some of the most known are Electronic Code Book (ECB), CBC, CTR,
CCM, and GCM. Table 2.2 gives a short overview of the mentioned modes.

CBC mode is a classical encryption mode much used in block ciphers. Figure 2.5
shows how CBC encryption works. Plaintext P is divided into blocks P0, P1, ..., Pn,
which is encrypted, and XOR-ed with the previous encrypted block. The result is
an unreadable ciphertext. The mode of operation uses a unique random value, IV,
in the first block to make every message unique. Known protocols such as TLS 1.2
use CBC mode encryption. Additionally, the authentication scheme CBC-MAC uses
CBC mode to ensure integrity. This scheme generates an authentication tag based
on CBC encryption. Section 2.5 will discuss Cipher-based Message Authentication
Code (CMAC), as the section will look at authentication schemes.

Another much-used block cipher mode is the CTR mode. The block cipher mode
of operation is a synchronized stream cipher. CTR generates a keystream by using a
nonce (N) and a counter (Ctr) that is increased for every operation. As the counter is
incremental, the sender and receiver must be synchronized and use the same counter

20 2. BACKGROUND AND RELATED WORK

Enc

P0

k

C0

Enc

P1

k

C1

Enc

P2

k

C2

IV

· · · · · · Enc

Pn

k

Cn

· · · · · · Enc

Pn

k

Cn

Figure 2.5: CBC mode encryption.

Enc

Nonce, Ctr

C0

k

P0

Enc

Nonce, Ctr

C1

k

P1

Enc

Nonce, Ctr

C2

k

P2

· · · · · · Enc

Nonce, Ctr

Cn

k

Pn

Figure 2.6: CTR mode encryption.

parameter. The keystream is generated as follows: KS = Enc(K, N || Ctr). The
symbol || means joining strings end-to-end, denoted as concatenation. Further, the
encryption is performed by XOR-ing the keystream and the plaintext: C = KS ⊕ P .
The mode allows for encryption and decryption in parallel, and it is possible to
decrypt specific plaintext blocks without decrypting the whole stream, which can be a
useful feature. Figure 2.6 illustrates the CTR mode encryption with plaintext blocks
P0, P1, ...Pn and ciphertext blocks C0, C1, ...Cn. CTR mode is not much used as a
stand-alone encryption scheme, but as an underlying algorithm used in authenticated
encryption modes such as CCM and GCM. These modes ensure both integrity and
confidentiality. They are both approved by authorities and defined for established
cryptographic protocols like TLS 1.2 and 1.3. This thesis will investigate some of
these block ciphers further in Chapter 4.

Block ciphers and stream ciphers are reasonable approaches to protect sensor data.
However, there are some challenges regarding key management. Since symmetric-
key cryptography requires both parties to possess the same key, there is a need to

2.4. CRYPTOGRAPHY 21

implement a secure solution where the sender and receiver exchange or agree upon
using the same key.

2.4.2 Public-key (asymmetric-key) cryptography

In public-key cryptography, each entity possesses two cryptographic keys. One key
is publicly available for everyone, referred to as the public key. The second key
is kept secret for everyone except the key owner and is known as the private key.
Typical encryption encrypts data using the receiver’s public key. Then, the only
person who can decrypt the following ciphertext is the entity owning the private key
corresponding to the public key used. Therefore, the receiver is the only person that
can obtain the plaintext.

In addition to encryption, public-key cryptography allows for digital signatures and
key management. For the key management, parties can use public-key cryptography
to agree upon a shared key for symmetric-key encryption. The sender and receiver can
securely agree upon a symmetric key over an insecure channel using their public and
private keys. Digital signatures can achieve message integrity by signing a message
with one’s private key. The signature allows the receiver to verify the message using
the sender’s public key. Public Key Infrastructure (PKI) is a typical key management
system in public-key encryption. The infrastructure uses digital certificates and
signatures for authentication and integrity. However, such an infrastructure is too
costly for IoT sensors.

Many public-key algorithms are pretty divergent as they depend on different
mathematical problems. One can divide public-key cryptography into three categories:
finite-field, integer factorization, and elliptic curve.

Finite-Field Cryptography (FFC) Algorithms using finite-field cryptography
are Digital Signature Algorithm (DSA) and Diffie-Hellman (DH). Finite field cryptog-
raphy builds on mathematical problems in a finite field. A finite field means a finite
number of elements in a set where subtraction, addition, division, and multiplication
are defined. DH and DSA are based on modular exponentiation and the discrete
logarithm problem. DH key exchange is a key agreement method that allows parties
to agree on cryptographic keys over an insecure channel. The use of DSA ensures
authentication and integrity to messages in public-key cryptography.

Integer Factorization Cryptography (IFC) The Rivest-Shamir-Adleman (RSA)
algorithm is a much-used algorithm based on the integer factorization problem. The
sender in RSA encryption can generate a public key based on two large prime numbers.
The key is available to everyone, but the two prime numbers are the secret. The
public key encrypts messages, and only receivers that know the large prime numbers

22 2. BACKGROUND AND RELATED WORK

Table 2.3: The use of public-key cryptography.

Algorithm Data encryption
(confidentiality)

Digital signature
(integrity)

Key exchange
protocol

DH X
DSA X
RSA X X X
ECDH X
ECDSA X

can decrypt the message. Without knowing the secret prime numbers, one must
factor the product of the two prime numbers to obtain the secret numbers. As the
prime numbers are very large, this is not possible today. In addition to encrypting
data, the algorithm can transmit shared keys between parties using symmetric-key
cryptography.

Elliptic-Curve Cryptography (ECC) Elliptic Curve Cryptography uses elliptic
curves, an algebraic structure over finite fields. Two known algorithms based on
the algebraic structure are Elliptic Curve Digital Signature Algorithm (ECDSA)
and Elliptic Curve Diffie-Hellman (ECDH). The algorithms are variants of the DSA
and DH algorithms, using only elliptic curve cryptography instead. ECDSA is a
digital signature algorithm used for integrity and authentication, while ECDH is a
key agreement protocol where parties can agree upon a shared secret key.

The algorithms in asymmetric cryptography are used for different purposes. Table
2.3 summarizes the algorithms and their use. There is only one algorithm for data
encryption of the mentioned algorithms in public-key cryptography: RSA. However,
RSA can be quite slow. Therefore, one favors using the algorithm for key exchange,
not data encryption. Another factor to take into account is the key size of RSA. For
instance, the algorithm requires a key size of 3072 bits for the same security level as
AES gives for a key of 128 bits. Table 2.4 shows what key sizes different algorithms
need for equivalent security.

Table 2.4: Key size equivalency in symmetric and asymmetric algorithms.

AES DSA & DH & RSA ECDSA & ECDH
128 bits 3072 bits 256 bits
192 bits 7680 bits 384 bits
256 bits 15360 bits 512 bits

As the table illustrates, the key size of public-key cryptography algorithms is
very large compared to symmetric-key cryptography. Many public-key algorithms

2.5. MESSAGE AUTHENTICATION CODES (MACS) 23

introduce too big key sizes and complexity for resource-constrained devices like IoT
sensors. This means that algorithms such as RSA are too complex for IoT sensors.
The table shows that ECC uses key sizes that are more suitable for constrained
devices. For instance, a 256 bits key provides adequate security as AES-128. Thus,
ECC algorithms could be an alternative.

One important feature of key exchange protocols in public-key cryptography is
forward secrecy. This feature ensures that keys used for sessions agreed upon with
a key exchange protocol will not be compromised if the private key used in key
exchanges is compromised. Only ephemeral DH and ECDH implementations provide
forward secrecy of the above-mentioned key exchange protocols. The keys must be
ephemeral, meaning that keys are generated for each session and discarded when the
entities end the session. Chapter 3 will discuss forward secrecy and key exchange
protocols in more detail.

Public-key cryptography is under the threat of quantum computers in the future.
As mentioned earlier, the public key algorithm depends on different mathematical
problems. Today the problems are too hard to solve, but if quantum machines become
a reality, they will be able to perform calculations that could solve the mathematical
problems [PQC]. NIST is currently working towards standardizing post-quantum
cryptography because large-scale quantum computers will break many of the current
cryptosystems.

The obvious choice to achieve confidentiality of sensor data is using symmetric-key
cryptography. AES with a block cipher mode of operation and the ChaCha20 stream
cipher are suitable approaches. Chapter 4 will research the symmetric encryption
algorithms that allow for authenticated encryption in more detail. Since symmetric-
key encryption depends on a shared key between the involved parties, it is reasonable
to look at public-key cryptography for the key exchange. Chapter 3 will discuss the
key management and distribution.

2.5 Message Authentication Codes (MACs)

The previous section looked at algorithms that achieve confidentiality, and now it
is time to look at schemes that ensure data integrity. When sending sensor data
over networks, some properties should be in place to avoid malicious actions from
attackers. One must ensure that messages have not been tampered with during
transmissions and verify what entity has sent a message. Data integrity fulfills these
properties and can be implemented using a MAC, AEAD, or digital signature. This
section will look at how MACs ensure data integrity.

A MAC is a function with two inputs, a key (K) and a message (M), where

24 2. BACKGROUND AND RELATED WORK

the output is a MAC tag (T). The sender’s authentication tag is produced in the
encryption phase and added to the ciphertext. The receiver then recomputes this
tag and compares it with the one received from the sender. If the recomputed tag is
the same as the one received, the receiver knows that the content of the message is
not modified. The equation below illustrates the generation of such a tag:

MAC(K, M) −→ T

This section will look at two different ways to generate a MAC tag, using a hashing
algorithm or a block cipher mode of operation. HMAC, CBC-MAC, and Poly1305
will be discussed. They are suitable approaches for IoT sensors because block ciphers
and hashing algorithms have a low cost in terms of computational power.

2.5.1 Hash-based Message Authentication Code (HMAC)

HMAC is a much-used MAC construction based on an iterated hash function. The
hash function uses a corresponding key and message as input and outputs a hash
known as the authentication tag. The hash can be of different sizes depending on the
hashing algorithm used. According to Request For Comments (RFC) 2104 [KBC97],
the definition of the HMAC function is as illustrated below:

HMAC(K, M) = Hash
(

(K ⊕ opad) || Hash(K ⊕ ipad || M)
)
−→ MAC tag

The K is the key, and M is the message that is getting authenticated. The opad
and ipad are two fixed strings. They are abbreviations for outer and inner padding.
The two strings are XOR-ed with K to derive two different versions of the key that
are computational independent. Hash is the cryptographic hash function. Figure 2.7
shows a visual presentation of the HMAC algorithm.

The HMAC algorithm is often referred to as HMAC-X because there are different
hash functions one can use to achieve the authentication tag. Some of these are
MD5, SHA-1, SHA-2, and SHA-3. However, not all are recommended for use today.
Hash functions such as MD5 and SHA-1 are deprecated because of weaknesses
[Tur11] [BR18]. The algorithms are insecure because there exist collisions of hash
computations [SBK+17] that attackers can use to forge MAC tags and digital
signatures. For HMAC to be secure, the hash function must have strong unforgeability.
It should be computationally impossible for attackers to find a new message-tag pair
after a chosen-message attack [BN00]. Such an attack is where an adversary can
obtain pairs of a message and MAC, where the MAC is valid for the message. A
valid user has not created the pair in the chosen-message attack, but it can allow the
adversary to retrieve information and learn about the MAC system.

2.5. MESSAGE AUTHENTICATION CODES (MACS) 25

MK

ipad

H
K

opad

H

HMACK(M)

Figure 2.7: Illustration of HMAC.

2.5.2 CBC-MAC and CMAC

CMAC is a MAC based on the symmetric-key block cipher CBC mode. As described
in Section 2.4.1, CBC mode encrypts chains of plaintext blocks, where each block
depends on the previous encrypted block. Since the encryption of the blocks is
interconnected, a change in one random bit in one of the plaintext blocks will change
the output of the last encrypted block, Mn. This feature is the basis of the MAC
as the last encrypted block is used as the authentication tag. Figure 2.8 shows how
CBC calculates a MAC tag for a message M. The IV in CBC-MAC is always set to
zero, IV = 0.

Today, CBC-MAC is only secure when used in CCM mode. NIST recommends
not to use CBC-MAC as an authentication mode outside the CCM context [Dwo04].
The reason is that when used on variable-length messages, it is vulnerable to length
extension attacks [Nan09]. However, CMAC is a much-used authentication scheme
based on CBC-MAC that is safe to use independently. The CMAC builds on CBC-
MAC but adds additional processing at the end of CBC-MAC, on message block Mn.
CMAC derives two subkeys (K1 and K2) from the main key and uses the subkeys to

26 2. BACKGROUND AND RELATED WORK

Mn

EK

MAC tag

· · · · · ·

M2

EK

M1

EK

M0

EK

IV

Figure 2.8: Illustration of CBC-MAC.

encrypt Mn into M ′
n:

M ′
n =

{
K1 ⊕Mn if Mn is a complete block
K2 ⊕ (Mn||10...0) if Mn is not a complete block

The computation of M ′
n makes the authentication scheme safe on all variable-

length messages. Therefore, CMAC would ensure the integrity of messages. The
CMAC is also known as OMAC1. OMAC1 is a MAC proposal equivalent to CMAC,
but CMAC is the cipher-based MAC specified and approved by NIST [Dwo16].

2.5.3 Poly1305

There are two versions of the Poly1305 MAC: one published by Bernstein requiring
AES [Ber05] and one standardized in RFC 8439 Poly1305 [NL18]. ChaCha20 encryp-
tion is usually combined with Poly1305 rather than AES encryption in authenticated
encryption. Additionally, the Poly1305 version described in RFC 8439 is used in
known protocols such as TLS. Because of this, this thesis will focus on the latter,
the variant standardized by Internet Engineering Task Force (IETF). Poly1305 is a
one-time authenticator that uses a one-time key to produce a tag based on a message.
The authenticator takes a 256-bit one-time key Kotk and message M as input and
outputs a 128-bit MAC tag T:

Poly1305(Kotk, M) −→ T

The MAC scheme divides the message into 16-bytes blocks handled as coefficients
in polynomial operations. The one-time key should be generated pseudorandomly
and divided into two parts: Kotk = Kr, Ks, where each part is 128 bits, and the
pair (Kr, Ks) is unique. The algorithm clamps Kr, meaning that some fixed bits

2.5. MESSAGE AUTHENTICATION CODES (MACS) 27

of Kr are set to zero. The MAC scheme evaluates the polynomial at the value of
the clamped Kr. The algorithm sorts the values Kr and Ks in little-endian order in
the polynomial computations. This sorting means that the least significant value
is placed first in the sequence. The calculations are performed modulo 2130 − 5,
where an accumulator calculates the sum of the polynomial evaluations. Lastly, the
accumulator adds the value of Ks. The authentication tag is the 128 least significant
bits, sorted in little-endian order, of the accumulator result.

This chapter aimed to look at the background and related work regarding the
security of IoT sensors. We have seen that IoT sensors are constrained devices
with many limitations, such as limited memory and low computational power. As
the cloud-IoT architecture consists of many elements, the attack surface is quite
large, and one must prevent attacks such as MITM, packet sniffing, and side-channel
attacks. Lightweight cryptography is the best approach to achieving integrity and
confidentiality for constrained devices. Since there is a lack of standardizations in
this field, today’s best practice is to look at lightweight implementations of current
regular algorithms. This chapter has discussed different cryptographic primitives
and their use, and as evidenced, symmetric-key algorithms and MAC functions are a
good approach to secure sensor data.

Chapter3Key Management

This chapter is about key management. The thesis aims at securing sensor data with
symmetric-key cryptography. Such cryptography can only be accomplished if the
parties involved obtain a shared secret, a symmetric key. The key must be kept secret
from everyone except the sender and receiver of the encrypted message. Therefore
the two parties must agree upon a shared key to use in the communication. The key
agreement must be done over a secure channel because an adversary might eavesdrop
on the communication channel. For parties to obtain cryptographic keys, one must
consider key management. Key management is about managing the cryptographic
keys used in the system. It involves the generation, destruction, exchange, replace-
ment, and storage of keys. This chapter will research key management and discuss
relevant perspectives in the scope of this thesis to learn how key management affects
possible solutions. This chapter will firstly examine cryptographic keys and their
lifecycle. Further, sections will look at key generation and distribution. The different
approaches will be assessed and discussed concerning the cloud-IoT architecture.

3.1 Cryptographic keys

There exist several different keys for diverse purposes. In SP 800-57 [BD15], a
recommendation for key management, NIST specifies 19 different key types. In
general, one distinguishes between public, private, and symmetric keys. The keys are
designated for different use, such as key-wrapping, signatures, key transport, data
encryption, key agreement, and authentication.

One can divide cryptographic keys into two categories; session keys and long-term
keys. Long-term keys are static and used over a long period. Long-term keys can
derive or protect the distribution of session keys. Long-term keys are commonly
public and private key pairs in asymmetric cryptography but can also be symmetric.
Session keys are derived for a session and used in a shorter period. Session keys are
relevant for protecting the session between a sensor and the end-user. As session

29

30 3. KEY MANAGEMENT

keys preserve the secure communication between two entities, the keys are usually
symmetric.

The security of long-term keys is crucial. If a long-term key gets compromised, an
attacker can sometimes behave like the key owner and compromise previously used
session keys, resulting in an attacker decrypting all previous communication based on
the long-term key. If a session key is compromised, the consequences are less crucial.
An attacker can decrypt the messages belonging to the key of that session but not
previous sessions. As mentioned in Section 2.4.2, some key agreement protocols have
forward secrecy to protect the long-term keys. This feature ensures that session keys
are not compromised if the long-term key is compromised [PBM00].

Although it is normal to distinguish between long-term and session keys, the
distinction has lately been more fluid. One also has intermediate keys somewhere
between the two categories. For instance, in Section 3.3.3 later in this chapter, the
thesis will discuss a scheme that evolves the long-term key for every session. Is it still
a long-term key if one evolves the key per session? It is not always easy to distinguish
the two categories, and sometimes keys are in the middle. Still, one should be aware
of the distinction and avoid that a key compromise reveals previous sessions.

3.1.1 Key lifecycle

Key management is about handling the lifecycle of cryptographic keys. Strong
algorithms are not good enough unless sufficient key management is in place [BBB+06].
The lifecycle of a key includes the following steps: generation, distribution, storage,
usage, and destruction. This section will look at the different steps in a key lifecycle
and discuss how they affect solutions to this thesis.

Key generation and distribution Key generation is about securely generating
long-term and session keys. Key distribution ensures that parties agree upon and
receive the necessary keys. Authenticated encryption relies on secure key distribution
and that no other party than the ones involved gets hold of the keys. Section 3.2
and 3.3 will look into key generation and distribution.

Key storage In order to maintain secure communication, the distributed keys
should be stored securely. An encryption application should store and manage the
keys. The encryption application can either be the cloud party, the end-user, or a
trusted third party. Keys should be stored such that the cloud party can retrieve the
integrity key and the end-user retrieve a key or keys for integrity and confidentiality.
IoT sensors should only store active session keys because of their limited memory.

3.1. CRYPTOGRAPHIC KEYS 31

Key usage A cryptographic key must have a special purpose, such as signatures,
encryption, or key derivation. Generally, an entity should not use a key for several
cryptographic purposes since it weakens security. However, one considers authenti-
cated encryption as one process that provides several services, which is reasonable. In
addition to specifying its use, a key should have a defined operational crypto period.
According to NIST, the crypto period is when a cryptographic key is authorized for
use [BD15]. The recommended crypto period depends on the key type, costs, and
sensitivity of the data or keys to be protected. Key exchanges are very expensive in
terms of resources for an IoT sensor, and the sensor should maintain a session as long
as possible. A session key can last a sensor’s lifetime if one does not terminate the
session to avoid expensive costs. However, the longer the crypto period of a session
key, the more damage is done if the key is compromised. The choice of the crypto
period is a tradeoff that the actors must consider.

Key destruction A key is archived if it is no longer in operation. When archiving
a key, the key management securely stores the key long-term. An archived key can be
reactivated or used to decrypt previously encrypted data. Because of the constrained
resources, sensors should delete session keys when a session is terminated. The cloud,
end-user, or a third party should keep the keys as long as a party in the system
stores encrypted sensor data, for instance, the cloud storing backup data. At the
end of a key’s lifecycle, key destruction occurs. The destruction happens when the
parties consider a key useless, and there is no interest in keeping the key. That could
be when the cloud deletes the backup data.

According to SP 800-57 [BD15], the key-management lifecycle consists of four
phases: pre-operational phase, operational phase, post-operational phase, and de-
stroyed phase. In the pre-operational phase, keying materials are generated and
distributed. The keys are not ready for cryptographic operations before the op-
erational phase. The IoT sensor stores the keying material on its RAM during
operational use. In this phase, a key is either active or suspended. The active state
protects information in terms of encryption or signatures. A key is suspended if there
is a suspicion of key compromise. It is possible to restore a suspended key to an
active state if the situation is safe. Otherwise, it can be deactivated, compromised, or
destroyed, depending on the situation. When keys no longer are in normal use, they
are in the post-operational phase. Here, the key is either deactivated or compromised.
If the key is deactivated, keying material can still be accessed and used to process
protected info. From the deactivated and compromised states, keys can only end
up in the destroyed phase. In the final state, keys are destroyed and not available
anymore. Figure 3.1 illustrates the four phases and the flow between them. Included
in the phases are the possible states for the cryptographic keys.

The question of who should handle the key management in the cloud-IoT archi-

32 3. KEY MANAGEMENT

Figure 3.1: The four phases of the key-management lifecycle, including key states.

tecture is complex. If the cloud party handles the key management, will the end-user
trust it? Is the end-user itself able to handle the key management, or should a trusted
third-party get involved?

– One solution is that the end-user handles the key management and gives the
cloud party access to necessary key material. The end-user could give the
cloud access to an integrity key that the cloud party can extract. However,
this approach would make the cloud coupled to the solution of the end-user. If
there are many end-users with different solutions, it is not scalable.

– Another solution is that the cloud possesses all keys in the beginning and
sends the necessary keys to the end-users. When the cloud has distributed
the necessary keys to end-users, it could delete the keys it is not supposed to
obtain. This approach is more scalable than the first solution, but it assumes
that the end-user trust the cloud party.

– A third solution is to involve a third party, but this could increase the complexity.

The best solution depends on different scenarios, threats, and tradeoffs. This
thesis will not go into more detail as the main task of this thesis is to focus on
achieving authenticated encryption between the IoT sensors, end-users, and the cloud
party. Cryptographic keys must be generated and distributed securely to meet the
confidentiality and integrity requirements stated in Section 1.2. The scope of this
thesis considers key generation and distribution the most important key management
steps. Therefore, Sections 3.2 and 3.3 will discuss key generation and distribution in
the cloud-IoT architecture.

3.2 Key generation

Cryptographic keys must be generated using an approved method. According to
SP800-57 [Bar20], there are different ways to generate keys:

3.2. KEY GENERATION 33

A: Parties can generate keys by using random number generators. Such generators
output sequences of random bits that can be used as keys.

B: One can derive keys from another secret value, such as a master key or key
derivation key. A Key Derivation Function (KDF) derives and outputs keys.

C: To generate a new shared secret, one can use key agreement techniques like Diffie-
Hellman and MQV [BCK+17]. This approach handles both key generation
and key distribution.

The approaches are suitable for different types of cryptographic keys. Generating
long-term keys is usually done with the method described in approach A. Keys are
generated randomly with random bit generators such as a True Random Number
Generator (TRNG) or Deterministic Random Bit Generator (DRBG) [BK+07]. A
TRNG produces a random sequence of bits based on an unpredictable physical
process, while the DRBG approximates a TRNG using mathematical operations.
The generators output a string of random bits that can be seen as a long-term key.
In the cloud-IoT architecture, trusted authorities should generate the long-term keys
randomly. Long-term keys for IoT sensors could be generated as described in key
generation approach A and assigned during production to ensure a secure generation.
If sensors obtain long-term keys during production, they do not have to implement
and use resources to generate long-term keys. This solution allows the sensors to
possess authenticated long-term keys when booting up.

The approaches in B and C are suitable approaches to generate session keys.
Here, the parties involved agree upon a key that they will use for the current session.
For session keys, key generation and distribution are often combined. Section 3.3
will discuss the two approaches in more detail. The most important thing is that a
trusted key manager or third party is behind the generation when generating keys.
Also, the keys must be of a key strength that gives sufficient protection. The key
strengths vary depending on what cryptographic algorithms systems use.

One can achieve different security strengths for different cryptographic algorithms
and key sizes. Since IoT sensors have constrained resources, it is desired to obtain
sufficient security strength with small keys. Security strength measures the strength
that a cryptographic algorithm achieves and specifies the number of operations
required to break the algorithm. For instance, the AES-192 algorithm provides a
security strength of 192 bits, meaning that it takes an attacker approximately 2192

operations to break the algorithm. Algorithms approved by NIST have estimated
maximum security strengths of 112, 128, 192 or, 256 bits. Some algorithms have
a maximum security strength of 80 bits, but they are not sufficient anymore and
therefore deprecated [Bar20]. Table 3.1 shows the security strength of different
cryptographic algorithms. It is based on the table in section 5.6.1.1 in the NIST

34 3. KEY MANAGEMENT

Table 3.1: Security strength of cryptographic algorithms.

Security
Strength

Symmetric
Key Algo-
rithms

Finite
Field
Cryptog-
raphy

Integer
Factor-
ization
Cryptog-
raphy

Elliptic
Curve
Cryptog-
raphy

Current
status

≤ 80 bits 2DES1

(K=112)
Kpub=1024
Kpri=160

K = 1024 K=160-
223

Not accept-
able

112 bits2 3DES3

(K=168)
Kpub=2048
Kpri=224

K = 2048 K=224-
255

Not recom-
mended

128 bits AES-128
(K=128)

Kpub=3072
Kpri=256

K = 3072 K=256-
383

Sufficient
security

192 bits AES-192
(K=192)

Kpub=7680
Kpri=384

K = 7680 K=384-
511

Sufficient
security

256 bits AES-256,
ChaCha20
(K=256)

Kpub=15360
Kpri=511

K = 15360 K=512+ Sufficient
security

1 Deprecated in 2003 (SP 800-131A) 2 Not acceptable from 2031 (SP 800-131A) 3 Deprecated
through 2023 (SP 800-131A)

publication SP 800-57, a recommendation for key management [Bar20]. The table
shows the security strength of both symmetric and asymmetric algorithms. The
symbol K represents the recommended key size, and if there are recommendations to
distinguish between the key size of the public and private key, they are given as Kpub

and Kpri, respectively. Only the last three rows in the table are sufficient security
today.

3.3 Key distribution

After a trusted party has generated long-term keys, key distribution is the next step
in key management. The goal is to establish a shared secret, known as the session key,
between the sender and receiver before using symmetric encryption. If a third party
gets hold of the secret key, the confidentiality breaks as the attacker can eavesdrop
and decrypt the data without anyone noticing. Therefore, parties must securely
agree upon and distribute keys. This section will explain different techniques for this:
key transport and key agreement.

Key agreement Key agreement is a process where both the sender and receiver
are part of the negotiation. Both parties contribute to the process of generating a
shared secret. DH is the most known key agreement scheme. Key generation and
key distribution are included in key agreement techniques.

3.3. KEY DISTRIBUTION 35

Key transport Key transport schemes differ from the key agreement as only the
sender selects keying material for the secret key and sends this securely to the receiver.
Depending on the key transport scheme, the involved parties can distribute a secret
key in several ways. When the initiating party generates keying material, it must
send the secret to the receiver using a key distribution approach. Such approaches
can be distributing keys through physical security procedures, key wrapping schemes,
or a key transport scheme based on public-key cryptography such as RSA.

This section will consider three key distribution alternatives that use either key
agreement or transport techniques. The objective is to discuss key management
aspects and review if different approaches affect possible solutions in this thesis.
All alternatives use pre-shared keys distributed between the parties in advance. A
pre-shared key can be the long-term key for the IoT sensors generated and shared
during production, as mentioned in Section 3.2. Pre-shared keys are appropriate for
resource-constrained devices with limited CPU power and in environments where it
is easier to configure them rather than introducing certificates [ET05].

3.3.1 Alternative 1: Key Wrapping

Key wrapping is a key transport scheme where one entity generates and sends a secret
key to the receiving entity. Key wrapping is possible if the devices already possess
a long-term encryption key securely obtained during production. Entities can send
keys or key shares over an insecure channel by wrapping the secret using encrypting
with the long-term key. Such a key is known as the Key-Encryption-Key (KEK).
Both the wrapping and unwrapping processes of key data require the same KEK.
According to SP 800-38F, there are two symmetric key-wrapping schemes: Key Wrap
(KW) mode and Key Wrap With Padding (KWP) mode [Dwo12]. Both KW and
KWP are modes of operation of the AES algorithm which protect the integrity and
confidentiality of cryptographic keys. The advantage of such key wrapping schemes is
that they only require symmetric cryptography operations. These are usually cheaper
than asymmetric operations and thus preferable for constrained devices. Despite
advantages in terms of cryptographic operations, there are disadvantages to this
approach. The security of key data depends on the KEK, and attackers could obtain
all key data protected with the KEK if disclosing the key-encryption key [SH02].
Therefore, this approach would not fulfill forward secrecy.

3.3.2 Alternative 2: ECDH Key Exchange

As mentioned in Section 2.4.2, the DH key exchange allows parties to exchange a
secret key over an insecure channel securely. A variant of DH using pre-shared keys
[BH09] [PH05] is a suitable approach for key distribution in the cloud-IoT architecture.
The DH variant is defined for TLS and uses a pre-shared key to authenticate the

36 3. KEY MANAGEMENT

DH key exchange. This lets the sensors avoid using other computationally expensive
public-key algorithms for authentication. The asymmetric operations in DH still need
to be performed, but using pre-shared keys makes it more suitable for constrained
devices. One important aspect of DH key exchange is the possibility of providing
forward secrecy. Achieving forward secrecy happens if one uses a new DH private key
for each session. Generating a new key for each session is referred to as ephemeral DH.
If a long-term key is later compromised, attackers can only decrypt the corresponding
session, not previous sessions. One can implement DH key exchange based on discrete
logarithms or elliptic-curve cryptography (ECDH). Table 3.1 shows that it is more
suitable for constrained devices as it uses a smaller key than DH for the same security
strength. For a security level of 128 bits, the ECDH requires a key of at least 256
bits, while DH needs a key of 3072 bits.

3.3.3 Alternative 3: Key Evolution scheme

The last alternative covers key exchanges based on key evolution. SAKE (Symmetric-
key Authenticated Key Exchange) is a proposed authenticated key exchange protocol
that relies on a key evolution scheme and a resynchronization technique [ACF19]. The
protocol only uses symmetric-key operations to achieve forward secrecy, a suitable
approach for constrained devices. The result is that the parties can share evolving
symmetric keys, known as the session keys. The protocol builds on shared master
keys. Each party possesses two master keys, one for computing session keys (K1)
and another for authentication and resynchronization (K2). The main master key,
K1, derives session keys using a Pseudorandom Function (PRF) with some random
values as input. In order to obtain forward secrecy, the master keys are frequently
updated using the key-evolving technique. Both parties use a function that cannot
be inverted to derive new master keys from the old ones. The two master keys are
updated simultaneously, so the evolution of K1 and K2 follows each other.

Several constructed protocols for symmetric key exchange deal with key evolution.
A paper about authenticated key exchange protocols using lightweight operations
based on pre-shared keys proposes protocols suitable for the architecture stated in
this paper. LP3 and PP2 are some of the protocols suggested [BDdK+21]. Both
achieve forward secrecy, and, like SAKE, these protocols are based on the approach
where keys are derived and then evolved. The protocols use either linear or non-linear
key evolution. Session keys are derived from a pre-shared long-term key before
the long-term key evolves. Since the pre-shared long-term keys can be generated
and distributed on IoT sensors during production, this approach is suitable for the
Cloud-IoT architecture. LP3 is a protocol from the mentioned paper that uses linear
key evolution to derive session keys which involves three messages between sender
and receiver. Both parties possess a static key for MAC and a key derivation key
for the evolution. The protocol computes session keys and derives key derivation

3.3. KEY DISTRIBUTION 37

keys using a PRF. Every time a session key computation occurs between the parties,
the key derivation key and a counter value are updated, allowing a party to catch
up, evolving its key if they are out of sync. PP2 is a non-linear key evolution that
uses a Puncturable Pseudorandom Function (PPRF). Such a function is based on
hash functions and thus considered lightweight. PPRF is non-linear and can handle
multiple concurrent sessions between two parties. However, the PPRF requires
storage that can be challenging for some IoT sensors, and sensors in this scope do
not necessarily require several concurrent sessions.

3.3.4 Key distribution in the cloud-IoT architecture

The three approaches are suitable for implementation in the cloud-IoT architecture.
However, the best solution depends on the system’s priorities as the alternatives give
different advantages and disadvantages. One of the most important factors considered
is forward secrecy. Alternative 1 does not ensure forward secrecy, alternative 2 ensure
forward secrecy if ephemeral DH is implemented, and the last alternative do ensure
forward secrecy. Because of this, alternatives 2 and 3 are the most favorable. However,
as discussed in Section 3.1.1, if avoiding expensive costs is the main priority, one
could use a session key for the whole lifetime of a sensor (as long as the session is
not terminated). If one intends to use the same session key for as long as possible to
avoid expensive operations, forward secrecy is not that important. In terms of data
security, using a session key over a long time is not recommended because all data
encrypted with the session key is disclosed if an attacker obtains the key. Assuming
forward secrecy is a priority, alternatives 2 and 3 are the best. Table 3.2 illustrates
the most significant differences between the alternatives.

Alternative 2 regarding DH is the most used today. TLS supports different DH
modes, where ECDH with pre-shared keys is one of the modes [Res18]. As this
is a widely used standardized scheme, it is natural to implement this approach.
ECDH with pre-shared keys requires asymmetric operations every time the sensor
and other involved parties establish a new session key. The frequency of deriving
session keys depends on the length of a session. However, to fulfill the confidentiality
and integrity requirements stated in Section 1.2, this thesis considers introducing
several keys. Several keys would lead to more DH exchanges which are expensive
for IoT sensors. Another aspect of alternative 2, as mentioned in Section 2.4.2, is
that DH is one of the asymmetric-key algorithms that will be vulnerable to quantum
attacks when quantum machines become a reality. It is uncertain when this will
occur, and cryptographic organizations consider the algorithm secure today. However,
NIST is currently in the process of standardizing post-quantum cryptography [PQC].
Classic McEliece, CRYSTALS-KYBER, NTRU, and SABER are key-establishment
algorithms considered for standardization in post-quantum cryptography [PQC-R3].

38 3. KEY MANAGEMENT

Table 3.2: Comparison of key distribution alternatives Key Wrapping, ECDH Key
Exchange, and Key Evolution.

Features Key Wrapping ECDH Key Evolution
Supports pre-shared keys Yes Yes Yes

Key transport scheme Yes No No
Key agreement scheme No Yes Yes

Forward secrecy No Yes4 Yes
Symmetric cryptography Yes No Yes

Asymmetric cryptography No Yes No
Quantum attack secure Yes5 No Yes6

4 Forward secrecy only with ephemeral DH. 5 With appropriate security parameters. 6 With
appropriate security parameters.

Alternative 3, using key evolution, is also a reasonable approach in the cloud-IoT
architecture. Key evolution is cheaper than DH as evolving keys only use lightweight
operations such as hash computations. Utilizing key evolution would also open
up for a sensor to have two encryption streams: one to the end-user and one to
the management service in the cloud. If a sensor maintains these two sessions
simultaneously, the cloud can decrypt one stream but not the other one going to the
end-user. This could be an interesting approach if using key evolution.

This chapter has looked at key management and focused on key generation and
distribution. Key management in the cloud-IoT architecture is complex, and choosing
the best alternative depends on threat scenarios, security level, algorithms, devices,
and the system. The best approach for IoT sensors is to generate and distribute
long-term keys during production. When exchanging session keys, pre-shared keys
with ECDH or key evolving schemes are preferred. ECDH is the most widely used
and the natural choice, but key evolution schemes are an interesting approach that
systems potentially use more in the future. Both methods allow for pre-shared long-
term keys. As this chapter has discussed, computing session keys can be expensive,
especially when using asymmetric operations. The number of key exchanges and
large key sizes are two important factors for constrained IoT sensors. The more keys
introduced to the system, the more resources are required for the sensors to store,
derive, and agree upon keys. The thesis will consider this complexity when designing
solutions to authenticated encryption in the cloud-IoT architecture.

Chapter4Authenticated Encryption

The previous chapters have researched cryptographic primitives, algorithms, and
key management suitable for IoT sensors. The thesis has explained that symmetric
cryptography and MAC schemes requiring low-computational operations are ideal
for protecting data in the cloud-IoT architecture. As the challenge in this thesis
is to achieve integrity and confidentiality for sensor data, this chapter focuses on
authenticated encryption. Up to this point, the thesis has discussed background
knowledge and different standards suitable for IoT sensors. Starting with this
chapter, the thesis will now apply and adapt the knowledge and standards to
the scenarios in the cloud-IoT architecture. In addition to looking at how one
can protect the information in end-to-end communication, the chapter will discuss
how an intermediate party can verify the integrity without decrypting the data.
Small modifications of the algorithms are considered to meet all requirements. The
preconditions for this chapter are proper key management with secure key exchange.

4.1 Authenticated Encryption (AE)

Authenticated Encryption (AE) algorithms protect sensor data in terms of confi-
dentiality and integrity. As TLS is a trusted and widely used protocol in many
applications, this chapter will discuss AE approaches used in TLS. AE can typically
perform two functions: encryption and decryption. The encryption function takes
plaintext and a key as input and returns a ciphertext, while the decryption function
takes the ciphertext and corresponding key as input and outputs the plaintext. Com-
bining encryption with a MAC, discussed in Section 2.5, would ensure confidentiality
and integrity. As the project preceding this thesis presented [Tjo21], three approaches
combine encryption with MAC generation to achieve AE:

– Encrypt-and-MAC (E&M): The plaintext is encrypted, and a MAC is
produced based on the plaintext message. The result is a ciphertext, and a
MAC tag sent to the receiver.

39

40 4. AUTHENTICATED ENCRYPTION

Figure 4.1: Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC
[Tjo21].

– MAC-then-Encrypt (MtE): The MAC is produced based on plaintext.
Further, the MAC is appended to the plaintext, and they both are encrypted.
The result is a ciphertext sent to the receiver.

– Encrypt-then-MAC (EtM): The plaintext is encrypted, and the MAC is
produced based on the ciphertext. The MAC and the ciphertext are both sent
to the receiver.

Figure 4.1 illustrates the authenticated encryption approaches. They all achieve
confidentiality using an encryption algorithm and generate a MAC to ensure message
integrity. This chapter will discuss the three techniques to learn suitable approaches
for the integrity and confidentiality requirements in the cloud-IoT architecture.

4.1.1 CBC and HMAC

Combining CBC and HMAC is an approach to authenticated encryption as it achieves
both confidentiality and integrity [DR08]. CBC provides confidentiality, and HMAC
ensures integrity. CBC mode and HMAC have been described in Section 2.4.1 and
Section 2.5.1, respectively, and are suitable for IoT sensors because of their low-cost
operations.

MtE vs. EtM

CBC with HMAC can be implemented in both EtM, and MtE approaches. The
EtM approach is preferred today, but Secure Sockets Layer (SSL) and TLS have
used the MtE method over a long period to ensure AE. However, the MtE approach

4.1. AUTHENTICATED ENCRYPTION (AE) 41

has been proven to not be optimal after discovering several vulnerabilities. EtM, on
the other hand, has been proven to be the most secure of the three AE approaches
[BN00][Kra01]. TLS used a MtE approach that could more accurately be called
MAC-then-Pad-then-Encrypt. This approach starts with padding the plaintext to
the block size of the encryption function. Block ciphers are encrypting blocks of a
fixed length, so if the plaintext is smaller than the block size, the blocks are filled up
by applying bits referred to as padding. The sensitive data is encrypted using CBC
mode after applying the necessary padding to the plaintext.

The weaknesses in the MtE approach used in TLS can result in padding oracle
attacks [Vau02]. A padding oracle reveals information about the padding in cipher-
texts during decryption. A chosen ciphertext can tell if the encrypted plaintext
has valid padding or not if one interprets the responses. The result is attackers
retrieving information to differentiate between invalid and valid padding for any
ciphertext. Attackers get hold of such padding oracles by exploiting side channels
such as error messages and timing responses. A padding oracle attack can lead to
attackers decrypting data without knowing the encryption key. If an attacker can
find out if a given ciphertext has the correct padding when decrypted, it is possible
to crack the CBC encryption. Finding the valid padding is done by observing the
error messages. When the attacker obtains the exact padding, the attacker can work
byte-for-byte by starting with the last byte. It is only necessary to perform XOR
calculations to decrypt the byte as this is how the decryption operation works in
CBC mode. Despite using the integrity check, the exploit is possible because the
authenticated encryption approach performs padding after the MAC generation. The
result is a MAC that fails to prevent the attack because the validation happens after
the padding in the decryption and not before, as it should have to avoid padding
oracles retrieving information about the padding.

Because of the vulnerabilities in the MtE approach of CBC with HMAC, IETF
later published an RFC [Gut14], a document for Internet standards, about the
problem. The document included an improved security mechanism regarding replacing
the MtE approach with the EtM approach. The more secure approach would mitigate
weaknesses in TLS. Attacks such as The Lucky Thirteen [AP13], a well-known padding
oracle attack based on timing attacks, were mitigated. Unlike MtE, the EtM method
drops a tampered ciphertext before any padding information leaks because the MAC
is validated first. The EtM is therefore not vulnerable to padding oracle attacks.

4.1.2 Authenticated encryption in the cloud-IoT architecture

In this project, the goal is to verify the integrity without allowing decryption of the
ciphertext. That means that keys should be divided into an integrity key and an
encryption key, so decryption and integrity verification can be done independently

42 4. AUTHENTICATED ENCRYPTION

Figure 4.2: CBC-HMAC encryption.

Figure 4.3: CBC-HMAC decryption.

of each other. When sensors transmit sensor data, it is first pushed to the cloud
before end-users obtain the data. Therefore, the cloud should be able to verify the
integrity without decrypting the data. Since the MAC verification must occur before
decryption, only one of the three approaches is suitable, namely EtM. It is the only
approach suitable because the authentication tag is generated based on the ciphertext.
The cloud can re-generate the MAC tag using the ciphertext as input while not
disclosing any sensitive data. Further, the end-user would possess both the integrity
key and confidentiality key to verify and decrypt the data. The decryption of the
ciphertext only takes place if the integrity is verified first. Because of this, it seems
reasonable to choose algorithms based on the EtM approach where the integrity can
be verified independently of the encryption.

The EtM approach of CBC with HMAC is a good alternative to authenticated
encryption in the cloud-IoT architecture. In this approach, HMAC generates an
authentication tag based on the CBC mode encryption of the plaintext, preventing
attackers from tampering with the ciphertext. For instance, if an attacker tampers
with the ciphertext, the authentication tag generated by the sender does not cor-
respond with the newly tampered ciphertext and will therefore be seen as invalid.
Because of this, an attacker can only get away with tampering with the ciphertext
when knowing the HMAC key to generate a new tag corresponding with the tampered
ciphertext. Figure 4.2 shows how CBC mode encryption and HMAC can be used in
the EtM approach to ensure data confidentiality and integrity. Figure 4.3 illustrates
the HMAC verification and decryption at the receiver’s side. There are two keys in
this system, and both parties possess a copy of each key.

CBC with HMAC is an AE scheme that would allow separating the integrity
and confidentiality operations. Figure 4.4 illustrates how the distribution of keys

4.1. AUTHENTICATED ENCRYPTION (AE) 43

Figure 4.4: Distribution of keys using CBC with HMAC

should take place. The confidentiality key encrypts the plaintext, and the MAC tag
is generated based on the ciphertext with the integrity key. If the cloud party only
obtains the integrity key, the party can verify the data integrity when data is pushed
to the cloud. If the end-user possesses both keys, it can verify the integrity and
decrypt the data. Although it seems like a suitable approach for this architecture,
there are indications that known protocols are moving away from CBC with HMAC.

SSL/TLS has been using CBC mode and HMAC-X algorithms for data con-
fidentiality and integrity in versions ranging from SSL 2.0 to TLS 1.2. However,
the newest version of TLS, TLS 1.3, no longer defines CBC with HMAC-X as an
alternative to authenticated encryption. Algorithms such as CBC and non-AEAD
ciphers do not exist in TLS 1.3 [Eri18]. Modes with integrated MACs, such as CCM
and GCM mode, have replaced these schemes.

Despite that TLS has recommended EtM as an option for AE, the recent recom-
mendation is to move away from this approach and use AEAD algorithms instead.
TLS version 1.3 has excluded all symmetric encryption algorithms considered legacy
[Eri18]. TLS 1.2 still supports AES-CBC with HMAC, but only if implementations
eliminate timing side-channel attacks like Lucky Thirteen. CBC must be imple-
mented carefully to be secure, and implementations have been demonstrated to
be vulnerable several times. Also, different variants of the Lucky Thirteen attack
have been published since the first attack, which requires implementation fixes. The
possibility of attackers introducing new attacks could be problematic if sensors use an
implementation of CBC with HMAC that is later compromised and require a fix. If
sensors are out in the field, changing the implementation can be comprehensive and
costly. In conclusion, a secure implementation of CBC with HMAC in the cloud-IoT
architecture is a possibility, but known protocols do not see it as the future in AE.

As TLS 1.3 only uses AEAD algorithms, it is clear that this is considered the

44 4. AUTHENTICATED ENCRYPTION

Figure 4.5: Authentication and encryption of data in AEAD [Tjo21].

best approach. Changing to AEAD schemes like AES-GCM would also mitigate the
Lucky Thirteen attack [SHS15]. The AEAD algorithms handle both encryption and
MAC simultaneously, which recently have become much used and accepted. Because
of possible vulnerabilities with CBC mode, the many pitfalls of combining separate
encryption and integrity algorithms, and the current focus on AEAD algorithms, it
seems most sensible to look at the AEAD algorithms for possible solutions to the
problem stated in this report.

4.2 Authenticated Encryption with Associated Data (AEAD)

AEAD is a type of AE that achieves confidentiality and integrity in the same algorithm.
AEAD involves sending encrypted data with related metadata sent in clear, referred
to as Associated Data (AD). AEAD schemes encrypt the plaintext and verify the
integrity of both the AD and the ciphertext. The AD is sent in the clear because it
consists of information that should be visible to everyone who receives or intercept
the packet. It is useful for network packets where headers such as addresses, protocol
versions, and port numbers are visible for routers that forward the packets. Including
the AD in the integrity computations ensures that no one changes the information.
The AD is optional and does not have to be included. Figure 4.5 illustrates a typical
AEAD packet.

AEAD algorithms take plaintext (P) and AD as input. When encrypting data
and generating authentication tags, there is a need for a key (K) and a nonce (N)
known by the sender and receiver. The key ensures encryption and decryption, and
the nonce is used as an initialization vector. Common for all AEAD algorithms
described in this chapter is that the input and output are the same, even though the
operations of the algorithms differ. The expression below illustrates the encryption
process for AEAD algorithms:

AEAD(K, N, P, AD) −→ C || T

The output of the AEAD algorithms is the concatenated ciphertext C and

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 45

Figure 4.6: The encryption process of AEAD algorithms.

authentication tag T . Figure 4.6 illustrates the encryption process, where the result
of the algorithm is a packet sent to the receiver.

The decryption process goes the opposite way of the process in Figure 4.6. The
decryption consists of verification and decryption. The AD, C, and authentication
tag T are the input, and the plaintext is the output. The key and nonce are the same
as in encryption for the same data. The decryption process only returns plaintext
if the MAC tag is correct. Otherwise, the algorithm returns an INVALID message,
and the plaintext is not disclosed. The decryption process is illustrated below:

AEAD(K, N, C, AD, T) −→ P or INVALID

AEAD algorithms are more beneficial for IoT sensors than separating algorithms
for authentication and encryption because they are simpler to deal with than com-
bining several algorithms. Implementing only one algorithm requires fewer resources,
is simpler to implement, and securely combines encryption and authentication. In
contrast, if one must implement two separate algorithms, it increases the chance of
critical errors and incorrect implementations when combining them. In this thesis,
one should keep in mind that it is desired to verify the integrity without decrypting
the data. Therefore, while AEAD algorithms combine authentication and encryption,
it is applicable to choose an algorithm where one can verify the integrity separately.
If the cloud could detach and check the MAC isolated in AEAD modes, it could
solve the problem. One must have separate keys for integrity check and encryption
for this to be possible. The thesis will look at if it is possible to split the key or

46 4. AUTHENTICATED ENCRYPTION

generate two keys, one for authenticated encryption for the end-user and one for the
integrity of the cloud party. This section will look at different AEAD algorithms and
discuss such properties.

In ISO/IEC 19772:2020, there are three standardized AEAD modes of operation:
GCM, CCM, and EAX [ISO19772]. They are all modes of operation for block
ciphers in symmetric-key cryptography. NIST has approved two of the three AEAD
algorithms: CCM and GCM. In addition to the schemes mentioned, there is a
much-used AEAD stream cipher in TLS 1.3 called ChaCha20-Poly1305. This section
will look at the above-mentioned AEAD schemes and discuss approaches involving
separating the integrity check.

4.2.1 CCM

CCM combines (CTR) mode with Cipher Block Chaining-Message Authentication
Code (CBC-MAC). The CTR mode, described in Section 2.4.1, ensures confidentiality,
while CBC-MAC, described in Section 2.5, ensures integrity. One often refers to CBC-
MAC as CMAC. The AEAD mode is a MtE approach with some modifications [Šve16].
Although it is a MtE approach, the AEAD algorithm is not vulnerable to padding
oracle attacks or exposed to similar vulnerabilities as the MtE implementation of
CBC with HMAC. The algorithm is protected against the types of invalid messages
that attackers will try to create to retrieve information. The AEAD mode is proven
secure as a whole unit and securely combines confidentiality and integrity [Dwo04]
[Jon02] [WHF03]. The authenticated decryption performs decryption and verifies the
integrity before returning any information. If the data is not authentic, the algorithm
only outputs an INVALID message that does not leak any useful information for
attackers.

The CBC-MAC is produced based on the plaintext, and the counter CTR mode
is used on the MAC and plaintext to generate a ciphertext [Dwo04]. Figure 4.7 shows
the authenticated encryption in CCM mode. There is one AD block (AD1) and two
plaintext blocks (P1 and P2) in the illustration. The AEAD algorithm takes in K,
N , P , and AD. As CCM mode is based on a secure MtE approach, it starts with
generating a MAC based on N , P , and AD [Hou07]. Further, CTR mode encryption
takes place on the MAC and the plaintext, which results in the ciphertext. In the
illustration, the ciphertext is the concatenation of C1, C2, and CT sent to the receiver.
The decryption process consists of decryption and verification in that given order.
The application of CTR mode on the ciphertext decrypts the MAC and plaintext.
Further, the CBC mode is applied to the plaintext and AD to recompute the tag
and verify the correctness of the MAC. The operation only returns the plaintext if
the tag is correct.

As described above, separating keys into integrity keys and confidentiality keys

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 47

EK EK EK EK

IV AD1 P1 P2

EK EK EK

C1 C2 CT

ctr+1 ctr+2 ctr
64

T

IV = flags1||N ||length16(AD + P)

ctr = flags2||N ||016

Figure 4.7: Illustration of the CCM mode.

would be an appropriate approach to fulfill the integrity and confidentiality require-
ments. However, this is problematic in CCM, where the MAC is generated first and
encrypted with the plaintext. Given the example in Figure 4.7, the tag is calculated
using CMAC: Ci = EK(Mi ⊕ Ci−1), where message M consists of AD, P1, and
P2, and the tag is the result of T = MSBt(C3). MSBt is a specified number of
the t most significant bits of the output. This tag is encrypted with the plain-
text to obtain the ciphertext: C = (P ⊕MSBt(S))||(T ⊕MSBt(EK(ctr))), where
S = EK(ctr + 1)||EK(ctr + 2). For a party to verify the integrity of the ciphertext,
the authentication tag is obtained by calculating T = LSBt(C)⊕MSBt(EK(ctr)).
LSBt is a specified number of the t least significant bits. This is only possible by
possessing the key K, but by obtaining this key, one can also decrypt the ciphertext:
P = MSBt(C)⊕MSBt(S). The MtE approach makes it problematic for the cloud
party in the architecture to verify the MAC. Since the MAC is encrypted, the entity
must decrypt the message before verifying the MAC. This means that the interme-
diate part must possess the decryption key as well. If the party must possess both
keys, this architecture’s confidentiality and integrity requirements are not fulfilled
using CCM.

4.2.2 GCM

GCM is a block cipher mode that ensures data confidentiality by encrypting the
plaintext with a variant of the CTR mode. GCM also uses a universal hash function,
called GHASH, defined over a binary Galois field, to authenticate the data [Mor07].

48 4. AUTHENTICATED ENCRYPTION

Figure 4.8 shows a simplified illustration of the GCM mode using CTR encryption
and GHASH authentication to illustrate how they are combined.

Figure 4.8: The GCM mode using CTR encryption and GHASH authentication.

Figure 4.9 shows a more detailed illustration of the authenticated encryption in
GCM mode. The illustration shows two blocks of plaintext (P1 and P2) and one
block of authenticated data (Auth Data1). The upper half that results in two blocks
of ciphertexts is the encryption part, while the lower half shows the generation of
the authentication tag. If the IV is 96 bits long, which is the recommendation for
AES-GCM, the Counter0 is defined as Counter0 = IV || 031 || 1. In the figure, the
incr operation increments the rightmost 32 bits with modulo 232. multH means
multiplication in the GF(2128) field with a hash key H, where the polynomial used in
GCM is: x128+x7+x2+x+1. The multH operations are part of the GHASH function,
which generates an authentication tag by putting data blocks in the function.

The GHASH function takes the AD, C, and a hash key H as input. The hash key
is generated by encrypting 128 bits of zeros: H = Enck(0128). The GHASH function
is defined as follows: GHASH (H, AD, C) = Xm+n+1, where m is the number of AD
blocks, and n is the number of ciphertext blocks. Equation 4.1 shows the definition of
Xi [MV04]. The ·H operations in the equation are the same as the multH operations
in Figure 4.9. They both indicate multiplication with H in GF (2128).

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 49

Counter0

Enck

Counter1

Enck

Counter2

Enck

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(AD)||len(C)

Figure 4.9: Illustration of GCM encryption.

50 4. AUTHENTICATED ENCRYPTION

Xi =



0 for i = 0
(Xi−1 ⊕ADi) ·H for i = 1, ..., m− 1
(Xm−1 ⊕ (ADm||0128−v)) ·H for i = m

(Xm−i ⊕ Ci) ·H for i = m + 1, ..., m + n− 1
(Xm+n−1 ⊕ (Cm||0128−u)) ·H for i = m + n

(Xm+n ⊕ (len(AD)||len(C))) ·H for i = m + n + 1

(4.1)

The u is the length of the final block of ciphertext, u = len(C) mod 128, and
v is the length of the final block of AD, v = len(AD) mod 128. Lastly, after the
GHASH operations, the output of the GHASH is XOR-ed with the first encrypted
counter, Enck(Counter0), as seen in Figure 4.9. The result of the computation is
the authentication tag, described as Auth Tag in the illustration. The authentication
tag is defined by: T = MSBt(GHASH (H, AD, C)⊕Enck(Counter0), where MSBt

is the t most significant bits of the output. After performing the GHASH operations
and XOR-ing the output with Enck(Counter0), the authentication tag is defined as
the t leftmost bits of the result.

GMAC

A practical thing with GCM is the authentication-only variant, referred to as GMAC.
This variant does not take confidentiality into account, only data authentication. The
advantage of GMAC is that it does not call the block cipher for each block of data.
The implementation of GMAC only authenticates the AD by generating and verifying
the authentication tag [Mor07]. Figure 4.10 illustrates the GMAC operations. In the
illustration, three AD blocks are considered. Note that the length of the ciphertext,
in this case, will be zero. GMAC is, like GCM, considered a mode of operation
for an underlying block cipher. The expression below shows the generation of the
authentication tag T on message M in GMAC. Message M consists of C and AD,
but in GMAC, C is an empty string, C = {}.

GMAC (K, IV, M) = GHASH (H, AD, C)⊕ EncK(Counter0) −→ T

One practical feature of GMAC is the possibility of using it as an incremental
MAC. This feature means that when computing a message M , one can compute
a new message M ′ similar to M with a computational power proportional to the
hamming weight between M and M ′. The hamming weight between M and M ′ can
be seen as the number of non-zero bits when the two messages are XOR-ed. To
find the reason for this, one must look at GHASH. The function GHASH(H,AD,C)
is linear in the AD and C. Let us say that we have two associated data strings,

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 51

Counter0

Enck

Auth Data2 Auth Data3

multH

multH

multHAuth Data1

multH

Auth Tag

len(AD)||len(C)

Figure 4.10: Illustration of GMAC authentication.

AD and AD′, and two ciphertexts, C and C ′. Given that len(AD)=len(AD′) and
len(C)=len(C ′), we have [McG05]:

GHASH (H, AD, C)⊕GHASH (H, AD′, C ′) = Xm+n+1

= GHASH (H, AD ⊕AD′, C ⊕ C ′)

Using the latter property can reduce the amount of computation in some cases. Let
us assume that we have calculated an authentication tag T based on message M :
T = GMAC (K, IV, M). Here, M includes both the ciphertext and the AD. Further,
we want to calculate a new tag T ′ on message M ′, a message quite similar to M .
Given that len(M) = len(M ′), one can reduce the computation by only computing:

T ′ = T ⊕ EncK(Counter0)⊕ EncK(Counter′
0)⊕GHASH (H, M ⊕M ′)

The latter example shows a case when messages are of fixed length. There exist
similar advantages for prepending or appending data to messages as well. Incremental

52 4. AUTHENTICATED ENCRYPTION

GMAC makes an effective approach to authenticating large data sets because the
incremental MACs make it easy to produce new authentication tags when performing
minor changes to the data set. If, for instance, IoT sensors send data sets with small
changes in measurements, this feature could be useful.

Splitting keys into integrity key and confidentiality key is problematic in GCM.
In the GCM mode, the authentication and encryption are combined. If the cloud
party receives a ciphertext and MAC tag T from a sensor, it must be able to verify
the authentication tag without decrypting the ciphertext. It must recompute the
authentication tag T ′ and check if T = T ′ to verify the integrity. To generate T ′,
the following computation must be performed: T ′ = MSBt(GHASH (H, AD, C)⊕
Enck(Counter0). Here, we can see that the decryption key is needed to verify the
MAC. Both H = Enck(0128) and Enck(Counter0) can only be computed using the
decryption key. Therefore, separating the confidentiality and integrity parts is not
an intuitive solution in GCM. However, if one disregards the last part of the MAC
computation where the MAC tag is XOR-ed with Enck(Counter0), the algorithm
follows the EtM approach.

The MAC tag is generated and verified based on the ciphertext. Therefore,
it would be interesting to see if one can solve the problem by modifying small
parts of GCM. Introducing a MAC key, Km, and making the GHASH function
use this key instead of the encryption key could be an alternative. The following
computation would generate the hash key H: H = Enckm

(0128). However, since
the result of the MAC computation is XOR-ed with Enck(Counter0) in the last
operation, this is not enough. The reason is that the Enck(Counter0) operation is
computed with the encryption key, and if this key is needed for the integrity check,
the cloud can also use it to decrypt the data. One could remove the latter operation
to fix this, but this would not be a preferred solution as it breaks the standard and
could reduce the security strength. Another more reasonable approach would be to
perform the encryption of Counter0 with the MAC key Km instead of the encryption
key: Enckm

(Counter0). If this is the case, the MAC tag would be computed by
the following computations: T = MSBt(GHASH (H, AD, C) ⊕ Enckm(Counter0),
where H = Enckm(0128). It seems interesting to investigate GCM with split keys
as described above. However, as this approach breaks the standard, it is uncertain
if it will affect the security strength of the algorithm. This would require security
analysis. Because of other interesting solutions, the thesis will not take this further.
However, it would be fascinating to investigate this approach in further work.

4.2.3 EAX

EAX uses CTR mode described in Section 2.4.1 for data encryption and an algorithm
called OMACs for data authentication. OMACs is the same as CMAC, described in

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 53

Section 2.5, but with additional padding of two values in the last block. Also, the
authentication adds a value s, which is encoded into an n-bit binary string as an
extra argument to the MAC computation [Šve16] [BRW04]. The s-values used in
the OMAC computations of the nonce N , AD, and plaintext P are respectively 0,
1, and 2. The proposal of the EAX mode worked as an alternative to CCM. The
general idea was to fix the limitations identified in CCM and make it more flexible
with the possibility of processing messages of arbitrary lengths and pre-process fixed
headers [BRW03].

Figure 4.11: EAX mode authenticated encryption.

The encryption and decryption functions have the same inputs and outputs as
the other AEAD algorithms. However, the operations of EAX differ from the others.
Computing C = CTR(K, OMAC0

K(N), P) encrypts the ciphertext, and the authen-
tication tag is generated by the following computation: T = MSBt(OMAC0

K(N)⊕
OMAC1

K(AD) ⊕ OMAC2
K(C)). MSBt is the t most significant bits of the output.

Figure 4.11 illustrates the authenticated encryption process in EAX mode. EAX
is based on a generic composition scheme [BRW04] and can be seen as an EtM
approach. As the MAC is generated based on the ciphertext, it could be suitable for
this thesis.

Splitting keys in EAX into confidentiality key and integrity key could be possible.
If the cloud party only possesses the integrity key, it could verify the MAC tag with the
following computation: T ′ = MSBt(OMAC0

K(N)⊕OMAC1
K(AD)⊕OMAC2

K(C)).
The operations would only require C, N , and AD as input, in addition to the key.
The end-user could verify the integrity with the same computation and use the

54 4. AUTHENTICATED ENCRYPTION

confidentiality key to decrypt the data by computing P = CTR(K, OMAC0
K(N), C).

This will be discussed in Section 5.2.4.

4.2.4 ChaCha20-Poly1305

ChaCha20-Poly1305 is an AEAD algorithm consisting of the ChaCha20 stream cipher
and the Poly1305 authenticator. TLS 1.3 introduced the algorithm as one of the
recommended cipher suites to implement [Eri18], and it is a good alternative for
resource-constrained devices. The ChaCha20 stream cipher was introduced in Section
2.4.1. The algorithm uses the ChaCha20 block function to perform quarter rounds on
a 4× 4 matrix of 32-bit values. The output of the block function is a 512-bit string of
pseudorandom values that can be concatenated into a keystream if the block function
is called several times. ChaCha20 encrypts a plaintext by XOR-ing it bitwise with
the generated keystream: Ci = KSi ⊕ Pi. Section 2.5.3 described Poly1305 which
generates a 128-bit MAC tag based on the AD, plaintext, padding, and length values
[Pro14]. Poly1305 uses a one-time key Kotk that must be generated pseudorandomly
and divided into two parts, Kr and Ks. The AEAD algorithm is an EtM approach
as the ciphertext generation occurs first, and the computation of the authentication
tag is based on the ciphertext.

The pseudorandomly one-time keys in Poly1305 can be computed in several ways,
for instance, by encrypting a nonce using AES. One convenient property when using
ChaCha20 and Poly1305 together is using the above-mentioned ChaCha20 block
function to generate the one-time key, Kotk = Kr||Ks, that Poly1305 needs [NL18].
To generate one-time keys for Poly1305, one needs the same parameters used to
generate a keystream in Chacha20: a 256-bit key K, a block counter ctr, and a
nonce N . When generating the one-time keys, the ctr is set to zero. The ChaCha20
block function performs quarter rounds to generate random bytes in the same way as
described before. When the function outputs 512 bits of random values, the first 128
bits will be the Kr value, and subsequently, the next 128 bits will be the Ks value.
The last 256 bits are not used. The expression below illustrates how the one-time
key, Kotk = Kr||Ks, is generated.

ChaCha20 block function(K, N, ctr) −→ Kr || Ks || 256 remaining random bits

After using the ChaCha20 block function to generate the pseudorandom one-time key
consisting of Kr and Ks, one can use the one-time key to generate the authentication
tag in Poly1305. The AEAD algorithm ChaCha20-Poly1305 consists of three steps
that are performed in the following order:

1. Generate the one-time key, Kotk = Kr || Ks, for Poly1305 using the Chacha20
block function.

4.2. AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA (AEAD) 55

Figure 4.12: The ChaCha20-Poly1305 algorithm [ChaPol].

2. Generate a keystream and encrypt the plaintext by using the Chacha20 encryp-
tion function.

3. Generate an authentication tag with Poly1305 using the one-time key Kotk

generated in step 1.

Figure 4.12 shows an illustration of the ChaCha20-Poly1305 algorithm. The
authenticated encryption key K in ChaCha20-Poly1305 is not a one-time key, and it
is used throughout a session. Only the one-time key in Poly1305, Kotk = Kr || Ks,
must be unique for every MAC computation.

ChaCha20-Poly1305 is proven secure, according to a security analysis performed by
Gordon Procter [Pro14]. The analysis presents a security reduction and demonstrates
that the combination of ChaCha20 and Poly1305 results in a secure authenticated
encryption scheme. The scheme is Indistinguishably under both Chosen Plaintext
Attacks (IND-CPA) and Chosen Ciphertext Attacks (IND-CCA), making it hard for
attackers to distinguish pairs of ciphertexts and plaintexts. The security analysis
assumes that the nonce is unique every time the same key is used. If the same
nonce and the same key are used on two different plaintexts, it can lead to attackers
decrypting plaintexts, as described in Section 2.4.1.

Splitting the keys in ChaCha20-Poly1305 seems possible as one can combine
and split the integrity and confidentiality operations. The algorithm uses the EtM

56 4. AUTHENTICATED ENCRYPTION

approach, and it looks suitable for fulfilling the confidentiality and integrity require-
ments described in this thesis. Because of this, splitting keys in ChaCha20-Poly1305
will be discussed further in this thesis.

4.3 Implementations on IoT sensors

All AEAD algorithms discussed can be implemented on IoT sensors. The block
cipher modes of operation CCM, EAX, and GCM are usually combined with AES.
The algorithms support implementations in both software and hardware. The
implementations are quite similar, but because of the finite field multiplication in
GCM, the mode of operation requires more code for software implementation and
gates for hardware implementation than, for instance, CCM. Therefore, constrained
devices often use AES with CCM encryption if reducing the implementation cost is
the priority. However, GCM is usually preferred if there is a need for high-speed data
transfers. The GF(2128) multiplication can be optimized in several ways depending
on the implementation. Implementing finite field multiplication either in hardware
or software with table-driven operations generally results in a good performance.

Several techniques to increase the efficiency of the block cipher modes exist in
general processors used in laptops and desktop computers, such as x86 processors.
A carry-less multiplication instruction set extends the instruction set used in mi-
croprocessors from semiconductor companies such as AMD and Intel [SKP20]. The
PCLMULQDQ instruction can speed up the GHASH part in GCM as the multipli-
cation of large finite fields is performed more efficiently. In 2010 Intel published a
white paper about how Intel’s proposed AES New Instructions (AES-NI) and the
PCLMULQDQ instruction would optimize the AES-GCM algorithm for implemen-
tation and efficiency [GK10]. There are many different ways to optimize the GCM
mode of operation. Processors like x86 are not a common architecture in low-power
IoT devices. Low-power microcontrollers often do not support these instructions
that optimize the algorithms for constrained devices. The implementation depends
on the microprocessors, but special hardware and computed lookup tables are ways
to accelerate the process [SKK10]. Generally, implementing the AEAD scheme in
hardware or co-constructing hardware and software will result in higher throughput
and lower energy consumption [NBT20].

ChaCha20-Poly1305 differs as it is designed for high-performance software imple-
mentations. The software implementation requires few resources and consists mainly
of inexpensive operations, making it suitable for IoT sensors. Comparing ChaCha20-
Poly1305 with an AES-GCM implementation without hardware acceleration shows
that the ChaCha20-Poly1305 is usually faster [NL18]. Studies [SLdP+19a] [SSS17]
have shown that implementations of ChaCha20-Poly1305 are a good alternative for
resource-constrained devices.

4.4. COMPARISON OF THE AEAD SCHEMES 57

As the section describes, one can implement all four AEAD algorithms on con-
strained devices, but they require different resources and can be implemented differ-
ently. The best choice of algorithm depends much on the IoT sensor’s capabilities.

4.4 Comparison of the AEAD schemes

AEAD schemes are the best approach to achieve integrity and confidentiality for IoT
sensor data in the cloud-IoT architecture. The question is what AEAD scheme to take
into account. This section will compare and reflect on the mentioned AEAD schemes
and discuss their features. CCM, EAX, and GCM are all AEAD algorithms, but NIST
has only approved CCM and GCM. Even though the proposal of EAX was said to
improve CCM, GCM outcompeted EAX as it introduced more advantages. CCM was
already widely established, and it was a need for a high-speed algorithm in terms of
performance. Since GCM is the only block cipher mode that supports parallelization,
it was chosen and standardized by organizations such as NIST. However, EAX might
be a suitable approach in this thesis when considering splitting keys as a practical
mechanism. Since the three different block cipher modes might look very similar
at first glance, the following section will compare them to overview similarities and
differences. The comparison is based on the NIST documentation and some other
papers that compare the schemes [Dwo04] [Mor07] [SKK10] [Šve16] [BRW04].

There are many similarities when looking at CCM, EAX, and GCM. All are
provable secure modes of operations defined for block ciphers. CCM and GCM have
a block size of 128 bits, while EAX is defined for block sizes of arbitrary length.
However, EAX is normally combined with AES, using a block size of 128 bits. The
block cipher modes are all provably secure and ensure integrity and confidentiality
with one key. Another similarity is that they are two-pass schemes. Each block
performs two passes, one for confidentiality, and the other for integrity, making the
modes referred to as two-pass schemes [JdOB+11]. Unlike other modes such as ECB
and CBC, there is no error propagation in CCM, EAX, and CCM. Error propagation
means that an error in one bit can lead to consequential errors in other bits. Error
propagation in the three modes of operation is impossible because the AEAD schemes
abort decryption if bits are changed. The integrity check takes place before returning
the decrypted ciphertext.

The ChaCha20-Poly1305 scheme is both similar and dissimilar to the block cipher
modes. The biggest difference is that the algorithm is a stream cipher, while the
others are block cipher modes of operation. When it comes to similarities, ChaCha20-
Poly1305 is, like the others, provable secure [Pro14], defined as one key algorithm, and
avoids error propagation. Also, it is an online scheme, like EAX and GCM. The two
latter features come from the algorithm being a stream cipher. ChaCha20-Poly1305
is a stream cipher that can encrypt the plaintext and AD of arbitrary length by

58 4. AUTHENTICATED ENCRYPTION

XOR-ing the plaintext with the keystream. It does not have to divide the data into
blocks. Also, a one-bit error only affects one bit. The similarities of the AEAD
algorithms are listed below.

Common features between the AEAD algorithms:

– Authenticated Encryption with Associated Data algorithms.
– Provable secure.
– Requires one key.
– No error propagation.
– Two-pass scheme.

Despite many similarities, there are also many differences when studying CCM,
EAX, and GCM. The two latter modes perform the authentication based on the
ciphertext, but GCM additionally encrypts the authentication tag. CCM uses the
opposite approach as it computes the MAC firstly and then encrypts the MAC and
plaintext. Additionally, the modes require different operations. For the authenticated
encryption, CCM requires two block cipher operations per block of plaintext and one
encryption operation for each block of AD. EAX requires the same, but also a block
cipher operation for the nonce. In GCM, a block of authenticated encryption requires
one encryption operation and one GF(2128), while authenticated AD only requires
the GF(2128) operation. Lastly, the GCM mode needs one Galois field multiplication
and one encryption operation in the final stage [SKK10].

GCM has the most features, EAX has the second most, while CCM has the
fewest. This paragraph will discuss the differences between GCM and CCM as they
differ the most. GCM is parallelizable, online, and has an incremental MAC. Those
properties do not CCM have. Parallelizable means that it can simultaneously process
things in parallel, such as performing several block cipher operations. The online
feature regards the ability to encrypt and authenticate data of arbitrary length. The
feature is not possible in CCM, as the scheme must know the length of the plaintext
and AD in advance. Also, the GCM mode is generally faster than the CCM mode,
which could be an important aspect of real-time applications. In addition to the
parallelization, GCM is faster because 1 AES operation and 1 GHASH operation in
GCM are faster than 2 AES operations in CCM. GHASH is generally faster than
AES. However, this is only if the GHASH implementation is done on hardware or
software with table-driven operations. The latter approach requires precomutation
with the key and memory storage of the lookup table. Lastly, the GCM mode is
more flexible as it can achieve AE, AEAD, or ensure authenticated AD (referred to
as GMAC). However, it is possible to use CCM mode with an empty payload, as

4.4. COMPARISON OF THE AEAD SCHEMES 59

Table 4.1: Summary of the comparison of CCM, EAX, GCM, and ChaCha20-
Poly1305 (Cha-Pol).

Feature CCM EAX GCM Cha-Pol
AEAD algorithm Yes Yes Yes Yes

Block size 128-bit n-bit 128-bit N/A
Provable secure Yes Yes Yes Yes

One key algorithm Yes Yes Yes Yes
Avoids error propagation Yes Yes Yes Yes

Parallelizable No No Yes Yes
Online scheme No Yes Yes Yes

Pre-process static AD No Yes Yes No
Accept IV of arbitrary length No Yes Yes No

Incremental MAC No No Yes No
Specified in TLS 1.3 Yes No Yes Yes

NIST specifies in SP 800-38C [Dwo04]. The list below shows the properties of GCM
that are not supported in CCM.

Features supported in GCM that is not supported in CCM:

– Parallelizable.
– Online (can process plaintext and AD of arbitrary length).
– Incremental MAC.
– Authentication-only variant (GMAC)1.
– Can accept IVs of arbitrary lengths.

EAX is closer to GCM as it has the same features except for being parallelizable
and having incremental MAC. One useful attribute of GCM and EAX is that they
can pre-process static AD. This can be useful for IoT sensors if, for instance, the
sensor includes fixed headers or metadata. Then, the authentication of this header
can be performed only once, which reduces the number of authentication operations.
Table 4.1 summarizes the comparison of CCM, EAX, GCM, and ChaCha20-Poly1305
properties.

It seems like the only AEAD algorithms that allow for verifying the integrity
without being able to decrypt the ciphertext are the EAX mode and ChaCha20-

1CCM mode can work as an authentication mode if it is used on messages where the payload is
empty [Dwo04].

60 4. AUTHENTICATED ENCRYPTION

Poly1305. In CCM and GCM, the algorithms can not verify the MAC without using
the decryption key. This differs in EAX and ChaCha20-Poly1305, as the MAC is
generated based on the ciphertext. Because of this, the two algorithms could be
suitable for the approach involving splitting a key into confidentiality and integrity
parts, where the cloud party could verify the integrity using the integrity key.

This chapter has studied authenticated encryption. We have looked at CBC with
HMAC, CCM, EAX, GCM, and ChaCha20-Poly1305. The algorithms use different
operations, but all should be possible to implement on IoT sensors with the proper
implementations. This chapter has shown that the best approach to authenticated
encryption is AEAD algorithms combining integrity and confidentiality. As discussed
in Section 4.1.1, protocols such as TLS are currently moving away from non-AEAD
algorithms such as the CBC with HMAC approach. AEAD algorithms are, therefore,
the main focus of this thesis.

The choice of algorithm that could solve the problem stated in this thesis depends
on its design and flexibility. As this thesis will focus on splitting a key into an integrity
key and a confidentiality key, choosing an algorithm where the MAC verification
occurs before the decryption seems reasonable. Put another way; we want an AEAD
algorithm that follows the EtM approach. As this chapter has discussed, only EAX
and ChaCha20-Poly1305 seem to use this technique. Therefore, it seems reasonable
to focus on these algorithms. The ChaCha20-Poly1305 is the most established
today. Protocols such as TLS, Internet Protocol Security (IPsec), and Secure Shell
Protocol (SSH) use the AEAD algorithm. EAX, on the other hand, is not that widely
used today. When released, it was out-competed by GCM. Due to the arguments
presented, it seems reasonable to focus on the ChaCha20-Poly1305 algorithm and
research whether it is possible to split the key, fulfilling the confidentiality and
integrity requirements stated in this thesis.

Chapter5Design

Up to this point, the thesis has researched AEAD algorithms and key management.
After examining algorithms, constraints, and requirements, it is time to continue
the work from Chapter 4 and look at how confidentiality and integrity should be
handled and integrated between the parties involved in the cloud-IoT architecture.
This chapter aims to find a solution that fulfills integrity for a third party in the
cloud and achieves integrity and confidentiality for end-users. The chapter will
discuss cryptographic keys in AEAD algorithms and propose different solutions,
where ChaCha20-Poly1305 with split keys is the main focus. Lastly, the chapter
compares and discusses the different approaches to find the best solution for the
cloud-IoT architecture.

5.1 Achieving confidentiality and integrity

The communication of sensor data between sensors and end-users should be end-to-
end encrypted and authenticated. End-users are the only party that should be able to
decrypt and verify sensor data. When sensors perform measurements, the sensor data
is pushed to the cloud for storage and processing. The cloud should handle data while
guaranteeing that payload content is legitimate and not disclosed; therefore, there is
a necessity for an additional integrity check. As Figure 5.1 illustrates, the goal is to
ensure integrity between sensors and the cloud while achieving confidentiality and
integrity for the end-user.

As discussed in Chapter 3, there is a need to define cryptographic keys for
the cloud-IoT architecture. The cryptographic keys must be specified to meet the
confidentiality and integrity requirements stated in Section 1.2. Specifying keys can
be done in several ways. One can use two independent keys for different operations;
one used in the cloud and one at the end-user. Otherwise, one can split a key into an
integrity part, and a confidentiality part where the former would fulfill integrity and
the latter ensure confidentiality. The next section will discuss the two alternatives.

61

62 5. DESIGN

Figure 5.1: Confidentiality and integrity in the Cloud-IoT architecture.

5.1.1 Using two independent keys for different operations

One can use two separate keys, one key for the cloud and one for the end-user,
where the keys are specified for different computations. The first key would ensure
authenticated encryption for the end-user, while the second key would let the cloud
verify the received data to confirm that it is trustworthy.

Double authenticated encryption

If two independent keys are the desired approach, the data could be encrypted twice.
Double encryption would allow the cloud to decrypt the first layer of ciphertext and
verify the integrity when sensors push the data to the cloud. Further, the end-user
could decrypt the second layer, which discloses the sensitive sensor data. Section
5.2.1 will discuss a solution involving double AEAD.

Authenticated encryption with a separate MAC

The other approach is to use a separate MAC in addition to the authenticated
encryption, where sensors could perform a distinct MAC generation based on the
AEAD of the sensor data. This technique is more feasible as it requires fewer
computational operations than encrypting twice. The approach would allow the
cloud to verify the messages with its separate MAC key, while the end-user would
use its key to perform authenticated decryption with its AEAD key. Section 5.2.2
will go into detail about such a solution.

Using two separate independent keys for the two above techniques is not the
best approach when considering scalability, cost, and performance. It introduces
additional operations, and IoT sensors must perform two key exchanges for every
session, one for each key. As mentioned in Chapter 3, key exchanges are expensive
for IoT sensors, especially when using public-key cryptography. Therefore, it is not
an optimal solution for sensors.

5.1. ACHIEVING CONFIDENTIALITY AND INTEGRITY 63

Figure 5.2: Key distribution when splitting keys into confidentiality and integrity
parts.

5.1.2 Splitting a key into integrity key and confidentiality key

The other possibility is using one key that can be split into two parts, one for integrity
and one for confidentiality: K −→ (Km, Kc). In this case, the Km is the MAC key,
and the Kc is the confidentiality key. Figure 5.2 illustrates the distribution of keys.
Km can be given to the cloud while the end-user possesses both keys. This way, the
cloud would verify the integrity, while the end-user would be able to both confirm
the integrity and decrypt the secret data. Sections 5.2.3 and 5.2.4 will discuss such
solutions.

A challenge is figuring out how one can split the keys. One alternative is that
the sensor split the key and the parties involved agree upon the necessary key parts
with the sensor. This method would involve two key exchanges for sensors per
session, which is expensive. A better alternative is that the sensor and the entity
responsible for key management exchange a key value, K = Km||Kc, where the
first part is Km, and the last part is Kc. The key management entity can send the
different parts to the parties that should obtain them. Alternatively, the entities
must agree upon a common "master key" and derive the integrity and confidentiality
keys from the master key. The latter approach would involve a KDF. Such functions
are based on PRFs and can derive keys or stretch them into longer keys. The NIST
recommendation SP 800-108 [Che+08] approves using known algorithms such as
HMAC, CMAC, and CTR mode as the PRF in the KDF. These are considered
lightweight and much cheaper in terms of operations than asymmetric key exchange
algorithms. Additionally, if sensors already use authenticated encryption that involves
such algorithms, there is no additional cost to implement a PRF.

The cost of splitting keys depends on the approach, key sizes, and what parties
handle the key management and the trust relations, as discussed in Section 3.1.1. If
the end-user trust the cloud party and the real threat is external attackers, the cloud
entity should handle the key split and key management for end-users. Otherwise, if
end-users do not trust the cloud entity, the end-user must involve a trusted third

64 5. DESIGN

party or handle the key management itself. Regardless of who handles the key
management, if the sensor and the entity responsible for key management agree upon
one key and split the key into confidentiality and integrity parts, there is only a need
for one key exchange for the sensors. The entity can further derive and distribute the
necessary key parts to the other entities. Although the sensors must perform costly
operations, it is less expensive as it requires one key exchange rather than two.

5.2 Suggestions for different solutions

As concluded in Chapter 4, one can use AEAD algorithms to ensure confidentiality
and integrity in IoT devices. The thesis has discussed using two independent keys
or splitting a key into integrity and confidentiality parts. This section will continue
the work from Chapter 4 and explore and propose cryptographic design solutions for
the cloud-IoT architecture to fulfill requirements from Section 1.2. The designs are
quite different in implementation, resource usage, and key management. The design
solutions this section will propose are suitable for different situations depending on
trust relations, requirements of the constrained devices, and metadata requirements.

5.2.1 Double AEAD

Double AEAD involves performing authenticated encryption on the data twice. In
such a case, there is a need for two separate keys. This section will refer to the two
AEAD keys as K1 and K2. The IoT sensor would possess both keys, the end-user
would obtain K1, and the cloud would need K2. The keys are defined below:

– K1 : Encrypt data between sensor and end-user.

– K2 : Encrypt data between sensor and cloud.

In the authenticated encryption, the sensor first encrypts data with K1, and the
output is encrypted once more with K2. The following expression demonstrates
double encryption:

Enc(K1, P) = C1 −→ Enc(K2, C1) = C2

The double-encrypted ciphertext, C2, is sent to the cloud party from the sensor. As
the cloud possesses the key K2, it decrypts C2 with the following computation:

Dec(K2, C2) = C1 or INVALID

The cloud verifies the integrity and decrypts the first layer of the ciphertext. Despite
decrypting the first layer, there is no disclosure of sensitive data because of the
double encryption. Further, the cloud sends the ciphertext C1 to the end-user. This

5.2. SUGGESTIONS FOR DIFFERENT SOLUTIONS 65

Figure 5.3: Architecture with double AEAD encryption.

party possesses K1 and can decrypt C1: Dec(K1, C1) = P or INVALID. Figure 5.3
illustrates the process of end-to-end encryption with double encryption.

Sensors can perform double AEAD encryption with algorithms that allow for
implementations on IoT sensors. Section 4.3 discussed the implementation of AEAD
algorithms on IoT sensors. If the sensors have hardware accelerations and support
AES, CCM or GCM are the best approaches. Deciding between the two depends
on what requirements are important for the solution. If features such as parallel
encryption and good performance are important, and the sensor implementation
allows for efficient multiplication in the Galois field, GCM is the best approach.
Otherwise, CCM could be the best solution as it is cheaper to implement. However, if
hardware acceleration is not an alternative for the sensors, a software implementation
such as ChaCha20-Poly1305 is a suitable approach. It all depends on the environment,
equipment, requirements, and the situation.

The positive aspect of double encryption with AEAD algorithms is that it allows
the cloud party to receive encrypted metadata from the sensor. Sensitive metadata
such as sensor information, data type, timestamps, and status messages can be
encrypted between the sensor and the cloud. Encrypting metadata is the best
solution to avoid attackers sniffing such information. Otherwise, the metadata
discloses information about the sensor, which might lead to side-channel attacks
or breaking privacy policies. AEAD algorithms are secure, and if the sensor data
is encrypted twice with AEAD, the sensor data is well protected. However, there
are negative sides to this approach. The solution is not optimal for IoT sensors.
It requires many cryptographic operations, consumes much battery, and requires
key management of several keys. As the encryption takes place twice for each data
packet, it drains the battery much faster. Therefore, this approach is only in favor if
securing data transmissions is the main priority. If the IoT sensors have sufficient
resources to perform double encryption, and the reduced lifetime of sensors is not
that critical, it could be a suitable approach. Otherwise, one should consider other

66 5. DESIGN

Figure 5.4: Keys and algorithms needed to protect the data in this architecture.

solutions.

5.2.2 AEAD with additional MAC

Another reasonable approach is to use an AEAD algorithm for authenticated en-
cryption of the sensor data while introducing a MAC for the integrity check in the
cloud. The sensor can use an AEAD algorithm to protect the sensor data between
the sensor and the end-user. If the sensor has metadata or other information the
cloud wants to obtain, it can be included in the authenticated AD. This approach
does not keep the metadata confidential, but the integrity prevents attackers from
tampering with the metadata. For the cloud party to verify the integrity, it can
verify the MAC upon the AEAD encryption. In this way, one protects the sensor
data when pushing it to the cloud for storage and processing. Figure 5.4 illustrates
the parties that should possess the different keys. The keys are defined below:

– KC : Key for combined confidentiality and integrity (AEAD).

◦ Must be known by IoT sensor and end-user.

◦ This key ensures authenticated encryption of the sensor data.

– KM : MAC Key for integrity.

◦ Must be known by IoT sensor and cloud service.

◦ This key allows the cloud party to verify the integrity of the AEAD
encrypted sensor data and ensure that it stores legitimate data.

5.2. SUGGESTIONS FOR DIFFERENT SOLUTIONS 67

Figure 5.5: Authenticated encryption with GCM mode and GMAC authentication.

GCM mode and GMAC

GCM with additional GMAC is one approach of AEAD with additional MAC.
GMAC is the authentication-only variant of GCM, introduced in Section 4.2.2. Using
GMAC, it is possible to generate a MAC upon a message by only passing AD into
the algorithm. If the sensor first encrypts sensor data with AEAD and passes the
ciphertext and any metadata into the GMAC, it will generate an authentication tag
on the GCM output.

This approach is possible with the two defined keys, KC and KM . The sensor
first performs authenticated encryption using GCM mode: GCM(KC , IV, P, AD) −→
C||T1. Further, the output of the authenticated encryption, including metadata
MD, is the input of the GMAC computation. The input of the GMAC will be
referred to as message M , where M = C||T1||MD. The GMAC computation is:
GMAC(KM , IV, M) −→ T2. The sensor sends the outputs of GCM and GMAC to
the cloud party: C, T1, and T2. The cloud can verify the authentication tag T2
with the MAC key KM . The validation occurs with the following computation:
GMAC(KM , IV, M) = T ′

2. If T2 = T ′
2, the cloud can process the encrypted data and

read the related metadata. The end-user receives C and T1 from the cloud and can use
KC to perform authenticated decryption: GCM(KC , IV, C, AD, T1) −→ P or FAIL.
The entity obtains the sensor data if the authentication tag is verified. Figure 5.5
illustrates the authenticated encryption with GCM and GMAC between the IoT
sensor, cloud, and end-user.

CCM mode and CMAC

AEAD with additional MAC works the same way for CCM and CMAC. The two keys,
KC and KM , would be used in the same manner described for GCM with GMAC.
The only difference, in this case, is that one uses CCM for authenticated encryption
and CMAC for the additional authentication tag. CMAC is the authentication-only
variant of CCM as it uses CCM with an empty payload.

68 5. DESIGN

The choice between GCM and CCM depends on the implementation and appli-
cation. One must look at the constrained devices and decide on the most suitable
implementation. One certain thing is that if AES-GCM or AES-CCM is implemented,
it costs nothing more in terms of implementation to introduce an additional MAC
(GMAC or CMAC). The MAC schemes are already a part of the AEAD algorithms
and perform the same operations. However, the additional MAC increases the cost
of battery power, computations, and memory, as some additional operations take
place per message. However, one must decide on this tradeoff, and if the cloud party
need to verify the integrity, this could be a suitable approach.

Compared with double encryption, one can reduce the number of encryption
operations needed per message with n operations when using AEAD with additional
MAC instead of double AEAD encryption, where n is the number of blocks required.
For instance, if one encrypts a plaintext in CCM that requires two blocks, double
CCM encryption requires eight encryption operations, while CCM with CMAC
requires six encryption operations. For GCM, double GCM encryption of two data
blocks requires six GHASH and six encryption operations, while GCM with GMAC
requires six GHASH and four encryption operations. This example did not include
AD, and the number of operations can vary depending on the AD included and
the length of messages and values. For instance, when the ciphertext from the first
authenticated encryption is expanded with the generated MAC tag, it can increase
the input length with an additional block in the second AEAD/MAC computation.

5.2.3 ChaCha20-Poly1305 with split keys

Section 4.2.4 discussed the ChaCha20-Poly1305 algorithm. The AEAD algorithm
encrypts data using ChaCha20 and generates a MAC tag with Poly1305. This section
will propose a modified version of ChaCha20-Poly1305 that meets the confidentiality
and integrity requirements for the cloud-IoT architecture. Since the algorithm
follows the EtM approach, it allows for verifying the MAC without decrypting the
ciphertext. Therefore, the idea is to let the intermediate part, the cloud, verify the
MAC without reading the sensitive data. When the end-user obtains encrypted data,
it can verify the MAC and decrypt it. The described flow is summarized in Figure
5.6, which illustrates a flowchart of the desired authenticated encryption using the
ChaCha20-Poly1305 algorithm.

Split a key into integrity and confidentiality keys

In order to realize the desired flow described in Figure 5.6, it must be possible for
the cloud party to verify the authentication tag but impossible to decrypt the data.
Having one integrity key and one confidentiality key is reasonable for ChaCha20-
Poly1305. This section defines a MAC key, Km, and a confidentiality key, Kc. As

5.2. SUGGESTIONS FOR DIFFERENT SOLUTIONS 69

Figure 5.6: Flowchart of the authenticated encryption in the cloud-IoT architecture
with ChaCha20-Poly1305.

70 5. DESIGN

Table 5.1: The inputs of the modified ChaCha20-Poly1305 algorithm

Input values Length
Integrity key Km 256-bit

Confidentiality key Kc 256-bit
Nonce 96-bit

Plaintext Arbitrary length
AD Arbitrary length

one can see in Figure 5.6, the illustration includes the key parts and their use. The
two key parts are described below.

– Kc : Confidentiality key.

◦ Must be known by IoT sensor and end-user.

◦ The key must be able to encrypt the plaintext and decrypt ciphertext so
that the sensor data is kept confidential for everyone except those who
possess the key.

– Km : MAC key.

◦ Must be known by IoT sensor, cloud service, and end-user.

◦ The key must generate and verify MAC tags so that everyone who possesses
the key can check if the message is validated.

Since the key is divided into two parts, the algorithm needs to consider an extra
input. Table 5.1 summarizes all the modified ChaCha20-Poly1305 algorithm inputs
and their corresponding lengths. The inputs are Km, Kc, nonce, plaintext, and AD.
The combined key size of Km and Kc is quite big and not optimal for all sensors.
However, splitting keys would allow one key exchange between the sensor and the
trusted key management entity. Also, it is possible to reduce the size. For instance,
one can reduce the integrity key in size to 128-bits. The algorithm only uses the
integrity key to generate the one-time key, Kotk = Kr||Ks, used in Poly1305, which
can be done in other ways requiring smaller keys. The ChaCha20 block function
requires a 256-bit key to output a 512-bit value where the first 256 bits are used as the
one-time key. Instead of generating one-time keys with the ChaCha20 block function,
one can generate keys with PRFs or other ways that require smaller keys as long as
every Poly1305 computation receives a unique 32-byte one-time key. The Km is the
same during a session, and only the Kotk must be unique per MAC computation.

5.2. SUGGESTIONS FOR DIFFERENT SOLUTIONS 71

Authenticated encryption with Km and Kc

If one split the key in ChaCha20-Poly1305 into two keys, Km and Kc, the authenti-
cated encryption would look like this:

ChaCha20-Poly1305(Km, Kc, N, P, AD) −→ C, T

The algorithm performs encryption by generating a keystream using the ChaCha20
block function with the confidentiality key and the nonce. The keystream is XOR-ed
with the plaintext and outputs a ciphertext. The expression below illustrates the
encryption:

ChaCha20-block(Kc, N) −→ KS

KS ⊕ P −→ C

Further, the algorithm must generate an authentication tag using the MAC key Km.
The MAC generation consists of two steps. First, Km is used to generate a one-time
key. The one-time key is divided into two parts, Kr and Ks. Further, the one-time
key is used with the ciphertext and AD to generate the MAC tag. The Poly1305
authenticator divides messages into blocks of 16 bytes. Therefore there may be a
need to add padding to the last blocks of the ciphertext and AD. The operations of
the MAC generation are illustrated below:

Poly1305-KeyGen(Km, N) −→ ChaCha20-block(Km, N) −→ Kr, Ks

Poly1305(Kr, Ks, C, AD) −→

Poly1305
(

Kr, Ks, C, padC , AD, padAD, len(C), len(AD)
)
−→ T

Figure 5.7 illustrates how the authenticated encryption in ChaCha20-Poly1305 would
look if one split the key K into a MAC key Km and confidentiality key Kc. Although
the nonce (N) is mentioned twice in the illustration, it is the same value used in
the MAC generation and encryption. However, the nonce must be unique for every
invocation with the same key.

Verifying the MAC with Km

The intermediate party should be able to verify the authentication tag using the
integrity key Km. The cloud party already possesses the key Km, assuming it has
been agreed upon before the session. When the IoT sensor sends data to the cloud
party, the cloud party receives N , T , AD, and C. In order to compute the new tag
(T ′), the cloud party performs the following operations:

ChaCha20-block(Km, N) −→ Kr, Ks

Poly1305(Kr, Ks, C, padC , AD, padAD, len(C), len(AD)) −→ T ′

72 5. DESIGN

Figure 5.7: Authenticated encryption in the modified ChaCha20-Poly1305 algorithm
using two keys, Km and Kc.

The cloud compares the output of the MAC computation with the tag received. If
T = T ′, the entity knows that the message received is the same as the message sent
by the sender. Figure 5.8 shows how the middle party can recompute the MAC tag
using only the MAC key Km.

Authenticated decryption with Km and Kc

As the sensor data have been authenticated and encrypted with Km and Kc, it
should be possible to verify and decrypt the data with the same keys. The end-user
possesses both Km and Kc. The authenticated decryption would look like this:

ChaCha20-Poly1305(Km, Kc, N, AD, C, T) −→ P

The end-user can verify the integrity by performing the same computation as the
cloud party. Figure 5.8 illustrates integrity verification. If the tag is validated, the
decryption occurs with the following computation:

ChaCha20-block(Kc, N, C) −→ KS

KS ⊕ C −→ P

Figure 5.9 illustrates the decryption at the end-user in ChaCha20-Poly1305 with the
keys Km and Kc.

5.2. SUGGESTIONS FOR DIFFERENT SOLUTIONS 73

Figure 5.8: MAC verification in the modified ChaCha20-Poly1305.

Figure 5.9: The modified ChaCha20-Poly1305 decryption algorithm using two keys.

74 5. DESIGN

5.2.4 EAX with split keys

Although EAX is not well established compared to the other AEAD algorithms, it
can be used in the cloud-IoT architecture with split keys. Let us assume that a key
is split into Kc and Km, with the same definition as ChaCha20-Poly1305 with split
keys discussed in Section 5.2.3.

Authenticated encryption with Km and Kc

The sensor would have to generate the ciphertext and MAC using the two key parts.
The ciphertext is computed by calculating C = CTR

(
Kc, OMAC0

Km
(N), P

)
and the

authentication tag generated by:

T = MSBt

(
OMAC0

Km
(N)⊕OMAC1

Km
(AD)⊕OMAC2

Km
(C)

)
Verifying the MAC with Km

The cloud party would verify the integrity using only the MAC key Km as only the
three OMACs computations are necessary to re-generate the MAC:

T = MSBt

(
OMAC0

Km
(N)⊕OMAC1

Km
(AD)⊕OMAC2

Km
(C)

)
Authenticated decryption with Km and Kc

The end-user would perform authenticated decryption by verifying the integrity with
the same computation as the cloud party using Km and perform decryption using
Kc:

P = CTR
(

Kc, OMAC0
Km

(N), C
)

Figure 5.10 illustrates the authenticated decryption with two keys, Km and Kc.
The cloud can perform the operations to the left in the illustration that use Km

to verify the integrity. The advantage of EAX is its flexibility. The block size in
the algorithm can be of arbitrary length, but this thesis considers the mode of
operation based on the 128-bit block cipher AES. The scheme supports plaintexts,
ADs, and nonces of arbitrary length. The length of the nonce and the tag are optional,
depending on the desired security from the integrity guarantees [BRW04]. Table 5.2
summarizes the inputs of this EAX version with split keys and their corresponding
lengths.

This approach would allow the sensor and the trusted key management party
to exchange one key of 256-bits that can be split into two parts. Also, it allows for
shorter nonces and MAC tags, as they can be specified in the desired length. Shorter
input values are positive for constrained devices, but they must be of an appropriate

5.3. DISCUSSION OF THE SOLUTIONS 75

Figure 5.10: The modified EAX decryption algorithm using two keys.

Table 5.2: The inputs of the modified EAX algorithm

Input values Length
Integrity key Km 128-bit

Confidentiality key Kc 128-bit
Nonce Arbitrary length

Plaintext Arbitrary length
AD Arbitrary length

security level. EAX with split keys is an appropriate solution that could solve this
thesis’s confidentiality and integrity requirements.

Today, the use of EAX is limited. There is another version of EAX, called
EAX-prime, used in the smart grid standard ANSI C12.22, but it was broken in 2013
[MLMI13]. EAX is provable secure, but not NIST-approved, and many choose GCM
over EAX because of its parallelization and performance. Although it is not widely
established today, it could be a solution to the problems in this thesis.

5.3 Discussion of the solutions

There are a lot of different solutions for authenticated encryption in the cloud-IoT
architecture. This chapter has discussed double AEAD encryption, AEAD with
additional MAC, and splitting keys in ChaCha20-Poly1305 and EAX. Choosing the
best solution depends on different factors; use cases, capabilities of the IoT sensors,
security threats, priorities, performance, and cost are some of them. This section will
compare the proposed approaches and discuss their advantages and disadvantages.

76 5. DESIGN

Deciding on the algorithms is greatly affected by the sensor’s capabilities. Many
different microcontrollers with different CPUs and resources support various calcu-
lations and algorithms. As mentioned in Chapter 4, the AES algorithms are fast
on dedicated hardware, but if sensors lack such accelerations, the performance is
considerably lower. For instance, instruction sets such as AES-NI and PCLMULQDQ
are designed to optimize hardware implementations of AES. However, some con-
strained microcontrollers for IoT sensors do not have the possibility for such hardware
acceleration. IoT sensors may consist of everything from 8-bit to newer ARM 32-bit
microcontrollers. Common for all is that they have a low clock speed, little RAM,
little flash, and constrained battery life. Therefore, the involved parties must consider
the solutions carefully and discuss performance and security tradeoffs.

Memory requirements of the IoT sensors are one of many performance metrics
that play a part in choosing a suitable solution. When looking at ROM, the memory
required to store algorithms, static data, and keys, different solutions have different
requirements. Since ChaCha20-Poly1305 requires a software implementation, sensors
must store it in the ROM. The same goes for parts of AES in some cases; if there
is a lack of hardware support, an S-box lookup table can be stored in memory.
Additionally, sensors must store the cryptographic keys in the ROM. All discussed
solutions require two key parts, but the key sizes vary. AES is defined for key
sizes of 128, 192, and 256 bits, and one can choose two keys of 128-bit to minimize
the memory consumption. Splitting keys in EAX is the best approach for memory
consumption as the key size, nonce length, and MAC tag can be chosen based on
the implementation because of the algorithm’s flexibility. This allows shortening the
values to the minimum security level if desired to reduce the cost of the constrained
devices as much as possible.

The ChaCha20-Poly1305, on the other hand, is specified with a 256-bit key in
RFC 8439 [NL18]. If two 256-bit key parts are needed, it is more costly than the
AES approaches for ROM. Although the ChaCha20 cipher requires a 256-bit key, one
could use the Poly1305 authenticator with a 128-bit key if one can derive the one-time
key differently than deriving the key with the ChaCha20 block function. Although
ChaCha-Poly requires more ROM than the AES approaches, another debate worth
discussing is whether 128-bit keys are sufficient. AES with 128-bit keys is considered
secure today [Bar20], but if Moore’s law continues to apply, it is uncertain how
many years 128-bits of security will be sufficient. As this paragraph states, the best
solution depends on the algorithms, ROM and RAM capabilities, and desired security
strength when it comes to memory metrics.

When it comes to attacks, one must discuss different security concerns. AES
and ChaCha20-Poly1305 have various security advantages in preventing side-channel
attacks [NJJ+18]. As mentioned in Section 4.2.4, the stream cipher ChaCha20 is

5.3. DISCUSSION OF THE SOLUTIONS 77

resistant to timing side-channel attacks. On the other hand, AES can be vulnerable
to such attacks. When microcontrollers do not have hardware acceleration, AES
often implements lookup tables obtaining values from array indexing instead of
runtime computations. Implementations of lookup tables are sometimes vulnerable
to cache timing attacks. When sensors use lookup tables, the CPU’s memory
cache leaks memory access patterns and information that discloses knowledge about
the cryptographic primitives [OST06]. Specific implementations can mitigate the
vulnerability on behalf of the performance. However, if hardware accelerators are
in place, there is no need to implement lookup tables. Then, computations run in
constant time, which mitigates the vulnerabilities. Hardware accelerators, however,
introduce other vulnerabilities such as power side-channel attacks [OGOP04]. A
power side-channel attack involves analyzing the electrical activity on cryptographic
hardware devices. Although AES is the most exposed, both AES and ChaCha20
can be vulnerable to power side-channel attacks [NJJ+18]. To mitigate this, one
must mask operations used in the algorithms. Implementing resistance to power
side-channel attacks for both algorithms is possible, but protecting AES against
power side-channel attacks requires less overhead than for ChaCha20.

Several studies have shown that ChaCha20-Poly1305 is faster than AES-128 in
GCM or CCM mode on microprocessors such as ARM Cortex-M4, which does not
have AES hardware acceleration [DSS17] [SGTW20] [TLSIV]. The performance of
EAX mode is not stated as studies choose CCM or GCM over it, but the performance
is close to CCM but often faster because of its performance attributes [BRW04].
However, OMACs can not be parallelized, so it can not compete with GCM in
performance. The ChaCha20 stream cipher is fast because it uses ARX operations:
addition, rotation, and XOR. As such operations are very CPU-friendly, the stream
cipher is faster than AES on software platforms. A study evaluating the performance
of symmetric key algorithms on IoT devices showed how much faster ChaCha20-
Poly1305 is than AES-GCM on devices without hardware acceleration [SLdP+19b].
The test was performed using smartphones with different ARM CPUs deployed in IoT
devices. The two CPUs tested were ARMv7-a Cortex-A7 and ARMv8-a Cortex-A53.
The first one was used without AES hardware acceleration, while the latter was
tested both with and without. Table 5.3 illustrates some of the results of the study.
The table shows the average throughput of the different algorithms and packet sizes.
Packet sizes are given in mebibytes (MiB) and the throughput in mebibytes per
second (MiB/s). For reference, 1 MiB = 10242 bytes = 1 048 576 bytes.

As the table illustrates, the ChaCha20-Poly1305 is the best approach if no
hardware acceleration is supported. When looking at the results for ARMv7-a, one
can see that the throughput of ChaCha20-Poly1305 is approximately three times
faster than AES-128-GCM. On ARMv8-a, the ChaCha20-Poly1305 is about twice
as quick as AES. However, when including the hardware acceleration, the AES is

78 5. DESIGN

Algorithm/ ARMv7-a ARMv8-a
Packet size 1MiB 5MiB 10MiB 1MiB 5MiB 10MiB

AES-128-GCM 12,528 12,935 12,989 77,539 78,058 77,586
AES-256-GCM 11,073 11,286 11,313 59,882 61,793 61,67

ChaCha20-Poly1305 36,805 38,777 38,951 134,081 137,656 138,336
AES-128-GCM-HW X X X 325,789 414,087 426,964
AES-256-GCM-HW X X X 299,368 399,009 391,087

Table 5.3: Average throughput (MiB/s) for AEAD encryption of different packet
sizes [SLdP+19b].

significantly faster. In this case, the AES with optimized instructions is three times
faster than ChaCha20-Poly1305. The study measured battery drain as well, and as
expected, ChaCha20-Poly1305 drains less battery than AES, but AES with hardware
optimization gives the best result.

Choosing the right design depends on the main priorities of the system. It
depends on the devices, use cases, security threats, and preferences. If the sensors
have hardware accelerations, it is natural to look at AES-CCM, AES-EAX, or AES-
GCM. If the cloud needs to receive sensitive metadata that should be confidential,
double encryption is appropriate. However, although hardware acceleration is in
place, double encryption will affect factors such as battery life and performance in a
negative manner. Otherwise, GCM mode with GMAC or CCM mode with CMAC
are good alternatives. If implementation cost and battery life are important, CCM
mode with CMAC are the cheapest of the two solutions. Although EAX is not widely
established or NIST-approved, it could be implemented using the approach with
splitting keys. It is a flexible algorithm that can shorten input values, making it
more suitable for constrained devices.

If a sensor does not have hardware support for AES, the ChaCha20-Poly1305
is faster than the block cipher algorithms. It is resistant to timing attacks, gives
sufficient security strength, and solves all confidentiality and integrity requirements
if split keys are possible. Overall, ChaCha20-Poly1305 is a decent solution for all
scenarios. Although AES with hardware accelerations performs better than others,
the difference is not that big if one compares ChaCha20-Poly1305 with double AES
encryption or AES-GCM mode with additional GMAC. ChaCha20-Poly1305 with
split keys would only need to run once per data packet and only need one key exchange
per session. The algorithm can be implemented and performs well on most devices.
Implementations on constrained devices such as ATmega328 AVR microcontrollers,
ESP-WROOM-32, ESP8266, ARM Cortex-M4, ARMv7-a, and ARMv8-a, have been
proven to work [DSS17] [SGTW20] [SLdP+19b]. The first two are based on an 8-bit

5.3. DISCUSSION OF THE SOLUTIONS 79

microcontroller, while the others are on 32-bit microcontrollers. Although the 32-bit
outperformed the resource-limited 8-bit ones, a ChaCha20-Poly1305 implementation
is suitable for all the devices.

Table 5.4 summarizes some important factors when comparing the solutions. The
table includes key sizes, block-cipher calls, and ciphertext expansions. In double
AEAD and AEAD with an additional MAC, both GCM and CCM are considered.
EAX is specified with 128 bits, as AES defines this block size. The table contemplates
that the AD is added in the first encryption process when looking at the block-cipher
calls in double AEAD. Otherwise, adding AD in the second encryption process
reduces the number of block-cipher authentication calls. One should also be aware
that the algorithms specify different MAC and nonce lengths. EAX and GCM
specify MAC tags between 0 and 128 bits, ChaCha20-Poly1305 considers tags of
128-bits, and CCM a value from 32 to 128 bits. According to standards, GCM
and ChaCha20-Poly1305 use nonces of 96 bits, CCM 56-104 bits, and EAX a value
between 0 and 128 bits. The length of these values is also something to consider
when deciding on the most suitable approach.

This chapter has discussed different approaches to fulfill the confidentiality and
integrity requirements for the cloud-IoT architecture. The chapter has discussed
splitting keys and how the parties could use the keys. Section 5.2 discussed techniques
such as double encryption, AEAD with additional MAC, and splitting keys in
EAX and ChaCha20-Poly1305. Section 5.3 has discussed the approaches and their
advantages and disadvantages. To choose the best solution, one must consider many
tradeoffs, and it is clear that different techniques are suitable for various use cases.
Overall, the EAX and ChaCha20-Poly1305 approaches seem like the most obvious
choices. As EAX is not that established today, and CCM and GCM are the preferred
block cipher modes, it is interesting to continue focusing on ChaCha20-Poly1305.
The algorithm is specified for TLS 1.3, which means it is more future-oriented than
EAX. The ChaCha20-Poly1305 fits most use cases because of advantages such as
overall performance, implementation on constrained devices, and the possibility for
split keys. The proposal of the modified ChaCha20-Poly1305 has until now only been
explained in theory. In order to confirm that this solution meets the integrity and
confidentiality requirements defined in Section 1.2, the next chapter will examine the
implementation and simulation of the ChaCha20-Poly1305 approach with split keys.

80 5. DESIGN

Double AEAD:

Key size AEAD key 1 128, 192, or 256 bits
AEAD key 2 128, 192, or 256 bits

Block-cipher
calls

Double GCM Encryption: 2× (⌈P/128⌉+ 1)
GHASH: 2× (⌈(AD + P)/128⌉+ 1)

Double CCM 2× (2× ⌈P/128⌉+ ⌈AD/128⌉)
Ciphertext expansion MAC tag ×2

AEAD with additional MAC:

Key size GCM/CCM key 128, 192, or 256 bits
GMAC/CMAC key 128, 192, or 256 bits

Block-cipher
calls

GCM + GMAC Encryption: ⌈P/128⌉+ 2
GHASH: 2× ⌈(AD + P)/128⌉+ 2

CCM + CMAC 2× ⌈P/128⌉+ ⌈AD/128⌉
+⌈(AD + P)/128⌉

Ciphertext expansion MAC tag ×2
ChaCha20-Poly1305 with split keys:

Key size Confidentiality key 256 bits
Integrity key 256 bits (smaller keys possible)

Block-cipher calls N/A
Ciphertext expansion MAC tag

EAX with split keys:

Key size Confidentiality key 128, 192, or 256 bits
Integrity key 128, 192, or 256 bits

Block-cipher calls 2× ⌈P/128⌉+ ⌈AD/128⌉+ ⌈N/128⌉
Ciphertext expansion MAC tag

Table 5.4: Comparison of key sizes, block-cipher calls, and ciphertext expansions of
the design solutions from Chapter 5.

Chapter6Implementation and Validation

This thesis has looked at authenticated encryption approaches that solve the cloud-
IoT architecture’s confidentiality and integrity requirements. The main focus has been
to use an AEAD algorithm where one can separate the integrity and confidentiality
functions. Section 5.2.3 looked at ChaCha20-Poly1305 with split keys as a suitable
technique. In order to validate if the suggested design works, this chapter will focus
on the implementation of ChaCha20-Poly1305 with split keys. The chapter will
describe how it was implemented and verified with test vectors and simulations. The
final part of the chapter will discuss the performance differences between this and
the original implementation. This chapter confirms that the implementation makes
end-users trust the security of IoT sensor data sent through different communication
channels, systems, and services in the cloud-IoT architecture.

6.1 Implementation

The modified ChaCha20-Poly1305 algorithm explained in Section 5.2.3 was imple-
mented at a high level in Python as proof of concept. The implementation builds
on the pseudocode in RFC 8439 [NL18] and Bernstein’s documentation [ChaCha]
[Poly1305]. Some code snippets of the modified version developed in this thesis
will be discussed in this chapter. Additionally, this thesis’s full implementation
and simulation are available on Github [Github]. The implementation shows that
the modified algorithm works as expected, allowing for authenticated encryption,
authenticated decryption, and separate integrity validation.

6.1.1 ChaCha20 and Poly1305

This section will briefely explain the implementation of ChaCha20 and Poly1305
algorithms. The full implementation in this thesis can be found on Github [Github].

The chacha20_block() function generates the pseudorandom keystream. It handles
the ChaCha state as a list and performs addition, XOR, and left rotation in quarter

81

82 6. IMPLEMENTATION AND VALIDATION

rounds. After 20 rounds, the initial state is added to the current state for each
state. Lastly, the final ChaCha state is serialized, and the function outputs a 512-
bit pseudorandom string. The function chacha20_encrypt() defines the ChaCha20
encryption and decryption. Although the function’s name indicates that it handles
encryption, it operates both. The reason for this is that the operations are the same.
The encryption performs Pi ⊕KSi = Ci and decryption Ci ⊕KSi = Pi. With the
same nonce and counter, the functions generate the same keystream.

The function poly1305_key_generation() generates a one-time-key by using
the chacha20_block() function. Further, poly1305_mac() performs the polynomial
operations described in Section 2.5.3. The output of the function is the MAC tag.

6.1.2 ChaCha20-Poly1305 with split keys

The function chacha20_aead_encrypt() is defined with two keys, Km and Kc. Km

generates one-time keys for the MAC computation in poly1305_mac(), and Kc is
used to encrypt the plaintext. This code assumes that the nonce is 96 bits, specified
in RFC 8439. If the nonce is smaller than 96 bits, the specification recommends
adding a constant value. However, this has not been considered in this code as it
defines the nonce as 96 bits. The chacha20_encrypt() function uses the initial value
1 as the counter parameter and increases it for each block in the chacha20_encrypt()
function. The output of chacha20_aead_encrypt() is a ciphertext generated by Kc

and a MAC tag computed with Km. A code snippet of the authenticated encryption
in AEAD ChaCha20-Poly1305 is given below:
def chacha20_aead_encrypt(ad, k_m, k_c, nonce, plaintext):

one_time_key = poly1305_key_generation(k_m, nonce)

ciphertext = chacha20_encrypt(k_c, 1, nonce, plaintext)

mac_data = concatenate_mac_data(ad, ciphertext)

tag = poly1305_mac(mac_data, one_time_key)

return (ciphertext, tag)

def chaCha20_poly1305_authenticated_encryption(k_m, k_c, nonce,

plaintext, ad):

return chacha20_aead_encrypt(k_m = k_m, k_c = k_c, nonce=nonce,

plaintext=plaintext, ad=ad)

The ChaCha20-Poly1305 decryption function is the same as the encryption
function described above, except that the plaintext and ciphertext are interchanged.
The algorithm performs the same operations, but the function outputs the plaintext
and not the ciphertext. The only significant difference is that the decryption process
compares the received MAC tag with the MAC tag computed to verify the integrity.
The MAC validation occurs before the plaintext is returned.

6.1. IMPLEMENTATION 83

The function poly1305_verify_message() is designed to verify the MAC tag
without being able to decrypt the ciphertext. The function uses Km to recompute
the MAC. It compares the generated tag with the received tag, and if they are
the same, the integrity is verified. This function is designed for the intermediate
part of the cloud-IoT architecture that should only verify the integrity. The code is
illustrated below:

def poly1305_verify_message(ad, k_m, nonce, ciphertext):

one_time_key = poly1305_key_generation(k_m, nonce)

mac_data = concatenate_mac_data(ad, ciphertext)

tag = poly1305_mac(mac_data, one_time_key)

return tag

def compare_mac(a, b):

if len(a) == len(b):
if a == b:

return True

else:
return False

def chaCha20_poly1305_authenticate_only(k_m, nonce, ciphertext, mac

, ad):

tag = poly1305_verify_message(k_m=k_m, nonce=nonce, ciphertext=

ciphertext, ad=ad)

return compare_mac(tag, mac)

This implementation has been an attempt to realize split keys in the ChaCha20-
Poly1305 algorithm with a separate function verifying integrity. The code runs as
expected, and the input and output are tested with test vectors and discrete-event
simulations, which Sections 6.2 and 6.3 will describe.

Although this code is a valid implementation of the ChaCha20-Poly1305 algorithm,
there are several things with the code that implementers should assess regarding
the implementation in IoT sensors. The most important thing is that the code
should perform operations in constant time. The reason for this is to avoid side-
channel attacks such as timing attacks. The ChaCha20 stream cipher is already
in constant time as the implementation relies on fixed operations such as XOR,
addition, and rotation. The IoT sensors should implement the Poly1305 algorithm
and its arithmetic operations in constant time. For instance, one must handle the
carry propagation carefully to achieve constant time. There exist many ways of
implementing the arithmetic operations in Poly1305. Bernstein has published a NaCl
library that allows for an efficient implementation that runs in constant time [NaCl].
There also exist several other constant time implementations considered efficient

84 6. IMPLEMENTATION AND VALIDATION

[poly1305-donna] [BearSSL]. One should also implement the comparison of MAC
tags in constant time. The validate function should perform a bitwise comparison
of the received tag and the calculated tag without revealing information about how
long the prefixes of the two tags are identical. An attacker can send many identical
messages with different MAC tags and try to "brute force" the tag by sending it into
the comparison function. If the timing of the comparison reveals how much of a tag is
correct, the attacker can avoid testing all 2128 tags and only try the suffix that seems
to be wrong. Because of this, the comparison function should be a constant-time
function so the attacker cannot reveal how many bits of the tags are identical.

6.2 Running the code with test vectors

This section describes the process of running the code with test vectors to verify that
it performs as expected. The code works on and processes bytes, but for simplicity,
the output of the computations is converted from bytes to hexadecimal to make
it more readable for human eyes. In this scenario, the plaintext is the confidential
sensor data, and the AD is some metadata sent in the clear. The sensor possesses
two keys: the MAC key Km and the confidentiality key Kc. In addition, the sensor
generates a nonce that must be unique for each invocation with the same key Kc.
The parameters that the sensor possesses are illustrated below:

Km = cb8ea58af34fc7e9ddce0f41894e2a024c1c1f2eec1c3c0efedadf4

052a2280d

Kc = a902883257c889d2043ac6a0a7cd1d6bcf63c500e4f57600aa12e50b

17a6343f

Nonce = d6acb6d43a2696732f05cbf2

Plaintext = "Secret message" = 536563726574206d657373616765

AD = "This is AD" = 54686973206973204144

The plaintext and AD are illustrated in both cleartext and hexadecimal. The
algorithm processes them as bytes, but the computations illustrated in this section
perform on the text’s hexadecimal values. The result is still the same. The keys,
Km and Kc, are 256 bits each. Note that the length of the hexadecimal strings is 64,
which in bits are 64× 4 = 256. The nonce is 96 bits, which is a requirement for the
algorithm. The plaintext and AD can be of arbitrary length. In this example, they
are 112 and 80 bits.

6.2.1 Authenticated encryption

Authenticated encryption involves generating a MAC tag and a ciphertext. One can
divide the process into two parts: encrypting the plaintext using ChaCha20 and

6.2. RUNNING THE CODE WITH TEST VECTORS 85

generating a ciphertext from Poly1305.

Encrypting the plaintext using ChaCha20:

The ChaCha20 block function generates a keystream XOR-ed with the plaintext,
outputting an unreadable ciphertext. The ChaCha20 block function generates the
keystream KSenc on the following parameters: Kc, N , and P . The ChaCha20
block function always outputs keystream blocks of 512 bits, regardless of whether
the algorithm uses all bits or not. The following keystream is generated with the
parameters stated above:

KSenc = d601b21a00dcfab6a011857ebd67 91e489ebb6840702fa8ee9

553668f95f06e28eab91e386719c06a130ddff2c916f340f70c314bf0c3c

9e7fe3ce9c5be454c2

Since ChaCha20 is a stream cipher, the keystream must be equally long as the
plaintext. Therefore, only the first 112 bits of the keystream are used in this example.
The following computation takes place to generate the ciphertext:

Ciphertext = Plaintext⊕KSenc = 536563726574206d657373616765 ⊕
d601b21a00dcfab6a011857ebd67 = 8564d16865a8dadbc562f61fda02

The following ciphertext: 8564d16865a8dadbc562f61fda02 is the result
of the encryption function.

Generating a MAC using Poly1305:

After generating a ciphertext, the Poly1305 generates the MAC tag, using Km.
One can divide this process into two operations: generating the one-time key and
generating the authentication tag using the one-time key. In the first operation, the
ChaCha20 block function generates a 512-bit block of keystream KSpoly. The first
256 bits of the keystream are the one-time key. It is divided into two 128-bit values,
Kr and Ks. With the values in this example, the algorithm generates the following
keystream:

KSpoly = c0dd7e8ccbb0bab9697c00e5f24c60e0 78265b1fed44e13c3

7d8c12ac0d3ed47 6c16a8249d1c0f3b283173be54cd33ff03d905cdd61f

03f155c0aff3761bdc04

The one-time key is the first half of Kpoly, Kotk = Kpoly[0:256 bits]:

Kotk = c0dd7e8ccbb0bab9697c00e5f24c60e0 78265b1fed44e13c37

d8c12ac0d3ed47

86 6. IMPLEMENTATION AND VALIDATION

The one-time key is divided into two parts, Kr and Ks:

Kr = c0dd7e8ccbb0bab9697c00e5f24c60e0

Ks = 78265b1fed44e13c37d8c12ac0d3ed47

The two key values are used in the Poly1305 computation. In addition to Kr and
Ks, MAC data is the input of the Poly1305 computation. MAC data is defined as
follows: MAC data = AD || pad(AD) || C || pad(C) || len(AD) || len(C)

The MAC data is: 54686973206973204144 000000000000 8564d16865

a8dadbc562f61fda02 0000 0a00000000000000 0e00000000000000

AD || pad(AD) = 54686973206973204144 000000000000

C || pad(C) = 8564d16865a8dadbc562f61fda02 0000

len(AD) = 0a00000000000000

len(C) = 0e00000000000000

The algorithm always states the length-values in little-endian integers of 64
bits. Little-endian means that one sorts the least significant bytes first. In this
example, the ciphertext length is 000000000000000e in hexadecimal, which can
be converted to the number 14. As 14 bytes is 112 bits (14× 8 = 112), the same as
the plaintext length, it can be verified as correct. The same goes for the AD length
since 000000000000000a = 80 bits. The following Poly1305 computation takes
place, where the output is the MAC tag:

Poly1305(Kr,Ks,MAC data) = 26cd34ef1201da2beb8a1b8f89815ee3

The result of the authenticated encryption is the ciphertext and MAC tag. When
the two values are generated, the IoT sensor sends the following to the receiver:

– Ciphertext = 8564d16865a8dadbc562f61fda02

– MAC tag = 26cd34ef1201da2beb8a1b8f89815ee3

– AD = 54686973206973204144

– Nonce = d6acb6d43a2696732f05cbf2

6.2.2 Authenticated decryption

The receiver receives the AD, nonce, ciphertext, and MAC tag. The end-user possesses
the keys Km and Kc, and the cloud holds Km. Verifying the MAC, the only operation
that the cloud can perform is the first process described in this section.

6.3. SIMULATION AND VALIDATION 87

Verifying the MAC using Poly1305:

When receiving the message, it must first be validated to ensure the consistency of
the data. If the data is different from the data sent by the receiver, it is discarded.
The receiver recomputes the tag with Km as described in Section 6.2.1 and compares
it with the received one. The MAC data, Kr, and Ks are the same values as the
generation. The recomputation of the MAC tag is, therefore:

Poly1305(Kr,Ks,MAC data) = 26cd34ef1201da2beb8a1b8f89815ee3

The generated tag is compared to the received tag:
26cd34ef1201da2beb8a1b8f89815ee3 = 26cd34ef1201da2beb8a1b8f

89815ee3

As the tags are the same, the receiver knows that the data is legitimate. The
verification makes the cloud trust the information it receives and lets it store and
manage the sensor data. The end-user performs the same verification and additionally
performs the decryption.

Decrypting the ciphertext using ChaCha20:

The confidentiality key Kc and nonce are used with the ChaCha20 block function to
generate the keystream KSenc. As long as the parameters are the same, the KSenc

should be the same keystream as the one generated in the encryption. Therefore,
the decryption takes place by XOR-ing the KSenc with the ciphertext:

Plaintext = Ciphertext ⊕ KSenc = 8564d16865a8dadbc562f61fda02 ⊕
d601b21a00dcfab6a011857ebd67 = 536563726574206d657373616765

The following plaintext: 536563726574206d657373616765 is the result of
the decryption function. If the plaintext is converted back from hexadecimal to text,
one can see that the plaintext is the same as the one sent from the sensor:

53 65 63 72 65 74 20 6d 65 73 73 61 67 65 −→ "Secret message"

This example is taken from the implementation of the ChaCha20-Poly1305 with split
keys. It shows that it is possible to encrypt and decrypt messages and verify the
integrity, both as the intermediate part and the receiver.

6.3 Simulation and validation

In order to validate that the code runs as expected and fulfills the confidentiality
and integrity requirements, this work has simulated a small cloud-IoT architecture
in Python. The simulation was done using SimPy, a process-based discrete-event
simulation framework based on Python [SimPy]. The simulation consists of a sensor,

88 6. IMPLEMENTATION AND VALIDATION

Figure 6.1: Screenshot of the output after the simulation of scenario S1 is run.

an intermediate cloud, and an end-user. The sensor and end-user possess Km and
Kc in the simulation, while the cloud possesses only Km. The simulation models
the communication between the sensor, cloud, and end-user. The sensor performs
authenticated encryption and sends it to the cloud. Further, the cloud verifies
the integrity and sends the encrypted data to the end-user. The latter performs
authenticated decryption. However, the described communication flow is the desired
flow. In order to test that all functionality works as desired, the thesis specified three
scenarios:

S1: Data is sent from the sensor to the end-user via the cloud. The sensor performs
authenticated encryption and sends the packet to the cloud. The cloud verifies
the message with Km and sends it to the end-user, performing authenticated
decryption. This is the desired flow.

S2: Data is sent from the sensor to the end-user via the cloud. An attacker performs
a MITM attack between the sensor and the cloud and modifies the ciphertext.
The cloud is not able to verify the integrity and discards the message.

S3: Data is sent from the sensor to the end-user via the cloud. The authentication
tag is changed between the cloud and the end-user. The end-user cannot verify
the integrity when decrypting and discards the message.

All simulations worked as expected and show that the implementation meets
the integrity and confidentiality requirements specified in Section 1.2. All the
described scenarios worked as expected. Figure 6.1 shows a screenshot of the process
communication of scenario S1 in one of the simulations. The simulation illustrates
data packets as JSON strings, where the data is converted to hexadecimal to make it
more readable.

6.4. PERFORMANCE 89

Authenticated encryption
Modified 5, 74 · 10−4 s
Normal 5, 73 · 10−4 s

Difference 1, 00 · 10−6 s

Authenticated decryption
Modified 5, 80 · 10−4 s
Normal 5, 77 · 10−4 s

Difference 3, 00 · 10−6 s

Table 6.1: Performance time of authenticated encryption and authenticated decryp-
tion in seconds.

6.4 Performance

Timing measurements were carried out to verify that the performance of the modified
ChaCha20-Poly1305 does not differ much from the original ChaCha20-Poly1305
specified in RFC 8439. A Python module called timeit was used [Timeit] to measure
the execution time. The thesis performed many timing measurements and calculated
the average. The following functions were measured:

– chacha20_poly1305_authenticated_encryption()

– chacha20_poly1305_authenticated_decryption()

The authenticated encryption and the authenticated decryption were measured.
The measurements executed the following code to measure the authenticated encryp-
tion function:

timeit.timeit(lambda: chacha20_poly1305_authenticated_encryption

(key, nonce, plaintext, ad), number=10000)

The functions were tested five times each to make enough measurements, where
the timeit module performed 10 000 executions every time. After the executions,
the average time was calculated. Table 6.1 shows the performance of authenticated
encryption and authenticated decryption. The times are stated in seconds and are
the average time from the 50 0000 executions. As the table illustrates, there is almost
no difference in performance between the normal and the modified implementation.
The authenticated encryption with split keys uses, on average, 1, 00 · 10−6 seconds
more time than in the normal function. Additionally, the authenticated decryption
takes 3, 00 · 10−6 seconds more than the original implementation. Such numbers are
so small that one considers them negligible.

The performance was calculated on an Intel Core i5-8250U processor with 8 GB
RAM. The result from the performance measurements is not directly transferable
to IoT sensors. The resources on IoT sensors are more limited than this processor.
Additionally, the software implementation of the algorithm would be a more low-

90 6. IMPLEMENTATION AND VALIDATION

level approach than in Python. The performance time should be different on IoT
processors, but the relative differences between the normal implementation and the
one with split keys should not deviate much. Table 6.1 illustrates the performance of
authenticated encryption and decryption in the two implementations.

The function chaCha20_poly1305_authenticate_only() was also tested so it could
be compared to the authenticated decryption function. On average, the function
takes 3, 01 · 10−4 seconds to execute. This time is 2, 79 · 10−4 seconds faster than the
authenticated decryption, which seems reasonable as the function only verifies the
integrity and does not handle decryption.

This thesis has not considered an implementation of the algorithm in constant
time. However, the actual implementation should realize this. Implementers should
implement operations in constant time to avoid side-channel vulnerabilities. Since
this implementation does not consider constant time and is at a high level, the
performance measurements do not provide more usefulness than showing that the
performance of the modified version of ChaCha20-Poly1305 is approximately the
same as the original one.

This chapter has covered the implementation and validation of ChaCha20-
Poly1305 with split keys. The implementation works as expected, and one can
use the AEAD technique while separating the integrity and confidentiality. This
approach allows intermediate parties to only verify the integrity by possessing the
integrity key. The implementation has been validated in simulations and therefore
stands as a good alternative to solving this cloud-IoT architecture’s confidentiality
and integrity requirements.

Chapter7Discussion and Conclusion

This thesis has considered authenticated encryption in the cloud-IoT architecture.
The overall goal was to determine how end-users can trust the security of IoT sensor
data sent through different communications channels, systems, and services. As
specified in the introduction, protecting the data from attackers using integrity and
confidentiality mechanisms was the main focus. Since all sensor data goes through an
intermediate cloud party, the motivation for this project was to meet the requirements
mentioned in Section 1.2. This chapter includes a discussion and conclusion of the
work performed in this thesis. The discussion reflects on the work’s process, findings,
and limitations, and the conclusion explains how the result has answered the research
questions. As a continuation of this work, the chapter ends by discussing the future
work of this thesis.

7.1 Discussion

The work in this thesis has followed the design cycle to find a solution to the challenges
of securing data in the cloud-IoT architecture described in Chapter 1. Starting with
defining the scope by identifying the stakeholders and their goals, then specifying
all requirements, the thesis worked on designing a solution. The design focused on
building on and using known algorithms and standards. This step required research
and discussion of the various tradeoffs and approaches. The design solution was
validated through implementation and simulation to predict how it will interact
in the real-world cloud-IoT architecture and validate that the requirements were
satisfied.

The cloud-IoT architecture is complex since it involves numerous parties, con-
straints, systems, security threats, and elements. The thesis has limited the scope
to authenticated encryption of sensor data. Different techniques were explored, and
various advantages and disadvantages were considered in designing a solution. The
rationale is that the best solution depends on the most important priorities decided

91

92 7. DISCUSSION AND CONCLUSION

by the stakeholders. As a result, different tradeoffs in cost, security threats, devices,
and performance were discussed.

The chosen solution is one of many possible approaches to solving the research
questions. Despite discussing solutions involving CBC mode and HMAC, further
research only included AEAD algorithms. Different algorithms could have led to
other alternative solutions. This thesis focused on AEAD since TLS 1.3 has cut out
algorithms considered legacy and only includes AEAD algorithms, as described in
Section 4.1. Another alternative would have been to focus on lightweight algorithms
such as PRESENT, Simon, or Speck, but as discussed in Section 2.3.2, they introduce
some uncertainty and are not widely used. Therefore, the focus was on lightweight
implementations of widespread algorithms that are standardized and proven secure
by trusted authorities.

The thesis has discussed approaches such as double AEAD encryption, AEAD
with additional MAC, and splitting keys in EAX and ChaCha20-Poly1305. Different
tradeoffs and use cases appropriate to different solutions have been described to give
a reflected discussion. ChaCha20-Poly1305 with split keys was implemented and
simulated in python as it generally was the best approach to answer the research
question. The thesis introduced splitting keys in the algorithm to reduce the number
of keys and key exchanges for the IoT sensors. However, this requires a trusted key
management entity. The implementation and simulation in python were performed
to predict how the algorithm would behave in the cloud-IoT context. The simulation
involved scenarios such as MITM and packet sniffing attacks to test that the design
solves the problems stated. The utilization of the algorithm depends on use cases,
but the thesis shows that it offers benefits in many aspects.

Although ChaCha20-Poly1305 with split keys answers the problems stated in
this thesis, there are challenges to this solution. How the system should perform key
management and splitting keys must be specified. Different ways of doing so were
explained, and the appropriate solution depends on stakeholders and their priorities.
Another challenge is that the algorithm requires quite large key sizes, which is a
downside to the solution. The algorithm performs better when encrypting a larger
amount of data simultaneously rather than frequently encrypting small amounts of
data as it always generates keystream blocks of 512-bits. Depending on the size of
the sensor data, the algorithm might generate a lot of unused keystream bits in bulk
encryption which results in unnecessary computations.

This thesis has conducted a more theoretical analysis with a high-level implementa-
tion as a proof of concept. The implementation and validation of ChaCha20-Poly1305
show that the algorithm works in a simulated context. The work in this project has
not been conducted on IoT sensors, but the output and result should be transfer-

7.2. CONCLUSION 93

able to the IoT sensor context. The thesis has discussed in theory the possibility
of ChaCha20-Poly1305 implementations on sensors. The high-level implementa-
tion gives guidance on converting it to a more low-level implementation on sensors.
However, to validate the solution in a more real-world context, there is a need to
implement and test the solution on IoT sensors in the cloud-IoT architecture. The
algorithm should be implemented and tested on IoT sensors before one can draw
great conclusions.

7.2 Conclusion

This master thesis has worked on the following research question: How can end-users
trust the security of IoT sensor data sent through different communication channels,
systems, and services?

This thesis has focused on the design problem of designing an algorithm that fulfills
integrity and confidentiality for end-users while achieving integrity for a third party
in the cloud to make the parties in the cloud-IoT architecture trust the security of
the sensor data. The project has worked on answering research questions RQ1-RQ4,
defined in Section 1.3, to find a solution that would meet these requirements.

In order to find answers to the research questions, authenticated encryption in
symmetric cryptography has been the focus. Because of the limited resources of IoT
sensors, lightweight cryptography is the best approach to ensure the integrity and
confidentiality of sensor data. As discussed in Chapter 2, researchers and organizations
work towards standardizing more lightweight algorithms. Today, constrained devices
often use regular standardized algorithms that support lightweight implementations.
As an answer to RQ1: What type of cryptography and which algorithms should be
used?, this thesis focused on such algorithms. It concluded that stream ciphers, block
ciphers, and hashing algorithms were the best cryptography for constrained devices
because of their low-cost operations. Because of this, AEAD algorithms are the
best approach as they are forward-oriented and use such cryptographic primitives to
combine integrity and confidentiality securely.

This thesis researched splitting keys in AEAD modes and detaching and checking
the MAC separately in such modes to solve research question RQ2: How can the
chosen solution fulfill integrity for a third party in the cloud and achieve integrity
and confidentiality for end-users?. The conclusion is that splitting keys in EAX and
ChaCha20-Poly1305 fulfills integrity for a third party in the cloud and achieves in-
tegrity and confidentiality for end-users. The modified ChaCha20-Poly1305 algorithm
supports software implementations, uses CPU-friendly operations, and is resistant to
timing side-channel attacks. As discussed in the thesis, ChaCha20-Poly1305 works
well in performance and can be implemented on constrained devices. ChaCha20-

94 7. DISCUSSION AND CONCLUSION

Poly1305 with split keys was implemented and simulated at a high level in python
to predict how it would interact in the cloud-IoT context. The implementation and
simulation worked as expected, and it was validated that the solution fulfills the
confidentiality and integrity requirements. Additionally, this work has shown that
the performance of the modified algorithm does not deviate from the original one.

Splitting keys and key management has been discussed to answer RQ3: How does
key management affect possible solutions?. If the sensor and the party responsible for
key management exchange one key where the parties split it into confidentiality and
integrity parts, the solution only requires one key exchange for the sensor per session.
The party responsible for key management must further distribute the necessary
key parts to the involved parties. As discussed in Chapter 3, sensors can securely
agree upon keys with either ECDH or key evolution schemes. These approaches are
the best key exchange protocols when looking at constrained devices. Independent
of the key exchange algorithm the system uses, the algorithms should be based on
pre-shared keys generated and distributed during production to reduce the number
of expensive operations.

The ChaCha20-Poly1305 solution gives both advantages and disadvantages in
contrast to other algorithms. Section 5.3 compared the solution with different
schemes and discussed their pros and cons to answer the research question RQ4:
What advantages and disadvantages does the solution introduce compared to other
schemes?. ChaCha20-Poly1305 is acceptable for constrained devices because of
its low-cost operations. The algorithm performs well in performance and battery
consumption, only out-competed by AES on devices with hardware accelerators.
The ChaCha20-Poly1305 and AES solutions have various security advantages in
preventing side-channel attacks depending on the implementation. Common to
them is that the implementations must consider side-channel attacks carefully. The
ChaCha20-Poly1305 solution is not perfect and introduces challenges in terms of
memory requirements because of potentially large key sizes. However, on the other
hand, it ensures better security strength than AES with 128-bit or 192-bit keys which
is an important security aspect considering Moore’s law. If key sizes are too large
in ChaCha20-Poly1305, EAX stands out as a good solution. It allows for splitting
keys and is the best approach for memory consumption as the key size, nonce length,
and MAC tag can be chosen based on the implementation because of the algorithm’s
flexibility. The comparison showed that ChaCha20-Poly1305 with splitting keys
solution is a good solution in most use cases because of advantages such as overall
performance, implementation on constrained devices, and the possibility for split
keys.

The ChaCha20-Poly1305 with split keys solution described and implemented in
this work lets the cloud party verify the integrity and makes end-users trust the

7.3. FURTHER WORK 95

security of IoT sensor data sent through different communication channels, systems,
and services. This work concludes that the solution answers the research questions
in this thesis.

7.3 Further work

The next reasonable step in future work is implementing the ChaCha20-Poly1305
proposal on IoT sensors and simulating them in the cloud-IoT architecture in the
real-world context. It would be beneficial to implement the solution on IoT sensors
to measure metrics and observe the algorithm in practice. This approach would allow
going into more detail and discovering potential challenges. Further, simulations could
construct attacks such as MITM, packet sniffing, and side-channel attacks to evaluate
the solution. Also, it would be interesting to implement the proposed EAX solution
from Section 5.2.4 on IoT sensors and compare it with the ChaCha20-Poly1305
proposal.

This thesis researched approaches to splitting keys in AEAD modes, where one
could detach and check the MAC separately. The focus ended up on ChaCha20-
Poly1305, but using GCM would also be an interesting approach. GCM follows
the EtM approach, although it includes some small modifications. As mentioned in
Section 4.2.2, it would be interesting to perform some small changes to the algorithm
to perform integrity verification without obtaining the confidentiality key. It should
be researched if it breaks the standard, and if not, it could be implemented in the
cloud-IoT architecture to compare it with the ChaCha20-Poly1305 approach.

Another approach is to investigate key management in ChaCha20-Poly1305 or
EAX in more detail. As key evolution schemes are relatively new, it would be
interesting to implement such schemes and compare them with ECDH to find out if
or how much better key evolution would be for constrained devices. Additionally, a
sensor can have two encryption streams with key evolution: one for the end-user and
another for the cloud service. It would be interesting to research if a sensor could
maintain both these sessions simultaneously so that the cloud can decode one stream
and the end-user the other. This approach would allow for other solutions that could
be useful. If this is feasible or too expensive for IoT sensors would be an interesting
question to answer in future work.

References

[ACF19] G. Avoine, S. Canard, and L. Ferreira, Symmetric-key Authenticated
Key Exchange (SAKE) with Perfect Forward Secrecy, Cryptology ePrint
Archive, Report 2019/444, 2019.

[AP13] N. J. AlFardan and K. G. Paterson, «Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols», in 2013 IEEE Symposium on Security
and Privacy, IEEE Computer Society, 2013, pp. 526–540.

[Bar20] E. Barker, «NIST special publication 800-57 part 1, revision 5», NIST,
Tech. Rep, vol. 16, May 2020.

[BBB+06] E. Barker, E. Barker, et al., Recommendation for key management: Part
1: General. National Institute of Standards and Technology, 2006.

[BCK+17] E. Barker, L. Chen, et al., «Recommendation for pair-wise key-establishment
schemes using discrete logarithm cryptography», National Institute of
Standards and Technology, Tech. Rep., 2017.

[BD15] E. Barker and Q. Dang, «Recommendation for Key Management Part
3: Application-Specific Key Management Guidance», NIST Special Pub-
lication 800-57 Part 3 Revision 1, pp. 1–102, Jan. 2015.

[BDdK+21] C. Boyd, G. T. Davies, et al., Symmetric Key Exchange with Full Forward
Security and Robust Synchronization, Cryptology ePrint Archive, Report
2021/702, 2021.

[BearSSL] Constant-Time in BearSSL. [Online]. Available: https://www.bearssl.
org/constanttime.html (last visited: May 3, 2022).

[Ber05] D. J. Bernstein, «The Poly1305-AES Message-Authentication Code», in
Fast Software Encryption, H. Gilbert and H. Handschuh, Eds., ser. Lec-
ture Notes in Computer Science, vol. 3557, Springer, 2005, pp. 32–49.

[BH09] M. Badra and I. Hajjeh, «ECDHE_PSK Cipher Suites for Transport
Layer Security (TLS)», Internet Eng. Task Force, RFC5489, Fremont,
CA, USA, 2009.

[BK+07] E. B. Barker, J. M. Kelsey, et al., Recommendation for random num-
ber generation using deterministic random bit generators (revised). US
Department of Commerce, Technology Administration, NIST, 2007.

97

https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html

98 REFERENCES

[BKL+07] A. Bogdanov, L. R. Knudsen, et al., «PRESENT: An Ultra-Lightweight
Block Cipher», P. Paillier and I. Verbauwhede, Eds., vol. 4727, Springer,
2007, pp. 450–466.

[BN00] M. Bellare and C. Namprempre, «Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm»,
T. Okamoto, Ed., ser. Lecture Notes in Computer Science, vol. 1976,
Springer, 2000, pp. 531–545.

[BN14] C. Blondeau and K. Nyberg, «Links between Truncated Differential and
Multidimensional Linear Properties of Block Ciphers and Underlying
Attack Complexities», in Advances in Cryptology - EUROCRYPT 2014,
P. Q. Nguyen and E. Oswald, Eds., ser. Lecture Notes in Computer
Science, vol. 8441, Springer, 2014, pp. 165–182.

[BP17] A. Biryukov and L. Perrin, «State of the Art in Lightweight Symmetric
Cryptography», IACR Cryptol. ePrint Arch., p. 511, 2017.

[BR18] E. Barker and A. Roginsky, «Transitioning the use of cryptographic algo-
rithms and key lengths», National Institute of Standards and Technology,
Tech. Rep., 2018.

[BRW03] M. Bellare, P. Rogaway, and D. A. Wagner, «EAX: A Conventional
Authenticated-Encryption Mode», IACR Cryptol. ePrint Arch., p. 69,
2003.

[BRW04] M. Bellare, P. Rogaway, and D. Wagner, «The EAX mode of operation»,
in International Workshop on Fast Software Encryption, Springer, 2004,
pp. 389–407.

[BSS+13] R. Beaulieu, D. Shors, et al., The SIMON and SPECK Families of
Lightweight Block Ciphers, Cryptology ePrint Archive, Report 2013/404,
2013.

[ChaCha] The ChaCha family of stream ciphers. [Online]. Available: https://cr.yp.
to/chacha.html (last visited: Apr. 6, 2022).

[ChaPol] Wikipedia - ChaCha20-Poly1305. [Online]. Available: https://en.wikipedia.
org/wiki/ChaCha20-Poly1305 (last visited: Mar. 28, 2022).

[Che+08] L. Chen et al., «Recommendation for key derivation using pseudorandom
functions», NIST special publication, vol. 800, p. 108, 2008.

[CSRC17] Update to Current Use and Deprecation of TDEA. [Online]. Avail-
able: https://csrc.nist.gov/news/2017/update-to-current-use-and-
deprecation-of-tdea (last visited: Mar. 8, 2022).

[CWE-323] CWE-323: Reusing a Nonce, Key Pair in Encryption. [Online]. Available:
https://cwe.mitre.org/data/definitions/323.html (last visited: May 5,
2022).

[DR08] T. Dierks and E. Rescorla, «The Transport Layer Security (TLS) Pro-
tocol Version 1.2», RFC, vol. 5246, pp. 1–104, 2008.

https://cr.yp.to/chacha.html
https://cr.yp.to/chacha.html
https://en.wikipedia.org/wiki/ChaCha20-Poly1305
https://en.wikipedia.org/wiki/ChaCha20-Poly1305
https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea
https://csrc.nist.gov/news/2017/update-to-current-use-and-deprecation-of-tdea
https://cwe.mitre.org/data/definitions/323.html

REFERENCES 99

[DSS17] F. De Santis, A. Schauer, and G. Sigl, «ChaCha20-Poly1305 authen-
ticated encryption for high-speed embedded IoT applications», 2017,
pp. 692–697.

[Dwo04] M. Dworkin, «Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality», NIST Special
Publication 800-38C, pp. 1–27, May 2004.

[Dwo12] M. J. Dworkin, «Recommendation for block cipher modes of operation:
methods for key wrapping», 2012.

[Dwo16] M. Dworkin, «Recommendation for block cipher modes of operation:
The CMAC mode for authentication», 2016.

[Eri18] R. Eric, «The Transport Layer Security (TLS) Protocol Version 1.3»,
RFC, vol. 8446, pp. 1–160, 2018.

[ET05] P. Eronen and H. Tschofenig, «Pre-Shared Key Ciphersuites for Trans-
port Layer Security (TLS)», RFC, vol. 4279, pp. 1–15, 2005.

[Github] Github repository - haakotj/master-thesis. [Online]. Available: https:
//github.com/haakotj/master-thesis.git (last visited: May 18, 2022).

[GK10] S. Gueron and M. E. Kounavis, «Intel® carry-less multiplication instruc-
tion and its usage for computing the GCM mode», White Paper, p. 76,
2010.

[Gro+17] C. L. C. W. Group et al., «CRYPTREC Cryptographic Technology
Guideline (Lightweight Cryptography)», CRYPTREC Report March,
2017.

[Gut14] P. Gutmann, «Encrypt-then-MAC for Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS)», RFC, vol. 7366,
pp. 1–7, 2014.

[HH18] C. Hung and W. Hsu, «Power Consumption and Calculation Require-
ment Analysis of AES for WSN IoT», Sensors, vol. 18, no. 6, p. 1675,
2018.

[Hou07] R. Housley, «Using AES-CCM and AES-GCM Authenticated Encryp-
tion in the Cryptographic Message Syntax (CMS)», RFC, vol. 5084,
pp. 1–11, 2007.

[IEE20] IEEE, «IEEE Standard for Low-Rate Wireless Networks», IEEE Std
802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020.

[ISO19772] ISO/IEC 19772 - Authenticated Encryption. [Online]. Available: https:
//www.iso.org/standard/81550.html (last visited: Jan. 31, 2022).

[ISO29167-21] ISO/IEC 29167-21:2018 Information technology - Part 21: Crypto suite
SIMON security services for air interface communications. [Online].
Available: https://www.iso.org/standard/70388.html (last visited:
Mar. 4, 2022).

https://github.com/haakotj/master-thesis.git
https://github.com/haakotj/master-thesis.git
https://www.iso.org/standard/81550.html
https://www.iso.org/standard/81550.html
https://www.iso.org/standard/70388.html

100 REFERENCES

[ISO29167-22] ISO/IEC 29167-22:2018 Information technology - Part 22: Crypto suite
SPECK security services for air interface communications. [Online].
Available: https://www.iso.org/standard/70389.html (last visited:
Mar. 4, 2022).

[ISO29192] ISO/IEC 29192-2:2019 Information security - Lightweight cryptography
- Part 2: Block ciphers. [Online]. Available: https : //www. iso . org/
standard/78477.html (last visited: Mar. 6, 2022).

[JdOB+11] M. A. S. Jr., B. T. de Oliveira, et al., «Comparison of Authenticated-
Encryption schemes in Wireless Sensor Networks», in IEEE 36th Con-
ference on Local Computer Networks, C. T. Chou, T. Pfeifer, and A. P.
Jayasumana, Eds., IEEE Computer Society, 2011, pp. 450–457.

[Jea16] J. Jean, TikZ for Cryptographers, https://www.iacr.org/authors/tikz/,
2016.

[Jon02] J. Jonsson, «On the security of CTR + CBC-MAC», K. Nyberg and
H. M. Heys, Eds., ser. Lecture Notes in Computer Science, vol. 2595,
Springer, 2002, pp. 76–93.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti, «HMAC: Keyed-Hashing for
Message Authentication», RFC, vol. 2104, pp. 1–11, 1997.

[Kra01] H. Krawczyk, «The order of encryption and authentication for protecting
communications (Or: how secure is SSL?)», IACR Cryptol. ePrint Arch.,
p. 45, 2001.

[LCM+16] A. Langley, W. Chang, et al., «ChaCha20-Poly1305 Cipher Suites for
Transport Layer Security (TLS)», RFC, vol. 7905, pp. 1–8, 2016.

[LDS09] A. H. Lashkari, M. M. S. Danesh, and B. Samadi, «A survey on wireless
security protocols (WEP, WPA and WPA2/802.11i)», in 2009 2nd
IEEE International Conference on Computer Science and Information
Technology, 2009, pp. 48–52.

[Lee14] C. Lee, «Biclique cryptanalysis of PRESENT-80 and PRESENT-128»,
J. Supercomput., vol. 70, no. 1, pp. 95–103, 2014.

[LL15] I. Lee and K. Lee, «The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises», Business Horizons, vol. 58, no. 4,
pp. 431–440, 2015.

[MA20] I. Mohiuddin and A. Almogren, «Security Challenges and Strategies for
the IoT in Cloud Computing», in 2020 11th International Conference
on Information and Communication Systems, Apr. 2020, pp. 367–372.

[MBSM16] K. McKay, L. Bassham, et al., «Report on lightweight cryptography»,
National Institute of Standards and Technology, Tech. Rep., 2016.

[MBTM17] K. McKay, L. Bassham, et al., Report on Lightweight Cryptography,
Mar. 2017.

https://www.iso.org/standard/70389.html
https://www.iso.org/standard/78477.html
https://www.iso.org/standard/78477.html
https://www.iacr.org/authors/tikz/

REFERENCES 101

[McG05] D. A. McGrew, «Efficient Authentication of Large, Dynamic Data
Sets Using Galois/Counter Mode (GCM)», in 3rd International IEEE
Security in Storage Workshop (SISW 2005), IEEE Computer Society,
2005, pp. 89–94.

[ML16] The internet of things is in your future - the law says so! [Online].
Available: https://www.techtarget.com/iotagenda/blog/IoT-Agenda/
The-internet-of-things-is-in-your-future-the-law-says-so (last visited:
May 10, 2022).

[MLMI13] K. Minematsu, S. Lucks, et al., «Attacks and Security Proofs of EAX-
Prime», S. Moriai, Ed., ser. Lecture Notes in Computer Science, vol. 8424,
Springer, 2013, pp. 327–347.

[Mor07] D. Morris, «Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC», NIST Special Publication
800-38D, pp. 1–39, Nov. 2007.

[MV04] D. McGrew and J. Viega, «The Galois/counter mode of operation
(GCM)», submission to NIST Modes of Operation Process, vol. 20,
pp. 0278–0070, 2004.

[NaCl] NaCl: Networking and Cryptography library. [Online]. Available: https:
//nacl.cr.yp.to/ (last visited: May 3, 2022).

[Nan09] M. Nandi, «Fast and Secure CBC-Type MAC Algorithms», in Fast
Software Encryption, 16th International Workshop, FSE 2009, Leuven,
Belgium, February 22-25, 2009, Revised Selected Papers, O. Dunkelman,
Ed., ser. Lecture Notes in Computer Science, vol. 5665, Springer, 2009,
pp. 375–393.

[NBT20] N. Nguyen, D. Bui, and X. Tran, «A Lightweight AEAD encryption
core to secure IoT applications», IEEE, 2020, pp. 35–38.

[NJJ+18] Z. Najm, D. Jap, et al., «On Comparing Side-channel Properties of
AES and ChaCha20 on Microcontrollers», in 2018 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS), 2018, pp. 552–555.

[NL18] Y. Nir and A. Langley, «ChaCha20 and Poly1305 for IETF Protocols»,
RFC, vol. 8439, pp. 1–46, 2018.

[NSAcyber] Simon and Speck bibliography. [Online]. Available: https://nsacyber.
github.io/simon-speck/bibliography/ (last visited: Mar. 6, 2022).

[OGOP04] S. Ors, F. Gurkaynak, et al., «Power-analysis attack on an ASIC AES im-
plementation», in International Conference on Information Technology:
Coding and Computing, vol. 2, 2004, 546–552 Vol.2.

[OST06] D. A. Osvik, A. Shamir, and E. Tromer, «Cache Attacks and Coun-
termeasures: The Case of AES», in Topics in Cryptology - CT-RSA,
D. Pointcheval, Ed., ser. Lecture Notes in Computer Science, vol. 3860,
Springer, 2006, pp. 1–20.

https://www.techtarget.com/iotagenda/blog/IoT-Agenda/The-internet-of-things-is-in-your-future-the-law-says-so
https://www.techtarget.com/iotagenda/blog/IoT-Agenda/The-internet-of-things-is-in-your-future-the-law-says-so
https://nacl.cr.yp.to/
https://nacl.cr.yp.to/
https://nsacyber.github.io/simon-speck/bibliography/
https://nsacyber.github.io/simon-speck/bibliography/

102 REFERENCES

[PBM00] D. Park, C. Boyd, and S.-J. Moon, «Forward secrecy and its application
to future mobile communications security», in International Workshop
on Public Key Cryptography, Springer, 2000, pp. 433–445.

[PH05] E. Pasi and T. Hannes, «Pre-shared key ciphersuites for transport layer
security (TLS)», RFC 4279, December, Tech. Rep., 2005.

[PJW10] S. Paquette, P. T. Jaeger, and S. C. Wilson, «Identifying the security
risks associated with governmental use of cloud computing», Gov. Inf.
Q., vol. 27, no. 3, pp. 245–253, 2010.

[Poly1305] A state-of-the-art message-authentication code. [Online]. Available: https:
//cr.yp.to/mac.html (last visited: Apr. 6, 2022).

[poly1305-donna] Poly1305-Donna. [Online]. Available: https://github.com/floodyberry/
poly1305-donna (last visited: May 3, 2022).

[PQC] Post-Quantum Cryptography. [Online]. Available: https://csrc.nist.gov/
Projects/post-quantum-cryptography (last visited: Apr. 25, 2022).

[PQC-R3] Post-Quantum Cryptography. [Online]. Available: https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions (last visited:
May 13, 2022).

[Pro14] G. Procter, «A Security Analysis of the Composition of ChaCha20 and
Poly1305», IACR Cryptol. ePrint Arch., p. 613, 2014.

[RDJ+17] B. Ray, S. Douglas, et al., Notes on the design and analysis of SIMON
and SPECK, Cryptology ePrint Archive, Report 2017/560, 2017.

[Res18] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3,
RFC 8446, Aug. 2018.

[ROC+20] S. S. Rizvi, R. J. Orr, et al., «Identifying the attack surface for IoT
network», Internet Things, vol. 9, p. 100 162, 2020.

[SBK+17] M. Stevens, E. Bursztein, et al., «The first collision for full SHA-1», in
Annual international cryptology conference, Springer, 2017, pp. 570–596.

[SBSD16] S. Salami, J. Baek, et al., «Lightweight Encryption for Smart Home», in
11th International Conference on Availability, Reliability and Security,
IEEE Computer Society, Sep. 2016, pp. 382–388.

[SGTW20] V. K. Sarker, T. N. Gia, et al., «Lightweight Security Algorithms for
Resource-constrained IoT-based Sensor Nodes», in 2020 IEEE Interna-
tional Conference on Communications (ICC), 2020, pp. 1–7.

[SH02] J. Schaad and R. Housley, «Advanced Encryption Standard (AES) Key
Wrap Algorithm», RFC, vol. 3394, pp. 1–41, 2002.

[SHS15] Y. Sheffer, R. Holz, and P. Saint-Andre, «Summarizing Known Attacks
on Transport Layer Security (TLS) and Datagram TLS (DTLS)», RFC,
vol. 7457, pp. 1–13, 2015.

[SimPy] Discrete event simulation for Python. [Online]. Available: https://simpy.
readthedocs.io/en/latest/ (last visited: May 2, 2022).

https://cr.yp.to/mac.html
https://cr.yp.to/mac.html
https://github.com/floodyberry/poly1305-donna
https://github.com/floodyberry/poly1305-donna
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/

REFERENCES 103

[SKK10] P. Szalachowski, B. Ksiezopolski, and Z. Kotulski, «CMAC, CCM and
GCM/GMAC: Advanced modes of operation of symmetric block ciphers
in wireless sensor networks», Inf. Process. Lett., vol. 110, no. 7, pp. 247–
251, 2010.

[SKP20] Y. Sovyn, V. Khoma, and M. Podpora, «Comparison of Three CPU-Core
Families for IoT Applications in Terms of Security and Performance of
AES-GCM», IEEE Internet Things J., vol. 7, no. 1, pp. 339–348, 2020.

[SLdP+19a] D. A. F. Saraiva, V. R. Q. Leithardt, et al., «PRISEC: Comparison of
Symmetric Key Algorithms for IoT Devices», Sensors, vol. 19, no. 19,
p. 4312, 2019.

[SLdP+19b] D. A. F. Saraiva, V. R. Q. Leithardt, et al., «PRISEC: Comparison of
Symmetric Key Algorithms for IoT Devices», Sensors, vol. 19, no. 19,
2019.

[Sma16] N. P. Smart, «Historical Stream Ciphers», in Cryptography Made Simple,
Springer, 2016, pp. 179–194.

[Sony] Sony Develops "CLEFIA" - New Block Cipher Algorithm Based on
State-of-the-art Design Technologies. [Online]. Available: https://www.
sony.com/en/SonyInfo/News/Press/200703/07-028E/ (last visited:
Mar. 6, 2022).

[SSM+17] S. Singh, P. Sharma, et al., «Advanced lightweight encryption algorithms
for IoT devices: Survey, challenges and solutions», Journal of Ambient
Intelligence and Humanized Computing, pp. 1–18, May 2017.

[SSS17] F. D. Santis, A. Schauer, and G. Sigl, «ChaCha20-Poly1305 authenti-
cated encryption for high-speed embedded IoT applications», in Design,
Automation & Test in Europe Conference & Exhibition, D. Atienza and
G. D. Natale, Eds., IEEE, 2017, pp. 692–697.

[Sta10] F. Standaert, «Introduction to Side-Channel Attacks», in Secure In-
tegrated Circuits and Systems, ser. Integrated Circuits and Systems,
I. M. R. Verbauwhede, Ed., Springer, 2010, pp. 27–42.

[Šve16] P. Švenda, «Basic comparison of Modes for Authenticated-Encryption
(IAPM, XCBC, OCB, CCM, EAX, CWC, GCM, PCFB, CS)», vol. 35,
2016.

[Timeit] timeit - Measure execution time of small code snippets. [Online]. Avail-
able: https://docs.python.org/3/library/timeit.html (last visited: May 2,
2022).

[Tjo21] H. Tjomsland, «Flexible Security for Sensor Data in Heteregenous
Networks», vol. 1, no. 1, pp. 00–15, Nov. 2021.

[TLSIV] TLS Symmetric Crypto. [Online]. Available: https://www.imperialviolet.
org/2014/02/27/tlssymmetriccrypto.html (last visited: May 3, 2022).

[TMC+21] M. Turan, K. McKay, et al., «Status Report on the Second Round of
the NIST Lightweight Cryptography Standardization Process», NISTIR
8369, pp. 1–92, Jun. 2021.

https://www.sony.com/en/SonyInfo/News/Press/200703/07-028E/
https://www.sony.com/en/SonyInfo/News/Press/200703/07-028E/
https://docs.python.org/3/library/timeit.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html

104 REFERENCES

[TRK20] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, «Lightweight
Cryptography for IoT: A State-of-the-Art», CoRR, vol. abs/2006.13813,
2020.

[Tur11] S. Turner, Updated Security Considerations for the MD5 Message-Digest
and the HMAC-MD5 Algorithms, RFC 6151, Mar. 2011.

[Vau02] S. Vaudenay, «Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ...», L. R. Knudsen, Ed., ser. Lecture Notes in
Computer Science, vol. 2332, Springer, 2002, pp. 534–546.

[VP17] M. Vanhoef and F. Piessens, «Key reinstallation attacks: Forcing nonce
reuse in WPA2», in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 1313–1328.

[WCS+18] D. Wang, D. Chen, et al., «From IoT to 5G I-IoT: The Next Gener-
ation IoT-Based Intelligent Algorithms and 5G Technologies», IEEE
Communications Magazine, vol. 56, no. 10, pp. 114–120, 2018.

[WDH+19] M. Wazid, A. K. Das, et al., «Authentication in cloud-driven IoT-based
big data environment: Survey and outlook», J. Syst. Archit., vol. 97,
pp. 185–196, 2019.

[WHF03] D. Whiting, R. Housley, and N. Ferguson, «Counter with CBC-MAC
(CCM)», 2003.

[YCT15] X. Yao, Z. Chen, and Y. Tian, «A lightweight attribute-based encryption
scheme for the Internet of Things», Future Gener. Comput. Syst., vol. 49,
pp. 104–112, 2015.

Confidentiality and Integrity for Sensor D
ata in the Cloud-IoT Architecture

H
åkon Tjom

sland

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Håkon Tjomsland

Confidentiality and Integrity for
Sensor Data in the Cloud-IoT
Architecture

Master’s thesis in Communication Technology and Digital Security
Supervisor: Colin Boyd, NTNU IIK
Co-supervisor: Håvard Skåra Mellbye, Disruptive Technologies
June 2022M

as
te

r’s
 th

es
is

	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Cloud-IoT
	Motivation
	Objective
	Methodology and Thesis outline

	Background and Related Work
	Potential attacks and threats
	Resource limitations in IoT sensors
	Current research
	Lightweight cryptography
	Lightweight cryptography today

	Cryptography
	Symmetric-key cryptography
	Public-key (asymmetric-key) cryptography

	Message Authentication Codes (MACs)
	Hash-based Message Authentication Code (HMAC)
	CBC-MAC and CMAC
	Poly1305

	Key Management
	Cryptographic keys
	Key lifecycle

	Key generation
	Key distribution
	Alternative 1: Key Wrapping
	Alternative 2: ECDH Key Exchange
	Alternative 3: Key Evolution scheme
	Key distribution in the cloud-IoT architecture

	Authenticated Encryption
	Authenticated Encryption (AE)
	CBC and HMAC
	Authenticated encryption in the cloud-IoT architecture

	Authenticated Encryption with Associated Data (AEAD)
	CCM
	GCM
	EAX
	ChaCha20-Poly1305

	Implementations on IoT sensors
	Comparison of the AEAD schemes

	Design
	Achieving confidentiality and integrity
	Using two independent keys for different operations
	Splitting a key into integrity key and confidentiality key

	Suggestions for different solutions
	Double AEAD
	AEAD with additional MAC
	ChaCha20-Poly1305 with split keys
	EAX with split keys

	Discussion of the solutions

	Implementation and Validation
	Implementation
	ChaCha20 and Poly1305
	ChaCha20-Poly1305 with split keys

	Running the code with test vectors
	Authenticated encryption
	Authenticated decryption

	Simulation and validation
	Performance

	Discussion and Conclusion
	Discussion
	Conclusion
	Further work

	References

