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Abstract

In recent years there has been an increase in research, development and use of
autonomous marine vessels. A tool that has been used for increasing autonomy
in marine vessels is reinforcement learning. Reinforcement learning is very use-
ful for automated decision-making and it has been showed that it can be useful
for path planning, obstacle avoidance and autonomous docking of marine vessels.
However, even if the technique can be very useful for solving decision-making
problems, there are some challenges with the method. For example, there are
challenges regarding sample efficiency, constructing the reward function and with
using black-box models, such as neural networks, in combination with reinforce-
ment learning. Therefore, it might be useful to look to other fields of artificial
intelligence for solving decision-making problems. In this thesis we look at active
inference which has some characteristics similar to reinforcement learning. This is
a method for decision-making, perception and learning in uncertain environments.
Active inference is built upon the free-energy principle which is a principle for de-
scribing how autonomous systems remains inside a specific set of states and resists
a tendency to disorder. When the system minimizes its variational free energy,
the behaviour can be optimized. Active inference minimizes the variational free
energy and a quantity called expected free energy by exploring the environment
and forming habits to find the optimal decisions.

This thesis explores the use of active inference for high-level action planning and
how it works in combination with guidance and control of marine vessels. More
specifically we try to solve the task with deep active inference which is active in-
ference in combination with deep neural networks. In addition, we perform the
same task with deep Q-networks for comparison. As a basis for making compar-
isons of the performance between deep active inference and deep Q-networks, we
implemented a problem of guiding a marine vessel to its docking position through
a port in a discrete environment. For simplicity the docking problem is solved in
two parts. One part where the agent is moved from outside the port area to inside
the port close to the docking position. The other part concerns guiding the agent
into a specific docking position where the heading is taken into account.

In the first part of the thesis we present theory about artificial neural networks,
reinforcement learning, active inference and guidance and control of marine vessels.
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Next, details about the implementation of the deep active inference agent and the
deep Q-learning agent are presented. In addition, we present the environment
these algorithms are trained on and details about the marine vessel model and
its guidance and control system is presented. Then, the results obtained with the
algorithms are presented and discussed.

The results show that the implementation of deep active inference used in this
thesis does only partly solve the docking problem. The algorithm manages to
find a path that moves the agent into a docking position with a specific heading
with performance comparable to the deep Q-network. However, it does not solve
the task of moving the agent from outside the port to the docking area. Exactly
why the algorithm does not solve the task is not clear, but from our evaluation
it seems like the algorithm struggles with handling a combination of different
characteristics in an environment. A possible reason for this is that the estimations
of the expected free energy are too inaccurate to do a correct propagation of the
expected free energy through the tight port area. Even though the deep active
inference algorithm implemented in this thesis could not solve the docking problem,
it does not mean that deep active inference and active inference cannot be used to
solve this problem. In general deep active inference has a few advantages compared
to reinforcement learning in the way the desired states can be represented and that
it on its own can find a balance between exploration and exploitation. Also, it has
been seen that deep active inference has produced promising results compared to
reinforcement learning in other papers. There exists several ways of performing
deep active inference and as we only tested one of them in this thesis, we might
get better results from the other methods. In addition, as it is a relatively new
framework it needs to be assessed further to get a good overview of its properties.
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Sammendrag

I de senere år har det vært en økning i undersøkelser rundt, utvikling og bruk av
autonome marine fartøy. Et felt innen kunstig intelligens som har blitt brukt for
å øke autonomiteten for marine fartøy er forsterkende læring (eng. reinforcement
learning). Forsterkende læring er nyttig for automatisk beslutningstaking og det
har blitt vist at det kan være nyttig for stifølging (eng. path following), objek-
tomgåelse (eng. obstacle avoidance) og automatisk dokking. Selv om dette feltet
kan være nyttig for å løse beslutningstakingproblem (eng. decision-making prob-
lem) er det likevel noen utfordringer med å bruke denne metoden. For eksempel
er det utfordringer med samplingeffektiviteten, å konstruere belønningsfunksjonen
(eng.reward function) og å bruke black-box modeller, som nevrale nettverk, i kom-
binasjon med forsterkende læring. Derfor kan det være nyttig å utforske andre
felt innen kunstig intelligens for å løse beslutningstakingproblem. I denne mas-
teroppgaven skal vi utforske active inference som har noen like karakteristikker
som forsterkende læring. Dette er en metode for beslutningstaking, oppfatning og
læring i usikre miljø. Active inference er bygget på the free energy principle som
er et prinsipp for å beskrive hvordan autonome systemer forblir inne i et spesifikt
sett av states og motstår tendensen til desorganisering. Når systemet minimerer
sin variable frie energi (eng. variational free energy) kan oppførselen til systemet
optimeres. Active inference minimerer den variable frie energien og den forventede
frie energien (eng. expected free energy) ved å undersøke miljøet og forme vaner
for å finne optimale beslutninger.

Denne masteroppgaven undersøker bruken av active inference for høynivå han-
dlingsplanlegging og hvordan det fungerer i kombinasjon med veiledning og kontroll
(eng. guidance and control) hos marine fartøy. Vi forsøker å løse denne oppgaven
ved deep active inference som er active inference i kombinasjon med dype nevrale
nettverk. I tillegg, forsøker vi å løse samme oppgave med dyp Q-læring (eng. deep
Q-learning) for å sammenligne med active inference. For å lage et grunnlag for å
gjøre sammenligningene, implementerer vi en oppgave som omhandler å veilede et
marint fartøy gjennom en havn og legge til kai (eng. docking position) i et diskret
miljø. For enkelhetsskyld løses dokkingen i to deler. En del der agenten ledes fra
utsiden av havnen til innsiden av havnen i nærheten av der den skal legges til kai.
Den andre delen omhandler at agenten veiledes til en spesifikk posisjon langs kaien
der retningen agenten peker i er tatt i betraktning.
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I den første delen av masteroppgaven presenterer vi teori om kunstige nevrale
nettverk, forsterkende læring, active inference og veiledning og kontroll av marine
fartøy. Videre presenterer vi detaljer om implementasjonen av den dype active
inference-agenten og den dype Q-læringsagenten. I tillegg beskriver vi miljøet disse
algoritmene er trent på og detaljer om modellen av det marine fartøyet og hvordan
veiledning og kontrollen av fartøyet blir gjort. Så blir resultatene vi kommer frem
til presentert og diskutert.

Resultatene viser at den implementasjonen av dyp active inference som vi bruker i
denne oppgaven løser kun deler av dokkingproblemet. Algoritmen klarer å finne en
vei som leder agenten til kai med en spesifikk retning den peker i med ytelse sam-
menlignbart med dypt Q-nettverk (eng. deep Q-network). Men, den klarer ikke å
løse oppgaven som omhandler å lede agenten fra utsiden av havnen til området den
skal legge i kai. Nøyaktig hvorfor algoritmen ikke klarer å løse oppgaven er ikke
klart for oss, men fra vår evaluering virker det som at algoritmen har problemer
med å håndtere en kombinasjon av ulike karakteristikker på miljøet. En mulig
grunn for dette er at estimeringen av den forventede frie energien er for unøyaktig
til å propagere den forventede frie energien gjennom den trange havnen på riktig
måte. Selv om den dype active inference-algoritmen implementert i denne mas-
teroppgaven ikke klarte å løse dokkingproblemet, så betyr ikke det at dyp active
inference og active inference ikke kan brukes til å løse denne oppgaven. Generelt
så har active inference noen fordeler sammenlignet med forsterkende læring som
måten active inference kan representere ønskede tilstander på og at det kan finne
en balanse mellom utforskning og utnyttelse (eng. exploration and exploitation).
I tillegg har vi sett at dyp active inference har produsert lovende resultater sam-
menlignet med forsterkende læring i andre rapporter. Det eksisterer flere andre
måter å utføre dyp active inference på og ettersom vi testet kun en metode i denne
masteroppgaven kan det hende at vi får bedre resultater med de andre metodene.
Dessuten er dette et relativt nytt rammeverk som trengs å utforskes videre for å
få en god oversikt over dets karakteristikker og kvaliteter.
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Preface

This thesis was written in the spring of 2022 at the Norwegian University of Science
and technology and represents the end of my Masters of Science in Cybernetics
and robotics. It was carried out with supervision from Anastasios Lekkas. The
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making visualization of results Matplotlib was used. In addition, to construct the
discrete environments used when running the algorithms, the OpenAI Gym library
was utilized. Also, the machine learning library Pytorch was employed to create
deep neural networks when implementing the deep Q-network and deep active
inference. To run the simulations of the algorithms and models a Dell workstation
provided by NTNU and a Asus ZenBook 14 were used. For writing this thesis the
typesetting system LaTeX is used.

I wish to thank my supervisor Anastasios Lekkas for his guidance when performing
the task and writing this thesis. His guidance and insights for development and
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Chapter 1

Introduction

This thesis examines the use of deep active inference and its potential to be used
for autonomous docking of marine vessels. In this chapter the background and
motivation of this paper is presented, as well as the main contributions of the
thesis. Also, the outline of the thesis is given.

1.1 Background and motivation

As the technology for autonomous systems is improving there can be seen a in-
crease in research and use of these systems. This can for example be seen in the
transport industry where companies such as Google, Tesla, Uber and Mercedes
Benz are researching self-driving cars [3] and with Ruter trialing self-driving vehi-
cles as a part of public transport services [43]. Also, in air-based transport there
is a development of unmanned aerial vehicles (UAV) for delivery of products [14].
There has also been done a lot of research and development in the past years on
the topic autonomous marine vessels. For instance, in 2018 Rolls Royce and Fin-
ferries demonstrated that the ferry called Falco managed to perform navigation
autonomously [39]. Also, autonomous ship projects such as MUNIN [11], YARA
Birkeland [45] and DNV GLs ReVolt [48] are examples of projects that have been
allocated for developing autonomous technology in the ship industry [34].

An example of a tool that has been explored for increasing the autonomy in marine
vessels is deep reinforcement learning. After deep reinforcement learning was in-
troduced it has been shown theoretically that it can be a useful tool for increasing
autonomy for navigation and control of marine vessels. For instance, it has been
shown that it can be used for path planning [23], obstacle avoidance [6, 30] and
autonomous docking [40] of a marine vessel. Also, reinforcement learning has been
used for in docking of underwater vehicles [2].
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Deep reinforcement learning is a method in artificial intelligence where reinforce-
ment learning and deep learning are combined. In reinforcement learning agents
try to learn the actions that maximizes the cumulative reward. The agent exists
in an environment which consists of a set of states and when the state space be-
comes too large it is useful to combine reinforcement learning with deep neural
networks. Even though reinforcement learning can be very useful there are some
challenges. A major challenge in reinforcement learning is sample efficiency. This
means that a lot of samples is needed to reach efficient performance [9]. It can also
be difficult to find a reward function that guides the agent to an optimal policy.
In addition, exploration of the environment can be a challenge. There are also
challenges by using deep neural networks in reinforcement learning. Deep neural
networks are essentially black boxes because we cannot get any intuition of how it
reaches a specific output from an input. Also, deep reinforcement learning can be
unstable as unstable properties of deep neural networks is made worse with use of
reinforcement learning [9]. This makes it hard to reproduce reinforcement learning
models.

As there are challenges with reinforcement learning and deep learning it may be
of significance to explore other methods in artificial intelligence that may have the
potential to increase autonomy in robotic applications, specifically autonomous
marine vessels in this thesis. In this thesis the potential of using active inference
as a high-level action planner with low level and control of marine vessels is exam-
ined. Active inference uses the free-energy principle for solving and understanding
how autonomous agents performs decision-making and learns in uncertain envi-
ronments. The free-energy principle was introduced by Karl Friston and has been
presented in several papers [15, 16, 19]. The principle says that to maintain the
states that defines the agent, it has to minimize its variational free energy [16].
When the agent minimizes its variational free energy it also minimizes its own
surprise, which is something that the agent wants to avoid. The surprise is the
negative log-probability of an outcome which makes states that the agent has a
high probability of being located in least surprising. This means that minimiz-
ing the variational free energy ensures that the agent maintains its non-surprising
states such that the agent refuses its tendency to disorder [16].

There are several examples of research on active inference for optimizing decision-
making, learning and planning in uncertain environments [18, 20, 21]. Also, there
are several examples of implementing active inference in tasks with continuous or
state spaces where the performance has been compared to reinforcement learning
[22, 38, 44]. As active inference only can be used on small state spaces there
has recently been made active inference models in combination with deep neural
networks [13, 25, 31, 49]. This is called deep active inference and the deep neural
networks are used to store densities and the expected free energy. Active inference
and deep active inference have mostly been used on simulated models but there
are also examples of active inference and deep active inference that have been
used used for robot control [5, 10]. Another solution to the challenge of large
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state spaces is sophisticated active inference which calculates expected free energy
recursively [17].

In this thesis we will explore the task of high-level action planning using active in-
ference and reinforcement learning and how it performs with guidance and control
of marine vessels. This is a continuation of a project thesis written in the autumn
of 2021 where we examined if active inference could be used as a high-level action
planner in discrete state and action spaces. The main goal of this thesis is to
further explore what we found in the project thesis and try to examine if active
inference can be a useful tool for increasing autonomy in the marine industry. As
will be seen in this thesis, reinforcement learning and active inference have several
similarities and therefore is reinforcement learning used for comparison. Also, as
it already has been seen that reinforcement learning has been used with success
for autonomous marine vessels it can provide good comparisons.

1.2 Contributions

The main contributions of this thesis are:

• The construction of the problem set up by using deep active inference for
high-level action planning with low-level control of marine vessels.

• A comparison between our implementation of deep active inference and deep
reinforcement learning on the docking problem.

• A discussion of the deep active inference algorithm and why it performed as
it did.

In this thesis we propose a new area of usage for active inference. Also, we propose
an alternative to today’s methods for docking of marine vessels autonomously.
We construct a problem formulation where active inference is used in the form
of deep active inference for high-level action planning with low-level control of
marine vessel. To be able to assess how good active inference is performing we
use reinforcement learning as a comparison as it has been found to be successful
in solving the docking problem. By both testing the deep active inference on
a discrete environment as a high-level action planner and then on a continuous
environment where it can control the marine vessel directly we can get a good
indication on if active inference can add value to autonomous docking.

By performing deep active inference and deep Q-learning on the discrete docking
environment used in this thesis we compare performance and characteristics of the
two methods. Also, we present and discuss our findings of why the deep active
inference algorithm performs as it does.
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1.3 Outline

The thesis is divided into seven main chapters where we start in the current chap-
ter. In Chapter 2 we present background theory about topics used in the thesis.
Here, theory about guidance and control of marine vessels, artificial neural net-
works and reinforcement learning is introduced. As it is not expected that the
audience has prior knowledge about active inference, theory about this topic is
presented and explained in its own chapter, in Chapter 3.

After presenting the relevant theory, a thorough description about the implemen-
tation of the algorithms, the environment and the marine vessel model is given in
Chapter 5. Subsequently, we present the results obtained with the deep Q-network
and deep active inference in Chapter 5. The results are discussed and compared in
Chapter 6, in addition to an assessment of further work. Furthermore, the thesis
is concluded in Chapter 7.
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Chapter 2

Background and theory

In this chapter, background theory about a few theoretical aspects used in this
thesis is presented. This chapter gives an introduction to the topics:

• Guidance and control of marine vessels

• Artificial neural networks

• Reinforcement learning

2.1 Guidance and control of marine vessels

2.1.1 Kinematics of the marine vessel

Before we get into the guidance and control of the marine vessel, we need to look
at the kinematics of the marine vessel. The kinematics of the marine vessel used
in this thesis is based on the kinematics presented in [29].

We assume that the marine vessel operates in an area close to land where its task
is to move from an open area through a port to dock in a specified position. As
this is a tight area with obstacles we assume that the marine vessel moves with low
velocities. To simplify the model of the vessel we also assume that the vessel has
3 degrees of freedom, which means that we look away from the effects of roll and
pitch motions. Thus, only the surge, sway and yaw is taken into account which
means that we only look at the vessel in the planar position.

To represent the motion of the vessel we use the pose vector η = [x, y, ψ]⊤ ∈ R2×S
and the velocity vector ν = [u, v, r]⊤ ∈ R3. The pair (x, y) describes the Cartesian
position of the center of the marine vessel in the North-East-Down frame. This is
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Figure 2.1: Marine vessel in a North-East-Down reference frame.

an earth-fixed reference frame and the positions x and y moves in relation to this
frame. Furthermore, ψ is the yaw angle of the vessel, (u, v) is the body fixed linear
velocities and r is the yaw rate. A figure of the marine vessel and the elements of
the pose and velocity vector can bee seen in Figure 2.1. The vessel model can be
described with the following differential equations

η̇ = J(ψ)ν (2.1)

Mν̇ +D(ν)ν = τ (2.2)

where J ∈ SO(3), M ∈ R3×3, D(ν) ∈ R3×3 and τ are the rotation matrix, the
intertia matrix, the dampening matrix and the force vector respectively [29]. The
rotation matrix J is used for rotation from the body frame to the reference frame
which is earth-fixed. This matrix is given by

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1
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Figure 2.2: Thruster configuration for the marine vessel. Illustration from [29]

2.1.2 Thrust configuration

The movement of the vessel is controlled by three thrusters. The configuration of
the thrusters can be seen in Figure 2.2. Two of the thrusters are azimuth thrusters
located at the back of the vessel. The azimuth thrusters can be rotated in the
horizontal plane such that there is no need for a rudder [12]. Towards the front of
the vessel the third thruster is located as a tunnel thruster. A tunnel thruster is a
transverse tunnel which produces a force in the y-direction [12]. The force vector
τ are given by

τ = T (α)f (2.3)
where T (α) ∈ R3,nthrusters is the thrust configuration matrix and f is the forces
generated by each of the three thrusters. The thrust configuration matrix maps
the force from the three thrusters into surge, sway and yaw forces and moments
[12]. By considering that the vessel has two azimuth thrusters in the aft of the
vessel and a tunnel thruster in the front, the thruster configuration matrix is given
by The angles α1 and α2 are the rotation angles of the two azimuth thrusters

T (α) =

 cos(α1) cos(α2) 0
sin(α1) sin(α2) 1

lx1 sin(α1)− ly1 cos(α1) lx2 sin(α2)− ly2 cos(α2) lx3


in the body frame. As the angle α3 corresponding to the tunnel thruster always
will be 90 degrees in the body frame, the third column can be written out. The
expressions lxi and lyi are the positions of the thrusters in relation to the centre of
the vessel.

To generate the desired force τ , the rotation α of the azimuth thrusters and the
forces f of the three thrusters have to be found. This is called the thrust allocation
problem and can be solved in several ways [29]. The forces fi generated by the
thrusters can be represented by

fi = Kiui (2.4)

where Ki are gains and ui are control inputs. By inserting this into the expression
for the force vector (2.3) we get that

τ = T (α)Ku (2.5)
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where we define the input matrix B as the multiplication of the thrust configura-
tion matrix T and the gain matrix K [12]

B = T (α)K (2.6)

which gives us the force vector
τ = Bu (2.7)

The control inputs ui can be represented as ui = |ni|ni where ni is the propeller
revolution per second of thruster i [12].

As the azimuth thrusters can be rotated horizontally by an angle α, they can
produce forces in both the x- and y-direction. Thus it can be useful to decompose
the forces in two, fix and fiy . As the force from one azimuth thruster can be
decomposed in two components, we can extend the control input vector u from
u = [u1, u2, u3]

⊤ to the extended control input vector ue = [u1x , u1y , u2x , u2y , u3]
[12]. Then, the generalized force vector τ is expressed by

τ = Beue (2.8)

where
Be = T eKe (2.9)

The extended thrust configuration matrix T e is for the vessel specified in this task
given by

T e =

 1 0 1 0 0
0 1 0 1 1
−ly1 lx1 −ly2 lx2 lx3



and the extended thrust coefficient matrix Ke is given by

Ke =


K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0
0 0 0 K4 0
0 0 0 0 K5



By using the Moore-Penrose pseudoinverse given by

T †
e = T⊤

e (T eT
⊤
e )

−1 (2.10)

[12], we can find the extended control input vector ue with the equation

ue = K−1
e T †

eτ (2.11)
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The propeller commands for each thruster can be found by

ni = sgn(ui)
√
|ui| (2.12)

As the azimuth thrusters are decomposed in two pairs uix and uiy , the control
inputs ui is found by

u1 =
√
u21x + u21y and u2 =

√
u22x + u22y (2.13)

while the rotation of the azimuth thrusters can be found by

α1 = atan2(u1y , u1x) and α2 = atan2(u2y , u2x) (2.14)

[12].

2.1.3 Guidance of marine vessels

Open-loop guidance of a marine vessel is the task of making a reference trajectory
or a path that a vessel can track or follow. In this paper we use guidance in form
of making a path such that the vessel can do a time-invariant path following. This
task can be solved in several ways, but we will in this paper use Line-of-sight
(LOS) to find the desired heading and use it in combination with waypoints found
by a deep Q-network and deep active inference.

Line-of-sight (LOS)

Before going into detail of the LOS guidance law there is a need to define a few
terms to be able to do heading control. While the heading angle of the vessel is
the direction in which the vessel is pointing with its nose, the course angle is the
direction of the movement of the vessel. This course angle χ is defined by

χ = ψ + βc (2.15)

where ψ is the heading or yaw, and βc is the crab angle [12]. A visualization of
the angles can be seen in Figure 2.1. The crab angle is the difference between the
course angle and heading angle, and can be computed by

βc = sin−1(v/U) (2.16)

where U is the absolute velocity of the vessel computed by

U =
√
u2 + v2 (2.17)

When doing path following, the goal is to make the vessel follow a predefined
path without having temporal constraints. With LOS three different points in the
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environment, which forms a triangle, are used to make the marine vessel move
to a target position. This target position is one of the three points, where the
two others are the interceptor which is the marine vessel itself and the stationary
reference point which is a point used to make the triangle. With these points a
course angle χd can be found which again can be used to find a desired heading
[12]. The desired course angle χd can be found by

χd = πd − tan−1(Kpy
p
e) (2.18)

where ype is the cross-track error and Kp is the gain. In this equation, the ex-
pression πd is called the path-tangential angle and is the angle of the vector from
the reference point to the target from north in a NED-frame [12]. This angle is
computed by the expression

πd = atan2(ynt − ynref, xnt − xnref) (2.19)

In this expression, (xnt , ynt ) is the position of the marine vessel and (xnref , y
n
ref ) is

the position of the reference point. To find the desired course angle χd, the inverse
tangent of Kpy

p
e have to be calculated. The gain Kp is given by

Kp = 1/∆ (2.20)

where ∆ > 0 is called the lookahead distance which is the distance ahead the
marine vessel is looking for a point between the stationary and target point [12].
The expression ype is the cross-track error in the path-tangential reference frame.
It is given as the error between the vessel and the closest point on the line between
the reference point and the target point. With path following we wish to make
this cross-track error go to zero.

Integral LOS

When there are no velocity measurements it is impossible to calculate the crab
angle βc as it is directly computed by the sway velocity and the absolute velocity.
In these cases, an integral action can be added to compensate for the drift term
βc. The conventional way of adding integral action yields the expression

ψd = πd − tan−1(Kpy
p
e +Ki

∫ t

0

ype(τ)dτ) (2.21)

where Ki is the integral gain [12]. However, there are a few issues with this integral
action as there are no global stability results. Instead we can use a nonlinear
guidance law given by

ψd = πd − tan−1(Kpy
p
e +Kiy

p
int) (2.22)
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where
ẏpint =

∆ype
∆2 + (ype + κypint)

2
(2.23)

as given in [12]. In the differential equation for ypint the gain Kp is the same as
in (2.20) and the integral gain is given by Ki = κKp where κ > 0 is a design
parameter.

2.1.4 Control of marine vessels

To control the thruster forces such that the vessel moves accordingly to the guid-
ance system a motion control system is needed. A motion control system can be
designed with several different techniques such as PID control, linear-quadratic
optimal control, neural networks and nonlinear control theory.

SISO nonlinear PID control

Consider a single-input single-output (SISO) system such as

mẍ+ dẋ+ kx = τ (2.24)

This system can be controlled by the control law

τ = kxd − (Kpx̃+Kdẋ+Ki

∫ t

0

x̃dτ) (2.25)

where xd is the reference, x̃ = x− xd is the tracking error, and k > 0, Kd > 0 and
Ki > 0 are various gains [12]. The expression inside the brackets is called a PID
controller and to find the gains Kp, Kd and Ki we have to perform pole-placement.
Consider a mass-damper-spring system such as

ẍ+ 2ζωnẋ+ ω2x = 0 (2.26)

where ζ is called the relative damping factor and ωn is called the natural frequency.
By adjusting the relative damping factor and the natural frequency it is possible
to adjust the poles of the system as the eigenvalues of the mass-damper-spring
system is given by

λ1,2 = −ζωn +−jω (2.27)

where ω is the frequency of the damped system [12].

By inserting the control law into (2.24) we get

mẍ+ (d+Kd)ẋ+ (k +Kp)x+Ki

∫ t

0

x̃dτ = 0 (2.28)
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If we assume Ki = 0 we can compare this equation to the equation of the mass-
damper-spring system and get that

ζ =
d+Kd

2mωn
(2.29)

and
ω2
n =

k +Kp

m
(2.30)

which gives us the gains
Kp = mω2

n − k (2.31)

and
Kd = 2ζωnm− d (2.32)

[12]. The integral action is present to counteract constant and slowly-varying
disturbances and is given by

Ki =
ωn
10
Kp (2.33)

The natural frequency ωn is related to the bandwidth ωb with the equation

ωn =
ωb√

1− 2ζ2 +
√
4ζ4 − 4ζ2 + 2

(2.34)

[12]. To perform the SISO PID pole-placement, the bandwidth ωb > 0 and the
relative damping ratio ζ > 0 have to be specified and from these the natural
frequency can be calculated. Furthermore, the relative damping ratio and natural
frequency can be used to find the gains of the PID controller.

MIMO nonlinear PID control

Consider a system that is multiple-input multiple-output (MIMO), for example
the marine vessel model presented earlier in this chapter. The PID controller is
now given by

τPID = −Kpη̃ −Kdη̇ −Ki

∫ t

0

η̃(τ)dτ (2.35)

where η is the state vector, η̃ = η − ηd, and Kp > 0, Kd > 0 and Ki > 0
are diagonal matrices with gains on the diagonal [12]. The algorithm for PID
pole-placement for MIMO systems is similar to the algorithm for pole-placement
for SISO systems. First, a matrix of bandwidths Ωb = diag(ωb1 , ..., ωbn) and a
matrix of relative damping ratios Z = diag(ζ1, ...., ζn) where n is the size of the
state vector η have to be specified. Then the matrix of natural frequencies Ωn can
be found by calculating each element on the diagonal with (2.34). The the gains
Kp > 0, Kd > 0 and Ki > 0 can be calculated with the equations

Kp = M ∗(η)Ω2
n (2.36)
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Kd = 2M ∗(Z)Ω2
n (2.37)

Ki =
1

10
KpΩn (2.38)

[12].

Dynamic positioning

When performing stationkeeping and low-speed maneuvering of a vessel the control
systems are called Dynamic positioning (DP) systems. These systems perform
simultaneous control of surge, sway and yaw and have traditionally been used
when the goal is to keep the vessel in a fixed position or move it slowly from one
position to another. However, today more high-speed operation functionality and
DP are used together, such that DP can be used for all speed ranges and types of
operations [12].

When it comes to the DP control system, it is important that it is robust and
can compensate for environmental forces such as wind and waves, and unmodeled
dynamics. The DP controller can be designed in a similar manner to a MIMO
nonlinear PID controller. The control law is given as

τ = −τ̃wind +R⊤(t)τPID (2.39)

where τ is given as in (2.35) and τ̃wind is an estimate of the generalized forces of
the wind [12]. By writing this expression out we get the control law

τ = −τ̃wind −R⊤(t)Kpη̃ −R⊤(t)Kdη̇R(t)−R⊤(t)Ki

∫ t

0

η̃(τ)dτ (2.40)

2.2 Artificial neural networks

An artificial neural network (ANN) is a technique for learning and recognizing
structures in data which are based on how biological neural networks works. For
example, a human neuron are cells in the neural system which are connected
to other neurons in a network. These neurons communicate with each other by
sending electrochemical signals between each other. Put in a simple manner, when
a neuron receives a combination of input signals that exceeds a threshold the signals
will travel through the neuron and then transmitted to the neighbouring neurons.
One of the first implementations to imitate this behaviour of a neural network was
the perceptron invented by Frank Rosenblatt [41]. A perceptron can be given by
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y =

{
1 if w⊤x+ b > 0

0 otherwise
(2.41)

where x is the input vector, w is the weights vector and b is the bias. A perception
works as a binary classifier by taking several binary inputs and output a single
binary output, where each input has a corresponding weight. The weights quantify
how important an input is for the output. When the weighted sum of the input is
larger than the threshold value, in this case 0, the neuron outputs 1 and when it
is below the threshold the neuron outputs zero [35].

The perceptron is simple as it only can be used for binary classification. However,
when the perceptrons are connected together in layers it is possible to model
very complex functions. The systems of perceptrons connected together are called
ANNs. An ANN consists of multiple nodes which are connected to each other
through links. These links are weighted by how important the link is corresponding
to the output. An example of how these nodes and links are structured can be seen
as a feed-forward network in Figure 2.3. First, the input layer receives a vector of
inputs with data x. The data are then propagated through the links to the next
layer, which is called the hidden layer. In the hidden layer will each node compute
the weighted sum of its input which can be represented by the equation

y = f(Wx+ b) (2.42)
where y is the output of the node and W is the weight matrix. The weighted
sum of its input is then sent through an activation function f(·). This function
decides how the output should sent further. Functions such as the ReLU, tanh and
sigmoid functions are common activation function which gives the output different
characteristics [1]. For example, when ReLU is used as the activation function
every negative weighted sum is set to zero. After the output y is calculated
it is propagated through to the next layer. The next layer can be an output
which outputs the calculations of the network or it can be another hidden layer
if the network consists of several hidden layers. When a network has several
hidden layers it is called a deep neural network where each layer represents more
complex patterns features of the input. This enables the network to model complex
functions [1].

For a network to be able to model the functions we want, it needs to be trained
such that it learns the function. In training the weights of the network are adjusted
such that the network performs better. How the network is trained is dependent
on if the network has examples available or not. If the network has example
input-output pairs it can use the pair to see what it should output for a given
input and adjust accordingly. This is called supervised learning. If the network
only has inputs but does not know the corresponding output the learning is called
unsupervised. In unsupervised learning the network itself has to learn patterns
and features from the input.
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Figure 2.3: A feed-forward neural network.

Assume that the training of the network is done with supervised learning where
it has available some input x with corresponding outputs y which we call target
values. When training the network with supervised learning the task is to adjust
the weights and biases such that the network outputs the target value for a given
input. This can for example be done with gradient descent [35]. The network
first calculates the output from an input x by performing a forward pass, which
is propagation of the input through the hidden layers and to the output layer.
Then, a loss function is used to find the error between the output calculated by
the network and the target. The error is backpropagated from the output layer
through all the hidden layers such that the weights of the links are adjusted to fit
the network to the training data. The update of the weights in gradient descent
can be exemplified through the expression

w = w − α∇wJ(w, b) (2.43a)

b = b− α∇bJ(w, b) (2.43b)
where J(w, b) is the loss function and α is the learning rate [35].

Training of ANNs does not come without challenges, especially for deep ANNs.
One of the most prominent challenges is overfitting. If a network is overfitted it
performs well on the training data, but given unseen test data it does not manage
to predict the correct outputs. Solutions to this problem include regularization of
the weights, early stopping and trading off breadth for depth [1]. Another issue
is that the gradient might vanish or explode when backpropagating in a network
with many hidden layers. Also, it might be difficult for the network to converge
as many hidden layers makes it harder for the gradients to flow smoothly through
the environment. To counteract this gating networks and residual networks has
been proposed [1].
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2.3 Reinforcement learning

2.3.1 Markov decision process

A Markov decision process (MDP) is a way of modelling a sequential decision
problem where the outcomes are under control of a decision maker. In this paper
the decision maker is called an agent. AMDP is an environment defined by a finite
set of states S, a finite set of actions A, the stochastic transition model T (s′|s, a)
and a reward function R(s). The agent can be located in any of the state s ∈ S
and decides between any of the actions in A. When the agent takes an action
a ∈ A, the transition model T specifies the next state of the environment s′ ∈ S
from the current state and action. If the state transitions of the environment are
independent of the previous states and action except the latest state and action,
the model is Markov. When reaching a new state the agent receives a reward R(s)
corresponding to the new state [26].

A solution to the MDP is called a policy. A policy π(s) specifies what action
the agent should take for every state the agent can reach. When the policy is
complete the agent will always know what to do when reaching a state, no matter
the previous state and action. However, as the environment is stochastic in its
transitions, the agent may move differently out in the environment even when
starting position is the same. Hence, the goal of the agent is to find the policy
that maximizes the cumulative rewards, in other words maximizes the expected
utility. A policy that maximizes the expected utility is denoted by π∗ [42].

There also exists cases where the decision process is MDP, but the states are
not directly observable. This is called a partially observable Markov decision
process (POMDP) and the states can only be accessed indirectly via what is called
observations that are stochastically related to the state [46].

2.3.2 Value functions

To be able to maximize the expected utility, the agent must be able to estimate
the expected utility of a certain state to find out how good it is for the agent to be
located in this particular state. In other words, the agent has to find what rewards
can be expected in the future. To find the expected utility, value functions are
used and as they are dependent on what action the agent takes, the value function
are defined with respect to policies [46].

The value, or expected utility, of a certain state s under a policy π is the expected
return when starting in s and then following the policy π. This can be given by
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V π(s) = E

[
∞∑
t=0

γt ∗Rt+k+1|St = s

]
(2.44)

where 0 < γ < 1 is the discount factor and E[·] is the expected value. As the value
functions returns the value of a particular state when following a policy π, this is
called the state-value function for policy π [46]. From this equation we see that it
is a connection between the current state s and its neighbouring states.

It is also possible to define a value function for a state-action s and a pair under
a policy π. This value function is defined by the expected return when starting in
s, taking the action a and then following the policy π

Qπ(s, a) = E

[
∞∑
t=0

γt ∗Rt+k+1|St = s, At = a

]
(2.45)

This value function is called the action-value function for policy π [46].

These value functions can be used to find the optimal policy. A policy that has a
higher or equal expected utility than another policy is said to be better than the
other policy. Thus π ≥ π′ if and only if V π(s) ≥ V π′

(s) for every s ∈ S [46]. The
optimal value function, i.e. the function that corresponds to the optimal policy
π∗, is given by

V ∗(s) = max
π

V π(s)∀s ∈ S (2.46a)

Q∗(s) = max
π

Qπ(s, a)∀s ∈ S, a ∈ A (2.46b)

By assuming that the agent chooses the optimal action, the utility of a state is the
reward of the current state and the expected discounted value of the next state
[42]. As the environment is stochastic we can write the state-value function as

V (s) = R(s) + γ ∗ max
a∈A(s)

∑
s′

T (s′|s, a)V (s′) (2.47)

This is called the Bellman equation and for a MDP with a finite state and action
set this equation yields an unique solution independent of the policy. The Bellman
equation can be calculated for every N states starting with an initial guess for the
value function in every state. Then, the Bellman equation is solved to update the
value of each state. As the value of the states are changed, the values have to be
updated again with the Bellman equation. This is performed until the value for
each state have converged to a stationary value, and the optimal policy can be
determined [46]. This is called dynamic programming as the problem of finding an
optimal policy is divided into simpler subproblems of finding the optimal action for
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each state. Two reinforcement learning algorithms that uses dynamic programming
to find the optimal policy is value iteration and policy iteration.

2.3.3 Q-learning

To find the optimal policy with the value functions presented in the previous
section, a model of the environment with the reward function and the transition
model has to be available to the agent. However, this is not always the case, which
means that the agent itself must explore the environment to learn the effects of the
actions. By moving through the environment, the agent obtains experience which
can be used to approximate the value function. This is called temporal-difference
(TD) learning and by using experience to solve the prediction problem, there is no
need for prior information about the environment [46].

The TD-algorithms updates the value estimate of a state by using the received
reward and the estimated value of the next state. This is shown by the TD-method
TD(0), where the update of the value of a certain state is given by

V (s) = V (s) + α [r + γV (s′)− V (s)] (2.48)

where α is the learning rate which decides how much the estimate is updated to
changes in V . When the agent moves to a new state s, the value of the states is
updated to be closer to what we call the target r + γV (s′), where r is the reward
from state s′ and V (s′) is the estimated value of the next state. This update
rule is guaranteed to converge to the optimal value function if the learning rate is
adjusted properly and the policy is fixed [26].

The update rule in TD(0) can also be written with an action-value function which
yields the update function

Q(s, a) = Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (2.49)

This update function calculates the value function for the actions explicit and is
called SARSA as it is applied at the end of the sequence s, a, r, s′, a′. This is an
on-policy method, which means that the value function calculates Qπ for a policy
π [46]. In addition, the policy is changed in a greedy way which means that the
agent will update the policy with the action with the highest value in a particular
state.

There also exists an alternative TD-method which updates the value function
Q(s, a) in an off-policy fashion called Q-learning. Instead of using a target with a
value Q(s′, a′) from the action a′ taken in s′, the value function is updated with
the maximum Q-value of the possible actions in s′. This gives us
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Q(s, a) = Q(s, a) + α(R(s) + γmax
a′

Q(s′, a′)−Q(s, a)) (2.50)

This is the equation used for updating the Q-value and the Q-learning algorithm
can be seen in Algorithm 1. First, the value Q(s, a) is initialized for every state
s ∈ S and a ∈ A. Then, from a starting state s an action a is chosen and performed.
When reaching the next state, the agent receives a reward and the value function
is updated for the action a. This is repeated until the agent reaches a terminal
state. The estimates of the Q-values will converge to the optimal values if each
action in every state is executed an infinite number of times and if the learning
rate is decayed properly. This is also independent of how the agent explores the
environment [26]. However, this is intractable and the preceding sequence is only
executed to obtain a good estimate of the value function for every state-action
pair. When the estimation of the Q-values is finished, the policy is found greedily
by choosing the action with the highest value in each state.

Algorithm 1 Q-learning
Require: Initialize Q(s, a)∀s ∈ S and a ∈ A, γ, α

for each episode do
Initialize starting state s
repeat

Choose an action a from state s using an exploration strategy
Take action a, observe the next state s’ and the reward r
Q(s, a)← Q(s, a) + α(r + γmaxa∈AQ(s

′, a)−Q(s, a))
s← s′

until s is a terminal state
end for

2.3.4 Exploration and exploitation

An important topic in reinforcement learning is how the agent explores the en-
vironment in the case where it does not have a model. If the agent explores the
environment in an insufficient manner it might not learn the optimal policy at
all. At one hand, the agent can take an greedy action. A greedy action is the
action which has the highest estimated value associated with it. This is called
exploitation as the agent exploits the knowledge about the values of the actions to
make a choice. At the other hand, the agent can choose a non-greedy action. This
is called exploration as the agent chooses the opportunity to get a more accurate
estimate of the non-greedy action. Where exploitation will maximize the reward
at the current step, exploration may lead to obtaining greater reward in the future.

It is important for the agent to have the correct trade-off between exploration and
exploitation to find the best possible policy. If the agent is greedy and chooses
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the greedy action every time, the policy may converge to a policy that is far from
optimal for the whole environment. Thus, it is also important for the agent to also
explore the environment to improve the model of the environment. Even though
the agent will not obtain maximal rewards in short term, exploration can lead to
greater rewards in the future as the agent may find another path that will yield
greater rewards. However, an agent who only explores the environment will never
use its knowledge and will seldom maximize its rewards.

A method called ϵ-greedy is a way of balancing exploration and exploitation. By
using this method the agent chooses the greedy action as default, but with proba-
bility ϵ the agent selects a random action. In this way, every action will be sampled
an infinite number of times when the number of episodes goes towards infinity [46].
The ϵ-greedy method can be implemented in a number of ways. When using an
ϵ-greedy method in this paper, we will use an epsilon which starts with value one
and decays towards zero as the number of episodes increases. The agent performs
action selection by drawing a random number between zero and one and compares
it to the ϵ. If the random number is larger than ϵ it exploits its knowledge and
chooses the action with the highest value. Otherwise, it explores the environment
and chooses a random action. By using this strategy, the agent explores the en-
vironment in the beginning when it has little information and as it obtains more
and more information about the envioronment it exploits its knowledge to find the
optimal path.

2.3.5 Deep Q-learning

When finding an optimal policy with the Q-learning algorithm presented in Chap-
ter 2.3.3, the Q-values of each state-action pair is stored in a table. This means
that when the state space and action space grows, the Q-table where the Q-values
are stored also grows. When the state and action space gets to big, it is intractable
to use the required memory for storing all Q-values. Also, as a Q-learning agent
has to visit a state to estimate the Q-value, the exploring of the environment
would take very long time. To solve these issues, the Q-learning algorithm can be
combined with a deep neural network to approximate the Q-values, which gives us
deep Q-learning.

Instead of storing the Q-values for every state-action pair in a table, a deep neural
network is used to map the state-action pair to the corresponding Q-value. We
will here look at Deep Q-learning when receiving the input as a visual input in
terms of pixels, as is done in the papers [32] and [33] by DeepMind who first
presented the deep Q-learning algorithm. The input to the network is given by
the preprocessing of the m most recent frames of the environment. This is further
sent through the network, which in this case is a convolutional network. Instead
of also sending in a corresponding action to the state, as done when calculating
Q(s, a), the network outputs the estimated Q-values of every action which is more
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effective than computing the Q-value for each state-action pair in separate calls
[33].

When training, the network it is initialized with parameters θ. First, a starting
state s1 = x1 is initialized. Then, at each time t the agent selects an action at
according to an ϵ-greedy policy from the set of actions. After performing the action,
the agent receives an image xt+1 that represent the current state of the agent, for
example a vector of pixel values. In addition, the agent receives a reward rt. As the
agent only observes the current screen xt, the environment is partially observed
[33] which means we have a POMDP. This means that the combination of the
previous state st, the action at and the next frame xt+1 have to represent the next
state, as the whole situation cannot be understood from only one frame. Thus,
these parts of the environment is used as the state representation and stored in
st+1. Before the state is used as an input in the network it is preprocessed by the
function ϕ(.) to reduce the input dimensionality.

When using a nonlinear function approximator such as a neural network to rep-
resent the action-value function, reinforcement learning methods are prone to be
unstable and might diverge [33]. One of the reasons for the instability is that there
is a correlation in the sequence of observations. To address this issue a technique
called experience replay is used. In experience replay we define the transition
(ϕ(st), at, rt, ϕ(st+1)) as the experience at the time step t and store this in the data
set D. The data set D is called the replay memory and when training the deep
Q-network (DQN) a random set of transitions is sampled from the replay memory
and applied to the target function

yj =

{
rj if episode terminates as step j+1
rj + γmaxa′ Q̂(ϕj+1, a

′; θ−) otherwise
(2.51)

When using experience replay the correlations between the consecutive samples are
removed which reduces the variance in the samples. Also, experience replay secures
that the network is not stuck in local minimum or diverges. If the network was
trained with consecutive samples, a maximizing action of moving to the left would
make the training dominated with samples from the left side of the environment.
With experience replay, the action distribution is averaged over the previous states
which makes sure that oscillations and divergence in the parameters are avoided
[32].

There are also other issues with using a neural network as a function approximator
in a reinforcement learning algorithm. Small updates to the action-value function
can lead to big changes in the policy which further can change the data distribution
and the correlations between target values and the action-value function [33]. This
can lead to oscillations or divergence in the policy. To address this issue, a target
network is used when calculating the target function. This can be seen in (2.51)
where a target network Q̂ is used instead of the main network Q. The parameters
of the target network θ− is updated every C steps to be equal to the parameters of
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the main network θ, and are otherwise kept constant. Without a target network
when calculating the target function, the updates in Q(st, at) will often increase
Q(st+1, at) for every action which in turn increases the target value as it is a
function of Q(st+1, at). By calculating the target values with a target network
there is a delay between the update of the main network Q and when this affects
the target yj. This leads to less oscillations and divergence in the policy is less
likely [33].

A gradient descent step is performed on the loss function

L(θj) = (yj −Q(ϕj, aj; θ))2 (2.52)

with respect to the parameters θ. The loss function is given as the mean square
error of the expected Q-value calculated with the target function and the estimated
Q-value from the network. This yields the update rule of the weights

θ = θ + α(r + γmax
a′

Q̂(s′, a′; θ−i )−Q(s, a; θi))∇θiQ(s, a; θi) (2.53)

This is run for M episodes until the network hopefully is trained well enough to
give a good approximation of the action-value function. Then, the Q-network can
be used to find the optimal policy just as in Q-learning.

Algorithm 2 Deep Q-learning
Require: Initialize a replay memory D to capacity N.
Require: Initialize a action-value function Q with weights θ.
Require: Initialize a target function Q̂ with weights θ− = θ

for each episode do
Initialize sequence s1 = x1 and preprocessed sequence ϕ1(s1)
for each t = 1, ..., T do

With probability ϵ select a random action at,
otherwise select at = argmaxaQ(ϕ(st), a; θ)
Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess ϕ(st+1)
Store transition (ϕ(st), at, rt, ϕ(st+1)) in D
Sample random minibatch (ϕ(sj), aj, rj, ϕ(sj+1)) from D

Set yj =

{
rj if episode terminates at step j+1
rj + γmaxa′ Q̂(ϕj+1, a

′; θ−) otherwise
Perform a gradient descent step on (yj −Q(ϕj, aj; θ))2 wrt. to θ
Every C steps reset Q̂ = Q

end for
end for
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2.3.6 Deep Deterministic Policy Gradient

While we can solve problems with high-dimensional state spaces with DQNs, it is
not possible to solve problems with DQNs when the action space becomes high-
dimensional. For example, if the action space is continuous action it is impossible
to use DQNs directly as it wants to find the action-value for every action. A
possible solution to this problem is to discretize the action space, but this can
fast become intractable as the number of actions increases exponentially with the
degrees of freedom of the agent [28]. Instead it is possible to use an algorithm called
DDPG which uses approaches from DQN with deterministic policy gradients to
solve problems with continuous action spaces.

The DDPG-algorithm uses two ANNs which are called the actor, denoted µ(s|θµ),
and the critic, denoted Q(s, a|θQ). The actor network, which also is called the
policy network, takes in the state and outputs the action according to the current
policy. The other network, the critic, takes in a state-action pair and outputs the
Q-value of the pair. When training the networks a start state is used as a input
in the actor network which outputs the action according to the current policy.
Also, noise is added to the action for exploration of the environment as this is a
big challenge with continuous actions [28]. Then the action is executed and after
the next state and the reward are observed the transition between the states are
stored in a replay buffer as experience replay are used in this algorithm as well.

Further, a minibatch of transitions are sampled and the target function is calcu-
lated by

yi = ri + γQ′(si+1, µ
′(si+1, θ

µ′|θQ′
)) (2.54)

where ri is the reward and γ is the discount factor [28]. In the calculation of the
target function we use target networks Q′ and µ′ for the same reasons as for DQN.
After calculating the target the weights of the critic is updated by minimizing a
loss with a loss function as in (2.52). Then, the actor is updated by using policy
gradient [28].
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Chapter 3

Active inference

This chapter presents theory about active inference. To lay a foundation for the
theory about active inference, the basics of the free-energy principle is explained.
In addition, algorithms for using active inference on larger state spaces are pre-
sented.

3.1 The free-energy principle

As active inference utilizes the free energy principle, we need to have an under-
standing of what the free energy principle is.

The free-energy principle is a principle developed by Karl Friston that tries to
explain how the brain works by providing a unified account for action, perception
and learning in the brain. The principle states that a self-organizing system that
is contained inside a set of states has to minimize its variational free energy. This
means that the system must remain inside a set of states defined for the specific
system even when the external environment changes [16]. For example, a human
being will regulate the internal temperature inside a specific interval to stay alive.

The variational free energy quantity is defined as an information theory measure
that is the upper bound on what is called surprise. Systems that wants to minimize
the variational free energy can for example be biological systems. A characteristic
of biological systems is that they try to remain in the states defined for that specific
system. A system has a certain amount of states it can be located in, both physical
and sensory states. These states define the phenotype of the system, i.e. the traits
of the system. Thus, the system has a high probability of being located in these
states and a low probability of being in the remaining states [16]. These states
can be perceived by the system through sensory states and the sensory states
defined for the system will have low entropy. The entropy is the average surprise
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of an outcome. This means that the states with a high probability will not be
surprising for the system, while the states assigned low probability are surprising.
Surprise is hard to quantify and the value of surprise will be different for different
systems in equal situations. Consequently, instead of trying to find the surprise,
the variational free energy can be used. As the variational free energy is an upper
bound on surprise it is possible to minimize the surprise indirectly by minimizing
the variational free energy. In this way a system can be at its equilibrium in its
environment and the free-energy principle can be used to account for how systems
act, percept and learn [16].

The free-energy principle uses that a self-organizing system, which we can call an
agent, remains at equilibrium in their environment in a mathematical formulation.
Before we get to the equations that describe the free-energy principle we need to
define the variables of the environment, which include the internal variables of the
brain, the external environment outside the agent and the sensory states. The
interactions between the states can be formalized by a Markov blanket. A Markov
blanket defines a statistical boundary and divides the system into internal and
external states, with a blanket of states that separate the two parts of the system.
The states in the Markov blanket consists of active and sensory states and the
internal and external states are conditionally independent because they can only
influence each other via the active and sensory states in the blanket [27].

Every living system must have a Markov blanket. The reason for this is that to
be alive, the system must have some degree of conditional independence from the
environment. Without the Markov blanket it would be impossible to distinguish
the living system from the environment and it could not be possible to prove its
existence [8]. Hence, we describe the environment with external states that are
hidden for the internal state behind the Markov blanket, which influence sensory
states. These sensory states influence the internal states which again influence
the active states that influence the external states [27]. An example of this is the
human brain. It cannot directly perceive the states outside the skull, but gets
sensory inputs in the form of sound, sight, touch etc., which are influenced by the
external states. Then the sensory inputs influence the active states, which here is
muscles, to act in the external environment.

The sensory input, that the internal states are influenced by, are represented by
the sensory states s. These sensory signals are generated by the external states.
The external states are represented by ϑ ⊃ x, θ, γ where x is the external hidden
states, the parameters θ controls the amplitude of the noise of the external states
w and the precisions γ controls the amplitude of the noise of the sensory input z
[16]. An example of a hidden state is the location of the agent if the agent tries to
move between two locations in an environment. From [16] we see that the sensory
states is described by the probabilistic mapping

s = g(x, ϑ) + z (3.1)

where g(x, ϑ) is a continuous nonlinear function that describes the evolution of the
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sensory states. The evolution of the hidden states x is described by

ẋ = f(x, a, ϑ) + w (3.2)

where f(x, a, ϑ) also is a continuous nonlinear function that describes the change
in the external states and a is the action taken. As the agent is separated from
the rest of the environment with a Markov blanket, it cannot obtain the external
states directly. Hence, the agent must make an internal representation of the
external world with the internal states. The internal states are represented by
µ. These internal states are used to encode the recognition density q(ϑ|µ) [16].
To make a model of the external environment, the brain infers the probability of
the hidden states ϑ by using the sensory inputs s. By using Bayes’ theorem, the
probability density of the hidden states given a sensory input can be represented
by the expression

p(ϑ|s) = p(s|ϑ) ∗ p(ϑ)
p(s)

(3.3)

A problem with this equation is that the denominator p(s) is difficult to calculate
which makes it difficult to calculate p(ϑ|s). The reason is that to calculate the
probability p(s), every possible state that can cause the sensory input s have to be
included. To circumvent this issue, the recognition density is used as an approxi-
mation of p(ϑ|s) [4]. In this way, the brain uses the recognition density to represent
the external world such that it can infer what caused a certain sensation. With
the help of the internal states and the sensory input the brain tries to recognize
the causes of the sensory input it receives with the use of this density.

Because the recognition density is an approximation of the true posterior p(ϑ|s), we
wish to get the approximate distribution as close as possible to the true posterior.
The measure of the difference between the two probabilities can be calculated with
the Kullback-Leibler divergence [4], which is given by

DKL[q(ϑ|µ)||p(ϑ|s)] =
∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ|s)
dϑ (3.4)

The Kullback-Leibler divergence is also called cross entropy and calculates the
non-negative between probability distributions [16]. If the two densities are equal,
the ratio inside the natural logarithm is equal to 1. As the logarithm of 1 is equal
to zero the whole expression for the Kullback-Leibler divergence would be 0. The
Kullback-Leibler divergence also has the property that the larger the difference
between the distributions, the higher the value will be [4]. Also, the Kullback-
Leibler divergence is always larger than 0.

As we mentioned earlier, it is difficult to calculate p(ϑ|s) which makes it hard
to calculate the Kullback-Leibler divergence. The posterior density p(ϑ|s) can be
represented with the following expression:
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p(ϑ|s) = p(ϑ, s)

p(s)
(3.5)

The density p(ϑ, s) is called the generative density and with this density the brain
generates sensory samples and their causes. This density can be written as a
product of a likelihood and prior distribution p(s|ϑ) ∗ p(ϑ), and is also called the
generative model [19]. These densities represent the believes about how the states
cause the sensory input and prior beliefs about the causes, respectively. Hence,
the brain has an internal probabilistic model of the world.

By rewriting p(ϑ|s) and using that ln(ab) = ln(a)+ ln(b) we get the expression for
the Kullback-Leibler divergence

DKL[q(ϑ|µ)||p(ϑ|s)] =
∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ, s)
dϑ+ ln p(s)

∫
q(ϑ|µ)dϑ (3.6)

which can also be seen in [4].

As the integral in the rightmost term is equal to 1 we get that

DKL[q(ϑ|µ)||p(ϑ|s)] =
∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ, s)
dϑ+ ln p(s) (3.7)

In [19], the variational free energy is defined as

F (s, µ) =

∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ, s)
dϑ = −

∫
q(ϑ|µ) ln p(ϑ, s)

q(ϑ|µ)
dϑ (3.8)

By inserting this definition for the leftmost expression on the right hand side in
(3.7), we get the following expression for the variational free energy

F (s, µ) = DKL[q(ϑ|µ)||p(ϑ|s)]− ln p(s) (3.9)

which is made up by the Kullback-Leibler divergence between the recognition den-
sity and the true posterior density, and the negative logarithm model evidence,
also called the surprise [16]. The surprise will output low values when the prob-
ability of the sensory input is large and high values when the probability of the
sensory state is small. This means that if a sensory state is expected to be sensed,
the state will have a high prior probability which yields a low surprise and vice
versa.

The Kullback-Leibler divergence is defined to always be larger or equal to zero
[15]. By using this in (3.9) we get that

F (s, µ) ≥ − ln p(s) (3.10)

Here it is seen that the variational free energy is an upper bound on the surprise.
Hence, by minimizing the variational free energy, the surprise will indirectly be
minimized. In this way minimization of variational free energy gives an explanation
to what way self-organizing agents can avoid surprising states [16]. But how do
they minimize the variational free energy?
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3.2 Minimization of variational free energy

The agent can minimize the variational free energy by either changing its internal
model of the world or change its sensory input. In this way the agent can either
make its perception of the external world more accurate or take an action to make
sure that the sensory input agrees with the internal model. By using these two
mechanisms, the agents can avoid the sensory inputs that are associated with risk
[8].

3.2.1 Perception

By optimizing the recognition density such that it resembles the conditional den-
sity on the causes of sensory input, the internal model gets more accurate. In the
expression for the variational free energy, given in (3.9), it is seen that it consists
of the Kullback-Leibler divergence between the recognition density and the condi-
tional density of the causes of the sensory input. The Kullback-Leibler divergence
is a measure of how different one probability density is different from a second one.
Minimizing the variational free energy also minimizes the Kullback-Leibler diver-
gence, which means that the recognition density will get closer to the posterior
when the Kullback-Leibler divergence approaches zero [16]. When the recognition
density is an approximate conditional probability the agent infers the causes of the
sensory input in a Bayesian manner, i.e. it percepts in a Bayes-optimal fashion
[22]. The minimization of the variational free energy with perception is done by
changing the internal states µ according to the equation

µ = argmin
µ

F (s, µ) (3.11)

3.2.2 Action

In addition to minimize the variational free energy by perception, the agent can
act on the environment such that the sensory input samples are consistent with the
predictions of the recognition density. This can be seen by rewriting the expression
for the variational free energy given in (3.8)

F (s, µ) =

∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ, s)
dϑ =

∫
q(ϑ|µ) ln q(ϑ|µ)

p(s|ϑ)p(ϑ)
dϑ (3.12)

where the definition of conditional probability is used in the denominator. By
using the quotient rule for logarithms, ln(a

b
) = ln(a)− ln(b), and the product rule,

ln(a · b) = ln(a) + ln(b), we get that

F (s, µ) =

∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ)
+

∫
q(ϑ|µ) 1

p(s|ϑ)
(3.13a)

29



=

∫
q(ϑ|µ) ln q(ϑ|µ)

p(ϑ)
−
∫
q(ϑ|µ) ln p(s|ϑ) (3.13b)

= DKL[q(ϑ|µ)||p(ϑ)]− ⟨ln p(s|ϑ)⟩q (3.13c)

The reason for wanting the variational free energy on this form is that now the
variational free energy is given as complexity minus accuracy [16]. The complexity
is given as the Kullback-Leibler divergence between the recognition density and
the prior probability of external causes, while the accuracy is the surprise of the
sensory input under the recognition density. In the case of the Kullback-Leibler
divergence approaching zero, the variational free energy is only affected by the
negative log evidence for the generative model, which is given by − ln p(s|ϑ). Then,
minimizing the variational free energy is the same as maximizing model evidence.
This is the same as minimizing the complexity of accurate explanations for the
observed outcomes [18].

The sensory input of the agent can only change when taking an action, which means
that actions only affect the accuracy. To increase the accuracy, the agent must
take an action that reduces the surprise. Essentially, when an action reduces the
surprise, the sensory input agree more with the predictions made by the recognition
density [16]. So, by minimizing the variational free energy with actions, the sensory
input aligns more with the the predictions made by the recognition density which
minimizes the prediction error. The action that minimizes the variational free
energy can be found by

a = argmin
a

F (s, µ) (3.14)

as presented in [22].

3.3 Active inference

Active inference is a principle for solving and understanding how autonomous
agents percept, act, plan and learn when they have to make a decisions under
uncertainty. This principle is built upon the free-energy principle and uses opti-
mization of variational free energy and expected free energy to explain perception,
action, planning and learning in agents [7]. By minimizing the variational free en-
ergy, which describes the discrepancy between the internal model and the sensory
input, and the finding the minimal expected free energy, which quantifies how well
different policies scores towards prior preferences, Bayes-optimal behaviour can be
achieved [44].

To represent the external world, which we have seen that the agent cannot access
directly, the agent has a generative model which is used to represent the external
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environment. By minimizing the variational free energy, the generative model gets
close to the real environment. This is done by minimizing the variational free
energy with perception. As the model is capable of making predictions about
sensations and beliefs about the future states, it is considered to be generative [7].
By having a generative model, the agent can generate beliefs about the future,
which means that it can find the policy which is the most coherent with prior
beliefs such the outcomes becomes Bayes-optimal [44].

With the use of variational free energy the agent can find a generative model that
describes the external environment and make inferences about the environment.
However, if the agent for example receives surprising sensory input, the agent
should also be able to perform actions to reduce the surprise. This is the active
part in the expression active inference. In addition to minimizing the variational
free energy, the agent can also minimize the expected free energy, denoted G. The
expected free energy is the sum of the variational free energy for future trajectories
[44]. As the agent only has beliefs of what is observed in the future, the expected
free energy is dependent on the agents beliefs in the future. By minimizing the
expected free energy, the agent can find the action path that realize the prior
preferences such that the expected future surprise can be minimized [7].

This gives us the active inference-cycle: The agent minimizes the variational free
energy to make sure that the internal model is consistent with the external environ-
ment. In this way the agent can make correct inferences about the environment.
Then, it can act by minimizing expected free energy such that the future sensory
input is consistent with the internal model to avoid surprise [7].

If we assume that the states and actions are discrete, the expected free energy of
a given policy π is given as

G(π) =
∑
τ

G(π, τ) (3.15)

where G(π, τ) is the expected free energy at the time τ . This means that the agent
has to find the expected free energy at each time step to calculate the complete
expected free energy of the whole trajectory when following the policy. To calculate
the expected free energy at a single time step we first have to rewrite the expression
of the variational free energy to be dependent on both time τ and policy π. By
rewriting the expression of the variational free energy in (3.13c) such that it is
dependent on time and policy we get that

F (τ, π) = DKL(q(ϑτ |π)||p(ϑτ |, ϑτ−1, π))− ⟨ln p(sτ |ϑτ )⟩q (3.16)

[18]. By gathering the two terms into one and writing the expression out, we get
the following expression for the variational free energy
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F (τ, π) =
∑
ϑπτ

q(ϑτ |π)q(ϑτ−1|π) ln
q(ϑτ |π)

p(ϑτ , sτ |ϑτ−1, π)
(3.17)

The expected free energy at a time step τ can be found by making two changes to
this expression. By adding beliefs about future outcomes and condition the joint
probability in the denominator on the desired outcome C, instead of a specific
policy, the expected free energy can be obtained. The desired outcomes are the
preferred states the agent wishes to be in. With these two changes the expected
free energy can be calculated before any observations are obtained. Also, policies
that yield results consistent with the desired outcomes are encouraged. These
changes gives the following expression for the expected free energy

G(τ, π) =
∑
ϑτ ,sτ

p(sτ |ϑτ )q(ϑτ |π)q(ϑτ−1|π) ln
q(ϑτ |π)

p(ϑτ , sτ |ϑτ−1, C)
(3.18)

which can be found in [44]. The expected free energy can be represented in different
manners as we saw with the variational free energy. A representation that is
consistent with both [44] and [18] is the following expression

G(τ, π) = DKL[q(sτ |π)||p(sτ |C)] + Eq̃[H(p(sτ |ϑτ ))] (3.19)

where q̃ = p(sτ |ϑτ )q(sτ |π). This is the sum of the expected cost, given by the
Kullback-Leibler divergence, and the expected ambiguity, given by the expectation.
This can further be written as

G(τ, π) = sπτ · (sπτ −Cτ ) + sπτ ·H (3.20)

which is the risk summed with the ambiguity. Here sπτ = Aϑπτ where A is the
likelihood matrix mapping from the external states to the sensory input and
H = −diag(Eq[Ai,j], Eq[A]) encodes the ambiguity over the sensory input for every
hidden state [44]. The expected cost, or the risk, is the uncertainty about the out-
comes compared to the preferences Cτ . Furthermore, ambiguity is the uncertainty
about the sensory input given the external states [18]. In this way it is ensured
that the agent is both exploitative, such that it minimizes risk, and explorative to
minimize the ambiguity about the states. By having this balance between explor-
ing and exploiting, the expected free energy gives the optimal balance between the
goal-seeking behaviour and the novelty-seeking behaviour [7].

Now, we have a way of calculating the expected free energy of a given policy π.
The active inference agent wants to select the policy that minimizes the expected
free energy such that it reaches the prior preferences C. To do that, a prior over
the policies over policies is specified as in the following expression

q(π) = σ(−G(π)) (3.21)
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where σ is the softmax-function and q(π) is called the approximate posterior over
the policy [7]. From the expression it is seen that the policies that produces a
lower expected free energy are more likely. The selection of the best policy comes
down to which actions gets the agent closest to its preferred states [44].

With an approximate posterior over the policy, the agent can find the most plau-
sible action at a given time step as the action that is the most likely under all
possible policies. In this way the agent can select the best action to perform at a
time step τ with the expression

uτ = argmax
u∈U

(
∑
π∈Π

δu,πτ q(π)) (3.22)

where δu,πτ is the Kronecker delta, U is the action set and Π is every possible
policy [7].

To summarize, when receiving an observation, the agent will infer the hidden
state it is in at a certain time step. By minimizing the variational free energy the
inferences about the hidden state will be a good approximation of the real hidden
states. Then, the agent evaluates the expected free energy for each possible policy,
which is based on prior beliefs and preferences about future outcomes. After
calculating the expected free energy of a policy, a probability of the policy can be
calculated with a softmax function such that you get q(π). This can be used to find
the best action to perform next by summing the probabilities of the policies and
select the action with the highest cumulative probability. The agent will repeat
this cycle until it reaches the prior preferred outcomes.

3.4 Active inference on larger spaces

In the previous section, we have seen that active inference calculates the expected
free energy of every possible policy to find the best actions to perform. The length
of a policy is dependent on the size of the environment, which we can define as
nS×nS. When the size of the environment increases, the time it takes to calculate
the expected free energy for a single policy increases. In addition, the number of
policies needed to be calculated such that all policies are covered can be calculated
by the expression nAnS, where nA is the size of the action space. when both the
environment and the action space is big enough it will be intractable to find the
optimal policy with active inference as explained in the previous section. To solve
these issues such that active inference can be used in larger discrete environments
or in continuous state-spaces active inference, we can use deep active inference or
sophisticated active inference.
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3.4.1 Deep active inference

In recent time, there has been several examples on how to solve tasks with higher
complexity with active inference. These methods all use neural networks to ap-
proximate different densities, but there are differences in how they calculate vari-
ational free energy and expected free energy. For example, [47] uses a reduced
version of the expected free energy, [13] uses a Monte-Carlo tree search to find the
free-energy-optimal policy, while [31] and [25] calculates an approximation of the
expected free energy with bootstrapping. In this paper, we will look closer at [31]
and [25] when getting into deep active inference.

The deep active inference algorithm presented in this section utilize a lot of the
same formulations as for the active inference presented in the previous section.
From now on this will be called tabular active inference as it represents the state-
space explicitly as a table which gets larger and larger when the environment scales
up.

As we have explained, the agent has a generative model of the environment which
is used to make inferences about the external environment. Earlier we have only
described this with the hidden states and the observations, as we have assumed
that the agent can directly access its own actions. But now we also add the
actions which in addition to the hidden states cannot be observed directly. Thus,
in addition to inferring the hidden states, the agent must also infer the actions.
This means that the generative model can be represented by p(ϑ, s, a). In (3.8)
we saw that the variational free energy is represented by the Kullback-Leibler
divergence between the recognition density q(ϑ|µ) and the generative model p(ϑ, s).
By also adding the action into the recognition density and the generative model,
the varitional free energy can be expressed by

F = DKL[q(ϑ, a)||p(ϑ, s, a)] (3.23)

which is the Kullback-Leibler divergence between the recognition distribution and
the generative distribution. The generative distribution can be factorized in the
following manner

p(ϑ, a, s) = p(s|ϑ)p(a|ϑ)p(ϑ|ϑt−1, at−1) (3.24)

The recognition distribution q(ϑ, a) can also be factorized, where we use Bayes
theorem

q(ϑ, a) = q(a|ϑ)q(ϑ) (3.25)

With the factorization of the generative distribution and the recognition distribu-
tion, the variational free energy can be written as

F = DKL[q(a|ϑ)q(ϑ)||p(s, ϑ)p(a|ϑ)p(ϑ|ϑt−1, at−1)] (3.26)

34



[31]. The expression can further be written out by using properties of logarithms
and the definition of the Kullback-Leibler divergence

− F =

∫
q(ϑ) ln p(s|ϑ) +DKL[q(ϑ)||p(ϑ|ϑ, at−1)] + Eq(ϑ)[DKL[q(a|ϑ)||p(a|ϑ)]]

(3.27)
This expression for the variational free energy is used in the deep active inference
model. The densities in this expression is approximated by deep neural networks,
which is the reason for this method being called deep active inference [31].

First, we look at the approximation of the probabilities q(ϑ) and p(s|ϑ). In essence,
these two probabilities does the opposite of each other. Where q(ϑ) maps the
hidden states when receiving sensory input, also called observations, the density
p(s|ϑ) maps back to the observations when receiving a hidden state. This is
reminiscent of a variational-autoencoder (VAE) and the approximation of the two
densities can be modelled as one [25]. A VAE consists of an encoder and a decoder
which are modelled by ANNs. The encoder network, given by qθ(ϑt|st−3:t), models
the density q(ϑ) and the decoder network p(st−3:t|ϑ) models the density p(s|ϑ).
The encoder network takes in the three latest observations and encodes it as a
distribution over the latent states. Then, the encoder outputs the parameters of
the state sufficient for a multivariate Gaussian, i.e. the mean ϑµ and the variance
ϑΣ. The decoder receives this representation of the state and reconstructs the
observations the encoder received [25].

Furthermore, the transition density p(ϑ|ϑt−1, at−1) can be modelled by a neural
network as a Gaussian. The neural network outputs the mean and the variance
of the Gaussian, while the inputs of the network is the previous state and ac-
tion. In the calculation of the variational free energy, this density is used in the
Kullback-Leibler divergence with the approximate density q(ϑ). As both densities
are assumed to be Gaussian it is possible to compute the divergence between the
two densities analytically [31].

This leaves us with the third term of the variational free energy expression. Inside
the expected value under the approximate density, the Kullback-Leibler divergence
between q(a|ϑ) and p(a|ϑ) is the most important term for active inference. The
reason is that this is used to approximate the internal action posterior q(a|ϑ),
which is used for action selection. As this density is an internal density, the agent
can change it as it wants and has fully control over it [31]. This is not the case
for the true action posterior p(a|ϑ), which cannot be observed directly by the
agent. We assume that the agent expect to minimize the expected free energy
in the future [25]. This enables us the calculate the true action distribution as
a precision-weighted Boltzmann distribution over the expected free energy. This
yields the expression

p(a|ϑ) = σ(−γG(ϑ, a)) (3.28)
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From this equation it is seen that the agent first computes the expected free energy
of every action on all possible paths in the future and then chooses an action by
sampling an action from the distribution [31]. This expression leads us to the
expected free energy. Given the hidden state and the action, expected free energy
can be represented as the sum of the expected free energy of the expected paths
into the future

G(ϑ, a) =
T∑
t

G(ϑ, a) (3.29)

By taking the first time step out of the sum, we get an expression for the expected
free energy as a sum of the expected free energy of the first time step and the
expectation of the expected free energy of future time steps under the recognition
density

G(ϑ, a) = G(ϑt, at) + Eq(ϑt+1,at+1)[
T∑
t

G(ϑt+1, at+1)] (3.30)

In [31] it is seen that the expected free energy at a single time step can be given
by the definition of variational free energy at a single time step as we previously
has seen in (3.8)

G(ϑt, at) =

∫
q(ϑ) ln

q(ϑ)

p(ϑ, s)
dϑ =

∫
q(ϑ) ln

q(ϑ)

p(ϑ|s)p(s)
dϑ (3.31)

As the agent cannot access the true posterior p(ϑ|s) we use the recognition density
instead. By using logarithmic rules we get that

G(ϑt, at) = −
∫
q(ϑ) ln p(s)dϑ+

∫
q(ϑ)(ln q(ϑ)− ln q(ϑ|s))dϑ (3.32a)

= − ln p(s) +

∫
q(ϑ)(ln q(ϑ)− ln q(ϑ|s))dϑ (3.32b)

= − ln p(s) +DKL(q(ϑ)||q(ϑ|s)) (3.32c)

The term − ln p(s) encodes the prior preferences of the outcomes, i.e. this term
contains which states the agent prefers to be located in. By using the complete
class theorem this term can be replaced by a reward function −r(s) [31]. The
complete class theorem states that any behaviour is Bayes-optimal for at least one
pair of prior beliefs, which are used in active inference, and cost function, which
for example is used in reinforcement learning [21]. Hence, a reward signal can be
encoded as a prior because the prior and the reward signal are proportional to
each other, p(s) ∝ exp(r(s)). By using a reward function directly as a prior means
that the preferences of the agent is to maximize rewards [31].
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The second term of the expected free energy of a single step is often called the
epistemic value. The epistemic value is the reduction in uncertainty about the
hidden states when a sensory input is received. This quantity makes sure that the
agent resolves uncertainty about the hidden states and explores uncertain states.
When the Kullback-Leibler divergence is minimized, the prior recognition density
is equal to the posterior recognition density after receiving a sensory input. This
means that new observations will not change the posterior recognition distribution
over future states. Then, the agent is confident about the states and the epistemic
values will be the same for all policies [20].

Now, we can write the expected free energy as

G(ϑ, a) = −r(s) +
∫
q(ϑ)(ln q(ϑ)− ln q(ϑ|s))dϑ+ Eq(ϑt+1,at+1)[

T∑
t

G(ϑt+1, at+1)]

(3.33)
To compute this quantity exactly is hard as the expected free energy associated
with every one of the possible paths has to be calculated. A solution to this issue
is to learn a bootstrapped estimate of this function by using a neural network to
sample from such that an amortized inference distribution can be learned [31].
The expected free energy neural network is defined with parameters ψ and returns
an estimate Gψ, which is an estimated expected free energy quantity for a state
and action pair [25]. The network is trained with the bootstrapped estimate Ĝ
which is the sum of the variational free energy at the current time step and the
approximate the expected free energy of the rest of the path. The expected free
energy of the rest of the path is approximated by using the estimated expected
free energy of the next time step [31] and we get the expression

Ĝ(ϑ, a) = −r(st) +
∫
q(ϑt)(ln q(ϑt)− ln q(ϑt|st))dϑ+Gψ(ϑt+1, at+1) (3.34)

The expected free energy network can be optimized through a gradient decent on
the loss function

L = ||Gψ(ϑ, a)− ˆG(ϑ, a)||2 (3.35)

This estimate of the expected free energy is used to calculate the true action
distribution p(a|ϑ) which is used to find q(a|ϑ). This approximated action model
is then used for action selection to find the best policy.

To summarize, the deep active inference agent uses three neural networks to ap-
proximate the densities q(ϑ|s), p(s|ϑ), p(ϑt|ϑt−1, at−1) and q(a|ϑ). These networks
are optimized with gradient descent where the variational free energy, given in
(3.27), is the loss function. Also, the agent uses a neural network to approximate
the expected free energy which is trained by using a bootstrapped estimate of the
expected free energy. Furthermore, the expected free energy is used to calculate
p(a|ϑ) which again is used to find q(a|ϑ) that is used for action selection.
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3.4.2 Sophisticated active inference

Sophisticated active inference is another method for handling large state spaces. In
this method planning is done by calculating the expected free energy G recursively.
The term "sophisticated" comes from economics and if an agent is sophisticated
it has beliefs about its own or another agents belief [17]. This suggests that an
sophisticated active inference agent considers beliefs about what it would believe
if it performed a certain action. In contrast, most active inference agents can
be considered unsophisticated as they consider beliefs about what would actually
happen after performing an action [17].

In sophisticated active inference, the expected free energy is calculated over a time
horizon τ = 1, ...T−1 where the expression for τ = T−1 is given as the immediate
free energy

G(aτ |ϑτ ) = G(aT−1|ϑT−1) = DKL(q(ϑτ |aT−1, ϑT−1||C(ϑT )) (3.36)

The expression for τ = 1, ..., T − 2 is given as the immediate free energy plus the
expected free energy for possible future actions given as

G(aτ |ϑt) = DKL(q(ϑτ+1|aτ , ϑτ )||C(ϑτ+1)) + Eq(G(nextstep)) (3.37)

as seen in [38]. The second term in (3.37) is the expected value of the next step
and is given by

Eq(G(nextstep)) = Eq(aτ+1,ϑτ+1|sτ ,aτ )(G(aτ+1|sτ+1)) (3.38)

In this way, the calculation of the expected free energy of an action aτ in a state ϑτ
is a combination of the expected free energy of the action at the current time step
plus the average expected free energy over all future actions [38]. After calculating
the expected free energy a action distribution q(aτ |ϑt) is updated with the formula

q(aτ |ϑ) = σ(−G(U |ϑ)) (3.39)

where U is the set of possible actions it can take and the softmax function secures
that the distribution sums up to one [38]. After training, the action distribution
has assigned a probability to each action in every state and it can be used for
action selection. By taking the action assigned the maximum probability in each
state a policy can be found moving the agent from the starting state to the goal.
To summarize, the expected free energy can be calculated by using the fact that
it has already calculated the expected free energy of future actions such that it
does not need to calculate the expected free energy for every policy. The expected
free energy is further used to find an action distribution which is used for action
selection and finding a policy.
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Chapter 4

Implementation and method

In this chapter, a presentation of the implementation of the marine vessel and the
environments used for simulations and training are made. The task of this thesis
is to use a deep Q-network and deep active inference to perform high-level action
planning for the marine vessel and we also give a thorough description of details
about the implementations of these algorithms.

4.1 Problem description

In this thesis we will look at the problem of performing a docking operation of
a marine vessel with active inference and deep Q-learning. When performing the
docking operation, the marine vessel has to be able to navigate from an open
area to the harbour, through obstacles in the port area and to a docking position.
This requires being able to adapt to dynamic environments, avoid obstacles and
learning efficient policies. In recent years, it has been seen that reinforcement
learning can be utilized for solving the docking problem and adding autonomy for
marine vessels and we wish to see if other parts of artificial intelligence can be
used for solving this problem.

This thesis aims to explore if active inference can be used for solving the docking
problem. To perform active inference we use a deep active inference algorithm
where active inference is combined with deep neural networks. First, to examine
its potential as an high-level action planner the deep active inference algorithm
will be implemented on a discrete environment. The discrete environment used in
this thesis is an attempt to model a part of the Trondheim harbour. To assess
the performance of deep active inference we also implement a DQN algorithm for
comparison. After training the algorithms we connect the obtained results with
guidance and control of a marine vessel in order to see how the complete system
works. To perform the complete system, we simulate the dynamics of the marine
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vessel with the use of Dynamic positioning and integral LOS after training of the
algorithms.

Secondly, we aim to train the active inference and reinforcement learning on a
marine vessel with continuous states and actions. This is in order to use active
inference and reinforcement learning as high-level action planners in combination
with being used for low-level guidance and control of marine vessels. In this case,
the agents are implemented with the marine vessel dynamics and the action space is
the direct inputs to the vessel. By performing this, we get to see the real potential
of using active inference for solving the docking problem as this is a more realistic
case. We also can assess how active inference can be used for guidance and control
and if it can add autonomy to marine vessels.

4.2 Tools

In this thesis, the Python programming language was used for implementation of
the algorithms and models. In addition, the numerical library NumPy was used
for numerical operations, while Matplotlib was used for making visualizations of
results. Also, the OpenAI Gym library was used for making the custom discrete
environment used for training of both the DQN-agent and deep active inference-
agent [36].

The open source machine learning framework PyTorch was used for implementa-
tions of deep neural networks. PyTorch provides tensor computations and deep
neural networks which makes implementation of neural network architecture easy
for the user. Building blocks such as network models, automatic gradient differen-
tiation, backpropagation and optimizers are already implemented in order to build
and train deep learning models [37].

4.3 Marine vessel

The model of the marine vessel used in this thesis is based on the vessel model
from [29]. To summarize, the vessel has three thrusters. Two azimuth thrusters at
the back of the vessel and one tunnel thruster in the front as seen in Figure 2.2.
The positioning of the thrusters and their angle in the body frame can be seen in
Table 4.1.

The vessel model is given by

η̇ = J(ψ)ν (4.1)

Mν̇ +D(ν)ν = τ (4.2)
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Thruster x-position y-position Angle
Azimuth left lx1 = −35m ly1 = −7m α1

Azimuth right lx2 = −35m ly2 = 7m α2

Tunnel lx3 = 35m ly3 = 0m π/2

Table 4.1: Position and angle of the thrusters in relation to the centre of the vessel.

Further explanations about the kinematics used for simulation of the movement of
the vessel are defined in Section 2.1.1. When it comes to the thrust configuration,
the force vector is found by the equation

τ = Bu (4.3)

where the thrust configurations can be seen in Section 4.4. To make the behaviour
of the thrusters more realistic, constraints on the maximum force are applied. The
maximum thrust from the azimuth thrusters are set to 1/30 of the dry ship weight,
while the maximum thrust from the tunnel thruster is set to ±1/60 of the dry ships
weight. In addition, constraints on the angle of the azimuth thrusters are applied.
To make sure that the two azimuth thrusters cannot produce forces that work
against each other a 20 degree forbidden sector is added for both thrusters in the
direction of the other. [29].

In the vessel model there are two matrices that needs to be defined, the inertia
matrix and the dampening matrix. The inertia matrix is given by

M = mNM bisN (4.4)

where m is the mass of the vessel which is given as m = 6000e3(kg) for this vessel.
The normalization matrix N is given by

N =

1 0 0
0 1 0
0 0 L



where L = 76.2(m) is the original length of the vessel but for simplicity we set the
length to L = 75(m). In the middle of the two normalization matrices there is a
matrix Mbis. This is called a non-dimensional matrix, which means that the units
involving physical quantities are removed and substituted by suitable variables
[12]. Here, the Bis system is used which yields the matrix

M bis =

1.1274 0 0
0 1.8902 −0.0744
0 −0.0744 0.1278
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The dampening matrix D is given by

D = m

√
g

L
NDbisN (4.5)

where g = 9.8(m/s2) and the non-dimensional matrix Dbis is given by

Dbis =

0.0358 0 0
0 0.1183 −0.0124
0 −0.0041 0.0308



Figure 4.1: Visualization of the environment in matrix form. The starting state
is represented by 2 in the upper left corner and the end state is represented by 3
towards the bottom right corner.

4.3.1 Discrete docking environment

The simulation environment is an attempt to model a part of the Trondheim
harbour. We create a discretized model of the harbour by making a grid of 30x30.
The matrix that represents the discretized environment can be seen in Figure 4.1,
where we define each element in the grid with both a height and width of 50
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meters. In this environment the starting point of the marine vessel is set to be in
the upper left corner represented by the number 2 and the goal state is set to the
bottom right corner represented by the number 3.

Another representation of the environment can be seen in 4.2 where the blue area
is the area of obstacles. This is the representation we use when simulating the
marine vessel. The red marker in the upper left corner is the start position, while
the red marker in the lower right corner is the goal position. We assume that the
coordinate system is a North-East-Down frame. This means that the x-coordinates
are given on the vertical axis and the y-coordinates on the horizontal axis. We
define the area of open states inside the obstacles as the port area. Also, we define
the area where the vessel can enter through the obstacles as the port entrance,
while the goal position is called the docking position.

Figure 4.2: Visualization of the environment. The starting state is represented by
the red dot in the upper left corner and the docking position is represented by the
red dot in the bottom right corner.

We want the vessel to dock in a certain position which means that in addition to
having a Cartesian goal state, a goal state for the heading also have to be defined.
We define this as the desired heading and set it upwards to the north. This means
that the vessel will have to turn as it enters the docking area pointing towards the
south.

When the marine vessel is moving through the environment to the docking position
it is not necessary to define the heading of the vessel as we can control it to what
suits best. However, as we wish the marine vessel to reach the docking position in

43



a specific heading we also want to include the heading when finding a path with
DQN and deep active inference. Therefore, we split the planning task in two. One
part which moves the vessel from the starting point to the docking area, which
we call Part 1, and another which performs the docking operation, called Part 2.
In Part 1 we do not care about the desired heading and control the heading with
integral LOS. Here, we only care about taking the vessel safely to the area we call
the docking area in an optimal manner. In Figure 4.3, the red marker visualizes
the goal position of Part 1, while the open area below this marker is considered
the docking area.

Figure 4.3: Red marker visualizes the goal position of Part 1.

Figure 4.4: Top red marker represents the start position of the vessel and the
bottom red marker represents the goal position in Part 2. The arrows visualizes
the heading of the vessel.
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In Figure 4.4 we see the docking area, which we label Part 2. Here, the start and
goal position is represented by both a Cartesian position and a heading where the
arrow is pointing in the direction of the heading.

The docking area is also represented as a matrix when calculating the path with
DQN. This matrix is set up in the same way as the matrix in Figure 4.1 except
that each matrix entry is assumed to be 25×25 meters. This gives a more detailed
environment that is required for finding the policy that moves the agent safely to
the goal.

4.4 Guidance and Control

The guidance of the vessel is based on waypoints from a path calculated by utilizing
the policy found by the DQN-agent and the deep active inference-agent. By using
consecutive waypoints a straight line can be formed for the vessel to follow. When
simulating the dynamics of the marine vessel we used discrete time steps with a
step size of 0.02. At each iteration the desired point is moved along this line such
that the vessel gets closer to the waypoint we want the vessel to move to. When
the marine vessel is inside a radius of 3 meters of the waypoint and when the error
between the heading and the desired heading is less than 0.01, the next waypoint
in the path is used to make the next line. This process is repeated until the vessel
hits the goal position or if the number of steps of 12000 is reached. In this way
the marine vessel follows the Cartesian coordinates. In addition to guiding of the
position of the vessel we need to guide the heading of the marine vessel such that
the vessel moves with the correct orientation. The desired heading is calculated
with the help of integral LOS if the desired heading it not provided in combination
with the path. First LOS was used, but when the vessel moved inside the port
area it struggled to compute the correct desired heading. We saw that when the
velocity approached 0, the crab angle increased. This is due to the velocity U used
in the denominator of the expression for the crab angle. When the crab angle gets
large we get an undesired heading which does not represent the heading we want.
As integral LOS is an alternative to compensate for the drift term βc, we tried this
solution instead. By using integral LOS this problem was omitted. When using
integral LOS we need to set the lookahead distance and the constant κ, which is
used in the calculation of the integral gain. In this case the lookahead distance is
set to three times the length of the vessel and κ is set to 1.

For the control of the vessel a DP controller is used. The controller is given as

τ = R⊤(t)τPID (4.6)

where τPID is given by the same expression presented in (2.1.4). As we do not
consider the wind at this stage, the part of the controller compensating for the
wind is not used here. The gains Kp, Kd and Ki are dependent on the natural
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frequencies and the relative damping ratios which we set to Ωn = diag(0.2, 0.2, 0.2)
and Z = diag(0.8, 0.8, 0.8). It was also tested to use a MIMO PID controller, but
it was a lot harder to tune. We did not manage to get a well tuned MIMO PID
controller and ended up using the DP controller.

As we have seen, the thrust vector τ can also be given by the the formula

τ = Bu (4.7)

where B = T (α)K and we find the control input vector u though decomposing
the forces produced by the azimuth thrusters. After calculating the thrust vector
τ with the DP-controller, it is used for simulating the dynamics of the marine
vessels. As we decompose the control inputs with the equation

ue = K−1
e T †

eτ (4.8)

we can find the forces and rotations angles of the thrusters with the use of the
equations presented in Section 2.1.2. This way of configuring the thrusters gives
us two gain matrices to tune. After tuning the matrices we end up with the thrust
coefficient matrix K = diag(40, 40, 40) and the extended thrust coefficient matrix
Ke = diag(5, 5, 5, 5, 5). The tuning of the thrust configuration matrices could
probably be tuned better, but gives a performance sufficient to our task.

4.5 Training environment

The DQN and deep active inference algorithms are used for finding a policy that
can be used to finding a path of waypoints such that the marine vessel can move
safely to the docking position without hitting any obstacles. When training these
algorithms we use an environment based on the matrices presented in Section 4.3.1.

When finding a path in the discrete environment we do not take into account of the
real marine vessel dynamics to make the training as simple as possible. However,
we take the size of the vessel into account as we have to find a path that ensures
that the vessel do not hit the obstacles. It is assumed that the vessel is located
with its centre in the middle of the cell. As the marine vessel model has a length of
75 meters it is also assumed that it takes up space in the cell in front and behind
the vessel. The action set of the agent can be seen in Figure 4.5. By taking an
action the agent moves from one cell to an adjacent cell in the direction of the
action. After taking an action the agent will point in the direction of the action.
However, we wish for the marine vessel to dock with a specific heading. Thus,
for Part 2 of the docking problem we increase the action set such that the agent
also can turn in place in the same directions as seen in Figure 4.5. This yields an
action set of size 16 where it now can both move and turn in the directions as seen
in the figure.
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Figure 4.5: Action set of the agent.

When training the algorithms on Part 1 we use the matrix representation of the
environment which can be seen in Figure 4.1. This means that we represent the
position of the vessel in the same manner as the matrix does. Thus, the position
in (x, y)-coordinates corresponds to a row and column position in the matrix. In
this way we also represent the obstacles and we check if the agent has hit an
obstacle by testing if the (x, y) position of the agent corresponds to an obstacle.
The x-coordinates in this environment is represented by the numbers along the
vertical axis and the y-coordinates are the numbers along the horizontal axis. The
numbers along the y-axis are only the last digit to make it align with the column
above. This means that the agent starts in state (0, 0) and ends in (23, 24). We
see that the numbers on the x-axis increases downwards in this representation and
that the numbers on the x-axis increases upwards in Figure 4.3. The reason for
this is that the matrix represents the first row as 0, while in a Cartesian coordinate
system uses (0, 0) as the reference point. When applying the path calculated with
the help of the matrix in Figure 4.1 on the marine vessel, we adjust the coordinates
in the path by flipping the x-axis. Also, as an entry in the matrix represents 50
meters in Figure 4.3 every coordinate in the resulting path is multiplied with 50.

For training the algorithms on Part 2, we use the matrix of the docking environ-
ment. Here, the start state is set to (0, 6) and the goal state is set to (5, 7). Also,
the heading is set to Down in the start state and Up in the goal state. After
calculating the path with the algorithms, the paths are adjusted to fit in the ma-
rine vessel environment just as for Part 1. In addition, the resulting path from
Part 2 should be added to the path of Part 1. However, this was only done for the
DQN-agent as we reached unsatisfying results with the deep active inference-agent.
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4.6 Deep Q-network

For training of the DQN-agent we use two different neural networks for the two
different tasks. Optimally they should be merged together such that the two parts
can be solved together and we can solve the docking task as a whole. This should be
possible to do, but for comparison with deep active inference and time constraints
this was not done.

The networks are implemented with linear layers and Tanh as the activation func-
tion. For input in Part 1 we use the x- and y-coordinate of the vessel to the
network, while in the second part we also include the heading of the vessel. The
outputs are the Q-values of the possible actions that can be performed in that
certain state. We tested different structures in the networks with the number of
hidden layers ranging between one and three and with different number of nodes.
In Part 1 we ended up with a network of two hidden layers where each layer con-
sisted of 100 nodes. In Part 2 the environment is much smaller, so we used a
network with one hidden layer with 64 nodes.

The DQNs are also implemented with target networks and experience replay. The
size of the batch used for training is set to 200 and the size of the replay memory
is set to 10000. The target networks are updated every 50 iterations and are
initialized with the same weights as the main network.

The training of the agents are done with an ϵ-greedy strategy to make sure that the
agents explore the environment in the beginning of the training run and gradually
exploiting its knowledge. First, we tested the DQN on Part 1 of the docking task.
When training the network for this part, the training is split in a few different
steps. First, the initial position is set to (20, 23), which is a few steps above the
goal position. The reason for setting the initial position this close to the goal is
that the inner area is tight and when taking the length of the vessel into account,
the agent struggles finding the goal consistently. It was tested if the agent managed
to find the goal from outside the port area, but due to the non-convexity of the
area inside the port it struggles to find the goal from these positions. With optimal
exploration and with unlimited time it would probably have found it, but to speed
up the training process we help the agent locating the goal. Thus, by setting the
start position closer to the goal, it is easier for the agent to find the goal position.
After hitting the goal 50 times, the initial position was set to the port entrance.
From this position the agent had to hit the goal 50 times more before the initial
position was moved to the original starting position in (0, 0). As the neural network
already is trained to move to the goal from the port entrance, the agent knows
how which actions to perform when reaching the port entrance from the upper left
starting position. The reward function used can be seen in (4.9). When the agent
hits the goal it receives a reward of 5, while if it hits an obstacle it will receive a
reward of −1. To make sure that the agent moves towards the goal area, a reward
of 0.1 is added if it moves closer to the goal in both the x- and y-direction and 0.05
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if it moves closer in one of the two directions. Also, if it moves in a direction away
from the goal it receives a reward of −0.125. This is specifically helpful when the
agent starts at (0, 0) as it only does know how to move inside the port area. Thus,
by receiving rewards for moving towards the goal it quickly learns that it should
move towards the port entrance.

RDQN,Part 1 =



5 if goal hit
−1 if obstacle hit
0.1 if closer to goal in both x- and y-direction
0.05 if closer to goal in either x- or y-direction
−0.125 otherwise

(4.9)

When training Part 2 of the docking task we start the training from the start
position (0, 6) and wish to move the agent to (5, 7). In addition, the heading is
downwards in the start position and upwards in the goal position. The reward
function of Part 2 is similar to the reward function of Part 1 and it is seen in
(4.10). To make it easier for the agent to learn which heading it should have in the
goal position we add an reward of 0.75 which the agent receives when it turns and
obtains the desired heading. Also, if it hits the goal position without the correct
heading it receives a reward of 0.5 such that it can learn the route to the goal.
Now we also check if it moves closer to the the goal in either x- or y-direction as
the agent more rarely than in Part 1 will have the opportunity to move closer in
both directions as the environment is tighter.

RDQN, Part 2 =



5 if goal hit with correct heading
0.5 if goal hit without correct heading
−1 if obstacle hit
0.75 if desired heading obtained
0.2 if closer to goal in either x- or y-direction
−0.075 otherwise

(4.10)

After training the networks, we make a path of waypoints to guide the vessel. The
trained neural networks are used to find which actions to take when moving in the
environment. For example, the agent will take the action with the highest Q-value
in the starting point. After performing the action it reaches a new state which is
added to the path of waypoints. This is repeated until the agent reaches the goal
state or another end state. When reaching the docking area, the desired heading
of the vessel is also included in this path.
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4.7 Deep active inference

Like the DQN, the deep active inference algorithm is used to calculate waypoints
for the marine vessel to follow safely to a docking position. Also, the task is split
in a Part 1 and Part 2 such that the docking operation is separated from the
operation of moving the marine vessel to the docking area.

The deep active inference algorithm implemented in this thesis is inspired by the
implementation of the algorithm in [25] and [31]. The algorithm in [25] is an
extension of the algorithm in [31] which gives some differences between the two
papers. Thus, we use a combination of both algorithms for the implementation
in this thesis. The algorithm from [25] can be found on GitHub at [24] and the
calculation of the expected free energy and the variational free energy in this
implementation is also used in the implementation in this thesis, but the rest is
changed to fit our environment.

The algorithm presented in Section 3.4.1 is mostly based on [31]. The two most
important equations used for deep active inference is the equations for the varia-
tional free energy and the estimation of the expected free energy. These equations
are repeated here

− F =

∫
q(ϑ) ln p(s|ϑ) +DKL[q(ϑ)||p(ϑ|ϑ, at−1)] + Eq(ϑ)[DKL[q(a|ϑ)||p(a|ϑ)]]

(4.11)

Ĝ(ϑ, a) = −r(st) +
∫
q(ϑt)(ln q(ϑt)− ln q(ϑt|st))dϑ+Gψ(ϑt+1, at+1) (4.12)

A difference between the algorithm implemented and the algorithm presented in
this section is that we do not need a approximate distribution over the states
q(ϑ). As we assume that the states are directly observable there is no uncertainty
about which state we are in. This density is originally used in the equation for
variational free energy where the Kullback-Leibler divergence is calculated between
this density and the transition density. In this way, we are training the transition
network to output the correct state given the previous state and action. As there
are no uncertainty about the states, we adjust the transition network to output
the next state directly and not a probability distribution over the states. This
means that the probability distributions inside the Kullback-Leibler divergence are
transformed to states and estimates of states. Therefore, we replace the Kullback-
Leibler divergence with the mean squared error (MSE) between the state and its
estimate from the transition network, as proposed in [25]. We call this the predicted
state error in this thesis. The approximate distributions over the states q(ϑ)is also
used in the equation for the expected free energy in the second term which is
the calculation of the epistemic value. The epistemic value makes sure that the
agent resolve uncertainty about uncertain states and is useful for exploration of
the environment. As there is no uncertainty about the states, this term is also
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replaced by the MSE between the state and the estimated state obtained by the
transition network.

As we only work with fully observable environments there is no need for the VAE-
network used for mapping the hidden states given the observations and opposite.
Thus, the networks used in our deep active inference algorithm are the transition
network pϕ(ϑ|ϑt−1, at−1), the action network qξ(a|ϑ) and the expected free energy
network Gψ(ϑ, a). Different sizes of the networks were tested, ranging from one
to four hidden layers and 32 to 500 nodes in each layer. In the end, the networks
were all implemented with two hidden linear layers with 100 nodes each. As
activation functions we tested both Tanh and ReLU, but ReLU was used in the
final implementation. We see from the expressions of the networks that all of them
takes the states ϑ as input. In Part 1 of the docking task the states are given as
the x- and y-coordinate of the centre of the vessel, while in Part 2 we also include
the heading in the state vector. The actions the agent can choose between is the
same as for the DQN and can be seen in Figure 4.5.

The networks pϕ(ϑ|ϑt−1, at−1) and qξ(a|ϑ) are trained by minimizing the variational
free energy, while the network Gψ(ϑ, a) is trained by minimizing the loss between
the bootstrapped expected free energy estimate and the value from the expected
free energy network. All the networks were trained with gradient descent using
the ADAM optimizer. A a learning rate of 1e − 3 was used for the transition
and action network, while a learning rate of 1e − 4 was used for the expected
free energy-network. As the transition network should output only positive values
a ReLU function was used on the output. Also, a Softmax function was used
on the output of the policy network as the policy network outputs a probability
distribution over the actions for a given state.

When training the networks we use two techniques introduced for the DQNs.
Firstly, we use experience replay which stores the previous history of transition.
In this case a single transition consists of three consecutive states, the two actions
taken between the states, the reward received in the second of the three states and
if the agent has reached the goal or an obstacle in the third state. The reason for
using three consecutive states is that when calculating the bootstrapped expected
free energy estimate for a state we use the estimate expected free energy value of
the next state. Also, when calculating the MSE between the state and the state
estimate from the transition network, we need the previous state and action as the
input for the transition model. Secondly, we use a target network for the expected
free energy. As the expected free energy estimate is used when calculating the
bootstrapped expected free energy estimate we need a target network to stabilize
the calculation.

Several different approaches to training of the deep active inference agent on Part
1 was tested. In the first approaches, the deep active inference agent was trained
in the same manner as the DQN-agent. For action selection an ϵ-greedy strategy
was used and the initial position was first set to the port entrance such that the

51



agent could find the goal position easier. Even with an initial position at the port
entrance the agent struggled to hit the goal consistently. Thus, the initial position
was moved closer to the goal into the port area until the agent managed to hit the
goal position consistently. The starting position that first made the agent hit the
goal consistently was (20, 23). Thus, Part 1 of the training was split up in several
parts where the initial position first was set close to the goal and then some states
further out when the agent had hit the goal a given number of times from the
previous position. As the deep active inference-agent uses longer time than the
DQN-agent to hit the goal consistently from the various positions it was difficult
to use an ϵ-greedy strategy for action selection. When the agent is moved to a
new initial position further from the goal the ϵ should be closer to 1 as the agent
has to explore a new part of the area. Also, to hit the goal more often from the
positions closer to the goal, the ϵ should be closer to 0. This made it hard to find
a good balance between exploration and exploitation. From now on, instead of
training the agent with the same approach as the DQN-agent, agent was trained
in the same manner as proposed in [31].

In theory the second term in the expected free energy formulation seen in (3.33),the
epistemic value, can be utilized for exploration. Even though we have changed the
expression for the epistemic value from a Kullback-Leibler divergence between the
state distribution and the transition network to a MSE, the expression should still
incentivize visiting states where the transition model is weak and resolve ambigu-
ity. From now on we perform the action selection with the policy network. By
inputting the state the agent is located in, the policy network outputs a proba-
bility distribution over the actions. From this probability distribution an action
is sampled and performed by the agent. This gives the agent a balance between
exploration and exploitation. When the agent comes to an state where it has no
experience the probability distribution outputted from the policy network will be
approximately uniform. The more the agent learns about the actions in the state,
the higher will the probability is assigned to the best action or actions. Thus, the
probability of selecting the best action gets higher.

However, we saw early that the deep active inference struggled with exploring the
environment and finding the goal. When we tried to let it explore the environment
itself, it often explored the environment for 200− 300 episodes before it converged
to a path that lead it to the same state again and again. Often this state was the
closest obstacle, even if we assigned it a large negative reward. As this did not work
we again tested different approaches of starting with different initial positions in
Part 1. First, initial positions were randomly chosen from the whole environment.
The reason for this is that the predicted state error often is large in the beginning
of the run as the transition network does not have enough experience to make good
predictions. If we set the initial position first inside the port area, such that the
agent could find the goal more easily, the MSE between the state and the transition
network would be large as the transition network is not trained sufficiently yet.
Thus, the bootstrapped expected free energy estimate and the variational free
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energy value would be very large and not give a correct representation of the state
and action values. We occasionally found this to be problematic as it seemed as
this could be the cause of an explosion in the expected free energy.

The training method that yielded best performance was to separate the inside of
the port and the outside of the port, after exploring the environment to decrease
the predicted state error. First, the agent was trained on the environment inside
the port where we "closed" the port entrance such that it had no opportunity to
move out in the open area. When training inside the port area we used initial
states along the path from the port entrance to the goal and the first initial state
was set to (21, 24). This is a state which has obstacles down to the left and up to
the right of the state. Even if this is a state close to the goal it was seen that the
agent struggled to get to this state when starting further out. After hitting the goal
a 100 times from this position the agent was moved out to (19, 23). From here the
agent hit the goal another 100 times before it was moved out to the port entrance.
The same procedure was repeated from this position before the port entrance was
opened and the agent was moved out in the open area. Here the agent was put in
different start positions along the path from the start position (0, 0) to the port
entrance. Even though this training method gave the best performance, the agent
still did not manage to hit the goal from (0, 0) which is the real start position.

The prior preferences of the deep active inference agent is to maximize rewards
as we directly encode the prior as a reward function. A lot of different reward
functions was tested, with rewards ranging from −100 to 100. Also, both a sparse
reward function, which only gave rewards if the agent hit the goal or an obstacle,
and a denser reward function, which gave rewards in every step dependent on
how far the agent was from the goal, were tested. In the end, the denser reward
function gave the best performance and it can be seen in (4.13). When the agent
hits the goal it receives a reward of 10 and when it hits an obstacle it receives a
reward of −3. In addition, the agent receives a reward of 1 if it moves closer to the
goal in both x- and y-direction and 0.75 if it moves closer in one of the directions.
A negative reward of −1.5 is given if the agent moves away from the goal.

RDAI,Part 1 =



10 if goal hit
−3 if obstacle hit
1 if closer to goal in both x- and y-direction
0.75 if closer to goal in either x- or y-direction
−1.5 otherwise

(4.13)

When training the agent on the environment we use the matrix in Figure 4.1
to check if it has moved to a valid state or not. To make sure that the marine
vessel will not crash when using the path made by the deep active inference agent
we consider the size of the vessel. This means that we assign the agent three
states in a row when it moves in the environment. As this makes the training

53



unnecessary complicated and as we struggled with hitting the goal in the original
environment, we tried to implement an environment of 20× 20 with states of size
75× 75 meters to fit the marine vessel-agent inside one state. However, this made
no significant changes in the performance and the agent struggled with finding the
optimal actions from states located as close as 4 − 5 states away from the goal.
In the end we had to disregard the size of the marine vessel and use the 30 × 30
environment. This meant that we stopped checking for crashes in the cell in front
and behind the centre cell. Instead we tried to give the agent a reward of −1 every
time it was in a state next to an obstacle to make it find a path away from the
obstacles. However, this did not have a significant impact on the performance.

When performing the docking operation in Part 2 we made small changes to the
environment. Just as for the docking operation for the DQN we now have a state
vector with the heading in addition to the Cartesian coordinates of the agent.
Also, the action set is now increased to 16 actions such that the agent also can
change its heading. This means that in addition to have a goal state consisting of
coordinates we also specify a desired heading. The reward function used in Part 2
is seen in (4.14). While the agent still receives a reward of 10 for hitting the goal,
it now receives a reward of −5 for hitting an obstacle. When the agent moves
away from the goal a reward of −1 is received. In addition, the agent receives a
reward of 0.99 both if it moves closer to the goal in both x- and y-direction, and
if it changes the heading to the desired heading. This is set to a value lower than
the value for moving away from the goal to make sure that it cannot move back
and forth to accumulate a positive sum of reward.

RDAI,Part 2 =



10 if goal hit
−5 if obstacle hit
0.99 if closer to goal in both x- and y-direction
0.99 if desired heading obtained
−1 otherwise

(4.14)

The initial Cartesian position of the agent in training is first set in the middle
of the environment quite close to the goal. As the agent now has 16 actions to
choose from in each state, it was thought that it was important that it started a
bit closer to the goal that the actual initial position. However, the initial heading
is always set downwards. When the agent managed to hit the goal consistently
it was moved to the initial position (0, 6) in Figure 4.4. Now, the agent did not
have any problems hitting the goal consistently as it knew what actions it should
perform around the goal.

It was also the intention to perform both Part 1 and Part 2 with the same network
to test it on the whole task. In addition, we planned to test both deep active infer-
ence and DDPG on the continuous case with continuous states and actions. As we
did not manage to get the results we wanted in the discrete case we unfortunately
never got to look at these parts of the problem.
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Chapter 5

Results

This chapter presents the results obtained with the DQN algorithm and the deep
active inference algorithm when performing the docking task. First, the results
from the DQN-agent in the discrete environment are presented and discussed,
before we present the results from the deep active inference-agent in the same
environment.

5.1 Docking in discrete environment

5.1.1 Deep Q-Network

Part 1

In Part 1 of the docking task the DQN-agent struggles with finding the goal con-
sistently. From the plots in Figure 5.1 we see that the agent does not hit the goal
until around 300 iterations from the closest start position. Even though the agent
is in close proximity to the goal it has problems with locating the goal as it finds
itself in a tight area. However, when the agent first has found the goal it hits it
consistent from the closest start position. This can be seen as both the goal count
and the average reward start to increase significantly. As the agent still explores
the environment it does not hit the goal in every run. After just over 400 episodes
the agent has hit the goal 50 times and the initial position is moved to the port en-
trance. From this initial position the agent uses around 200 episodes before it hits
the goal again. From this point in the run, the average reward and the goal count
increase slowly, which is due to that the agent only hits the goal occasionally as it
still explores the environment. After around 900 iterations it is seen that there is
a short stop in the goal increase. Here, the initial position is moved to the original
start position. From the two figures in Figure 5.1 we see that both the goal count
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and average reward increase steadily from this point on as the agent finds the goal
almost immediately from the new start position. In total the agent hits the goal
380 times over 1500 episodes. Even if the agent fails more that it hits the goal in
total, it does hit the goal more that it fails at the end of the run. This means that
it has found a policy that leads the agent from the start position to the goal.

(a) Visualizes the goal hits versus fails of
the DQN-agent in Part 1.

(b) The average reward the DQN-agent re-
ceived in Part 1.

Figure 5.1

After training the network, we can use the DQN to find a path for the marine
vessel to follow. This is done by using the DQN to find the policy that guides
the agent from the start position to the goal position and store which states the
agent visits on its way. The states the agent visits and the policy used to guide the
agent is seen in Table 5.1. This table shows which state the agent is located in at
each time step and the action with the highest Q-value, which it will perform. For
example, we see in time step 29 that the agent moves down from state (22, 24) and
ends in (23, 24) which matches with the goal state seen in Figure 4.1. The agent
takes 29 actions to move to the end state which is the least amount of steps it can
take between the start state and the goal state when accounting for the marine
vessel length. This shows that the agent takes one of the optimal routes to the
goal.
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Time step, state Action Time step, state Action
1, (0,0) Down-Right 16, (14,15) Right
2, (1,1) Down-Right 17, (14,16) Right
3, (2,2) Down-Right 18, (14,17) Right
4, (3,3) Down-Right 19, (14,18) Right
5, (4,4) Down-Right 20, (14,19) Right
6, (5,5) Down-Right 21, (14,20) Down
7, (6,6) Down-Right 22, (15,20) Down-Right
8, (7,7) Down-Right 23, (16,21) Down
9, (8,8) Down-Right 24, (17,21) Down-Right
10, (9,9) Down-Right 25, (18,22) Down

11, (10,10) Down-Right 26, (19,22) Down-Right
12, (11,11) Down-Right 27, (20,23) Down-Right
13, (12,12) Down-Right 28, (21,24) Down
14, (13,13) Down-Right 29, (22,24) Down
15, (14,14) Right 30, (23,24) -

Table 5.1: Policy that shows how the DQN-agent moves from the start state to
the goal state in Part 1 of the docking task.

Part 2

Part 2 of the docking task is solved easily with DQN. As seen from the plots
in Figure 5.2, the agent finds the correct position and heading at around 300
iterations. In the rest of the run the agent hits the goal in almost every episode
with some exceptions where it explores the environment. The average reward seen
in Figure 5.2b is on its way to stabilize around an average of just over 5 as the
agent receives a reward of 5 of hitting the goal and some small rewards for moving
towards the goal. This shows that the agent in almost every run hits the goal. In
total, the agent hits the goal 683 times out of 1000 episodes.
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(a) Visualizes the goal hits versus fails of
the DQN-agent on Part 2.

(b) The average reward the DQN-agent re-
ceives in Part 2.

Figure 5.2

The policy obtained after training the DQN on the docking area can be seen in
Table 5.2. As the cells in this environment is half of the size of the of the 30× 30
environment, the cells in the complete environment is split in two such that the
position of the cells are defined by either .0 or 0.5 instead of only integers. From
this policy we see that the agent moves downwards until it gets close to the goal
position. Then, it turns around to get the correct heading before it moves into the
goal position.

Time step, state Action
1, (24.0,24.0, Down) Down
2, (24.5,24.0, Down) Down
3, (25.0,24.0, Down) Down
4, (25.5,24.0, Down) Down
5, (26.0,24.0, Up) Turn 180◦

6, (26.0,24.0, Up) Down-Right
7, (26.5,24.5, Up) -

Table 5.2: Policy that shows how the DQN-agent moves from the start state to
the goal state in Part 2.

Simulation of the marine vessel

By first adjusting the paths found in Part 1 and Part 2 such that they can be used
in the marine vessel environment and then adding them together we get the path
seen in Figure 5.3. Each red dot corresponds to a point in the paths seen in Table
5.1 and Table 5.2. By starting in the upper left corner the vessel should move to
the goal position without hitting the obstacles. In the docking area the red dots
are closer as the size of the discrete states were smaller here than in the rest of the
environment.
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Figure 5.3: Visualization of the path found with the DQN-agent.

Figure 5.4: Cartesian position of the vessel moving through the environment and
its heading at waypoints from the DQN.

When guiding the vessel according to this path we get the behavior of the vessel
as seen in Figure 5.4. The blue line represents the position of the vessel while the
arrows represent the heading at every waypoint. The desired heading is calculated
by integral LOS, expect for when the agent is in the docking area where the desired
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heading is calculated by the DQN-agent. It is seen that the marine vessel follows
the waypoints well. However, it somewhat struggles when it have to change the
heading which causes it not to hit the waypoints exactly. We can see from the
figure that the marine vessel in these cases have to move a bit backwards to reach
the waypoints. As it is a large vessel it is expected to a degree that it is hard for
the vessel to hit the waypoints after a hard turn. However, the parameter matrices
of the controller and thrust configuration are probably not optimally tuned, so the
performance probably has the potential to be better.

Figure 5.5: The errors between marine vessel position and heading and desired
position and heading, with DQN.

Figure 5.6: The absolute velocity and the velocity decomposed in surge and sway
direction, with DQN.

From Figure 5.5 we can see that the vessel manages to get the errors in x, y and ψ
close to zero. These errors does not always go to zero as we have defined that the
vessel has reached the point if it it inside a radius of 3 meters of the point. It can
also be seen that there are large oscillations in x and y. This is as expected because
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of how we perform the guidance and control of the marine vessel. When moving
through the environment, the desired position is set along a line of consecutive
waypoints in front of the marine vessel. This means that the vessel have to catch
up to the desired position. When the marine vessel catches up to the desired
position, the error moves towards zero. After reaching the current waypoint, the
next waypoint is used to calculate desired points along the line between the current
and the next waypoint. This will cause a new error in the Cartesian coordinates
which leads to some oscillations. In addition, another part of the oscillations comes
from that, at some points between two consecutive waypoints, the vessel moves
faster than the desired point is updated. In the beginning, the vessel stands still
and uses a lot of time to accelerate. At the same time the desired point is moved in
front of the vessel at a steady pace which gives a large error in x- and y-direction.
In the x-direction this will cause positive errors as seen in the figure. To counteract
these large errors, the controller of the vessel will output large forces to the vessel.
This causes the vessel to increase its velocity such that it catches up to the desired
points which moves along the line with a constant velocity. However, now the
vessel are moving faster than the desired points are updated and it will move
past the desired points, which in the case of x-direction will cause negative error.
Then, the vessel must decrease its speed which in turn explains the oscillations
in the velocity in Figure 5.6. In this figure it is seen that the velocity when the
vessel moves straight ahead moves towards an absolute velocity of 2.0 before it
is decreased to 0.25. When the velocity is decreased, the desired position catch
up to the vessel again and in this environment, the vessel will often have reached
the waypoint in this case. Now, the velocity is low and the desired points is again
moving away from the vessel which causes the vessel to accelerate and which causes
it to again move past the desired points. In this way, we get oscillations both in
the errors in Cartesian position and the velocities.

When the vessel moves in the docking area, we see that the oscillations are fewer
and more in one of the positive or negative direction. The reason for this is that
the vessel has to turn in different directions in addition to moving forward. As the
vessel turns, it moves slower in the surge direction while the velocity is increased
in the sway direction. Also, the agent often cannot turn fast enough to hit the
next point correctly which makes it move very slowly around the next waypoint
to hit it. Therefore, the agent reaches a velocity of around zero here and does not
start with a velocity when it have to accelerate again. This makes the maximum
velocity between two waypoints lower and it can slow down more easily. This is
seen in the errors in the x-direction after t = 1000. Here, the agent moves more
slowly and uses more time to get to the points. Thus, the overshoots often lasts
longer and the errors are larger.
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Figure 5.7: The yaw angle and the yaw rate of the vessel, with DQN.

When looking at the errors in heading, we see that the vessel changes its heading
relatively well when the desired heading is adjusted. This is also exemplified with
Figure 5.7, where the heading, or yaw angle as it also is called, quickly stabilizes.
The yaw rate, which describes how fast the yaw angle changes, has small and high
spikes which tells us that the heading changes quickly. However, the vessel often
overshoots slightly when the vessel approaches the desired heading. Also, we see
in the yaw rate that there is small changes in the heading angle when the vessel
moves straight forward. The way we perform the guidance and control leads to
small changes in heading as it struggles moving straight forward. As this causes
small changes in the heading, it also causes small changes in the yaw rate.

From Figure 5.6 it is seen that almost all of the absolute velocity is composed of
the surge velocity u and a small amount of sway velocity v until the vessel reaches
the areas with more turns. This tells us that the vessel moves almost straight
ahead when moving in a straight line with only small corrections, which is what
we want the vessel to do. When moving in the port area it is more natural that
the sway velocity affects the absolute velocity more. As the vessel does not always
hit the waypoint straight away it has to move backwards and sideways to reach it
which means that the vessel will have some sway velocity. Also, when performing
the docking operation the vessel has to move sideways and the absolute velocity
will mainly consist of sway velocity.
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5.1.2 Deep active inference

Part 1

Part 1 of the docking problem is not solved according to the objective of finding a
safe path from (0, 0) to (23, 24). It does not manage to find a path that avoids the
obstacles at all. The state furthest from the goal from where the agent finds a path
that guides the agent to the goal position, is a path going from the state (0, 5).
However, this path does not avoid that the marine vessel hits several obstacles on
its way to the goal. As we did not receive satisfactory results, we have run the
deep active inference algorithm 25 times to see how it performs over several runs.
In Figure 5.8a we have plotted how many times the agent hits the goal position
per training run. In most of the runs the agent hits the goal around 500 times,
but there are also cases where it does not find the goal at all even if it starts close
to the goal. In addition to training the algorithms, we tested from which states in
the environment we could find a policy that leads the agent to the goal. Figure
5.8b shows that, at best, the agent manages to hit 268 times, but mostly the agent
hits the goal from between 0 to 90 states. The most goal hits comes in run number
20, which is also where we manage to find the best policy that guides the agent
from (0, 5) to the goal. The agent also hit the goal from (0, 5) in run 3, 4 and 11
where the agent hits the goal around 500 times in training and find a policy that
hits the goal from around 75 states.

(a) Results from Part 1 with deep active in-
ference. Visualizes the goal hits when train-
ing the agent agent per training run.

(b) Results from Part 1 with deep active in-
ference. The number of states from which
the agent finds a policy that guides the
agent to the goal per training run.

Figure 5.8

In Figure 5.9 we see different quantities used for training of the networks and for
calculation of the expected free energy and variational free energy. Figure 5.9a
shows the average expected free energy loss at each training step. As we have a
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few high numbers which makes it difficult to get a complete picture of the lower
values, these values are also written in Table 5.3. The expected free energy loss is
used for training of the expected free energy network. When the average expected
free energy loss is high, it tells us that the bootstrapped expected free energy value
does not converge and the values of the expected free energy explode. When the
numbers are lower, the estimated expected free energy values are more stable and
it is more likely that we get a good estimation of the expected free energy.

In Figure 5.9b we see the mean variational free energy values, which are used for
training of the policy and transition network, and Figure 5.9c shows the predicted
state error made by the transition network. We see that these values often cor-
responds to the expected free energy loss values, albeit much lower. Also, as the
predicted state error is used for calculation of the variational free energy, we see
that the it almost makes up all of the variational free energy values.

(a) Results from Part 1 with deep active
inference. The mean expected free energy
loss per training run.

(b) Results from Part 1 with deep active
inference. The mean variational free energy
per training run.

(c) Results from Part 1 with deep active in-
ference. The mean predicted state error per
training run.

Figure 5.9
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Training run Mean EFE loss Training run Mean EFE loss
0 13.01 13 13.56
1 342.20 14 8617.10
2 4.04 15 104.23
3 17.36 16 10004.03
4 18.25 17 107.71
5 166243.11 18 8.96
6 6703.82 19 64.93
7 23935.88 20 16.12
8 5.12 21 14.34
9 5.53 22 15.81
10 20.80 23 19.84
11 21.72 24 124.52
12 22.51 - -

Table 5.3: The mean expected free energy loss at each training run from deep
active inference in Part 1.

After training the deep active inference agent 25 times we use the action network
qξ(a|ϑ) from run number 20 to find the policy. By performing the action assigned
the highest probability in every state we get the policy seen in Table 5.4. From this
policy we see that the agent does behave in an optimal manner from the starting
point to the goal in terms of number of steps. However, we did not manage to
adjust for the length of the marine vessel which means that for it will not manage
to guide the marine vessel safely to the goal position.

Time step, state Action Time step, state Action
1, (0,5) Down-Right 13, (12,17) Down-Right
2, (1,6) Down-Right 14, (13,18) Down-Right
3, (2,7) Down-Right 15, (14,19) Down-Right
4, (3,8) Down-Right 16, (15,20) Down-Right
5, (4,9) Down-Right 17, (16,21) Down-Right
6, (5,10) Down-Right 18, (17,22) Down
7, (6,11) Down-Right 19, (18,22) Down-Right
8, (7,12) Down-Right 20, (19,23) Down
9, (8,13) Down-Right 21, (20,23) Down
10, (9,14) Down-Right 22, (21,23) Down-Right
11, (10,15) Down-Right 23, (22,24) Down
12, (11,16) Down-Right 24, (23,24) -

Table 5.4: Policy that shows how the deep active inference-agent moves from the
start state to the goal state in Part 1 of the docking task.
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The corresponding path can be seen in Figure 5.10. Here, we clearly see that the
marine vessel will move close to the obstacles inside the port area. As the centre
of the vessel is the point that is used for following the waypoints it will crash into
the obstacles.

Figure 5.10: Visualization of the path found with the deep active inference-agent
on Part 1.

Figure 5.11: Cartesian position of the vessel moving through the environment and
its heading at waypoints from the deep active inference-agent on Part 1.

This can also be visualized with the position and the heading of the vessel when
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simulating the marine vessel with a controller that follows the waypoints. In Figure
5.11 we see the vessel is moving through the waypoints and crashing at different
parts of the environment.

Part 2

Part 2 of the docking task is solved relatively easily. The agent is first placed
in close proximity of the goal position, but with the opposite heading, such that
the agent finds the goal. We see from Figure 5.12a that the agent uses between
300 and 400 episodes before it finds the goal position. However, we see that the
average reward starts to increase before it even hits the goal for the first time. As
the agent receives positive rewards of 0.99 for getting closer to the goal and for
changing its heading to the desired heading, it can gather positive rewards even
if it has not hit the goal. Even though the agent gathers some positive rewards,
it still hits an obstacle in the end which gives a reward of −5. In total this gives
a reward of around −4 and we see that the average reward stabilizes around this
value. Then, when the agent finds the correct goal position it starts hitting the
desired position consistently for the rest of the run. Even when the initial position
is changed to the actual goal position it continues to hit the goal. In the end of
the training run, the agent has hit the goal in 1005 out of the 2000 episodes. This
indicates that the agent has found a consistent policy that takes it to the desired
position.

(a) Results from Part 2 with deep active
inference. Visualizes the goal hits versus
fails of the agent.

(b) Results from Part 2 with deep active
inference. The average reward the agent re-
ceives.

Figure 5.12

In Figure 5.13 we see how the expected free energy loss and the variational free
energy develops through the training run. The expected free energy loss starts
at a high value as the prediction state error is high, but this quantity decreases
when the transition network gets a more correct representation of the environment.
The same is the case for the variational free energy quantity seen at the bottom
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in the figure. That both the expected free energy loss and the variational free
energy moves towards zero as the agent explores the environment shows that the
agent finds a good approximation of the different quantities it estimates with the
three neural networks. Also, this indicates that the expected free energy network
stabilizes at the bootstrapped estimate of the expected free energy and that it can
be useful for finding the action distribution q(a|ϑ).

Figure 5.13: The expected free energy loss and the variational free energy in Part
2.

The policy produced by the deep active inference agent is seen in Table 5.5. Firstly,
the agent starts with moving downwards. Then, when the agent has space around
it to turn, it turns around to obtain the desired heading. Furthermore, it takes
one more step downwards before it moves downwards to the right and into the
goal position. As the agent uses the least amount of steps it can take, it is optimal
in terms of number of steps.
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Time step, state Action
1, (24.0,24.0, Down) Down
2, (24.5,24.0, Down) Down
3, (25.0,24.0, Down) Down
4, (25.5,24.0, Down) Turn 180◦

5, (25.5,24.0, Up) Down
6, (26.0,24.0, Up) Down-Right
8, (26.5,24.5, Up) -

Table 5.5: Policy that shows how the deep active inference agent moves from the
start state to the goal state in Part 2.

The waypoints and the movement of the vessel with the path calculated with
deep active inference can be seen in Figure 5.14. The vessel follows the path
without large problems, avoids every obstacle and moves into the docking position.
However, when it turns we can see that it is not pointing straight up and has an
offset of a few degrees.

(a) Waypoints calculated with deep active
inference in Part 2.

(b) Cartesian position and heading of ma-
rine vessel in Part 2.

Figure 5.14

From the figures Figure 5.15 and Figure 5.17 we see that the vessel overshoots, just
as we saw when using the DQN-path for guidance, but the vessel manages to hit
the waypoints. As the waypoint the marine vessel is following changes when the
vessel is inside a radius of 3 meter of the current waypoint, we see that the error
in the x- and y-direction does not converge to exactly 0. Here, the overshoots and
errors are largest in the x-direction. The reason for this is that the vessel mostly
moves straight downwards and does only move in the y-direction when moving
out from the starting state or into the goal position. However, it is seen a small
change error from around t = 75 to t = 175 where the vessel should not move in
the y-direction. This shows that the vessel does not move in a completely straight
line downwards which also can be seen in Figure 5.16 as the sway velocity has a
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negative value in this period of time. Between t = 150 and t = 175 we see small
spikes in x-direction and y-direction and a larger spike in the velocity and sway
velocity. At this point the vessel turns around and the centre of the vessel changes
slightly. As there are only small changes it does not have an effect on if the vessel
hits an obstacle or not. The development of the heading of the vessel can be seen
in Figure 5.17. When the vessel turns around it is seen that the vessel turns too
far such that it overshoots with 25 degrees, which is a relatively large error. In
Figure 5.14b it is seen that the heading of the vessel is not completely straight up
when it just has turned which probably is due to the overshoot in the heading.
Also, we see that it takes a long time before the heading is properly corrected.

Figure 5.15: The errors between marine vessel position and heading and desired
position and heading in Part 2 with deep active inference.

Figure 5.16: The absolute velocity and the velocity decomposed in surge and sway
direction in Part 2 with deep active inference.

From Figure 5.16 it is seen that the velocity of the marine vessel mainly is in the
surge direction when it moves forward. When the marine vessel moves sideways
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or around we see that the marine vessel also has a velocity in the sway direction,
which is as expected.

Figure 5.17: The yaw angle and the yaw rate of the vessel in Part 2 with deep
active inference.
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Chapter 6

Discussion

In this chapter, the results from the simulations are discussed. Also, properties of
deep active inference are discussed and compared to reinforcement learning and
deep Q-networks. In addition further work is proposed.

6.1 Discussion of results and algorithms

From Figure 5.3 and Figure 5.4 we see that the DQN-agent safely manages to find
a path for the marine vessel to follow. The resulting policy, which is seen in Table
5.1, makes an optimal path in the way we defined the environment, but inside
the port area we see that the vessel have to zigzag its way through. For a large
vessel used in this thesis, it would be favourable for the vessel to move in a more
straightforward manner without the changes of direction when it does not have to.
Instead of moving back and forth right after it came inside the port area it should
instead move a step further down and then move to its own left. This would have
have saved the vessel of making two direction changes. A more efficient path could
probably have been found by optimizing the reward function to make sure that
the agent would not take turns unless it have to. When it comes to Part 2 of the
problem, the DQN-agent solves it without any problems. It quite easily finds a
good policy for the marine vessel to follow and from the simulation of the marine
vessel we see that the marine vessel efficiently moves into the docking position with
the actions available. It would have be even better if the action set also included
actions where the agent turned and moved in a direction at the same time. This
would have made the docking even more efficient.

In Part 1, the DQN-agent somewhat struggles with finding the goal from the
first initial position. As the marine vessel do not fit in the cells of the discrete
environment we assume that it takes up three cells to make sure that i does not
crash. This makes it hard for the agent to find a way through the network as it is
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tight and there is few paths through the tightest areas. As the marine vessel is 75
meters and one cell is of length and height 50, the vessel in reality only takes up
a quarter of the cell behind and in front of the centre cell. Thus, we have made it
unnecessary difficult for our selves by defining the environment in this way as we
make the vessel 75 meters longer than it should be. Therefore, the environment
should be made simpler where the marine vessel fits in one cell.

From the simulations of the marine vessel we see that the way of guidance and
control of the vessel used in this thesis is not very good. We get oscillations in
the velocities where the marine vessel have to start and stop frequently. Also, the
marine vessel does not manage to follow the path perfectly either, as it sometimes
have to stop and move backwards or sideways to get to the waypoint. The vessel
also somewhat struggles with moving straight ahead which it should be able to
when moving without any disturbances. In addition, there is overshoot in the
control of the heading and the position of the vessel. Some of the issues could
maybe be removed by optimizing the tuning parameters, but in general the way
of following the waypoints should be changed. Especially when the vessel moves
straight ahead it should be able to move forward with an even velocity. However,
it was not the goal of the task to tune and guide and control the marine vessel
model perfectly. Due to the issues with deep active inference and trying to solve
these, it was not taken time to optimize the marine vessel model. Even if it the
guidance and control is done in a suboptimal manner, it can still give an indication
on how good the solutions are.

When looking at the results obtained with the deep active inference-agent we see
that it does not manage to solve Part 1 of the docking task completely. It does
manage to find the goal from a position from outside the port area, but this does
not avoids crashing of the marine vessel. Also, it did not find a path to the goal
from the position we consider as the start position which ultimately was the goal
of that part of the problem. However, in the open area of Part 2 of the docking
task the deep active inference works well. Compared to the policy and resulting
path calculated with the DQN-agent, we almost get the same path with from the
deep active inference-agent in Part 2. The only difference is when the agent turns
around. Where the DQN-agent does the turn just before it moves into the goal
position, the deep active inference-agent performs the turning action in the step
before. In the way we have defined the environment we only care that the agent
does not crash when turning and not when it turns. Hence, there is no significant
difference in performance of the algorithms on this part.

By comparing the goal hits versus the fails in training in of the different agents
in Part 2, we see that the deep active inference-agent uses more time before it
hits the goal consistently than the DQN-agent. This is because the deep active
inference-agent learns the environment in a different way where it draws actions
from the action network when exploring the environment. As minimizing expected
free energy makes sure that the epistemic value is maximized the agent first uses its
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time to explore the environment to obtain information. Even though we altered
the epistemic value expression from a Kullback-Leibler divergence between two
probability distributions to a MSE between two states, the new MSE expression
still seems to take care of the exploration and exploitation. When the agent has
explored the environment sufficiently, such that it has a good transition model,
it exploits what it knows. In Figure 5.13 we see that the variational free energy
starts at a high value and then it approaches zero as it receives more information
about the environment. The variational free energy value is mostly affected of the
predicted state error value as the Kullback-Leibler divergence value between the
approximate internal action distribution and the actual action distribution often
will be quite low. Thus, in this figure we see that when the agent improves the
transition model, the predicted state error gets smaller and the variational free
energy also gets smaller. This tells us that the agent explores the environment to
make better transition estimates and in this way makes sure to explore the different
parts of the environment. In this way the deep active inference agent adjusts
the exploration and exploitation dilemma on its own, in contrast to reinforcement
learning algorithms which needs an algorithm that ensures a good balance between
exploration and exploitation.

Looking at Part 1 of the docking task, it seems like the deep active inference
algorithm struggles when it have to work with "two" different environments. At
best the agent finds a policy to the goal from (0, 5) where the marine vessel length
is not accounted for. When training on Part 1, the agent both have to navigate
through the port area with obstacles on both sides and in an open area. When
trying to understand why the deep active inference algorithm behaves as it does,
it was tested to run the deep active inference agent on a 30 × 30 area with no
obstacles between the start position (0, 0) and the goal. In this case the agent
managed to find the goal and a good path in a reasonable amount of time. It was
also tested to remove some the obstacles closest around the goal. After around 400
episodes, the agent managed to hit the goal consistently from the start position.
Even though the agent found the goal consistently in training, it did not manage
to find an optimal policy. However, it did at least produce a policy that would
lead the agent to the goal, in contrast to when the agent was run on complete
environment. From training on the complete environment we saw that if the deep
active inference-agent first was trained with start positions inside the port area
it managed to find the goal, but when it was moved outside the port area it did
not manage to find the goal again. The same happened when it first was trained
to move in the open area and then trained in the port area. As the algorithm
works well on Part 2 and when we split up Part 1, a possible explanation for the
behaviour of the deep active inference-agent on the complete environment is that
the environment is too complex. The agent seems to struggle to get the correct
expected free estimations when the environment has different characteristics which
leads to suboptimal policies.

To further try to understand why the deep active inference-agent behaves as it
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does we ran the algorithm several times. In Figure 5.9 we see the mean expected
free energy loss, the mean variational free energy and the predicted state error
which are quantities that can help explain why the behaviour of the algorithm.
By looking at these figures we see that in some of the training runs, the expected
free energy struggles to stabilize. This can be seen by the mean expected free
energy loss having high values. Often in these cases, the expected free energy loss
starts with relatively low values and then suddenly exploding to values of several
thousand. This can be seen closer in Table 5.3. Here, we have a several runs with
what we consider low mean expected free energy loss and some runs with a mean
expected free energy loss of several thousand, where training run 5 is an extreme
of 166243.11. The runs with lower mean expected free energy loss indicates that
the expected free energy network manages to get good estimates and converges to
stable values. As the loss is small, it does not need to change its estimations too
much to output the correct estimations. We also see that we in general obtain the
best results when the mean expected free energy loss is low. In Figure 5.8b we see
that when the expected free energy loss reaches a mean value of over 100, the agent
often does not manage to find a policy that guides the agent to the goal from any
of the states, even not the states adjacent to the goal. We also see that these are
the training runs where the agent never finds the goal at all when training. This
tells us that if the agent does not find the goal in a reasonable amount of time
the expected free energy values and the predicted state error will diverge. This
makes the expected free energy and the action probability, which is affected by
the expected free energy, not representative of the behaviour we want to promote
and the agent may converge to a path that leads to an obstacle.

In the cases where both the mean expected free energy loss and the mean varia-
tional free energy are low, the network for approximating the expected free energy
should be stabilized. As the expected free energy is used for calculating the action
distribution, the action network should also stabilize and the agent should be able
to use this action network to find optimal policies. Yet, the agent does not manage
to find valid policies from the start position to the goal position in Part 1 in these
cases. A possible problem might be that the approximation of the expected free
energy is to inaccurate to be used for bootstrapping. In the tight areas around the
goal position it is important that the expected free energy is well approximated.
As we deal with neural networks and a bootstrapped estimate of the expected
free energy, the estimate might not be precise enough for the agent to choose the
correct actions when it minimizes the expected free energy. This might also make
it hard for the agent to propagate the expected free energy values in the port area.
The expected free energy of the goal position is just the reward received in this
position. If we want the agent to know that it wants to move here from the port
entrance, in addition to giving the agent rewards when it moves closer to the goal,
the goal reward has to be propagated to the states adjacent to the goal position
and further outwards. By looking at the policy in the open area, we see that the
agent only moves downwards to the right as this moves the agent towards the goal
in which it receives a reward. The state (0, 5) is the state furthest to the left from
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where the agent can start from and hit the port entrance while taking the action
"Down-Right". This shows that the agent does not know how to move around the
obstacles to move into the port entrance and we can see that the reward received
at the goal position is not propagated properly out. If the expected free energy
estimate is too inaccurate, the propagation might not be performed in a correct
manner. Therefore, a possible problem of this algorithm is that the approxima-
tions are too inaccurate to estimate the correct expected free energy such that it
does not get propagated properly out.

When the mean expected free energy loss has a value under 100 the agent generally
finds a policy from more states. However, there is not a complete correlation
between a low mean expected free energy loss and finding policies that hit the
goal from more states. This can be exemplified with run 0 and run 19. Even
though run 0 and run 19 have a mean expected free energy loss of 13.01 and 64.98
respectively, they both find the goal from about the same amount of states. This
can be explained by that it takes a lot of runs before the agent finds the goal.
When it eventually does, the expected free energy of a certain state and action
will have a value that is not affected by the high positive rewards received for
reaching the goal. Then, the expected free energy have to converge to new values.
This causes an increase in the mean expected free energy loss, which can explain
why there is a difference in the mean expected free energy loss, but not in the
number of states the agent can hit the goal from when testing the agent. However,
when the expected free energy loss is large enough it indicates that the estimate
expected free energy values from the network is not good. In general, it is seen
that a mean expected free energy loss closer to 0 than 100 gives better results than
when it is over 100.

In addition, from Figure 5.8 we see that here is not too much correlation between
the number of goal hits in training and the number of states from which the agent
finds a policy that leads to the goal. In training runs where the agent hits the goal
a similar amount of times, we see a variation in from how many states the agent
finds a policy that results in the goal position. By comparing run 20 and 23 which
are the runs where the agent hits the goal the most times, we see that the agent
hits the goal from over 260 states for run 20 and from just over 50 for run 23. The
results from run 23 is actually worse than run 3 and 4 which hits the goal around
500 times in training, as in these two runs, the agent finds the goal from more
states. In addition, the agent finds the goal from states further away in run 3 and
4 compared to run 23. From this, we also see that the training is not consistent
and relatively unstable. There is a lot of variation between each training run and
it seems like it is dependent on what states it visits and when it visits them. In
consecutive runs, when the start position is moved to (19, 22), the agent in one
run hit the goal immediately as it already had done from (21, 24) and in another
run it converged to the obstacle in (22, 23) and it would not hit the goal again.

The reasons for the issues mentioned here are not completely clear. Thus, we used a
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lot of time to see if the networks either was too large or too small we tested different
sizes of the networks. It was both tested with the same configuration on all three
networks and different configuration. By testing different configurations of the
networks we did not make any significant findings. There was some configurations
that worked better than others, but this is to expect as the size and configurations
will change the behaviour of the networks. However, as far as we could see, all
the networks configurations struggled with the expected free energy exploding to
some degree and large variations in performance between the training runs.

We see in Figure 5.9 that when the expected free energy explodes, the variational
free energy also increases a lot. The mean variational free energy does not reach
the values of the mean expected free energy loss, but at runs where the mean
expected free energy losses are high, the mean variational free energy is also high.
This is also the case for the mean predicted state error. As we have seen, the
variational free energy is mostly affected by the predicted state error when the
predicted state error is high. This is also seen by Figure 5.9 showing that the mean
variational free energy and the mean predicted state error are almost outputting
the same curve. In addition, we see that the mean predicted state error does
coincide with the variations of the mean expected free energy loss. The reason for
this is that the bootstrapped expected free energy estimate is calculated with the
predicted state error. Therefore, an error in the predicted state error will increase
the difference between the bootstrapped expected free energy estimate and the
expected free energy network. This will in turn increase the loss function and
lead to a large change in the expected free energy network. The variational free
energy is used for training of the transition network and when errors occur in the
predicted state error, the transition network should be corrected to make better
estimations. When the transition network makes better estimations, such that
the predicted state error is smaller, the expected free energy network is corrected
with a new bootstrapped estimate. However, if the changes in the predicted state
error is too large, it could lead to large changes in the weights in the expected free
energy network which can cause the network to diverge. This can lead to that the
expected free energy increases out of control. As the expected free energy is used
for calculating the action distribution, this may lead to action distributions that
does not reflect the desired behaviour. Thus, the agent never finds the goal and
this training run will provide poor results.

It was also tested to calculate the bootstrapped estimate of the expected free
energy and the variational free energy without the predicted state estimate. Now,
the cases with exploding mean expected free energy loss and mean variational free
energy were removed and these quantities were much more consistent. Over 25
training runs, the mean expected free energy loss varied between 3.0 and 4.75 and
the mean variational free energy only had values lower than 0.0025. However, even
if the extremes was removed by removing the predicted state error, the goal hits
per training run was about the same but without the cases with zero hits. Even
though the training seems to be the about the same, however much more stable,
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the testing performance is not as good as when we include the predicted state
error. In the best run, the agent found a policy that leads to the goal from 72
states with (1, 11) as the state furthest away from the goal. Mostly, the agent hits
the goal from under 20 of the states. This is worse than when we included the
predicted state error where the agent at most hits the goal from 268 states and
from (0, 5) at best. Even though this best case when using the predicted state
error can be looked as a deviation from what we usually will get, the performance
by using the predicted state error is on average better when not using it. This
shows that this MSE between the true state and the transition network works as
an epistemic value even if it is not the original expression. This causes the agent
to visit states minimize errors in the transition model and minimizes ambiguity.
Therefore, we still included the predicted state error even though it is the cause
for occasionally poor results. However, the predicted state error might be the issue
for not finding a correct the correct policy in Part 1. Even in the cases with a
lower mean predicted state error and mean expected free energy loss, this quantity
might make the bootstrapped expected free energy estimation too inaccurate to
be able to use it for action selection. In an open and small environment as in Part
2 we see that the predicted state error moves towards zero. But, in the larger Part
1, the environment might be too complex to get the predicted state error small
enough for the estimated expected free energy values to stabilize completely.

By further comparing deep active inference to reinforcement learning and deep q-
learning we see that both method uses bootstrapping to calculate what we can call
the value function. As the expected free energy assigns a value to each state-action
pair, just as the Q-value function in deep Q-learning, we can look at this quantity
as a value function even though it is not calculated in the same manner. As we
use rewards as a prior desire in the deep active inference algorithm, both value
functions uses rewards to calculate the bootstrapped value. However, in addition
to reward, deep Q-learning uses the maximum Q-value from next state when esti-
mating the Q-value, while deep active inference uses the epistemic value and the
expected free energy of the next state times the action distribution. This leads to
a different performance where the deep active inference does the exploration itself,
but it seems like it does not estimate the expected free energy value good enough
to get as good performance as the DQN-agent.

Where the reinforcement learning-agent learns a policy to maximize the sum of
expected reward, the deep active inference-agent selects action to maximize its
model evidence and to reach its desires. These desires can be represented in sev-
eral different ways, which makes active inference more flexible than reinforcement
learning when it comes to representing the rewards. When training the deep active
inference-agent, we tested several different reward functions where many gave de-
cent performance. In Section 3.4.1 we saw that due to the complete class theorem,
any scalar reward signal could be encodes as a prior. Thus, the reward function
can be though of like a probability distribution over states. Receiving high, pos-
itive rewards for being in a state is more or less the same as having a high prior
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probability probability of being in these states. This can make it more logical to
assign rewards, as you assign high rewards to the states that you want the agent to
be located in and low rewards to undesired states. Also, a probability distribution
can be used directly as the prior goal, which makes it easier for active inference to
represent its prior desires than reinforcement learning where the reward function
have to be carefully constructed.

When it comes to training of the two different methods, the training of the deep
active inference model took longer time than the DQN model. A reason for this
may be that the deep active inference has to train three networks against the one
of the DQN algorithm. In addition, we found that the deep active inference needed
a lot of samples when training. As we have discussed, there seems to be issues
with the approximation of the expected free energy and to make this as good as
possible we need a lot of samples for everywhere in the environment. In total we
ran the algorithm 12000 times each run in Part 1 for the deep active inference,
while we only ran the DQN 1500 times each run. This tells us that the deep active
inference algorithm is very sample inefficient.

In the papers [31] and [25] the deep active inference algorithms performs better
or as good as the reinforcement learning algorithms used. Exactly why the deep
active inference model performs worse than the model in this thesis is not clear. As
we earlier have discussed, a possibility is that the environment used in Part 1 is too
complex for the deep active inference agent. In the papers mentioned, they have
tested the algorithms on discrete OpenAI Gym environments such as the Cartpole-
v1, Acrobot-v1 and LunarLander-v2. These tasks are quite different from the task
proposed in this thesis, as these have fewer possible actions to perform and as
there are no obstacles present. Also, there is always the possibility of errors in the
implementation of the algorithms and environments. However, as we receive good
results on Part 2 of the task we think that it is more likely that this method of
deep active inference is not suitable for the type of task we have performed in this
thesis.

There also exists other methods to perform deep active inference and estimate
expected free energy that might give better results. As far as we could see when
researching active inference, there is no method of performing deep active inference
that the consensus think is better than others. There exists different methods that
works in different ways with different strengths and weaknesses. The reason for
choosing the algorithm as we did is that we saw from the papers that the deep
active inference algorithm gave good performance compared with reinforcement
learning algorithms on problems familiar to us beforehand, as they used environ-
ments from OpenAI Gym. Also, in our opinion, the algorithm in [31] was the
algorithm that was the easiest to understand and the algorithm that was pre-
sented in the best manner. Another paper and way of implementing deep active
inference that we looked at, and also begun to implement, was the implementation
of deep active inference with Monte-Carlo tree search in [13]. This paper criticize

80



[31], which was one of the papers we ended up using, for deviating from vanilla
active inference when it comes to the ability to plan, as they approximate the
expected free energy based on bootstrapped samples. They also question if the
algorithm in [31] can scale up to more complex problems as it only has been tested
on low-dimensional problems. These remarks were taken into account when we
chose between the different implementations. However, it was though that as the
deep active inference model in [31] performed in continuous state environments
such as the OpenAI Gym environments Cartpole-v1, Acrobat-v1 and Lunar-v1
Lander, the complexity of the discrete environment in this task should not be an
issue. Retrospectively, we see that this is probably not completely true. Even
though the size of the environment is not too big for the method, we have through
the results obtained found that the way the environment is constructed may be
too complex for the method. Another factor for choosing the approach in [31] is
that this method has a few similarities to the way of training reinforcement learn-
ing algorithms. Also, [13] use Monte-Carlo search trees it was thought that this
quickly takes long time to run when the environments get large. Furthermore, we
reached promising results first with the approach from [31] and thus we stopped
looking at the approach of deep active inference with Monte-Carlo search trees.
If we had chosen the other model we might have received better results, but it is
difficult to know exactly.

Another alternative to the deep active inference algorithm and deep active infer-
ence in general is sophisticated active inference. This thesis is a continuation of
our project thesis, where we used sophisticated active inference to find a policy
in a discrete environment similar to the one used here. By using sophisticated
active inference we managed to find the goal from every open position in a 30×30
environment. Therefore it was considered to also use this method on the environ-
ment in this thesis. However, in the sophisticated active inference case we could
not take the vessel length into account. Also, in sophisticated active inference the
expected free energy is calculated in a recursive way by iterating through every
single state and action combination. In this case it is not performed any learning
or exploration of the environment. Basically, this method uses a mathematical
function that recursively calculates the expected free energy of every state-action
pair instead of using an agent that explores the environment. If it gets enough
run time it will in this way manage to find the optimal path. In addition, for this
to work the environment has to be known or learnt in advance. As the transition
model is used in the calculation of the expected free energy we have to be able
to use it directly. It can be learned, but this will probably be difficult get this
completely correct unless the environment is small. Because of these drawbacks
and that we wanted to see how the exploration and exploitation can be done with
active inference we decided to use deep active inference instead in this thesis.
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6.2 Future work

From the results and the discussion it is seen that the deep active inference al-
gorithm presented in this thesis can only solve parts of the problem considered
here. Therefore, for further work, this method of solving deep active inference
should be examined further to investigate other advantages and disadvantages of
this method and further examine why it did not managed to solve all parts of the
problem. We have proposed some reasons for why it did not work as we hoped,
but more aspects can probably be found by digging further into this algorithm and
deep active inference. Also, this method of deep active inference should be tested
on similar planning problems as proposed in this thesis. The way of performing
deep active inference in this thesis has been questioned in Fountas et al. [13] if
this method scales for more complex problems. Thus, deep active inference should
be performed on other problems with similar complexity as the one in this thesis
to see if it does not scale well. Nonetheless, we reached good performance from
the deep active inference agent on part 2 of the problem and it has been seen in
other papers that this method can be useful for planning and decision making.
Thus, there might still be a potential of using this method for solving the problem
proposed in this thesis and being an alternative to reinforcement learning. In our
opinion it should be continued to be explored.

In addition, it has also been proposed several other ways of performing deep ac-
tive inference. Therefore, it should be tested if some of these methods can solve
the problem proposed and compared to the method of deep active inference used
in this thesis. Even though we did not reach optimal results in this thesis, we
still think deep active inference has the potential to solve this problem. Also, it
should be investigated how the methods perform compared to each other to look
at advantages and disadvantages with the different methods.

Furthermore, deep active inference and an reinforcement learning algorithm should
be tested and compared as high-level action planners in a continuous version of
the marine vessel. This part of the problem proposal was intended to be looked
at, but we did not managed to explore it in this thesis. By making the state
and action space continuous we get a more realistic model of the marine vessel.
Thus, the deep active inference agent and reinforcement learning agent can be
used directly for guidance and control of the marine vessel as well as planning. In
addition, it should be explored how the deep active inference handles the problem
when the environment is partially observable. The factors in deep active inference
that handle the uncertainties regarding the partially observability was omitted in
this thesis and it should be explored how these aspects affect the performance.
These factors may contribute in showing other sides and properties of deep active
inference.
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Chapter 7

Conclusion

In this thesis we have formulated a problem for using active inference and re-
inforcement learning as high-level action planners in combination with low-level
guidance and control of marine vessels. In addition, we explored how deep active
inference performs as a high-level action planner for docking of a marine vessel
in a discrete environment. For comparison, the reinforcement learning algorithm
deep Q-learning was used on the same problem as both algorithms can be used for
decision making and planning on Markov decision process (MDP) environments.
To see how well the algorithms performs as high-level action planners for a marine
vessel, a marine vessel model was implemented and simulated. This was done
by producing paths with the deep active inference and DQN algorithm and then
guidance and control of the vessel was performed by following the paths. Also,
characteristics of the deep active inference algorithm was discussed and compared
to reinforcement learning.

Deep active inference and deep Q-learning were tested on a 30×30 discrete harbour
environment. The objective of the task was to move a discretized version of the
marine vessel with discrete actions from outside a port area to a goal position
surrounded by obstacles. For simplicity, the task was split in two. Part 1 of the
problem dealt with guiding the agent from outside the port area to the docking
area. In Part 1, the deep active inference-agent did not manage to solve the
problem of moving through the environment without avoiding obstacles. The
agent did not manage to find a path that leads the vessel from the specified starting
position, and at best it managed to hit the goal from position (0, 5). However, the
path from this position would cause the marine vessel to crash. On the other side,
the DQN-agent solved Part 1 of the task without any problems.

Part 2 of the task considers the docking operation of moving the marine vessel into
a prespecified docking position which consists of both a desired Cartesian position
and desired heading. In this part, the deep active inference-agent performs well.
In this case it manages to find an optimal path from the start position and obtains
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a path almost equal to the DQN-agent. The only difference between the results of
the two algorithms is when the marine vessel is turned around.

Overall, the results in this thesis show that the deep active inference model does
not work well for action planning on larger discrete environments. We see from
the results from Part 1 of the task that the deep active inference struggles with
consistency and with the expected free energy diverging in training, due to bad
estimations made by the transition network. Also, in cases with better training
performance it does not find a policy that guides the agent to the goal both in the
open area and the port area. It seems like the agent does not manage to handle
a combination of the different characteristics of the open area and the port, and
that the environment in Part 1 is too complex. A possible explanation may be
that it struggles with propagation of the expected free energy due to inaccuracy of
the estimates due to the use of the predicted state error. However, we cannot give
a definite answer to why it does not perform on Part 1 and the algorithm should
be further examined.

Despite the poor results on Part 1, the deep active inference agent obtained good
results on Part 2 where it performed as well as the DQN-agent. In addition, deep
active inference has some advantages compared to reinforcement learning. Its way
of being able to representing prior desires, both as rewards and probability distri-
butions instead of only rewards, is more flexible and easier to use instead of finding
a good reward function. In addition, the value function in deep active inference
has a epistemic value that gives a balance between exploration and exploitation.
Also, it has been seen in other papers that deep active inference often performs
as well as or better than deep reinforcement learning and there are several ways
of performing deep active inference. Therefore, despite our poor results, we think
that deep active inference and active inference is still worth exploring further. In
addition, it is worth to note that this is a relatively new framework that needs to
be assessed further to get a good view of its properties and performance.
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