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Preface

The thesis is submitted in partial fulfillment of the requirements of the degree of
Philosophiae doctor (Ph.D.) at the Norwegian University of Science and Technol-
ogy (NTNU) in Trondheim. The presented research was carried out at the De-
partment of Electric Power Engineering between November 2018 and July 2022.
The Ph.D. research was directed by Prof. Arne Nysveen as the main supervisor
and Prof. Robert Nilssen as a co-supervisor.

The Ph.D. project was financed by HydroCen (a research center for renewable
energy) and partially supported by the Norwegian Research Council. Notably,
one year of the Ph.D. work was spent verifying the established health monitoring
system in the field tests, filing the patent, and negotiating with potential com-
panies to sell the license of the patent, which was financed by the Technology
Transfer Office As and NTNU discovery award funding.

i



ii



Acknowledgements

My Ph.D. journey comes to its end. It was completely different from my what
I expected. I always thought that Ph.D. life would be tough and I would have
to read boring papers and solve sophisticated problems and finally write papers
and thesis to get rid of my Ph.D. tasks. However, it turned out to be fun and
full of joy. I am happy to see my thoughts were fallacious. During this wonderful
journey, countless people supported my efforts. I would like to express my heartful
gratitude to all of them.

This journey could not have come this far and achieved all these accomplish-
ments without the support of a wonderful supervisor. I direct my appreciation
and deepest gratitude to my supervisor, Prof. Arne Nysveen for his support,
mentorship, and encouragement, provided with a perfect blend of insight and hu-
mor throughout the Ph.D. project. And I am grateful for his trust in letting me
pursue research relatively independently. He exudes an image of the consummate
professional, one that I can only hope to one day emulate.

I am extremely thankful to my co-supervisor, Prof. Robert Nilssen, for his advice
and delightful guidance. His experience in innovation and providing guidance and
support during my innovation project were invaluable.

I also express my gratitude to Prof. Bilal Akin, at the University of Texas
at Dallas, Prof. Jose A. Antonino Daviu, at the University of Valencia, Prof.
Sang Bin Lee, at the Korea University, and Prof. Konstantinos N. Gyftakis, at
University of Edinburgh, for their collaboration and insightful discussions that
resulted in a couple of publications.

Alongside my Ph.D. research work, I spent almost a year on my innovation
project. I admit that it was arduous work to deal with patent attorneys and
to try to sell the license to companies. Although it was tiresome, the effort was
worthwhile. I thank my innovation project manager, Oddbjørn Rødsten, at the
Technology Transfer Office, Knut J. Egelie, IPR expert at the Technology Trans-
fer Office, Jonas Bergmann-Paulsen, technology manager at HydroCen, and Ida
Fuchs, technology manager at the department of electric power engineering for
their support.

During my Ph.D. journey, I had a chance to become a co-supervisor of several
talented master’s students, including Ingrid Linnea Groth, Johan Henrik Holm
Ebbing, Gaute Lyng Rødal, Tarjei Nesbø Skreien, Ole Sørheim, Gaute Hagen
Hallingstad, and Markus Fredrik Johansen. All of your great work is much ap-
preciated.

My Special thanks go to my colleagues at the Department of Electric Power
Engineering at NTNU, who have been of great support. I am also grateful to the

iii



administrative and technical staff in the Department, especially Bodil Vuttudal
Wold and Anders Gytri, who always were ready to help.

I thank my two best friends, who were a source of motivation and moral support.
Thank you, Hossein and Erfan.

Many thanks also go to my beloved sisters Negin and Masom, who keep me
grounded, remind me of what is important in life, and always share camaraderie
and support.

Finally, I am forever indebted to my parents for their unconditional love, sup-
port, and trust. My accomplishments and success are because they believed in
me. Words are not enough to express how thankful and grateful I am for all you
have done. You’re always there to support and understand me through the good
and hard times. Thank you, thank you, thank you!

iv



Summary

The Ph.D. research work presented in this thesis deals with the health monitor-
ing of synchronous generators utilized in hydropower plants. Although various
methods are available for fault detection in synchronous generators, the applica-
bility of the available tools in the real world encounters numerous difficulties. A
novel health monitoring system that can address the challenges in the field is pro-
posed, consisting of a tailor-made sensor, signal processors, pattern recognition
algorithm, and artificial intelligence. The proposed health monitoring system
utilizes a stray magnetic field that can be measured on the stator backside of
hydro generators. The proposed non-invasive health monitoring system is able
to detect the fault type, estimate the severity, and find the location of the fault
in the hydro generator. Moreover, the proposed health monitoring system has a
high sensitivity that can detect a fault with low severity. In addition, the pro-
posed pattern recognition algorithm is able to detect the fault without any need
for prior knowledge about the reference generator.

Finite element modeling of five synchronous generators is performed to investigate
the existence of the stray magnetic field on the stator back side. In addition, the
impact of topology, power rating, and design specification on the amplitude and
pattern of the stray magnetic field are investigated. Although the amplitude of
the stray magnetic field can be changed, the hidden pattern in the calculated
signal for the faulty operation of the generators is identical. Several faults are
investigated, including inter-turn short circuit fault in the rotor field winding,
static eccentricity, dynamic eccentricity, mixed eccentricity, and broken damper
bar faults. The impact of a fault on the stray magnetic field is also investigated
using finite element modeling.

Pattern recognition is the key part of this Ph.D. work. Several signal processing
tools are used to extract the hidden patterns in the stray magnetic field signal.
Fast Fourier transform, short-time Fourier transform, discrete wavelet transform,
and continuous wavelet transform are used for feature extraction. Three unique
patterns for the inter-turn short circuit fault are introduced that can detect even
1 shorted turn in the rotor field winding. A comprehensive algorithm is also
proposed to detect eccentricity faults (static, dynamic, and mixed). The proposed
algorithm is able to detect the location of the static eccentricity fault. Finally,
the application of wavelet entropy on a stray magnetic field based on a broken
damper bar fault is proposed that can detect the broken damper bar during both
transient and steady-state operations of the generators.

Reducing human error and reducing the cost of educating technicians to evaluate
the patterns of the health monitoring system is achieved using an artificial intel-
ligence system. Various classifiers are trained and their performance is assessed
based on several meticulous evaluation functions. Among the proposed classifiers,
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a stacking classifier with logistic regression as a meta-classifier is selected due to
its high performance and low computational complexity. The proposed method
is tested using hand-out data and shows that the method can detect a fault with
92.74% precision.

Extensive experimental tests are conducted on a tailor-made 100 kVA synchronous
generator to verify the theoretical hypothesis. Various types of fault, including
the inter-turn short circuit fault, static eccentricity fault, misalignment, and bro-
ken damper bar fault, with different severity can be applied to the setup. The
tests are performed in both the no-load and on-load operations while the gen-
erator is connected to the local load and power grid. A custom-made sensor is
designed to capture the stray magnetic field on the stator backside. Finally, two
field tests are conducted in two hydro power plants in Norway to validate the
proposed health monitoring system in reality.
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Chapter 1: Introduction

1 Introduction

1.1 Introduction

In Norway, approximately 98 percent of electricity production comes from re-
newable energy resources, with hydropower plants playing a crucial role. The
potential energy of the water flow in rivers and waterfalls became a source of
electricity production in the late 1800s, and from then until today, hydropower
plants have been the basis for Norwegian development of the industry and the
welfare of Norwegian society. Close to 90 percent of the electricity in Norway is
produced in hydropower plants [1]. In the last decade, the share of wind power
in the power market has increased rapidly; however, wind energy still accounts
for only a small portion of Norwegian power production.

Salient pole synchronous generators are the most prevalent type of generators
used in hydropower plants [2] and are therefore ubiquitous throughout Norwe-
gian hydropower plants. Although large synchronous generators have a rigid
structure and have a reliable operation for several decades in hydropower plants,
the number of failed generators has markedly increased during the past years [3].
In addition, the situation for the run-off river-type power plants is critical if a
fault results in an unplanned stoppage of the generator, especially during the
high production season. This is because the capacity of the weir is only sufficient
to store the water flow for less than 24 hours, whereas the maintenance of the
generator can take a few weeks. These issues indicate that an unplanned outage
of the generator can incur not only a considerable expenditure to restore the
power plant but also a remarkable cost to society.

The rate of failure has increased in the past years as generators have operated
as intermittent power sources. The load variation and frequent starts and stops
accelerate aging of the insulation and impose forces on the shaft and bearings.
Therefore, undetected incipient defects in generators can give rise to a large
fault that is tripped from the power grid unexpectedly by the power relays. A
combination of periodic inspection and online condition monitoring can avoid
abrupt outages and extend the expected lifetime of the generators.

Economic analysis in [4] shows up to a 60% cost reduction in the case of reactive
maintenance, although the transition from reactive maintenance to predictive
maintenance can increase the cost reduction markedly. According to [5], approx-
imately USD 2 billion is spent on maintenance of electric machines. However,
70% of that is used for electric machines that do not have a condition monitoring
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Chapter 1: Introduction

system, indicating that maintenance cost reductions will have immense benefit to
the industry. Although a great demand exists for a practical condition monitor-
ing system, the state-of-the-art online fault diagnosis in synchronous generators
is still lacking in this respect.

The aim of this introduction section is to point out the main motivation behind
the conducted Ph.D. research work. A crucial goal of the work was to address
industry concerns by developing an intelligent health monitoring system. The
developed algorithm had to be able to detect various electrical and mechanical
faults. Early stage detection and avoiding further development of the fault were
also prerequisites, since the maintenance team can plan ahead to stop the gen-
erator in the low-demand period of production while planning to purchase spare
parts. In this work, several algorithms are proposed to detect electrical and me-
chanical faults during the transient and steady-state operation of the generator.
The numerical models are developed to evaluate and interpret the impact of faults
on the operation of the generator. The algorithm analyzes the measured signal
utilizing advanced signal processing methods. Finally, theoretical findings are
justified both in the laboratory setup and field test in two hydropower plants.

1.2 Objectives and Scope of the Work

The main objective of the Ph.D. project is to provide an affordable, non-invasive,
and sensitive system for health monitoring of synchronous generators in hy-
dropower plants. The work is focused on magnetic signals, since those signals are
the most informative among the available signals from a fault detection point of
view. The project is funded by Hydrocen, which is a Centre for Environment-
friendly Energy Research. Therefore, the scope of the Ph.D. work is only limited
to hydropower plants, whereas the application area of the developed method is
generally applicable to wind power, electric aviation, ships, electric installations
in the oil and gas platforms, and electric cars.

Both electrical faults and mechanical faults are investigated in this research study.
Specifically, inter-turn short circuit (ITSC) faults in the rotor field winding are
investigated as electric faults in this research study. Static eccentricity (SE),
dynamic eccentricity (DE), mixed eccentricity (ME), and broken damper bar
(BDB) faults are also considered among various mechanical faults.

This research work is focused on the analysis of the impact of various faults on
electromagnetic signals, such as the stator voltage and current, rotor field wind-
ing voltage and current, vibration, air gap magnetic field, and stray magnetic
field. Among these signals, the stray magnetic field is selected since it can pro-
vide an informative signal that is sensitive to faults. Therefore, the thesis is
concentrated on investigation of the impact of electrical and mechanical faults
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Chapter 1: Introduction

on the stray magnetic field in salient pole synchronous generators. The numeri-
cal tools are used to model several synchronous generators. Although the stray
magnetic field has a three-dimensional nature, only two-dimensional finite ele-
ment modeling (FEM) is performed due to the high computational complexity
of three-dimensional FEM. In addition, sensors in a two-dimensional FEM can
capture a combination of radial and axial magnetic fields to provide an informa-
tive signal. Several synchronous generators are modeled in FEM to evaluate the
impact of the power rating and specification of the generators on the captured
stray magnetic field.

The main objective of this Ph.D. thesis is to provide an inexpensive health mon-
itoring solution based on the application of a stray magnetic field. Therefore,
a custom-made passive sensor is developed to measure the signal on the stator
backside. The available solutions have used spectrum analysis using fast Fourier
transform (FFT). However , the power rating and specification of the generator
can influence the pre-defined threshold levels for fault detection. In addition,
some faults, such as static eccentricity, do not change the frequency spectrum.
Therefore, various signal processing tools are applied to the measured signal to
extract a unique fingerprint for each specific fault. An analytical assessment
based on the wave and permeance method is also conducted to formulate which
harmonics are influenced by each fault, and this is then used for pattern recogni-
tion using the frequency spectrum. Although the signal processing tools are not
developed by the author, the pre-processing, parameter selection, and optimiza-
tion of the signal processors are conducted in this thesis.

An automated health monitoring system is needed if the sensor system is to
be installed in thousands of generators and motors. Therefore, analyzing the
data requires input from several experts, but this impedes the timely scheduling
of the maintenance due to the limitations in human resources. At the same
time, the cost of hiring experts and educating them impedes the utilization of
affordable health monitoring systems for the small power plant owner. Therefore,
utilizing an automated health monitoring system based on the application of
machine learning tools is also investigated in this thesis. The performed research
is limited to identification of the healthy state or faulty state. The application of
a convolutional neural network for the fault type and severity estimation is not
within the scope of this Ph.D. work.

1.3 Background

The importance of synchronous generators in electricity production is undeniable.
Although synchronous generators are robust and long-lasting equipment in the
power system, several factors, such as aging, intermittent operation, improper
manufacturing, and environmental factors, can result in their failure. Faults
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Figure 1.1: The various types of electrical and mechanical faults in large salient
pole synchronous generators.

in large salient pole synchronous generators can be divided into two categories:
electrical faults and mechanical faults. Short circuit and open circuit faults in the
stator winding and ITSC faults in the rotor field winding are classified as short
circuit faults [6]. Eccentricity faults, such as SE, DE, and ME, misalignment,
BDB, broken end rings, stator inter-laminar fault, and stator joint field fault are
categorized as the mechanical faults in large salient pole synchronous generators
[6]. Fig. 1.1 shows the various types of electrical and mechanical faults in the
salient pole synchronous generator.

Researchers have been working on fault detection in synchronous generators for
a long time. The procedure of fault detection includes three steps: signal selec-
tion, signal processor selection for pattern recognition, and artificial intelligence.
Several methods and commercialized technologies are available for fault detection
of synchronous generators based on a combination of various signals and signal
processing tools. However, a comprehensive survey of the state-of-the-art tools
indicates that the available methods shown in Fig. 1.2 have several limitations [6]:
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Figure 1.2: The procedure for fault detection includes proper signal selection,
pattern recognition using advanced signal processing methods, and an intelligent
algorithm to recognize the fault pattern and determine the health status of the
salient pole synchronous generator.
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1.3.1 Invasive

Different signals, including air gap magnetic field [7–17], current [18–24], voltage
[25, 26], vibration [27–32], and shaft voltage [33–37], are used for the ITSC fault
detection in synchronous generators. SE, DE, and BDB fault detection utilizes
the same signals, including air gap magnetic field [26,38–42], current [39,43–48],
voltage [49–54], and shaft voltage [33–35, 55–60]. Among these signals, the air
gap magnetic field is the only informative signal that shows high sensitivity to
all fault types. However, it has an invasive nature that impedes its application
in hydropower plants and industries. Two types of sensors, namely a search
coil around a stator tooth and Hall-effect sensors, are predominantly used to
capture the air gap magnetic field. The search coil is more robust than the
Hall-effect sensors, but the rotor must be removed to allow access to the stator
teeth. Although the attachment of Hall-effect sensors to the stator tooth is
straightforward, these sensors are fragile and improper adjustment of the current
source of the sensor can give an incorrect magnitude of the signal.

1.3.2 Low-sensitivity

To overcome the invasive nature of the air-gap magnetic field sensors, researchers
have proposed utilizing voltage, current, vibration, and shaft voltage. The re-
quired sensors, such as current transformers (CT), potential transformers (PT),
and accelerometers, are simple to install. The current and voltage on the gener-
ator terminals do not require measurement, indicating that remote health mon-
itoring can be implemented. Although CTs, PTs, and accelerometers are non-
invasive, the early-stage detection of a fault is not possible using these signals.
The studies by [28,42,49] show that having at least a minimum eccentricity fault
of 50% degrees can give rise to the appearance of some fault-related harmonics in
the voltage, current, and vibration frequency spectra. Nevertheless, low-degree
faults, such as one ITSC fault in the rotor field winding, an eccentricity fault
below 10%, and one broken damper bar fault, can be detected using an air gap
magnetic field.

In addition, the current, voltage, and vibration are not suitable signals for de-
tecting some faults, such as SE and BDB. The SE fault does not influence the
voltage, current, or vibration since the SE fault only distorts the magnitude of
the magnetic field in the air gap, not the frequency content. BDB has a very low
impact on the magnetic field variation in the air gap, and its impact on these
signals is not noticeable.
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1.3.3 Analysis Methods

Vibration is the most dominant commercialized tool used for fault detection
of hydro-generators. The measured vibration is compared with the pre-defined
threshold level available in the IEC standard to identify the health status of
the generator [5]. Trend analysis is also used if the measured vibration and its
report are stored. However, both trend analysis and threshold level can give
general information regarding the generator operating condition. In addition, an
increased vibration level can be due to several factors, such as improper coupling
of the shaft and improper installation of the generator on the bed. Therefore,
the use of vibration is not a reliable or informative method.

Harmonic analysis is also a popular method for the analysis of measured signals,
but using harmonic analysis has two difficulties:

1. Harmonics such as 7th, 11th, 13th, 17th, 19th, 21nd, and 23rd are frequently
used for fault detection. First, based on the generator design, these har-
monics exist in the frequency spectrum of a healthy generator. Therefore,
a fault may increase or decrease the amplitude of the harmonics, so the
fault occurrence cannot be diagnosed due to the existence of the harmon-
ics. In addition, the same harmonics exist in the power grid; therefore,
distinguishing the root cause of the harmonics becomes more complicated.

2. Several research studies have proposed the use of a threshold level in the
frequency spectrum of the signals to determine a fault occurrence [6]. For
example, [61,62] proved that the power rating and configuration of the gen-
erator can influence the threshold level. Therefore, the use of a generalized
threshold level is not reliable.

1.3.4 Priori Knowledge of a Healthy Generator

Several signal processing tools, such as time-domain signal processors, frequency
domain signal processors, and time-frequency signal processors, can be applied to
different signals to detect faulty generators [6]. However, the proposed methods
are based on a comparison of the faulty case with the healthy one, indicating
that a priori knowledge of a healthy generator is required. Although the method
based on comparing faulty results with healthy ones appears promising, it is only
valid for experimental tests conducted in laboratories. Asking the simple question
“Is it really possible to have baseline data for a synchronous generator that has
been operating in a power plant for a couple of decades?” easily invalidates the
proposed methods.
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1.3.5 Fault Type Detection

In addition to the early warning of the fault occurrence, knowledge of fault type
can significantly help a maintenance team to reduce the downtime of the generator
overhaul. Three detection methods, namely trend analysis, threshold level, and
harmonic analysis, are unable to provide any information regarding the type of
fault that occurred in the generator, since any fault increases the magnitude of
the harmonics and increases the amplitude of the vibration level.

1.3.6 Human Error

An inaccurate decision is highly possible if the outcome of complicated patterns
and algorithms is analyzed by a human being. Therefore, automated health
monitoring based on the use of artificial intelligence is considered as a solution
[13]. Several methods have been proposed, based on different configurations of
machine learning tools. The results show accuracy as high as 100% in many cases.
However, the lack of sufficient data to train the algorithm and the utilization of
the same data for testing gives rise to the high accuracy obtained using these
proposed fault detection methods.

1.4 Research Objectives

The previous section provides insights into fundamental aspects of the develop-
ment of a health monitoring system that overcomes the limitations that impede
the proper monitoring of generators that are likely to fail in the near future.
Moreover, a cost-effective health monitoring system is not only suitable for large
power plants owned by large states, it is also an appealing solution for the own-
ers of unregulated power plants that cannot afford costly and complicated health
monitoring systems. The number of these unregulated power plants is approxi-
mately 400 units in Norway.

The conducted research activities in this thesis are rooted in the three research
objectives (ROs):

RO1 To develop a cost-effective and sensitive sensor that provides an informative
signal as an air gap magnetic field while avoiding the need to halt the
generator to mount a sensor inside the air gap.

RO2 To use the unique patterns to identify the fault type without any need for
baseline data of a healthy generator.

8



Chapter 1: Introduction

RO3 To minimize human error, automate the process, and increase the accuracy
of the health monitoring decision-making using machine learning tools.

1.5 Scientific Contributions

During the Ph.D. project, a health monitoring system is developed that can
overcome the majority of the indicated limitations. Five types of faults are stud-
ied: the ITSC fault in the rotor field winding, SE fault, DE fault, ME fault,
and BDB fault. Among several signals, the stray magnetic field is selected due
to the high sensitivity, simple installation, and low cost of the sensor. Several
unique patterns are extracted, based on the application of signal processing tools
to the measured stray magnetic fields. Among the numerous signal processing
tools, FFT, short-time Fourier transform (STFT), continuous wavelet transform
(CWT), and discrete wavelet transform (DWT) are used because of their low
computational complexity and their simplicity of the implementation. The effect
of electromagnetic noise on the measured signal and the introduced patterns is
also studied in this Ph.D. study, since noise is prevalent in the industrial envi-
ronment. The application of several machine learning algorithms to facilitate the
automated health monitoring system is also investigated in this work.

The following contributions can be derived from the conducted research study
during the Ph.D. period:

C1 Four finite element models of salient pole synchronous generators are sim-
ulated to investigate the pattern and magnitude of the stray magnetic field
measured on the stator backside in a healthy and faulty operation. The
modeled generators are a 100 kVA 14-pole, 22 MVA 8-pole, 42 MVA 16-
pole, and 105 MVA 16-pole.

C2 A custom-made passive sensor is designed to capture the stray magnetic
field on the stator backside of a 100 kVA synchronous generator. The
sensor is used for both experimental tests at the NTNU laboratory and
field tests in two hydropower plants.

C3 Two sets of unique patterns, based on a frequency domain signal processor
and time-frequency domain-based signal processors, are proposed. The in-
troduced patterns using FFT are suitable for ITSC and DE fault detection.
Two patterns are also introduced for the ITSC fault detection using STFT
and CWT. CWT is also used to introduce a pattern for SE, DE, and ME
fault detection. Finally, a method based on wavelet entropy is proposed for
BDB fault detection.

C4 The proposed patterns for faulty cases do not require a pattern for the
healthy generator, indicating that the baseline data of the generator are
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Chapter 1: Introduction

not required. Therefore, methods can be used in real situations for fault
detection of hydro generators that have been operating for several decades
in power plants.

C5 Extensive experimental tests are carried out on a custom-made 100 kVA
14-pole synchronous generator that resembles the typical configuration of a
generator in Norwegian power plants. The proposed methods are validated
using this setup.

C6 The sensor is designed to have a high signal-to-noise ratio. The cost of
materials for its fabrication are kept as low as possible.

C7 Various configurations of machine learning classifiers are examined, with the
ultimate choice of an ensemble stacking classifier trained on 2500 samples
that showed an accuracy and precision above 90%.

The methods and discussions in this thesis are based on the results presented in
9 journal papers. Fig. 1.3 presents a sketch of the connections between the nine
papers in this Ph.D. study. Section I (Review Paper) explores the state of the
art and discusses the research gaps. Section two includes the methodologies and
implemented approaches for electrical faults, such as ITSC, and for mechanical
faults, such as SE, DE, ME, and BDB, and covers six papers. Section three
explores the noise impact on the signal processors and how noise can mask the
patterns. Section four explores the approaches for an automated health moni-
toring system. The main contribution of each journal paper is summarized as
follows:
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Figure 1.3: A sketch of the connection between the nine papers generated in this
Ph.D. study.
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1. H. Ehya, A. Nysveen, B. Akin, and J. A. Antonino Daviu, ”Health Mon-
itoring of Synchronous Machines: Review of Methods, Applications and
Trends,” in IEEE Open Journal of Industry Applications, Under Review.

This paper provides a comprehensive review of the state of the art. The root
cause and failure mechanism of electrical faults, such as short circuit fault
in the stator, and the ITSC fault are explained. The solutions available for
short circuit fault detection are then explained. The fault detection meth-
ods for short circuit faults are discussed and their limitations are explained
in detail. In section three of the paper, mechanical faults, including eccen-
tricity, broken damper bars, and stator core-related faults, are extensively
investigated. The root cause of each mechanical fault and its correspond-
ing solutions are discussed. The fault detection methods for both electrical
and mechanical faults are categorized based on the type of signal used in
the monitoring system. The signals that are predominantly used include
the air-gap magnetic field, voltage, current, shaft voltage, and stray mag-
netic field. The last part of the paper discusses the research gaps and some
proposals to overcome the challenges A noteworthy point to mention is that
the papers that are reviewed can be implemented in the industry and provide
insight into the operating condition of a generator.

2. H. Ehya, A. Nysveen and J. A. Antonino-Daviu, ”Stray Flux-based Identifi-
cation and Classification of Inter-turn Short Circuit and Dynamic Eccentric-
ity Faults in Synchronous Generators,” in IEEE Transactions on Industrial
Electronics, Under Review.

In this article, two distinct patterns are proposed for diagnosing ITSC
and DE faults by applying FFT to the stray magnetic field. An analyti-
cal method using the wave and permeance method is proposed to detect the
sub-harmonics that are influenced by having a short circuit fault and an ec-
centricity fault. Two distinct patterns are then proposed for each fault type.
The proposed patterns eliminate the need for knowledge of the frequency
spectrum of a healthy generator. Furthermore, extensive analyses are also
performed to realize how the existence of two simultaneous faults can influ-
ence the frequency patterns. The developed detection method is examined
on a 100 kVA synchronous generator in the laboratory and on a 22 MVA
generator in a power plant. The obtained results validate the theoretical
proposals.

3. H. Ehya and A. Nysveen, ”Pattern Recognition of Interturn Short Circuit
Fault in a Synchronous Generator Using Magnetic Flux,” in IEEE Trans-
actions on Industry Applications, vol. 57, no. 4, pp. 3573-3581, July-Aug.
2021.

This paper describes a new approach for inter-turn short circuit fault detec-
tion based on the application of short-time Fourier transform to the stray
magnetic field in a synchronous generator. A detailed FEM modeling of a
100 kVA synchronous generator is described that considers the eddy effect
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Chapter 1: Introduction

in the damper bars, non-linearity of the material, saliency of the poles, and
winding distribution. A detailed specification of the designed sensor to pick
the stray magnetic field is also described. The amplitude of the frequency
spectrum of the stray magnetic field is shown to increase in the presence
of one inter-turn short circuit fault. However, the magnitude of the same
harmonics is increased by having a DE fault. Therefore, short-time Fourier
transform is proposed to identify the fault type and even the number of
faulty poles. Extensive experimental tests are performed for various degrees
of short circuit fault in the rotor pole during no-load and on-load operation
of the generator. The severity of the fault is also estimated using an image
processing tool.

4. H. Ehya, A. Nysveen and J. A. Antonino-Daviu, ”Advanced Fault Detection
of Synchronous Generators Using Stray Magnetic Field,” in IEEE Trans-
actions on Industrial Electronics, vol. 69, no. 11, pp. 11675-11685, Nov.
2022.

This paper proposes a new algorithm for ITSC fault detection in the rotor
field winding of synchronous generators. Two generators are considered in
this study: a 100 kVA 14-pole and a 22 MVA 8 pole. FEM is performed
for both case studies, and the expected pattern and magnitude of the stray
magnetic field are investigated. Since the primary analysis indicated the
existence of an inherent DE fault in the 100 kVA laboratory setup, the DE
impact on the stray magnetic field is also studied. FFT is applied to stray
magnetic fields and analysis proved that the power rating and configuration
of the generator can influence the harmonics. In addition, both ITSC fault
and DE fault give rise to the same harmonics in the FFT spectrum that
make fault type detection impossible. Therefore, unique patterns based on
the application of continuous wavelet transform are proposed for ITSC and
DE fault detection. The pattern does not require any baseline data from the
healthy generator. The proposed method is validated both in the laboratory
and in the power plant.

5. Ehya, H., Nysveen, A., Nilssen, R. and Liu, Y. (2021), Static and dynamic
eccentricity fault diagnosis of large salient pole synchronous generators by
means of external magnetic field. IET Electr. Power Appl, 15: 890-902.

This article describes a comprehensive theoretical study on the impact of
static and dynamic eccentricity on the stray magnetic field. In addition,
the paper illustrates how a stray magnetic field is related to the air gap
magnetic field. The impact of an eccentricity fault on the self and mu-
tual inductance are also characterized. A numerical model of a 22 MVA
synchronous generator is used to evaluate the proposed detection method.
In this paper, a detection method is introduced based on the application of
two stray magnetic field sensors installed opposite each other on the stator
backside. The detection method assumes that the differential induced volt-
age in the sensors must be almost zero in the case of a healthy generator.
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The static eccentricity and dynamic eccentricity faults are characterized us-
ing wavelet entropy. The effect of the load variation and eccentricity fault
severity on the wavelet entropy is also discussed. Finally, some consider-
ations regarding the sensor displacement and its impact on the proposed
method are discussed.

6. H. Ehya, A. Nysveen, B. Akin, and J. A. Antonino-Daviu, ”Detection and
Severity Estimation of Eccentricity Fault of a High Power Synchronous
Generator,” in IEEE Transactions on Reliability, Major Revision.

Although a DE fault can significantly change the frequency content of the
magnetic field, the SE fault only changes the magnitude of the magnetic
field inside the stator core and in the vicinity of the stator core, indicating
that the detection of SE is arduous. This paper describes the impact of both
dynamic and static eccentricity faults on the induced voltage in the sensors
installed on the stator backside. Three generators with distinct power ratings
and configurations are used to demonstrate that the threshold levels in the
frequency spectrums defined in IEC and IEEE standards are invalid. There-
fore, a method is proposed based on the application of continuous wavelet
transform. Unique patterns are proposed that can easily detect the fault
type and its severity. The method is highly sensitive and can be used for
the early-stage detection of eccentricity fault. Extensive tests have been per-
formed in the laboratory on the 100 kVA generator, in addition to two field
tests in a power plant. The method is able to detect eccentricity faults in the
noisy environment of the power plant while the generator remains connected
to the grid.

7. H. Ehya and A. Nysveen, ”Comprehensive Broken Damper Bar Fault De-
tection of Synchronous Generators,” in IEEE Transactions on Industrial
Electronics, vol. 69, no. 4, pp. 4215-4224, April 2022.

This paper delves into BDB fault detection, which is one of the problematic
fault types for diagnosis. A finite element model coupled to the electrical cir-
cuit is proposed to model the damper bar circuit in detail. Since the damper
bars are active during the transient operation of the generator, the detec-
tion method proposes an analysis of the stray magnetic field during ramp-up
and ramp-down. However, the findings indicate that a broken damper bar
fault can also be detected during the steady-state operation of the generator
in the case of a fractional winding layout. The detection method is based
on the analysis of wavelet entropy. The impact of the BDB location on
the proposed index is also analyzed. The findings indicate that the detec-
tion of a BDB located at the rotor pole corner is straightforward, whereas
the detection of a BDB located in the middle of the rotor pole is almost
impossible.

8. H. Ehya, A. Nysveen and T. N. Skreien, ”Performance Evaluation of Signal
Processing Tools Used for Fault Detection of Hydrogenerators Operating
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in Noisy Environments,” in IEEE Transactions on Industry Applications,
vol. 57, no. 4, pp. 3654-3665, July-Aug. 2021.

Signal processing is the core part of fault detection of electric machines.
Noise is unavoidable in power plants and industrial settings and it can in-
terfere with data acquisition. A measured noisy signal can mask the fault
pattern in signal processing. This paper describes the types of noise possibly
encountered in the industrial environment and their root causes. The most
prevalent type of noise is identified as white Gaussian noise. Five types
of signal processing tools are studied: fast Fourier Transform, short-time
Fourier transform, continuous wavelet transform, discrete wavelet trans-
form, and time-series data mining. The measured stray magnetic field dur-
ing healthy and under short circuit fault is first examined using the previ-
ously mentioned signal processors. Additive white Gaussian noise is then
added to the signal to determine which level of the signal-to-noise ratio can
be a safe margin for fault detection.

9. H. Ehya, T. N. Skreien and A. Nysveen, ”Intelligent Data-Driven Diagnosis
of Incipient Interturn Short Circuit Fault in Field Winding of Salient Pole
Synchronous Generators,” in IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 3286-3294, May 2022.

This paper examines various machine learning algorithms to automate the
fault detection procedure. The air gap magnetic field is measured during
no-load and under various load conditions for training and testing of the
classifiers. The data are pre-processed to have sufficient data sets for the
training. In addition, signal processing tools are used to pinpoint the exact
changes in the signal due to the fault. Feature extraction tools used include
FFT, energies of the discrete wavelet, and time-series feature extraction
based on the scalable hypothesis (TSFRESH). Among several classifiers,
ensemble classifiers demonstrate a promising result, as the algorithm can
detect a short circuit fault with precision above 90%. The results presented
in this paper are based on ’hand-out’ data rather than the training result,
thereby indicating the reliability of the method.

1.6 List of Publications and Patent

The papers listed below are the backbone of the research study carried out during
the Ph.D. work. The publication list is divided into two parts: the first part
presents the journal papers and the second part lists the conference papers. The
first publication list consists of 9 journal papers, two published and one under
review in IEEE Transactions on Industrial Electronics, one published in IEEE
Transactions on Industrial Informatics, two published in IEEE Transactions on
Industry Application, one under review in IEEE Transactions on Reliability, one
published in IET Electric Power Applications, and one under review in IEEE
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Open Transaction on Industry Applications. In the remainder of the thesis, the
journal papers will be referred to as Paper I to Paper IX. In this document, only
journal papers will be discussed, and explanations of the conference paper will
not be covered. Moreover, a patent was filed in October 2019 as an umbrella
patent that covers the established methods and algorithms for fault detection of
synchronous machines. The patent status is in the national phase and is filed in
the US, EU, UK, Canada, China, Australia, Singapore, Japan, and South Korea.
The content of the patent will not be discussed in this thesis.

Journal Papers:

1. [Paper I] H. Ehya, A. Nysveen, J. A. Antonino Daviu, and Bilal Akin,
”Health Monitoring of Synchronous Machines: Review of Methods, Ap-
plications and Trends,” in IEEE Open Journal of Industry Applications,
Under Review.

2. [Paper II] H. Ehya, A. Nysveen and J. A. Antonino-Daviu, ”Advanced Fault
Detection of Synchronous Generators Using Stray Magnetic Field,” in IEEE
Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11675-11685,
Nov. 2022.
DOI: 10.1109/TIE.2021.3118363.

3. [Paper III] H. Ehya and A. Nysveen, ”Pattern Recognition of Interturn
Short Circuit Fault in a Synchronous Generator Using Magnetic Flux,” in
IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 3573-3581,
July-Aug. 2021.
DOI: 10.1109/TIA.2021.3072881.

4. [Paper IV] H. Ehya, A. Nysveen and J. A. Antonino-Daviu, ”Stray Flux-
based Identification and Classification of Inter-turn Short Circuit and Dy-
namic Eccentricity Faults in Synchronous Generators,” in IEEE Transac-
tions on Industrial Electronics, Under Review.

5. [Paper V] Ehya, H., Nysveen, A., Nilssen, R. and Liu, Y. (2021), Static
and dynamic eccentricity fault diagnosis of large salient pole synchronous
generators by means of external magnetic field. IET Electr. Power Appl,
15: 890-902.
DOI: 10.1049/elp2.12068

6. [Paper VI] H. Ehya, A. Nysveen, B. Akin, and J. A. Antonino-Daviu, ”De-
tection and Severity Estimation of Eccentricity Fault of a High Power Syn-
chronous Generator,” in IEEE Transactions on Reliability, Major Revision.

7. [Paper VII] H. Ehya and A. Nysveen, ”Comprehensive Broken Damper
Bar Fault Detection of Synchronous Generators,” in IEEE Transactions on
Industrial Electronics, vol. 69, no. 4, pp. 4215-4224, April 2022.
DOI: 10.1109/TIE.2021.3071678.
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8. [Paper VIII] H. Ehya, A. Nysveen and T. N. Skreien, ”Performance Evalua-
tion of Signal Processing Tools Used for Fault Detection of Hydrogenerators
Operating in Noisy Environments,” in IEEE Transactions on Industry Ap-
plications, vol. 57, no. 4, pp. 3654-3665, July-Aug. 2021.
DOI: 10.1109/TIA.2021.3078136.

9. [Paper IX] H. Ehya, T. N. Skreien and A. Nysveen, ”Intelligent Data-Driven
Diagnosis of Incipient Interturn Short Circuit Fault in Field Winding of
Salient Pole Synchronous Generators,” in IEEE Transactions on Industrial
Informatics, vol. 18, no. 5, pp. 3286-3294, May 2022.
DOI: 10.1109/TII.2021.3054674.

Patent :

1. H. Ehya, and A. Nysveen, ”Fault Detection in Synchronous Machines,” UK.
Patent Office, WO2021/074248, October 2019.

Conference Papers:

1. H. Ehya, A. Nysveen and J. A. Antonino-Daviu, ”Static, Dynamic and
Mixed Eccentricity Faults Detection of Synchronous Generators based on
Advanced Pattern Recognition Algorithm,” 2021 IEEE 13th International
Symposium on Diagnostics for Electrical Machines, Power Electronics and
Drives (SDEMPED), 2021, pp. 173-179.
DOI: 10.1109/SDEMPED51010.2021.9605488.

2. H. Ehya, A. Nysveen, J. A. Antonino-Daviu and B. Akin, ”Inter-turn Short
Circuit Fault Identification of Salient Pole Synchronous Generators by De-
scriptive Paradigm,” 2021 IEEE Energy Conversion Congress and Exposi-
tion (ECCE), 2021, pp. 4246-4253.
DOI: 10.1109/ECCE47101.2021.9595993.

3. H. Ehya, T. N. Skreien, A. Nysveen and R. Nilssen, ”The Noise Effects on
Signal Processors Used for Fault Detection Purpose,” 2020 23rd Interna-
tional Conference on Electrical Machines and Systems (ICEMS), 2020, pp.
183-188.
DOI:10.23919/ICEMS50442.2020.9290831.

4. H. Ehya, G. Lyng Rødal, A. Nysveen and R. Nilssen, ”Condition Monitor-
ing of Wound Field Synchronous Generator under Inter-turn Short Circuit
Fault utilizing Vibration Signal,” 2020 23rd International Conference on
Electrical Machines and Systems (ICEMS), 2020, pp. 177-182.
DOI:10.23919/ICEMS50442.2020.9291088.
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5. H. Ehya, A. Nysveen and R. Nilssen, ”Pattern Recognition of Inter-Turn
Short Circuit Fault in Wound Field Synchronous Generator via Stray Flux
Monitoring,” 2020 International Conference on Electrical Machines (ICEM),
2020, pp. 2631-2636.
DOI:10.1109/ICEM49940.2020.9270986.

6. H. Ehya, A. Nysveen, I. L. Groth and B. A. Mork, ”Detailed Magnetic
Field Monitoring of Short Circuit Defects of Excitation Winding in Hydro-
generator,” 2020 International Conference on Electrical Machines (ICEM),
2020, pp. 2603-2609.
DOI: 10.1109/ICEM49940.2020.9270942.

7. H. Ehya, A. Nysveen and R. Nilssen, ”A Practical Approach for Static Ec-
centricity Fault Diagnosis of Hydro-Generators,” 2020 International Con-
ference on Electrical Machines (ICEM), 2020, pp. 2569-2574.
DOI:10.1109/ICEM49940.2020.9270675.

8. H. Ehya, A. Nysveen, R. Nilssen and U. Lundin, ”Time Domain Signa-
ture Analysis of Synchronous Generator under Broken Damper Bar Fault,”
IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics
Society, 2019, pp. 1423-1428.
DOI:10.1109/IECON.2019.8927529.

1.7 Outline of the Thesis

This Ph.D. thesis consists of two parts. The first part includes three chapters: an
introduction, methodologies and contributions, and a conclusion. The first part
of the thesis is kept brief, providing the key concept, research gaps, developed
methods, and a summary of the conducted research and the major findings.
A detailed explanation of the simulation, experimental and field test results,
signal processing, machine learning tools, and detailed analysis of results are all
presented in the appended papers. The second part of the thesis includes the nine
appended journal papers and one patent. The first part of the thesis is outlined
as follows.

1. Chapter 1 includes an introduction to the importance of a health monitoring
system for hydropower plants. The objectives and the scope of the work
are clarified. The project background and a state-of-the-art review are
included, followed by enumeration of the research gaps in the field. Finally,
the main contribution of the Ph.D. study, with its scientific contributions,
is listed.

2. Chapter 2 gives a brief introduction to various faults in synchronous gen-
erators and the root causes of the faults. Finite element modeling of the
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generators, faults, and sensors are briefly explained. The experimental
setup and the field tests performed in two power plants are illustrated. Dif-
ferent signal processing tools are succinctly introduced. In the contribution
sections, the developed methods based on the pattern recognition methods
for each fault type are discussed.

3. Chapter 3 provides a summary of the Ph.D. work and suggestions for future
research activities.
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Chapter 2: Methodologies and Contributions

2 Methodologies and Contributions

2.1 Faults in Synchronous Generators

The impact of faults on the performance of the synchronous generator depends
on the type of fault and the operational environment. Recognizing the origin
of the fault can markedly accelerate the determination of the health status of
the electric machine and help the maintenance team in their planning. Fault
detection must be performed at the early stage of the fault, since faults begin
from an initial defect and progress to become severe faults.

Several faults can occur in synchronous generators and are categorized, based on
their location, as stator faults and rotor faults. The research conducted in this
Ph.D. study is limited to rotor faults. The faults known to occur in the rotor of
salient pole synchronous generators are:

1. Inter-turn and turn-to-ground short circuit fault

2. Eccentricity fault

3. Misalignment

4. Broken damper bar and broken end ring

In the following subsections, the definition, root cause, and impact of each fault
on the performance of salient pole synchronous generators are briefly described.

2.1.1 Rotor Short Circuit Fault

Two separate winding circuits—the rotor field winding and the damper wind-
ing—are present in the rotor of a synchronous generator, as shown in Fig. 2.1.
The rotor field winding has tens of turns concentrated around each rotor pole. A
short circuit fault in the rotor field winding can be divided into two categories:

1. Inter-turns short circuit fault

2. Turn to ground fault
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Figure 2.1: Rotor circuits of a 100 kVA synchronous generator that consists of a
field winding circuit and rotor damper bar circuit.

Unlike a short circuit fault in the stator winding, that is mostly due to a high
voltage difference between the turns, which degrades the insulation system, the
voltage difference between two adjacent turns in the rotor winding is low. Aging,
the operating conditions, and environmental factors are the main causes of ITSC
faults in the rotor field winding. A generator can operate with a short circuit
fault in the rotor winding for a long time. However, the vibration level can
be increased, which results in a reduction in the maximum output power by a
vibration protection relay to avoid tripping the generator from the power grid.

The local temperature rise due to a short circuit leads to acceleration of insulation
degradation. Therefore, the number of shorted turns increase over time. If the
short circuit happens close to the groundwall insulation, the possibility of having
a turn to ground fault increases, and the generator is tripped by the ground fault
protection relay.

An asymmetric magnetic field in the air gap is the main consequence of a short
circuit fault in the rotor field winding. The asymmetric magnetic field creates
a circulating current in small synchronous generators that closes their path to
the ground through the rotor shaft and bearings. Increases in the circulating
current in the rotor shaft can cause significant destruction of the bearings. In
large synchronous generators, the bearing is isolated to avoid circulating current
in the bearing. However, the induced voltage in the shaft and bearing can reach
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up to 200 V.

2.1.2 Eccentricity Fault

In principle, the length of the minimum air gap in a salient pole synchronous
generator must be kept constant. However, obtaining a uniform air gap is almost
impossible. Even in brand new synchronous generators, depending on the tech-
nology of the manufacturing, a slight and permissible eccentricity exists, called
the ’inherent eccentricity’ fault. Several factors give rise to eccentricity faults in
synchronous generators [6]:

1. Incorrect location of the stator and rotor to one another

2. Incorrect location of the bearings

3. Displaced or bent shaft

4. Abrasion of bearings

5. Internal elliptical cross-section of the stator core

6. Misaligned connection of the synchronous generator shaft

The type of eccentricity fault depends on the position of the rotor rotational axes.
Three eccentricity types exist:

1. Static eccentricity (SE)

2. Dynamic eccentricity (DE)

3. Mixed eccentricity (ME)

Note: From the fault detection point of view, a uniform air gap exists if the dis-
tance between the middle of the rotor pole and stator tooth is constant. However,
generally speaking, the air gap length is not uniform in the salient pole syn-
chronous generator due to the rotor pole saliency and the gap between the rotor
poles.

Synchronous generators have three longitudinal axes: the rotor symmetrical axis,
the stator symmetrical axis, and the rotor rotational axis. In an ideal healthy
generator, all centers coincide with each other. In the case of an SE fault, the
minimum air gap length varies only with the position. As shown in Fig. 2.2, the
center of the rotor is shifted toward the stator core while it rotates around its
center axis. The possibility of having an SE fault is low due to the high precision
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Figure 2.2: Definition of a healthy and an eccentric generator based on the loca-
tion of the rotor with respect to the stator. a) healthy, b) SE fault, c) DE fault,
and d) ME fault. (The rotor is drawn as a non-salient pole machine for the sake
of simplicity.)

in the manufacturing process. However, the SE fault is one of the prevalent faults
in the hydro generators located inside the mountains, where rockmass instability
gives rise to the SE fault.

In the case of a DE fault, the rotor rotational axis revolves around the stator
center axis while the rotor center point is displaced. The minimum air gap length
varies with both time and position when DE fault happens as shown in Fig. 2.2.

The coexistence of both SE and DE faults in the synchronous generator is so-
called mixed eccentricity. In the case of the ME fault, as shown in Fig. 2.2,
the rotor is close to the stator on one side due to the SE fault, while the rotor
whirling location varies with time and location owing to the DE fault.

Three types of eccentricity faults bring about the unbalanced magnetic field in
the air gap. Unbalanced magnetic pull and vibration are the main consequence
of an eccentricity fault. In the case of the SE fault, the generator operates while
the rotor becomes closer to the stator than what has been designed, resulting in
local saturation and a consequent local temperature rise. The increased temper-
ature, in the long term, can accelerate thermal aging of the insulation system.
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In addition, the increased vibration level puts more tension on the generator end
winding, which is prone to high insulation stress. The unbalanced magnetic field
also creates a circulating current in the rotor shaft and bearing, and this current
deteriorates the bearing. A defected bearing clearly increases the eccentricity
fault degree, and if precautionary actions are not taken, the rotor may touch the
stator.

2.1.3 Misalignment fault

Misalignment is a sub-category of eccentricity fault wherein the air gap length
varies along the axial axis of the synchronous generator. In the case of SE, DE,
and ME faults, the air gap length along the axial axis of the machine is assumed
to be symmetric. Similar to eccentricity faults, three types of misalignment
faults are recognized: static misalignment, dynamic misalignment, and mixed
misalignment.

Assuming a horizontally mounted synchronous generator operating under static
misalignment, both the drive-end and non-drive-end of the machine are located
opposite each other. In the case of a static misalignment fault, the location of
both ends is fixed and does not vary with time. The dynamic misalignment fault
gives rise to a variation in the rotor in both the radial and axial directions of the
synchronous generator. The simultaneous existence of both static and dynamic
misalignment in the machine leads to a mixed misalignment fault.

A misalignment fault is the most destructive fault type and can destroy the stator
and rotor even with a low-severity fault. Therefore, during the inspection period,
both ends of the generator must be evaluated to avoid a false negative fault.
The root cause and consequence of a misalignment fault on the performance and
parameters of the synchronous generator are similar to those of an eccentricity
fault.

2.1.4 Broken damper bar fault

The damper winding is the second circuit in the rotor of the salient pole syn-
chronous generator. Damper bars are embedded in the rotor pole shoe and are
short-circuited on both sides by the end rings. Fig. 2.1 shows damper bars
and end rings. The role of damper bars is evident in the case of salient pole
synchronous motor as the motor start is similar to that of the induction motor
as it is aided by the damper winding and the DC voltage applied to the rotor
field winding when the rotational speed becomes close to the synchronous speed.
However, in synchronous generators, the damper bars are used to suppress the
transient dynamics in the rotor caused by an external fault in the power system
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100 kVA
14 poles
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16 poles

Figure 2.3: Finite element models of three salient pole synchronous generators.

and the sudden load variation. In addition, the damper bars act as a shield to
protect the rotor field winding during transients in the stator winding caused by
the power network perturbation.

Frequent starts and stops of the synchronous machines that operate in pump-
storage power plants, and inadequate connections in the joints between the
damper bars and end rings result in the broken damper bar fault. Since the
damper bars are active during transient operation of the synchronous machines,
the detection of broken damper bars is difficult due to the limited time window.

2.2 Finite Element Modeling

Electrical machine modeling is the first step in the fault detection procedure.
Analytical methods, such as modified winding function and magnetic equivalent
circuits, are widely used for fault detection of induction motors due to their sim-
plicity. However, finite element modeling is preferred due to its high accuracy,
since geometry, saturation, eddy effect, and material properties can be consid-
ered. The FEM is still computationally expensive for fault detection of electric
machines as at least several mechanical revolutions of the machine are required
and the entire geometry must be considered due to the lack of symmetry caused
by the fault.

In this Ph.D. study, five salient pole synchronous generators are modeled in FEM:
100 kVA 14-pole, 22 MVA 8-pole, 42 MVA 16-pole, 105 MVA 14-pole, and 400
MVA 60-pole. The FEM of three generators is shown in Fig. 2.3. Since the
procedure of the modeling is the same in four synchronous generators, a 100 kVA
synchronous generator with 14 salient poles is explained in more detail.
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Figure 2.4: Coupled circuits of the stator winding and load, rotor field winding,
and damper circuit with FE simulation of a 100 kVA synchronous generators.

2.2.1 Modeling of a 100 kVA Synchronous Generator

The FEM of a synchronous generator provides an in-depth understanding of
how faults can influence the various signals, such as voltage, current, vibration,
and magnetic fields. Fig. 2.4 shows the FEM model of a 100 kVA salient pole
synchronous generator linked to the electrical circuit. The non-linearity of the
stator and rotor cores are taken into account, since saturation can influence sub-
harmonics in the magnetic field [63]. The eddy effect is only considered in the
damper bars.

The detailed geometry of the FEM is considered as the slots in the stator and
rotor influence the magnetic field distribution in the air gap. In addition, the
saliency of the rotor poles is considered. The generator under study is a 14-
pole/114-slot machine with fractional winding. The precise distribution of the
windings in the stator slots is crucial, especially for broken damper bar fault
detection. The fractional winding creates sub-harmonics that, in turn, result
in a current flow in the damper bars even during steady-state operation of the
generator.

Each rotor pole includes seven damper bars that are distributed in the rotor pole
shoe. The dampers are short-circuited by end rings on both sides. The short
circuited damper cages in each rotor pole are connected to neighboring poles
by the interpole connection rings. An external circuit that is modeled in Ansys
Electronics [64] consists of three circuits:

1. rotor field winding
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Figure 2.5: Waveform of the current applied to the rotor field winding of 100
kVA synchronous generator.

2. stator winding and load circuit

3. rotor damper winding and end ring circuit

In FEM, the DC current applied to the rotor magnetization winding has a con-
stant value based on the load point. However, a trapezoidal shape waveform is
applied to the rotor field winding for the BDB fault detection. Fig. 2.5 shows the
DC current applied to the rotor field winding of a 100 kVA generator. The ap-
plied current contains two transient periods during which the current is increased
from zero to nominal no-load current (53.2 A) during the ramp-up period and
it is decreased to zero during the ramp-down period. The period between these
two operation modes is a steady-state mode during which a constant 53. 2 A is
fed to the rotor field winding. The damper bars are active during both ramp-up
and ramp-down periods. However, if the generator has a fractional winding, a
current is present in the damper winding even during steady-state operation.

2.2.2 Data acquisition of magnetic field

Air gap magnetic field

The magnetic field can be stored for any time step at any arbitrary point us-
ing commercial software; however, the computation time significantly can be
increased. Therefore, it is recommended to measure the air gap magnetic field at
the desired point where the magnetic field sensor must be installed. A point in
the air gap close to the stator tooth is selected to measure the magnetic field in
the air gap. This point resembles the Hall-effect sensor. A search coil mounted
around the stator tooth can also be used for the air gap magnetic field measure-
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100 kVA 22 MVA

Search Coil

42 MVA

Figure 2.6: Location of search coil on the backside of three generators to measure
the stray magnetic field.

ment. In this case, two circles with the desired number of turns must be mounted
on two sides of a stator tooth.

Stray Magnetic Field

The stray magnetic field, which is a so-called mirror of the air gap magnetic field,
can also be measured on the stator backside of the synchronous generator. A
large hydro generator does not have the metallic housing common to induction
motors since the wall of the generator pit acts as a generator housing. Therefore,
direct access to the generator backside is possible for mounting the sensors. For
this reason, the generator housing (metallic frame) is not modeled in the FEM.
The amplitude of the stray magnetic field on the stator backside is in the order
of micro Tesla and the stray magnetic field vanishes if the sensor is mounted at a
distance of more than ten centimeters. Therefore, a high signal-to-noise ratio can
be achieved by deploying a proper search coil mounted close to the stator core.
Two types of stray magnetic fields, namely radial and axial stray magnetic fields,
can occur. Calculating pure axial magnetic fields requires 3D FEM. In-depth
analysis and experimental results obtained during this Ph.D. study indicated
that the signal is informative when the sensor can capture both the radial and
axial stray magnetic fields. This combination of radial and axial stray magnetic
fields can be measured when the search coils are modeled as shown in Fig. 2.6.

2.2.3 Fault Modeling

Three types of fault, namely ITSC fault, eccentricity fault (SE, DE, and ME),
and BDB fault, are investigated. The following sections explain how the faults
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are modeled in the FEM of the synchronous generator.

ITSC fault

In the case of an ITSC fault in the field winding, the magnetomotive force of
the relevant pole is reduced, resulting in a weaker magnetic field. An inter-
turn fault in the field winding can be simulated by reducing the total number of
conductors in the excitation coil while keeping the current constant. In this case,
the specified excitation currents based on the load situation must be applied to
the field winding.

Eccentricity Fault

The minimum air gap length is not uniform when a synchronous generator op-
erates under eccentricity fault. An SE fault in FEM can be simply implemented
by moving the stator core and stator winding along the x- or y-axis. The degree
of eccentricity fault can be calculated as follows:

EccentricityDegree =
d

g
× 100 (2.1)

where g is the radial air gap length in the healthy generator and d is the stator
displacement in the any direction.

The DE fault can be modeled in FEM by moving the rotor core, field windings,
damper bars, and shaft in a preferred direction. The degree of the DE fault can
be determined using 2.1, where d is the rotor displacement. The ME can be
implemented by a combination of both SE and DE faults, where both stator and
rotor must be displaced.

BDB Fault

A complete FEM of a salient pole synchronous generator is required while the
machine operates under a BDB fault, since BDB creates an asymmetric magnetic
field in the air gap. Fig. 2.4 shows the external circuit of the synchronous
generator with 14 salient poles and 7 damper bars in each rotor pole shoe. The
detailed resistance and inductance of the damper bars and inter-connections must
be included. The resistance of the healthy damper bar is in the order of µΩ. In the
case of a broken damper bar fault, the damper bar resistivity must be increased
up to kilo-ohms to limit the current that passes through the damper. Therefore,
a low current passes through the damper bar, even during a broken damper bar
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Figure 2.7: Experimental setup of a 100 kVA salient pole synchronous generator.

fault.

2.3 Experimental Setup

Although analytical and numerical modeling can give in-depth insight into the
fault impact on the signals of the synchronous generator, an experimental setup
is required to verify the obtained results. In this Ph.D. research, extensive tests
have been performed on a 100 kVA synchronous generator with 14 salient poles
which resembles a typical Norwegian hydro generator.

2.3.1 Laboratory setup

The main test rig consists of a 100 kVA 400 V synchronous generator, as shown
in Fig. 2.7. The generator has 14 salient poles, which is the second most common
number of poles in Norwegian hydropower plants. Synchronous generators with
16 poles are the most dominant ones. Table. 2.1 shows the key parameters
and nameplate data of the generator. The stator winding has the possibility to
be arranged in series or parallel connections. The entire experiment has been
performed while the windings were in series connection. A 90 kW induction
motor drives the generator shaft at speed of 1485 rpm. The induction motor is
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Table 2.1: Specification of 100 kV A, 50 Hz, Synchronous Generator

Quantity Values Quantity Values
No. of slots 114 No. of damper bars/pole 7
Winding connection Wye Number of poles 14
No. of stator turns 8 No. of rotor turns / pole 35
Nominal speed 428 rpm Power factor 0.90
Nominal voltage 400 V Nominal current 144.3 A
Nominal exc. current 103 A No-load exc. current 53.2 A
Nominal exc. voltage 20 V No-load exc. Voltage 10.5 V

controlled by a programmable converter that provides control of the active power
while the generator is connected to the power grid.

An oversized 20 kW magnetizing unit is used to feed a required a DC current to
the rotor field winding. The magnetization unit can be used to provide no-load
to full-load current for the rotor field winding in two modes of local load and grid
connection. The magnetizing unit has the capability to perform the following
steps when the generator feeds the power grid:

1. The magnitude of the induced line voltage in the stator terminal must be
equal to the grid voltage.

2. The frequency of the generator and the grid must be equal.

3. The phase sequence of both the generator and the grid must equal.

4. The phase angle must be equal.

The nominal speed of a 14-pole synchronous generator is 428 rpm, while the
prime over has a nominal speed of 1485 rpm. Therefore, a gearbox unit with a
gear ratio of three to one is used to reduce the rotational speed.

2.3.2 Fault Implementation

A custom-made 100 kVA synchronous generator has the feasibility of emulating
three fault types: the ITSC fault in the rotor field winding, the static eccentricity
fault, and the broken damper bar fault. The following sections describe how the
faults are emulated.
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Figure 2.8: Location of the shorted turns tap on the rotor.

ITSC fault

The ITSC fault can be applied to two poles of a 100 kVA synchronous generator
with 14 salient poles. Each rotor pole contains 35 turns, and several turns can be
removed. Although a short circuit fault in the rotor field winding causes asym-
metry in the air gap magnetic field, having a short circuit fault in two opposite
poles tries to alleviate the non-uniform magnetic field. Thus, this custom-made
synchronous generator has the possibility of analyzing this situation.

Different taps connected to the rotor field winding are connected to the bolts on
the rotor. Removal of 1, 2, 3, 7, or 10 turns is possible. A copper plate is used
to emulate the ITSC fault. The copper plate connects the common bolt to any
of the bolts, which represent the number of turns desired to be removed. Fig.
2.8 shows the rotor of the 100 kVA synchronous generator in which 7 turns are
removed.

Static eccentricity

The housing of the custom-made 100 kVA generator can be moved along the
horizontal axis to emulate the static eccentricity fault. Two bolts on both sides
of the generator are used to move the stator frame smoothly. To measure the
eccentricity fault severity, four measuring clocks are installed on both sides of the
generator housing (two on each side). The clocks are set to zero on both sides,
and moving the generator changes the clocks and shows the eccentricity fault
severity. Fig. 2.9 shows the location of the bolts and measuring clocks.
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Figure 2.9: Two bolts are mounted on each side of the synchronous generator to
move the stator frame in order to emulate the SE fault, and measuring clocks are
installed on each side to measure the SE fault.

Figure 2.10: Removed damper bars, end rings and the interpole connection seg-
ments from one rotor pole

Broken damper bar fault

Both a broken damper bar fault and broken end ring can be applied to the 100
kVA synchronous generator. Removable damper bars are embedded in the slots in
the rotor pole shoes. Each rotor pole contains seven damper bars that are short-
circuited on both sides using end rings. Fig. 2.10 shows the removed damper
bars, end ring, and interpole connections.
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2.3.3 Sensors

The signal is the most important ingredient in the fault detection of electric
machines. The measurement approaches in fault detection of electric machines
are divided into two categories:

1. Invasive: In this approach, a sensor must be installed inside the electric
machines, so this demands remarkable modification and preparation. For
instance, to measure the air gap magnetic field, the air gap must be acces-
sible, which means that the machine must be stopped and dismantled.

2. Non-invasive: In this method, signals can be measured without any modifi-
cation to the machine, and the use of an existing sensor is possible. Current,
voltage, vibration, and stray magnetic fields are examples of non-invasive
methods.

Note: In this Ph.D. study, different fault detection methods are proposed based
on various signals such as voltage, current, vibration, shaft voltage, air-gap mag-
netic field, and stray magnetic field. Detailed simulation and experimental results
analysis indicated that the voltage, current, vibration, and shaft voltage have low
sensitivity. In addition, the cost of the used sensors is high while the provided
data has poor content. Therefore, a developed health monitoring system is pro-
posed based on the air-gap magnetic field and stray magnetic field. The results
related to air gap magnetic field and stray magnetic are considered for further
discussion.

Hall-effect sensor

The most informative signal that can reveal the health status of the electric
machine is the air gap magnetic field, although it is an invasive method. Both
search coils and Hall-effect sensors can be used for the measurement of the mag-
netic field in the air gap. However, the Hall-effect sensor is used in this Ph.D.
study. Since the air gap length in the 100 kVA generator is 1.75 mm, the size
of the Hall-effect sensor becomes the first selection criteria. AST244 is selected,
with a size of (3.0×5.0×0.8) mm. The sensor is able to measure magnetic fields
varying from a few µT to more than 10 T. It also has low noise and low pick-up
EMC characteristics, as well as a low-temperature coefficient, which makes it a
good choice for operating inside a generator. The sensor must be supplied by a
constant DC power supply. Hall-effect sensors are sensitive to the amplitude of
the constant current that feeds into their circuit, indicating that the variation
in the amplitude of the supply current may result in the incorrect amplitude
of the measured magnetic field. In addition, Hall-effect sensors are sensitive to
electromagnetic noise; therefore, the wires must be shielded.
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Figure 2.11: Custom-made search coil mounted on the stator backside of a 100
kVA synchronous generator

Stray magnetic field sensor

The stray magnetic field is the so-called ”mirror” of the air gap magnetic field,
which indicates that it can be a suitable and non-invasive substitute for the air gap
magnetic field (Detailed discussion is provided in Section 2.6). Various sensors
are available to measure the stray magnetic field on the stator backside of electric
machines; these include flux-gates, Hall-effect sensors, and search coils. Search
coils are preferred since they are passive sensors and can be custom designed.

A search coil consists of a plastic reel and thousands of turns of copper wire.
The designed search coil used in this study is (100×100×10) mm. It contains
3000 turns of copper wire with a diameter of 0.12 mm. The resistivity and the
inductance of the search coil at the terminal are 912 Ω and 714 mH, respectively.
The output of the sensor is connected to the coaxial cable to avoid any disturbance
or noise coming from the operational environment. A BNC port is utilized to
connect the sensor output to an oscilloscope. Fig. 2.11 shows a search coil
mounted on the backside of a 100 kVA synchronous generator.

2.3.4 Data Acquisition

Data acquisition plays a key role in the health monitoring of electric machines.
Although the quality of the measured data depends on the quality of the sensors
and the operating environment, the sampling rate at which the data must be
recorded is also crucial, since some fault-related harmonics can simply vanish
in this process. An advanced oscilloscope (ROHDE & SCHWARZ RTO2044) is
used with a sampling frequency of 10 kHz. This oscilloscope has a high sampling
rate with high sensitivity to noise. The length of the data is limited to 40 seconds
in order to provide sufficient data for machine learning purposes. Fig. 2.7 shows
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the utilized oscilloscope for the data acquisition.

2.4 Field Tests

Two field tests are performed in two power plants in Norway. The vibration
level of a power plant located in mid-Norway was high and limited the maximum
power production. The power plant has a single unit with a 22 MVA 8-pole
synchronous generator. The generator has a metallic frame with several hatches
that provide access to the stator backsides. Therefore, only a stray magnetic field
sensor that was previously used in the laboratory setup is mounted on the stator
backside. Measuring the air magnetic field is impossible since the rotor must be
removed in order to gain access to the air gap. Four stray magnetic field sensors
are mounted on the stator backside and data is recorded at a sampling frequency
of 10 kHz. The test was performed during no-load and partial load (17 MW)
when the generator is connected to the power grid.

The second field test is performed in a hydropower plant that has four units. One
unit is suspected to be operating under a faulty condition since a maintenance
service company reported an abnormally increased vibration level. The 42 MVA
generator has 16 poles and cannot reach its maximum loading due to an increase
in vibration level. Three types of sensors are mounted: four Hall-effects sensors
in the air gap, four start magnetic field sensors, and four accelerometers. The
data were recorded at the sampling frequency of 10 kHz for 40 seconds. Since the
hydropower plant has four units, the noise captured by the start magnetic field
is also recorded.

2.5 Signal Processing

Hidden fault-related patterns in the signals can be revealed using signal processing
tools. Signal processing is the act of applying mathematical tools to raw data
to obtain deep insight into the data components. Various signal processing tools
are developed based on needs in certain fields and have been adapted for use
in other fields, such as health monitoring of electric machines. Signal processing
tools used in fault detection of electric machines are divided into three categories:

1. Time-domain, such as time series feature extraction based on scalable hy-
pothesis tests (TSFRESH) and time-series data mining (TSDM)

2. Frequency-domain, such as fast Fourier transform (FFT)

3. Time-frequency domain, such as short-time Fourier transform (STFT), dis-
crete wavelet transform (DWT), and continuous wavelet transform (CWT)
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Several signal processing tools have been used during the Ph.D. study; however,
the above-mentioned signal processing tools will be briefly explained since the
results in the published journal papers are based on them.

2.5.1 TSFRESH

Feature extraction from a time series is a complicated and time-consuming process
since several algorithms must be considered. The Python package of TSFRESH
combines 63 time-series characterization algorithms and can extract 794 features.
The method also provides a feature selection tool that eliminates the less rele-
vant features to reduce the computational complexity of the method. Some of
the features are absolute energy, first maximum and minimum, kurtosis, FFT
coefficients, variance, CWT coefficient, and DWT energies [65].

2.5.2 Fast Fourier transform

The FFT is a mathematical transform that decomposes a function, which could
be a signal or a function of time, into its constituent frequencies, indicating that
the signal can be demonstrated based on its constituent frequency components.
FFT is a suitable signal processing tool for stationary signals, suggesting that
signals containing transient periods cannot be treated well. The loss of time
information of the processed signal by FFT is the main disadvantage of this
approach [66]. Therefore, FFT is not an appropriate approach for processing
non-stationary signals if the temporal location of the frequencies is required.
Furthermore, the computational complexity of FFT is O(n.log(n)), where n is
the number of data samples [67]. The quality of the frequency spectrum of FFT
depends on several factors, such as the sampling frequency, length of data, and
the windowing function. In this study, the signals are sampled at a frequency of
10 kHz, with a data length of 40 seconds and a Hanning window [7].

2.5.3 Short time Fourier transform

The lack of temporal resolution of the FFT is compensated by introducing STFT.
STFT is widely used when a time and frequency demonstration of the signal is
required. STFT can analyze the non-stationary and transient period in the signal,
which makes it suitable for health monitoring applications. The STFT applies the
FFT to a section of the signal using a window function. The window function is
then swiped across the entire data set to find the magnitude for given frequencies
and time instants [66].
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Figure 2.12: Resolution grid of a STFT of a signal.

The result of the STFT is demonstrated in a spectrogram, which is an image with
time as the horizontal axis and frequency as the vertical axis, and the intensity of
the spectral data is designated by color. The optimal result can be achieved by
adjusting the type of window function, the length of the window, and the length
of the data set. The computational complexity of the STFT in comparison to the
FFT is notable since the computational complexity of the STFT isO(n.mlog(m)),
where n is the window length, indicating that the FFT must be performed n times
in order to achieve the STFT spectrogram.

The grid resolution of STFT is uniform across the entire time and frequency
values, as shown in Fig. 2.12. According to the uncertainty principle, which
states that one cannot know with a high degree of certainty both a property
and its integration in the time interval at the same instant [66], obtaining a high
resolution in both frequency and time is not achievable. Therefore, the best
window length must be selected based on the desired frequency that needs to be
tracked.

2.5.4 Continuous wavelet transform

CWT is a signal processing tool that decomposes a signal into a set of primary
waveforms. Analyzing the wavelet coefficient of the waveforms can provide valu-
able insight into the hidden pattern in the signal. CWT is introduced to resolve
the low time-frequency resolution of STFT caused by the uniform grid resolution.
The wavelet transform divides a time-frequency space from coarse to fine sizes,
while the STFT divides a time-frequency space into equal sizes. A grid resolution
of CWT is shown in Fig. 2.13.

Unlike STFT, which uses FFT as a window function that is dilated over the
entire signal to perform FFT, the signal is convoluted to wavelet function in the
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Figure 2.13: Resolution grid of a CWT of a signal.

Figure 2.14: A filter bank of a three-level DWT including filter banks and down-
sampling

wavelet transform [68], indicating that the wavelet behaves such as the windowing
function. The frequencies of interest can be traced with the help of wavelet scaling
factors that can stretch or compress the wavelet.

The type of mother wavelet must be selected based on the signal type and the
frequency of interest, indicating that no clear rule of thumb exists for selection of
the mother wavelet. It must be selected by trial and error. The computational
complexity of the CWT is (O(n)) per scale, where n is the length of data [69].

2.5.5 Discrete wavelet transform

The theory behind DWT is similar to CWT. The signal is convoluted to the
selected mother wavelet that can extract a hidden pattern from the faulty signals.
The DWT implementation using a filter bank is the most prevalent approach.

40



Chapter 2: Methodologies and Contributions

Each level of the filter bank consists of high-pass and low-pass filters, while the
output is downsampled by a factor of 2 at each level. The output of the high
pass filter that is downsampled is called the detail coefficient (h(n)), whereas the
output of the low pass filter that is downsampled is the so-called approximate
coefficient (g(n)). The approximate coefficient is fed to the next cascade filter
bank, while the detail coefficient is saved. The number of DWT levels determines
the number of decompositions. Fig. 2.14 shows a three-level filter bank.

The computational complexity of the DWT is O(n) per scale, where n is the
length of the data. However, the required storage for DWT is less than CWT,
which makes it a suitable signal processing tool for real-time implementation.
Although the method is called the “discrete” wavelet transform, both CWT and
DWT are implemented discretely in the field of signal processing. However, the
difference is that CWT is defined continuously and performs an infinite number
of swipes on an infinitesimal length, whereas DWT, as the discrete algorithm,
shifts the length of the wavelet.
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Figure 2.15: The radial magnetic field in 22 MVA synchronous generator, the air
gap magnetic field (top), the magnetic field at middle of stator yoke (middle),
and stray magnetic field (bottom) - Simulation results.

2.6 Fault Detection Methods

The magnetic field in electric machines is the most informative signal and is
similar to blood in the human vessel. Analysis of the magnetic field can reveal
information regarding the performance and health status of the electric machine.
The magnetic field in an ideal electric machine is confined inside the stator core,
whereas a weak magnetic field exists on the stator backside. Fig. 2.15 shows
the radial magnetic field at three points in a 22 MVA synchronous generator.
The magnetic field is measured in the air gap, at the middle of the stator yoke,
and on the stator backside. The magnitude of the magnetic field is reduced when
moving away from the air gap toward the stator’s backside. The amplitude of the
stray magnetic field becomes negligible (in the order of micro Tesla) compared
with the magnetic field in the air gap. However, the pattern and periodicity
are approximately identical. Consequently, the stray magnetic field ’mirrors’ the
magnetic field in the air gap. The detection methods proposed in this Ph.D.
thesis are based on the application of the stray magnetic field. Three types of
faults, namely the ITSC fault, eccentricity fault, and broken damper bar fault,
are examined and several unique approaches are proposed that deploy advanced
signal processing methods.

The impact of the power rating and topology of the salient pole synchronous
generators on the measured stray magnetic field sensor installed on the stator
backside is investigated using FEM. The five generators are: a 100 kVA 14-pole,
a 22 MVA 8-pole, a 42 MVA 16-pole, a 105 MVA 14-pole, and a 400 MVA 60-pole.
The induced sensor voltage of five generators operating in healthy conditions is
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---42 MVA

Figure 2.16: Induced sensor voltage in a healthy operation of the 100 kVA 14-
pole, 22 MVA 8-pole, 42 MVA 16-pole, 105 MVA 14-pole, and 400 MVA 60-pole.

shown in Fig. 2.16. The 100-kVA, 14-pole synchronous generator has an outer
diameter and stack length of 0.78 m and 0.24 m, and the 400-MVA, 60-pole
synchronous generator has an outer diameter and stack length of 11.27 m and
1.62 m; these two are the smallest and largest modeled generators among the five
models. The results illustrate that the thickness of the stator core, the number
of poles, the power rating, and the topology of the generator do not eradicate the
stray magnetic field on the stator backside.
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H

10 ITSC

Figure 2.17: Induced sensor voltage in a 100 kVA 14-pole synchronous generator
operating in a healthy case (top) and under a 10 ITSC fault (bottom) in the rotor
field winding.

2.6.1 ITSC fault detection

Although an ITSC fault in the rotor field winding is not a destructive fault and
the generator can operate for a long time under faulty conditions, the generator
cannot operate up to the full load condition due to the increased vibration level.
Three methods are proposed based on utilizing FFT, STFT, and CWT.

FFT analysis

The magnetic field in the air gap consists of the stator magnetic field and rotor
magnetic field. When an ITSC fault happens in the rotor field winding, the
magnetomotive force of the defected rotor pole is reduced since the flowing current
is assumed to be constant whereas the number of healthy turns in the rotor pole
is reduced. The reduction in the magnetomotive force results in an unbalanced
magnetic field in the air gap and, consequently, stray magnetic field on the stator
backside. Fig. 2.17 shows the induced voltage in the search coil mounted on
the stator back side of a 100 kVA generator. Compared with the healthy case,
both the amplitude and the pattern of the induced sensor voltage are changed
by having the ITSC fault in the rotor field winding. The variation in the pattern
of the induced sensor voltage is due to the fault-related harmonics, which can be
characterized as follows:
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Figure 2.18: Frequency spectrum of induced sensor voltage of a 100 kVA 14-pole
synchronous generator operating in a healthy case and under a 10 ITSC fault.

Table 2.2: Selected harmonic components in Hz to number of ITSC in no-load
operation of a 100 kVA synchronous generator in Decibel

[Hz] Healthy 1 ITSC 2 ITSC 3 ITSC 7 ITSC 10 ITSC
7.1 -44.9 -43.6 -41.9 -40.3 -34.8 -32.4
14.3 -45.4 -43.9 -41.8 -39.7 -33.1 -30.1
85.7 -41.5 -39.4 -36.8 -34.5 -27.9 -25.0
92.9 -34.8 -33.1 -31.2 -29.9 -22.9 -19.9
107.2 -37.2 -35.1 -33.2 -31.4 -25.0 -22.1
114.3 -45.1 -42.8 -39.9 -37.5 -31.0 -28.1

fsc = (2κ± ν

p
)fs (2.2)

where fs is the operating frequency of the generator, p is the number of pole
pairs, and κ and ν are any integers. Although the introduced index is based
on an analysis of the air gap magnetic field, it can be used for the fault-related
harmonic analysis in the stray magnetic field since the stray magnetic field is the
mirror of the air gap magnetic field, as explained in section 2.5.5.

Fig. 2.18 shows the frequency spectrum of the induced sensor voltage of a 100
kVA generator operating in a healthy case and under a 10 ITSC fault. The
amplitude of the fault-related harmonics, which are spaced with the mechanical
frequency of the generator, is markedly increased. Table. 2.2 shows the amplitude
of the harmonics that are extremely sensitive to the ITSC fault.
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Figure 2.19: Introduced pattern for ITSC fault detection based on the frequency
spectrum of induced sensor voltage in a salient pole synchronous generators.
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Figure 2.20: Frequency spectrum of a 100 kVA (top) and a 22 MVA (bottom)
synchronous generators operating in no-load case under various degree of ITSC
faults.

Although the frequency spectrum indicates the ITSC fault occurrence, the fre-
quency spectrum of a healthy generator or a pre-defined threshold value is re-
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Figure 2.21: Magnitude variation of the sub-harmonic component versus load
variation and various numbers of ITSC faults

quired. However, due to the lack of proper documentation of the commissioning
data of a synchronous generator, providing healthy generator data is almost im-
possible. In addition, the threshold value can change based on the power rating
and the configuration of the generator. Detailed investigation of the frequency
spectrum of the induced sensor voltage in healthy and faulty conditions illustrates
that the frequency spectrum of the induced sensor voltage follows a unique pat-
tern under ITSC fault, whereas the frequency spectrum of the healthy machine
shows a chaotic distribution of the harmonics. Fig. 2.19 shows the introduced
pattern for the ITSC fault detection in salient pole synchronous generators. As
shown in Fig. 2.19, the magnitude of the fault-related harmonics between the fs
and 2fs is increased and the magnitude of the ones located between the 2fs and
3fs is decreased. The same pattern is repeated between 3fs and 5fs. The pat-
tern is identical for the salient pole synchronous generators, regardless of their
power rating and topologies. Fig. 2.20 shows the frequency spectrum of two
synchronous generators with power ratings of 100 kVA and 22 MVA.

The load has a remarkable influence on the fault-related harmonics of the cur-
rent and voltage. However, analysis indicates that the loading condition of the
synchronous generator does not change the amplitude of the fault-related har-
monics, as shown in Fig. 2.21. According to Fig. 2.21, the amplitude of the fault
signature increases with an increasing number of shorted turns in the rotor field
winding, whereas increasing the generator’s load does not change the amplitude
of the fault-related signature. Thus, a short circuit fault detection using the pro-
posed signature and pattern does not require knowledge of the load condition of
the generator.
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Figure 2.22: Time-frequency plots of induced sensor voltage of a 100 kVA syn-
chronous generator operating in a healthy case (top), and under 1 ITSC fault
(middle) and a 10 ITSC fault (bottom).

STFT analysis

A new pattern is proposed using STFT to compensate for the lack of baseline
data of a healthy generator during commissioning. Fig. 2.22 shows the time-
frequency plot of the induced sensor voltage of a 100 kVA 14-pole synchronous
generator operating in a healthy case and under 1 and 10 ITSC faults. A black
dotted window is used to show the fault periodicity in the time-frequency plot.
The length of the window is equal to one mechanical revolution of the generator;
for a generator with 14 poles, this is 140 ms. The parameters of the STFT are
selected to have three frequency bands between 35 Hz and 85 Hz that show high
sensitivity to the fault. The time-frequency of a healthy generator exhibits a uni-
form pattern distribution in the mentioned frequency bands, while a negligible
repetitive variation can be observed due to the inherent eccentricity fault. The
intensity and the pattern of the time-frequency plot are changed by having only
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Figure 2.23: Time-frequency plots of induced sensor voltage of a 100 kVA syn-
chronous generator operating in a healthy case, and under a 10 ITSC fault.

one ITSC fault. Increasing the fault severity to ten shorted turns yields a signifi-
cant variation in the time-frequency plot. The length of the yellow band is equal
to 10 ms, which is equal to one rotor pole in a generator with 14 poles. The load
impact on the time-frequency plot of the induced sensor voltage shows that the
intensity and pattern of the plots do not change, and the results are similar to
those for the no-load operation of the generator, provided that the fault severity
increase directly influences the intensity of the time-frequency plot.

CWT analysis

The third developed method for ITSC fault detection is based on the application
of CWT to the induced voltage in the stray magnetic field sensor mounted on the
stator backside. Fig. 2.23 shows the time-frequency plot of the induced sensor
of a 100 kVA 14-pole synchronous generator. Each stalk in the time-frequency
plot represents one rotor pole, and each red window contains the rotor poles that
represent one mechanical revolution of the generator. In the healthy operation of
the synchronous generator, the size and intensity of the stalks are constant, and
the time-frequency plot has a uniform pattern. When 10 turns of a rotor pole
are short-circuited, the length and intensity of one of the stalks are markedly
reduced, which represents the faulty rotor pole. The pattern of the faulty stalk is
repetitive, indicating that the faulty pole is passed over the search coil installed
on the stator back side.
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Figure 2.24: Time–frequency plots of the induced sensor voltage of a 22-MVA
synchronous generator operating in a no-load condition in a healthy case, under
a 10-ITSC fault, under a 20% DE fault, and under mixed fault of 20% DE and
10-ITSC faults.

The pattern introduced by deploying CWT to an induced sensor voltage is iden-
tical for salient pole synchronous generators regardless of their power rating and
topology. Fig. 2.24 presents a time-frequency plot of a 22 MVA 8-pole syn-
chronous generator in a healthy case and under 10 shorted turns out of 58 turns
in one of the rotor poles. The pattern is similar to Fig 2.23, thereby proving the
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aforementioned claim.

One of the main concerns of health monitoring of electric machines is fault type
detection. Therefore, the DE fault is also applied to the 22 MVA synchronous
generator to understand the impact of the DE fault on the time-frequency plot
using CWT. As shown in Fig. 2.24, a DE fault creates a distinctive pattern that
differs significantly from the ITSC fault pattern, indicating that the fault type
can be simply diagnosed using the proposed method. In addition, the introduced
method is able to detect the co-existence of two critical faults, such as the ITSC
fault and the DE fault. Fig.2.24 shows the time-frequency plot for a case of
10 shorted turns in the rotor winding while the generator operates under 20%
DE fault. Compared with a DE fault that has a symmetrical pattern, the short
circuit fault distorts the DE pattern, reducing the length and the intensity of the
faulty stalk and indicating that the method is able to provide unique patterns
for each type of fault, in addition to alerting to the co-existence of two faults.

The load impact on the proposed method is also studied. The time-frequency
pattern of the induced sensor voltage for a full load operation of the generator
is also similar to its no-load operation. However, the pattern of the ITSC fault
in the grid-tided operation of the generator becomes more evident, since the
amplitude of current that passes through the rotor winding is increased.
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Figure 2.25: Mutual inductance between the rotor field winding and the search
coil mounted on the backside of a 22 MVA generator operating in a healthy, 20%
SE fault, 20% DE fault.

2.6.2 Eccentricity Fault Detection

The eccentricity fault distorts the symmetry of the magnetic field. The analysis
of mutual inductance between rotor winding and the search coil mounted on
the stator backside indicates that an eccentricity fault markedly affects both the
amplitude and the patterns of the mutual inductance. Fig. 2.25 shows the mutual
inductance between the rotor field winding and the search coil for a healthy
case, 20% SE fault, and 20% DE fault in a 22 MVA synchronous generator. A
comparison between the healthy case and the SE fault demonstrates that only the
amplitude of the mutual inductance is changed, whereas the pattern is identical.
The amplitude reduction due to the SE fault reflects an increase in the reluctance
of the path for the linkage flux. Therefore, the mutual inductance between the
rotor and search coil is reduced. By contrast, a DE fault not only changes the
amplitude of the mutual inductance but it also alters the pattern and the mutual
inductance starts to swing. The same analogy is valid for the mutual inductance
of three phases and the search coil mounted on the stator backside. In conclusion,
the amplitude of the induced voltage in the search coil due to SE fault should
be increased or decreased while the frequency content must be unchanged. On
the contrary, both the amplitude and frequency contents of the induced voltage
in the search coil must be changed under a DE fault. Sensitivity analysis shows
that the induced voltage in the search coil located on the stator backside has a
high capability to detect an eccentricity fault at low degrees, such as 5% SE and
5% DE fault. Fig. 2.26 shows the induced voltage sensor voltage in a 42 MVA
synchronous generator under various degrees of SE and DE faults. Four methods
are proposed for eccentricity fault detection in this thesis, as described in the
following sections.
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Figure 2.26: Induced sensor voltage of a 42 MVA synchronous generator operating
in a no-load condition in a healthy state and under various degrees of SE fault
(top) and DE fault (bottom row).

Time-domain analysis

The SE fault only influences the amplitude of the magnetic field, whereas the
frequency contents of the induced sensor voltage are constant, indicating that
mounting several sensors on the stator backside can simply provide in-depth
insight regarding the occurrence of the SE fault. In the case of vertically mounted
hydro generators, at least four sensors are needed for the detection of an SE fault
and its direction. For the detection of misalignment, at least eight sensors must be
installed at the drive end and non-drive end of the generator. Both experimental
tests on a 100 kVA generator and a field test on a 42 MVA generator proved the
proposed method. Fig. 2.27 shows the induced sensor voltage in four sensors
mounted on the backside of a 42 MVA generator. The induced sensor voltage
in sensors (S-1) and (S-3) and in sensors (S-2) and (S-4) are compared together,
since they are mounted on opposite sides of each other. The amplitudes of the
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Figure 2.27: Induced sensor voltage in two pairs of sensors mounted to the stator
backside of a 42 MVA synchronous generator operating under a SE fault. Four
sensors are mounted on the stator backside with 90 mechanical degrees of distance
where sensor pairs (S-1 and S-3) and (S-2 and S-4) are opposite each other.

induced sensor voltages in S-1 and S-3 are 1 V and 2.1 V, indicating that the
generator suffers from an SE fault. Although the amplitudes of S-2 and S-4 are
not exactly the same, the difference is not significant. The direction of the SE
vector is toward the S-1 and S-3.

The impact of DE fault in the time domain signal is also evident. As shown in
Fig. 2.26, the upper and lower envelope of the induced sensor voltage is changed
under the DE fault. The envelope variation is an indication of the frequency
component variation. Although the impact of each fault causes a unique pattern
in the stray magnetic field, a low-severity fault is difficult to recognize by visual
inspection, indicating that a signal processing tool is needed.
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FFT analysis

The feasibility of the real-time implementation of FFT makes it still a valid
approach for the health monitoring of electric machines. FFT is applied to the
induced sensor voltage of a 22 MVA 8-pole generator operating in a healthy case
and under the various degrees of SE and DE faults, as shown in Fig. 2.28. The
amplitude of the frequency components under an SE fault hardly varies, and
even imposing a 20% SE fault barely changes the amplitude of the frequency
spectrum compared with the healthy case. Although under the SE fault the
frequency sideband components around the main frequency and its odd multiple
are increased, the amplitude of the sideband harmonics for the healthy case is
similar to the faulty ones, since the ideal generator is simulated in FEM and
manufacturing asymmetry, which increases the amplitude of the aforementioned
harmonics, is ignored. The amplitude of the frequency components is markedly
changed by having a 5% DE fault. Increasing the severity of the DE faulty up to
20%, as shown in Fig. 2.28, results in amplification of the frequency components,
which can be determined using (1± (kp ))fs, where k is an integer, fs is the stator
terminal frequency, and p is the number of pole pairs.

A unique pattern for DE fault detection using FFT is proposed in this Ph.D.
study as shown in Fig. 2.29. The FFT spectrum of a healthy generator has a
chaotic frequency spectrum pattern, whereas applying a 5% DE fault imposes
a distinctive pattern. The amplitude of the sub-harmonics can be determined
using (1 ± (kp ))fs. The amplitude of the fault-related harmonics is increased by

increasing the fault severity from 5% to 10%, 15%, and 20%. Fig. 2.29 shows an
introduced pattern for DE fault detection that does not require a priori knowledge
of a healthy generator. The amplitude of the fault-related harmonics between fs
and 2fs are decreased, while the harmonics between 2fs and 3fs are increased.
The same pattern is repeated between 3fs and 5fs. The introduced pattern is
observed for several synchronous generators with different topologies and power
ratings, indicating the robustness of the introduced method.

Wavelet entropy

Providing the baseline data of a healthy generator or having a pre-defined thresh-
old for fault detection purposes based on frequency spectrum analysis is almost
impossible. Therefore, a method based on differential electromotive force is de-
fined. In this method, at least two search coils must be mounted opposite each
other on the stator backside. The differential induced electromotive force is as-
sumed to be almost zero if the generator operates in a healthy condition. Thus, a
non-zero differential electromotive force indicates that the generator is operating
under faulty conditions. This assumption is valid since the construction tolerance
of large synchronous generators is tight and an imbalance due to the machining
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Figure 2.28: Frequency spectrum of induced sensor voltage of a 22 MVA generator
operation in a no-load case for various degrees of DE fault and SE fault.
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Figure 2.29: Introduced pattern based on the frequency spectrum of induced
sensor voltage for detection of DE fault detection in salient pole synchronous
generators

of the stator and rotor cores is impossible. The detection of the fault type is
proposed by deploying wavelet entropy to the differential electromotive force.

DWT with Daubechies-8 as a mother wavelet is applied to the differential electro-
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Figure 2.30: 8-level DWT with corresponding frequency bands based on the
sampling frequency of 10 kHz.

motive force, which is sampled as a frequency of 10 kHz. The mother wavelet of
Daubechies-8 is selected due to its promising performance in the fault detection of
electric machines [70] Fig. 2.30 shows the corresponding frequency bands for the
eight sub-bands. Fig. 2.31 shows the application of the DWT to the differential
electromotive force of a 22 MVA synchronous generator operating in a healthy
case and under 20% SE, and 20% DE faults. The amplitude of the electromotive
force for a healthy, 20% SE fault, and 20% DE fault are 10 mV, 1 V, and 2 V,
respectively. A comparison between the healthy case and SE fault for the entire
sub-band indicates that the frequency contents are similar in both cases, while
the amplitudes differ. On the contrary, both the frequency and the amplitudes of
the sub-bands are distinctive compared with the healthy case in the case of DE
fault. The load has a noticeable impact on the wavelet sub-bands, whereas the
amplitude of the sub-bands is suppressed due to the stator-contributed magnetic
field that tries to reduce the irregularity in the air gap magnetic field. However,
the pattern and amplitude are distinguishable, even under the on-load operation
of the synchronous generator.

Application of the wavelet entropy to the differential electromotive force can
provide an in-depth insight into the health status of the synchronous generator.
The value of the entropy shows the degree of disorder in the signal. If the entropy
equates to zero shows a perfect order, while 1 indicates a disorder. However, there
is no upper limit for the entropy. Shannon entropy, which shows a probability
distribution of the signal, is used as follows:

Entropysh(n) = −Σj
i=1PilogPi (2.3)

Pi =
Ej

E
(2.4)
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Figure 2.31: DWT of induced differential electromotive force in a 22 MVA syn-
chronous generator operating in the no-load case in healthy (top), 20% SE fault
(middle), and 20% DE fault (bottom).

where Pi is a relatively normalized value of each wavelet sub-band energy (Ej)
to the total energy of the signal (E). Fig. 2.32 shows the proposed index value
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Figure 2.32: The wavelet entropy of sub-bands (D1 to D6) for different degrees
of SE and DE faults in no-load and full-load cases of a 22 MVA synchronous
generator.

for the wavelet sub-bands of D1 to D− 6 for the different degrees of SE and DE
faults. The wavelet entropy is zero for a healthy case, but increasing the fault
severity increases the wavelet entropy value. Among the sub-bands, D2, D3, and
D4 have a higher sensitivity to fault progress under both SE and DE faults. This
index does not require a threshold value, since any value above zero is the fault
indication.

The proposed fault detection method is valid for both the no-load and on-load
operating conditions of the synchronous generators. Compared with the no-load
case, the amplitude of the wavelet entropy is decreased to the same degree as the
fault in the on-load operation. The reduction is due to the contributed magnetic
field from the stator winding, which tries to reduce the magnetic field asymmetry
caused by the eccentricity fault. Although the amplitude of the index during
on-load operation is reduced, the method can only detect a faulty operating
synchronous generator.

CWT-based approach

A unique eccentricity fault detection approach based on the application of CWT
proposed in this Ph.D. study addresses the limitations of the previously developed
methods. The limitations are:

1. Although the time domain analysis of the induced sensor voltage can reveal
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Figure 2.33: Eccentricity fault detection algorithm in a salient pole synchronous
generator.

the health status of the synchronous generator, the co-existence of multiple
faults creates difficulties in diagnosis, indicating that a signal processing
method is required.

2. Although the proposed pattern for the DE fault detection eliminates the
need for baseline data of a healthy generator and predefined threshold for
the FFT analysis, the fault cannot be detected using frequency spectrum
analysis.

3. The detection method based on wavelet entropy is applicable for eccentricity
fault detection; however, a short circuit fault can also change the value of
the wavelet entropy of the differential electromotive force.

In conclusion, a new algorithm, shown in Fig. 2.33, is proposed to detect the SE,
DE, and ME faults in synchronous generators. At least four sensors are required
to detect the SE fault. If the amplitude of the sensor pairs located opposite each
other is equal, the data of one sensor is fed to the signal processing section, which
applies CWT. If the introduced pattern is determined in the time-frequency plot,
the generator operates under the DE fault; otherwise, the generator operates in a
healthy condition. In the case where the amplitude of at least one pair of sensors
is unequal, the generator has at least an SE fault. The analyzed signal must
be checked for DE fault diagnosis. If the signal shows the DE pattern in the
time-frequency plot, the generator has an ME fault; otherwise, it operates under
the SE fault.
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Figure 2.34: Time–frequency plot of an induced sensor voltage in a 100 kVA
synchronous generator operating in a no-load condition, in a healthy case (first
row), and under 20% SE fault (second and third row for sensors S-2 and S-4) and
20% DE fault.

Fig. 2.34 shows the time-frequency plot of the induced sensor voltage of two
search coils (S-4) and (S-2) mounted opposite each other on the stator backside
of a 100 kVA synchronous generator. The mother wavelet and parameters of
the CWT are selected and adjusted to partition the frequency bands between 0
and 40 Hz, 40 Hz and 60 Hz, and 60 Hz and 100 Hz. These frequency bands
are desired, since the most variation in the frequency components of the faulty
frequency spectrum is located near the fundamental frequency of the synchronous
generator. A red window is defined that shows one mechanical revolution of the
generator, which is 140 ms for the 100 kVA 14-pole synchronous generator under
study.
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The time-frequency plot of a healthy case contains a uniform pattern with a
constant intensity along each frequency. The impact of a 20% SE fault gives rise
to intensity variation of the time-frequency plot, while the pattern is similar to the
healthy case, thereby confirming that the frequency content of the induced sensor
voltage is unchanged due to the SE fault. The intensity of the time-frequency
plot in S-2 is reduced, while it is increased in S-4, since the air gap length is large
on the S-2 side and smaller on the S-4 side. The last row of Fig. 2.34 shows
the impact of DE fault on the time-frequency plot. The DE fault modifies both
the pattern and the intensity of the time-frequency plot. Both the upper and
lower envelopes of the time-frequency plot contains a sine wave variation, which
is similar to the time domain signal of the stray magnetic field.

The method is successfully applied to three synchronous generators with different
power ratings and topologies: 100 kVA 14-pole, 22 MVA 8-pole, and 42 MVA
16-pole. In the field test of a 42 MVA generator, the analysis indicates that the
generator operates under an SE fault with high severity, whereas the parallel
windings in the stator winding reduce the SE fault intensity when the generator
is connected to the power grid. The time-frequency plot of a 22 MVA generator
also reveals that the generator suffers from the DE fault.
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Figure 2.35: Induced current in the rotor bars due to the trapezoidal shape of
the field current in a healthy generator during no-load operation (blue waveform)
and with one BDB fault (Pole #1, bar #7 (P1-B7)) (red waveform).

2.6.3 Broken Damper Bar Fault Detection

Although the BDB fault does not happen frequently in synchronous machines,
it is a fast progressing fault that can damage the stator core and winding if the
damper bar protrudes from the rotor pole shoe. Damper bars are active during
transient operation of the synchronous machine; however, there is an exception
if the stator has a fractional winding. The DC current, as shown in Fig. 2.5, is
applied to the 100 kVA generator, which rotates under synchronous speed. Fig.
2.35 shows the current in the damper bars in a healthy case and under one BDB
fault. According to Fig. 2.35, a high current passes through the damper bars
during both transient and steady-state operation of the synchronous generator.
For this reason, the detection of the BDB fault in the synchronous generator in
three modes of ramp-up, steady-state, and ramp-down using stray magnetic field
monitoring is proposed in this Ph.D. study.

In theory, the air gap magnetic field of the rotor consists of a magnetic field of
the rotor field winding and a magnetic field of the damper winding. Therefore,
the BDB fault causes irregularities in the magnetic field of the air gap and con-
sequently the stray magnetic field. Fig. 2.36 presents the induced sensor voltage
on a search coil installed on the stator backside of a 100 kVA generator. The
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Figure 2.36: DWT of induced sensor voltage of a 100 kVA synchronous generator
in healthy case (blue waveform) and with one BDB fault (red waveform) in three
cases: RU (top section), SS (middle section), and RD (lower section).

waveform is divided into three sections: ramp-up, steady-state, and ramp-down.
The blue waveform shows the induced sensor voltage during the healthy oper-
ation of the generator, while the red waveform shows the generator having one
BDB fault in one of the rotor poles.

Although an evident difference is obvious when comparing the healthy and faulty
induced sensor voltage, the DWT is selected to analyze the transient behavior of
the induced sensor voltage. The Daubechies-8 is used as a mother wavelet, and
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sub-bands D1 to D4 exhibit high sensitivity to the BDB fault. Shannon entropy is
applied to these sub-bands to quantify the degree of disorder caused by the BDB
fault. The magnitudes of the Shannon wavelet entropy for sub-bands D4 and D3
under one BDB are increased from 405 to 482 and 6610 to 7166, respectively,
during the ramp-up period. The amplitude of the wavelet entropy during the
ramp-down period is also increased for the D4 and D3 sub-bands, from 382 to
607 and from 6397 to 8355, respectively. The magnitudes of the D4 and D3 sub-
bands during steady-state operation are increased from 959 to 1181 and from 10
403 to 11 473, respectively.

A criterion function is introduced to generalize the proposed BDB fault detection
algorithm as follows:

CriterionFunction =
|WEHDi −WEFDi|

WEHDi
× 100 (2.5)

whereWEHDi, andWEFDi are the wavelet entropy of the corresponding wavelet
sub-band in the healthy and faulty cases, respectively. Analysis of the results for
the criterion function of the selected wavelet sub-bands indicated that sub-band
D-4 has higher sensitivity to a BDB fault in all three operational modes. The
damper bar location has a considerable impact on the criterion function value,
since the damper bars are distributed along the rotor pole curvature. The highest
current passes through the damper bars located at the edge of the rotor pole
while the smallest current passes through the damper bar located in the middle
of the rotor pole. Therefore, the breakage of the middle damper bar has a trivial
influence on the criterion function value.

The damper bars are designed to carry the current that the stator is designed
for. The current of the BDB passes through the adjacent damper bar. The
increased current results in a local temperature rise and, in the long term, gives
rise to damper fracture, indicating that the breakage of one damper bar ultimately
causes breakage of several damper bars. Analysis of the criterion function shows
that multiple breakages increase the value of the criterion function. The least
variation in the value of the criterion function occurs for a BDB in the middle
damper bars and their adjacent dampers. In the case of breakage of the entire
damper bars of one pole, the value of the criterion function is markedly increased.
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2.7 Noise Impact

The technical term ’signal’ in the field of signal processing refers to the ’demand’
data that are measured. However, the measured data are prone to noise interfer-
ence during data acquisition, storage, and conversion. The noise is unavoidable
in the industrial environment, indicating that the measured data always have
undesired data that may disturb the signal contents. The quality of the signal
is measured based on the signal-to-noise ratio (SNR), and several factors, such
as the sensor, data acquisition system, and working environment, influence the
SNR.

The noise type can be determined based on its frequency characteristics. The
measured data might have noise, and that noise may contain high-frequency
components or may spread over a wide frequency range. Th noise can be of
various types, including white Gaussian noise, Pink noise, Brownian noise, Blue
noise, and Violet noise. The electromagnetic noise source interferes with the
measured data for the fault detection of electric machines consisting of the noise
generated from the electric machines, converters, and transformers.

The analysis of the measured noise using the stray magnetic field sensor mounted
on the stator backside of a 42 MVA generator shows the existence of white Gaus-
sian noise. The data were measured while the generator was halted; however,
three units were operating during the data acquisition process. The analysis
shows that the amplitude and the power density of the noise are identical through-
out the frequency span, which indicates the behavior of the white Gaussian noise.

The noise impact can be suppressed by increasing the SNR. The amplitude of the
magnetic field on the stator backside is low; therefore, increasing the number of
turns can increase the SNR. In addition, coaxial cable and copper foil are used to
shield the data during data acquisition. However, the experimental tests and field
tests confirmed the existence of the noise. Thus, the impact of the noise on signal
processing tools utilized for the purpose of fault detection in this Ph.D. thesis
was evaluated . White additive white Gaussian noise is added to the measured
air-gap magnetic field of a 100 kVA synchronous generator operating in a healthy
case and under 10 ITSC fault. The following sections show the impact of noise
on the signal processing tools FFT, STFT, CWT, and DWT, and TSDM.

2.7.1 Noise Effect on FFT

The noise impact on the data analyzed with FFT was examined by adding white
Gaussian noise to the measured air gap magnetic field. Fig. 2.37 shows the
FFT spectrum of an air gap magnetic field for a 100 kVA generator with 7 pole
pairs operating in a healthy case and under 10 shorted turns in one of the rotor
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Figure 2.37: Frequency spectrum of an air-gap magnetic field in a healthy state
and under a 10 ITSC fault, without noise interference (top), and with 20-dB SNR
(bottom).

poles. Compared with the frequency spectrum of a healthy synchronous genera-
tor, having 10 shorted turns in one of the rotor poles increases the amplitude of
the frequency spectrum. The analysis shows that moving from a no-noise data
to data with a 20 dB SNR does not change the amplitude of the fault signatures,
whereas the noise level is increased markedly when the SNR equals 30 dB. Al-
though the fault signatures can be detected, the noise level above these value can
totally mask the fault signatures.

2.7.2 Noise Effect on STFT

STFT is applied to the air gap magnetic field of a healthy and faulty generator.
The impact of 40 dB and 20 dB white Gaussian noise is shown in Fig. 2.38. The
patterns are still identical for a SNR equal to 40 dB. However, decreasing the
SNR causes chaotic patterns in the time-frequency plot of the STFT. Detailed
analysis of a 20 dB SNR using image processing indicates that the white Gaussian
noise can modify the healthy pattern in a way that makes it looks like a faulty
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Figure 2.38: Time-frequency plot of an air-gap magnetic field using STFT in a
healthy state and under a 10 ITSC fault, without noise interference (top), and
with 20-dB SNR (bottom).
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Figure 2.39: Time-frequency plot of an air-gap magnetic field using CWT in a
healthy state and under a 10 ITSC fault, without noise interference (top), and
with 20-dB SNR (bottom).

pattern. Consequently, a low SNR may lead to a false positive fault if the signal is
processed using STFT. Even though the window length of STFT can be increased
to alleviate the noise impact on the time-frequency plot, this yields a reduction
in temporal resolution, thereby limiting the usefulness of STFT.

2.7.3 Noise Effect on CWT

CWT shows a promising outcome among the presented results for health moni-
toring of hydro-generators. The impact of noise on CWT performance is shown
in Fig. 2.39 for a healthy case and under 10 ITSC fault. The time-frequency plots
of the air gap magnetic field up to 40 dB SNR still show healthy and faulty pat-
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Figure 2.40: Time-frequency plot of an air-gap magnetic field using DWT in a
healthy state without noise interference (red), and with 20-dB SNR (blue).

Table 2.3: Energy of various DWT sub-bands applied to air-gap magnetic field
in a healthy and under ITSC fault.

D6 D5 D4 D3 D2 D1
Healthy - No-Noise 0.83 0.94 0.97 1.0 1.06 1.35
Faulty - No-Noise 0.81 0.88 0.83 0.79 0.72 0.65
Healthy - 20 dB 0.81 0.88 0.83 0.79 0.72 0.65

terns with high accuracy. However, increasing the noise level to 20 dB SNR has
a discernible impact on the CWT plot. The time-frequency plot becomes com-
pletely distorted if a high level of noise interferes with the measured data. Here,
the selection of an appropriate mother wavelet is the only solution to suppress
the noise effect on the measured data.

2.7.4 Noise Effect on DWT

Unlike CWT, where the noise impact is discernible on the time-frequency plot,
identifying the impact of additive white Gaussian noise on the performance of
the DWT is not straightforward. Hence, quantitative measurements, such as
the energy of each sub-band, are needed to evaluate the noise impact. Fig.
2.40 shows the DWT sub-bands of air gap magnetic field of a healthy generator
with/without additive white Gaussian noise. The energy of each sub-band is
calculated as follows:

E =

∫ +∞

−∞
|Dn|2dt (2.6)
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where Dn is the magnitude of each wavelet sub-band. Daubechies-8 is used as a
mother wavelet, and the energy of eight sub-bands for a healthy no-noise, healthy
20 dB SNR, and faulty no-noise are shown in Table. 2.3. The analysis shows
that having a 20 dB SNR can result in a false positive fault alarm if the index is
defined in sub-bands between D1 and D6. Thus, using DWT if the operational
environment is noisy and can provide a false indication of the fault.
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2.8 Automated Fault Detection Algorithm

The aim of using algorithms based on artificial intelligence in the health monitor-
ing of electric machines is to automate the fault detection process and eliminate
the possible human error. An automated health monitoring system can be im-
plemented in three ways:

1. Detection of the electric machine’s healthy or faulty operation mode.

2. (1) + Fault type detection

3. (1) + (2) + Location identification and severity estimation of the fault

Note: In this Ph.D. thesis, the result of first approach (detection of the electric
machine’s healthy or faulty operation mode) is only discussed since the results are
published in [Paper IX].

The accuracy of the automated health monitoring system depends on various
factors, such as:

1. The type of signal and the number of signals

2. The number of training data sets

3. The developed algorithm

Note: In this Ph.D. thesis, the results obtained based on air gap magnetic field
are only discussed, since the results of the published paper [Paper IX] are only
based on the mentioned signal. However, during the Ph.D. study, an algorithm
based on sensor fusion that utilized stray magnetic field, vibration, voltage, and
current, was implemented. The results showed that the application of sensor
fusion outperformed the single signal approach. Moreover, the proposed algorithm
in [Paper IX] is applied to stray magnetic field and the result indicates that the
trained algorithm for the dataset based on stray magnetic field outperforms the
air gap magnetic field.

Fig. 2.41 shows the implementation procedure of the machine learning approach
developed in this Ph.D. study. The algorithm consists of five steps: data ac-
quisition, data pre-processing, feature extraction, feature selection, and machine
learning. Several experiments on a 100 kVA 14-pole synchronous generator are
performed in the healthy case and under various degrees of ITSC fault. The air
gap magnetic field is measured and recorded at a frequency of 50 kHz. In total,
48 experiments are performed (eight healthy cases and 40 faulty cases) under var-
ious loading conditions and with different fault severity. Adequate data sets are
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Figure 2.41: Procedure of intelligent health monitoring of synchronous generators

provided by defining a reduced sample series (RSS) consisting of one mechanical
revolution of the generator. Therefore, the number of data sets is approximately
equal to 2500.

Three feature extraction tools are used: FFT, DWT, and Time Series FeatuRe
Extraction based on Scalable Hypothesis tests (TSFRESH). The frequency spec-
trum of the air gap magnetic field shows that an ITSC fault increases the am-
plitude of the harmonics at the interval of the mechanical frequency of the gen-
erator. Therefore, FFT is applied to each RSS, and the frequency components
are selected for training. DWT with a Haar mother wavelet with 12-level decom-
position is selected for the feature extraction due to its simple implementation.
Instantaneous, Teager, hierarchical, and relative wavelet energies are computed
for each decomposition level as a separate feature. Lastly, TSFRESH is applied
to each RSS and several time-domain features using 63 time series characteris-
tic methods are extracted. The total number of extracted features is 417. The
entire set of extracted features cannot provide informative data, indicating that
the most informative data must be selected. Two feature selection methods,
namely random forest and TSFRESH, are used. The feature selection method
based on random forest provides 81 of the 417 features, while TSFRESH provides
301 of the 417. Both data sets are used for the training the different proposed
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Figure 2.42: Threefold cross-validation of the data set. Each fold includes a
training and validation set.

Table 2.4: The results from the stacking classifier comparison.

Meta-classifier Accuracy Sensitivity Precision F1-score
Logistic Regression 0.7840 0.8701 0.8260 0.8432
Multi-layer Perceptron 0.7479 0.8057 0.8276 0.8107
Gradient boosting forest 0.7663 0.8268 0.8304 0.8255
Random Forest 0.7704 0.8216 0.8388 0.8265

algorithms; however, the feature data set based on TSFRESH outperforms the
random forest.

The data set is divided into three parts: training, testing, and hand-out data
set. Only 20% of the data is kept as the hand-out data set. The data set is not
entirely uniform, indicating that the non-uniform splitting of the train/test sets
may affect the result of the machine learning algorithm. Thus, cross-validation
with k-folds is used to avoid misclassification of the data set. When using k-fold
cross-validation, the performance of the model is the average performance of the
model over each fold. Fig. 2.42 shows the threefold cross-validation.

Eleven models are used: logistic regression w/w.o PCA, KNN w/w.o PCA, SVM
(radial basis function) w/w.o PCA, SVM (linear) w/w.o PCA, XGBOOST, multi-
layer Perceptron, and stack. The analysis shows that every classifier combined
with PCA has a drop in performance. Consequently, the PCA is not considered
in further study. The classifiers are optimized by conducting a grid search on
hyperparameters. Several tools are available for evaluating the performance of
the classifiers. Four tools are used: accuracy, sensitivity, precision, and F1-score
(these evaluators are explained in Paper [IX]). The F1-score for five classifiers on
a five-fold data set is shown in Table. 2.4.

Although the F1-score of every single classifier shows promising results, ensemble
learners are preferred since they combine several weak learners that may have
poor performance to create a more powerful classifier. A few approaches can
accomplish this, mainly by bagging, boosting, and stacking. A stacking classi-
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Table 2.5: The results of the best of the single and stacking classifiers on the
hold-out data samples.

Classifier Accuracy Sensitivity Precision F1-score
Logistic Regression 0.7569 0.6961 0.9435 0.8011
Logistic Reg. stack 0.8448 0.8456 0.9274 0.8846

fier consists of two levels of classifiers, the base classifiers and meta classifiers.
The stacking classifier outperforms the base classifier since the meta-classifier is
trained based on the output of the base classifier. Four stacking classifiers are
created with different meta classifiers: logistic regression, MLP, gradient boost-
ing forest, and a random forest classifier. The F1-score of the stacking classifier
is higher when the logistic regression is selected as its meta classifier. Therefore,
the model with the logistic regression as a meta-classifier is chosen. The devel-
oped model with improved performance based on optimized hyperparameters is
examined with hold-out data, as shown in Table. 2.5. The same hold-out data
set is used to examine the single classifier of logistic regression. According to
Table. 2.5, the F1-score of the stacking classifier with logistic regression as a
meta classifier is 8% higher than that of a single classifier. The logistic regres-
sion stacking classifier has an accuracy of 0.8448, a sensitivity of 0.8456, and a
precision of 0.9274. This indicates that the classifier correctly classified 84.48%
of all the samples in the hold-out dataset and that 84.56% of the faulty samples
present were correctly classified as such. Of the samples that were classified as
faulty, 92.74% were correctly classified.
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3 Conclusion

This thesis proposed several approaches to address the limitations of the pre-
viously developed health monitoring methods for hydropower generators. The
thesis provides practical solutions to meet the research objectives and has made
contributions toward functional health monitoring algorithms. The main findings
and potential future works are discussed in the following sections.

3.1 Concluding remarks

In this thesis, health monitoring of hydro generators based on the application
of a non-invasive sensor is proposed. A tailor-made sensor that can pick up
the stray magnetic field on the stator backside is proposed. The induced sensor
voltage of the signal is able to provide informative data, while its installation
can be conducted even during synchronous generator operation. Although the
stray magnetic field on the stator backside is minuscule, the precise signal is
captured due to the direct access to the stator backside and the proper design of
the custom-made sensor.

Detection of a fault at the early stage can provide adequate time for the main-
tenance team to plan for the stoppage of the generator at a reasonable time.
The stray magnetic field has a high sensitivity to the low degree of faults. The
analysis of the signals indicates that the amplitude and the pattern of the signal
are changed even by having one shorted turn in the rotor field winding or hav-
ing a 5% eccentricity fault; while detection of the fault at the mentioned level
for non-invasive methods based on voltage, current, and the vibration is almost
impossible.

The previously developed methods need a priori knowledge of the healthy gen-
erator, which is almost impossible to acquire due to the lack of documentation
during the commissioning of the hydro generator. That problem is solved by
introducing several detection algorithms that extract a unique feature for each
fault type using signal processing methods, such as FFT, STFT, CWT, and
DWT. The spectrum analysis of the stray magnetic field for a healthy generator
demonstrates a chaotic amplitude variation of the harmonics, while the frequency
spectrum shows a unique pattern for each type of the inter-turn short circuit fault
and DE fault. In addition, a unique pattern for short circuit fault detection is
also introduced using STFT, whereby the faulty pole can be detected simply and
without any need for healthy generator data. A distinctive method based on de-
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ploying CWT to the stray magnetic field for the short circuit fault is introduced,
and the method is able to provide a unique pattern for both short circuit and
eccentricity fault.

Detection of an SE fault is almost impossible based on the available commercial-
ized and state-of-the-art approaches. The method developed in this thesis can
diagnose an SE fault with low severity based on time-domain data analysis. In
addition, the direction of the fault can be detected if four sensors are mounted at
a distance of 90 mechanical degrees on the stator backside. Two unique patterns
are also proposed for the detection of a DE fault based on the application of
FFT and CWT. The proposed methods do not require prior knowledge of the
generator.

In this thesis, a method for the detection of a broken damper bar (BDB) during
steady state and transient operation of the synchronous generator is proposed.
The method is based on the analysis of the stray magnetic field measured on the
stator backside. The DWT is used to locate the sub-bands that have the highest
sensitivity to the occurrence of the BDB fault. The method can detect the
BDB fault during ramp-up and ramp-down, since a high current passes through
the damper bars during the transient. However, the damper bars are active
even during the steady state operation of the generator if the generator has a
fractional winding. The proposed index based on wavelet entropy can simply
show the variation in the frequency component caused by the BDB fault.

The introduced patterns make fault type detection easier, thereby resulting in
significant time savings for the maintenance team. The proposed methods are also
checked regarding the noise impact on their performance. Noise is suppressed by
designing a sensor that has a high signal-to-noise ratio. In addition, additive white
Gaussian noise, which is the dominant type of noise in the industrial environment,
is also added to the measured signal that is analyzed by the signal processor. The
analysis shows that a safe margin of up to 40 dB SNR exists that signal processors
can use to detect the fault precisely.

An intelligent detection algorithm is also proposed in this thesis that can detect
the inter-turn short circuit fault with a high F-score. Although the number
of experiments is limited, the data are pre-processed to achieve 2500 data sets.
Three feature extraction tools, including FFT, DWT, and TSFRESH, provided a
total of 417 features. The computational complexity of the method is diminished
by reducing the number of irrelevant features using feature selection tools. Eleven
single classifiers, in addition to four ensemble stacking classifiers, are examined
to achieve high accuracy and precision. Finally, a method based on ensemble
learners that uses four base classifiers in addition to the meta classifier is selected
due to the high F-score. The logistic regression as a meta classifier shows a
promising result among various classifiers. However, the proposed algorithm is
only able to detect the presence or absence of an inter-turn short circuit fault in
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the generator.

Fig. 3.1 summarizes the abilities and limitations of available commercialized
solutions. Several factors have been compared, such as the ability to detect
the fault and identify its type, sensitivity, noise impact, invasive or non-invasive
sensor, level of difficulty in the implementation, and cost of sensor assuming
the same data acquisition system is used. Among the available approaches, a
method based on the stray magnetic field has a high superiority and can make
the developed methods favorable for health monitoring problems encountered in
the industrial setting.

3.2 Recommendations for future work

This research study investigates rotor-related faults, such as inter-turn short cir-
cuit faults, eccentricity, and broken damper bar faults. The superiority of the
developed health monitoring algorithms based on the stray magnetic field using
advanced signal processing methods is demonstrated. The same approach can be
used to detect a short circuit fault in the stator winding of synchronous gener-
ators with multi-turn windings. The method must provide a distinctive pattern
that is able to detect the turn-to-turn fault at an early stage before the short
circuit fault burns out the entire stator winding.

Research studies to detect the stator core-related faults are currently limited, and
the available methods are based on offline inspection. A method based on the
application of a stray magnetic field is suggested here to allow the detection of
stator core-related faults while the generator is operating. In large hydro gen-
erators, the stator core consists of two or three segments. The imposed force
during operation, rockmass force, and aging deteriorates the joints of the seg-
ments. Therefore, the stator becomes oval in the long run and the stator core
segments in the joint are eroded, resulting in a core short circuit. A method
based on the application of a stray magnetic field can be proposed to detect the
stator joint fault.

A comprehensive intelligent algorithm based on ensemble learners that utilize the
sensor fusion application can be proposed to increase the F-score above 95%. In
addition, deep neural networks based on the application of convolutional neural
networks need to be proposed to automate fault type detection. The development
of severity estimation is also needed to provide insight regarding the operational
condition of the generator and when the generator must be stopped for inspection
and maintenance.
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Figure 3.1: Comparison of the available commercialized and the state-of-the-art
methods with the developed method in this Ph.D. thesis
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Pattern Recognition of Interturn Short Circuit Fault
in a Synchronous Generator Using Magnetic Flux

Hossein Ehya , Student Member, IEEE, and Arne Nysveen , Senior Member, IEEE

Abstract—This article provides a novel approach for discrim-
inating the interturn short circuit (ITSC) fault in a salient pole
synchronous generator (SPSG) based on the use of noninvasive
sensors. A stray magnetic field is used as a signal that can provide
valuable data regarding the health condition of the SPSG. Gener-
ally, the captured signal under an ITSC fault is examined using
a classical signal processing tool based on fast Fourier transforms
(FFTs). The amplitude of the side-bands to the frequency spectrum
is increased by ITSC, eccentricity, and broken damper-bar faults.
Therefore, determining the type of fault is not possible by ana-
lyzing the FFT side-bands. A unique feature is introduced using a
short-time Fourier transform to identify the ITSC in its early stage.
The proposed feature can locate and recognize the ITSC fault with
high accuracy in either the no-load or the full-load operation of
the SPSG. This novel methodology is verified by applying an ITSC
fault to a 100 kV A custom-made SPSG.

Index Terms—Condition monitoring, fault detection, feature
extraction, finite element modeling, pattern recognition, spectrum
analysis, stray magnetic field, synchronous generator.

I. INTRODUCTION

INTERTURN short circuits (ITSCs) of rotor field windings
are a critical and serious failure among various kinds of faults

in a rotor pole of salient pole synchronous generators (SPSGs)
and can affect the operation of the machine. Although the SPSGs
found in power plants often operate well for decades, ITSC faults
can shorten their effective life span. The increased temperature
due to an ITSC fault does not allow the power producers to over-
load the SPSG temporarily, since dynamic derating of a faulty
machine might rapidly progress into a severe fault. Therefore,
a need exists for accurate and low-cost condition monitoring
systems to avoid unplanned stoppages of the SPSGs.

An ITSC fault can occur due to electrical or mechanical prob-
lems in the rotor field winding insulation. ITSC failure can give
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rise to local hot spots and vibrations that, in turn, can accelerate
the degradation of insulation [1]. Numerous approaches have
been proposed to detect the fault in the SPSG, but most rely
on harmonic analysis of the stator phase voltage [2], air-gap
magnetic field [3], [4], phase currents [5], [6], and vibrations in
the frame [7]. However, these methods have some drawbacks,
including the following.

1) Although the air-gap magnetic field provides detailed data
for detecting an ITSC, it is an invasive approach and
difficult to implement in SPSGs that are already under
operation. Hall-effect sensors or search coils installed on
the stator tooth are also fragile and the possibility of sensor
failure during operation is quite high.

2) The harmonic contents of the phase voltage, current, and
vibration demonstrate some changes in the fast Fourier
transform (FFT) spectrum “only” in a case of severe ITSC
fault.

These problems have recently been tackled using the stray
magnetic field to detect the ITSC fault [7]–[9]. This is a nonin-
vasive method that uses sensors that can easily be installed on
the machine frame or on the back side of the stator yoke. The
leakage flux creates a weak magnetic field outside the machine
and this field can be captured utilizing search coils, hall effect
sensors, optical fibers [10], and radio frequency sensors [11].
However, the search coil is preferred over the other sensors
since it is inexpensive and robust and works well in a power
plant or industrial environment. The amplitude of the induced
electro-motive force (EMF) in the search coil is proportional to
the rate of leakage flux variation and the number of turns. The
distance between the search coil and the machine’s frame also
significantly influences the amplitude of the induced EMF.

Numerous signal processing tools are proposed for processing
faulty electric machine signals. The majority of these tools are
categorized into one of three groups—namely, time domain,
frequency domain, and time-frequency domain. In [12] and [13],
the time-series data mining method was used to detect a broken
damper bar fault, where the radius of the created gyration was
introduced as a fault signature. This signature shows substantial
changes under a faulty condition, but it also shows the same
changes for any type of fault, so identification of the fault type
is not possible. In addition, an extracted feature based on the time
series data mining method is sensitive to noise, since the working
principle of this method is based on the temporal variation of a
variable.

FFT is the most prevalent frequency domain signal processing
tool and is widely used in fault diagnosis of electrical machines.

0093-9994 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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In [6] and[14], FFT was used to analyze the phase voltage
and current of an SPSG under eccentricity and an ITSC fault.
The amplitude of the low-frequency side-bands was used to
detect both faults. Although the air-gap magnetic field is a
noninvasive method, it was also used to diagnose the eccentricity
and ITSC fault in [6] and [15]. The amplitude of the frequency
spectrum of the air-gap magnetic field under both faults shows
the same variation. FFT was also applied to a stray magnetic
field to demonstrate how the amplitude of the frequency spec-
trum changes under faulty conditions. Ultimately, since any
type of fault changes the frequency contents of the signals,
identification of the type of fault is not possible based on FFT
analysis.

Fault diagnosis of electric machines often uses various time-
frequency domain signal processing tools, such as continu-
ous and discrete wavelet families, multiple signal classification
(MUSIC), and short-time Fourier transforms (STFTs). The use
of time-frequency domain signal processors results in numer-
ous challenges in the search for a specific pattern for a faulty
machine, such as finding proper windowing function, mother
wavelet, and color maps, in addition to adjusting window length
and data length. Discrete and continuous wavelet transforms
have been used to diagnose broken damper bars in induction
motors in [16]–[19]. A specific pattern due to a broken damper
bar in an induction motor has appeared, and the intensity of
the pattern changed with the increasing severity of the fault.
The stray magnetic field was analyzed by MUSIC to detect the
rotor-related fault in induction motors, and the same pattern,
introduced based by continuous wavelet transform, appeared in
the MUSIC plots [20]. STFT has been widely applied to faulty
induction motor signals to detect rotor related faults [21]–[23].
The broken damper bar and rotor field winding fault were also
investigated by applying STFT to an air-gap magnetic field in
a SPSG [24]–[26]. Although the patterns that emerged were a
good indication of fault occurrence, estimation of the precise
severity of the fault is lacking in the available literature.

The present work is a detailed study of the application of
the stray flux for diagnosis of an ITSC fault in the rotor field
winding of an SPSG. Although the feasibility of using stray
flux to detect ITSC was studied in [27], the main target of
the present article is to introduce a unique pattern based on
time-frequency domain signal processing tools, like STFT, to
detect ITSC in an SPSG. The severity estimation is carried out by
applying image processing to the STFT plots. Section II presents
the comprehensive finite element analysis using search coils.
The occurrence of the fault is shown to change the variation
of the induced EMF in the sensor. Spectrum analysis is used
to characterize the induced subharmonics in EMF under ITSC
fault in Section III. In Section IV, the experimental setup used
to verify the accuracy of the theoretical findings is explained
in detail. In Section V, a new pattern for ITSC fault diagnosis,
based on STFT and following severity estimation based on image
processing, is discussed in detail. The competency of STFT
over FFT to discriminate between eccentricity and ITSC fault
is studied in Section VI. Section VII then shows that the load
variation does not have any effect on the feature in question.

Fig. 1. Geometric configuration of the modeled salient pole synchronous
generator using 2-D FEM. The locations of the search coils are demonstrated in
red circles.

TABLE I
100 KVA, COS φ 0.9400 V , 428 R/MIN, 14 POLES, SALIENT POLE

SYNCHRONOUS GENERATOR

II. FINITE ELEMENT MODELING AND ANALYSIS

The 2-D geometry specification of the simulated SPSG is
displayed in Fig. 1. The detailed geometrical characteristics of
the stator and rotor slots, the nonlinearity of the stator lamination
sheets, the spatial distribution of the stator winding, and the
saliency of the rotor poles are considered, since the accuracy of
the fault features depends on the precision of the finite element
model (FEM) [28]. The stator winding layout also has consid-
erable impacts on fault detection, since the winding distribution
affects the harmonic components of the magnetic field. In this
modeling, the stator has a two-layer fractional winding, so the
corresponding spatial distribution is also considered. A constant
direct current, according to the generator’s loading, is fed into
the rotor field windings.

The generator is modeled and analyzed using ANSYS
Maxwell [29]. The specification of the proposed three-phase
SPSG is summarized in Table I. A 2-D-model is employed,
where the 3-D-effects on the stator and rotor windings are
included using external circuits in the FEM model. The sim-
ulation is made in the time domain until a steady state is reached
in the simulation. Rotation is included in the simulation. The
nonlinearity of the steel in both the rotor and stator is included,
but the eddy-current effects are disregarded, except in the damper
bars.

The location of the sensor determines whether the measured
signal is the axial flux, radial flux, or both. The location of the
sensor should therefore be chosen based on which stray flux
is desired to be investigated [30]. The radial stray flux of the
machine is captured by mounting a search coil that contains
3000 stranded turns onto the backside of the stator yoke. The
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Fig. 2. Induced electromotive force in the sensor due to stray flux variation in
the healthy (top) and 10 ITSC fault (bottom) operation: Simulation result.

stray magnetic field outside the machine is in the order of
μT ; therefore, in order to increase the signal-to-noise ratio,
the number of turns in the search coil must be high. The ITSC
fault in the rotor field winding was simulated by reducing the
total number of conductors, based on the fault severity in the
field winding of the desired pole, while applying the specified
excitation currents at a no-load or a nominal-load condition.

Fig. 2 shows the magnitude of the induced EMF due to the
variation of the stray magnetic flux on the back side of the
stator core in the SPSG for a healthy no-load operation and
for a 10 ITSC fault in a no-load operation. As shown in Fig. 2,
the ITSC fault incurs a variation in the amplitude of the induced
EMF. When a short circuit fault occurs, the effective number of
field windings decreases, which results in a reduction in the net
magneto-motive force in the air-gap. An unbalanced distribution
of the magneto-motive force leads into an asymmetric magnetic
field in the air-gap and, as a consequence, a distorted stray
magnetic field outside the SPSG. The harmonic contents of the
stray magnetic field are similar to those of the air-gap magnetic
field, since both are influenced by changes in the air-gap magne-
tomotive force. The intensity of the amplitude variation of EMF
in search coil depends on the severity of the ITSC fault.

III. LABORATORY TEST

A. Experimental Setup

The SPSG performance under an ITSC fault was investigated
using the following experimental setup, as shown in Fig. 3.

1) A custom made 100 kVA, 400 V synchronous gener-
ator with 14 salient poles, constructed to resemble a
Norwegian hydropower generator and with the detailed
specifications given in Table I, is utilized. The generator
windings are star-connected, and the neutral point is
grounded.

2) A 90 kW induction motor with four poles and a rated
speed of 1482 r/min was used as a prime mover of the
synchronous machine.

3) The prime mover is connected to the synchronous ma-
chine using a gearbox with a transfer rate of 10/3.

4) The rotor field winding is supplied by a 20 kW dc power
source (LAB-HP/E2020).

Fig. 3. Experimental setup of 100 kV A custom-made SPSG for the purpose
of fault detection (top), the rotor of the generator, and the taps of the field winding
to apply ITSC fault.

5) A programmable converter is used to feed the induction
motor based on its parameters. A rectifier connected to
the grid is used to supply the converter.

6) A high-resolution 16-b oscilloscope (Tektronix MSO
3014) with a sampling frequency of 10 kHz is used for
data acquisition.

7) Passive loads are used to run the SPSG in the loaded
operation to avoid grid harmonics interference on the
measured data. The water-cooled resistor bank consists
of two parallel sets of resistors, whereas the total resis-
tance can be controlled and adjusted in steps by con-
tactors and relays from the control panel. The per-phase
resistance can be varied from a maximum of 160 Ω to a
minimum of about 2.78 Ω. At the maximum load setting,
the dissipated power of the resistors amounted to about
57 kW.

8) Two three-phase inductors, with each of their phases
linked in series, are connected to the SPSG by a three-
phase transformer to increase the inductance value by the
transformer turn ratio. The transformer has a star-to-delta
connection. The approximate value of the inductance in
each phase, based on the turn ratio of the transformer, is
equal to 22 mH.

9) A healthy rotor pole of the SPSG contains 35 turns. A
copper plate is used to shunt the desired number of turns
in a faulty pole, as depicted in Fig. 3. Table II shows the
number of possible shorted turns and its percentage with
respect to one pole and the total number of turns in the
rotor field windings.

10) A rigid search coil is designed to capture the induced
EMF on the back side of the stator yoke, as shown in
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TABLE II
NUMBER AND PERCENTAGE OF SHORTED TURNS IN THE FAULTY POLE OF THE

SALIENT POLE SYNCHRONOUS GENERATOR

Fig. 4. Location of the sensor installed on the back side of stator yoke to
measure electromotive force.

Fig. 5. Induced electromotive force in the sensor due to stray flux variation in
the healthy (top) and 10 ITSC fault (bottom): Experimental result.

Fig. 4. The dimensions of the sensor are (100 × 100 ×
10)mm. The sensor has 3000 turns of copper wire with
a diameter of 0.12 mm. The resistivity and inductance of
the search coil at its terminal is 912 Ω and 714 mH. The
sensor was installed on a stator yoke to capture the radial
flux. The laboratory working environment is vulnerable
to noise from converters, so a coaxial cable is used for
data transmission in order to reject the noise. There exist
no need to redesign a new sensor to capture the stray
magnetic field for a machine with a different topology
and higher power rating. A series of tests performed in
several hydro generators with different power ratings and
specifications proved the mentioned claim.

B. Experimental Measurement

The measured EMF induced in the search coil attached to the
back side of the stator yoke is shown in Fig. 5. A comparison
between healthy cases in both simulation and experimental
results demonstrates the presence of a slight variation in the
experimental peak magnitude due to the inherent eccentricity

Fig. 6. Spectrum density of the induced EMF in the sensor in no-load for
healthy and a 2 ITSC fault (top), and healthy and 10 ITSC fault (bottom):
Experimental results.

fault. In addition, the radial cooling duct and end winding effects
are neglected in the FEM results in a slight difference in the
waveform shape. However, the amplitude and waveform pattern
of the measured EMF in both the healthy and faulty cases agree
well with the simulation results.

IV. SPECTRUM ANALYSIS

Fig. 6 depicts the power spectrum density (PSD) of the healthy
and faulty synchronous generator with 1 and 10 ITSC faults. A
comparison between the healthy and 1 ITSC faults illustrates
that the presence of the fault increases the amplitude of the side-
band components around the main frequency, according to the
following:

fsideband =

(
p± k

p

)
fs (1)

where p is the number of pole pairs, fs is the main frequency,
and k is an integer. These side-bands components are equal to a
mechanical frequency that, for a 14 pole synchronous generator
with a frequency of 50 Hz, is equal to 7.1, 14.2, 21.3 Hz,
etc. As shown in Fig. 6, the amplitude of all the side-bands
does not increase significantly, especially for a low degree of
fault severity. However, a regular pattern is evident, in which
all frequency components around the fundamental frequency
and its multiplier (i.e., 50, 100, and 150 Hz) undergo a signif-
icant increase when a fault occurs. The frequencies are 85.7,
92.9107.2, and 114.3 Hz. According to Fig. 6, the amplitudes
of these frequencies are −41.5, 34.8, −37.2, and −45.1 dB,
respectively. The occurrence of one ITSC fault in one of the
rotor field windings, which is equal to 2.86% of one rotor pole
winding and 0.2% of the whole rotor field winding, increases
the magnitudes of these frequencies to −39.4, −33.1, −35.1,
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TABLE III
VARIATION OF EXTRACTED SIDE-BANDS COMPONENTS IN HZ TO NUMBER OF

ITSC IN NO-LOAD IN DECIBEL

Fig. 7. Spectrum density of the induced EMF in the sensor in full-load for
healthy and a 2 ITSC fault (top), and healthy and 10 ITSC fault (bottom):
Experimental results.

and −42.8 dB, respectively. According to Fig. 6, the side-band
amplitudes with 10 ITSCs at frequencies of 85.7, 92.9107.2, and
114.3 Hz increases from −41.7, −32.6, −33.9, and −45.5 dB
to −22.4, −19.2, −20.4, and −27.9 dB, respectively. Therefore,
a comparison between the healthy and faulty cases shows con-
siderable changes occurring in the amplitude of the proposed
index. The variation in the extracted feature for the severity of
the ITSC fault in the no-load condition are shown in Table III.

Fig. 7 demonstrates the frequency spectrum of the stray flux
of the healthy and faulty synchronous generator at full load. As
seen with the no-load condition, the harmonic components of
the frequency spectrum in full load indicates the same degree
of sensitivity to the occurrence and progression of the fault. For
instance the proposed side-bands for one ITSC at frequencies
of 85.7, 92.9107.2, and 114.3 Hz increase from −41.7, −32.6,
−33.9, and−45.5 dB to−36.8,−32.1,−32.6, and−43.7 dB, re-
spectively. A significant increment also occurs in the amplitude
of these frequencies to −22.4, −19.2, −20.4, and −27.9 dB,
respectively, when the severity of the fault is increased to 10
ITSC. This response shows that the load cannot fluctuate or mask
the proposed side-bands. The variation in the extracted feature
for the severity of the ITSC fault in the no-load condition are
shown in Table IV.

TABLE IV
VARIATION OF EXTRACTED SIDE-BANDS COMPONENTS IN Hz TO NUMBER OF

ITSC IN FULL LOAD IN DECIBEL

V. TIME-FREQUENCY ANALYSIS

The STFT was introduced to compensate for the lack of
temporal resolution for FFT. STFT performs FFT on a smaller
portion of the signal and collects its frequency information using
a windowing function. The windowing function then swipes
across the entire signal to obtain information regarding the
magnitude of the signal in that specific time and frequency [24],
[31]. The obtained information is plotted in a time-frequency
plane. STFT compared with other time-frequency domain signal
processing tools such as wavelet transform, or Hilbert Huang
transforms has a low computational complexity which pro-
vides an online implementation for fault detection. Moreover,
achieving an informative pattern for fault detection purpose
using STFT requires few parameter adjustments while a mother
wavelet selection in the wavelet transform or avoiding mode
mixing in Hilbert Huang transforms require time and an expert
in the field. The mathematical representation of the STFT is as
follows:

STFT (f, t) =
1

2π

∫ ∞

−∞
x(t)h(t− τ)e−i2πfτdτ (2)

where x(t), f , and t represent the signal, frequency, and time,
respectively. The shape of the windowing function h(t) and the
length of the analyzed portion must be adjusted according to
the signal characteristics and the desired optimal result. The
frequency resolution of the STFT increases with increasing win-
dow length, while the time resolution is inversely proportional
to the length of the time window. Based on the uncertainty
principle, a high resolution in both time and frequency cannot
be obtained [31]. The results obtained with SFTF are depicted in
a spectrogram: an image with frequency along its vertical axis,
time along its horizontal axis, and spectral intensity indicated
by color.

The resolution in the spectrogram is uniform across the entire
time and frequencies, indicating that it is a rectangular time-
frequency resolution. Uniform frequency resolution is construc-
tive if the frequencies of interest are markedly separated at the
high frequencies and barely separated at the low frequencies.
This constraint is formulated based on the uncertainty principle,
as follows:

ΔfΔt ≥ 1
4π

(3)

The end effect is mitigated by using a proper window
function. A suite of windowing functions, such as Slepian,
Gaussian, Blackman, Hamming, Dirichlet, Blackman-Harris,
Bartlett-Hann, Hann, Bartlett, and Bohman, exist for this pur-
pose.
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Fig. 8. Spectrogram of the induced EMF in the search coil for healthy, 1 ITSC,
and a 10 ITSC fault in no-load operation of the SPSG: Experimental results.

The EMF during steady-state operation of the SPSG in a
no-load and under the full-load condition for different degrees
of fault is stored for analysis by STFT, which is used to track the
fault evolution. Since the machine has 14 poles, each mechanical
revolution takes 140 ms, indicating that each pole requires 140
ms to pass through the installed search coil on the back side
of the stator yoke. In a healthy condition, only fundamental
harmonics, in addition to the stator and rotor slot harmonics
and subharmonics due to the stator winding layout, must appear
in the spectrogram. A faulty case is expected to have regular
patterns due to a fault in the spectrogram.

Figs. 8 and 9 represent the STFT applied to the captured
EMF signal, which is due to the radial stray magnetic field in
a no-load and full-load operation of the SPSG. This method
provides a clear time-frequency visualization of the EMF signal.
Fig. 8 shows the spectrogram in a no-load operation in a healthy
and under 1 ITSC and 10 ITSC faults. Since the ITSC fault
components are embedded in the low frequencies, the window
length, type of window, and window overlaps are set in a way
that shows the focused low-frequency bands. Three bands (two
cyan and one red) cover the three frequency bands between 35
and 50 Hz, between 50 and 65 Hz, and between 65 and 85 Hz.

The dashed window in the STFT map shows one mechan-
ical revolution of the SPSG. One mechanical revolution starts
from a red color with low intensity and extends to a slightly
higher intensity by the end of the dashed window. Contrary
to the obtained result by the FFT spectrum during one ITSC
fault, a clear pattern exists in the spectrogram of one ITSC
obtained by STFT. The color of the dashed window for one
mechanical revolution is significantly changed by introducing
1 ITSC. The reason is that an ITSC fault induces subharmonics
with a frequency introduced in (1), since the fault frequency

Fig. 9. Spectrogram of the induced EMF in the search coil for healthy, 1 ITSC,
and a 10 ITSC fault in full load operation of the SPSG: Experimental results.

of interest lies in the low-frequency range and the STFT has a
remarkable potential in the low-frequency content demonstra-
tion. Increasing the severity of the fault to 10 ITSC, as shown
in Fig. 8, significantly changes the time-frequency pattern and
the yellow color appears in the frequency band between 50 and
65 Hz. A fault pattern due to a severe ITSC fault also appears
in the frequency bands between 35 and 50 Hz and between 65
and 85 Hz. The width of the new pattern in all three frequency
bands is 10 ms, which indicates one faulty rotor pole winding.
Fig. 9 represents an STFT plot of an SPSG operated in full-load
condition. The same pattern seen in the no-load operation is
obtained during full-load operation, indicating that loading does
not have an impact on the ITSC fault pattern.

The applied STFT to the obtained EMF from the sensor
installed on the back side of the stator core in the FEM is shown
in Fig. 10 for a no-load operation of the SPSG. The spectrogram
of the EMF in Fig. 10 compared with Fig. 8 indicates that the
FEM has a high accuracy for faulty machine modeling since the
spectrogram plots are approximately the same. However, the
intensity of the frequency band between 50 and 65 Hz in the
experimental spectrogram is slightly different which is due to
the inherent dynamic eccentricity fault in the 100 kVA SPSG in
the laboratory set-up. By having one ITSC fault, the intensity of
the frequency band for a faulty pole is decreased, and increasing
the fault severity result in a significant reduction of the intensity
in a frequency band between 50 and 65 Hz.

Although STFT shows a clear pattern in a case of an ITSC fault
and it can detect one ITSC fault, a method is required to quantify
the severity of the fault. Image processing software is used to
analyze the STFT spectrogram. A colorful image is changed into
an 8-b grayscale image to process the image. Only a frequency
band between 50 and 70 Hz is considered for image processing,
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Fig. 10. Spectrogram of the induced EMF in the search coil for healthy, 1 ITSC,
and a 10 ITSC fault in no-load operation of the SPSG: Simulation results.

Fig. 11. Intensity of the spectrogram in healthy and 1, 2, 3, 7, and 10 ITSC
faults for frequency band between 50 and 70 Hz: Experimental results.

and a pixel line along the time axis is chosen, since the intensity
of the color map along the frequency axis is constant. Fig. 11
shows the processed images of healthy and faulty SPSGs. The
first row represents the healthy SPSG, and the intensity of the
band varies between 23% and 37%. The intensity pattern of the
entire images is similar for either healthy SPSGs or those with 1,
2, 3, 7, and 10 ITSC faults, especially for 1, 2, and 3 ITSCs. The

Fig. 12. Amplitude variation of the side-band component versus load variation
and various numbers of ITSC faults: Experimental results.

intensity of the targeted frequency band for 1 ITSC fault varies
between 26% and 48%. The intensity of the frequency band for
1 ITSC fault, when compared to a healthy case, increases by
8%, which is a significant change for detecting a fault in its
early stage. The intensity for 2 and 3 ITSC faults, in comparison
to healthy case, is increased by 11% and 17%, respectively. The
intensity pattern for 7 and 10 ITSC faults differs from that of a
low severity fault since there is a dip in the plot. The intensity
under 7 and 10 ITSC faults, in comparison to a healthy case, is
increased by 29% and 33%, respectively. The same pattern is
observed in a case of a partially loaded operation, which proves
that the loading conditions do not change the fault signature.

VI. LOAD EFFECTS ON THE PROPOSED FEATURE

Investigation of the influence of the load on any proposed
fault requires indices. Accurate fault detection depends on the
relationship between the suggested feature, load variation, and
fault severity. In [32], the amplitude of the harmonic side-bands
in induction motors, in the presence of eccentricity fault, was
shown to increase under the load condition. The amplitude of
the harmonic components of the faulty induction motor with
a broken rotor bar fault also decreases with increasing load
levels [33]. Consequently, any comparisons of healthy and faulty
machines must be scrutinized using the same loads.

Fig. 12 depicts the variation of the proposed features for differ-
ent levels of ITSC severity versus the load variation. According
to Fig. 12, the amplitude of these criteria increases with an
increasing number of shorted turns in the rotor field winding,
and this increase is reasonably constant from the no-load to
the full-load condition. In other words, use of the proposed
method based on utilizing the stray flux is robust against the
load variation. Therefore, a short circuit fault detection based
on the proposed feature does not need to specify the generator
load.

The same behavior seen with FFT is expected for STFT analy-
sis, since the harmonic contents are the same. The application of
STFT to an EMF signal from the no-load to full-load operation
demonstrates that the intensity of the frequency band between
50 and 70 Hz does not change with a changing load percentage,
while its intensity increases by increasing the fault severity.

VII. FAULT TYPE DETECTION

No method exists for determining which type of fault
happened in the machine, since FFT only exhibits the frequency
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Fig. 13. Spectrogram of the induced EMF in a search coil installed on the
back side of a stator yoke for a healthy (top), and under 20% static eccentricity:
Simulation results.

Fig. 14. Flowchart of the proposed method for ITSC fault detection of SPSG.

contents of the signal. Conversely, the STFT representation of
the EMF signal under an eccentricity fault is totally different
from that under an ITSC fault, since the magnetic field does not
pulsate in a case of a static eccentricity fault like it does for an
ITSC fault, indicating that only the intensity of the frequency
bands change while the pattern is the same as healthy case.
The intensity of the frequency band for the measured EMF on
each side of the SPSG that is prone to static eccentricity fault is
different. The intensity of the frequency band where the rotor is
close to the stator is higher while the intensity of the frequency
band for a point with a larger air-gap is decreased. Fig. 13 shows
the STFT representation of the EMF signal in a healthy and under
20% static eccentricity fault.

VIII. CONCLUSION

The stray magnetic field is used to detect an ITSC fault in
the rotor field winding of the SPSG. Finite element modeling
is used to simulate a 100 kVA SPSG under a short-circuit fault.
The location, distance, and the number of turns are the main
criteria for capturing the induced EMF in the installed search
coil on the back side of the stator yoke. The severity of the fault
and its impacts on the stray magnetic field has been studied and
the induced EMF is shown to have a high degree of sensitivity to
the fault severity and could even detect a one-turn short circuit
fault.

The traditional signal processing tool is used to analyze the
harmonic components of the signal. The side-band harmonics
near the main frequency and its multipliers also increase sig-
nificantly for severe ITSC faults while its sensitivity to detect
early-stage faults is low. STFT has a superior ability for deter-
mining the low-frequency components, which results in a precise
determination of the ITSC fault in its early stage, even with only
one ITSF fault. It also shows a different pattern in the case of an
ITSC fault since a severe fault changes the intensity of the STFT
map. An image processing tool is used to quantify the severity of
the fault. The load effect on the extracted feature is also studied,
and the load variation is also confirmed to have no effect on the
signature in the FFT spectrum and the STFT spectrogram since
the low-frequency subharmonics are the same. The procedure
of the proposed method in this article is shown in Fig. 14. The
superiority of the method over the previously proposed methods
are the following.

1) The method is based on stray magnetic field analysis that
enables measurement even during the operation of the
SPSG.

2) The method is noninvasive, and it is possible to install the
sensor and measure the stray magnetic field even during
the SPSG operation.

3) Image processing of the STFT spectrogram provides a
quantitative tool to measure the intensity of the fault.

4) The method can detect one ITSC fault that shows the high
sensitivity of the method.

5) Fault type recognition is an advantage of the method
since static eccentricity does not modify the pattern in the
spectrogram while occurring a ITSC make a new pattern
compared with a healthy case.

6) The proposed method is independent of the SPSG typolo-
gies since it only requires the number of poles to determine
the widths of the window for one mechanical revolution
in the STFT plot. Indicating that the power rating, and
specification of the machine cannot change the result of
the method.
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Abstract—Many methods used for precise fault detection
in salient pole synchronous generators (SPSGs) often re-
quire a priori knowledge of the healthy case, but this re-
quirement impedes application of the methods since an ac-
curate analysis of different machine quantity waveforms is
not usually carried out during commissioning. The inspec-
tion and maintenance processes in SPSGs are also costly
and time consuming; therefore, reliable methods that can
detect and discriminate between different faults without
comparison with the healthy condition are highly desirable.
This article proposes a precise method for detection and
discrimination between different fault types in the SPSG.
The method does not require healthy machine data and is
applied to diagnose both interturn short circuits (ITSCs)
in the field winding and dynamic eccentricities (DEs). The
proposed nonintrusive detection algorithm is based on ad-
vanced signal analysis of stray magnetic field data and can
be applied during SPSG operation. The method is highly
precise for monitoring the condition of the rotor field wind-
ing and yields a unique pattern for diagnosing possible
ITSC faults. Moreover, a distinctive pattern for the DE fault
enables the discrimination between both considered fail-
ures, even if they are present at the same time. The pro-
posed method is validated through finite-element model-
ing and experimentally on 100-kVA and 22-MVA SPSGs to
demonstrate its applicability in real power plants.

Index Terms—Condition monitoring, continuous wavelet
transforms (CWTs), fault detection, hydro power plant,
interturn short circuit (ITSC), reliability, synchronous
generator.

I. INTRODUCTION

LARGE synchronous generators can be built with a salient
pole concentrated excitation rotor or with a nonsalient pole

distributed excitation rotor (cylindrical rotor) [1]. The former
is typically used in low-speed generators or hydro generators,
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while the latter is employed in high-speed turbo alternators.
Cylindrical rotors in turbo alternators are usually based on
solid iron rotors for better mechanical rigidity and heat trans-
mission [1]. In lower speed synchronous generators, such as
hydro generators, the rotor pole shoes are made by laminations
to reduce rotor losses. In these low-speed machines, the rotor
pole shoes incorporate slots that house copper bars that are
short-circuited by end rings to form the damper cage.

The salient pole synchronous generators (SPSGs) in hydro-
electric plants must operate in a sufficiently healthy condition
due to the severe consequences of an eventual forced outage,
not only for the plant itself, but also for the electric system.
Therefore, these machines are usually subjected to maintenance
protocols that are much more exhaustive than those used in
industrial synchronous motors. In this regard, specific condi-
tion monitoring systems, such as vibroacoustic sensors, internal
search probes, thermal probes (PT100), or partial discharge
monitoring systems (e.g., stator slot couplers), are usually em-
ployed to guarantee accurate knowledge of the SPSG condition.

Despite the application of special maintenance protocols to
synchronous machines, different types of failures have been
reported in the literature for this type of machine. For example,
broken damper bars have been reported both in salient pole
synchronous machines and nonsalient pole synchronous ma-
chines [2]–[6]. The number of reported broken damper bar fail-
ures in the synchronous motor compared with the synchronous
generator is higher; however, faults due to broken dampers may
have serious implications concerning the starting of synchronous
machines [7]. Other faults, such as eccentricities [8], [9], shaft
current discharges [10], and field winding [11] and stator turn
faults [12], have also been reported in hydro generators. The
negative effects of most of these failures can eventually lead to
forced synchronous generator outages; therefore, an intensive
effort has been devoted to the development of intelligent tech-
niques that are able to detect these faults when they are in their
early stages of development [11]–[13].

In this context, the analysis of flux data has been a recurrent
alternative for the diagnosis of most of these faults. The basic
idea relies on evaluating the signatures that the anomaly leaves,
either on the waveform of the air-gap flux or on its frequency
content. In this regard, air-gap flux analysis has been proposed to
detect field winding failures [14], [15], damper faults [5], [16],
eccentricities [17], or even stator turn faults. In spite of its good
results, the air-gap flux has some important constraints related
to the intrusive nature of the necessary sensors or to the reduced

0278-0046 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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flexibility caused by the exclusive dependence on sensors that
have already been installed during the manufacturing process.
These sensors can be difficult to replace or modify in case
of failure or when measurements in alternative locations are
required.

Due to these constraints, an emerging trend in recent years is
to rely on the analysis of stray flux data. Today, stray flux data
can be acquired in a noninvasive way using the currently avail-
able sensors with advanced features [18]. Several studies have
confirmed the validity of the technique for diagnosing faults in
induction motors and even in permanent magnet machines [19].
In addition, new techniques based on the advanced analysis of
stray flux data under transient conditions have been confirmed to
provide important advantages when compared with the analysis
of stationary flux signals [20]–[22].

Some recent work has suggested the analysis of stray flux data
for the detection certain faults in SPSGs, such as field winding
faults [23], [24], damper faults [24], [25], eccentricities [9], or
even stator faults [27]. This work has verified the potential of
this technique for reliable detection of these faults and for their
discrimination from other faults or nonfault-related phenomena.
Despite this, further research work is still required in this area
to develop alternative methods that are effective in real SPSG
operating in power plants.

In this context, this work proposes a precise stray flux-based
method to diagnose interturn short circuit (ITSC) faults and par-
allel dynamic eccentricities (DEs) in an SPSG. The application
of the proposed methods yields characteristic signatures that are
specific to each type of failure, thereby enabling their respective
detection and discrimination. The effectiveness of the method is
proven both with simulated data and with laboratory and field
test data obtained in 100-kVA and 22-MVA SPSGs operating
in a hydropower plant. Application of the approach enabled the
avoidance of an eventual catastrophic failure, thanks to the early
detection of the faults. This article first presents the laboratory
and field tests, in which the fault effects on the captured stray flux
signals are observed. This is followed by the justification of these
observations, both by simulations with finite-element models
and by advanced time–frequency analyses of the experimental
data.

II. LABORATORY AND FIELD TEST

A. Laboratory Setup

Numerous tests were performed in the laboratory on a
100-kVA SPSG. The objective was to obtain the corresponding
stray flux signals and to observe their corresponding waveforms
that could be indicative of certain faults. These waveforms
are processed later, and the observed phenomena are properly
described and justified via time–frequency analyses. A detailed
description of the experimental setup, as shown in Fig. 1, is as
follows.

1) A 100-kVA 400-V custom-made synchronous generator
with 14 salient poles is used to investigate the ITSC fault
in the rotor field winding.

2) A 100-kVA induction motor with four poles is used as a
prime mover of the SPSG.

Fig. 1. Experimental setup of a 100-kVA SPSG.

3) The SPSG and the induction motor are connected using
a gearbox with a gear ratio of 4:1.

4) A 100-kVA converter is used to drive the induction motor
and to provide the SPSG with the required active power
at constant speed.

5) A static rotor magnetization unit is used to control the
current in the rotor field winding. Controlling the power
field excitation is possible both in a local mode, while the
generator is connected to the passive loads or when it is
integrated into the power grid.

6) A stray magnetic field is recorded by a homemade sensor
that consists of an air-core coil with 3000 turns of thin
copper wire (0.12 mm2). The sensor can be attached both
on the stator backside to pick up the radial stray flux and
in front of the stator end winding to pick up the axial stray
flux. The sensor picks up both axial and radial stray flux if
it is tangentially attached to the stator backside, as shown
in Fig. 2. The size of the sensor is optimized to cover
an adequate area of the stator backside (100 × 100 × 10
mm).

7) A high-resolution 16-bit oscilloscope (Rohde Schwarz
RTO2000) is used to sample the stray magnetic field using
a sampling frequency of 10 kHz.

8) The ITSC fault on one of the rotor pole windings is created
by removing the desired number of turns. Removal of one,
two, three, seven, or ten turns from one of the rotor poles
is possible using a copper plate, as shown in Fig. 2.

B. Laboratory Measurement

The procedure for experimental measurement is as follows:
a copper plate is mounted between the common point of the
rotor pole winding and the desired tap of the rotor pole winding
to remove the specific turns in the standstill. The SPSG is
then accelerated until it reaches the synchronous speed. The dc
current is then applied to the field winding based on the loading
condition.
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Fig. 2. Location of the shorted turns tap on the rotor (top) and the lo-
cation of the stray magnetic field sensor installed on the stator backside
of an SPSG.

Fig. 3. Induced voltage due to a stray magnetic field in the sensor
attached on the stator backside of a 100-kVA SPSG during no-load op-
eration (a) in a healthy case and (b) under a 10-ITSC fault—Laboratory
measurements.

Fig. 3 shows the waveforms of the induced voltage in the
sensor attached on the stator backside of the 100-kVA SPSG for
the healthy and the ITSC fault condition. A clear variation exists
in the amplitude of the induced voltage under a 10-ITSC fault
compared with the healthy case. Each mechanical revolution
consists of seven periods that are in concordance with the number
of pole pairs in the laboratory machine. The pattern arises
because the ITSC fault in the rotor field winding is periodic
as long as the rotor passes over the installed sensor on the stator
backside. The reduction in the amplitude of the induced voltage
under the ITSC fault is due to the reduced number of turns in the
faulty rotor field winding that contribute to the magnetomotive
force in the air gap.

Fig. 4. Single unit hydropower plant with an operating 22-MVA SPSG.

Fig. 5. Induced voltage in the installed sensor on the stator backside
of a 22-MVA SPSG during no-load operation—Field test measurement.

C. Field Test Measurement

Fig. 4 shows a 22-MVA synchronous generator with eight
salient poles operating in a Norwegian hydropower plant. Sev-
eral inspections had revealed a clear elevation in the measured
amplitude of the vibration according to the power plant re-
port. Therefore, measurement of the stray magnetic field was
proposed to determine the origin of this symptom. The SPSG
was completely covered by an iron housing, but several hatches
enabled access to the stator yoke backside. Fig. 4 shows the
installed sensor on the stator yoke through one of the hatches.
At least four sensors are required to detect a static eccentricity
fault in a vertically mounted SPSG, while one sensor is adequate
for ITSC fault and DE fault diagnosis. However, since the type
of fault in the SPSG is unknown, four sensors were installed at
a distance of 90 mechanical degrees.

Fig. 5 shows the induced voltage in one of the installed sensors
on the stator backside of a 22-MVA SPSG. A clear sign of ampli-
tude variation is evident in the induced voltage. The amplitude
reduction of the induced voltage shows an obvious pattern that is
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similar to the pattern in the100-kVA SPSG, whereas a significant
difference is detected in the lower envelope of the signal, since
the envelope of the signal does not follow the pattern expected
for an ITSC fault. The lower envelope of the induced voltage,
in this case, is similar to a sine wave. This indicates that, in
addition to the ITSC fault, another source is generating the fault
in the 22-MVA SPSG. The amplitudes of the signals captured by
the four sensors installed with a mechanical distance of 90◦ are
checked to inspect the possibility of a static eccentricity fault.
The amplitude of one pair of sensors installed in front of each
other must differ in a way that ensures that the amplitude of the
induced voltage in one of the sensors is high and that of the other
sensor is low for a static eccentricity fault to occur [9]. However,
the amplitudes of the induced voltages in this pair of sensors are
similar, which indicates the absence of a static eccentricity fault
in the 22-MVA SPSG.

III. ELECTROMAGNETIC ANALYSIS

The aim of this section is to evaluate the impact of different
faults on the stray magnetic field distribution of the SPSG.
Two SPSGs with power ratings of 100 kVA and 22 MVA are
modeled by considering two types of faults: ITSC and DE.
The pattern of the voltage signal induced in the sensor by the
stray magnetic field is analyzed to determine the impact of both
failures under consideration. The occurrence of both ITSC and
DE faults results in the magnetic field variation in the air gap.
The magnetomotive force of the faulty rotor pole compared
with the healthy poles decreased due to the reduced number of
turns. The reduced magnetomotive force affects the symmetry
of the air-gap magnetic field and consequently its amplitude.
The DE fault also disturbs the air-gap magnetic field symmetry
distribution in the air gap. Therefore, in the case of both faults,
the reluctance of the path between the air gap and the search coil
starts to change. The reluctance variation results in the leakage
flux variation and consequently the induced voltage variation in
the sensor due to the faults.

Both the detailed specification of the SPSG geometry and
the nonlinearity of the material are considered in finite-element
modeling (FEM), since both have a marked impact on the
stray flux distribution. The eddy effect in damper bars is also
considered since a synchronous machine with a fractional wind-
ing layout has a circulating current in the damper bars even dur-
ing steady-state operation [4]. A 2-D FEM model of the SPSGs
is adequate since the rotor or damper bars are not skewed. The
complete geometry is required for FEM, since both machines
have a fractional slot winding layout; therefore, both ITSC and
DE result in an asymmetric distribution of the magnetic field.
The simulation is performed using the ANSYS ELECTRONICS
software package [28].

A. FEM Study of a 100-kVA SPSG

A 100-kVA, 400-V, star-connected SPSG with 14 poles (each
pole including seven damper bars) and with 114 stator slots is
modeled in FEM, as shown in Fig. 6. The detailed specifications
of the 100-kVA SPSG are shown in Table I. The rotor field
winding of each pole has 35 turns. The analysis is performed

Fig. 6. Finite-element model of a 100-kVA SPSG and the location of
the stray magnetic field sensor installed on the backside of the stator
yoke.

TABLE I
100-KVA, 50-HZ, SYNCHRONOUS GENERATOR TOPOLOGY

SPECIFICATION AND NAMEPLATE DATA

Fig. 7. Induced voltage in the sensor installed on the stator backside of
a 100-kVA SPSG operating in a no-load condition (a) in a healthy case
and (b) under a 10-ITSC fault—Simulation results.

for five different severities of an ITSC fault in the rotor field
winding: ten shorted turns (28.57%), seven shorted turns (20%),
three shorted turns (8.5%), two shorted turns (5.7%), and one
shorted turn (2.85%). The corresponding number of turns in each
rotor pole is eliminated in order to model the ITSC fault with
FEM. Therefore, the effective magnetomotive force decreases,
which results in a nonuniform air gap magnetic field.

Fig. 7 shows the calculated induced voltage in the sensor
installed on the stator backside of the simulated SPSG in the
FEM for both a healthy case and for a 10-ITSC fault. A symmet-
rical pattern is evident in the healthy operation of the machine,
whereas the pattern is distorted by the 10-ITSC fault (see the
bottom row of Fig. 7). The amplitude of the induced voltage
is decreased when the faulty rotor pole passes over the sensor
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Fig. 8. Finite-element model of the 22-MVA SPSG and the location of
the installed stray magnetic field sensor.

TABLE II
22-MVA, 50-HZ, SYNCHRONOUS GENERATOR TOPOLOGY SPECIFICATION

AND NAMEPLATE DATA

installed on the stator backside. A comparison between the
experimental measurements, shown in Fig. 3, and the simulation
results, depicted in Fig. 7, proves that the ITSC fault causes
a reduction in the effective magnetomotive force and, conse-
quently, a decrease in the stray magnetic field in the vicinity of
the stator yoke. The shape, periodicity, and pattern are the same
for both the experimental results and the FEM results; however,
the direction of the peak amplitude reduction differs due to the
polarity of the installed sensor.

B. FEM Study a 22-MVA SPSG

The FEM model of the 22-MVA SPSG is illustrated in Fig. 8.
Table II shows the detailed specifications of the machine. The
generator has eight poles, and each pole contains eight damper
bars. The required magnetomotive force to generate 7.7 kV on
the stator terminals is provided by 53 turns in each rotor field
winding. The stator windings are connected in series, and unlike
a generator with a parallel winding layout, they do not yield a
circulating current to compensate for the asymmetric magnetic
field caused by a short circuit fault or eccentricity fault. Two
pairs of sensors are installed exactly in front of each other, and
the amplitude of the induced voltage in all the sensors was the
same, indicating that the SPSG does not have a static eccentricity
fault. Consequently, only the DE and ITSC faults are simulated
in FEM.

A comparison between the simulation result and the measure-
ment in the power plant shows the accuracy of the FEM model;
only a small difference is apparent in the shape of the signal, and
this difference is due to ignoring the 3-D effect and the radial
air duct effect, as well as the SPSG housing. The impact of a
20% DE fault on the induced voltage in the sensor is shown
Fig. 9. A periodic fluctuation occurs in both the upper and lower

Fig. 9. Measured induced voltage in a sensor installed on the stator
backside of a 22-MVA SPSG operating in a no-load condition (a) in a
healthy case, (b) under a 20% DE fault, (c) under a 10-ITSC fault, and
(d) under a combination of both DE and ITSC faults—Simulation results.

envelopes of the signal due to the DE fault. Conversely, the
effect of the ITSC fault on the induced voltage of the sensor also
results in a reduction in the peak amplitude, as indicated in green
in the plot shown in Fig. 9. However, a comparison between the
measured voltage in Fig. 5 and the FEM results under only an
ITSC or DE fault indicates that both ITSC and DE faults exist
simultaneously in the 22-MVA SPSG. The last plot of Fig. 9
shows the simultaneous occurrence of a 10-ITSC and a 20% DE
fault. The obtained pattern for this mixed fault is a combination
of the fault-related patterns of both the ITSC and DE faults, since
the upper envelope is similar to the upper envelope of the ITSC
fault and the lower envelope is similar to the DE fault.

IV. ADVANCED SIGNAL PROCESSING

Digital signal processing is a broad field that encompasses
numerous mature techniques for treating a signal and extracting
useful information based on the required needs. Several sig-
nal processing tools are available, and these can be classified,
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Fig. 10. Frequency spectrum of the sensor-induced voltage in a 22-
MVA SPSG operating at no-load condition in a healthy case and under
10-ITSC and 20% DE faults—Simulation results.

according to their application in fault detection of electrical ma-
chines, into three categories, including time-domain, frequency-
domain, and time–frequency-domain tools. The application is
based on the signal properties and the required format for data
interpretation. Application of fast Fourier transforms to the
induced sensor voltage in a healthy case and under ITSC and
DE fault is presented in Fig. 10. Although the faulty frequency
spectrum demonstrates the significant increase in the amplitude
of both subharmonics and interharmonics, both faults intrigue
the same fault harmonic components, indicating that fault type
detection using frequency spectrum is impossible. This article
proposes a time–frequency representation of the voltage induced
in the sensors installed on the stator backside and uses the
continuous wavelet transform (CWT) as a time–frequency tool.
The Gaussian mother wavelet is selected based on the signal
characteristics. The frequency band is assigned to 100 Hz,
and the window length must be selected to have at least two
mechanical revolutions in order to exhibit the periodicity of the
fault signature.

CWT is a powerful tool for analyzing localized variations
of power spectral density within a time data series. Wavelet
transforms decompose the time data series into a time–frequency
map that enables determination of both the dominant modes of
variability and how the modes vary in time. Implementation of
the CWT, compared with other tools like the discrete wavelet
transform (DWT), is also straightforward since a mother wavelet
is constructed simply by dilating and translating the signal.
The frequency component of the signal is extracted using a
convolution process, and the transform convolutes the signal
with a wavelet instead of running the Fourier transform [29].

One of the main concerns of fault detection methods proposed
in several published studies is their prerequisite for knowledge
of the healthy condition of the SPSG. This requirement can
be easily satisfied under laboratory conditions, where the fault
is applied intentionally and the healthy data are accessible.
However, this is not the case for machines in real power plants.
Consequently, some methods proposed in the literature, although
suitable in principle for SPSGs, are difficult to apply in the field.
The method proposed in this article, based on CWT, extract

Fig. 11. Time–frequency representation of the induced voltage in the
a sensor installed in a 100-kVA SPSG operating in a no-load condition
(a) in a healthy case and (b) under a 10-ITSC fault—Simulation results.

a clear pattern that reveals the SPSG health status without
requiring any knowledge of the healthy operation data.

V. RESULTS AND DISCUSSIONS

Although the obtained time data series results have a clear
pattern indicating the occurrence of the fault in both 100-kVA
and 22-MVA SPSGs, an advanced signal processing tool, such
as CWT, can be used to support the findings and identify the
amplified frequency components. The following two sections
include analyses of the voltage induced in the sensor in the
healthy and faulty cases for simulations, laboratory experiments,
and field tests.

A. Study Results of a 100-kVA SPSG

Fig. 11 shows the CWT results of the voltage induced in the
sensor by a stray magnetic field for the healthy condition and
for a 10-ITSC fault in the field winding, using simulated data
obtained with FEM. The time–frequency analysis of the induced
voltage yields numerous stalks, each corresponding to one rotor
pole. The 100-kVA SPSG has 14 poles that yield 14 stalks for
each mechanical revolution, as shown in Fig. 11. The frequency
range of each stalk for a healthy case spans from 20 to 100 Hz.
The presence of a 10-ITSC fault in one of the rotor field windings
reduces the magnetomotive force produced by a faulty pole,
thereby influencing the stray magnetic field on the stator yoke
backside. The time–frequency plot of the induced voltage for the
10-ITSC fault reveals a significant reduction in the stalk length
and intensity, indicating a faulty rotor pole winding (red arrows
designate a faulty pole). The time–frequency plot contains five
mechanical revolutions of the 100-kVA SPSG. Each time a faulty
pole passes over the sensor, a faulty pole with a reduced stalk
length appears in the time–frequency plot.
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Fig. 12. Time–frequency representation of the induced voltage in the
a sensor installed in a 100-kVA SPSG operating in a no-load condition
(a) in a healthy case and (b) under a 10-ITSC fault—Laboratory mea-
surements.

The application of the CWT to the experimental data of a
100-kVA SPSG is shown in Fig. 12 for a healthy case and a
10-ITSC fault. The time–frequency plot for the healthy case is
similar to that of Fig. 11; each 140 ms indicates one mechanical
revolution with 14 stalks, which is evidence of a healthy rotor
pole winding. Although the results of analysis are similar for the
experimental data corresponding to the faulty machine and for
the simulation data, the stalk length is (negligibly) shorter for the
experimental result than for the simulation result. Therefore, the
stalk length of a faulty pole spans slightly above 20 Hz, making
the identification of a faulty pole more noticeable in practice.

B. Study Results of a 22-MVA SPSG

The identified fault types in a 22-MVA SPSG according to the
FEM results are both the ITSC and DE, as verified based on the
time–frequency presentation of the induced voltage both in field
measurement tests and FEM. Fig. 13 shows the application of
the CWT to the voltage induced by the stray magnetic field for
the healthy condition (first row), 10-ITSC fault (second row),
20% DE fault (third row), and mixed fault of 10-ITSC and 20%
DE faults. The 22-MVA SPSG has eight poles, shown in the red
window in Fig. 13; the stalk frequencies are set between 20 and
100 Hz to have high resolution in the time–frequency plot. The
highest stalk intensity concentrated in the 25–60-Hz range with
a red hue. The 20% DE fault causes a time–frequency pattern
modification. Three changes occur due to the DE fault in the
time–frequency plot compared with the healthy case.

1) A fluctuating envelope appears at the bottom of the time–
frequency plot, similar to the time data series shown in
Fig. 9.

2) The healthy case shows a uniform distribution in the
time–frequency plot, whereas the 20% DE fault shows

Fig. 13. Simulation result of the time–frequency representation of the
induced voltage in the installed sensor on a 22-MVA SPSG operating in
a no-load condition (a) in a healthy case, (b) under a 20% DE fault, (c)
under a 10-ITSC fault, and (d) under mixed fault of 20% DE and 10-ITSC
fault—Simulation results.

a distorted distribution, with each window shape resem-
bling a fire flame.

3) The intensity of the stalks in the healthy case is the same
for each mechanical revolution, as is the frequency range,
whereas the 20% DE fault modifies the intensity pattern,
with the highest intensity located in the middle of the
window and a reduction in the stalk intensity at the edges.

A 10-ITSC fault reduces the stalk intensity of faulty pole in
the time–frequency plot. The starting frequency point of each
faulty stalk is slightly higher than 25 Hz, unlike a healthy stalk.
Fig. 13 shows the time–frequency plot of an induced voltage in
the sensor for a 22-MVA SPSG operating under simultaneous
ITSC and DE faults. The expected pattern for ITSC and DE
faults must appear in the time–frequency plot. Therefore, the
fire flame shape pattern with a sine shape envelope at the bottom
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Fig. 14. Time–frequency representation of the induced voltage in a
sensor installed in a 22-MVA SPSG (a) in a no-load operation and (b)
under a loaded operation of 17 MW—Field test results.

of the plot appears, which indicates the occurrence of the DE
fault. A comparison between the lengths of the stalks in the time–
frequency plot of a DE fault indicates that there is a symmetry
in the lengths of the stalks with respect to the window center.
The existence of the ITSC fault while the machine has DE fault
results in the length reduction in one of the stalks, which can be
detected by comparing the length of opposite stalk.

Fig. 14 shows the time–frequency presentation of the mea-
sured voltage induced in an installed sensor in a 22-MVA SPSG
in a hydropower plant operating under no load (top row) and
under a 17-MW load (bottom row). The patterns suggest a
combination of both ITSC and DE faults and are interpreted
as follows.

1) A DE fault is indicated by the fluctuating envelope at the
bottom, the flame shape of each mechanical revolution,
and the concentrated high intensity of the stalks at the
center of the window in the time–frequency plot.

2) The frequency ranges of one of the stalks are initiated
slightly higher than for a healthy winding stalk. The stalk
intensity that shows the ITSC fault in a rotor winding is
low compared to the rest of the neighboring stalks.

C. Load Impact

The SPSG in hydropower plants always operates under dif-
ferent loading conditions, indicating that the load impact on
the proposed method must be investigated. The main difference
between no-load and loading conditions is the contribution of the
stator magnetic field due to the current in the stator windings. The
stator magnetic field has two impacts on the stray magnetic field.
The magnitude of the stray magnetic field is slightly increased
compared with the no-load case. The stray magnetic field in the
loading condition has a phase shift compared with the no-load
case. However, the frequency contents of the stray magnetic
field do not change due to loading conditions. Therefore, the

introduced pattern due to the loading condition of SPSG must
stay unchanged, while its intensity due to increment in the
amplitude of the stray magnetic field must be changed.

The ITSC and DE fault pattern in the time–frequency plot
is more noticeable in a loaded SPSG than in a no-load SPSG,
as shown in Fig. 14. The reason is that the amplitude of the
current in the rotor field winding increases by increasing the
load in the SPSG; therefore, the impact of reduced contributing
magnetomotive force from the faulty pole in the air-gap magnetic
field and correspondingly in the stray magnetic field becomes
more tangible. Consequently, the intensity of the faulty stalk
due to an ITSC fault is markedly reduced under the 17-MW
load. Conversely, the electromotive force of the faulty pole is
decreased compared with the healthy poles; therefore, increasing
the current reduces the magnetomotive force due to the ITSC
fault. The power plant operator also stated that the amplitude of
the vibration increased during loading conditions, possibly due
to the ITSC fault. The DE pattern in the time–frequency plot
under the loading condition does not change because the winding
layout is not parallel; parallel windings would compensate for
the nonuniform magnetic field caused by the fault.

D. Generalization of the Method

The proposed method has a high sensitivity to detect the fault
in an early stage. The lowest ITSC fault and DE fault that can
be detected with a visual inspection of the time–frequency plot
are shown in Fig. 15. The ITSC fault is applied to a 22-MVA
SPSG by removing five turns out of 58 turns in one of the rotor
field windings. The length and the intensity of the faulty stalk
in the time–frequency map are decreased, as shown in Fig. 15.
The DE fault with 5% and 10% severity is also applied to the
22-MVA SPSG and the same pattern for a severe fault such
as 20% DE fault is observed for the low severity fault. The
introduced pattern is able to detect the coexistence of ITSC and
DE faults in an early stage, as shown in Fig. 15. The fire flame
pattern due to the DE fault in the symmetrical at the middle of
the window while having ITSC fault changes the symmetry due
to the reduced length and intensity of the faulty stalk.

The proposed method in this article only requires the number
of poles in the SPSG, and the machine configuration does not
have any impact on the introduced pattern. Fig. 16 shows the
time–frequency map of a sensor-induced voltage in a 42-MVA
synchronous generator with 16 salient poles in the rotor. The
red window Fig. 15 shows one mechanical revolution of the
42-MVA SPSG that includes 16 stalks, which represent 16 poles.
The introduced pattern for the DE fault is observed in Fig. 16,
where 10% DE fault is applied to the SPSG. Conclusively, the
SPSG topology does not have any influence on the introduced
pattern based on the application of CWT to the induced voltage
in the sensor installed on the stator backside.

The method provided in this article has several advantages
and some limitations compared with the previously developed
methods as follows.

1) ITSC and DE fault detection based on the application of
FFT on the stray magnetic field in an SPSG is proposed
in [9] and [30]. The method compares the frequency
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Fig. 15. Time–frequency representation of the sensor induced voltage
in a 22-MVA SPSG operating at no-load condition (a) in a healthy case,
(b) under a 5-ITSC fault, (c) under 5% DE fault, (d) under 10% DE fault,
and (e) under mixed fault of 10% DE and 5-ITSC faults—Simulation
results.

spectrum of the faulty SPSG with a healthy SPSG in order
to determine the health status of the machine. Although
the method is able to detect the fault at an early stage since
the frequency contents of a faulty machine are increased
compared with a healthy machine, the frequency spec-
trum is unable to determine the fault type. The intrigued
frequency components due to ITSC and DE faults are

Fig. 16. Time–frequency representation of the sensor induced voltage
in a 42-MVA 16-pole SPSG operating at no-load condition (a) in a
healthy case and (b) under 10% DE fault—Simulation results.

similar, indicating that the fault type recognition is im-
possible, while the proposed method in this article can
detect the fault type based on unique patterns for DE and
ITSC faults.

2) A method based on the application of short-time Fourier
transform (STFT) is proposed to detect ITSC and DE
faults in the SPSG using stray magnetic [31]. Although
the method was able to introduce a new pattern that can
detect the fault at an early stage, the pattern for DE and
ITSC faults was similar, which makes fault type detection
difficult.

3) A highly sensitive method using DWT is proposed to
detect the DE fault based on the differential stray magnetic
field [9]. In this method, at least two sensors are required
to embed on the stator core exactly opposite of each other.
The measured signals are differentiated and processed by
DWT. The method assumes that the differential signal is
almost zero for a healthy SPSG. However, the assump-
tion is incorrect since the induced sensor voltage is not
identical even in the healthy SPSG due to asymmetry in
the machine structure.

4) The proposed methods based on the frequency spectrum
are highly sensitive to the noise, while the methods based
on time–frequency methods such as STFT and CWT are
highly robust to the noise in the datasets [32].

Although the proposed method in this article has several
merits that make it practical especially in the field, there exist
some constraints as follows.

1) A high-resolution signal can be achieved if the sensor
is mounted on the stator core. The SPSG frame can
significantly attenuate the stray magnetic field.

2) The sensor design must be optimized based on the stray
magnetic field type, the strength of the stray magnetic
field, and the sensor location.
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3) The sensor must be shielded and a coaxial cable must be
used to transfer the data in order to reject the noise impact.

4) The data acquisition system with at least 16-bit resolution
is required for fault detection based on the stray magnetic
field.

5) Although the proposed method can be easily utilized
by the end user since the pattern for each fault type is
unique, the application of a deep neural network in pattern
recognition can facilitate automate fault detection.

VI. CONCLUSION

This article presented a unique methodology for the detection
of both ITSC and DE faults in an SPSG by applying CWT to
the induced voltage in a flux sensor installed on the stator yoke
backside. When compared with previously proposed methods
for the detection of ITSC and DE faults, the detection algorithm
in this article has the following advantages.

1) No a priori knowledge of the healthy operation of
the SPSG is required because the time–frequency
plot provides an informative and reliable pattern for
fault detection.

2) The method can identify and discriminate fault types
with high accuracy based on the obtained time–frequency
patterns. The occurrence of the ITSC fault in one rotor
field winding causes a reduction of the stalk length,
whereas a DE fault yields an envelope at the bottom of
the time–frequency plot, and each mechanical revolution
of the machine resembles a fire flame.

3) The nonintrusive nature of the method, based on stray
magnetic field monitoring that induces a voltage in in-
stalled sensors on the stator backside, allows assessment
even during machine operation. Unlike previously pro-
posed methods, it does not require machine stoppage or
access to its internal parts.

4) The proposed method is applicable to different types of
SPSGs. The only required information is the number of
poles.

The FEM provides insight into the changes in time–frequency
patterns due to ITSC and DE faults in 100-kVA and 22-MVA
SPSGs when CWT is applied. The experimental results for
a small-scale 100-kVA SPSG verified the feasibility of the
methodology to detect an ITSC fault. The proposed method is
able to detect and discriminate coexisting ITSC and DE faults in
a 22-MVA SPSG operating in one of the Norwegian hydropower
plants under a no-load or a loaded condition, supporting the
feasibility of this method in real power plants.
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Abstract
Although synchronous generators are robust and long‐lasting equipment of power plants,
consistent electricity production depends on their health conditions. Static and dynamic
eccentricity faults are among the prevalent faults that may have a costly effect. Although
several methods have been proposed in the literature to detect static and dynamic ec-
centricity faults in salient pole synchronous generators (SPSGs), they are non‐sensitive to
a low degree of failure and require a predefined threshold to recognise the fault occur-
rence that may vary based on machine configuration. This article presents a detailed
magnetic analysis of the SPSGs with static and dynamic eccentricity faults by focusing on
the external magnetic field. The external magnetic field was measured using two search
coils installed on the backside of the stator yoke. Also, advanced signal processing tools
based on wavelet entropy were used to analyse the induced electromotive force (emf ) in
search coils to extract the fault index. The proposed index required no threshold to
recognise the starting point of fault occurrence and was sensitive to a low degree of fault.
It was also non‐sensitive to load variation and noise that may induce a false alarm.

1 | INTRODUCTION

Periodic evaluation of critical components of large synchro-
nous generators provides a reliable condition monitoring sys-
tem that prevents severe unexpected failure in power plants [1].
The complex configuration of the salient pole synchronous
generator (SPSG) requires an accurate condition monitoring
system to avoid an unplanned stoppage of the power plant.
The eccentricity fault is one of the common faults in SPSG
where air‐gap length varies. The main reasons for static ec-
centricity (SE) and dynamic eccentricity (DE) faults in hy-
dropower generators are their vertical installation and imported
forces to the body of the generator from the movement of the
rock/cement, especially for power plants located inside
mountains. More than 97% of electricity production in Norway
is generated by hydropower plants, which are primarily located
inside the mountains. Therefore, precise fault detection is
required to reduce economic loss either for the producers or
consumers.

The eccentricity fault creates subharmonics in the voltage
and current of the machine that feeds into the grid and vi-
bration on the machine's frame. The ultimate consequence of

severe eccentricity is that the rotor rubs the stator core and
winding [2]. Therefore, early‐stage detection of machine fault
can avoid costly damages to the machine and economic loss.
Detecting eccentricity fault is mostly based on methodologies
relying on analysing stator current [3–5]. In that approach, the
Fourier transform is applied to the phase current, and the
harmonic components of the phase current are assigned as an
index to detect eccentricity fault. In contrast, the sensitivity of
this approach is quite low, and it requires a high degree of
eccentricity to show slight changes. Besides, the proposed in-
dex is sensitive to load harmonics, which with certain har-
monic loads could induce a false alarm. The split‐phase current
is used to detect the SE and DE faults in SPSG [6, 7]. The
split‐phase signature analysis is based on measuring the current
in parallel branches of the windings. The current passing
through the parallel branches is due to the distorted air‐gap
magnetic field. Although this approach can distinguish severe
DE and SE faults, it applies only to a synchronous machine
with parallel branches. SE and DE faults produce 2fs and kfs/p
components in the rotor current of SPSG, where fs and p are
stator electric frequency and number of pole pairs, respectively
[8]. Although the mentioned feature can detect 50% SE and
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50% DE faults, the unbalanced load, short circuit and the
broken damper bar faults also have the same effects on the
rotor current [9, 10]. Fault detection based on parameter
identification was also proposed in [11, 12] for induction
motors. The same approach based on the machine parameter
was applied to SPSG. It was shown in [13, 14] that self‐
inductance and mutual inductance of stator and rotor winding
change under eccentricity fault. However, the variation rate is
insignificant under a low degree of fault. Therefore, the
introduced methods are not sensitive enough to detect the fault
in its early stage. It has been shown that eccentricity can
produce harmonic components of the no‐load line to line or
line to neutral voltage [8, 15, 16]. In [15], the subharmonics of
the no‐load voltage are used to predict the SE and DE faults.
Although the harmonic components of a no‐load voltage can
detect the failure, they are sensitive to machine configuration
since the amplitude of the nominated harmonics varies in
different machines based on their geometrical configuration,
winding layout and material properties. The type of winding
connection significantly affects the harmonic content of no‐
load voltage. The sensitivity of the diagnostic approach is high
in a machine with windings connected in series rather than in
parallel [16]. Although the introduced index based on sub-
harmonics of no‐load voltage depends only on the number of
machine poles [15], it also needs a threshold value to predict
fault occurrence.

In [17–21], the air‐gap magnetic field was used to diagnose
the SE and DE faults in a synchronous generator. For the
eccentricity fault, the air‐gap magnetic field is distorted and
contains subharmonics. Although the air‐gap magnetic field is
the most reliable source for fault detection regardless of fault
type, it is an invasive approach. It is not a practical approach
for a generator under operation because sensors need to be
installed at a standstill and cope with the environment in the air
gap. Furthermore, fixing a hall‐effect sensor, search coil
around the stator slot [18] or core in the axial direction through
the radial ducts [19] is impractical for a synchronous generator
with small air‐gap length, which is used in the run‐off river
type power plants. The magnetic noise could also affect the
performance of the induced voltage in the search coils (sensor)
installed inside the machine.

The effectiveness of applying the external magnetic field to
induction motors has been validated and explained in [22–27]
for broken rotor bar, eccentricity, short circuit and bearing
fault, respectively. Various types of advanced signal processing
tools are used to extract the novel features that can recognise
the type and severity of fault based on the external magnetic
field captured on the induction motor frame. However,
applying the external magnetic field to recognise the fault in
SPSG is only limited to detecting interturn short circuit fault in
the field winding in [28] and [29]. The acquired electromotive
force (emf) is analysed using a fast Fourier transform, and it
shows that the amplitude of the harmonic component of the
signal is increased in the case of fault.

This article provides a detailed magnetic analysis of SPSGs
under SE and DE faults using induced emf in search coils
located on the backside of the stator yoke. The effect of the

fault on the external magnetic field is studied, and how self‐
inductance and mutual inductance of the stator and rotor link
with the search coil winding is shown. To improve the diagnostic
technique, a newway to treat the emf is introduced by finding the
difference in the induced emf in the sensors at opposite sides of
the machine. In this way, the amplitude of the emf for a machine
in a healthy case becomes almost zero. The trend of the emf is
investigated using statistical tools such as mean, standard devi-
ation (STD) and the energy of the signal in healthy and under SE
and DE faults from no load to full load. To quantify the
occurrence or evaluation of the fault, an advanced signal pro-
cessing tool based on wavelet entropy is introduced.

2 | ELECTROMAGNETIC ANALYSIS

2.1 | Eccentricity fault

The eccentricity fault is divided into static, dynamic and mixed
eccentricities [30]. For SE fault, the rotor symmetrical axis
coincides with the rotor rotational axis, and it is displaced from
the stator symmetrical axis. Although the air‐gap distribution is
not uniform, it is time invariant observed from the stator
frame. For DE fault, the stator symmetrical axis and rotor
rotational axis are identical, but the rotor symmetrical axis is
displaced with respect to them. Here, the position of the
minimum air gap depends on the rotor angular position. DE is
time dependent, unlike SE, and the minimum air‐gap length
varies with time. The mixed eccentricity fault is the combina-
tion of SE and DE faults.

Severe eccentricity faults induce an unbalanced magnetic
force called an unbalanced magnetic pull (UMP) that exerts
mechanical stress on moving parts, such as the shaft and
bearings. The prolonged operation of the machine under faulty
conditions induces moving part breakage and eventually rub-
bing the rotor on the surface of the stator core. However, in a
large synchronous machine with a damper circuit, parallel
windings and saturation can significantly reduce the UMP ef-
fect. The damper circuit, regardless of the eccentricity direc-
tion, can lessen UMP, while winding layout and orientation of
eccentricity concerning the winding configuration can either
reduce or do not change the UMP amplitude [15, 31, 32].

2.2 | Finite element modelling

Precise and detailed modelling of the machine is the first step
in the fault detection process. The detailed and real parameters
of the machine considerably affect reliable fault detection.
Figure 1(a) represents the finite element (FE) modelling of 22
MW SPSG. The detailed specification of the machine is pro-
vided in Table 1. Furthermore, the non‐linearity of the stator
and rotor core materials, the rotor shaft, the spatial distribution
of the stator winding, the physical properties of the stator and
rotor winding and damper bars and end rings are considered.
To avoid additional computation complexity, the eddy effect is
neglected, except for the damper winding, because a current
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passes through the damper winding even in the steady state
whether the generator operates in a healthyor faulty situation [9].
The external circuit with rotor field windings, stator winding and
damper circuits is used. A DC voltage is applied to the field
winding terminals. The magnetic field equations are combined
with differential equations of the external circuits. The motion
equation of the machine is finally combined with magnetic and
external circuit equations in the FE model. In this paper, Ansys
Maxwell 2‐D package is used to model the SPSG [33].

2.3 | Magnetic field analysis

The magnetic field in electric machines contains all informa-
tion about its detailed specification, which could be used to
monitor the machine condition. The eccentricity fault causes

asymmetries in the air‐gap magnetic field distribution. The air‐
gap magnetic field is caused by the stator and rotor magneto‐
motive force, the stator and rotor slot permeance, and rotor
pole saliency permeance. The eccentricity fault feeds additional
subharmonics to the air‐gap magnetic field. The magnetic field
fluctuation depends on the type and severity of SE or DE fault.
The distorted magnetic field distribution considerably affects
machine parameters such as inductance, the magnetic field in
the core and subsequently the external magnetic field.

The magnetic field of a machine under eccentricity fault
trivially influences self‐inductance and mutual inductance of
the stator and the rotor winding. The amplitudes of self‐
inductance and mutual inductance between the stator and rotor
of SPSG vary in the range of mH. Consequently, any pertur-
bation due to a small degree of eccentricity fault up to 20%
does not remarkably change their amplitudes. Therefore, all
quantities such as the stator phase voltage and current that are
correlated with the self‐inductance and mutual inductance of
SPSG are unreliable signals for SE or DE fault detection with a
low degree of severity. It is, however, possible to use phase
voltage or current if the fault severity is high [5].

There is always an external magnetic field outside the
electric machine, whether in the radial or axial direction of the
machine. The location of the sensor significantly affects the
captured external magnetic field [34, 35]. There are two options
to locate the sensor in the vicinity of the machine core, as
shown in Figure 1(b). In position A, axial flux is measured by
the sensor. In position B, the sensor may trap both radial and
axial magnetic fields with the radial field as the dominant field
in the captured signal. Regarding the sensor location, since the
SE and DE faults have a radial nature with significant effects in
the radial direction, the external field sensors are located on the
backside of the stator yoke, as shown in Figure 1(c). Therefore,
they are vulnerable to capture more radial signals, whether in a
healthy or faulty situation.

The amplitude of the magnetic field is reduced when
moving away from the air gap. Eventually, its amplitude

F I GURE 1 (a) The finite element modelling of the salient pole
synchronous generator and the location of the installed sensors with red
circle in two points, (b) location of sensors in axial direction (A) and radial
direction on the backside of the stator yoke (B) of the synchronous generator,
(c) location of two sensors in 3‐DFEM, the red circle and cross sign show the
direction of coils' current in the sensor. FEM, Fininte Element Model

TABLE 1 Specification of large salient pole synchronous generator

Quantity Values

Rated power 22 MW

Rated speed 750 rpm

Number of poles 8

Stator terminal voltage 7700 V

Stator terminal current 1650 A

Excitation current (resistive load) 440 A

Stator outer diameter 2640 mm

Stator inner diameter 2040 mm

Minimum air gap length 22.5 mm

Length of stack 1220 mm

Number of turns per pole 58

Number of damper bars 8
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becomes negligible in order of μT at the outer radius of
the backside of the stator yoke. Figure 2 depicts the air‐
gap magnetic field and the magnetic field at the middle
and outer side of the stator yoke. Although the amplitude
of the external magnetic field is remarkably smaller than
the air‐gap magnetic field, its shape and periodicity are
similar. Moreover, the external magnetic field is the
mirror of the air‐gap magnetic field that includes har-
monic components of both the stator and rotor magnetic
fields.

The induced voltage in the installed sensor on the vicinity
of the backside of the stator yoke is proportional to the sensor
cross‐section, the number of turns and external magnetic field.
The number of turns and the cross‐section of the copper wire
in the sensor are 3000 turns and 0.12 mm2. The dimension of
sensor is 80 mm � 80 mm � 10 mm. The resistivity and
inductance of the sensor in its terminal are 912 Ω and 714 mH.
Figure 3 depicts the induced emf in the sensor caused by an
external magnetic field. For SE fault, the emf shape does not
change, whereas the amplitude of the signal based on its
location changes slightly, in a way that the amplitude of
induced emf increases for a sensor located on the side of the
machine that the air‐gap length is reduced and vice versa. Both
the amplitude and emf shape in sensor dramatically change for
DE fault.

The fluctuation of the induced emf in the sensors is due to
varying mutual inductance between the stator and rotor
windings with the coils of the sensors. Unlike stator and rotor
self‐inductance and mutual inductance, the eccentricity fault
considerably affects self‐inductance and mutual inductance of
the sensor coils located on the backside of the stator yoke.
Figure 4 depicts the mutual inductance between the rotor
winding and the sensor in a healthy, 20% SE and 20% DE
faults. Observably, there are no changes regarding the shape of
mutual inductance for SE fault compared with the healthy case,
while its amplitude is decreased. The reason is that the reluc-
tance of the path for the linkage flux is increased and it reduces
the mutual inductance between the rotor and sensor. For DE
fault, as shown in Figure 4, the amplitude and shape of the
mutual inductance change considerably since the DE fault
varies in location, and time simultaneously changes the
magnitude and shape of the mutual inductance. In addition to
the oscillation, the mean value of the signal is also changed
under DE fault.

The above argument is also valid by considering mutual
inductance between the stator phase windings with a sensor
coil. Figure 5 demonstrates the mutual inductance of stator
phases A, B and C winding with sensor coil in the healthy, 20%
SE and 20% DE faults, respectively. A comparison between
the mutual inductance in the healthy case for all three phases
reveals that the mutual inductance depends on the location and
distribution of the winding with respect to the sensor coil. As
seen, the amplitude of the mutual inductance between the
phase winding and the sensor coil under SE fault decreases
considerably more than the mutual inductance between the
rotor and sensor coils because the path of the linkage flux is
shorter in this case. Also, the air gap could not change and

reduce the flux. The oscillation of the mutual inductance be-
tween the phase winding and sensor coil is significant under
DE fault, and a comparison between the envelope of the sig-
nals in Figure 5 reveals that DE fault makes additional
subharmonics.

3 | SIGNAL PROCESSING

Fault detection based on unprocessed signal is a difficult task
since the variation of the signal does not give meaningful in-
formation regarding the machine condition. Several signal
processing tools are used to extract useful patterns inside the
signals for fault detection that can be divided into three
categories:

� Time domain [36, 37]
� Frequency domain [2–4, 13, 14]
� Time–frequency domain [22, 24, 34, 38]

In this section, statistical tools such as mean value, STD,
energy, frequency domain and time–frequency domain

F I GURE 2 The radial magnetic field in the SPSG, air‐gap magnetic
field (top), magnetic field at the middle of the stator yoke (middle) and
external magnetic field (bottom). SPSG, salient pole synchronous generator

F I GURE 3 The induced electromotive force in the search coil in
healthy, 20% SE and 20% DE faults. DE, dynamic eccentricity; SE, static
eccentricity
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processors based on fast Fourier transform and wavelet en-
tropy are applied to emf to predict the machine health
condition.

3.1 | Preprocessing—definition of
differential electromotive force

Defining the threshold for processed data from the signal
processing part is the most challenging part of the fault
detection process. To overcome this challenge, two sensors are
installed on two sides of the machine in a radial direction
exactly opposite of each other. The acquired emf from each
sensor in a healthy case must be the same. Therefore, the
induced emf in both sensors is subtracted and the resultant
differential electromotive force (demf ) is almost zero for a
healthy case and non‐zero under SE and DE faults. The
construction tolerance of the large SPSG in the hydropower
plant is tight, and it is almost impossible to have an imbalance
due to the machining of the stator or rotor core. However, in
large SPSG with segmented stator core, the stator ovality is
detectable by installing four sensors perpendicular to each
other. Therefore, the assumption of considering demf equal to
zero in large healthy SPSG is valid.

3.2 | STD and mean value of demf

The dispersion or variation of the data set is measured by the
statistical term STD. According to its definition, the low value
of STD indicates its tendency to the mean value of the data set,
and the high value of STD suggests that the value is scattered
over a wide range [39]. This definition could be used to analyse
demf in a healthy or under SE and DE faults. The amplitude of
demf in a healthy case is expected to be zero, which is not the
case in reality due to tolerance in the manufacturing process.
Therefore, the mean value and consequently the STD of demf
may not be zero. Figure 6 demonstrates the variation of STD
and the mean value of demf under SE and DE faults for no‐
load and full‐load cases. As seen, either mean value or STD is

almost equal to zero in a healthy case, and its amplitude in-
creases by increasing fault severity degree. The variation rate
under DE fault is higher than that in SE fault since the fluc-
tuation rate under DE fault is higher than that in SE fault.
Therefore, the amplitude of STD under 20% DE tends to 1,
which shows high degree of data dispersion, but it is 0 in
healthy case. Besides, under SE fault, only the amplitude of the
demf is altered, while under DE fault both the amplitude and
some extra harmonics are also involved in demf waveform

According to Figure 6, it is possible to identify the severity
of the fault based on STD and mean value of demf acquired by
external field sensors. Besides, the value of the feature for the

(a)

(b)

(c)

F I GURE 5 The mutual inductance between the stator phase winding
and the search coil winding ‘1’ in a healthy and under 20% SE and 20% DE
cases in no‐load generator. (a) phase A, (b) phase B and (c) phase C. DE,
dynamic eccentricity; SE, static eccentricity

F I GURE 4 The mutual inductance between the rotor winding and
search coil winding in a healthy, 20% SE and 20% DE cases in no‐load
generator. DE, dynamic eccentricity; SE, static eccentricity
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healthy case is almost zero and while increasing the fault
severity, the amplitude of the STD and mean value significantly
increase. In addition, the magnitude of the features in no‐load
case exceeds that of full‐load case because the magnetic field
created by parallel windings in the stator tries to balance the
distorted air‐gap magnetic field. The amplitude of the features
in DE exceeds that of SE either in STD or mean value indi-
cator because the waveform of the signal for DE is under
considerable fluctuation. In contrast, the amplitude of the
signal under SE fault depends on the location of the sensor
which is increased or decreased. Alternatively, the emf of DE
contains more harmonics. Indeed, the difference between the
value of STD and mean value indicators for healthy and faulty
conditions is significant, which demonstrates the effectiveness
of the method.

3.3 | Energy of demf

The energy of a signal represents the strength of the signal
since it gives the covered area under the curve of the power at
any time interval [40]. Therefore, when the signal goes under
any variation, it varies the energy as well. The energy of demf is
derived as follows:

E ¼ ∫ þ∞
−∞ ∣demf ðtÞ∣2dt ð1Þ

From Figure 3, the amplitudes of demf under SE and DE
faults compared with the healthy case have increased, which
induce energy level increment. According to Table 2, the en-
ergy of demf in the no‐load case is increased from 1.5 in
healthy situation to 81.5 and 66.6 under 5% SE and 5% DE
faults, respectively. By increasing the severity of the fault, the
amount of signal energy is also increased. Although under full‐
load condition, the amplitude of demf is increased, the loading
decreases the sensitivity of the signal energy as the fault pro-
gresses. However, it has a high degree of sensitivity to the
occurrence of the fault since under a low degree of a fault, the
amplitude is increased significantly compared with the healthy
case. Although the amplitude of the signal energy shows no

significant increment by increasing the fault severity, the sud-
den increase in the energy value by the fault occurrence is a
fingerprint to demonstrate fault occurrence.

3.4 | Spectrum analysis

The fast Fourier transform is the most prevalent signal pro-
cessing tool used in fault detection of electric machines. Its low
computational complexity makes it a straightforward tool,
especially for real‐time assessment. Figure 7 demonstrates the
spectrum density of emf under SE andDE faults. The amplitude
of spectrumdensity either under SEorDE fault greatly increases
compared with the healthy case. For instance, the amplitudes of
frequency sidebands such as 25, 75 and 125 Hz are increased
from 86.3, 86.4 and 82.5 dB in the healthy case to 90, 80.5 and
82.5 dB under 5% SE fault. The amplitudes of the mentioned

F I GURE 6 Variation of ‘mean value’ and ‘standard deviation’ (STD)
versus the degree of SE and DE faults in no‐load (N) and full‐load
(F) cases. DE, dynamic eccentricity; SE, static eccentricity

TABLE 2 The energy value of the demf under variation of static
eccentricity (grey columns) and dynamic eccentricity faults in no‐load and
full‐load cases

Load H 5% 5% 10% 10% 15% 15% 20% 20%

No load 1.5 81.5 66.6 82.3 67.5 84.4 68.8 87.0 70.6

Full load 8.7 63.3 76.3 64.1 77.3 64.5 78.6 64.5 80.4

(a)

(b)

F I GURE 7 Comparison between spectrum density of electromotive
force in healthy cases with various degrees of SE (a) and DE (b) faults in no
load. DE, dynamic eccentricity; SE, static eccentricity
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sidebands under 20% SE are increased to 59.1, 56.3 and 57.9 dB.
A comparison between the healthy and 5% DE fault in Figure 7
(b) for frequency components of 25, 75 and 125 Hz shows that
their magnitudes are increased to 68 52 and 51.8 dB. There is the
same pattern of frequency component increment by increasing
the fault severity.

A comparison between the magnitudes of sidebands of
spectrum density for SE and DE faults exhibits that the
variation of DE components is significantly higher than SE
components. Although spectrum density of emf under SE and
DE faults shows that the sideband components are increased
due to the fault, the variation of each frequency component
does not follow the same pattern by increasing the fault
severity. For instance, some of the amplitudes of the faulty
sidebands are the same as a healthy case or even less, which is
misleading for faulty data interpretation. In addition, the ma-
chine specification and operating environment of SPSG
considerably affect the amplitude of frequency components
because white Gaussian noise can mask or change the sideband
magnitudes. Moreover, the machine specification determines
the amplitude of sidebands, indicating that a threshold level is
required to determine fault occurrence, which is difficult to
propose and it needs expert knowledge.

3.5 | Time–frequency analysis

The wavelet transform (WT) is a useful signal processing tool
used in various fields like power systems [41] and electrical ma-
chines [38]. The time localisation of different frequency com-
ponents of a signal is used in WT. The WTs, unlike traditional
frequency‐domain signal processing tools, do not use a fixed‐
width window. The wavelet analysing function adjusts its time
widths according to the frequency component of a given signal,
in which lower frequencies are in the broader window and higher
frequencies in the narrower one. Alternatively, signals with os-
cillations and localised impulses could be treated using WT in a
way that high‐frequency and low‐frequency components are
decomposed in the short and long‐time intervals, respectively.
The signal is decomposed to its components by filtering the
signal with high‐pass (HPF) and low‐pass filters (LPF). The
output of theHPF is called details, while the output of the LPF is
called approximations. The bandwidth of the two filters must be
the same. After each step of decomposition, the sampling fre-
quency of the signal is halved. The output of the LPF is
decomposed recursively to produce the next sub‐band of the
wavelet. Equation 2 demonstrates the summation of all com-
ponents of the demf signal into multiresolution decomposition
as details and approximations:

demf ðnÞ ¼
Xj

i¼1
DiðnÞ þ AjðnÞ ð2Þ

where j is the number of decomposition level, D(n) and A(n)
are details and approximations of wavelet.

In this paper, Daubechies‐8 (n = 8) is used as a mother
wavelet. A higher order wavelet, similar to D‐8, has a higher
resolution that could improve the quality of fault detection in
electrical machines. Figure 8 shows the procedure of signal
decomposition using discrete WT, where S is the input signal,
and LPF and HPF are low‐pass and high‐pass filters. Prelim-
inarily, a given signal to WT is divided into two halves, which
are the inputs of the LPF and HPF. The output of the first‐
level LPF is then separated into half the frequency bandwidth.
This procedure is continued until the given signal is decom-
posed into the predefined value of that level. The sampling
frequency in this paper is 10 kHz, and based on Nyquist's
theorem, the highest frequency that the signal could contain
would be 5 kHz. Consequently, the frequency bandwidth of the
first sub‐band of WT must be between 5 and 2.5 kHz.

Figure 9 shows the applied discrete wavelet model to the
demf in H, 20% SE and 20% DE faults. By comparing the
demf in all three cases, it shows that the amplitudes of demf
under faulty situations are 100 and 200 times more significant
than the healthy case for SE and DE faults, respectively. A
comparison between the detailed signal of H and SE shows
that the frequency contents of the detailed signal from D1 to
D6 must be the same, and the only difference must be their
amplitude. However, the comparison between H‐ and DE‐
detailed signals of demf (Figure 9(a) and (c)) shows that due to
the nature of DE fault that rotation of the rotor and conse-
quently magnetic field is a function of space and time, the
shape and amplitude differ. Unlike some signals like air‐gap
magnetic field, torque, current or voltage, where only one of
the wavelet sunbands shows remarkable deviation from the
healthy case, the wavelet‐detailed level of demf predominantly
changes under SE and DE faults compared with H situation.

Figure 10 demonstratesWTof demf in H and under 20% SE
and 20% DE faults for detailed sub‐bands of D1 to D6. From
Figure 10, SE and DE faults result in a variation of wavelet sub‐
band waveform. However, a comparison between no‐load and
full‐load cases under SE fault reveals that loading condition re-
duces the fault effect on sub‐band components. The mentioned
reduction is evident in D6 sub‐band. There is the same trend in
the wavelet sub‐band component under 20%DE fault in the full

F I GURE 8 Discrete wavelet transform and the corresponding
frequency bands based on the sampling frequency (10 kHz)
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load as in the no‐load case. However, the loading condition
under SE fault reduces wavelet sub‐band amplitude. Generally,
SE andDE faults predominantly affect demf either in no‐load or
full‐load cases. Moreover, results prove that demf has adequate
information about irregularities due to the fault in SPSG.
However, an index must be introduced to quantify fault severity.

3.6 | Wavelet entropy

Combining WT with entropy can provide a novel tool to
analyse the transient behaviour of the faulty signals that have a

non‐stationary trend. The application of wavelet entropy in
different fields like physiology [42], power systems [41] and
condition monitoring of induction motors [43] shows that it
could provide useful information. Therefore, wavelet entropy
is unprecedentedly used to extract SPSG information under SE
and DE faults. The wavelet entropy of the signal represents the
degree of disorder in the wavelet sub‐bands. The entropy is
measured between 0 and 1, with 0 showing the perfect order,
and 1 shows a high degree of disorder. However, the entropy
value is not necessarily limited to an upper limit of 1, and it

(a)

(b)

(c)

F I GURE 9 Discrete wavelet transform of induced differential
electromotive force by means of the external magnetic field in the sensors
in no load: (a) healthy, (b) 20% SE and (c) 20% DE faults. DE, dynamic
eccentricity; SE, static eccentricity

(a)

(b)

(c)

F I GURE 1 0 Discrete wavelet transform of induced differential
electromotive force by means of an external magnetic field in the sensors in
full load: (a) healthy, (b) 20% SE and (c) 20% DE faults. DE, dynamic
eccentricity; SE, static eccentricity
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could be more significant than that, which means a higher
degree of disorder.

Shannon entropy provides a practical index for evaluating
and analysing the probability distribution [44]. Shannon en-
tropy that measures the uncertainty and disorder of wavelet
sub‐bands is defined as follows:

EntropyshðnÞ ¼ −
Xj

i¼1

PilogPi ð3Þ

Pi ¼
Ej
E

ð4Þ

where Pi is a relatively normalised value of each wavelet sub‐
band energy (Ej) to the total energy of the signal (E).

Figure 11 displays the rate of entropy changes under SE, and
DE fault varies from healthy up to 20% eccentricity in no‐load
and full‐load cases. From Figure 11, the entropy of wavelet sub‐
bands shows a high degree of sensitivity to occurrence and
progression of fault. According to the entropy definition, the
entropy value in the healthy case must be almost equal to zero,
which reveals the less or none degree of disorder in wavelet sub‐
bands. By increasing the degree of SE or DE fault, the rate of
signal disorder is increased inducing high entropy value. The
entropy value for detailed signals D7 and D8 demonstrates
minimal degree of changes compared with other detailed sub‐
bands. Themagnitudes of entropy forD7 andD8 in no‐load and
full‐load healthy cases are 0.34 and 0.22, which under 20% SE
and 20% DE faults increase to 27.6 and 3.1, respectively. By
comparing the entropy of different wavelet sub‐bands, it is
found thatD2,D3 andD4 have a higher degree of sensitivity to
fault progress, whether under SE or DE fault. In a full‐load case,
the rate of change forD5 is increased compared withD3, which
is due to circulating third harmonic in a machine winding.

Although a specific value of the threshold for a fault indi-
cator has been proposed for fault occurrence [38], the intro-
duced index in this article requires no specific threshold. The

method proposed in this paper requires no specific threshold to
indicate the fault appearance since increasing the entropy value
from zero (healthy case) to any value indicates fault. A high
degree of index sensitivity to failure induces discrimination of
fault in a low degree of severity even less than 10% eccentricity.
For instance, by having 10% SE, the magnitude of wavelet en-
tropy is increased from 0 to 85.9, which shows that the index can
detect low severe fault with high precision.

3.7 | Load effects on proposed index

Figures 12 and 13 depict the variation of wavelet entropy under
load variation from no load to full load under different degrees
of SE andDE faults, respectively. Comparisons of the amplitude
of entropy in no load and full load show that load reduces the
entropy amplitude even by increasing the fault severity level. For
no load, the most contributing magnetic field is produced by the
rotor, and even a small degree of eccentricity causes a high de-
gree of distortion in demf, whereas in loading condition, both
the stator and rotor magnetic fields synergistically influence the
air‐gap magnetic field and consequently, the external magnetic
field. Therefore, the machine, especially with a parallel winding
layout, tries to balance the magnetic field in a faulty case. Hence,
the degree of disorder in wavelet entropy of sub‐bands under
loading conditions must be reduced. In addition, the ratio of
tangential to the radial magnetic field under loading conditions is
increased, while the radial magnetic field is the dominant field
captured by sensors in the no‐load case. However, wavelet en-
tropy of sub‐band D5 is robust to load variation, while the
variations of the other sub‐bands (D1, D2, D3, D4 and D6) are
in an acceptable range.

3.8 | Noise effects on proposed index

The term ‘signal’ in the field of fault diagnosis means only the
desirable data that are measured [40]. However, the signal is

F I GURE 1 1 The entropy of wavelet sub‐bands
(D1 to D6) for different degrees of SE and DE faults
in no‐load and full‐load cases. DE, dynamic
eccentricity; SE, static eccentricity
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vulnerable to various noises during the process of data
acquisition, storage and conversion. Different noises could
specifically affect data, which can demonstrate its effect in

signal processing. White Gaussian noise is one of the prevalent
noises in the industry and power plant that could mask or even
hide fault features for a high signal‐to‐noise ratio (SNR). The

F I GURE 1 2 The load effect on wavelet entropy of sub‐bands under SE fault: (a) D1, (b) D2, (c) D3, (d) D4, (e) D5 and (f) D6. SE, static eccentricity

F I GURE 1 3 The load effect on wavelet entropy of sub‐bands under DE fault: (a) D1, (b) D2, (c) D3, (d) D4, (e) D5 and (f) D6. DE, dynamic eccentricity

EHYA ET AL. - 899



white noise effects on wavelet entropy features are presented in
Table 3. The various rates of SNR from 60 dB as the lowest
level up to 20 dB as the highest level are applied to demf signal
in the healthy and under SE and DE faults. As shown in Ta-
ble 3, by increasing SNR from 60 to 20 dB, the amplitude for
the healthy case in D1 to D6 increases with the highest value in
D6. However, the minimum amplitude of various wavelet
entropy sub‐bands is much higher than the maximum value of
the healthy case under 20 db SNR. Although the proposed
feature is robust to noise, the wavelet entropy of sub‐band D6
among other sub‐bands is vulnerable to serious variation in a
noisy environment.

4 | APPLICATION, LIMITATION AND
CONSIDERATION IN FIELD TEST

The application of this method for large SPSGs in hydropower
plants is possible. It is possible to attach the sensor, as shown
in Figure 1, to the backside of SPSG since hydropower
generator has no steel housing like a turbo generator or in-
duction machine. However, some circumstances may induce
some differences between finite element model (FEM) and
real‐test results as discussed below:

� Lack of material data sheet in FE modelling may change the
amplitude of emf and consequently, it induces variance in
the measured data with simulation.

� The manufacturing tolerance is disregarded, which may also
affect the simulation results.

� In large hydropower plants, the housing of SPSG is the wall
in the generator pit that is usually made of concrete. The
vertical and horizontal beams of frames are used to take up
to the torsional force acting on the stator body. The distance
between the horizontal and vertical beams exceeds 30 cm.

Notably, it could affect the signal since the material is iron.
However, putting the sensor in the middle of the beams aids
to avoid the effect of the frame. Therefore, for sensor
attachment close to the frame, the modelling of the frame in
FEM is mandatory.

� It is almost impossible to locate the sensors exactly in front
of each other in a real‐field test and there is a possibility of a
few centimetre errors in the sensor installation. Therefore,
one of the sensors in FE modelling is moved for 5 and 10
cm concerning the other sensor in the opposite direction.
Results show that location error does not significantly affect
the amplitude of demf as shown in Figure 14. The wavelet
entropy is also applied to the signals and their amplitudes do
not change substantially, and it increases 0.1 and 0.14 for 5
and 10 cm sensor relocation, respectively.

� The middle of SPSG yoke is the optimal position for the
sensor installation in order to avoid the magnetic field effect
on sensor due to end winding and high voltage bus bars.

TABLE 3 The noise effects on detailed signal of wavelet entropy in healthy (H), 10% and 20% static eccentricity and dynamic eccentricity (grey rows) faults

D1 D2 D3 D4 D5 D6

H 10% 20% H 10% 20% H 10% 20% H 10% 20% H 10% 20% H 10% 20%

No‐N 0.001
85.9 267

0.001
491.6 1268

0.007
414 1105

0.014
533 1172

0.035
146 375

0.136
27 81

275 710 824 1765 737 824 723 1013 326 715 92 246

60 dB 0.001
86 267

0.002
492 1268

0.01
414 1105

0.02
533 1172

0.04
146 375

0.15
27 81

275 710 824 1765 737 824 723 1013 326 715 92 247

50 dB 0.007
85.8 267

0.1
492 1268

0.03
414 1105

0.05
533 1172

0.1
146 375

0.2
27.1 81

275 710 825 1765 737 824 723 1013 326 715 92.5 246

40 dB 0.03
85.4 268

0.09
491 1269

0.12
413 1105

0.3
532 1172

0.6
146 374

1.2
27.6 81.4

275 710 824 1765 737 824 724 1013 326 715 93 248

30 dB 0.36
86 2671

0.56
489 1269

1.3
414 1109

2.5
536 1170

4.3
147 376

8.4
33.8 85

273 713 824 1765 740 822 723 1016 329 715 97 251

20 dB 3.43
78 263

4.73
499 1266

10.5
4174 1097

19.3
533 1171

33.5
158 392

59.7
82.5 128

279 699 829 1765 741 819.7 722 1003 339 720 144 279

F I GURE 1 4 The effect of sensor installation location error on demf.
Sensors are exactly in front of each (blue) with 5 cm (green) and 10 cm (red)
installation errors
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� Since the working environment of SPSG in hydropower
plants is vulnerable to magnetic noise, a shielded co‐axial
cable is required to reject the noise effect on the sensor.

5 | CONCLUSION

A new method is introduced to detect the SE and DE faults in
SPSG. Different faults in induction machines induce significant
variation in current, torque and speed waveform (characteris-
tics). The mentioned signals in SPSG are robust to a low de-
gree of fault; therefore, the only reliable source of fault
detection is based on either the magnetic field in the air gap or
external magnetic field. While the former is an invasive tool
that is inappropriate for generators under operation, the latter
is non‐invasive, low cost, easy to design and fabricate, which
makes the proposed method in this article noteworthy.

The proposed methods are based on the external magnetic
field analysis. The mentioned external magnetic field is captured
by installing two search coils on the backside of the stator yoke
precisely opposite to each other. By having two signals from two
sides of themachine, the net demf in a healthy case is almost zero,
and by the occurrence of the fault, based on its type, the ampli-
tude and shape of demf differ. Various approaches and signal
processing tools are used to detect the appearance and evolution
of the fault. The proposed method relies on the time–frequency
analysis of demf, and discrete WT is used to identify the hidden
pattern under SE or DE fault. Also, the following conclusions
represent the summary of achievements in this paper.

1. The detailed and accurate modelling of SPSG in the FE
model shows how the external magnetic field responds to
SE and DE faults. The fault occurrence induces some
subharmonics in the air‐gap magnetic field in emf.

2. The investigation of self‐inductance and mutual inductance
between the rotor and stator with search coils shows that
due to the low rate of inductance variation under faulty
cases, the amplitudes of the stator and rotor self‐inductance
and mutual inductance show no significant changes, while
the mutual inductance between search coil with rotor and
stator windings show a high degree of variation.

3. The demf provides a sensitive signal with respect to fault
since the amplitude of demf in the healthy case must be
almost zero.

4. The variation of mean value and STD of demf proves that
the fault alters the signal behaviour.

5. The occurrence of SE or DE fault significantly increases
the energy of the signal that could be used as an early‐stage
fault indicator.

6. The studies of discrete wavelet sub‐bands reveal that SE
and DE faults greatly affect them. To quantify the fault
severity, wavelet entropy is used. It shows that this approach
can find SE and DE faults even in its early stage in SPSG.
Furthermore, there is no need to specify the threshold value
to detect the occurrence of failure, which is an additional
advantage of this method.
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Abstract—Reliable operation of synchronous generators
in hydroelectric power plants is crucial for avoiding un-
planned stoppages that can incur substantial costs. The
damper winding of salient pole synchronous generators
(SPSGs) contributes to machine operation only during tran-
sient periods; however, it is a critical component that pre-
serves the dynamic stability and protects the rotor in case
of a fault. Consequently, detection of a broken damper bar
(BDB) fault is vital for safe operation. Current methods for
the BDB detection depend on visual inspection or offline
tests. However, most of the recently proposed approaches
have used invasive sensors that can detect BDB faults only
during transient operation. In this article, a novel method is
proposed based on a noninvasive sensor with high sensi-
tivity to BDB faults that can identify a BDB fault either dur-
ing transient operation or in the steady-state (SS) period.
The effectiveness of the proposed method is validated by
finite-element modeling and by experimental results from
a 100-kVA custom-made SPSG. The proposed method is
confirmed to provide a reliable and sensitive diagnosis of
BDB faults during transient or SS operation, even in noisy
environments.

Index Terms—Broken damper bar (BDB), condition mon-
itoring, discrete wavelet transform, fault detection, salient
pole synchronous generator (SPSG), stray magnetic field,
wavelet entropy.

I. INTRODUCTION

SALIENT pole synchronous generators (SPSGs) are the
most commonly applied generator type in hydropower

plants [1], and they are ubiquitous throughout the Norwegian
power generation system. The generated hydroelectric power
accounts for 95% of the total electricity production in Nor-
way [2]; consequently, the proper operation and maintenance of
hydroelectric generators are essential to meet the ever-increasing
operational demands. Hydroelectric generators can suffer from
incipient undetected faults that may result in catastrophic dam-
age in the long term. The failure of an SPSG and the subsequent
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steps required for restoration of power plant operations can
create substantial expenses for the power producer.

The damper winding of the SPSG contributes to the operation
of the machine both in transient and steady-state (SS) operation.
It also improves the air-gap flux waveform. The transient periods
of the synchronous generator includes the start-up period and
the asynchronous operation due to power network transients.
The damper winding protects the rotor field winding during a
short-circuit fault on the stator side. The damper winding also
affects the generator performance in the case of load, torque, and
magnetization current variations [3]–[6]. Current continuously
passes through the damper winding during both transient and SS
operations. In transient operations, the synchronous generator
operates in an asynchronous mode in which the magnetic field
of the rotor and stator is not synchronized. This leads to the
induction of voltages inside the damper cage and a consequent
circulation of the current in the damper bars. Four factors cause
these induced currents during SS operation of the machine:
the air-gap magnetic field pulsation due to stator and rotor
slotting effect [3], [7]; internal faults, like eccentricity and short
circuits [8]; the stator load variation; and the space harmonics
in the air-gap magnetic field due to the fractional slot winding
layout [9].

Damper winding failure is not a prevalent type of fault in
salient pole synchronous machines; however, this failure can
significantly affect the performance of the machine. A broken
damper bar (BDB) and a broken end ring fault in pumped
storage generators, synchronous condensers, and salient pole
synchronous motors are reported to cause starting failures, to
reduce the efficiency of the performance, and ultimately to lead
to machine depreciation [10]–[12]. Damper bar breakage can
occur due to a deficient connection between the dampers and
the end ring, to maloperation, to numerous starts and stops, and
to thermo-mechanical stress due to uneven distribution of the
current inside the rotor bars because of the saliency of the rotor
pole [10]–[15]. A BDB creates higher currents, thereby, impos-
ing greater mechanical and thermal tension on the remaining
healthy damper bars.

The detection of a BDB fault in a synchronous machine
has been mostly based on visual inspection [11]. In [16]–[18],
offline test procedures have been proposed to detect BDB faults
without machine disassembly. Although these proposed tests are
effective and show superiority over visual inspection; however,
they require stoppage of the machine, as well as the use of
an extra controllable power source and access to the machine
winding to conduct the tests. Moreover, the rotor must be rotated

0278-0046 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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manually, which is not possible for large-sized machines. In [19],
an online method based on stator current harmonic analysis
was introduced. However, the proposed method demonstrated
a lack of sensitivity for BDB faults and also suggested that
the harmonics for BDB detection were impacted by a static
eccentricity fault. Previous work [10] confirmed that a BDB
altered the air-gap magnetic field during the start-up period and
could increase the start-up time of the machine, but other factors,
like machine loading or improper coupling of the machine, can
also increase the acceleration time. The air-gap magnetic field
and stator current occurring during the acceleration time has
been used to detect a BDB fault in [16]–[18]. However, although
the air-gap magnetic field provides detailed information about
the machine status, it is an invasive approach that requires
dismantling of the machine and installing a Hall-effect sensor
inside the air-gap on the stator teeth. Damper bar currents [20]
and end ring currents [21] have also been used to detect a BDB
fault during the SS operation of the machine. However, these
methods are not practical in reality since they require expensive
sensors and data transfer equipment from the rotor side to outside
the machine, in addition to a damper winding modification.
In [13], a synchronous generator was operated under a 25%
unbalanced load to cause a negative sequence current to circulate
inside the damper winding for detection of a BDB fault; however,
the proposed method is again not practical for large synchronous
generators. In [22], the induced voltage in the rotor field winding
during acceleration time was utilized to detect a BDB fault;
however, the use of a dc power source may affect the harmonic
content and mask the fault harmonics.

A comprehensive study based on the state of the art and
proposed methods in the industry demonstrates a need for a
noninvasive and sensitive approach for discriminating a BDB
fault. The novelty of this article is encompassed as follows.

1) noninvasive detection of a BDB fault based on the stray
magnetic field;

2) BDB detection during transient or SS operation of the
SPSG;

3) a novel criterion function to discriminate a BDB fault with
high sensitivity.

The finite-element modeling (FEM) and experimental results
of a 100-kVA custom-made SPSG under a controlled fault
situation are provided to validate the proposed claims.

II. ELECTROMAGNETIC ANALYSIS

This section focuses on FEM of the synchronous generator.
The motivation behind the use of FEM is to exhibit how the
current inside the bars and end rings varies in a healthy generator
and in one with a single BDB. Moreover, FEM is used to analyze
the sensitivity of the stray magnetic field influenced by the
generator configuration. FEM provides realistic results since it
considers the nonlinearity of the applied material in the stator
and rotor core. In addition, the eddy effect is taken into account.

The FEM obtains its geometrical specification and material
characteristics from a custom-made 100-kVA, 400-V, 50-Hz
synchronous generator with 14 salient poles. The synchronous
generator under study is a 14-pole/114-slot machine with a

Fig. 1. FEM of an SPSG and the location of the installed sensor for
radial flux measurement on the backside of the stator yoke.

TABLE I
100-KVA, 50-HZ, SYNCHRONOUS GENERATOR TOPOLOGY SPECIFICATION

AND NAMEPLATE DATA

Fig. 2. External circuit of the salient pole synchronous generator linked
into a finite element, including the rotor magnetization circuit, stator
windings with connected loads, and damper bar circuit connections.

fractional slot winding. Each rotor pole consists of seven damper
bars, which are distributed on the pole shoe. The dampers are
short circuited on each side of the generator with two end rings.
The connection between the rotor poles is made by the interpole
connection rings. The two-dimensional FEM, as shown in Fig. 1,
is utilized since the rotor is not skewed. The specification of
the synchronous generator is presented in Table I. The ANSYS
ELECTRONICS software is used to perform FEM [23]. The
ANSYS external circuit, as shown in Fig. 2, is used to model the
following [23]:

1) rotor field winding;
2) stator winding and load circuit;
3) rotor damper bars and end ring circuit.
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Fig. 3. Waveform of the current applied to the rotor magnetization
winding of 100-kVA SPSG during no-load operation.

Fig. 4. Current in an interpole connection between two rotor poles
based on an applied trapezoidal shape current at no-load at the rated
speed. The left and right figures show healthy and faulty cases (one
BDB), respectively.

In order to show how the current inside the damper bars and
the end ring changes in a healthy case and under a BDB fault,
a dc current source with a controllable waveform, as shown in
Fig. 3, is utilized. The synchronous generator is under constant
synchronous speed when the rotor field current is increased
from zero to the nominal value, which is 53.2 A. The dc source
waveform consists of three sections, in which the ramp-up (RU)
and the ramp-down (RD) resemble the transient behavior of the
machine, while a constant dc current is fed into the winding
during the SS operation. In order to reduce the simulation time,
each period is limited to eight mechanical revolutions of the
machine. An accurate simulation is achieved by using a small
time step (i.e., 10 µs).

An equivalent circuit of each damper bar and end ring consists
of resistance and inductance. In the case of a BDB, the resistivity
of the BDB is increased to reduce the amount of the current
passing through the bar. This is obtained by considering a
resistance in the order of megaohm for a faulty damper bar. Fig. 4
shows the current in the end ring in a healthy case and under a
BDB fault (damper No. 7 in pole one is broken). The shape of
the current amplitude inside the dampers and end rings is similar
to the dc current imposed into the magnetization winding, which
includes the transient and SS periods. The shape of the current
amplitude inside the dampers differs since the location of the
damper bars in the rotor shoe and their reluctance path also
differ. Therefore, the shape of the current and the amplitude are
different. The amplitude of the current in the bars located at the
edge of the rotor pole shoe (in this generator, damper bar Nos.

TABLE II
ELECTRICAL PARAMETERS AND SPECIFICATION OF FOUR SPSGS

USED FOR FEM CALCULATIONS

1 and 7) is higher than for the rest of the damper bars including
damper bar Nos. 3, 4, 5, and 6. Since the reluctance of the path
is higher for the bars located at the pole edge (damper bar Nos.
1 and 7), the more concentrated linkage flux is passed through
the bar. The amplitude of the current decreases by reaching into
the middle damper bar in the rotor pole shoe such as damper bar
Nos. 3, 4, and 5 [22]. In the case of a BDB, the amplitude of the
current in the faulty bar becomes almost zero, and the current
of the adjacent bars, whether in the same pole or adjacent poles,
is increased, as seen in Fig. 5 (blue and red waveforms). The
amplitude of the maximum current in the adjacent faulty bar
from the same pole ranges from 85 to 100 A, while the amplitude
of the maximum current bar in the adjacent pole increases from
100 to 106 A. In Fig. 5, the green and pink waveforms represent
the current in three damper bars where no interpole connection
exists and the rotor poles are separated. In the case of one BDB
fault, the BDB current does not flow in the interpole connection
and it cannot affect the damper bar’s current in the neighboring
poles. Therefore, the damper bar current in the neighboring poles
is unchanged, as shown in Fig. 5 (P2-B1 in green and pink
waveforms).

In a large SPSG, the poles are connected to increase the
subtransient reactance of the machine in the quadrature axis.
A small subtransient reactance in the quadrature may lead to
stability problems and cause vibrations. Therefore, the connec-
tion between the poles is indispensable. The end ring current
changes in the case of a BDB. The amplitude of the current
in the interpole connection between pole one and pole two is
increased from an average of 32 A in a healthy case to 56 A in
the case of one BDB in pole no. 1.

A. Impact of SPSG Configuration on the Stray
Magnetic Field

Although the air-gap magnetic field provides accurate data
for fault detection of the rotor failure, the stray magnetic field is
the mirror of the air-gap magnetic field and can provide a fault-
sensitive result. Four generators with different power ratings
and topologies are modeled in FEM to investigate the impact
of SPSG specification on the induced voltage in the installed
sensor on the stator back side. Table II shows the specification
of the generators used in FEM. The FEM of the SPSG No.1 is
shown in Fig. 1, while the FEM of the SPSG No.2, No. 3, and
No. 4 are depicted in Fig. 6. The 100-kVA, 14-poles SPSG has
an outer diameter of 0.78 m and its stack length is 0.24 m, and a
400-MVA, 60-poles SPSG has an outer diameter of 11.27 m and
its stack length is 1.62 m, are the smallest and largest modeled
SPSG among the four models, respectively. Fig. 7 shows the
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Fig. 5. Induced current in the rotor bars due to the trapezoidal shape of the field current in a healthy generator during no-load operation (blue and
green waveforms) and with one BDB fault (Pole #1, bar #7 (P1-B7)) (red and pink waveforms). The first three columns are bars with a complete
end ring, and the next three columns are for bars with separated rotor poles. The first three columns show the current in damper bar #6 in pole #1
(P1-B6), damper bar #7 in pole #1 (P1-B7), and damper bar #1 in pole #2 (P2-B1).

Fig. 6. FEM of three SPSGs with different power rating and topology.

existence of the stray magnetic field on the stator back-side of
four modeled SPSGs regardless of their power rating, working
frequency, number of pole pairs, the thickness and length of the
stator yoke, and their topologies.

III. EXPERIMENTAL SETUP

The test rig shown in Fig. 10 was built to execute extensive
experimental tests. The fault detection system consists of a
100-kVA, 400-V synchronous generator with 14 salient poles.
The nameplate data and topology specification of the SPSG
are presented in Table I. The SPSG was custom made to apply
various kinds of faults, including BDB faults. The end ring and
damper bars can be removed from each rotor pole. Fig. 9 shows
a rotor pole, excluding the damper bars and end ring. A 90-kW,
four-pole asynchronous motor drives the SPSG. The induction
motor is supplied by a programmable frequency converter at the
rated speed of 1482 r/min. The converter is connected to the
power network. A 20-kW dc power supply (LAB-HP/E2020)
is used to magnetize the rotor field windings. The connection
between the SPSG and the motor is made by a gearbox.

The stray flux is captured with an in-house made sensor. The
dimensions of the sensor are (100× 100× 10) mm. The sensor
has 3000 turns copper wire with a diameter of 0.12 mm. The
resistivity and inductance of the search coil at its terminal is

912 Ω and 714 mH. The sensor is attached to the stator core and
is capable of monitoring the combination of axial and radial flux.
The designed sensor is cheap compared with Hall-effect sensors
and it is robust to work in the industrial environment and power
plants. A high-resolution 16-bit oscilloscope (Rohde Schwarz
RTO2000) with a sampling frequency of 10 kHz is used for data
acquisition.

The procedure of the experimental test was as follows: the
damper bar was removed at standstill, then the SPSG, which
was coupled to an induction motor, accelerated until it reached
synchronous speed. A trapezoid shape dc current was fed into
the magnetizing circuit, as depicted in Fig. 3. As shown in Fig. 3,
the dc waveform included three stages. The RU and RD stages
were used to resemble the transient behavior of the machine,
while the constant dc current was for SS operation of the SPSG.
The period of applied dc power source for each interval was 10 s.
The test was carried out in no-load operation of the SPSG.

IV. SIGNAL PROCESSING

Different time-frequency processing methods have emerged
and have been applied by developing signal processing tech-
nology. The time-frequency analysis has become crucial, espe-
cially for a signal with nonstationary characteristics. However,
extracting a feature from a nonstationary signal is a difficult
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Fig. 7. Induced voltage in the sensor installed on the back side of the
stator core due to the stray magnetic field in the no-load operation of
four SPSGs with different power rating and specification.

Fig. 8. Experimental test rig of a 100-kVA synchronous generator with
14 salient poles.

Fig. 9. The pole with the removed rotor bars and end ring of the salient
pole synchronous generator (left).The removed damper bars, end rings
and the inter pole connection segments (right).

Fig. 10. Location of a noninvasive search coil sensor to capture the
stray magnetic field installed on the back side of the stator yoke.

task. Therefore, a tool, referred to as information entropy, is
required to investigate the information contained in a signal. A
quantitative assessment of the signal is obtained by applying
entropy to the processed data. Discrete wavelet transforms in
a combination of Shannon entropy are utilized to introduce an
index for the BDB fault diagnosis. The rudimentary concept
behind the wavelet entropy is consideration of the wavelet
subbands as a probability distribution and assessment of the
degree of disorder in each subband based on the entropy concept.
The next two sections provide a brief explanation of the discrete
wavelet transform and Shannon entropy.

A. Discrete Wavelet Transform

The wavelet transforms of a discrete signal S(k) contain
the high-frequency and low-frequency components. The high-
frequency and low-frequency components have their own coef-
ficients at instant k and scale i, which are denoted as di(k) and
ai(k), respectively. The reconstruction of the signal frequency
bands based on a discrete wavelet is shown as follows:

Di(k) : [2
−(i+1)fs, 2

−ifs] (1)

Ai(k) : [0, 2
(i+1)fs] (2)

where i is the maximum number of scales, and fs is the sampling
frequency of the signal. The sampling frequency of the signal
and the number of subbands determine the frequency band of
the levels. The reconstructed signal S(k), based on its detail and
approximate decomposition, is represented as follows:

S(k) = Σi+1
i=1Di(k) (3)

where Ai is substituted with Di+1(k). The common way to
implement a discrete wavelet transform is based on a bank of
high-frequency and low-frequency filters. The type of mother
wavelet specifies the coefficients of the high-pass and low-pass
filters. Among the various types of mother wavelets utilized for
feature extraction of the faulty electric machines, the Daubechies
family exhibits exceptional competency for fault detection pur-
poses. Therefore, the Daubechies mother wavelet with eight
subbands is used in this article.

B. Entropy

The states and probabilities of the event determine its uncer-
tainty. The sample space, which includes all possible sets of the
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state, is defined as follows:

S = s1, s2, s3, . . ., sj (4)

where the probability of each piece of information and its self-
information are

P (si) = Pi (5)

ΣPi = 1 (6)

I(si) = −logP (si) = −logPi. (7)

Although the self-information quantifies the whole informa-
tion source, it is a random variable. Hence, it is not a suit-
able criterion. Consequently, to solve the random nature of
the self-information, the mathematical expectation of the self-
information is defined as the entropy of the information source,
as follows:

E[I(S)] = E[ΣlogPi] = −ΣPilogPi. (8)

The entropy gauges the uncertainty of events. In a case where
whole events have the same probabilities, the uncertainty of the
event, and consequently, its entropy attain maximum values. The
value of the entropy is zero for any certain event.

Wavelet entropy was introduced in 1998 to process event-
related potential [24]. Wavelet entropy has been used to analyze
the nonstationary signal in various fields, like fault diagnosis
of electric machines [25], power systems [26], and neuro-
science [24]. In a case of a faulty situation, the information
entropy will change, but it will not give detailed information
about the frequency band that is distorted under the faulty
situation. The wavelet transform, in combination with entropy,
may discriminate the localized nonstationary frequencies due
to the fault in each subband. The wavelet entropy is defined as
follows:

WE = −Σjpj logpj (9)

where

pj =
Ejk

E
(10)

where E and Ej are the total signal energy and the energy of
the each subband component, respectively, and are defined as
follows:

Ejk = |Dj(k)|2 (11)

Ej = ΣkEjk. (12)

V. RESULTS

The air-gap magnetic field of a synchronous generator in
the no-load condition consists of a combination of the rotor
magnetic field and the damper magnetic field. In the case of
a loaded generator, the stator magnetic field also contributes to
shaping the air-gap magnetic field. A BDB fault in an SPSG
leads to an unbalanced distribution of the current in the damper
winding, and consequently, an irregularity in the air-gap mag-
netic field. The stray magnetic field outside the machine mirrors
the magnetic field inside the air-gap. Hence, the BDB fault in the
SPSG changes the stray flux around the stator yoke. However,

Fig. 11. Wavelet transform of the external measured magnetic field
during no-load operation of the SPSG in healthy (blue) and with one
BDB (red) in three cases: RU (top section), SS (middle section), and RD
(lower section).

the modification due to the BDB fault is not only limited to the
transient operation of the machine. Even during SS operation of
the SPSG, the fault in the rotor bars alters the stray flux because
the current is always passing through the damper bars, as shown
in Fig. 5, due to the slot harmonics or the fractional winding con-
figuration. BDB fault detection based on stray flux monitoring
using the wavelet entropy is proposed since the computational
complexity of the discrete wavelet transform is similar to fast
Fourier transform, indicating that the proposed algorithm can be
implemented online since the algorithm required computational
time is limited to few seconds. The following sections describe
the proposed algorithm as shown in Fig. 12.

A. Feature Extraction of a BDB Fault From Transient to
SS Operation of the SPSG

Fig. 11 demonstrates the application of the discrete wavelet
transform to the acquired stray flux field. The shape of the
applied magnetization current to the rotor field winding is shown
in Fig. 3, but the length of the signal for RU, SS, and RD is a
total of 40 s in the experimental tests. The first rows in Fig. 11
are shown with the sign “S” to represent the acquired stray
flux during the RU, SS, and RD periods, and this demonstrates
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Fig. 12. Procedure of the BDB fault detection in an SPSG.

how the stray flux corresponds to the magnetization current.
The healthy and faulty (one BDB) stray magnetic flux are
colored in blue and red, respectively. Although some changes are
evident in the waveform of the stray flux due to the appearance
of the BDB fault, determining the degree of the fault is not
possible. Therefore, the discrete wavelet transformed with the
“Daubechies” mother wavelet is used to decompose the signal
into eight subbands. A comprehensive comparison has been
done between eight subbands of wavelet transform in healthy
and under one BDB fault. However, only four subbands exhibit
significant differences and are detailed as subbands one to four,
with frequency components limited between 312.5 Hz and 5 kHz
for a sampling frequency of 10 kHz. The frequency band of the
wavelet subbands D1, D2, D3, and D4 are between 5000 and
2500 Hz, 2500 and 1250 Hz, 1250 and 625 Hz, and 625 and
312.5 Hz, respectively.

Since the variation in the stray flux under a BDB fault, in
comparison to a healthy case, is noticeable, the value of the
signal energy, and consequently, its entropy must be different.
Thus, Shannon entropy is applied to the stray flux, which is de-
composed by wavelet transform. The amplitudes of the wavelet
entropy for subbands D4 and D3 under one BDB during the
RU period are increased from 405 to 482 and 6 610 to 7 166,
respectively. The magnitude of the wavelet entropy during the
RD period is also increased for the D4 and D3 subbands, from
382 to 607 and from 6 397 to 8 355, respectively, under one BDB
fault. Entropy applied to the stray flux of the detailed subbands of
D4 and D3 during the SS operation exhibits significant changes.
The magnitudes of the D4 and D3 subbands are increased from
959 to 1181 and from 10 403 to 11 473, respectively. Contrary to
the assumption of a zero value for the current, and consequently,
the magnetic field of the damper bars during SS, the obtained
results questioned the proposed hypothesis.

In order to generalize the results, a new criterion function is
proposed as follows:

Criterion Function =
|WEHDi − WEFDi|

WEHDi
× 100 (13)

where WEHDi, and WEFDi are wavelet entropy of correspond-
ing wavelet subband in the healthy and faulty cases, respectively.
The introduced criterion function is normalized by dividing by
the amplitude of the healthy wavelet entropy. The first row
of Table III demonstrates the applied criterion function in the
case of one BDB fault. The amplitude of the criterion function
for each wavelet subband level differs depending on whether
it occurs during transient or SS operation of the SPSG. The
criterion function for subband D4 shows better sensitivity in
comparison to the other subbands. In addition, the amplitude of
the criterion function for one BDB during RD is higher than for
RU and SS operation. Nevertheless, the result of applying the
index to the stray flux during the SS operation also demonstrates
the feasibility of the BDB detection during the SS operation.

B. Effect of the BDB Location on the Criterion Function

The rotor pole of an SPSG has a given shape in order to
generate a flux waveform with minimized harmonics. Therefore,
the distance of the rotor damper bars varies with respect to the
stator inner diameter. The location of the damper bars imposes
the magnitude of the current that should pass through them, since
the reluctance of their pass differs and they encounter different
flux density. The amplitude of the current is higher in the damper
bars located on the rotor edges than in the damper bars embedded
close to the center of the rotor pole. The amplitude of the damper
bar current decreases closer to the center of the rotor pole. Hence,
any breakage of damper bars other than the bars at the edges has
less impact on the distortion of the stray flux. Consequently,
the amplitude of the criterion function is decreased for these
damper bars in comparison to the damper bars at the edge. In
the case of a BDB fault for the damper #2, the amplitude of
the criterion function becomes 13%, 7%, 5.1%, and 1.8% for
wavelet subbands D4, D3, D2, and D1, respectively, during the
RU period. The amplitude of the criterion function for BDB #2 is
higher during RU than during the RD period. The magnitude of
the criterion function for BDB #2 is also considerable during SS
operation, which again shows the suitability of this approach for
BDB detection during the SS period. The value of the criterion
function during RU and RD should not be the same due to the
saturation effect since the time constant during RU is higher and
it requires more magnetizing current in order to reach a partly
saturated point in a B–H curve while the magnetizing current
reduces and the operating point of the generator changes from
knee point to the linear part of a B–H curve indicating that more
changes due to the BDB fault are expected in the RD period.

The trickiest BDB detection is for the bar located in the middle
of the rotor pole for rotors with an odd number of damper
bars. The reason is that the lowest amount of the current passes
through this bar due to its location. Hence, its breakage has
the least impact on the air-gap magnetic field distortion, and
consequently, on the stray flux measured at the backside of the
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TABLE III
VALUE OF CRITERION FUNCTION FOR FOUR WAVELET SUBBANDS FOR DIFFERENT NUMBER OF BDB FAULTS IN THE SPSG OPERATING IN NO-LOAD

CONDITION IN THREE TIME INTERVALS

yoke. Table III demonstrates how the criterion function responds
to one BDB fault in the middle of the rotor pole shoe (damper
#4). As already stated, the detection during the RU period is
challenging because the amplitude of the wavelet entropy for all
four subbands is not considerable. However, detection during the
RD and SS period is noticeable. For instance, the amplitudes of
the criterion function become 11.36% and 5.1% for the subband
D4 during the RD.

C. Multiple BDB Fault Detection

In the case of a single BDB, the majority of the BDB current
passes through its neighboring bars, while the cross section of
the damper bars is designed to carry the current that is designed
for. Therefore, the additional current leads to a loss increment,
and consequently, to a local hot spot. The result of this process
in the long term is breakage of the adjacent bars. In the case of a
BDB fault in two damper bars (#1 and #2), the criterion function
is increased to 31.7%, 19.4%, 7.2%, and 1.8% for the D4, D3,
D2, and D1 wavelet subbands, respectively, during RU. This
shows that the amplitude of the criterion function is increased
almost twofold in comparison to a single BDB fault. However,
the amplitude of the criterion function is decreased for two BDB
faults occurring during the SS and RD periods.

In the case of two BDB faults, each occurring at the corner of
the same pole and exactly opposite to each other, the magnitude
of the criterion function is decreased. The reason is that a
symmetry exists in the nonuniform magnetic field due to the
two BDB faults. As expected, the magnitude of the criterion
function must be more than that for a single BDB, but less
than two adjacent BDB faults. The criterion function during RU
for subbands D4, D3, D2, and D1 is 25.1%, 12.1%, 4.2%, and
5.5%, respectively. The same trend is observed for the criterion
function during the SS and RD periods.

Although increasing the number of BDBs leads to a criterion
function increment, the criterion function in the case of three
BDBs in the middle of the rotor pole is not considerable. The
reason is that the amount of the current passing through the bars
in the center and its adjacent bars is less than other damper bars
current and the adjacent bars of the middle bar have a symmetry
in the created nonuniform magnetic field, which reduces the
asymmetry of the air-gap magnetic field and the stray flux. The
BDB detection is possible during the RU, SS, and RD periods
since a considerable increase occurs in the criterion function,
especially in the D4 subband. In the worst case, where all
damper bars of the same pole are broken, a significant increment

TABLE IV
VALUE OF THE CRITERION FUNCTION FOR FOUR WAVELET SUBBANDS FOR

ONE BDB FAULT IN A SYNCHRONOUS GENERATOR WITH SEPARATED
SALIENT POLES DURING NO-LOAD OPERATION

occurs in the criterion function. The amplitude of the criterion
function for all subbands during the RU, RD, and SS operation
is increased significantly.

D. Interpole Connection Effect on BDB Index

In large SPSGs, the damper bars are connected at both sides
of the machine, either by a continuous ring or by an interpole
connection between each pole. In an SPSG with a large number
of poles, the use of a continuous ring is preferable to having an
interpole connection since the centrifugal force acting on them
may result in mechanical deformation. Removing the interpole
connection between the poles results in a subtransient salience
(the difference between the subtransient reactance in the d- and
q-axes), which in turn results in a huge short subtransient circuit
current in the case of a phase-to-phase short-circuit fault. In
addition, the induced open-phase voltage in a healthy winding
may increase up to twice the maximum voltage. However, some
cases occur where the rotor poles are isolated and the damper
bars are short circuited by the end ring in each separate pole.
Removing the interpole connections may reduce the cost and
may also avoid any damage to the SPSG, since the centrifugal
force causes deformation in the long run.

The proposed method and the criterion function have been
applied to an SPSG without interpole connections. Table IV
shows the result for a case of a single BDB fault (bar #1
was removed). The amplitude of the criterion function did not
increase significantly, unlike the case of a rotor with a continuous
ring. The amplitudes of the D4, D1, and D4 to D1 subbands
during RU and RD were increased; however, their increments
are similar to those of the BDB fault in bar #4 in a case with a
continuous ring. The results obtained from an SS operation show
that the detection of a BDB fault is almost impossible during this
period. The reason is that the current in the damper bar circulates
between the poles. In the case of isolated poles, no circulating
current exists between the poles and the BDB fault cannot
significantly distort the magnetic field, and correspondingly, the
stray flux.
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Fig. 13. Measured noise in a hydropower plant.

TABLE V
VARIATION IN THE CRITERION FUNCTION DURING SS OPERATION OF AN

SPSG UNDER DIFFERENT DEGREES OF WHITE GAUSSIAN NOISE

E. Noise Effect on Index

A desirable dataset without noise interference is preferable for
signal processing of faulty electric machines, as noise may mask
the fault indices or give a false positive fault signal. Various kinds
of noise may exist in a power plant, with the most prevalent kind
being white Gaussian noise. Fig. 13 shows the measured noise
in a Norwegian hydropower plant. Therefore, the appearance of
noise in the measured data is unavoidable, and its effect on the
proposed feature criterion must be studied. An analysis of the
measured data in the power plant demonstrates that the existing
type of noise is white Gaussian noise with a signal-to-noise ratio
of 75 dB.

The proposed criterion function was also investigated under
impact of white Gaussian noise with different ratio levels of 80,
60, 40, and 20 dB. The proposed criterion function is not robust to
the noise effect during the transient operation of the SPSG. The
amplitude of the criterion function for the subband D4 during
RU and RD changed from 15.9% and 37% in a no-noise situation
to 33.4% and 20.7% with 20-dB noise. This result shows that the
detection during RU and RD is impossible for an SPSG operating
in environment with a noise ratio above 20 dB, even though
the amplitude of the criterion function for the SS operation is
unchanged. Table V shows the results for the criterion function
under a noise effect during the SS operation. As seen in Table V,
the amplitude of the index is almost unchanged.

VI. CONCLUSION

In this article, a novel approach was proposed for the diagnosis
of BDB faults in an SPSG. A trapezoidal shape current was
utilized as a rotor power source that included RU, SS, and RD
regions that were symbols of transient and SS operation of the
SPSG. The criterion function was introduced based on wavelet

entropy analysis of the stray magnetic field for an accurate
BDB detection. The detection was not limited to the transient
operation of the SPSG, and it could diagnose a fault with a high
sensitivity even during the SS operation. The obtained criterion
function in RU, SS, and RD were complementary features for the
BDB detection in the way that if the operator finds any increment
in the criterion function in one of the operating regions, he should
check the criterion function for the other operating conditions in
order to avoid a false alarm. The location of the BDB fault had
a significant impact on the magnitude of the criterion function
since the amplitude of the current that passes in the damper bars
depends on the location of the damper bar in the rotor pole shoe.
The measurement in a power plant showed that the operating
environment of synchronous generators was vulnerable to noise.
Therefore, the efficacy of the proposed index was examined and
was deemed robust to a high rate of noise that indicated the
method’s reliability.

The experimental results for a small-scaled 100-kVA salient
pole synchronous generator running in a Norwegian hydropower
plant verified the feasibility of using the proposed method for
the BDB fault diagnosis. The method had no need for machine
disassembly to install sensors inside the machine. The high sen-
sitivity of the method was demonstrated, even for the detection
of a middle broken bar. Detection was also possible during both
transient and SS operation of the machine, demonstrating the
superiority of the proposed method over the existing methods.
The proposed method was based on the no-load operation of the
SPSG. The BDB detection for a loaded SPSG was only possible
during the SS operation since the generator cannot connect to the
grid before it reaches the nominal voltage. The criterion function
for a loaded SPSG must be performed in the same magnetization
current in the healthy and faulty cases since the variation in the
stray magnetic field was influenced by the loading condition.
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Performance Evaluation of Signal Processing Tools
Used for Fault Detection of Hydrogenerators

Operating in Noisy Environments
Hossein Ehya , Student Member, IEEE, Arne Nysveen , Senior Member, IEEE, and Tarjei N. Skreien

Abstract—Signal processing plays a crucial role in addressing
failures in electrical machines. Experimental data are never perfect
due to the intrusion of undesirable fluctuations unrelated to the
investigated phenomenon, namely so-called noise. Noise has dis-
turbing effects on the measurement data and, in the same way, could
diminish or mask the fault patterns in feature extraction using
different signal processors. This article introduces various types
of noise occurring in an industrial environment. Several measure-
ments are performed in the laboratory and power plants to identify
the dominant type of noise. Fault detection in a custom-made
100-kVA synchronous generator under an interturn short-circuit
fault is also studied using measurements of the air-gap magnetic
field. Signal processing tools such as fast Fourier transform, short-
time Fourier transform (STFT), discrete wavelet transform, con-
tinuous wavelet transform (CWT), and time-series data mining
are used to diagnose the faults, with a central focus on additive
noise impacts on processed data. Two novel patterns are introduced
based on STFT and CWT for interturn short-circuit fault detection
of synchronous generators that do not need a priori knowledge of a
healthy machine. Useful methods are presented for hardware noise
rejection.

Index Terms—Fault diagnosis, interturn short circuit (ITSC),
noise rejection, salient pole synchronous generator, short-
time Fourier transform (STFT), signal processing, time-domain
analysis, wavelet transforms.

I. INTRODUCTION

EARLY-STAGE diagnosis of incipient faults in electrical
machines can limit the progressive damage that leads to

substantial economic losses. Over the past two decades, sus-
tained research activity has been conducted in the field of fault
detection of electrical machines. Faults in hydrogenerators are
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divided into two categories: electrical faults, such as short-circuit
faults of stator windings or interturn short-circuit (ITSC) faults
in rotor field windings, and mechanical faults, such as static or
dynamic eccentricity, broken damper bars, broken end rings, and
misalignment. Each type of fault in an electrical machine can
give rise to a specific symptom, which may be observed in a
measured signal [1].

The working environment of electrical machines in the in-
dustries and power plants is susceptible to various kinds of
noise that may have considerable consequences on the measured
signals [2]. The working environment of synchronous genera-
tors in hydropower plants is vulnerable to noise emitted from
power transformers, power station busbars and switchgear, the
turbine, and the machine itself. In addition, industrial induction
motors controlled by a static converter may create interfering
noise [3]–[5]. The amplitude and frequency of the emitted noise
by the converter depend on the modulation techniques used in
the power converter [6].

Previous studies [7] have shown that the majority of industries
are subjected to a high degree of complex noise, which is
the combination of white Gaussian noise and impulsive noise.
The amplitude of the noise in the working environment of the
industry depends on various criteria [8], and the noise profile
varies from case to case. In addition to noise emitted from the
equipment used in the industry, faulty electrical machines also
cause some degree of noise [9], and the noise level is increased
with the increasing severity of the fault.

Feature extraction and signal processing is the central part of a
fault detection procedure. Numerous indices are proposed based
on the various signal processing tools capable of detecting dif-
ferent types of fault in electrical machines. The main component
of fault detection is a measured signal from the faulty machine
in the form of an air-gap magnetic field, stator or rotor current,
voltage, stray magnetic field, or torque. If the working environ-
ment is vulnerable to noise, having a signal not contaminated
by noise is almost impossible, indicating that the noise effect on
the measured signal must be considered. In addition, the noise
might affect the fault signature extracted by signal processing
tools and result in a false alarm, since various signal processing
tools might respond differently to the noise presence.

The fast Fourier transform (FFT) is the most commonly
applied signal processing tool in the fault detection of electrical
machines. The FFT is applied to the stator current and
voltage, torque, air-gap magnetic field, and stray magnetic

0093-9994 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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flux of different electrical machines, such as induction motors,
permanent magnetic machines, and salient pole synchronous
machines, to detect a fault [1], [10]–[14]. Although the FFT is
simple and has low computational complexity, it does not show
clear changes in the spectrum plot for a fault with low severity
nor does it determine the type of fault. Moreover, the FFT only
depicts the frequency contents of the signal, whereas it lacks
time representation. Therefore, the demand for methods that
could overcome these shortcomings has resulted in advanced
signal processing tools, such as short-time Fourier transform
(STFT), continuous wavelet transform (CWT), and discrete
wavelet transform (DWT).

Application of these advanced signal processing tools to fault
detection problems has indicated that they could meticulously
identify a certain pattern due to the specific type of fault in
electrical machines. For instance, the STFT is used to detect
broken bars and ITSC faults in salient pole synchronous gener-
ators [15]–[17] and was able to provide a unique pattern for
each type of fault. In [18] and [19], the CWT was used to
identify broken bars and eccentricity faults in induction motors.
Unlike the STFT and the CWT, which provide a qualitative
representation of a measured signal, the DWT classifies the
signal into different frequency bands. The DWT has been used
to diagnose different kinds of fault in induction motors [18],
[19], salient pole synchronous generators [20], and permanent
magnet machines [21]. These advanced signal processing tools
have been widely used for fault detection in electrical machines,
but they have not considered the noise effect, although some
attempts have been made to address this issue in [22] and [23].

The present work is a detailed study of the noise impact on
the signal processing tools used in the fault diagnosis of hydro-
electric synchronous generators and how noise impact must be
considered in the fault detection procedure, as depicted in Fig. 1.
The Hall effect sensor is used to measure the air-gap magnetic
field since it is exposed to both internal noise generated by the
machine and external noise in the environment. A custom-made
100-kVA synchronous generator is used to conduct the ITSC
fault and provide the required data. Section II presents a defini-
tion of signal and noise. It also thoroughly presents a source of
noise in a power plant and industry. Various types of noise are in-
troduced to provide a perspective for characterizing the existing
types of noise in a power plant. In Section III, the experimental
setup used to measure the air-gap magnetic field is explained.
The results of two field tests are discussed to show the existence
of noise in the hydropower plants. In Section IV, the effects
of noise on signal processing tools, such as FFT, STFT, CWT,
DWT, and time-series data mining (TSDM), are investigated.
The impacts of noise on the extracted signature by the signal
processing tools are discussed. The obtained results demonstrate
how a certain level of noise can deteriorate the fault signatures.

II. SIGNAL AND NOISE

A. Definition

The term “signal” in the field of condition monitoring means
only the desirable data that are measured. However, signals are
vulnerable to noise during the process of acquisition, storage,

Fig. 1. Flowchart for fault detection.

or conversion. Noise is an unwanted signal that may disrupt the
quality of the main signal. Every device in the power plant or
industry that works based on the electromagnetic law may act as
a noise source. The noise generated by each electric device has
its own unique characteristics that fall into a specific category of
noise. The noise level can be expressed as a ratio of the power in
1 Hz of bandwidth (dBm/Hz), where power is expressed in units
of dBm. The quality of the signal is quantified by the expression
of the signal-to-noise ratio (SNR). It represents the ratio of the
signal amplitude to the standard deviation of the noise [2].

B. Source of Noise in Industries

The noise radiated from electric equipment is generally lim-
ited to a discrete low-frequency signal. However, an electrical
machine, whether stationary (e.g., transformers) or rotating
(e.g., electric motors or generators), generates a broadband
noise component due to its cooling systems. The net noise is
superimposed on the electromagnetic and cooling system com-
ponents. The noise in an electric machine can be represented as
follows [2], [5].

1) The magnetic source of noise in the electrical machine
is due to the radial force created by the interaction of
the stator and rotor magnetic field. When magnetic flux
inside the air gap passes in a radial direction, a radial
component of the force creates vibration and noise. A
severe resonance happens if a frequency of the radial
force components coincides with a natural frequency of
the machine. Acoustic noise is one of the consequences
of the resonance in the machine. The structure of the rotor
and the slot harmonics cause high-frequency components
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Fig. 2. Sources of noise in the industries and power plants.

that, in turn, lead to force and noise inside the machine.
Moreover, there exist some other sources of magnetic
noise including the product of the space harmonics of
stator and rotor winding, the product of space harmonics
of the stator winding and the eccentricity fault, and the
product of stator space harmonics and the rotor saturation
harmonics.

2) The aerodynamic source of noise has a broad frequency
band (100 Hz–10 kHz) that is generated due to the flow of
the air at the inlet or outlet of the machine cooling system.
The fans either inside the machine driven by the shaft or
the external can generate acoustic noise. The axial or radial
ventilation ducts inside the stator core also contribute to
the noise.

3) The mechanical source of noise arises due to the natu-
ral frequency of the stator, improper installation of the
machine, shaft, and bearing vibration. If the exciting fre-
quency of the machine coincides with the stator’s natural
frequency, a strong noise will be created. The improper
coupling between the shaft of the synchronous machine
and the driving component or the load is also accounted
as a mechanical source of the noise. There exist three
main factors that result in a mechanical noise due to
bearings, brush commutators, and the unbalanced rotor
during manufacturing. The sleeve bearing compared with
the rolling bearing contributes to less noise; however, the
rolling bearing is preferred due to low cost especially in
low-power electric machines.

The amount of noise created by transformers is significant
in comparison to the noise in rotating electrical machines. The
source of the noise in power transformers is divided into mag-
netic noise, which is due to the magnetic field of the core, and
the load noise, which is caused due to interaction of the leakage
flux and the current passing through the coils [3]. However, the
metallic body of the transformer may shield the emitted noise
from the working environment, even if the generated noise is
unavoidable. The power transformers in power plants are also
placed in a separate room for safety reasons, and this further
reduces their effect on the measured signal from the synchronous
generator. Busbars that carry large current from the generator to
the transformer are another source of noise in power plants.

Many electrical motors use solid-state converter drives to
feed power sources into the windings. The power supply is
not entirely sinusoidal and contains numerous harmonics and

subharmonics. The most important harmonics created are 5th,
7th, and 11th, which become critical if these harmonics coincide
with a natural frequency of the stator [4]. The net forces due to
the power electronics harmonic components result in significant
noise. Fig. 2 shows the different sources of noise.

C. Various Types of Noise

Various types of noise, based on their properties, have differ-
ent effects on the measured signal. The signal from the noise
can be discriminated based on the frequency components. The
signal may contain mostly low-frequency components, whereas
the noise may spread out over the wide frequency range or
the noise may only contain high-frequency components. The
noise is characterized based on its frequency spectrum, which
is commonly described in terms of noise color. The noise is
categorized as white noise, pink noise, Brownian noise, blue
noise, and violet noise. Each type of noise is specified according
to the frequency distribution of its power spectral density, as
shown in Fig. 3.

1) White noise is a random noise that has equal power over
the entire frequency range.

2) Pink noise is characterized by high power at low fre-
quencies, and its power is diminished by increasing the
frequency.

3) Brownian noise’s amplitude is proportional to the square
of the frequency over a frequency range.

4) Blue noise has strong power at high frequency and is not
common in experimental measurements.

5) Violet noise, which is a differentiation of white noise, has
a power spectral density that is proportional to the square
of the frequency over the finite range.

III. LABORATORY AND FIELD TESTS

A. Experimental Setup

Fig. 4 shows the experimental setup used in this article with
a detailed specification, as shown in Table I. A custom-made
100-kVA, 400-V, synchronous generator with 14 salient poles
is used to investigate the noise effect on an air-gap magnetic
field signal under an ITSC fault. A 90-kW four-pole induction
motor is used to rotate the coupled synchronous generator. The
induction motor shaft is connected to the generator by a gearbox
with a gear ratio of 1/3. A programmable converter is used to
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Fig. 3. Prevalent type of noise based on their color definition: white Gaussian
noise, pink noise, Brownian noise, blue noise, and violet noise.

TABLE I
100-KVA, 50-HZ, SYNCHRONOUS GENERATOR TOPOLOGY SPECIFICATION AND

NAMEPLATE DATA

Fig. 4. Laboratory setup of a 100-kVA salient pole synchronous generator
(top). The copper plate is used to apply the ITSC fault on one of the rotor field
windings; the installed Hall effect sensor on the stator tooth of a laboratory setup
(bottom).

feed the induction motor. The field winding of the generator
is supplied by a dc power supply. A copper plate is used to
create the ITSC fault on one of the rotor field windings, as
shown in Fig. 4. A Hall effect sensor (AST244), with a ratio
of the induced voltage to the magnetic field equal to 2.54 T/V,
is installed on the stator tooth to acquire the air-gap magnetic
field (see Fig. 4). The data sheet specifies that the sensor should
be supplied by a 2-mA dc current source. However, due to
considerable electromagnetic interference, the magnitude of the
current power supply is increased to 4 mA to increase the SNR.
A high-resolution (16-bit) oscilloscope is used to sample the
data at 10 kHz.

The test procedure for the experimental setup is as follows:
tests were conducted in both a healthy state and under the
ITSC fault at different degrees of severity. The synchronous
generator is accelerated using an induction motor until it reaches
its nominal speed. The nominal magnetizing current is applied
to the rotor field winding to achieve a nominal voltage in the
stator terminals. The ITSC fault is conducted at a standstill
by removing the desired number of turns from the rotor field
winding using a copper plate. Fig. 5 represents the measured
air-gap magnetic field in the presence of noise. The signal is
analyzed to recognize the type of noise that leaked into the signal.
The separated power spectrum of the noise from the measured
air-gap magnetic field shows that its behavior resembles that of
white Gaussian noise.
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Fig. 5. Measured air-gap magnetic field of the synchronous generator in the
laboratory in the presence of a significant noise impact (blue waveform) and
the applied low-pass filter of the oscilloscope to diminish the noise impact (red
waveform).

Fig. 6. Measured noise in hydropower plant.

Fig. 7. Spectrum density of a measured noise in a hydropower plant.

B. Field Tests

Field tests were conducted in two power plants: a power plant
with a single unit generator and another power plant with four
units. Hall effect sensors were installed on the stator tooth, and
the data were measured while the generator was at standstill.
Therefore, the measured data, as shown in Fig. 6, represent the
noise in the working environment of the hydrogenerator. The
power spectrum of a measured noise is depicted in Fig. 7, which
indicates that a white Gaussian noise exists with a 70-dB SNR.
The measured noise for a power plant with only one unit shows
a lower SNR, thereby showing the impact of electric power
equipment on the generated level of noise.

IV. SIGNAL PROCESSING

Signal processing is a core part of the fault detection proce-
dure. Although the measured signals from the electrical ma-
chines, whether in a healthy or faulty state, contain useful
data, they must be analyzed using signal processing tools. The
signal processing tools are categorized into the following three
domains:

1) time domain;
2) frequency domain; and
3) time–frequency domain.
Several methods are available, based on time, frequency, and

time–frequency domains. In this article, TSDM is used as a
time-domain processor. The FFT, which is a frequency-domain
processor, is used to obtain the frequency spectrum density of the
signal. The wide range of time–frequency processors is limited
in this article to STFT, CWT, and DWT.

A. Fast Fourier Transform

The Fourier transform represents the desired function as its
constituent harmonic components, and the Fourier transform is
a convolution operation. A Fourier series is a periodic function,
and it requires that the processed signal must be periodic. Since
the majority of the measured time series are not periodic, it
assumes that the entire measured data series is one periodic func-
tion. A discrete Fourier transform is formulated for a discrete
signal that represents the frequency contents of the time data
series, and the FFT is a commonly applied approach to achieve
a discrete Fourier transform [24]. The FFT is computationally
efficient, and it reduces the computational complexity of the
discrete Fourier transform from O(m2) to O(mlog(m)), where
m is the total number of samples. The spectral representation of
the time signal consists of periodic components in the frequency
domain that each has a specific frequency, phase angle, and
amplitude. The FFT can provide a general representation of the
frequency contents of the signal. The amplitude of the frequency
spectrum is increased if a signal changes. Indicating that the FFT
can track the faulty signal variation in the frequency spectrum,
the provided information based on the frequency spectrum is
not informative unless the fault frequency is known. Moreover,
the accuracy and precision of the spectrum density of the sig-
nal depends on the amount of sampled data and the sampling
frequency of the signal.

The distorted magnetic field caused by an ITSC fault contains
subharmonics that can be distinguished using the FFT based on
the following features:

fsubharmonic =
(p± k)fs

p
(1)

where fs is the stator terminal frequency, p is the number of
poles, and k is an integer. Fig. 8 depicts the spectral density of the
air-gap magnetic field in the healthy state and under a ten-ITSC
fault in one of the rotor poles, as obtained by the FFT processor.
Increasing the number of shorted turns in the rotor field winding
also increases the amplitude of the sideband components. For
instance, the amplitude of the sidebands for a ten-ITSC fault
at frequencies of 7.15, 14.3, 28.6, and 35.7 Hz increased from
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Fig. 8. Spectrum density of an air-gap magnetic field in a healthy state and
under a ten-ITSC fault, without noise interference (top), and with 20-dB SNR
(bottom).

TABLE II
EFFECT OF VARIOUS SNRS ON THE NOMINATED SIGNATURE IN A HEALTHY

STATE AND UNDER AN ITSC FAULT (GRAY COLORS)

−44.6, −53.1, −51.3, and −54.9 dB to −36.6, −38.9, −39.4,
and −40.8 dB, respectively.

Fig. 8 demonstrates the effect of 20-dB white Gaussian noise
on the spectral density of the air-gap magnetic field in a healthy
state and under a ten-ITSC fault. The noise level of the frequency
spectrum is increased from −100 to −50 dB by decreasing the
SNR. Therefore, the magnitude of the introduced feature for
ITSC detection is simply masked in the case of high-level noise
interference. Hence, the ITSC diagnosis under a 30-dB SNR is
almost impossible.

Table II presents the effect of various SNRs on the nominated
feature under an ITSC fault. The amplitude of the index for a
low degree of SNR is acceptable, since the ITSC fault can be
identified. However, the SNR of 20 dB is the borderline for
accurate fault detection. By decreasing the SNR, the amplitudes
of the sidebands in both the healthy and faulty cases are masked,
and the faulty sideband components cannot be identified. The
sideband component of the healthy case is also increased, and its

amplitude is similar to that of a faulty case without noise impact
and may result in a false alarm indication of a fault.

B. Short-Time Fourier Transform

The STFT performs a time–frequency analysis that repre-
sents both the frequency and time contents of a signal. The
STFT uses a fixed basis function, like FFT. In addition, the
signal transformation is performed by sweeping a fixed window
function over a signal. The STFT, compared with the FFT,
provides a better temporal and frequency localization. However,
according to the uncertainty principle, the product of temporal
and frequency resolution is constant; therefore, achieving an
acceptable time and frequency resolution at the same time is
impossible. Moreover, the STFT has a superiority over the FFT
since it can analyze the nonstationary signals. The mathematical
representation of the STFT is shown as follows:

STFT(f, t) =
1

2π

∫ ∞

−∞
x(t)h(t− τ)e−i2πfτdτ (2)

where h(t) is the window function. There exist numerous types
of window function, which must be selected according to the
signal characteristics for optimal result. The end effect must be
considered since it may result in a false decision of fault, and
it can be mitigated using a proper window function including
flat top, Nuttall, Dirichlet, Bartlett–Hann, Parzen, Blackman,
Blackman–Harris, Chebwin, exponential, triangular, Hamming,
Hann, Gaussian, Bartlett, Bohman, Kaiser, and Slepian. There
exists no straightforward rule to find an appropriate window
function, indicating that several window functions must be per-
formed. The length of the data in addition to the window length
is also the main factor that must be considered during parameter
adjustment. The time resolution of the STFT is inversely pro-
portional to the length of the time window, while the frequency
resolution of the STFT has a direct relationship with the length
of the window function. The computational complexity of the
STFT compared with the FFT is negligible since the computa-
tional complexity of the STFT is O(n.mlog(m)), where n is the
window length, indicating that the FFT is performed n times.
The percentage of the window overlapping when the window
function sweeps across the data is a key point since window
overlap can give a more analysis point and higher resolution
across time, but the computational cost becomes higher. There-
fore, a tradeoff must settle down to have adequate analysis points
to achieve a smooth result across time, while the computational
cost does not increase significantly.

Nevertheless, the STFT is widely used in feature extraction
for fault detection of electrical machines. Figs. 9 and 10 present
the application of the STFT to the measured air-gap magnetic
field in a healthy state and a ten-ITSC fault without a noise
effect and with white additive Gaussian noise with SNRs of 40
and 20 dB. The STFT is performed with a window length of one
electric period. A novel index using the STFT is introduced that
does not require a priori knowledge of the healthy machine. A
comparison between the healthy and faulty STFTs reveals that
the fault has a significant impact on a frequency band of the STFT
between 50 and 75 Hz. In a case of a healthy machine, there is
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Fig. 9. Applied STFT to an air-gap magnetic field in the healthy case, without
noise impact (first row), 40-dB SNR (second row), and 20-dB SNR (third row).

a uniform pattern with the same intensity pattern along with the
mentioned frequency band. Having a ten-ITSC fault in one of the
rotor field winding results in a clear periodic intensity reduction
in a frequency band between 50 and 75 Hz. The width of a red
window in an STFT plot is equal to 140 ms, which represents
one mechanical revolution of the synchronous generator, and the
widths of a faulty pole are equal to 10 ms, which is shown with
a blue window. The blue window with a reduced intensity is
periodic, which shows a faulty pole in the time–frequency plot.
Conclusively, the frequency pattern of the desired frequency
band in a healthy operation is uniform, while having a fault
results in a periodic window with widths equal to a rotor pole.

The demonstration that the STFT applied to an air-gap mag-
netic field signal interfered with a 40-dB SNR in healthy and
faulty cases shows that detection of the fault is possible, since
noise does not change the available pattern. By contrast, the
STFT plot of the signal with 20-dB white Gaussian noise disturbs
the fault pattern, and fault detection is not possible. A qualitative
comparison of the healthy and faulty signals by the introduction
of noise implies that noise does not mask the frequency band and
fault feature to a great extent up to 40 dB of noise, and this likely
reflects the long window length. Therefore, noise with a higher
ratio may lead to false fault identification. A caveat of STFT
analysis in the presence of noise is that increasing the window
length to reject noise will reduce the temporal resolution and
limit its usefulness.

C. Continuous Wavelet Transform

The wavelet transform is a signal processing method that
decomposes a signal into a set of primary waveforms that, by

Fig. 10. Applied STFT to an air-gap magnetic field under a ten-ITSC fault,
without noise impact (first row), 40-dB SNR (second row), and 20-dB SNR
(third row).

analyzing the wavelet coefficients of waveforms, may provide
some insight. Wavelet transform tries to alleviate the constraints
of the STFT by defining a mother wavelet as a basis function. The
wavelet transform includes numerous mother wavelets, unlike
STFT that has a single basis function. The wavelet transform
divides a time–frequency space from coarse to fine sizes, while
the STFT divides a time–frequency space into equal sizes.
Moreover, the transform convolutes the signal to the mother
wavelet, while in the STFT, the window function is dilated over
the entire time series to perform the FFT [25].

Different frequencies in the signal can be tracked by com-
pressing or stretching the wavelet using the wavelet scaling
factor. The convolution computation is applied as (3) to the
signal, and the obtained result is depicted in the time–frequency
plot.

X(a, b) =
1√
a

∫ ∞

−∞
x(t)Ψ∗

(
t− b

a

)
dt. (3)

The analyzed signal is denoted by x(t), and Ψ represents
the mother wavelet. The scaling factor and the temporal center
of the wavelet are adjusted by a and b. The type of mother
wavelet must be chosen depending on the type of signal, the
frequency of interests, and the investigated properties in the
signal, indicating that there exists no clear rule of thumb to select
the mother wavelet, and it must be selected by trial and error.
However, a general rule indicates that a mother wavelet must be
used that is similar to the measured signal. For instance, a Haar
wavelet can be utilized if the signal has a sudden transition,
while a Morlet mother wavelet is suitable when the signal has
a smooth variation [26]. The computational complexity of the
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Fig. 11. Applied CWT to an air-gap magnetic field in the healthy case in no
noise (first row), 40-dB SNR (second row), and 20-dB SNR (third row).

CWT is (O(m)), where m is the length of data. A comparison
between the computational complexity of the CWT and the
FFT indicates that the FFT performs slower than the CWT.
Conclusively, the CWT also outperforms faster than the STFT
since the computational complexity of the STFT is n times the
computational complexity of the FFT. The data interpretation
of the processed signal by the CWT is arduous since it must
be analyzed by a convolutional neural network or an image
processing expert, which makes its application difficult.

The CWT is a qualitative signal processing tool that is widely
used in fault detection of electrical machines [13]. A novel
index using the frequency B-spline mother wavelet is introduced
to diagnose the ITSC in the rotor field winding based on the
CWT. Finding healthy state data of a synchronous generator
that operates for decades in a power plant is almost impossible,
indicating that a method that can independently indicate the
health status of the generator is required. Application of fault
detection algorithm based on the CWT to the air-gap magnetic
field, as shown in Fig. 11, generates a uniform frequency band
with a map of various intensities. Having a short-circuit fault
in the rotor field winding result is an appearance of a periodic
notch in the time–frequency plot. A periodic notch pattern is
repeated when a faulty pole passes over the installed sensor
in the air gap. Figs. 11 and 12 depict the application of the
CWT to measured air-gap magnetic fields of healthy and faulty
machines, respectively. A comparison between the healthy state
and a ten-ITSC fault between the frequency bands of 40–60 Hz
indicates that the presence of a fault changes the CWT profile
by introducing a periodic notch.

Fig. 12. Applied CWT to an air-gap magnetic field in a ten-ITSC fault case in
no noise (first row), 40-dB SNR (second row), and 20-dB SNR (third row).

The effect of white Gaussian noise on the CWT is studied
by adding different amounts of noise. Figs. 11 and 12 show the
impact of 40- and 20-dB noise on CWT plots in both healthy
and faulty cases. A signal with an SNR up to 40-dB noise
does not show significant changes, and identifying the changes
due to ITSC fault is still possible, while the intensity of the
CWT is reduced by decreasing SNR level. Moreover, a signal
with an SNR equal to 20 dB completely destroys the shape
of pattern in both healthy and ITSC fault cases. The CWT is
affected uniformly across frequencies, unlike the STFT, due
to its greater time–frequency resolution. This effect will vary
among wavelets. Some of the noise-rejecting qualities of the
STFT could be achieved in the CWT by selecting wavelets with
a greater number of oscillations, such as the Shannon mother
wavelet.

D. Discrete Wavelet Transform

The DWT is based on the same principle as the CWT since
the DWT is commonly implemented based on filter banks. Each
level of the filter consists of a low-pass filter and a high-pass
filter, in which the output is downsampled by a factor of 2 at each
level. The output of the high-pass filter plus the downsampling is
known as a detailed signal (h(n)), while the output of the low-
pass filter plus downsampling is called an approximate signal
(g(n)). The output of the detail coefficient is saved, while the
output of the approximate coefficient is fed to the next level of
the DWT. This process continues until the desired number of
decomposition is achieved. Fig. 13 shows one level of the DWT.
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Fig. 13. One level DWT including the filtering and the downsampling
procedures.

The decomposed signal by the DWT depends on the type
of selected mother wavelet. Daubechies and Haar wavelets
are two commonly applied mother wavelets in the DWT. The
computational complexity of the DWT is similar to that of the
CWT, while, in practice, it is faster than the CWT since the data
are downsampled in each level. A better temporal resolution can
be achieved by the CWT compared with the DWT since it can
shift the filter only by one sample, but higher storage is required
in the CWT. A frequency tracking of the DWT compared with
the CWT and the STFT is simpler since the mother wavelets
are limited. The frequency of interest must be determined, and
based on that, the number of DWT levels must be picked out,
if not the frequency of interest appears in two different detailed
subbands. In this article, Daubechies 8 is used to decompose the
air-gap magnetic field into various frequency subbands. Since
the sampling frequency is 10 kHz, the first and second detailed
subbands are between 5000 and 2500 Hz and 2500 and 1250 Hz,
respectively.

The DWT is a useful signal processing tool for feature extrac-
tion of an electrical machine under a faulty condition. Various
features can be extracted from detailed subbands of the DWT
such as standard deviation, median, mean, entropy, skewness,
kurtosis, variance, and various energies. In this article, the energy
of each subband level is introduced as a proper signature to
diagnose the occurrence of the ITSC fault. The energy of the
signal is as follows:

E =

∫ ∞

−∞
|Dn|2dt (4)

where Dn is the magnitude of each DWT subbands. The oc-
currence of a ten-ITSC fault in one of rotor poles leads to an
increment of the energy of D1–D6 from 1.35, 1.06, 1, 0.97, 0.94,
and 0.83 to 0.65, 0.72, 0.79, 0.83, 0.88, and 0.81, respectively. A
comparison between the energy variation of the different wavelet
subbands in healthy and faulty cases provides an accurate indi-
cation of the occurrence of an ITSC fault.

Having an air-gap magnetic field signal with an SNR up to
40 dB does not disturb the introduced feature, whereas the signal
with an SNR equal to 20 dB changes the results significantly.
Fig. 14 shows the DWT of the air-gap magnetic field in a healthy
case without a white Gaussian noise effect and under a noisy
condition with a 20-dB SNR. As shown in Fig. 14, the 20-dB
noise significantly changes the amplitude and shape of some of
the subbands, like D5, D4, D3, D2, and D1 even in a healthy case,
while it does not change the subbands level of D6–D8. However,
the energy of wavelet subbands of the healthy generator with
20-dB white Gaussian noise is equal to the energy level of the
corresponding wavelet subbands under a ten-ITSC fault. For
instance, the amplitude of the energy of the subbands of D3, D2,

Fig. 14. DWT of air-gap magnetic field in a healthy case without noise impact
(red) and with 20-dB SNR (blue).

TABLE III
ENERGY OF VARIOUS DWT SUBBANDS APPLIED TO AIR-GAP MAGNETIC

FIELD SIGNAL IN A HEALTHY STATE AND UNDER ITSC FAULT

and D1 for the healthy generator with a 20-dB SNR is decreased
to 0.79, 0.72, and 0.65, while the energy of the same subbands
for a ten-ITSC fault is also the same. Consequently, the noisy
environment leads to a false alarm of a fault occurrence in a
healthy generator. Table III shows the result of DWT applied
to the healthy and faulty generators. The application of the
DWT for fault detection of the electric machines in a noisy
environment must be evaluated based on a subband level, on
which the signature is defined, since some of the low-frequency
subbands do not undergo any changes even with 20-dB noise.

E. Time-Series Data Mining

TSDM is a time-domain nonlinear signal processing tool that
is developed based on discrete stochastic models of the recon-
structed phase space using the dynamical system theory [27]. A
single sampled state variable can generate a metrically equiv-
alent state space; in addition, a dynamical invariant is also
preserved in the reconstructed state space. If the trend of time
variation of the signal is high, its average value for the different
operating points may be utilized to extract a feature. The air-gap
magnetic field signal is considered as a state variable to create
the state space of the generator.

The reconstructed state space can be developed using time-
delay embedding and derivative embedding approaches. The
method based on derivative embedding includes higher order
derivates that make its application impractical in noisy envi-
ronments indicating that time-delay embedding is the proper
approach for TSDM development. The invariant of the dynam-
ical system in the time-delay embedding method is found by
transforming scalar points into a vector form [28]–[30].

For a given time series of the magnetic field of the air gap, we
have:

B = {B(k)−B(k − 1)}, k = 2, 3, . . ., j (5)
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Fig. 15. Gyration radius of the air-gap magnetic field in a healthy state and a
ten-ITSC fault without noise impact (top) and with a 20-dB SNR (bottom).

where j is the number of the sampled signal and k is the time
index. The reconstructed phase space for k equal to 10 is shown
in Fig. 15. A TDSM is used to generate the mass (gyration) based
on variation in the magnetic field time series. The variation in a
radius of gyration (RG) is a suitable tool for feature extraction
from the air-gap magnetic field of a faulty machine. The RG
is calculated from the generated mass to quantify the rate of
changes due to ITSC fault, as follows [31]:

RG =

√∑j
k=l+1(B(k − μ0)2 + (B(k − l)− μl)2

j − l
(6)

where μ0 and μl are the center of gyration for their respective
dimension, and l is the time lag of the phase space. The TSDM
is able to point out the variation in the signal that is changed due
to fault. However, the fault detection based on TSDM requires
a priori knowledge of the healthy state of the machine for com-
parison. Although the processed signal by TSDM indicates the
fault sign in the machine, the extracted feature is not informative
to provide more insight into the fault-type recognition.

As shown in Fig. 15, the fault leads to distortion of the
magnetic field, which results in an increment in the RG. The
calculated RG to magnetic flux density in the healthy state and
under a ten-ITSC fault is 61 and 78, respectively. Fig. 15 repre-
sents the application of TSDM to the healthy and faulty air-gap
magnetic field in a presence of 20-dB white Gaussian noise. The
magnitude of the RG is increased considerably compared with
the signal without the noise effect. Moreover, the area of the mass
and, correspondingly, the RG in healthy cases is enormously
larger than in the faulty case. This results in false identification of

a fault and indicates that the signal input to the TSDM algorithm
must be noiseless; otherwise, it leads to an inaccurate feature.

V. HARDWARE NOISE REJECTION

Every wire in the electrical instrument behaves like an antenna
that absorbs the electromagnetic energy emitted from electrical
equipment in the environment and converts it into an electrical
signal with low amplitude. Therefore, rejecting this noise or
reducing its impact on the measured signal is essential. A couple
of simple solutions are shown as follows:

1) grounding the machine frame diminishes the environmen-
tal noise effect;

2) protecting a circuit or wires, which are exposed to noise
with a conducting material like a copper foil;

3) reducing the length of wire used for data transmission or
preferably using a coaxial cable; and

4) using the low-pass filter implemented in the measurement
instrument.

Since the air-gap magnetic field measured in the laboratory is
vulnerable to noise, copper foil is used to shield the sensor wires
all the way to the dc power supply. The connection between the
dc power supply to the oscilloscope is made with a coaxial cable.
In addition, the SNR of the measured air-gap magnetic field is
increased by increasing the magnitude of the current feeding into
the Hall effect sensor. The body of the generator is grounded in
to avoid additional noise leaking into the sensor.

VI. CONCLUSION

This article discussed thoroughly the various kinds of noise
that may exist in the industrial environment and demonstrated
how it can negatively affect the measured data. A detailed
investigation of the frequency component of the measured noisy
data in both laboratory and hydropower plants revealed that
white Gaussian noise exists and is the most prevalent type of
noise in power industries.

Signal processing tools are key to fault detection procedures
for electrical machines. Based on the level of leaked noise
into the signal, the processed data may indicate a false result,
indicating that noise must be measured in industry and power
plants during data acquisition. Although the main criterion to
select a proper signal processing tool is its ability to track the
fault frequency and performing algorithm in real time with low
computational burden, the level of noise must also be considered
during the fault detection procedure. In order to show how signal
processing tools work in a noisy environment, the air-gap mag-
netic field of a 100-kVA salient pole synchronous generator in a
healthy state and under ITSC fault is measured. The Hall effect
sensor is used to measure the air-gap magnetic field, since it is
susceptible to the magnetic noise from inside the generator and
noise from the working environment of the generator. Different
signal processing tools, such as FFT, STFT, CWT, DWT, and
TSDM, are used for ITSC fault detection. Suitable features were
introduced, and their performance in the presence of noise are
evaluated and summarized as follows.

1) FFT: The FFT can provide a general picture of the health
state of the machine since it cannot reveal the fault type.
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Moreover, fault detection based on the FFT requires a
priori data of a healthy machine for comparison. The FFT
is only sensitive to high-level noise, and sidebands are
masked if the SNR is higher than 20 dB.

2) STFT: The STFT can indicate the fault harmonics if a
proper window function is selected, and the parameters
are adjusted precisely. The computational complexity of
the STFT isn times an FFT; however, it can be used in real-
time fault detection. Its sensitivity to noise and resolution
of the frequency bands depend on the length of the window
and may result in a false alarm for the SNR below 40 dB.

3) CWT: Application of CWT in fault detection provides
a pattern that indicates the harmonics variation both in
time and frequency. The selection of a proper mother
wavelet is a key factor to track the fault harmonics. The
computational complexity of the CWT compared with the
STFT and the FFT is lower that makes its real-time imple-
mentation easier. The CWT works fine with an SNR up to
40 dB, although its time–frequency plot becomes blurry.
However, fault identification is still possible. The CWT
generates a chaotic representation of a signal with the SNR
above 40 dB, and interpreting the plot is impossible.

4) DWT: Selection of a proper number of subbands plays a
key role in precise fault harmonic track. A proper mathe-
matical tool based on the signal property must be applied
to the signal to indicate the effect of fault harmonic in the
selected subband. The computational complexity of the
DWT is similar to that of the CWT. It depends on a fre-
quency subband, which is utilized for feature extraction.
If a feature is defined based on low-frequency subbands,
such as D6–D8, even a signal with the SNR above 20 dB
could not disturb the data.

5) TDSM: Although extracted feature based on the variation
in the RG shows a fault harmonic impact on the measured
signal, it is highly sensitive to noisy data, and it is not a
useful tool if a signal is measured in a noisy environment.

REFERENCES

[1] H. Ehya, I. Sadeghi, and J. Faiz, “Online condition monitoring of large
synchronous generator under eccentricity fault,” in Proc. 12th IEEE Conf.
Ind. Electron. Appl., 2017, pp. 19–24.

[2] P. Vijayraghavan and R. Krishnan, “Noise in electric machines: A review,”
IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1007–1013, Sep./Oct. 1999.

[3] R. S. Girgis, M. Bernesjo, and J. Anger, “Comprehensive analysis of load
noise of power transformers,” in Proc. IEEE Power Energy Soc. Gen.
Meeting, 2009, pp. 1–7.

[4] S. Yang, “Effects of voltage/current harmonics on noise emission from
induction motors,” in Vibrations and Audible Noise in Alternating Current
Machines. New York, NY, USA: Springer, 1988, pp. 457–468.

[5] H. Tischmacher, I. P. Tsoumas, B. Eichinger, and U. Werner, “Case studies
of acoustic noise emission from inverter-fed asynchronous machines,”
IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2013–2022, Sep./Oct. 2011.

[6] I. P. Tsoumas and H. Tischmacher, “Influence of the inverter’s modulation
technique on the audible noise of electric motors,” IEEE Trans. Ind. Appl.,
vol. 50, no. 1, pp. 269–278, Jan./Feb. 2014.

[7] J. Qin, P. Sun, and J. Walker, “Measurement of field complex noise using
a novel acoustic detection system,” in Proc. IEEE AUTOTEST, 2014,
pp. 177–182.

[8] S. M. J. Ali, “Measurement of vibration and noise level at power plant and
refinery companies that represents a condition monitory for the health of
machines,” in Proc. Int. Conf. Environ. Impacts Oil Gas Ind.: Kurdistan
Region Iraq Case Study, 2017, pp. 85–87.

[9] D. P. Martins and M. S. Alencar, “A new approach to noise measurement
and analysis in an industrial facility,” in Proc. IEEE Int. Instrum. Meas.
Technol. Conf., 2014, pp. 964–967.

[10] V. Ghorbanian and J. Faiz, “A survey on time and frequency charac-
teristics of induction motors with broken rotor bars in line-start and
inverter-fed modes,” Mech. Syst. Signal Process., vol. 54/55, pp. 427–456,
Mar. 2015.

[11] J. Faiz and H. Nejadi-Koti, “Demagnetization fault indexes in permanent
magnet synchronous motors-an overview,” IEEE Trans. Magn., vol. 52,
no. 4, pp. 1–11, Apr. 2016.

[12] J. Faiz, H. Nejadi-Koti, and Z. Valipour, “Comprehensive review on inter-
turn fault indexes in permanent magnet motors,” IET Electr. Power Appl.,
vol. 11, no. 1, pp. 142–156, Jan. 2017.

[13] M. Riera-Guasp, J. A. Antonino-Daviu, and G. Capolino, “Advances in
electrical machine, power electronic, and drive condition monitoring and
fault detection: State of the art,” IEEE Trans. Ind. Electron., vol. 62, no. 3,
pp. 1746–1759, Mar. 2015.

[14] I. Sadeghi, H. Ehya, J. Faiz, and A. A. S. Akmal, “Online condition
monitoring of large synchronous generator under short circuit fault—A
review,” in Proc. IEEE Int. Conf. Ind. Technol., 2018, pp. 1843–1848.

[15] J. Antonino-Daviu et al., “Electrical monitoring of damper bar condition
in salient-pole synchronous motors without motor disassembly,” IEEE
Trans. Ind. Appl., vol. 56, no. 2, pp. 1423–1431, Mar./Apr. 2020.

[16] J. Yun et al., “Airgap search coil-based detection of damper bar failures in
salient pole synchronous motors,” IEEE Trans. Ind. Appl., vol. 55, no. 4,
pp. 3640–3648, Jul./Aug. 2019.

[17] Y. Park, S. B. Lee, J. Yun, M. Sasic, and G. C. Stone, “Air gap flux-
based detection and classification of damper bar and field winding faults
in salient pole synchronous motors,” IEEE Trans. Ind. Appl., vol. 56, no. 4,
pp. 3506–3515, Jul./Aug. 2020.

[18] G. Georgoulas et al., “The use of a multilabel classification framework
for the detection of broken bars and mixed eccentricity faults based on the
start-up transient,” IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 625–634,
Apr. 2017.

[19] J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, S. B. Lee, T.
Kang, and C. Yang, “Advanced induction motor rotor fault diagnosis via
continuous and discrete time-frequency tools,” IEEE Trans. Ind. Electron.,
vol. 62, no. 3, pp. 1791–1802, Mar. 2015.

[20] H. Ehya, A. Nysveen, R. Nilssen, and Y. Liu, “Static and dynamic ec-
centricity fault diagnosis of large salient pole synchronous generators by
means of external magnetic field,” IET Elect. Power Appl., 2021, DOI:
doi.org/10.1049/elp2.12068

[21] M. Heydarzadeh, M. Zafarani, M. Nourani, and B. Akin, “A wavelet-
based fault diagnosis approach for permanent magnet synchronous
motors,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 761–772,
Jun. 2019.

[22] B. M. Ebrahimi, J. Faiz, and M. J. Roshtkhari, “Static-, dynamic-, and
mixed-eccentricity fault diagnoses in permanent-magnet synchronous
motors,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4727–4739,
Nov. 2009.

[23] H. Ehya, T. N. Skreien, A. Nysveen, and R. Nilssen, “The noise effects
on signal processors used for fault detection purpose,” in Proc. 23rd Int.
Conf. Elect. Mach. Syst., Nov. 2020, pp. 183–188.

[24] E. O. Brigham, The Fast Fourier Transform and its Applications. Engle-
wood Cliffs, NJ, USA: Prentice-Hall, 1988.

[25] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,”
Bull. Amer. Meteorol. Soc., vol. 79, no. 1, pp. 61–78, Jan. 1998.

[26] B. Y. Lee and Y. S. Tarng, “Application of the discrete wavelet transform
to the monitoring of tool failure in end milling using the spindle motor cur-
rent,” Int. J. Adv. Manuf. Technol., vol. 15, no. 4, pp. 238–243, Apr. 1999.

[27] D. A. Rand and L.-S. Young, Dynamical Systems and Turbulence, Warwick
1980: Proceedings of a Symposium Held at the University of Warwick
1979/80, vol. 898. New York, NY, USA: Springer, 2006.

[28] H. Ehya, A. Nysveen, R. Nilssen, and U. Lundin, “Time domain signature
analysis of synchronous generator under broken damper bar fault,” in Proc.
45th Annu. Conf. IEEE Ind. Electron. Soc., 2019, pp. 1423–1428.

[29] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical
Systems and Turbulence, Warwick1980. New York, NY, USA: Springer,
1981, pp. 366–381.

[30] A. R. Webb, Statistical Pattern Recognition. Hoboken, NJ, USA: Wiley,
2003.

[31] R. J. Povinelli, J. F. Bangura, N. A. O. Demerdash, and R. H. Brown,
“Diagnostics of bar and end-ring connector breakage faults in polyphase
induction motors through a novel dual track of time-series data mining
and time-stepping coupled Fe-state space modeling,” IEEE Trans. Energy
Convers., vol. 17, no. 1, pp. 39–46, Mar. 2002.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 04,2022 at 11:49:16 UTC from IEEE Xplore.  Restrictions apply. 



EHYA et al.: PERFORMANCE EVALUATION OF SIGNAL PROCESSING TOOLS 3665

Hossein Ehya (Student Member, IEEE) received the
M.Sc. degree in electrical and computer engineering
from the University of Tehran, Tehran, Iran, in 2013.
He is currently working toward the Ph.D. degree in
electrical engineering with the Norwegian University
of Science and Technology, Trondheim, Norway.

From 2013 to 2018, he was an Electrical Machine
Design Engineer with Electrical Machine Compa-
nies. His research interests include the design and
condition monitoring of electrical machines, sig-
nal processing, pattern recognition, and machine

learning.
Mr. Ehya received the ICEM Jorma Luomi Award in Gothenburg, Sweden,

in 2020.

Arne Nysveen (Senior Member, IEEE) received the
M.Sc. and Dr.Ing. (Ph.D.) degrees in electric power
engineering from the Norwegian University of Sci-
ence and Technology (NTNU), Trondheim, Norway,
in 1988 and 1994, respectively.

From 1995 to 2002, he was a Senior Scientist with
ABB Corporate Research, Oslo, Norway. Since 2002,
he has been a Professor with NTNU. He is currently
a Manager for the research on Turbine and Generator
Technologies with the Norwegian Research Center
for Hydropower Technology. His current research

interests include design, modeling, and monitoring of hydroelectric generators.

Tarjei Nesbø Skreien is a master student graduate
in electric power engineering from The Norwegian
University of Technology and Science in Trondheim,
Norway.

His research interests include synchronous ma-
chine fault detection, machine learning and sampling
noise mitigation.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 04,2022 at 11:49:16 UTC from IEEE Xplore.  Restrictions apply. 



202



Paper IX

Paper IX

H. Ehya, T. N. Skreien and A. Nysveen, ”Intelligent Data-Driven Diagnosis of Incipient
Interturn Short Circuit Fault in Field Winding of Salient Pole Synchronous Generators,”
in IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3286-3294, May
2022, doi: 10.1109/TII.2021.3054674.

203



3286 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 5, MAY 2022

Intelligent Data-Driven Diagnosis of Incipient
Interturn Short Circuit Fault in Field Winding of

Salient Pole Synchronous Generators
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Abstract—This article examines if machine learning (ML)
and signal processing can be used for online condition
monitoring to reveal interturn short circuit (ITSC) fault in
the field winding of salient pole synchronous generators
(SPSG). This was done by creating several ML classifiers to
detect ITSC faults. A dataset for ML was built using power
spectral density of the air-gap magnetic field extracted by
fast Fourier transform, discrete wavelet transform ener-
gies, and Time Series FeatuRe Extraction based on Scal-
able Hypothesis tests (TSFRESH) to extract features from
measurements of SPSG operated under several different
severities of ITSC fault. Using this dataset, a wide range
of classifiers were trained to detect the presence of ITSC
faults. The classifiers evaluated were logistic regression,
K-nearest neighbors, radial basis function support vector
machine (SVM), linear SVM, XGBoost decision tree forest,
multilayer perceptron, and a stacking ensemble classifier
including all of the aforementioned. The classifiers were
optimized using hyperparameter grid searches. In addition,
some feature selection and reduction algorithms were as-
sessed such as random forest feature selection, TSFRESH
feature selection, and principal component analysis. This
resulted in a classifier capable of detecting 84.5% of sam-
ples containing ITSC fault, with a 92.7% chance that fault
detections are correct.

Index Terms—Air-gap magnetic field, fault diagnosis, fea-
ture extraction, machine learning (ML), salient pole syn-
chronous generator (SPSG), signal processing.

I. INTRODUCTION

SALIENT pole synchronous machines are the machines
most commonly used in hydroelectric plants [1] and, so,

are ubiquitous throughout the Norwegian power system. In
fact, hydroelectric generation accounted for 95% of the total
electric energy produced in Norway in 2018 [2]. Failure of
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the synchronous generators that generate the electricity that
the Norwegian society is run on can incur not only a great
expense in restoring power plants but also a large cost to society.
These machines are under ever-increasing operational demands
as intermittent power sources enter the power system. The proper
running and maintenance of synchronous machines, and, by
extension, the timely detection and diagnosis of their faults, are
more important than ever. Hydroelectric generators can suffer
failure as a result of undetected incipient faults that induce larger
faults. The state of the art in online fault detection in salient
pole synchronous generators (SPSGs) is still lacking in this
respect [3], [4].

In the transition from reactive to predictive maintenance, it is
vital with accurate estimations of machine states. This involves
integrating sensors, signal analysis, and decision-making algo-
rithms. The potential benefits to society are immense, estimated
by McKinsey Digital to reach a total potential economic value of
11 trillion USD in 2025 [5], and the power generation sector is no
exception. By applying online condition monitoring, incipient
machine faults can be detected in real time and faults can
be detected before they cause unscheduled stops and further
damage to the machine.

The rotor winding interturn short circuit (ITSC) is the failure
of insulation between turns in the rotor winding coil so that
the number of turns in the coil is effectively reduced [1]. This
can be due to overheating, causing damage to the insulation,
thermal deformation, or mechanical stresses [6]. The fault can
then propagate to cause the rotor winding to be further short-
circuited and eventually a short to ground [6]. Another issue that
could arise from the uneven magnetic field is uneven mechanical
stresses that further compromise other machine components [6].

The pole-drop test is the most commonly applied offline test
to detect short-circuited turns in the field winding [6]. It is done
by applying low-voltage ac to terminals of the field winding
and measuring the voltage across each pole. A faulty pole will
have a lower voltage across it compared to the other poles [6].
The disadvantage of this test is that it requires the machine
to be taken offline. Offline tests require the shut-down of the
machine and are, therefore, expensive. They also occur while
the machine is at a standstill, and, therefore, faults that are
induced due to rotational forces can become invisible [6]. To
find the faults present during operation, it is necessary to conduct
online monitoring and tests [6]. Online condition monitoring for

1551-3203 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 04,2022 at 11:49:21 UTC from IEEE Xplore.  Restrictions apply. 



EHYA et al.: INTELLIGENT DATA-DRIVEN DIAGNOSIS OF INCIPIENT ITSC FAULT IN FIELD WINDING OF SPSGs 3287

diagnosing rotor winding ITSC is often done using flux probe
measurements, where the magnetic field registered by a flux
probe placed on a stator tooth in the air gap of the machine is
analyzed by comparison to a healthy case [7]. The extracted
feature for ITSC fault based on measured air-gap magnetic field
is done either in steady-state [7] or transient operation of the
synchronous machine [8].

Numerous noninvasive approaches exist to diagnose ITSC
fault in SPSG based on stray flux analysis [9], harmonics of stator
current and voltage [10], and unbalanced circulating current in
the stator winding [11]. In [12], a sensorless method based on
measurements of the induced voltage in the screw located in
the stator core was proposed. Although the induced voltage
in the screw is mirrored in the air-gap magnetic field of the
synchronous generator, the method is not sensitive to a low
degree of ITSC. The magnetic field of the rotor shaft, shaft
voltage, and its current are also proposed in [13], where it
does not have adequate sensitivity to less severe ITSC faults
in synchronous generator rotor poles.

Numerous signal processing tools based on a frequency
domain or joint time-frequency domain were applied to the
aforementioned signals and different features were extracted
to identify the ITSC fault. However, interpretation of the data
requires an expert in the field. Therefore, data-driven methods
may exclude prior knowledge that is suitable for fault detection.
Artificial intelligence has become a useful technique which
may be employed in data-driven fault detection of electrical
machines. Both supervised and unsupervised machine learning
(ML) approaches have demonstrated their effectiveness in fault
diagnosis [14]. Unsupervised methods are trained on unlabeled
data and are frequently used in fault classification. K-means
and self-organizing neural networks such as ART networks
in combination with wavelet are used for fault detection pur-
poses [15]–[17]. Support vector machine (SVM) [18]–[20],
K-nearest neighbor (KNN) and artificial neural networks [17],
[21]–[23], fuzzy logic network [24], principal component anal-
ysis (PCA) [25], [26], convolutional neural network [20], and
XGBoost [27] are widely used as supervised ML classifiers for
fault diagnosis of electric machines. Although the mentioned
methods showed their ability in classification of fault in electrical
machine, accuracy and classifier robustness are increased by
integration of various base learners in order to form an ensemble
learner [28], [29].

This article applies ensemble stacking classifiers in combina-
tion with a sparse sensor application of a single air-gap magnetic
flux sensor to detect ITSC faults. This combination of several
ML algorithms into one improves predictive performance, while
the single sensor is minimally invasive. Previous applications
have used solitary ML models, whereas, in this article, it is shown
that a superior result can be achieved by combining ML models.
Furthermore, generating feature-rich datasets using automatic
feature generation algorithms makes the procedure nearly sensor
agnostic. This system is applied on data that is preprocessed
to resemble samples likely to be found in industry to avoid
overconfident performance assertions.

In order to investigate which ML models perform the best,
and if a single air-gap magnetic field sensor is sufficient for

Fig. 1. Procedure of health statues determination of SPSG based on
intelligent data-driven approach.

reliable ITSC fault diagnosis or not, a fault classification system
as shown in Fig. 1 has been created in this article that includes
the following:

1) automatic sample processing and segmentation from
longer sample series;

2) a feature extraction process capable of processing and
organizing an arbitrary number of samples;

3) a feature selection process that employs several feature
selection methods;

4) a process to assess the usefulness of feature selection,
select the best ML model among several, and assess the
performance of the final model;

5) a final ensemble classifier to detect ITSC faults.

II. LABORATORY TEST

A. Experimental Setup

The dataset is composed of two concurrent Hall-effect sensor
readings taken of a SPSG running at synchronous speed in
no-load and full-load with several different ITSC fault severities
induced. The machine, the sensors attached, and the measure-
ments are described as follows.

1) A 100 kVA, 400 V, synchronous generator with 14
salient poles constructed to resemble generators com-
monly situated in Norwegian hydroelectric power
plants. It is shown in Fig. 2. Its nameplate value and some
defining features of its topology are given in Table I.
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Fig. 2. Experimental test rig of a 100 kVA synchronous generator (top).
A copper shunt utilized to short circuit the field winding of SPSG. The
location of installed Hall-effect sensor on a stator tooth in yellow circle
(bottom).

TABLE I
SPECIFICATION OF 100 KVA, 50 HZ, SYNCHRONOUS GENERATOR

2) The generator was driven by a 90 kW, 400 V induction
motor with four poles and rated speed of 1482 rpm sup-
plied by a three-phase converter. The speed of the induc-
tion motor during all tests was set so that the frequency
of the generator’s electrical output was 50.004 Hz.

3) A gearbox was used to connect the shaft of the induction
motor to the synchronous generator.

4) A programmable converter was employed to control
the operation of the induction motor. The converter is
supplied by an external rectifier connected to the grid.

5) A 20 kW (LAB-HP/E2020) dc power source was utilized
to magnetize the field winding.

6) Two Hall-effect sensors (AST244) were placed into
the air gap and glued onto stator teeth at diametrically
opposing ends of the stator as shown in Fig. 2. The
dimensions of the sensors were (3.0 × 5.0 × 0.8) mm
with a flux density to a voltage ratio of 2.54 T/V. The
constant dc current supply is used to feed 4.75 mA into
the Hall-effect sensors. The data sheet specifies that

Fig. 3. Connection diagram of experimental setup.

TABLE II
SPECIFICATION OF GENERATOR FROM NO-LOAD TO FULL-LOAD IN FOUR

DIFFERENT CASES IN THE HEALTHY OPERATION OF SPSG

the sensor should be supplied by a 2 mA dc current
source. However, due to considerable electromagnetic
interference, the magnitude of the current power supply
was increased to 4 mA to increase the signal-to-noise
ratio.

7) A high-resolution oscilloscope (16-bit Tektronix MSO
3014), with sampling frequencies of 10 and 50 kHz, was
used for data acquisition.

8) A water-cooled resistor composed of two parallel sets of
resistors, where the total resistance can be controlled and
adjusted in steps by contactors and relays in a separate
control panel. The per-phase resistance could be varied
from a maximum of 160 Ω to a minimum of about
2.78 Ω. At the maximum load setting, the dissipated
power of the resistors amounts to about 57 kW.

9) Two inductive loads, in which each phase is connected
in series, are connected to the generator by a three-phase
transformer. The approximate value of the inductance in
each phase based on the turn ratio of the transformer is
equal to 22 mH.

10) A copper plate was used to make an ITSC fault on one
of the rotor field windings by short circuiting 1, 2, 3, 7,
or/10 turns as shown in Fig. 2.

B. Test Procedure

Fig. 3 presents a connection diagram of the experimental test
rig. The procedure of experimental tests is as follows: Tests were
performed in healthy and faulty cases in no-load, fully resistive,
and resistive–inductive load according to Table II. The SPSG
which was coupled to an induction motor with the help of a
gearbox is accelerated until it reaches its nominal synchronous
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speed. The magnetizing current is increased until the stator
voltage reaches its nominal value. The magnetizing current is
increased by increasing the load to maintain the stator voltage
in its nominal value. ITSC fault is conducted at standstill by
removing a certain desired number of turns from the rotor field
winding with the help of a copper plate. As shown in Fig. 2,
there exists a common tap on a rotor field winding connected to
a bolt located at the rotor which is called a common point. There
are five taps on the rotor field winding that is connected to the
bolts that enable to apply ITSC fault by removing 1, 2, 3, 7, and
10 turns. For instance, by connecting a common point and tap (7
ITSC) as shown in Fig. 2 by using the copper plate, seven turns
are removed. In total, 48 experiments were conducted, each of
which sampled with two sensors and two sampling frequencies.
The temperature effects on tests were examined by comparing
the results in the cold and warm operation of SPSG. Analysis
shows that temperature does not have an impact on the acquired
signal.

III. METHOD AND RESULTS

A. Data Preprocessing

The data was processed to appear similar to something one
would sample in a production environment. In a production
deployment of the fault detection system, the measurement
series would need to be windowed with the classification run
on a sliding window of the last electrical periods to be able
to detect faults in near real time. Since incipient faults are not
critical, a long window length of several mechanical periods is
possible. The minimum viable window length is one mechanical
period, as this is the window length necessary to ensure that any
fault will pass the sensors. An excessively long window length is
prohibitive since it will add little new information and slow down
feature extraction. However, the window length should be long
enough to remediate end effects in signal processing tools that
suffer from them. End effects can be alleviated by analyzing a
concatenated series if the signal is assumed to be periodic. Since
the machine has seven pole pairs, seven electrical periods will
capture one complete mechanical period. The reduced sample
series (RSS) extracted from original sample series (OSS) are
cut at rising zero-crossing to have integer electrical periods in
each RSS as shown in Fig. 4. Each RSS represents a dataset,
indicating that the total number of RSS used for ML purposes
in this article by performing 48 experiments (8 healthy cases
and 40 faulty cases) under different load conditions and fault
severity is approximately equal to 2500.

B. Feature Extraction

To generate features, signal processing methods can be used in
concert with discipline knowledge. From a frequency spectrum
generated by a signal processing method, one would select the
frequencies of the signal that are most informative and generate
some features from that. This could be the energy spectrum
of a certain decomposition level in discrete wavelet transform
(DWT), the intensity of some side-band frequencies relative to

Fig. 4. Two consecutive RSSs that each of them represents one
dataset cut from the same OSS. They are each of seven electrical
periods, with one electrical period between the two. Note the smaller
negative peak occurring in periods 4 and 3 of the first and second RSSs,
respectively. The one-period shift between each RSS makes the fault
indication appear one position earlier.

a harmonic frequency, or any other property of the signal or its
transforms.

Raw time series are very sensitive to small perturbations
and thus not suited to be used directly as tabular training data.
Features are, therefore, extracted from each RSS that are then
used as a basis for feature selection and, finally, as training data.
The feature extraction methods used were fast Fourier transform
(FFT), DWT energies, and Time Series FeatuRe Extraction
based on Scalable Hypothesis tests (TSFRESH). In total, 475
distinct features were extracted.

1) Fast Fourier Transform: The frequency content of each
RSS was extracted by FFT. FFTs of healthy and faulty signals
showed that the faulty signal had a marked increase in harmonic
frequency components at intervals of fm = 50

7 Hz, the mechan-
ical frequency of the generator, outside of the odd multiples
of fundamental frequency compared to the healthy case. The
frequency components of integer multiples of fm up to 500 Hz
were extracted as features; see the following equation:

fk,extracted = k · fm = k · 2fsync

p
, k = 0, 1, 3, . . . . (1)

2) DWT Wavelet Energies: A 12-level decomposition, Haar
wavelet DWT was taken of each RSS and instantaneous, Teager,
hierarchical, and relative wavelet energies were computed for
each decomposition level. An issue with DWT is its end ef-
fects, which are worsened substantially in each decomposition
level since the length of the data series that is transformed is
effectively halved in each decomposition level with the Haar
wavelet. The adverse effects are diminished as the length of
the data series increases since the portions affected by end
effects are proportionally smaller. Therefore, each RSS was
concatenated to 4 times its length before the DWT was taken.
This exploits the assumption that the generator behavior is
stationary.

3) TSFRESH: An algorithm to extract features from time
series, called FeatuRe Extraction based on Scalable Hypothesis
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TABLE III
THREE DATASETS TAKEN INTO MACHINE LEARNING

tests (FRESH), is proposed in [30]. Its intent is to automate time
series feature extraction while implementing feature selection.
The FRESH algorithm was integrated into a algorithmic fea-
ture generation package, called Time Series FeatuRe Extraction
based on Scalable Hypothesis tests [31]. TSFRESH is able to
generate a total of 794 time series features, using 63 time series
characterization methods as well as applying feature selection
methods. A comprehensive feature extraction was done using
TSFRESH. TSFRESH’s FFT features were not included because
TSFRESH did not offer the ability to select frequencies of
interest.

IV. FEATURE SELECTION

Two feature selection methods, random forest feature selec-
tion and TSFRESH, were applied to the feature dataset. Before
any feature selection was undertaken, a hold-out dataset was
extracted from it to prevent any target leakage.

A. Random Forest Feature Selection

The random forest feature selection was done using a forest of
1000 decision tree estimators, which were trained on the training
set using Gini impurity as the splitting criterion. During training,
every feature is assigned an importance based on its impurity.
All features of greater than mean importance were selected, the
remainder discarded. This resulted in a feature reduction from
417 to 81 features.

B. Time Series Feature Extraction Based on TSFRESH

Using the feature extraction module included in TSFRESH,
a subset of features deemed relevant was extracted. TS-
FRESH was configured to assume dependent features. False
discovery rates in the interval 0.001, 0.01, 0.05, and 0.1
were tried; this resulted in a similar amount of features. The
false discovery rate settled upon was 0.05, the rate used
in [32]. This resulted in a feature reduction from 417 to 301
features.

C. Selected Datasets

The three versions of the feature dataset, hereby termed
feature data sets A, B, and C, are summarized in Table III. By
comparing the performance of classifiers trained upon the differ-
ent collections of features, some insights into which features are
most useful for classifying the fault can be gleaned and which
feature selection algorithms are most useful with this data. In
a final version of the fault detection system, this knowledge
could be used to selectively compute only the most useful
features.

V. MACHINE LEARNING

The following section details the development of a classifier
intended to detect the presence of ITSCs using the datasets
previously created. This is done in the following four phases:

1) selection of the feature dataset;
2) hyperparameter optimization of single ML models;
3) evaluation of stacking classifiers;
4) final classifier selection and evaluation on hold-out

dataset.
The first objective, selection of the feature dataset, was accom-

plished by evaluating the results of training a host of different
classifiers on each dataset. The classifiers chosen were the
following:

1) logistic regression with and without PCA;
2) KNN with and without PCA;
3) radial basis function SVM with and without PCA;
4) linear SVM with and without PCA;
5) XGBoost;
6) multilayer perceptron (MLP);
7) stacking classifier.

By implementing logistic regression, SVM and KNN with
and without a PCA, the effectiveness of PCA in this application
can be gauged as well. PCA was not combined with XGBoost
because PCA reduces the interpretability of the model, a key
strength of decision trees. The PCA was identically executed in
all four applications.

1) Evaluation Metrics: There are several ways to evaluate
the performance of classifiers, and they give differing results.
Perhaps, the simplest method is to count the number of correct
classifications and divide by the total number of samples. This
is what is called the accuracy of the classifier, as shown in (2).
It says something about the performance of the classifier but has
trouble with unbalanced datasets. Given an unbalanced electric
machine measurement dataset containing 99% of samples of
healthy machines and 1% of samples of faulty machines, a
classifier that always classifies a sample to be healthy would
have a 99% accuracy. This is obviously a poor classifier as it
would never correctly classify a single faulty machine. This is
addressed by including other measurements that also emphasize
the misclassified samples. A popular metric that does this is the
F-score. It works by combining sensitivity and precision

accuracy =
TP + TN

TP + FP + FN + TN
. (2)

A useful tool to talk about these measures is the confusion
matrix for a binary classifier that classifies samples as belonging
to the class, true, or not belonging to the class, false. The
confusion matrix contains the number of samples that are:
correctly classified as belonging to the class, true positive (TP);
incorrectly classified as belonging to the class, false positive
(FP); incorrectly classified as not belonging to the class, false
negative (FN); and correctly classified as not belonging to the
class, true negative (TN).

Sensitivity, as shown in (3), is a measure of how well the
model picks up on the class, essentially the probability that the
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Fig. 5. Threefold cross-validation. Each fold is composed of a training
and validation set.

class is detected

sensitivity =
TP

TP + FN
. (3)

Specificity, as shown in (4), gives an impression of the model’s
capacity to correctly classify false samples

specificity =
TN

TN + FP
. (4)

Precision, as shown in (5), is the ratio of true positives divided
by the total number of samples classified as true. A high precision
gives confidence that the classifier has made a correct prediction
when it returns true

precision =
TP

TP + FP
. (5)

Each of these has pit-falls when faced with unbalanced
datasets and classifiers that classify all samples as either true
or false. To balance the possible pitfalls, the F-score is espe-
cially good for unbalanced classes. The F-score is defined as
the harmonic mean of precision and sensitivity; it weighs the
reliability of a classification together with its chance of detecting
the class [33]. The F1-score is shown in the following equation:

F1 − score = 2 · precision · sensitivity
precision + sensitivity

. (6)

2) Cross-Validation: Since datasets are not entirely uniform,
the results of the train/test procedure are affected by the way the
data is split. One split may, by chance, give very good test results,
while another does the opposite. This could result in selecting
a model that generalizes poorly even though it performs well
on the test set. To counter this, k-fold cross-validation can be
used [34]. k-fold cross-validation takes in a dataset and splits
it into k folds. Each fold is composed of a training set and a
validation set. For each fold, the model is trained on the training
set and its performance measured on the validation set. The
model’s performance is then the average performance across
all the folds, and the performance is more likely to reflect the
true performance of the model on unseen data.

Since what is of interest when testing a new model is its perfor-
mance on new and unseen data, a part of the dataset should be set
aside to be used only to assess the performance of the model. This
is known as a hold-out dataset (as shown in Fig. 5) that includes
20% of the dataset. The datasets were previously, during the

TABLE IV
SUMMARY OF THE RESULTS OF CLASSIFIERS TRAINED ON DATASETS

feature selection process, split into a hold-out test dataset and a
remainder dataset. Since the results of a single train/test cycle can
be very dependent upon the split of the samples, the classifiers
were evaluated by their average performance across a fivefold
CV. This produces five folds of CV-train and CV-validation sets
drawn from the remainder dataset of the initial split. The folds
are identical across all classifiers and feature datasets.

3) Standardisation: Logistic regression, KNN, and SVM
are sensitive to the variance of the samples; this is addressed
by applying standardization. Each cross-validation split was
standardized to zero-mean and unity variance. The mean and
variance of every feature was calculated from the CV-train set.
Both CV-test and CV-validation sets were standardized using
the CV-train means and variances.

4) Results: This procedure was repeated for every classifier
on every feature dataset and performance metrics were gathered.
The results are presented in Table IV. This method of model
fitting was used for every classifier evaluation at later stages of
the classifier development.

A. Feature Selection and Reduction Performance

It appears that the choice of dataset does not greatly affect the
performance of the classifiers, and the variance of the results
is large. However, feature dataset C, the TSFRESH feature
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TABLE V
HYPERPARAMETER SEARCH GRIDS FOR LOGISTIC REGRESSION, KNN, SVM, AND XGBOOST CLASSIFIERS

selection dataset, slightly outperforms the rest on every averaged
metric. Dataset C is thus preferred and will be utilized from this
point onward.

As for feature reduction, i.e., application of PCA, every clas-
sifier suffered a drop in performance in nearly every metric when
PCA was applied. Of special note is that radial basis function
SVM with PCA had an receiver operating characteristic (ROC)
area under the curve (AUC) consistently lower than 0.5, which
indicates that it performed worse than chance. Due to this, PCA
was abandoned. It might still have been justified on grounds
of reducing training and prediction time if there were more
features or an extremely large number of samples, but no such
considerations were necessary.

B. Hyperparameter Optimization and Selection

Since a classifier’s performance is heavily dependent upon
its hyperparameters, all the candidate classifiers were optimized
before selecting among them. The optimization procedure was
a fivefold cross-validating grid search. In this procedure, a
hyperparameter grid is defined that contains a range of values
for each of the hyperparameters to be optimized. The grid search
algorithm then executes a cross-validation of the classifier for
every possible combination of these hyperparameters. The mean
cross-validation performance is calculated for each hyperpa-
rameter combination, and the hyperparameter combination that
yields the best performance on the chosen performance metric
is selected. The performance metric used is F1-score because it
combines sensitivity and precision.

The hyperparameter sets with the greatest mean performance
across fivefold cross-validation for each classifier are presented
as final value in Table V. Table VI shows the scores of these
classifiers across several metrics. Of the optimized classifiers,
the XGBoost and KNN models are outperformed by the oth-
ers. KNN’s accuracy was 64.0% in an imbalanced dataset of
65.9% majority class. This performance is worse than that of a
dummy classifier that classifies randomly or always classifying
samples as the majority class. Furthermore, KNN is entirely

TABLE VI
ACCURACY, SENSITIVITY, PRECISION, AND F1-SCORE OF THE BEST MODELS

FOUND IN THE HYPERPARAMETER GRID SEARCH

nongeneralizing with a k = 1, indicating that the algorithm is
not well-suited for this problem.

C. Ensemble Learners

Ensemble learners are learners that combine several weak
learners that may have poor performance to create a stronger
learner with better performance. There are a few methods of
accomplishing this, mainly bagging, boosting, and stacking.
Stacking is to train a metalearner, a model that is trained to
interpret the outputs of several other models to make a prediction
based on the predictions of the other learners. The learners that
provide predictions to the metalearner are termed base-learners.
It usually outperforms the base-learners it is trained upon. Each
of the base-learners are first fitted to the training set, and their
predictions upon the training set are used as the training set for
the metalearner. The base-learners can be any ML model that
returns predictions. This provides a benefit in that by including
different models as base-learners, the weaknesses of one model
can be remedied by another.

Since a stacking classifier improved the performance during
the feature dataset selection, the same approach is made again
using the optimized classifiers. Four stacking classifiers were
made with different metaclassifiers, logistic regression, MLP,
gradient boosting forest, and a random forest classifier. The
gradient boosting forest classifier was chosen over XGBoost as
a metaclassifier due to greater compatibility with Sci-kit Learn’s
stacking framework. Since XGBoost is also a variant of gradient
boosting forest, it should return similar results at the expense
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Fig. 6. Stacking classifier with logistic regression as its metaclassifier.

TABLE VII
RESULTS FROM THE STACKING CLASSIFIER COMPARISON

TABLE VIII
RESULTS OF THE BEST OF THE SINGLE AND STACKING CLASSIFIERS ON THE

HOLD-OUT DATA SAMPLES

of computing power. The stacks all include the optimized lo-
gistic regression, SVM, MLP, and XGBoost classifiers as base
classifiers (Fig. 6). KNN was again excluded due to its poor
performance and slow prediction time. Results are shown in
Table VII. Of the stacking classifiers, the logistic regression
stacking classifier outperformed the others by a large margin.

Comparing the performance of the best stacking classifier
with that of the best nonensemble classifier, a somewhat sur-
prising result surfaces. The logistic regression classifier alone
on average slightly outperforms the stacking classifier of which
it is a part of across the cross-validation folds.

An advantage of stacking classifiers is that they often gener-
alize better than single classifiers, and they usually outperform
their base classifiers. However, the hyperparameters of the meta-
classifier have not been optimized on the training set as is the
case with the simple logistic regression classifier. To gauge their
performance on unseen samples, both are trained on the entire
training set and tested on the hold-out dataset. The results are
presented in Table VIII.

On the hold-out set, the stacking classifier outperforms the
simple logistic regression classifier. The stacking classifier could
likely be further improved by running a grid search for the op-
timal hyperparameters of the logistic regression metaclassifier.

VI. CONCLUSION

This article investigated how signal processing and ML tools
can be used to detect ITSCs in rotor field windings. This was
done in three stages, data preprocessing, feature extraction
and selection, and classifier development as described in the
following.

1) Signal partitioning was used to achieve a sufficient num-
ber of datasets to train the intelligent system.

2) The features extracted were power spectral density of
integer multiples of the generator’s mechanical frequency
extracted by FFT, DWT wavelet energies, and the entire
TSFRESH feature extraction suite. The most useful fea-
tures were the wavelet energy features and some of the
TSFRESH features.

3) Linear ML models were best suited for fault detec-
tion on this dataset, especially the logistic regression
and linear SVM classifiers. The best classifier was an
ensemble stacking classifier with logistic regression as
the metaclassifier taking inputs from logistic regres-
sion, XGBoost, linear SVM, and MLP classifiers as
base-classifiers.

The results indicated that ITSC fault classification using ML
on air-gap magnetic field measurements from a single sensor can
yield good results. The logistic regression stacking classifier had
an accuracy of 0.8448, a sensitivity of 0.8456, and a precision of
0.9274. This means that the classifier correctly classified 84.48%
of all the samples in the hold-out dataset, and 84.56% of the
faulty samples present were correctly classified as such. Of the
samples that were classified as faulty, 92.74% were correctly
classified. Since a large portion of faults go undetected, this
fault detection system should therefore not be relied upon as the
only detection system. However, if the system alerts of a fault,
it would warrant investigation since it is likely to be correct.

A general trend during optimization was that linear ML mod-
els performed well and that the performance of nonensemble
classifiers increased as the complexity decreased. The worst
performance was exhibited by the KNN classifier, performing
worse than random chance.

Future work in this research includes the following:
1) using a combination of various sources of signals such

as vibration and stray magnetic field to achieve higher
accuracy and sensitivity in a classifier;

2) ITSC fault severity assessment using some of the same
methodology mentioned in this article;

3) application of ensemble stacking classifier in different
kinds of faults in synchronous generators such as eccen-
tricity fault and broken damper fault.

REFERENCES

[1] D. P. Kothari and I. J. Nagrath, Electric Machines. New York, NY, USA:
Tata McGraw-Hill Education, 2004. google-Books-ID: axGw7r3SOEMC.

[2] “08583: Elektrisitetsbalanse (MWh) 2010m01-2019m09.” [Online].
Available: http://www.ssb.no/statbank/table/08583/

[3] H. Ehya, I. Sadeghi, and J. Faiz, “Online condition monitoring of large
synchronous generator under eccentricity fault,” in Proc. 12th IEEE Conf.
Ind. Electron. Appl., 2017, pp. 19–24.

[4] I. Sadeghi, H. Ehya, J. Faiz, and A. A. S. Akmal, “Online condition
monitoring of large synchronous generator under short circuit fault—A
review,” in Proc. IEEE Int. Conf. Ind. Technol., 2018, pp. 1843–1848.

[5] J. Manyika et al., Unlocking the Potential of the Internet of Things.
New York, NY, USA: McKinsey. Library Catalog: www.mckinsey.com.
[Online]. Available: https://www.mckinsey.com/business-functions/
mckinsey-digital/our-insights/the-internet-of-things-the-value-of-
digitizing-the-physical-world

[6] J. Yun et al., “Comprehensive monitoring of field winding short circuits for
salient pole synchronous motors,” IEEE Trans. Energy Convers., vol. 34,
no. 3, pp. 1686–1694, Sep. 2019.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 04,2022 at 11:49:21 UTC from IEEE Xplore.  Restrictions apply. 



3294 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 5, MAY 2022

[7] J. A. Antonino-Daviu, M. Riera-Guasp, J. Pons-Llinares, J. Roger-Folch,
R. B. Pérez, and C. Charlton-Pérez, “Toward condition monitoring of
damper windings in synchronous motors via EMD analysis,” IEEE Trans.
Energy Convers., vol. 27, no. 2, pp. 432–439, Jun. 2012.

[8] Y. Park, S. B. Lee, J. Yun, M. Sasic, and G. C. Stone, “Air gap flux-
based detection and classification of damper bar and field winding faults
in salient pole synchronous motors,” IEEE Trans. Ind. Appl., vol. 56, no. 4,
pp. 3506–3515, Jul./Aug. 2020.

[9] M. Cuevas, R. Romary, J. Lecointe, F. Morganti, and T. Jacq, “Noninvasive
detection of winding short-circuit faults in salient pole synchronous ma-
chine with squirrel-cage damper,” IEEE Trans. Ind. Appl., vol. 54, no. 6,
pp. 5988–5997, Nov./Dec. 2018.

[10] M. Valavi, K. G. Jørstad, and A. Nysveen, “Electromagnetic analysis and
electrical signature-based detection of rotor inter-turn faults in salient-
pole synchronous machine,” IEEE Trans. Magn., vol. 54, no. 9, pp. 1–9,
Sep. 2018.

[11] L. Hao, Y. Sun, A. Qiu, and X. Wang, “Steady-state calculation and online
monitoring of interturn short circuit of field windings in synchronous
machines,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 128–138,
Mar. 2012.

[12] W. Yucai, M. Qianqian, and C. Bochong, “Fault diagnosis of rotor wind-
ing inter-turn short circuit for sensorless synchronous generator through
screw,” IET Elect. Power Appl., vol. 11, no. 8, pp. 1475–1482, 2017.

[13] J. S. Hsu and J. Stein, “Shaft signals of salient-pole synchronous machines
for eccentricity and shorted-field-coil detections,” IEEE Trans. Energy
Convers., vol. 9, no. 3, pp. 572–578, Sep. 1994.

[14] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven
perspective of fault detection and diagnosis,” IEEE Trans. Ind. Informat.,
vol. 9, no. 4, pp. 2226–2238, Nov. 2013.

[15] B. Chen, X. Wang, S. Yang, and C. McGreavy, “Application of wavelets
and neural networks to diagnostic system development, 1, feature extrac-
tion,” Comput. Chem. Eng., vol. 23, no. 7, pp. 899–906, 1999.

[16] S. M. Cruz and A. M. Cardoso, “Multiple reference frames theory: A new
method for the diagnosis of stator faults in three-phase induction motors,”
IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 611–619, Sep. 2005.

[17] A. Glowacz and Z. Glowacz, “Diagnosis of the three-phase induction
motor using thermal imaging,” Infrared Phys. Technol., vol. 81, pp. 7–16,
2017.

[18] B. M. Ebrahimi, M. Javan Roshtkhari, J. Faiz, and S. V. Khatami, “Ad-
vanced eccentricity fault recognition in permanent magnet synchronous
motors using stator current signature analysis,” IEEE Trans. Ind. Electron.,
vol. 61, no. 4, pp. 2041–2052, Apr. 2014.

[19] A. Widodo and B.-S. Yang, “Support vector machine in machine condition
monitoring and fault diagnosis,” Mech. Syst. Signal Process., vol. 21, no. 6,
pp. 2560–2574, 2007.

[20] S. Munikoti, L. Das, B. Natarajan, and B. Srinivasan, “Data-driven ap-
proaches for diagnosis of incipient faults in DC motors,” IEEE Trans. Ind.
Informat., vol. 15, no. 9, pp. 5299–5308, Sep. 2019.

[21] P. Janik and T. Lobos, “Automated classification of power-quality distur-
bances using SVM and RBF networks,” IEEE Trans. Power Del., vol. 21,
no. 3, pp. 1663–1669, Jul. 2006.

[22] A. Glowacz, “Fault diagnostics of acoustic signals of loaded synchronous
motor using smofs-25-expanded and selected classifiers,” Tehnički Vjesnik,
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