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Abstract

In this thesis Real Time Optimization (RTO) via Output Modifier Adaptation with Gaus-

sian Processes (MAy-GP) is implemented in an experimental lab rig representing a subsea

oil well network with gas lift. Traditional RTO aims to maximize the production and min-

imize the operational costs of a continuously operating process plant in real time using a

model. The optimized inputs will be optimal for the model, but not for the plant unless

the model is a perfect representation of the plant.

The Output Modifier Adaptation (MAy) approach can be a possible solution to the chal-

lenges related to traditional RTO. Unlike traditional RTO, MAy relies on a fixed steady-

state process model and has the theoretical ability to converge to plant optimum despite

plant-model mismatch. This is ensured by modifiers, which modify the original optimiz-

ation problem in such a way that plant optimum is achieved. This approach depends on

accurate plant gradients in order to ensure plant optimality. Obtaining accurate estimates

of plant gradients in real systems is challenging due to the presence of noisy measurements.

The gradient estimation step can be replaced by using Gaussian Processes (GPs). The

goal of this thesis is to investigate representing the plant-model mismatch by GPs and

using these GPs to calculate the modifiers needed for MAy. This is tested by simulations

and implementation in an experimental lab rig. There is a gap in the literature when it

comes to implementations of MAy in real systems, and this thesis will contribute to fill

this gap.

The proposed MAy-GP scheme is first applied to a simulation to study the performance of

the algorithm. The simulation results showed that the inputs with the MAy-GP algorithm

converged to the optimum when there was no noise present. Measurement noise was then

implemented in the simulation to match the noise level in the lab rig. In this simulation, it

was clear that the noise hampered the GPs. However, adequate performance was achieved.

The experimental results from the rig showed that the MAy-GP algorithm could not

predict accurate estimates of the curvature of the plant-model mismatch, due to the high

noise level. Thus, the GPs were not able to fully correct the model and the inputs did not

converge to the plant optimum.
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Sammendrag

I denne oppgaven blir Real Time Optimization (RTO) via Output Modifier Adaptation

med Gaussian Processes (MAy-GP) implementert i en eksperimentell lab rigg. Riggen rep-

resenterer et nettverk best̊aende av tre oljebrønner med gassløft. Tradisjonell RTO mak-

simerer profitten i industrielle prosessanlegg i sanntid ved bruk av en modell av systemet.

Små avvik i modellen kan føre til at systemet ikke konvergerer til optimalt punkt.

Output Modifier Adaptation (MAy) metoden kan løse noen av utfordringene til tradisjon-

ell RTO. Til forskjell fra tradisjonell RTO bruker MAy en fast modell av systemet som ikke

oppdateres underveis. Til tross for at det finnes avvik fra systemet i modellen, vil MAy

fortsatt ha mulighet til å konvergere til optimalt punkt for systemet. Denne egenskapen

kommer av at MAy bruker modifikatorer til å modifisere det originale optimaliseringsprob-

lemet. Modifikatorene krever nøyaktige målinger og estimater av gradienter i systemet,

noe som kan være svært krevende å f̊a til med høye støyniv̊aer.

Estimering av gradienter kan bli erstattet med å bruke Gaussian Processes (GPs). Målet

i denne oppgaven er å undersøke muligheten for å bruke GPs til å representere avviket

mellom systemet og modellen, og deretter bruke GPs til å estimere modifikatorene som

trengs. Dette er undersøkt i en simulering av den eksperimentelle lab riggen og ved

eksperimenter i den faktiske lab riggen. I litteraturen finnes det f̊a implementasjoner av

MAy i ekte systemer, og denne oppgaven vil forsøke å fylle dette tomrommet.

MAy-GP er først implementert i en simulering av den eksperimentelle riggen. Resultatet

fra simuleringen viste at algoritmen var i stand til å optimalisere systemet n̊ar det ikke var

støy til stede i målingene. Støy i målingene ble deretter implementert i simuleringen for å

gjøre simuleringen mer realistisk. I denne simuleringen ble det tydlig at et høyt støyniv̊a

p̊avirket ytelsen til algoritmen, og et avvik fra optimalt punkt ble observert. Resultatene

fra implementasjonen i lab riggen viste at støyniv̊aet var for høyt til å estimere nøyaktige

estimater av avviket mellom modell og system. Som følge at dette var ikke GPs i stand

til å korrigere for avviket og input-ene konvergerte ikke til optimalt punkt for systemet.
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Chapter 1

Introduction

1.1 Motivation

Optimal operation of continuously operating process plants is of major economic

importance in the chemical industry, such as the o↵shore production of oil and gas.

Optimal operation involves meeting goals in di↵erent time scales ranging from long-term

planning to fast regulation for stable operation. Realizing all these goals as a whole is an

unrealistic task. Operation is therefore decomposed into di↵erent decision making layers.

Figure 1.1 illustrates the di↵erent decision making layers, where the RTO layer is of

interest in this thesis. Real Time Optimization (RTO) has become a standard practice to

improve production during the past years, especially in petrochemical processes [1]. RTO

seek to minimize the cost or maximize the production of hour-by-hour operation, while

satisfying the operational constraints. This layer typically provides setpoints to the lower

layer [2]. The lower layer can be, among other things, a Model Predictive Controller

(MPC) or a PID controller.

Figure 1.1: Plant decision hierarchy. Figure recreated from [3].
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Chapter 1. Introduction

Traditional RTO is typically based on rigorous steady-state process models. The model

parameters are updated by incorporating real time measurements of the process plant.

After this step, an economic optimization is carried out with the updated model

parameters to generate optimal setpoints for the process [4]. This technique will give

adequate results if an appropriate process model and algorithm is used. However,

optimal operation can be di�cult to achieve with inaccurate process models or in the

presence of disturbances [5]. Plant models are often based on an oversimplification of the

process of interest, which leads to plant-model mismatch and poor results.

An RTO method called Modifier Adaptation (MA) can be used for addressing this issue.

The MA approach modifies the optimization problem in every iteration in such a way

that a Karush-Kuhn-Tucker (KKT) point for the model coincide with the real optimum

of the plant. That is, MA enforce plant optimality despite the presence of parametric

and structural plant-model mismatch. The MA scheme uses measurements of the plant

and estimates of plant gradients to calculate zeroth-order and first-order modifiers. In

standard MA, the modifiers are used for modifying the cost and constraint functions in

the optimization problem [5]. An alternative MA strategy has been proposed, wherein

the modifiers are applied to the outputs rather than to the cost and constraint functions

[4]. This method is called Output Modifier Adaptation (MAy) and is of main interest in

this thesis. The gradient estimation step is the main challenge in both implementations,

especially in the case of noisy measurements.

Gaussian processes (GPs) is a well known tool to estimate unknown functions in the

machine learning community. Moreover, GPs are also gaining attention in the field of

control and optimization, due to its simplicity and wide range of uses. This approach is a

probabilistic, non-parametric modeling approach which has the ability to capture

complex unknown functions using very few variables [6]. This technique can be used for

addressing the challenging gradient estimation step in the context of MAy. The idea is to

use GPs to represent the plant-model mismatch in presence of noisy measurements. In

other words, the usual modifiers in the MAy scheme are replaced by new modifiers

calculated from GPs. To the best of the author’s knowledge, combined MAy-GP schemes

have not been proposed before. However, previous work that combine the standard MA

and GPs are for example found in [6], [7] and [8], where the proposed schemes are

applied to the Williams–Otto reactor problem.

There is a gap in the literature when it comes to MAy implementations in real systems.

The implementations of MAy in the literature are mostly studied in simulations, like in

[9] and [10]. Implementing MAy with GPs in a lab-scale setup is valuable to whether

this approach can be used for optimizing real process systems in the industry.

2



Chapter 1. Introduction

1.2 Scope

The main goal of this thesis is to implement Real Time Optimization via Output

Modifier Adaptation with Gaussian processes (MAy-GP) in an experimental lab rig. The

lab rig represents a subsea oil well network with gaslift. The optimization objective

function to be maximized is the profit, which in this case only depends on the

production. The thesis covers:

• Implementation of MAy-GP in a simulation of the lab rig. This simulation consists

of a dynamic model representing the behaviour of the lab rig. The simulation is

used to study the performance of the algorithm, as well as to study the tuning

parameters that a↵ect the performance before it is applied to the actual lab rig.

• Implementation of MAy-GP in the actual experimental lab rig. The performance

of the algorithm is compared to a previously developed traditional RTO algorithm.

This thesis is built on the specialization project from 2021, presented in [11] by the same

author. Some of the sections in Chapter 2 and Chapter 3 are hence based on the work

performed in the specialization project. The project work from 2021 covers

implementations of standard MA and MAy in the same simulation of the experimental

lab rig.

3



Chapter 2

General Concepts and Theory

In this chapter general concepts and theory will be introduced. This includes a general

overview of the traditional steady-state Real Time Optimization approach, the Modifier

Adaptation approach and Gaussian Processes. Section 2.2 is rewritten from the work

performed in the specialization project presented in [11] by the same author.

2.1 Real Time Optimization

The most commonly used steady-state Real Time Optimization (RTO) method is the

two-step approach. This approach is referred to as the traditional RTO approach and

consists in solving two optimization problems [12]. The first one uses measurements of

the outputs y of the process plant to estimate model parameters and unmeasured

disturbances d, such that the model error is minimized. The second optimization

problem minimizes the cost, or alternatively optimizes the revenues of the plant with the

updated model parameters to find a new optimal input u⇤. A block diagram of the

traditional RTO is shown in Figure 2.1. The RTO layer typically provides the input as a

setpoint to a lower regularization layer. In order to execute the optimization,

steady-state has to be detected. The issue of steady-state detection is not covered in this

thesis.

Traditional RTO is depending on rigorous and accurate process models. These models

can be very costly to develop and obtaining them requires a solid understanding of the

process. Incorrect model structures will lead to plant-model mismatch, which can result

in the algorithm converging to a sub-optimal operating point. There are also

computational issues associated to solving and simulating detailed and complex models

online, which can lead to convergence issues and numerical failure. An RTO variant

called Modifier Adaptation allows to overcome these challenges by introducing

appropriate corrections to the model in the optimization problem.

4



Chapter 2. General Concepts and Theory

Figure 2.1: Traditional steady-state RTO block diagram. u is the input, y is the output measurements

and d is the unmeasured model parameters and disturbances.

2.2 Modifier Adaptation

While traditional RTO uses measurements of the plant to improve the steady-state

model, Modifier Adaptation relies on a fixed steady-state process model. A block

diagram for MA is shown in Figure 2.2. The gradient estimation block and the modified

optimization problem block are di↵erent from the traditional RTO block diagram. The

idea behind this approach is to modify the optimization problem to enforce plant

optimality, despite the presence of structural plant-model mismatch. This is done

through modifiers, which are calculated from estimated plant gradients and

measurements. The standard MA adds modifiers to the cost and constraint functions.

An alternative is Output Modifier Adaptation (MAy), which adds modifiers to the

outputs in the optimization problem.

Using an MA approach can solve some of the traditional RTO challenges, but there are

still some challenges which need to be addressed:

• Steady-state wait time. MA and MAy are, as traditional RTO, steady-state

optimization methods. The plant needs time to stabilize before the next iteration,

which can be very time consuming. For instance, in case of frequent disturbances.

• Accurate plant measurements are needed for detecting steady-state, and especially

for gradient estimation. The gradients can not be measured directly and they have

to be estimated based on noisy plant measurements. There are many methods

available for estimating plant gradients. One very common approach is to use

Finite-di↵erence approximation (FDA), described in Appendix A. This method is a

steady-state perturbation method, which relies on steady-state data. The FDA

approach requires usually nu + 1 steady-state operating points to estimate the

5



Chapter 2. General Concepts and Theory

Figure 2.2: Modifier Adaptation block diagram. u is the input, y is the output measurements and d is the

disturbances.

gradients, where nu is the number of inputs [4]. Such methods includes noisy

measurements, which may lead to poor gradient estimates.

• Dynamic limitations. Since MA and MAy are steady-state optimization methods,

they do not take the dynamics of the process into account. The RTO layer

calculates the optimal operating point without considering the transients. That is,

the RTO layer does not consider how to actually reach the optimal operating point.

The following sub sections include detailed mathematical expressions relevant to the

problem formulation. First, the steady-state optimization problem is introduced,

followed by the necessary conditions of optimality. Then, the standard MA and the MAy

scheme is presented.

2.2.1 Steady-State Optimization Problem

The steady-state production optimization problem for the plant can be formulated as:

min
u

Jp(u) := J(u,yp(u,d))

s.t. Gp(u) := g(u,yp(u,d))  0

u
L  u  u

U
(2.1)

The notation p is used for variables associated with the plant. u 2 Rnu denotes the

input variables and yp 2 Rny denotes the measured output variables of the plant. nu and

ny are the number of inputs and outputs respectively. Jp: Rnu ⇥ Rny ! R is the

operational costs of the plants which should be minimized. This function is the objective

6



Chapter 2. General Concepts and Theory

function in the optimization problem. g is a set of ng inequality constraint functions,

where gi: Rnu ⇥ Rny ! R, i = 1, . . . , ng. The inequality constraints are often operational

limitations. yp(u,d) represents the steady-state input-output mapping of the plant,

where d 2 Rnd are representing plant parameters and disturbances. nd is the number of

plant parameters and disturbances. uL and u
U are the lower and upper bounds of u

respectively. These bounds are not dependent on yp and are therefore not a↵ected by

uncertainty. The objective function and constraint functions are assumed to be known

directly from the measurements. Since yp(u,d) is typically unknown, a steady-state

process model is used for solving the optimization problem (2.1)

f(u,x,d) = 0

y = h(u,x,d)
(2.2)

where f is the steady-state process model and y 2 Rny is the output variables predicted

by the model. x 2 Rnx is representing the state variables. For simplicity, y can be

expressed as a function of only u and d. The solution u
⇤ to the original optimization

problem (2.1) can be obtained by solving to the following NLP problem:

u
⇤ = argmin

u
J(u) := J(u,y(u,d))

s.t. G(u) := g(u,y(u,d))  0

u
L  u  u

U
(2.3)

However, it is not guaranteed that the optimal solution to this problem, u⇤, coincide

with the optimal plant value u
⇤
p [5]. In the presence of plant-model mismatch, it could be

likely that u⇤ converge to a sub-optimal operating point, due to an inaccurate process

model.

2.2.2 Necessary Conditions of Optimality

The Necessary Conditions of Optimality (NCO) has to be satisfied in order to obtain a

feasible point upon convergence. The local minima of the optimization problem in (2.3)

can be characterized by the Karush-Kuhn-Tucker (KKT) conditions. A solution u
⇤ is a

KKT point if there exist unique Langrange multipliers µ⇤ 2 Rng such that the following

holds:

G  0, µT
G = 0, µ � 0

@L
@u

=
@J

@u
+ µT @G

@u
= 0

(2.4)
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Chapter 2. General Concepts and Theory

where L(u, µ) := J(u) + µT
G(u) is the Lagrangian function. The KKT conditions

alone do not su�ciently charaterize an optimum and satisfy the NCO. Two additional

conditions must hold; The Linear Independence Constraint Qualification (LICQ) and a

second order necessary condition. LICQ requires that the gradients of the active

constraints are linearly independent at u⇤. The second order necessary conditions

require that the reduced Hessian of the Lagrangian is positive semi-definite at u⇤ [4].

2.2.3 Standard MA Scheme

The standard MA scheme uses measurements of the plant constraints and estimates of

plant gradients to modify the cost and constraint functions in the optimization problem.

The modification is done in such a way that a KKT point for the model coincide with

the optimum of the plant. At the k -th RTO iteration with input uk, the modified cost

and constraint functions become:

Jm,k(u) := J(u) + ✏
J
k + (�J

k )
T (u� uk) (2.5)

Gm,i,k(u) := Gi(u) + "
Gi
k + (�Gi

k )T (u� uk)  0, i = 1, . . . , ng (2.6)

with modifiers "Jk 2 R, "Gi
k 2 R, �J

k 2 Rnu and �Gi
k 2 Rnu given by:

"
J
k = Jp(uk)� J(uk)

"
Gi
k = Gp,i(u)�Gi(u), i = 1, . . . , ng

(�J
k )

T =
@Jp

@u
(uk)�

@J

@u
(uk)

(�Gi
k )T =

@Gp,i

@u
(uk)�

@Gi

@u
(uk), i = 1, . . . , ng

(2.7)

where ng is the number of constraints. The modifiers "Jk and "
Gi
k represent the di↵erences

between the plant values and the predicted values at the k -th RTO iteration. �J
k and

�Gi
k represent the di↵erences between the plant gradients and the model gradients at the

k -th iteration. A graphical representation of the first-order modification of the constraint

Gi at uk is shown in Figure 2.3.

8



Chapter 2. General Concepts and Theory

Figure 2.3: Graphical representation of the first-order modification of the constraint Gi at uk. Figure from

[4].

The next optimal input u⇤
k+1 is found by solving the modified optimization problem:

u
⇤
k+1 = argmin

u
Jm,k(u) := J(u) + (�J

k )
T
u

s.t. Gm,i,k(u) := Gi(u) + "
Gi
k + (�Gi

k )T (u� uk)  0, i = 1, . . . , ng

u
L  u  u

U
(2.8)

The constant term "
J
k � (�J

k )
T
uk does not a↵ect the solution and hence only the linear

term in u is included in the objective function. Since the modifiers and the optimal

inputs are sensitive to measurement noise, first-order filters are often applied to both the

modifiers and the optimal inputs, as shown in Eqs. (2.9).

"
Gi
k+1 = (1� bi)"

Gi
k + bi(Gp,i(u)�Gi(u)), i = 1, . . . , ng

(�J
k+1)

T = (1� d)(�J
k )

T + d(
@Jp

@u
(uk)�

@J

@u
(uk))

(�Gi
k+1)

T = (1� qi)(�
Gi
k )T + qi(

@Gp,i

@u
(uk)�

@Gi

@u
(uk)), i = 1, . . . , ng

uk+1 = uk +K(u⇤
k+1 � uk)

(2.9)

The filter coe�cients bi, d and qi have values (0,1] [5]. Small filter coe�cient values give

smaller iteration steps, since a higher ratio of the previous value is included in the

updated one. The input filter matrix is a diagonal matrix given by K =

diag(k1, . . . , knu), where the filter values ki, i = 1, . . . , nu, have values (0,1]. The input

filter restricts the new input to move too far from the previous operating point.

9



Chapter 2. General Concepts and Theory

2.2.4 MAy Scheme

Output Modifier Adaptation (MAy) is an alternative to the standard Modifier

Adaptation method. Instead of modifying the cost and constraint functions, the outputs

y are modified. At the k -th RTO iteration, the expression for the modified outputs are

as follows:

ym,k(u) := y(u) + "yk + (�y
k)

T (u� uk) (2.10)

with "yk 2 Rny and �y
k 2 Rnu⇥ny given by:

"yk = yp(uk)� y(uk)

(�y
k)

T =
@yp

@u
(uk)�

@y

@u
(uk)

(2.11)

The next optimal inputs u⇤
k+1 are found by solving the following modified optimization

problem:

u
⇤
k+1 = argmin

u
J(u,ym,k(u))

s.t. ym,k(u) = y(u) + "yk + (�y
k)

T (u� uk)

Gi(u,ym,k(u))  0 i = 1, . . . , ng

u
L  u  u

U

(2.12)

First-order filters are also applied to these modifiers and to the optimal inputs, as shown

in Eqs. (2.9).

The gradient estimation step can be replaced by using Gaussian Processes to represent

the plant-model mismatch in presence of noisy measurements. A general overview of

Gaussian Processes will be presented in the next section to illustrate how it can be

applied to represent the plant-model mismatch. Finally, the combined MAy and GP

scheme is presented.

2.3 Gaussian Processes

Traditional non-linear regression methods, such as the Least Squares Estimator approach

[13], provide parameters for a function that fit the observed data set best. This approach

has an obvious problem in that it has to decide a class of functions. If the data is not

well modeled by the function, then the predictions will be poor. Overfitting the function

10



Chapter 2. General Concepts and Theory

to the data by increasing the flexibility (e.g. higher order functions) may lead to a good

fit to the observed data, but perform bad on test predictions [14]. Moreover, there may

be an infinite number of functions that fit the observed data points well. Gaussian

Processes can be used for addressing this issue.

A fitted Gaussian Process (GP) defines a probability distribution over all possible

functions that fit the data set [15]. This section will introduce the most important

concepts of GPs. A more comprehensive introduction and mathematical derivations can

be found in [14].

2.3.1 General Overview

A Gaussian Process is a non-parametric, Bayesian approach to regression and aims to

describe unknown complex functions using very few variables. The Bayesian approach

specifies a prior distribution, based on a priori knowledge, and updates this distribution

based on observed data using Bayes’ rule. The updated distribution is called the

posterior distribution [16].

A GP can be defined as follows:

Definition 2.3.1 (Gaussian Process). A Gaussian Process is a collection of random

variables, any finite number of which have a joint Gaussian distribution [14].

Consider an unknown function f : Rnu ! R that is of interest to be approximated by a

GP. The function is dependent on the inputs u 2 Rnu , where nu denotes the number of

inputs. The GP prior is specified with a mean function m(u) and a covariance function

k(u,u’). Within the GP prior, prior knowledge about the space of functions can be

incorporated [16]. The mean function and the covariance function are defined as:

m(u) = E[f(u)]

k(u,u0) = E[(f(u)�m(u))(f(u0)�m(u0))]
(2.13)

The GP can then be written as:

f(u) ⇠ GP (m(u), k(u,u0)) (2.14)

The specification of the mean function and the covariance function gives a prior

distribution over functions. To illustrate this, n input points are chosen, which is given

by U⇤ = [u1 u2 . . . un]T 2 Rn⇥nu . The inputs carry a subscript because they act as test

inputs, and are not actually observed points. Then the corresponding covariance matrix

11
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K⇤ 2 Rn⇥n is made using the chosen covariance function elementwise. The covariance

matrix is given by:

K⇤ =

2

666664

k(u1,u1) k(u1,u2) . . . k(u1,un)

k(u2,u1) k(u2,u2) . . . k(u2,un)
...

...
...

...

k(un,u1) k(un,u2) . . . k(un,un)

3

777775
=

2

666664

k11 k12 . . . k1n

k21 k22 . . . k2n
...

...
...

...

kn1 kn2 . . . knn

3

777775
(2.15)

where the diagonal elements represent the self covariance of the random variables, which

is equal to the variance [17]. A random Gaussian vector f⇤, consisting of random

generated values, with this covariance matrix can be generated and written as:

f⇤ ⇠ N(0,K⇤) (2.16)

where a zero mean function is chosen for simplicity. See [14] for a full introduction to

multivariate Gaussian distributions and how to generate random samples.

The generated values can then be plotted as a function of the inputs. The left plot in

Figure 2.4 shows three such random samples, where the squared exponential covariance

function was used. This covariance function will be further described in the following

section. The right plot in Figure 2.4 shows three random functions drawn from the GP

posterior distribution. The posterior functions are constructed from observed data

points. The figure illustrate how functions that disagree with the observations are

rejected. The shaded region in both plots shows a 95% confidence region. This means

that the drawn distributions will fall inside this region 95% of the time.

Figure 2.4: Three functions drawn at random from a GP prior distribution and three random functions

drawn from the GP posterior after 5 datapoints have been observed. The shaded region in both plots is

showing a 95% confidence region. Figure from [14].
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2.3.2 Covariance Functions

The properties of a GP is highly dependent on the covariance function, as it includes the

assumptions about the function of interest. This function defines the similarity between

outputs. A basic assumption is that points with close input values will have similar

outputs [14]. The covariance function is also often referred to as the kernel function, and

is formulated as:

cov(f(up), f(uq)) = k(up,uq) (2.17)

Note that the covariance between the outputs is a function of the inputs. A valid

covariance function must give a positive definite covariance matrix, which means that it

has to be symmetric and invertible. One well known and widely used covariance function

is the squared exponential covariance function. This function is defined as:

kSE(up,uq) = �
2
fexp(�

||up � uq||2

2l2
) (2.18)

where �f and l are the hyperparameters of the covariance function. The output variance

�f determines the average distance of the function away from its mean and is just a scale

factor [18]. The factor exp(� ||up�uq ||2
2l2 ) has a maximum value of 1 and a minimum value

of 0. The scale factor hence allows a di↵erent output range. l is defined as the

characteristic length scale and can be thought of as the distance one can move in input

space before the function value would change significantly [14]. Given a set of

observations, the hyperparameters are learned by maximizing the log-marginal likelihood

[6].

Realistic modelling situations most often contain noisy measurements and not direct

access to the true function values. It is assumed that the noisy measurements are given

by:

y = f(u) + ⌫ (2.19)

where the measurement noise ⌫ ⇠ N (0, �2
n) is independent and identically distributed.

The noise follows a Gaussian distribution with zero mean and variance �
2
n. In these cases

the covariance function must be combined with a term which accounts for the noise.

This allows the GP to not pass through every data point due to noise in the outputs.

The covariance between the outputs can now be written as in Eq. (2.20), where �pq is a

Kronecker delta which is one if p = q and zero otherwise [14]. This is because the noise

is independent and not correlated between di↵erent outputs.
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cov(yp, yq) = k(up,uq) + �
2
n�pq (2.20)

The covariance can also be written in matrix form, as in Eq. 2.21. The �
2
nI term is in

this case a diagonal matrix with the variance �
2
n of each output on the diagonal.

cov(y) = K+ �
2
nI (2.21)

2.3.3 Prediction using Noisy Observations

Consider the unknown function f which is of interest to be predicted by GP regression.

The most interesting part is not to draw random functions from the prior, but rather the

incorporation of observed data. The observed data is often called training data and

provides important knowledge about the function of interest. The observations in this

case are noisy and are given by Eq. 2.19. Given a data set of n such observations

D = {(ui, yi)|i = 1, . . . , n}, where the input vector is given as U = [u1 u2 . . . un]T 2
Rn⇥nu and the output vector as y = [y1 y2 . . . yn]T 2 Rn. It is preferable to make

predictions for a new single input u⇤ (test input) that is not already observed.

The joint distribution of the observed outputs y and the function value f⇤ at the test

input u⇤ according to the prior is:

"
y

f⇤

#
⇠ N

 
0,

"
K+ �

2
nI k⇤)

k
T
⇤ k⇤⇤

#!
(2.22)

where f⇤ is a scalar. K 2 Rn⇥n denotes the matrix of the covariances evaluated at all

pairs of observed inputs. k⇤⇤ denotes the self covariance evaluated at the test input, given

by k⇤⇤ = k(u⇤,u⇤). k⇤ 2 Rn denotes the covariances evaluated at all the observed inputs

combined with the test input, given by k⇤ = [k(u1,u⇤) k(u2,u⇤) . . . k(un,u⇤)]T [17].

The posterior distribution over functions restricts the joint prior distribution to only

contain functions that agree with the observed data set, as illustrated in Figure 2.4. This

is done by conditioning the joint Gaussian prior on the observations. For further details,

see [14]. The conditioned GP, i.e. the GP posterior, is given by:

f⇤|U,y,u⇤ ⇠ N (f̄⇤,V[f⇤]) (2.23)

with conditioned mean f̄⇤ and variance V[f⇤] given by:

f̄⇤ = k
T
⇤ [K+ �

2
nI]y (2.24)
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V[f⇤] = k⇤⇤ � k
T
⇤ [K+ �

2
nI]

�1
k⇤ (2.25)

To simplify the notation, a conditioned GP predicting f⇤ at input u⇤, given training data

(U,y) is shown in Eq. (2.26). This equation will be used throughout the thesis.

f⇤ = (GP )f (u⇤|U,y) (2.26)

2.3.4 MAy Combined with Gaussian Processes

In the proposed MAy-GP scheme in this thesis, GPs are used to represent the

plant-model mismatch in the system outputs. The GPs will then be used to calculate

alternative modifiers to the ones seen in Section 2.2.4. The functions f that describe the

plant-model mismatch and are of interest to be fitted by GPs are given as:

f = [f1 f2 . . . fny ]
T (2.27)

with fi = (yp,i � yi). The predicted function value of each function are then given by Eq.

(2.26). The GPs need to be trained at every iteration, since the observed data (U,y)

includes more data points after every iteration. Note that the observed outputs y in this

data set are the observed mismatch. The optimal input u⇤
k+1 is found by solving the

following optimization problem:

u
⇤
k+1 = argmin

u
J(u,ym,k(u))

s.t. ym,k(u) = y(u) + "
yGP
k + (�

yGP
k )T (u� uk)

Gi(u,ym,k(u))  0 i = 1, . . . , ng

u
L  u  u

U

(2.28)

with the GP modifiers "
yGP
k 2 Rny and �

yGP
k 2 Rnu⇥ny given by:

"
yGP
k = (GP )f(uk|Uk,yk) =

2

66666664

(GP )f1(uk|Uk,yk)

(GP )f2(uk|Uk,yk)
...

(GP )fny (uk|Uk,yk)

3

77777775

(2.29)
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(�
yGP
k )T =

@(GP )f(uk|Uk,yk)

@uk
=

2

666666664

@(GP )f1 (uk|Uk,yk)
@uk

@(GP )f2 (uk|Uk,yk)
@uk
...

@(GP )fny (uk|Uk,yk)
@uk

3

777777775

(2.30)

where (Uk,yk) is the observed data set at the k-th iteration.

The optimal inputs are filtered with a first-order filter, like in the previous sections:

uk+1 = uk +K(u⇤
k+1 � uk) (2.31)

with K = diag(k1, . . . , knu), where the filter values ki, i = 1, . . . , nu, have values (0,1].

The filter is useful because it keeps the predictions closer to the region where the GPs

have observed data points. Filters on the modifiers should not be necessary since the

GPs handle noise internally.
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Chapter 3

System Description

This chapter contains an overall discription of the system of interest in this thesis. It

includes a general overview of subsea oil well networks, a description of the lab rig setup,

a presentation of the optimization problem and the process model and finally, a

description of the dynamic model used in the MATLAB simulation.

3.1 Subsea Oil Well Networks

The overall goal in subsea oil production is to maximize the production of oil from the

reservoirs. Typically, the reservoir pressure is what drives the fluids from below the

seafloor to the top facilities trough risers. Artificial lifting methods, such as a gas lift,

can be applied to the system if this pressure is not large enough. A simplified figure of

the system of interest is shown in Figure 3.1, where a gas lift is applied to the system.

The idea of gas lift consists of injecting excess gas that is produced at the bottom of a

well. The injected gas reduces the bulk density of the system and decreases the

hydrostatic pressure on the reservoir. Since the reservoirs typically are located several

kilometers below sea level, such a decrease on the hydrostatic pressure has a significant

e↵ect on the production rate. However, if the gas injection rate becomes too large, the

frictional pressure drop e↵ect dominates and the injected gas will have a negative e↵ect

[19]. The gain of the oil production by injecting gas is also dependent on the outflow

from the reservoir, which can vary.
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Figure 3.1: Simple model diagram of one gas lifted well. Qg is the gas lift rate and Ql is the oil production

rate.

3.2 Experimental Lab Rig Setup

The experimental rig represents a subsea oil well network with three parallel gas lifted

wells. The setup in the rig uses water and air as working fluids instead of oil and gas.

This is a simplification of the system, but the gas lift phenomenon is not influenced. A

simplified flowsheet of the rig is shown in Figure 3.2.

The reservoir consists of a tank, a pump and three control valves. The di↵erent valve

openings represent di↵erent behaviours of the reservoir and can be manipulated. The

pump outlet pressure PI104 represents the reservoir pressure and the pump rotation is

kept constant by a PI controller. The three wells consist of three parallel hoses of 1.5 m

with an inner diameter of 2 cm. Air is injected approximately 10cm after the valve

openings of the reservoir. Three PI controllers are used for controlling the gas flowrates,

whose setpoints are the system inputs. The risers are consisting of three 2.2 m high

hoses with and inner diameter of 2 cm, like the well hoses. The top facilities are

represented by a separation tank.

Figure 3.2: Simple flowsheet of the experimental rig. Figure from [19].
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The system measurements are the well top pressure (PI101, PI102 and PI103), the pump

outlet pressure (PI104), the liquid flowrates (FI101, FI102, FI103) and the gas flowrates

(FI104, FI105, FI106). The reservoir valve openings (CV101, CV102, CV103) are known

disturbances in the experiments. These valve openings will be referred to as vo1 , vo2 and

vo3 respectively throughout the thesis.

3.3 The Optimization Problem

The objective is to maximize the economic profit J by determine the optimal gas

injection rate (the setpoints of flow controllers FIC104, FIC105 and FIC106). J is a

function of the liquid flowrates. The inputs u and the outputs y are:

u = [Qg1 Qg2 Qg3 ]
T

y = [Ql1 Ql2 Ql3 ]
T

where Ql1 , Ql2 and Ql3 are the liquid flowrates FI101, FI102 and FI103 respectively.

Qg1 , Qg2 and Qg3 are the setpoints to the flow controllers FIC104, FIC105 and FIC106

respectively.

The three parallel wells have di↵erent priority in the objective function J due to

economic reasons. This is indicated by using di↵erent weights. A gas availability

constraint and gas injection bounds have to be respected. Maximum gas availability is

7.5 sL/min and the upper and lower bounds of each gas injection rate is 1 and 5 sL/min

respectively. The optimization problem becomes:

max
Qg1 , Qg2 , Qg3

J = 20Ql1 + 10Ql2 + 30Ql3

s.t. Qg1 +Qg2 +Qg3  7.5,

1  Qg1 , Qg2 , Qg3  5

(3.1)

3.4 Model Equations

Instead of relying on physical knowledge to obtain the steady-state process model, it is

chosen to represent the process by using a simple mathematical expression for describing

the input-output relationship in each well. The three wells in the experimental rig are

independent, which means that one well is only a↵ected by one gas injection rate and

one valve opening. It is chosen to use one polynomial per well, instead of more complex

model structures. Polynomials are linear in the parameters, and can represent the first

and second order e↵ects of the inputs on the outputs. Thus, this model structure is also
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referred to as simple. The idea of using a simplified model of the process is to study if it

can be used in the optimization and still give good results, even though it is simple.

Di↵erent steady-state models of each well in the experimental rig were obtained from an

experiment, described in the project work presented in [11]. the Least Squares Estimator

approach was used to fit the models to the data. Hence, all the obtained models were

linear with respect to the parameters. Statistical methods were then used for evaluation,

and one of the model structures turned out to be preferred over the other ones. The

chosen model structure to be implemented in the RTO layer is:

Ql = ✓1 + ✓2Qg + ✓3vo + ✓4Q
2
g + ✓5v

2
o (3.2)

where Ql is the liquid flow rate, Qg is the gas flowrate and vo is the valve opening. The

above model is shown for one well, so there are in total three such relationships:

Qli = ✓1i + ✓2iQgi + ✓3ivoi + ✓4iQ
2
gi + ✓5iv

2
oi , i = 1, 2, 3 (3.3)

The parameters ✓1i , ✓2i , ✓3i , ✓4i and ✓5i for i = 1, 2, 3 are constant and their numerical

values are shown in Table 3.1.

Table 3.1: Estimated model parameters.

✓ Well 1 Well 2 Well 3

✓1 0.493 -0.274 -0.883

✓2 0.300 0.459 0.620

✓3 19.312 20.102 21.313

✓4 -0.015 -0.037 -0.064

✓5 -14.338 -14.639 -15.714

3.5 Experimental Rig Simulation Description
1

Before testing the optimization method in the actual experimental lab rig, some

simulation was done using a rigorous first-principles model as the plant, while the simple

model of Section 3.4 is used in the RTO layer for economic optimization purposes.

The model (plant in the simulation) of the three gas lifted wells is obtained from [20].

The model has been implemented in MATLAB to test and tune di↵erent optimization

methods before they have been applied to the experimental rig. A model diagram is

shown in Figure 3.3. The model uses mass balances of the di↵erent phases, density

1
Section taken from the project work presented in [11] by the same author.
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models, pressure models and flow models, which become the following di↵erential

algebraic equation (DAE):

ẋi = fi(xi, zi,ui,pi)

gi(xi, zi,ui,pi) = 0 8i 2 N = {1, . . . , nw}
(3.4)

where the subscript i is referring to a well in the set N . xi is the di↵erential states, zi is

the algebraic states, ui is the decision variables and pi is the uncertain variables. nw is

the number of wells, i.e. nw = 3 in this case. f i is the set of di↵erential equations and gi

is the set of algebraic equations. The MATLAB code with these equations is shown in

Appendix B.

Figure 3.3: Model diagram of one single well. Figure from [19].

The di↵erential states, the algebraic states and the decision variables are given by:

xi = [mgi mli ]
T

zi = [wli wtotali prhi pbii ⇢mix ⇢gi wgouti wlouti ]
T

ui = [Qgi voi ppump]
T

(3.5)

where mgi is the gas hold up and mli is the liquid hold up. wli is the water rate from the

reservoir and wtotali is the total well production rate. prhi is the riser head pressure and

pbii is the pressure before injection point. ⇢mix is the mixture density in the system and

⇢gi is the density of the gas. wgouti and wlouti is the well outlet gas and liquid outlet

flowrate respectively. Qgi is the gas lift injection rate, voi is the valve opening from the

reservoir and ppump is the reservoir pressure.

Note that the valve opening vo is included as a decision variable in the model, but its

seen as a (measured) disturbance in the simulation. ppump is held at a constant value in

the simulation.
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Methodology

This chapter presents the building blocks for the implementation of Output Modifier

Adaptation combined with Gaussian Processes (MAy-GP) in the experimental rig. The

model used for optimization purposes is the steady-state model described in Section 3.4

and given by Eq. (3.3). The optimization problem is Problem (3.1). The inputs u and

the outputs y are:

u = [Qg1 Qg2 Qg3 ]
T

y = [Ql1 Ql2 Ql3 ]
T

4.1 The MAy-GP Algorithm

A block diagram of MAy-GP is shown in Figure 4.1. In order to optimize the system,

GPs representing the mismatch between plant outputs and model outputs have to be

trained. The mismatch is given as functions f :

f = [(Qp
l1
�Ql1) (Q

p
l2
�Ql2) (Q

p
l3
�Ql3)]

T (4.1)

where the notation p is used to represent the plant. The GPs are updated at every

iteration, since more data points are added to the observed data sets. There are three

independent data sets in this case, which is written as (Uk,yk)i, where i = 1, 2, 3

represents the well number and k represents the MAy-GP iteration number. This is

because the wells are independent, which means that each of the three wells are only

depending on one gas injection rate and one valve opening. Each observed data point in

these data sets can be written as (Uk, (Q
p
l �Ql)k)i. (Q

p
l �Ql)k 2 R is the observed

mismatch at the k-th iteration. Uk 2 R2 consists of both the gas injection rate Qgi and

the valve opening voi at the k-th iteration. The valve openings are seen as disturbances
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and not as inputs, but since they are measured they are introduced as predictors in the

GP fitting. The input vector to the GPs is therefore on the form

Uk = [U0 U1 . . . Uk�1 Uk]T , and the observed mismatch given to the GPs is on the

form yk = [(Qp
l �Ql)0 (Qp

l �Ql)1 . . . (Qp
l �Ql)k�1 (Qp

l �Ql)k]T . The squared

exponential covariance function and the zero mean function are used in the prediction of

GPs.

Figure 4.1: MAy-GP block diagram, with u = [Qg1 Qg2 Qg3 ]
T
, y = [Ql1 Ql2 Ql3 ]

T
and d = [vo1 vo2 vo3 ]

T
.

The i notation is associated with well number (1-3).

It is required that the system reaches steady-state before the selection of new observed

data. Based on previous knowledge, a sampling time of 60 seconds is enough to

guarantee steady-state of the system. Measurements are given every second, and the

observed plant outputs is an average of the last 10 measurements to filter some of the

noise. The trained GPs will then be used in the modifier calculation. The modifiers "
yGP
k

2 R3 and �
yGP
k 2 R3⇥3 are calculated as follows:

"
yGP
k =

2

66666664

(GP )
(Qp

l1
�Ql1

)
(uk|(Uk,yk)1)

(GP )
(Qp

l2
�Ql2

)
(uk|(Uk,yk)2)

(GP )
(Qp

l3
�Ql3

)
(uk|(Uk,yk)3)

3

77777775

=

2

66666664

("
yGP
k )1

("
yGP
k )2

("
yGP
k )3

3

77777775

(4.2)
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(�
yGP
k )T =

2

6666666664

@(GP )
(Q

p
l1

�Ql1
)
(uk|(Uk,yk)1)

@uk

@(GP )
(Q

p
l2

�Ql2
)
(uk|(Uk,yk)2)

@uk

@(GP )
(Q

p
l3

�Ql3
)
(uk|(Uk,yk)3)

@uk

3

7777777775

=

2

66666664

(�
yGP
k )11 0 0

0 (�
yGP
k )22 0

0 0 (�
yGP
k )33

3

77777775

(4.3)

where the gradients are estimated by FDA with step length set to h = 10-8. Since the

three wells are independent, �
yGP
k becomes a diagonal matrix.

Inserting u = [Qg1 Qg2 Qg3 ]
T , y = [Ql1 Ql2 Ql3 ]

T and the simple steady-state process

model given in Eq. (3.3), the modified economic optimization problem becomes:

max
Qg1 ,Qg2 ,Qg3

J = 20Ql1,m,k
+ 10Ql2,m,k

+ 30Ql3,m,k

s.t. Qli,m,k
= ✓1i + ✓2iQgi + ✓3ivoi,k + ✓4iQ

2
gi + ✓5iv

2
oi,k + ("

yGP
k )i

+ (�
yGP
k )ii(Qgi �Qgi,k), i = 1, 2, 3

Qg1 +Qg2 +Qg3  7.5

1  Qg1 , Qg2 , Qg3  5

(4.4)

The optimal inputs are filtered with a first-order filter, as shown in Eq. (2.31) before

they are implemented by the algorithm. The input filter values are all set to ki = 0.55.

The implemented inputs by MAy-GP are setpoints to PI controllers used for controlling

the gas flowrates.

Algorithm 1 summarizes the main steps in the MAy-GP algorithm. It also includes the

initialization step, which is needed for initial training of the GPs. In this step, an initial

u0 is set. Then, two additional input sequences around u0 are implemented to give the

GPs an initial data set consisting of 3 data points. u0 = [2, 2.5, 3]T is chosen as the

initial point and the next input sequences for generating initial observed data sets are [3,

2, 2.5]T and [2.5, 3, 2]T .
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Algorithm 1 MAy-GP

Initialize:

Set initial u0 and input filter K. Set initial modifiers "
yGP
0 and �

yGP
0

to zero. Set two additional input sequences around u0 to obtain

initial training dataset. Train GPs with initial dataset and optimize

hyperparameters.

for k = 1 ! 1 do

1. Get steady-state measurements from the plant and model at uk. These

measurements include the outputs y and the valve opening vo of each well.

2. Update the observed data set (Uk,yk)i for each GP and optimize

hyperparameters.

3. Predict the plant-model mismatch with the fitted GPs at uk and update

the modifier "
yGP
k .

4. Calculate the modifier �
yGP
k with FDA.

5. Solve modified optimization problem to obtain u
⇤
k+1.

6. Apply filter on the optimal inputs to obtain uk+1 and implement

as setpoints for the controllers.

end for

4.2 Programming Environment

For implementation of the MAy-GP scheme, MATLAB version 9.9 (R2020b) is used.

CasADi version 3.5.5, which is an open-source tool for nonlinear optimization and

algorithmic di↵erentiation [21] is used for solving the NLP. The IPOPT solver is chosen

as the optimization method.

For the Gaussian Processes, the GPML Toolbox version 4.2 is used. This toolbox is an

implementation of inference and prediction in GPs [22] and is based on algorithms

presented in [14].
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Results and Discussion

The MAy-GP algorithm is first implemented in a simulation of the experimental rig to

study the performance of the algorithm before implementing in the actual lab rig. The

plant in the simulation is the dynamic model described in Section 3.5. The algorithm is

then implemented in the actual lab rig. This chapter presents and discuss the results

from the simulation in addition to the experimental results from the experimental lab rig.

5.1 Simulation Case Studies

In this section, two di↵erent simulation case studies are presented. It is chosen to keep

the valve openings at a constant value in the simulations and focus on the influence of

noise in the system. The first case study is noise free, while noise is introduced in the

second to match the noise in the experimental rig. The measurement noise in the

simulation is drawn from a Gaussian distribution with zero mean and variance �
2, which

was computed to represent the actual noise level in the experimental rig. The second

case study also includes ”controller action” for the PI controllers, which is implemented

as a 5 seconds delay to the inputs.

The global optimum for the plant in the simulations is u = [2.59, 1.00, 3.91]T . The

model optimum is u = [2.78, 1.00, 3.72]T , which means that a plant-model mismatch is

present. The plant and the model optimum is found by optimization of the plant and

model separately in Problem 3.1.

In the following sections, the GPs have been given numbers which refers to the well

number. That is, (GP)
(Qp

l1
�Ql1

)
is referred to as GP1, (GP)

(Qp
l2
�Ql2

)
is referred to as

GP2 and (GP)
(Qp

l3
�Ql3

)
is referred to as GP3.
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Chapter 5. Results and Discussion

5.1.1 Simulation without Noise

Figure 5.1 shows the simulation result without measurement noise in the system. The

left plots show the valve openings, the output measurements and the instantaneous

profit (objective function). The valve opening of each well are held at a constant value

during the simulation. The upper right plot is showing the inputs, as well as the

pre-calculated optimal inputs. The inputs start at a sub-optimal operating point and the

MAy-GP algorithm begins the initialization step at time 2 minutes. At time 2 and 3

minutes the inputs hence change in order to obtain initial observed data, as described in

the pseudo code shown in Algorithm 1. The first optimization takes place after 4

minutes. After approximately 14 number of iterations, the inputs converge to the

optimum. As seen from the bottom right plot, the gas availability constraint is respected

and the total input usage is held at 7.5 sL/min.
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Figure 5.1: Simulation result without noise. The figure shows the valve openings, the outputs, the instant-

aneous profit (objective function), the inputs and the total gas injected.

The inputs converge to the plant optimum after approximately 14 minutes. However,

when examining the objective function it is clear that the system is already close to the
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optimum at time 5 minutes. This means that the objective function is not sensitive to

changes in the inputs around the optimum.

Table 5.1: GP hyperparameters in the simulation without noise.

GP1 GP2 GP3

l 1.97 1.61 1.54

�f 0.592 0.570 0.379

�n 0.000 0.000 0.000

Figure 5.2: The first column shows the three GP’s in the end of the simulation, which represent the plant-

model mismatch in the outputs in the simulation. The second column shows the relationship between the

inputs and the outputs. Noise is not present in this simulation.

Figure 5.2 shows the GPs from the simulation, as well as the relationship between the

gas flowrates and the liquid flowrates in each well. The plots are shown without the

valve openings, since they are held constant during the simulation. The left plots show

the GPs together with the observed data points (mismatch) and a 95% confidence

region. As seen from the GP plots, the confidence regions get larger away from the

observed data points. There is no uncertainty in the regions with observed data points,
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which can be explained by the hyperparameters of the GPs. Table 5.1 shows the

hyperparameters of the GPs. The �n parameter is zero in all the GPs, because of no

measurement noise, which means that all the uncertainty in the predicted GPs is due to

lack of observed data. The l parameter in all the GPs are relatively large compared to

the range of the inputs. The inputs range from 1 to 5, and the length scales are 1.97,

1.61 and 1.54 in GP1, GP2 and GP3 respectively. The predicted GPs are therefore

smooth, and areas less than l units away from the observed data have low uncertainty,

i.e. between the observed data points.

The right plots in Figure 5.2 show the relationship between the inputs and outputs. The

first plot is associated with well 1, the second with well 2 and the third with well 3. The

plots show the measured liquid flowrate, the simple process model and the sum of the

simple process model and the GP of the respective well. The shaded region in the plots

shows a 95% confidence region, which is predicted as the uncertainty of the GPs. Since

the GP is representing the plant-model mismatch in the output, adding the model should

give a proper estimate of the plant output. From the figures, it can be seen that adding

the model and the GP of the three wells gives a perfect estimate of the plant outputs.

5.1.2 Simulation with Noise

The result from the simulation case study with implemented measurement noise and

controller delay is shown in Figure 5.3. The left plots show the valve openings, the

output measurements and the instantaneous profit (objective function). The upper right

plot is showing the inputs, as well as the pre-calculated optimal inputs. From the

bottom right plot, it can be seen that the total gas injected is 7.5 sL/min throughout the

simulation. It may look like the gas constraint is violated, but this is due to

measurement noise in the gas injection rates. The setpoints of the gas flowrates are

adding up to 7.5 sL/min throughout the simulation.

As before, the inputs start at a sub-optimal operating point. At time 2 and 3 minutes

they are set to their decided values in order to generate initial data sets. The first

optimization is taking place after 4 minutes. Qg2 and Qg3 are approaching their optimal

values, while Qg1 is moving away from its optimal value the first iterations. At time 8

minutes, Qg1 drops from 2.88 to 2.35 sL/min and Qg2 jumps from 1.12 to 1.45 sL/min.

These changes are relatively large, considering that the inputs are filtered with a filter

value equal to 0.55. This behaviour can be explained from the predicted GPs in Figure

5.4 and will be further discussed. Qg1 and Qg2 have a similar behaviour also at time 12

minutes, before they move in the right direction and towards the optimum. The plant

optimum is u = [2.59, 1.00, 3.91]T , which is the desired ending point the inputs should

converge to. The inputs do not converge to the optimum values. The last MAy-GP

iteration gives u = [2.75, 1.00, 3.75]T , which means that there is an o↵set in the end of

the simulation.
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Figure 5.3: Simulation result with noise. The figure shows the valve openings, the outputs, the instantan-

eous profit (objective function), the inputs and the total gas injected.

Figure 5.4 shows the GPs from the simulation, as well as the relationship between the

gas flowrates and the liquid flowrates in each well. The right plots show the measured

liquid flowrate, the simple process model and the sum of the model and the GP of each

well. The sum of the model and the GP represents an estimate of the outputs. The

uncertainty, shown as a 95% confidence region, is predicted as the uncertainty of the GP.

The GPs are shown on the left side in the figure and their hyperparameters are shown in

Table 5.2. The shaded region in the plots shows a 95% confidence region. In comparison

to the first simulation case study where all the �n parameters were zero, the �n

parameter of all the GPs in this case study is non zero, due to the presence of noise in

the measurements. The length scale l of GP1 and GP3 are 6.14 and 7.75 respectively,

which means that they are larger than the input range. The result is smooth, almost

linear, functions with uncertainty almost entirely due to the GPs estimate of the noise

level. The length scale of GP2 is also relatively large, which makes GP2 smooth. It is

reasonable to compare these length scales to the ones in the former case study without
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noise, since the inputs in the former case study converged to optimum. When

comparing, one can see that the length scales in the case of noise are approximately

double or triple the value of the length scales from the former case study, depending on

which GP is considered.

Table 5.2: GP hyperparameters in the simulation with noise.

GP1 GP2 GP3

l 6.14 2.96 7.75

�f 0.680 0.418 0.475

�n 0.0412 0.0344 0.0360

Figure 5.4: The first column shows the three GP’s in the end of the simulation, which represent the plant-

model mismatch in the outputs. The second column shows the relationship between the inputs and the

outputs. Noise is included in this simulation.

The convergence issue, in addition to the undesired behaviour of the inputs at time 8

minutes, can be explained by the predicted GPs. At time 8 minutes, it was seen that Qg2

jumps from 1.12 to 1.45 sL/min. Looking at GP2 in Figure 5.4 where the input Qg2
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range from 1 to 2 sL/min, the uncertainty is approximately equal to the overall increase

in the mismatch in this region. This means that the GP is not able to predict the true

mismatch. The slope of the GP is slightly changing each time a new data point is added

to the observed data set. When the GP do not predict the true response accurately in

this region, it will not be able to consistently predict the same input at every iteration.

This is also the reason why the inputs do not converge. If the predicted GPs did not

change based on new observed data they would have converged.

Comparing the numerical values of the predicted mismatch in this case study with the

former case study, one can see that the predicted plant-model mismatch have slightly

di↵erent values. As an example, looking at GP3 in Figure 5.2 with no noise the

predicted mismatch at Qg3 = 4 sL/min is equal to 0.5 L/min. Looking at GP3 in Figure

5.4 the predicted mismatch is lower. This means that the noise is hiding the true

response of the system, resulting in a more ”flat” response.

5.2 Experimental Runs in Lab Rig

This section shows the results with MAy-GP implemented in the experimental lab rig.

The rig uses LabVIEW [23] as an interface between MATLAB and the rig. The

MATLAB codes used in the experimental rig is shown in Appendix C.

Several experiments were carried out in the experimental rig with constant valve

openings and a duration of 20 minutes. Di↵erent runs gave slightly di↵erent results, and

the most typical result is chosen to be presented and discussed in this section. The

reason why di↵erent runs gave di↵erent outcomes can be explain by a combination of the

high noise level in the rig and the small values of observed mismatch. This will be

further discussed.

The experimental result from the chosen experiment is shown in Figure 5.5. The left

plots show the valve openings, the output measurements and the instantaneous profit

(objective function). The bottom right plot shows the total gas injected. The inputs are

shown in the upper right plot, where only the actual gas flowrates are shown and not the

setpoints to the PID controllers. The first action of the algorithm is approximately at

time 1 minutes, where the inputs change in order to obtain initial observed data. The

first optimization is at around time 3 minutes. At first glance, it looks like the inputs are

converging perfectly to an optimum. However, they are converging to the model

optimum u = [2.78, 1.00, 3.72]T .
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Figure 5.5: Experimental result from the lab rig. The figure shows the valve openings, the outputs, the

instantaneous profit, the inputs and the total gas injected.

The convergence to the model optimum can be explained by the predicted GPs shown on

the left side in Figure 5.6. The hyperparmeters of the GPs are shown in Table 5.3. The

GPs have such large length scales l that they become flat and predict a constant

mismatch in the whole input range. Because the slope of the GPs is zero, the first order

modifier �yGP becomes zero. The value of the entries in the zeroth order modifer "yGP

will not a↵ect the optimization problem since they appear as constant terms in the

objective function. The result is no correction by the GPs and the inputs converge to the

model (Eq. 3.3) optimum.

The right plots in Figure 5.6 show the measured liquid flowrate, the simple process

model, and the sum of the model and the GP of each well. The uncertainty is shown as

the 95% confidence region of the GPs. The combined model and GP in each plot gives a

reasonable estimate for the outputs, but due to the noise level the uncertainty is large.
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Table 5.3: GP hyperparameters in the experimental run.

GP1 GP2 GP3

l 53.2 7700 850

�f 0.452 0.209 0.000

�n 0.113 0.108 0.105

Figure 5.6: The first column shows the three GP’s in the end of the experiment, which represent the plant-

model mismatch in the outputs. The second column shows the relationship between the inputs and the

outputs.

The uncertainty in the GPs is entirely due to the GPs estimate of the noise level as we

observe the same uncertainty in the areas with and without observed data. Looking at

the �n parameters shown in Table 5.3, it can be observed that these values are

approximately triple the value of the �n parameters in the simulation case study

described in Section 5.1.2. Even though the noise level in the simulation was calculated

to match the noise in the rig, the noise is more complex in the rig. The noise in the rig is

not perfectly Gaussian distributed, unlike the noise in the simulation. The GPs predict

an uncertainty approximately ± 0.2 L/min in the whole input range, while the predicted
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mismatch by GP1, GP2 and GP3 is 0.45, 0.21 and 0 L/min respectively. As observed in

the simulation case study with noise, the high noise level is hiding the true response of

the system resulting in flat GPs.

The observed mismatch in the experiment is smaller than in the simulation. This is

because the simple process model was obtained from rig data, and not simulation data.

The model used in the optimization was obtained by the intention to be simple and to

contain a larger mismatch than rigorous first-principle models. However, the predicted

mismatch is small compared to the uncertainty in the GPs due to the noise level, which

makes the prediction poor.

5.2.1 Comparison with Traditional RTO

The optimal inputs of the rig are not known. Therefore, a previously made traditional

steady-state RTO [19] is used to give an idea of where the optimum is. A comparison of

experimental runs with traditional RTO and MAy-GP is shown in Figure 5.7. The

traditional RTO is optimizing every 60 seconds and converges to u = [2.65, 1.00, 3.85]T

after 7-8 iterations. The MAy-GP algorithm converges to the model optimum u = [2.78,

1.00, 3.72]T , as seen before.

The bottom plot in Figure 5.7 shows a comparison of the instantaneous profit in both

experiments. The red line shows the objective function with RTO, while the black line

shows the objective function with MAy-GP. There is no visible loss in the objective

function, despite the di↵erence in the inputs. This was also observed in the simulation

case study with noise. The objective function is not sensitive to changes in the inputs

around the optimum.
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Figure 5.7: Comparison of MAy-GP and traditional RTO. The inputs with both MAy-GP and traditional

RTO is shown, as well as the instantaneous profit in both experiments.

5.2.2 Attempts for Improvement

One additional observed data point at each iteration

To improve the performance of the MAy-GP algorithm experiments with one extra

observed data point at each uk was carried out. In practice this means staying at each

uk for a longer time period in order to observe another data point. The outcome of these

experiments were the same as with only one observed data point at each input sequence.

That is, the GPs were flat and thus the first order modifier became zero. This can be

explained by looking at the upper left plot in Figure 5.5. Qg1 converges to 2.78 sL/min,

so at this point there is a larger density of observed data. The observed mismatch at this

input range from approximately 0.25 to 0.75 L/min. Giving the GPs only one extra

measurement at each uk will therefore not be su�cient to give an accurate estimate of

the curvature of the mismatch, as this is too small compared to the uncertainty.
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Experimental run with larger plant-model mismatch

Since the observed mismatch were so small compared to the uncertainty in the

experiments, it was chosen to do some experimental runs with a di↵erent model with

larger plant-model mismatch. It was chosen to change all the model parameters (Table

3.1) to 1, in order to make the mismatch large. The optimal inputs with this model is u

= [1.50, 1.00, 5.00]T .

The experimental result of one chosen experimental run with this model is shown in

Figure 5.8 and 5.9. The GPs are able to correct for the major mismatch of the model.

However, it is not able to converge to the system optimum. Instead the inputs exhibits a

cyclic behaviour with the gas injection not fully used, as shown in the bottom right plot

in Figure 5.8. After 10 number iterations all the inputs change alternately to

approximately 1.5, 2.1 and 3.4 sL/min.
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Figure 5.8: Experimental result with ”new” model and larger mismatch. The figure shows the valve

openings, the outputs, the instantaneous profit, the inputs and the total gas injected.

The cycling behaviour is explained by the predicted GPs. Looking at the right plots in

Figure 5.9 the combined model and GP is close to flat in the interval where Qg range
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from 1.5 to 3.4 sL/min. This means that it predicts that the liquid flowrates are nearly

independent from the gas injected. The actual slope in this interval will change a little

each time new data points are observed. The algorithm with this model is hence not able

to predict the same inputs at every iteration and the inputs alternate between

approximately 1.5, 2.1 and 3.4 sL/min.

Again, it is observed that the noise level is too large to ensure proper corrections by the

GPs. However, this experiment did show a positive result. It is observed that even with

a huge plant-model mismatch the GPs are still able to o↵er useful corrections. Even

though the GPs in this experiment were unable to correct to the system optimum, it did

some corrections and the inputs did not converge to the model optimum, as in the

previous experiment with the original model.

Figure 5.9: The left plots show the three GP’s in the end of the experiment with larger mismatch. The

right plots show the relationship between the inputs and the outputs.
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Conclusion

The inputs with MAy-GP converged to the optimum in the simulation case study

without implemented measurement noise. This case study is not realistic, but gives an

intuition on how the method works. Noise was implemented in the second simulation

case study to represent a more realistic simulation of the experimental rig. In this

simulation the inputs did not converge to the optimum, but were close in the end of the

simulation. It was clear that the presence of noise hampered the GPs, which lead to

convergence issues. Slight changes in the prediction of the GPs at every iteration made it

di�cult for the algorithm to predict the same inputs every iteration. However, the

performance in second simulation case study was acceptable and the algorithm was

implemented in the actual experimental rig.

The experimental runs in the lab rig gave slightly di↵erent results each run. The most

typical result consisted of predicted GPs with slopes equal to zero. This lead to no

correction by the first order modifier and the inputs converged to the model optimum.

The noise level was too large for the deterministic trend of the mismatch to be identified.

This indicates that the noise level in the rig is hiding the true response of the system. It

was also observed that giving the GPs one additional data point at each input was not

su�cient to give an accurate estimate of the curvature of the mismatch. The

experimental result with a larger mismatch in the model showed that the GPs were able

to correct for large errors. However, they were not able to correct all the way to the

optimum due to the high noise level.

Even though combining MAy with GPs eliminates the challenging gradient estimation

step, there are still challenges to overcome before it can be applied to real systems with

high noise levels. Thus, the proposed MAy-GP scheme seems to be more suited for

systems with less measurement noise or to correct for systems with large plant-model

mismatch.
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Future Work

The noise tolerance of the algorithm should be improved. Adding more data is unlikely

to improve the performance as the true curvature of the mismatch is hidden by the large

noise level. Instead, other approaches should be considered. There is a gap in the

literature when it comes to Modifier Adaptation variants implemented in real systems.

Future work could involve testing other MA variants from the literature on this

experimental system.

Paper [24] suggests to combine Modifier Adaptation with Stochastic Approximation

(SA) in processes with model uncertainties and noisy measurements. SA is a collective

term used for model-free stochastic algorithms which are able to find the extrema of

unknown functions, given only noisy observations. The SA approach uses estimates of

noisy plant gradients directly in the calculation of the new input sequence and has a

proven ability to converge to a critical point [24]. The SA procedure is a slow procedure,

and are hence only used when the inputs are near the optimal solution or after a number

of unsuccessful iterations of standard MA. This combined MA and SA scheme is tested

in a simulation of the Williams-Otto reactor problem. The result shows a good

performance in the case of a high noise level, where the proposed algorithm outperforms

the standard MA. Since this approach gives such promising results in the simulation, it

would be interesting to implement it in the experimental rig.
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Appendix A

Finite Di↵erence Approximation

For a smooth function f(x), the derivative at point x 2 R is defined by:

@f(x)

@x
= lim

h!0

f(x+ h)� f(x)

h
(A.1)

, where h is the step length in x [25]. An approximation of the derivative can therefore

be expressed as shown in Eq. (A.2). This approximation is called the forward finite

di↵erence approximation.

@f(x)

@x
⇡ f(x+ h)� f(x)

h
, h > 0 (A.2)

The approximation requires a su�ciently small h to be a good estimate of the gradient.

However, there is a trade-o↵ in the choice of h in the presence of noisy function outputs.
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Appendix B

Experimental Rig Modeling
1

The model uses mass balances of the di↵erent phases, density models, pressure models

and flow models, which become the following di↵erential algebraic equation (DAE)

ẋi = fi(xi, zi,ui,pi)

gi(xi, zi,ui,pi) = 0 8i 2 N = {1, . . . , nw}
(B.1)

where fi(xi, zi, ui, pi) is the set of di↵erential equations and gi(xi, zi, ui, pi) is the set of

algebraic equations. nw is the number of wells, i.e. nw=3 in this case. The subscript i is

referring to a well in the set N . xi is the di↵erential states, zi is the algebraic states, ui

is the decision variables.

The di↵erential states, the algebraic states and the decision variables are given by

xi = [mgi mli ]
T

zi = [wli wtotali prhi pbii ⇢mix ⇢gi wgouti wlouti ]
T

ui = [Qgi voi ppump]
T

(B.2)

where mgi is the gas hold up and mli is the liquid hold up. wli is the water rate from the

reservoir and wtotali is the total well production rate. prhi is the riser head pressure and

pbii is the pressure before injection point. ⇢mix is the mixture density in the system and

⇢gi is the density of the gas. wgouti and wlouti is the well outlet gas and liquid outlet

flowrate respectively. Qgi is the gas lift injection rate, voi is the valve opening from the

reservoir and ppump is the reservoir pressure.

In addition, the model contains some constant parameters and some uncertain

parameters. These parameters are given by

1
Appendix taken from the project work presented in [11] by the same author.
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pi = [patm T R Mw ⇢l µmix Lw Aw Lr Hr Dbh ✓res ✓top]
T

where patm is the atmospheric pressure, T is the room temperature, R is the gas

constant, Mw is the molecular weigth of air, ⇢l is the desity of water, µmix is the mixture

viscosity, Lw is the well length, Aw is the well pipes cross section area, Lr is the riser

length, Ar is the riser pipes cross section area, Hr is the riser height and D is well below

injection. ✓res is the reservoir valve flow coe�cient and ✓top is the top valve flow

coe�cient [19].

The code for the dynamic model is shown in the section below. The di↵erential equations

are f = [df1 df2]T , while the algebraic equations are g = [f1 f2 f3 f4 f5 f6 f7 f8]T .

B.1 ErosionRigDynModel.m

function [F,S_xx,S_zz,S_xz,S_xp,S_zp,x_var,z_var,u_var,p_var,dif,alg,L]

= ErosionRigDynModel(par)

% Creates a dynamic model of the rig and computes the sensitivity

% matrices for EKF

% Inputs:

% par = system parameters

%

% Outputs:

% F: system integrator

% S's: system sensitivities

% x_var,z_var,u_var,p_var, diff,alg,L: Model in CasADi form

% Other m-files required: none

% MAT-files required: none

addpath('/Applications/casadi-osx-matlabR2014b-v3.5.5')

import casadi.*

%% Parameters

%number of wells

n_w = par.n_w; %[]

%gas constant

R = par.R; %[m3 Pa K^-1 mol^-1]

%air molecular weigth

Mg = par.Mw; %[kg/mol] -- Attention: this unit is not usual
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%properties

%density of water - dim: nwells x 1

rho_l = par.rho_o; %[kg/m3]

%mixture viscosity

mu_mix = par.mu_oil;% [Pa s]

%project - dim: nwells x 1

% well length

L_w = par.L_w; %[m]

% well pipes cross section area

A_w = par.A_w;%[m2]

% riser length

L_r = par.L_r; %[m]

% riser pipes cross section area

A_r = par.A_r;%[m2]

%riser height

H_r = par.H_r; %[m]

%well below injection

D = par.D_bh; %[m]

%% System states

% differential

%gas holdup

m_g = MX.sym('m_g',n_w); % 1:3 [1e-4 kg]

%water holdup

m_l = MX.sym('m_l',n_w); % 4:6 [kg]

% algebraic

%water rate from reservoir

w_l = MX.sym('w_l',n_w); % 1:3 [1e-2 kg/s]

%total well production rate

w_total = MX.sym('w_total',n_w); % 4:6 [1e-2 kg/s]

%riser head pressure

p_rh = MX.sym('p_rh',n_w); % 7:9 [bar]

%pressure - before injection point (bottom hole)

p_bi = MX.sym('p_bi',n_w); % 10:12 [bar]

%mixture density in system
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rho_mix = MX.sym('rho_mix',n_w); % 13:15 [1e2 kg/m3]

%density gas

rho_g= MX.sym('rho_g',n_w); % 16:18 [kg/m3]

%well outlet flowrate (gas)

w_gout = MX.sym('w_gout',n_w); % 19:21 [1e-5 kg/s]

%riser head gas production rate gas

w_lout = MX.sym('w_lout',n_w); % 22:24 [1e-2 kg/s]

%% System input

%gas lift rate

Q_gl = MX.sym('Q_gl',n_w); % 1:3 [sL/min]

%valve oppening

vo = MX.sym('vo',n_w); % 4:6 [0-1]

%pump outlet pressure

Ppump = MX.sym('Ppump',1); % 7 [bar]

%% parameters

%%%%%%%%%

% fixed %

%%%%%%%%%

%room temperature

T = MX.sym('T',1); %[K]

%atmospheric pressure

p_atm = MX.sym('p_atm',1); %[bar]

%time transformation: CASADI integrates always from 0 to 1 and the USER

does the time,!

%scaling with T --> sampling time

t_samp = MX.sym('t_samp',1); %[s]

% estimable

%scaled reservoir valve parameters

res_theta = MX.sym('res_theta',n_w);

%scaled top valve parameters

top_theta = MX.sym('top_theta',n_w);

%% Modeling

% Algebraic

%conversion

CR = 60*10^3; % [L/min] -> [m3/s]
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%reservoir outflow

f1 = -Ppump*ones(n_w,1)*1e5 + (w_l.*1e-2).^2.*(res_theta.*1e9)./(vo.^2.*rho_l) ...

+ p_bi.*1e5 ;

% total system production

f2 = - (w_total.*1e-2) + ((w_gout.*1e-5) + (w_lout.*1e-2));

%riser head pressure

f3 = -p_rh.*1e5 + (w_total.*1e-2).^2.*(top_theta.*1e8)./(rho_mix.*1e2) + p_atm.*1e5 ;

%before injection pressure

f4 = -p_bi.*1e5 + (p_rh.*1e5 + (rho_mix.*1e2).*9.81.*H_r + ...

128.*mu_mix.*(L_w+L_r).*(w_l.*1e-2)./(3.14.*D.^4.*(rho_mix.*1e2)));

%mixture density

f5 = -(rho_mix.*1e2) + (((m_g.*1e-4) + m_l).* ...

p_bi.*1e5.*Mg.*rho_l)./(m_l.*p_bi.*1e5.*Mg + rho_l.*R.*T.*(m_g.*1e-4));

%gas density (ideal gas law)

f6 = -rho_g + p_bi.*1e5.*Mg/(R*T);

% Simplifying assumption!

% liquid fraction in the mixture

xL = (m_l./((m_g.*1e-4) + m_l));

%Liquid outlet flowrate

f7 = -(w_lout.*1e-2) + xL.*(w_total.*1e-2);

% Total volume constraint

f8 = -(A_w.*L_w + A_r.*L_r) + (m_l./rho_l + (m_g.*1e-4)./rho_g);

% Differential

% gas mass balance

df1= 1e4*(-(w_gout.*1e-5) + Q_gl.*rho_g/CR);

% liquid mass balance

df2= -(w_lout.*1e-2) + (w_l.*1e-2);

% Form the DAE system

diff = vertcat(df1,df2);

alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8);

% give fixed parameter values

alg = substitute(alg,p_atm,par.p_s);

alg = substitute(alg,T,par.T_r);

% concatenate the differential and algebraic states

x_var = vertcat(m_g,m_l);
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z_var = vertcat(w_l,w_total,p_rh,p_bi,rho_mix,rho_g,w_gout,w_lout);

u_var = vertcat(Q_gl,vo,Ppump);

p_var = vertcat(res_theta,top_theta,t_samp);

%objective function

L = 20*((w_lout(1)*1e-2)*CR/rho_l(1)) + 10*((w_lout(2)*1e-2)*CR/rho_l(2)) + ...

30*((w_lout(3)*1e-2)*CR/rho_l(3));

%end modeling

%% Casadi commands

%declaring function in standard DAE form (scaled time)

dae = struct('x',x_var,'z',z_var,'p',vertcat(u_var,p_var),'ode',t_samp*diff,'alg',alg);

%calling the integrator, the necessary inputs are: label; integrator;

function with IO scheme of a DAE (formalized); struct (options),!

F = integrator('F','idas',dae);

% ================================================

% Calculating sensitivity matrices

% ================================================

S_xx = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:x0'});

S_zz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:zf:z0'});

S_xz = F.factory('sensStaStates',{'x0','z0','p'},{'jac:xf:z0'});

S_xp = F.factory('sensParStates',{'x0','z0','p'},{'jac:xf:p'});

S_zp = F.factory('sensParStates',{'x0','z0','p'},{'jac:zf:p'});

end
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MATLAB Codes in the Lab Rig.

InitializationLabViewMain.m is the initialization file, which is ran before the main file.

This file sets the sampling time and the model parameters. ssModel.m contains the

model used in the optimization. LabViewMain.m is the main file ran by LabVIEW.

C.1 InitializationLabViewMain.m

%% Path to GPML toolbox

addpath(genpath(pwd))

%% Model Parameters

theta_well1 = [0.492764910641654; 0.300443533757929; 19.3122131197183;

-0.0153700130556438; -14.3380841612070];

theta_well2 = [-0.273738047663130; 0.459291990662657; 20.1022897064108;

-0.0373720166243209; -14.6387961216287];

theta_well3 = [-0.883020415785438; 0.619837772512701; 21.3127342608823;

-0.0640840666704814; -15.7140573084694];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BE CAREFUL - it should match sampling time in LABVIEW interface %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Optimization sampling time

nExec = 60; %[s] 10
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C.2 ssModel.m

function y_model_ss = ssModel(u, v0)

% u = [FIC104; FIC105; FIC106]

% v0 = [CV101; CV102; CV103]

% Model parameters

theta_well1 = [0.492764910641654; 0.300443533757929; 19.3122131197183;

-0.0153700130556438; -14.3380841612070];

theta_well2 = [-0.273738047663130; 0.459291990662657; 20.1022897064108;

-0.0373720166243209; -14.6387961216287];

theta_well3 = [-0.883020415785438; 0.619837772512701; 21.3127342608823;

-0.0640840666704814; -15.7140573084694];

% Model value

y_well1_ss = theta_well1(1) + theta_well1(2)*u(1) + theta_well1(3)*v0(1) ...

+ theta_well1(4)*u(1)^2 + theta_well1(5)*v0(1)^2;

y_well2_ss = theta_well2(1) + theta_well2(2)*u(2) + theta_well2(3)*v0(2) ...

+ theta_well2(4)*u(2)^2 + theta_well2(5)*v0(2)^2;

y_well3_ss = theta_well3(1) + theta_well3(2)*u(3) + theta_well3(3)*v0(3) ...

+ theta_well3(4)*u(3)^2 + theta_well3(5)*v0(3)^2;

y_model_ss = [y_well1_ss; y_well2_ss; y_well3_ss];

end

C.3 LabViewMain.m

% Main program

% Run Initialization file first

addpath ('C:\Users\lab\Documents\casadi-windows-matlabR2016a-v3.4.5')

import casadi.*

%%%%%%%%%%%%%%%%

% Get Variables

%%%%%%%%%%%%%%%%

% disturbances

%valve opening [-]
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cv101 = P_vector(1);

cv102 = P_vector(2);

cv103 = P_vector(3);

% if value is [A] from 0.004 to 0.020

% if you want to convert to 0 (fully closed) to 1 (fully open)

% vo_n = (vo - 0.004)./(0.02 - 0.004);

%pump rotation [%]

pRate = P_vector(4);

% if value is [A] from 0.004 to 0.020

% if you want to convert to (min speed - max speed)

% goes from 12% of the max speed to 92% of the max speed

% pRate = 12 + (92 - 12)*(P_vector(4) - 0.004)./(0.02 - 0.004);

% always maintain the inputs greater than 0.5

% inputs computed in the previous MPC iteration

% Note that the inputs are the setpoints to the gas flowrate PID's

fic104sp = P_vector(5);

fic105sp = P_vector(6);

fic106sp = P_vector(7);

%current inputs of the plant

u0old=[P_vector(5);P_vector(6);P_vector(7)];

% cropping the data vector

nd = size(I_vector,2);

dataCrop = (nd - BufferLength + 1):nd;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MOST RECENT VALUE IS THE LAST ONE! %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% liquid flowrates [L/min]

fi101 = I_vector(1,dataCrop);

fi102 = I_vector(2,dataCrop);

fi103 = I_vector(3,dataCrop);

% actual gas flowrates [sL/min]

fic104 = I_vector(4,dataCrop);

fic105 = I_vector(5,dataCrop);

fic106 = I_vector(6,dataCrop);
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% pressure @ injection point [mbar g]

pi105 = I_vector(7,dataCrop);

pi106 = I_vector(8,dataCrop);

pi107 = I_vector(9,dataCrop);

% reservoir outlet temperature [oC]

ti101 = I_vector(10,dataCrop);

ti102 = I_vector(11,dataCrop);

ti103 = I_vector(12,dataCrop);

% DP @ erosion boxes [mbar]

dp101 = I_vector(13,dataCrop);

dp102 = I_vector(14,dataCrop);

dp103 = I_vector(15,dataCrop);

% top pressure [mbar g]

% for conversion [bar a]-->[mbar g]

% ptop_n = ptop*10^-3 + 1.01325;

pi101 = I_vector(16,dataCrop);

pi102 = I_vector(17,dataCrop);

pi103 = I_vector(18,dataCrop);

% reservoir pressure [bar g]

% for conversion [bar g]-->[bar a]

% ptop_n = ptop + 1.01325;

pi104 = I_vector(19,dataCrop);

% number of measurements in the data window

dss = size(pi104,2);

% check for first iteration

if ~exist('h','var')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BE CAREFUL - it should match sampling time in LABVIEW interface %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Optimization sampling time

nExec = 60; %[s]

% Modifier Adaptation

% Filters; high values mean less information about previous iterations

K = 0.55; % filter on u
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% Modifiers

lam_k = zeros(3,3);

eps_k = zeros(3,1);

% Finite difference step

h = 1e-8;

% Define initial

count = 1;

intitial_inputs = [3, 2.5; % u1

2, 3; % u2

2.5, 2]; % u3

end

% relevant measurements are only the liquid flowrates

yPlant = [fi101;fi102;fi103];

uPlant = [fic104;

fic105;

fic106;

cv101*ones(1,dss); %workaround - just have the last measurement

here. Since it is the disturbance, it doesn't really matter,!

cv102*ones(1,dss);

cv103*ones(1,dss)];

% assume that half of the period between the current and past RTO

execution is at SS (mean filtering),!

uEst = mean(uPlant(:,end - nExec/1.5:end),2); % 40 seconds average

yEst1 = mean(yPlant(:,50:end),2); % 10 seconds average

y_model = ssModel(u0old,[cv101;cv102;cv103]);

if count <= 2

% Pass setpoints to the rig

O_vector = intitial_inputs(:,count)';

count = count + 1;
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% Dont mind what these variables are called. These variables can be

obtained,!

% from the rig

SS = 1;

Estimation = 0;

Optimization = 0;

Result = 0;

Parameter_Estimation = [u0old(1), u0old(2), u0old(3),yEst1(1)-y_model(1), ...

yEst1(2)-y_model(2),yEst1(3)-y_model(3)];

State_Variables_Estimation = [0,0,0,cv101,cv102,cv103];

State_Variables_Optimization = [0,0,0,0,0,0];

Optimized_Air_Injection = [yEst1(1),yEst1(2),yEst1(3)];

else

fileRTO = 'C:\ErosionRig\LabVIEW\Log\RTOlog\RTO.txt';

Bs = [];

B = [];

fileID = fopen(fileRTO);

%scaning the data file to find the number of data points

Mread=textscan(fileID,'%s','delimiter','\n');

%compacting everything in a string

Mlin=string(Mread{:});

%M is the number of data points (changes from file to file) header is

%included

M=length(Mlin);

%Move file position indicator to beginning of open file

frewind(fileID);

for i=1:M

B_text = textscan(fileID,'%s',25,'Delimiter',' ');

Baux=string(B_text{:});

Baux=strrep(Baux,',','.');

Bs=[Bs Baux];

if i >= 2

B=[B str2double(Bs(1:25,i))];

end

end

56



Appendix C.

fclose(fileID);

B = B';

u1_observed = [B(:,5),B(:,14);u0old(1),cv101];

u2_observed = [B(:,6),B(:,15);u0old(2),cv102];

u3_observed = [B(:,7),B(:,16);u0old(3),cv103];

y1_observed = [B(:,8);yEst1(1)-y_model(1)];

y2_observed = [B(:,9);yEst1(2)-y_model(2)];

y3_observed = [B(:,10);yEst1(3)-y_model(3)];

% Set the mean function, covariance function and likelihood function

meanfunc1 = [];

covfunc1 = @covSEiso;

likfunc1 = @likGauss;

% Initialization of hyperparameters

hyp1 = struct('mean', [], 'cov', [0 0], 'lik', -1);

% Optimization of hyperparameters

hyp1_opt = minimize(hyp1, @gp, -100, @infGaussLik, meanfunc1, covfunc1, ...

likfunc1, u1_observed, y1_observed);

% Set the mean function, covariance function and likelihood function

meanfunc2 = [];

covfunc2 = @covSEiso;

likfunc2 = @likGauss;

% Initialization of hyperparameters

hyp2 = struct('mean', [], 'cov', [0 0], 'lik', -1);

% Optimization of hyperparameters

hyp2_opt = minimize(hyp2, @gp, -100, @infGaussLik, meanfunc2, covfunc2, ...

likfunc2, u2_observed, y2_observed);

% Set the mean function, covariance function and likelihood function

meanfunc3 = [];

covfunc3 = @covSEiso;

likfunc3 = @likGauss;

% Initialization of hyperparameters

hyp3 = struct('mean', [], 'cov', [0 0], 'lik', -1);

% Optimization of hyperparameters

hyp3_opt = minimize(hyp3, @gp, -100, @infGaussLik, meanfunc3, covfunc3, ...

likfunc3, u3_observed, y3_observed);

57



Appendix C.

% Obtain values for finite differences

[GP1,~] = gp(hyp1_opt, @infGaussLik, meanfunc1, covfunc1, likfunc1, ...

u1_observed, y1_observed, [u0old(1),cv101]);

[GP2,~] = gp(hyp2_opt, @infGaussLik, meanfunc2, covfunc2, likfunc2, ...

u2_observed, y2_observed, [u0old(2),cv102]);

[GP3,~] = gp(hyp3_opt, @infGaussLik, meanfunc3, covfunc3, likfunc3, ...

u3_observed, y3_observed, [u0old(3),cv103]);

[GP1h,~] = gp(hyp1_opt, @infGaussLik, meanfunc1, covfunc1, likfunc1, ...

u1_observed, y1_observed, [u0old(1)+h,cv101]);

[GP2h,~] = gp(hyp2_opt, @infGaussLik, meanfunc2, covfunc2, likfunc2, ...

u2_observed, y2_observed, [u0old(2)+h,cv102]);

[GP3h,~] = gp(hyp3_opt, @infGaussLik, meanfunc3, covfunc3, likfunc3, ...

u3_observed, y3_observed, [u0old(3)+h,cv103]);

% Update modifiers

lam_k(1,1) = (GP1h - GP1)/h;

lam_k(2,2) = (GP2h - GP2)/h;

lam_k(3,3) = (GP3h - GP3)/h;

eps_k(1) = GP1;

eps_k(2) = GP2;

eps_k(3) = GP3;

% Symbols to the optimization problem

u = MX.sym('u',3); % FIC104SP, FIC105SP, FIC106SP

y = MX.sym('x',3); % FI101, FI102, FI103

% Ss model

ss_model_well1 = theta_well1(1) + theta_well1(2)*u(1) + theta_well1(3)*uEst(4) ...

+ theta_well1(4)*u(1)^2 + theta_well1(5)*uEst(4)^2 - y(1);

ss_model_well2 = theta_well2(1) + theta_well2(2)*u(2) + theta_well2(3)*uEst(5) ...

+ theta_well2(4)*u(2)^2 + theta_well2(5)*uEst(5)^2 - y(2);

ss_model_well3 = theta_well3(1) + theta_well3(2)*u(3) + theta_well3(3)*uEst(6) ...

+ theta_well3(4)*u(3)^2 + theta_well3(5)*uEst(6)^2 - y(3);

% Modify output

y_m_k = y + eps_k + lam_k*(u-u0old);

J = 20*y_m_k(1) + 10*y_m_k(2) + 30*y_m_k(3);
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gas_constraint = u(1) + u(2) + u(3);

nlp = struct('x', [u;y], 'f', -J, 'g', [ss_model_well1;ss_model_well2; ...

ss_model_well3;gas_constraint]);

solver = nlpsol('solver','ipopt',nlp);

sol = solver('x0', [u0old;yEst1], 'lbx', [1;1;1;0;0;0], 'ubx', ...

[5;5;5;inf;inf;inf], 'lbg', [0;0;0;0], 'ubg', [0;0;0;7.5]);

opt = full(sol.x);

u_opt = opt(1:3);

J_opt = -full(sol.f);

u_opt = u0old + K*(u_opt-u0old);

% Pass setpoints to the rig

O_vector = u_opt';

% Dont mind what these variables are called. These variables can be

obtained,!

% from the rig

SS = 1;

Estimation = lam_k(1,1);

Optimization = length(y1_observed);

Result = J_opt;

Parameter_Estimation = [u0old(1), u0old(2), u0old(3),y1_observed(end), ...

y2_observed(end),y3_observed(end)]; % training data

State_Variables_Estimation = [hyp1_opt.cov(1),hyp1_opt.cov(2),hyp1_opt.lik, ...

cv101,cv102,cv103]; % GP1 and observed v_o

State_Variables_Optimization = [hyp2_opt.cov(1),hyp2_opt.cov(2),hyp2_opt.lik, ...

hyp3_opt.cov(1),hyp3_opt.cov(2),hyp3_opt.lik]; % GP2 and GP3

Optimized_Air_Injection = [yEst1(1),yEst1(2),yEst1(3)];

end
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