
CO
LREG

s-aw
are and M

PC-based trajectory planning and collision avoidance for autonom
ous surface vessels

Erlend H
estvik

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Erlend Hestvik

COLREGs-aware and MPC-based
trajectory planning and collision
avoidance for autonomous surface
vessels

Master’s thesis in Industrial Cybernetics
Supervisor: Morten Breivik
Co-supervisor: Emil Hjelseth Thyri
June 2022

M
as

te
r’s

 th
es

is

Erlend Hestvik

COLREGs-aware and MPC-based
trajectory planning and collision
avoidance for autonomous surface
vessels

Master’s thesis in Industrial Cybernetics
Supervisor: Morten Breivik
Co-supervisor: Emil Hjelseth Thyri
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

This thesis was written as part of my M.Sc. degree in Industrial Cybernetics at the Department of

Engineering Cybernetics, Norwegian University of Science and Technology (NTNU). The thesis is

a continuation of my specialization project during the autumn of 2021. I would like to thank my

supervisors Morten Breivik and Emil Thyri, without whom I would have never been able to fully

understand and transform the subject matter into something worth writing about.

Pivoting out of electrical engineering into the world of autonomous vessels has not been easy, for the

specialization project I took it as an absolute win to simply understand what I was doing. In this

thesis, I was able to build upon that specialization and really experiment with the functionalities

of the developed algorithm.

During the semester my supervisors have helped me with hour-long bi-weekly follow-up meetings,

answered all of my emails, and supplied me with research material and great sources. In the

meetings, we discussed not only progress, but concepts and practical ideas for improving my work.

An extra thanks is extended to Emil Thyri for supplying me with a MATLAB simulator to use

for testing the algorithm. The algorithm was developed in MATLAB v2021b, using a framework

by CasADi (v3.5.5) (Andersson et al. 2019) and an IPOPT (Wächter and Biegler 2006) solver.

The algorithm also uses the MATLAB mapping toolbox as well as MSS toolbox (Fossen and Perez

2004). CasADi’s example pack includes an example on direct multiple shooting which was used

as a skeleton during development. Figures for the thesis were drawn using Inkscape and Draw.io.

Lastly I would like to thank Olex AS for letting me use their software to store AIS data over the

course of a few days to get a look at the ocean traffic along the Norwegian coast. This was used

as inspiration for the creation of simulated testing scenarios.

Erlend Hestvik

Trondheim, 13.06.2022

ii

Abstract

A fully autonomous surface vessel will need both trajectory planning and collision

avoidance systems. The ability to track a reference path with temporal or other ef-

ficiency constraints is essential for the usefulness of the Autonomous Surface Vessel

(ASV). It is also not enough to simply follow a path optimally, the vessel must be able

to evade collisions with other vessels both manned and unmanned as well as avoid static

obstacles. While avoiding collisions is one goal, the real goal of collision avoidance is to

achieve full Convention on the International Regulations for Preventing Collisions at Sea

(COLREGs) compliance, a set of rules which every vessel on the sea must adhere to. In

this thesis, a COLREGs aware trajectory planning algorithm capable of avoiding both

static obstacles and other vessels is developed. The algorithm will be based on Model

Predictive Control (MPC) and the viability of numerical optimal control for mid-level

trajectory planning will be examined.

The algorithm will be tested in a variety of simulated scenarios designed to stress dif-

ferent aspects of trajectory planning and collision avoidance both individually and in

combined situations. An additional point of examination will be the usage of hypothet-

ical intention inferring methods and prediction of other vessels. Each scenario simulation

will be conducted twice; in one version the developed algorithm is allowed near perfect

information about the other vessels, while in the other it must linearly interpolate their

course. This test will analyze the potential usefulness of improving prediction methods.

iv

Sammendrag

Et fullt autonomt sjøfartøy må ha b̊ade baneplanlegging og kollisjonsung̊aelse systemer.

Egenskapen til å følge et referansespor med tids- og andre effektivitetbegrensninger er helt

essensielt for å ha et brukbart autonomt sjøfartøy. Det er heller ikke nok å bare følge en

referanse, fartøyet må klare å unng̊a kollisjoner med andre fartøy som kan være b̊ade selvstyrt

eller autonome i tillegg til statiske hindringer. Selv om det er et mål å unng̊a kollisjoner er det

endelige målet med kollisjonsung̊aelse å klare å forholde seg til COLREGs reglene for sjøvett,

regler som alle sjøfartøy m̊a forholde seg til. I denne masteroppgaven skal det utvilkes en

COLREGs forst̊aende baneplanlegger algoritme som klarer å unng̊a b̊ade statiske hindringer

og andre fartøy. Algoritmen er basert p̊a en kontrollmetode kalt MPC og bruken av numerisk

optimalisering til baneplanlegging vil bli undersøkt som en del av oppgaven.

Algoritmen will bli testet i forskjellige simulerte scenarier konstuert til å teste forskjellige

deler av baneplanlegging og kollisjonsung̊aelse b̊ae i individe- og hybridtester. Et annen punkt

som vil bli undersøkt er bruken av en hypotetisk prediksjonsalgoritme som skal klare å forst̊a

hensikten bak andre fartøys manøvere. Hvert scenarie kommer til å bli testet to ganger, den

første gangen har den utviklede algoritmen tilgang til perfekt informasjon om andre fartøy,

mens den andre gangen m̊a algoritmen selv prøve å forutse banen til andre b̊ater med linære

metoder. Denne måten å teste p̊a er ment for å undersøke potensielle fordeler med å utvikle

mer avnaserte prediksjonsalgoritmer.

vi

Contents

Preface ii

Abstract iv

Sammendrag vi

List of Figures x

List of Tables xiv

Acronyms xvi

1 Introduction 2

1.1 Motivation . 2

1.2 Previous Work . 2

1.3 Problem Description . 3

1.4 Contributions . 4

1.5 Outline . 4

2 Background Theory 6

2.1 Vessel Modelling . 6

2.2 Trajectory Planning . 8

2.3 Collision Avoidance . 13

2.4 Target Ship Prediction . 16

3 Trajectory Planner 20

3.1 Data Flow . 20

3.2 Setup . 21

3.3 NLP Construction and Solver . 27

4 Simulation Results 36

4.1 Scenario Overview . 36

4.2 Simulation Results . 37

4.2.1 Simple Head-On . 43

4.2.2 Simple Give-Way . 43

4.2.3 Simple Stand-On . 43

4.2.4 Turn Head-On . 48

4.2.5 Turn Give-Way . 48

viii

4.2.6 Turn Stand-On . 48

4.2.7 Canals . 62

4.2.8 Fjord . 62

4.2.9 Helløya . 62

4.2.10 Helløya Reversed . 63

4.2.11 Skjærg̊ard with Traffic . 69

4.2.12 Skjærg̊ard without Traffic . 69

4.2.13 Miscellaneous . 69

4.3 Discussion . 76

4.4 Improvements over Previous Version . 77

5 Conclusion and Future Work 80

References 82

Appendix 86

A Source Code for Algorithm Main Loop 86

B Helper Functions 96

ix

List of Figures

1 Yara Birkeland, Kongsberg Maritime’s autonomous container ship project (Kongs-

berg Maritime 2022). Image courtesy of Yara International ASA. 2

2 Render of the Zeabuz autonomous urban ferry, currently in development. Image

courtesy of Zeabuz 2022 . 3

3 A ship’s 6 degrees of freedom, from (Fossen 2011). 7

4 Line of sight guidance geometry for straight lines, here with zero sideslip. Image

courtesy of (Lekkas and Fossen 2013). 10

5 A physically feasible trajectory is formed by ”pinching” the shooting gaps close.

Reproduction from (Gros 2017). 12

6 Visualizing dCPA and tCPA. 14

7 COLREGs classification; with OS in the center we can place the TS in one of four

regions. Similarly, the relative bearing from TS to OS can be assigned regions with

region 1 pointed directly at the OS and the rest following in a clockwise rotation.

Courtesy of (Thyri and Breivik 2022). 15

8 Example of a single placed constraint based on the position, heading, and COLREGs

classification. Depicted would be a suggested placement for a Give-way situation. . 17

9 Photo of a typical ENC, here we can see the lines formed by saving AIS positional

data over time. Image courtesy of Olex AS. 17

10 A simplified overview of the developed algorithm. 20

11 First approach to placing static obstacle constraints, accurate but leads to overload

of constraints and poor computational performance. 30

12 Second approach to placing static obstacle constraints, avoiding the constraint over-

load at the cost of greatly reducing available space. 30

13 Geometry for straight line constraints used to handle static obstacles. 32

14 Current approach to placing static obstacle constraints, ditching the circular con-

straints in favor of straight lines based on proximity. Combines the best of both

prior versions. 32

x

15 Simple Head-on. Result independent of prediction level. 39

16 Simple Give-way. Result independent of prediction level. 40

17 Simple Stand-on. Here shown with full prediction, Own Ship (OS) correctly stands

on. 41

18 Simple Stand-on. Here shown with simple prediction, the OS can be observed to

yield when it shouldn’t. 42

19 Head-on with a turn. Result for this were the same regardless of prediction level. . 44

20 Give-way with a turn, here with full prediction. Observe the OS not expecting to

have to yield until it’s almost too late. 45

21 Give-way with a turn, here with simple prediction. Observe as the OS gets dragged

along by the constraints of the turning TS. 46

22 Stand-on with turn. Result independent of prediction level. 47

23 Canals. Here shown with full prediction. 50

24 Canals. Here shown with simple prediction. 52

25 Fjord. Here shown with full prediction. Observe the OS handles the stress test

pretty well. 54

26 Fjord. Here shown with simple prediction. Observe the OS behaves much more

erratically compared to the full prediction level. 56

27 Helløya. Here, the OS behaves to expectations independently of prediction level. . 57

28 Helløya in reverse. Here with full prediction, the OS behaves to expectations. . . . 59

29 Helløya in reverse. Here with simple prediction, the OS behaves slightly erratically. 61

30 Skjærg̊ard with traffic. Here with full prediction. 65

31 Skjærg̊ard with traffic. Here with simple prediction. 67

32 Skjærg̊ard without traffic simulation. Result independent of prediction level due to

no Target Ship (TS)s. 68

33 This is what can happen when the prediction does not match the actual trajectory

of the TSs. 71

xi

34 How the optimal path is calculated with lower speed when infeasibility is detected. 72

35 Without proper course reference, this would sometimes happen. 73

36 Here we see the optimal trajectory getting caught inside a static obstacle and getting

stuck. 74

37 A quirk of numerical optimization, sometimes turning to the wrong side leads to a

’smoother’ curve. 75

xii

List of Tables

1 Estimated model parameters for Milliampere (Pedersen 2019). 25

xiv

Acronyms

AIS Automatic Identification System

ASV Autonomous Surface Vessel

COLREGs Convention on the International Regulations for Preventing Collisions at Sea

dCPA distance at Closest Point of Approach

DOF Degree Of Freedom

IPOPT Interior Point OPTimizer

LOS Line of Sight

MPC Model Predictive Control

NED North East Down

NLP NonLinear Programming

OCP Optimal Control Problem

OS Own Ship

RK4 Runge Kutta 4th order

tCPA time to Closest Point of Approach

TS Target Ship

xvi

1 Introduction

1.1 Motivation

In recent years automation has gotten a lot of media attention; self-driving cars, robots,
drones. Everyone seems to be interested in the possibilities that automation could afford
us. Imagine no commute, no waiting for the delivery driver, robots to do our labor for
us. The journey towards a true post-scarcity society involves autonomous machines, and
I want to participate in the process that speeds up this development. Not only do I think
automation could significantly improve the living and working conditions for everyone, I
find the concepts used when developing these automatas to be fascinating.

Autonomous surface vessels have mostly been in development outside the public eye,
but there has been some great progress made in recent years. Multiple actors are currently
developing both autonomous ferries and container ships, like Yara Birkeland seen in
Figure 1 or Zeabuz in Figure. This is a very underappreciated development, especially
in a coastal nation such as Norway where so much of our industry happens offshore.

Figure 1: Yara Birkeland, Kongsberg Maritime’s autonomous container ship project (Kongsberg
Maritime 2022). Image courtesy of Yara International ASA.

This Master thesis is a continuation of my specialization project, (Hestvik 2019),
in which I learned a lot about the complications of designing a trajectory planning al-
gorithm, numerical optimal control, and using the CasADi framework. After the spe-
cialization project ended in December 2021, I couldn’t leave the trajectory planning
algorithm to be in the state it was, there was still so much more to try and learn.

The learning potential from this thesis is very high, and very relevant for the type of
career I would like to get into. I remember when learning about linear system theory I
thought to myself ”I’m never gonna need this MPC stuff”. Funny how that worked out.

1.2 Previous Work

There has been many reviews and surveys on the state of the art within ASV trajectory
planning and collision avoidance, and other related topics. In their review, (Vagale et
al. 2021) examines existing guidance and path planning algorithms, comparing multiple
aspects and highlighting recent advances and vessel autonomy levels. The review focuses
mostly on path planning algorithms for surface vessels.

In another review (Huang et al. 2020) provides a comprehensive overview of collision

2

Figure 2: Render of the Zeabuz autonomous urban ferry, currently in development. Image courtesy
of Zeabuz 2022

avoidance, breaking down the basic processes for determining the need of an evasive man-
euver. The review compares multiple methods and points out strengths and weaknesses
of each. The also examines the differences in research for manned and unmanned vessels,
pointing out what the two groups can learn from each other.

A state of the art survey by (Zhang et al. 2021) examines some recent high-profile
ASVs, their purpose and development status. Later the survey looks at different meth-
ods for collision avoidance, the tools different methods are utilizing and trend of where
collision avoidance systems appear to be heading.

For more specific recent development, (Park et al. 2020) developed a trajectory plan-
ning algorithm for an ASV operating in urban canals. The authors of this paper aim
to emulate human like behavior in what they call social trajectory planning. Where the
optimal control formulation penalizes deviation of movements from nominal movements
by human operated vessels. The developed method has no direct collision avoidance
component, instead focusing on the benefits of social trajectory planning to reduce the
amount of encounters the ASV has during transit.

For longer distance path planning, (Vestad 2019) develops an automatic route planner
which is able to quickly determine an optimal path between two points taking into account
ship dimensions, weather forecast and mission goals. The path planner is able to produce
feasible paths which are more efficient than traditional manual planning methods.

For a comprehensive look at different trajectory planning methods, (Loe 2008) in-
troduces many approaches and simulates their performance against each other in a wide
variety of scenarios. Testing both collision avoidance capabilities and trajectory plan-
ning.

1.3 Problem Description

The problem that is addressed in this thesis is the trajectory planning for an ASV operat-
ing in calm waters, where the available maneuvering space is confined by static obstacles
such as land and by dynamic obstacles such as other vessels. The planned trajectory will
continuously be replanned to adapt to changes in the situation and maintain COLREGs
compliance. The Trajectory is expected to bring the ASV from its current position to its
end destination without collisions, but is not expected to be able to conduct any type of
docking. Additionally, the reference path between the ASV current position and goal is
predefined. The system is to be able to operate under the assumption that has perfect

3

information about other vessels in the vicinity so that performance between linear inter-
polation of Target Ship trajectories and full prediction of Target Ship trajectories can be
tested. The following objectives are proposed for this thesis:

• Develop an MPC-based trajectory planning algorithm using sufficiently real vessel dynamics.

• Implement collision avoidance algorithms for both static and dynamic obstacles.

• Create functionality to ensure the vessel can not get stuck on terrain.

• Create test scenarios to examine the performance of the algorithm.

• Compare results when using linear interpolation of Target Ship trajectories and when using
perfect information in the planner.

1.4 Contributions

This thesis provides the following contributions to the field of ASV:

• An MPC based trajectory planner that is COLREGs-aware and able to avoid static obstacles.

• An evaluation of the fitness of numerical optimization as trajectory planning backbone.

• Designed and simulated testing scenarios for evaluating the developed algorithm.

• Documented simulations experimenting with two different levels of TS trajectory prediction
capabilities. Where one prediction level gives the algorithm perfect information about the
TS, while the other only provides a linearly interpolated trajectory based on the TS current
pose.

• Documented problems that numerical optimization-based trajectory planner algorithms
might encounter.

• Proposed mitigation methods for aforementioned problems.

1.5 Outline

The thesis is laid out in five parts, the introduction you just read was Chapter 1. The
rest of the chapters are as follows:

• Chapter 2 presents the full theoretical background needed to understand the development of
the trajectory planning algorithm.

• Chapter 3 is a step-by-step walkthrough of the algorithm development.

• Chapter 4 compiles the results and analyzes some of the more interesting observations. The
chapter is capped off with a greater discussion about the behavior of the algorithm and it’s
shortcomings.

• Chapter 5 summarizes the findings and suggests a handful of avenues for future work that
could improve the developed algorithm.

4

2 Background Theory

This chapter will introduce the concepts and theory necessary to understand the design
and intent behind the trajectory planning algorithm, as well as the discussion on its
functionality. The goal of the chapter is to give the reader enough intuition of the applied
theory that the proposed arguments and solutions should make sense. In addition, the
chapter is structured so that it should be easy to quickly navigate and read about specific
topics.

2.1 Vessel Modelling

A mathematical model is a tool for describing physical systems and expressing how
they change over time, respond to external forces, and how stable the system might be.
Models are very useful when designing control systems as they translate the physical into
equations that computers can understand. When making a model it is often useful to
separate the dynamics of the different parts of the system we are interested in, these are
the Degree Of Freedom (DOF)s the system has, and is often the directions the system
can move, though they can also just be nondescript generalized coordinates. Deciding
which DOFs to separate out and model the dynamics of is often what separates models
from each other, for it is pointless to model an aspect of a system that there is no intent
to interact with. For example a ship has six DOF, see Figure 3, for modelling a control
system for stationkeeping all six are important because stationkeeping involves keeping
the whole ship as steady as possible. When modelling for path following on the other hand
it is not important what the heave, roll, or pitch of our vessel is and so the dynamics
of those DOFs can safely be ignored. The model used to describe our vessel in this
thesis is based on the theory and notation by (Fossen 2011), and is a 3DOFs nonlinear
mass-damper system with thruster dynamics and no external disturbances such as wind
or currents. The dynamics of the vessel can be described by the differential equations
below:

η̇ = R(ψ)ν (2.1)

Mν̇ +C(ν)ν +D(ν)ν = τ (2.2)

where η ∈ R3 is the pose of the vessel parameterized in the tangential plane North
East Down (NED), ν ∈ R3 are the velocities of the vessel, parameterized in the BODY
frame of the vessel. And τ ∈ R3 are forces and torque applied to the system. The
NED frame can be said to be inertial for short distance control objectives, and in this
frame the x-axis points towards true north, the y-axis points east, and the z-axis points
down towards the center of the planet. Thus, η = [x , y , ψ]T ∈ R3 are the vessel’s
North, East and Heading values, which are the three DOFs of the system. The velocities
ν = [u , v , r]T ∈ R3 are the surge, sway, and yaw rate of the vessel. In the BODY frame
there are no fixed rules for where the axis are pointing, but the common convention for
modelling vehicles is that the x-axis points along the longitudinal axis of the vessel, the
y-axis points along the lateral axis and the z-axis points along the vertical axis. This is
also seen in Figure 3. The anchor point for the BODY frame is arbitrary but always fixed
to the vessel and moves with it. The forces and torque τ = [FX , FY , FN]T ∈ R3 are
the forces acting along the longitudinal axis, lateral axis, and torque about the vertical
axis of the vessel’s BODY frame. The rotation matrix R(ψ) rotates the BODY velocities
into NED movement about the vessel’s heading, and is defined as:

R(ψ) =

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 (2.3)

In (2.2), theMmatrix is the inertia matrix of the system, which describes how ’heavy’

6

Figure 3: A ship’s 6 degrees of freedom, from (Fossen 2011).

the DOFs are to nudge, in addition to the vessel’s inherent inertia from being massive
the vessel must also push water out of the way when it moves, this is what is known
as hydrodynamic added mass and is linearly added to the inertia matrix. The coriolis
matrix C also has to include hydrodynamic added mass, however for the purpose of
this thesis it is not important to know the parameters for either of these matrices or for
the damping matrix D. That is because a trajectory planning algorithm needs to work
regardless of vessel parameters. (Pedersen 2019) explains more in-depth how system
parameters can be found. Continuing on, the damping matrix is a linear combination
of the linear dampening stemming from water viscosity and non-linear dampening from
cross-flow, once again the parameters themselves are not strictly relevant to this thesis,
but intuition is important. The result are matrices in the following form:

M =

m11 m12 m13
m12 m22 m23
m31 m32 m33

 (2.4)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 (2.5)

D(ν) =

d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

 (2.6)

The damping matrix can be a bit of a computational nightmare and can be simpli-
fied to a linear and diagonal matrix without too much of a detrimental impact on our
simulations. The justification for this is the fact that the trajectory planning algorithm
is higher in the control system hierarchy, a lower level motion control system will take
care of the real time control and handle the dampening. The risk is that the end result
from the trajectory planner turns out to be infeasible, but that’s a problem for another
thesis.

7

D(ν) =

d11 0 0
0 d22 0
0 0 d33

 (2.7)

Finally, a word on heading vs course. Throughout this thesis the terms course and
heading might be used interchangeably, but the words are strictly not synonymous. Head-
ing is equivalent with yaw as both denote a rotation about the vessel’s third axis, the
difference between the two is that yaw is often a relative term describing a change by
some degrees from one arbitrary pose to another. Heading is an absolute term and is
often based on compass directions, meaning 0° heading equates to the nose of the vessel
pointing towards true north. Neither heading nor yaw is equivalent with course, which
is strictly the direction of travel relative to true north. In a simplified world void of
disturbances heading and course will align during straight line travel, but external forces
such as wind or currents will cause the two angles to deviate. Likewise, sideslip caused
by a non-zero sway velocity when turning will also introduce a deviation between course
and heading (Fossen 2011). However, this difference is mostly unrelated to the work put
forth in this thesis, and so the terms heading and course might be used interchangeably.
Although it often makes sense to deliberately pick one term over the other.

2.2 Trajectory Planning

Because the vessel dynamics are described by a model expressed as a set of time-invariant
ordinary differential equations, any desired state can be reached by solving for the se-
quence of inputs that will take the vessel from a given initial condition to said state. In
the context of this thesis ”state” refers to the pose, η, of the vessel. The simplest applic-
ation of this would be moving in a straight line from point A to point B. The solution is
simply to find the input sequence which turns the vessel to the correct course and then
maintaining a forward speed until point B is reached. The straight vector line from point
A to point B can be thought of as the desired or reference path, while the sequence of
states achieved by applying the input sequence is the trajectory. Instead of having just
one destination there might be multiple waypoints forming the path, and the optimal
input sequence that makes the controlled vessel, from here on called ”Own Ship” (OS),
travel along the path depends on what criteria are considered important. A trajectory
generated with fuel economy in mind might look very different from a trajectory gener-
ated with the shortest transit time in mind, even if both are following the same path.
Other factors such as obstacles or disturbances will also influence the trajectory, com-
bining all the factors and generating the desired input sequence is the act of trajectory
planning.

There are many methods for trajectory planning. Some are conceptually simple and
fast to compute, but lack robustness and situational adaptability. Other method can be
incredibly complex and computationally expensive, but in return incredibly robust to
disturbances and adaptable to any situation. An example of a simple trajectory planner
would be a Line of Sight (LOS) guidance law while something extremely advanced would
be training a machine learning algorithm. For an overview: in this thesis a LOS guidance
law will be applied to generate a reference trajectory, the reference is then used as part of a
formulation of an Optimal Control Problem (OCP) with a cost to penalize deviation from
the reference in addition to other factors. The OCP is then discretized as a NonLinear
Programming (NLP) problem using a method called direct multiple shooting, finally
the NLP is solved with an Interior Point OPTimizer (IPOPT) solver. One of the big
advantages of OCP is that it allows formulating constraints directly on the states, which
is a big deal when it comes to collision avoidance.

8

Line of Sight Guidance

This guidance method is perhaps the most intuitive; consider the waypoints WPk and
WPk+1, the simplest path from one to the other would be straight line. Therefor the
most obvious control method would be to maneuver onto the straight line, and follow it
along to the end. The distance of the OS to the straight line is called the cross track
error ye and the distance along the line to the end is called the along track error xe. The
along track error is not of any importance to this thesis, it is assumed that the controlled
vessel will maintain a steady velocity, and there are no temporal constraints on reaching
the goal.

As explained in (Lekkas and Fossen 2013); given the OS’s position (x,y), the cross
track and along track errors from the straight line as defined by WPk (xk,yk) and WPk+1

(xk+1, yk+1) are: [
xe
ye

]
= RT (γp)

[
x− xk
y − yk

]
(2.8)

where RT (γp) is the rotation matrix from the inertial frame to the straight line’s frame.
Here, γp is the horizontal path-tangental angle, or the ’angle’ of the straight line path
in relation to the inertial frame if that makes more sense, see Figure 4 for a visual
decomposition. The rotation matrix R is given by:

R(γp) =

[
cos(γp) −sin(γp)
sin(γp) cos(γp)

]
(2.9)

with γp:
γp = atan2(yk+1 − yk, xk+1 − xk) (2.10)

The control objective is to drive ye(t) → 0 as t trends towards infinity. Assuming a
steady velocity this is done by selecting a course that steers the OS in the direction that
reduces ye. How fast the error ye is suppressed is tuned by a proportional gain factor,
∆, that is often called look ahead distance. The desired heading is given by:

ψd = γp + arctan(
−ye
∆

) (2.11)

and consequently desired course:
χd = ψd + β (2.12)

where β ∈ R is the sideslip of the OS. Because real life situations are rarely, if ever, devoid
of disturbances that introduce sideslip and crab angles there is one common improvement
that can be made: Integrate the cross track error and use both current cross track error,
and it’s integral when calculating desired heading. The equation for ẏint and ψd then
become:

ẏint = ye (2.13)

ψd = γp − arctan(Kpye +Kiyint) (2.14)

where Kp > 0 and Ki > 0 are gain parameters proportional to the lookahead distance,
typically Kp = (1/∆), Ki = Kp ∗ κ with κ > 0 being some design variable.

A reference trajectory is generated by using the LOS law as described to guide the
controlled vessel from its initial position through all the waypoints, and saving the desired
positions and velocities after each time step. For a path with more than two waypoints
a simple index increment can be used when the vessel is within a certain distance from
its current target waypoint. The reference trajectory from t0 to N iterations of LOS
applications is of the form:

ηref = [ηt0 , ηt+1 , . . . ,ηN] ∈ R3×N (2.15a)

νref = [νt0 , νt+1 , . . . ,νN] ∈ R3×N (2.15b)

9

Figure 4: Line of sight guidance geometry for straight lines, here with zero sideslip. Image courtesy
of (Lekkas and Fossen 2013).

Optimal Control Problem

Numerical optimization is a vast field within mathematics, (Wright, Nocedal et al. 1999)
explains it well: There is no universal optimization algorithm. Instead, an algorithm must
be tailored to the considered optimization problem. Within the context of trajectory
planning, there are different parameters to optimize for, some examples are: maintaining
steady velocity, suppressing sway, minimizing fuel waste, minimizing distance to goal,
and there are many more. The general expression for an optimization problem can be
written as simple as:

Minimize
x∈Rn

f(x) (2.16a)

Subject to: ci(x) = 0, i ∈ E (2.16b)

ci(x) ≥ 0, i ∈ I (2.16c)

where f(x) is the objective function where the optimization objectives are encoded. The
functions ci are constraint on the system which f(x) exists in, and E and I are indices
pertaining to if the constraint ci is an equality or inequality constraint. In the context
of this thesis, the thing to minimize is some nebulous cost function associated with
path following, and the constraints are the physical model of the system that guarantees
feasibility as well as safety constraints to avoid collisions. The cost function is then some
function of the vessel’s state, reference trajectory, and control input. The two constraints
are the system dynamics from (2.2) and (2.1). And then additional constraints for
collision safety and initial conditions. A new general OCP definition is thus given by the
following:

10

Minimize L(θ(t),θref (t), τ (t)) (2.17a)

Subject to: θ̇(t) = J(θ, τ) (2.17b)

h(θ(t), τ (t)) ≤ 0 (2.17c)

θ(t0)− θ0 = 0 (2.17d)

where L is the cost function, θ = [ηT , νT]T and τ is still the same as in (2.2), J(θ, τ)
is the model dynamics (2.1), (2.2). θ0 are the given initial conditions of the system.
The solution to the optimization problem is the series of inputs τ which minimizes the
integral of the cost L from t0 to tend. And L has the form of a quadratic function akin
to a weighted least squares:

L(θ(t),θref (t), τ (t)) = (θ(t)− θref (t))
TQ(θ(t)− θref (t)) +Kττ

2 (2.18)

where the diagonal of the Q matrix are the weight coefficients of deviating from the
reference and Kτ is another weighting matrix for applied forces and torques.

Solving the OCP can be done using a multitude of methods, Eriksen and Breivik 2017
suggest discretizing the OCP into a NLP using a method called direct multiple shooting.

NonLinear Programming

The author would like to note that the technique used in this section, direct multiple
shooting, is outside the scope of the author’s knowledge. Everything the author knows
about this technique was learned over the course of the master thesis project, and it’s
highly recommended reading the full formulation by (Eriksen and Breivik 2017) which
is the formulation that the implementation for this thesis heavily builds upon. Another
great resource for direct multiple shooting are the video lectures of (Gros 2017). Also
note that functions and definitions from the previous section on OCP carry over, for
example θ = [ηT , νT]T still holds.

Direct multiple shooting is an OCP discretization technique where both the states
and control inputs are explicitly defined as decision variables. The NLP is then a refor-
mulation of (2.17) where L is redefined as a discretized cost function with Np control
intervals steps:

Φ(ω,ωref1:Np
) =

Np−1∑
k=0

((θk+1 − θrefk+1
)TQ(θk+1 − θrefk+1

) +Kττ
2
k) (2.19)

where ω = [θT
0 , τT

0 , ... , θT
Np−1 , τT

Np−1 , θT
Np

]T ∈ R9Np+6 is a vector containing
9Np+6 decision variables. Because τk is the control input; it is separated out as its own
part of the function. Here, Q is still a sparse 6x6 matrix where the diagonal contain the
tuning parameters, and Kτ are still tuning parameters on control input. The complete
NLP will end up in the form of:

min
ω

Φ(ω,ωref1:Np
) (2.20a)

Subject to: ωlb ≤ ω ≤ ωub (2.20b)

g(ω)lb ≤ g(ω) ≤ g(ω)ub (2.20c)

where ωlb and ωub are the lower and upper bounds on the permitted values for ω, this
is meant to limit the decision variables to physically feasible values when solving the
NLP. g(ω) is a vector of constraint functions that are similarly bound by a lower and
upper bounds, where the bounds define if the function in g is an equality or inequality
constraint. Due to the way direct multiple shooting defines the decision variables the
programmed solver that solves the NLP is free to place the states and velocities anywhere

11

S
ta
te

t0 t1 t2 t3 t4

x1

x2

x3

x4

x0 f(x0,u0)

f(x1,u1)

f(x2,u2)

f(x3,u3)

f(x4,u4)

Figure 5: A physically feasible trajectory is formed by ”pinching” the shooting gaps close. Repro-
duction from (Gros 2017).

within the constraints. It is therefor important to implement equality constraints that
force the ending of one control interval and the beginning of the next to line up. This is
called closing the shooting gaps, an illustration of what shooting gaps are can be seen in
Figure 5. These equality constraints are called shooting constraints and to create them
begin by defining an integrator function F(θk, τk) using any technique. In this thesis,
the following Runge Kutta 4th order (RK4) method will be used:

k1 = f(θk , τk)

k2 = f(θk +
h

2
k1 , τk)

k3 = f(θk +
h

2
k2 , τk)

k4 = f(θk + hk3 , τk)

F(θk, τk) = θk +
h

6
(k1 + 2k2 + 2k3 + k4)

(2.21)

with h > 0 being a selected discretized time step size. With F it is now possible to
calculate θk+1 given θk and τk The shooting constraints are then formed as:

g(ω) =


θ0 − θ0

F(θ0, τ0)− θ1
F(θ1, τ1)− θ2

...
F(θNp−1

, τNp−1
)− θNp

 (2.22)

Setting the lower and upper bounds for g equals to zero enforces the equality constraints
and pinches the shooting gaps close. The final missing piece for the trajectory planner
is to formulate constraints to ensure a collision free trajectory. Similarly to the shooting
constraints the obstacle constraints are also placed in g, their formulation is discussed in
Chapter 2.3.

The theory behind constructing an NLP in a way that a machine can understand and
solve it is a topic for a whole new thesis. In this thesis, CasADi (Andersson et al. 2019), is
used as a framework for constructing the NLP, the NLP is solved with an IPOPT solver,
(Wächter and Biegler 2006), that comes included with CasADi. A practical explanation
of constructing and solving the NLP is the topic of Chapter 3.

12

Model Predictive Control

With the system dynamics modelled, and a control law formulated as an NLP it is
now possible to conduct trajectory planning by selecting a discretized time step size, h,
deciding how many control intervals to predict forward in time, and then solving the
NLP from any initial condition (which will still be discussed in Chapter 3). Because
the IPOPT solver solves for all control intervals simultaneously, its output contains the
optimal trajectory as decided by the selected cost function. It also contains optimal
velocities and control inputs needed to achieve the desired state, as described by the
system dynamics. However, it is unrealistic to assume that the modelled dynamics are
able to perfectly represent reality, blindly following the optimal trajectory is therefor a
fool’s errand. This is where the control technique MPC comes into play. MPC is a method
in which the system is simulated from the present until the end of the control period.
The first control inputs from the solution are saved and applied to the system for it’s
next control interval, the rest of the solution is then discarded and new measurements
of the state of the system are taken. Using the new measurements as the new initial
conditions, the process starts over; Simulate until the end of control period, apply first
control input to next control interval, discard rest of solution, redo measurements, repeat.
This introduces feedback to the system, which allows it to react and adjust to unmodelled
disturbances, this greatly increases the robustness of the automated system. (Qin and
Badgwell 1997).

2.3 Collision Avoidance

Having constructed the means of finding an optimal trajectory, the next task at hand
is making sure the trajectory is collision free. It would be difficult to claim any sort of
optimality without asserting if the trajectory is able to effectively avoid obstacles, colli-
sion avoidance is therefor just as important a task as the construction of the trajectory
planning algorithm. Collision avoidance is an umbrella term for many smaller tasks; from
risk assessment to escape maneuvers. For the purposes of this thesis it is assumed that
information about obstacles in the near vicinity of the OS is readily available and not
subject to disturbances or distortion. The task at hand can then be separated out into
two pieces: Static obstacle avoidance and COLREGs compliance.

Static Obstacles

A static obstacle is any object or hindrance in the water that does not move on a timescale
comparable to the one of the OS, such as skerries or a pier. Static obstacles are tricky, the
way to handle them will depend a lot on how information about obstacles are gathered
and stored. This aspect of the trajectory planning algorithm is therefor reserved for
Chapter 3.3 which is about this thesis’s implementations specifically.

COLREGs Compliance

The COLREGs (IMO 1972) are a set of rules developed with the purpose of preventing
collisions between two or more vessels at sea. The rules are sectioned into six parts; A
- General, B - Steering and Sailing Rules, C - Light and Shapes, D - Sound and Light
Signals, E - Exemptions, F - Verification of Compliance. In part A it is written ”These
Rules shall apply to all vessels upon the high seas and in all waters connected therewith
navigable by seagoing vessels.”, which means any aspiring ASV must be able to comply.
It is part B that is the most relevant to the work of this thesis, as it contains the rules
for maneuvering in the vicinity of other vessels. The following is a non-exhaustive list
of the rules that are most relevant for this thesis, a more comprehensive examination of
the rules can be found in (Cockcroft and Lameijer 2012).

13

dCPA

tCPA

Own Ship

N

E
Target Ship

Figure 6: Visualizing dCPA and tCPA.

Rule 7: Risk of Collision
(d) In determining if risk of collision exists the following considerations shall be among
those taken into account:
(d)(i) such risk shall be deemed to exist if the compass bearing of an approaching vessel
does not appreciably change;
(d)(ii) such risk may sometimes exist even when an appreciable bearing change is evident,
particularly when approaching a very large vessel or a tow or when approaching a vessel
at close range.

Rule 8: Action to avoid collision
(a) Any action taken to avoid collision shall be taken in accordance with the Rules of this
Part and shall, if the circumstances of the case admit, be positive, made in ample time
and with due regard to the observance of good seamanship.
(b) Any alteration of course and/or speed to avoid collision shall, if the circumstances of
the case admit, be large enough to be readily apparent to another vessel observing visually
or by radar; a succession of small alterations of course and/or speed should be avoided.

Rule 13: Overtaking
(b) A vessel shall be deemed to be overtaking when coming up with another vessel from a
direction more than 22.5 degrees abaft her beam.

Rule 14: Head-on situation
(a) When two power-driven vessels are meeting on reciprocal or nearly reciprocal courses
so as to involve risk of collision each shall alter her course to starboard so that each shall
pass on the port side of the other.

Rule 15: Crossing situation
When two power-driven vessels are crossing so as to involve risk of collision, the vessel
which has the other on her own starboard side shall keep out of the way and shall, if the
circumstances of the case admit, avoid crossing ahead of the other vessel.

Rule 17: Action by stand-on vessel
(a)(i)Where one of two vessels is to keep out of the way the other shall keep her course
and speed.
(b)When, from any cause, the vessel required to keep her course and speed finds herself
so close that collision cannot be avoided by the action of the give-way vessel alone, she
shall take such action as will best aid to avoid collision.

These rules are not easily explained to a layperson, and even less easily to a computer
algorithm. To formulate the constraints that will enforce COLREGs compliance it is

14

Figure 7: COLREGs classification; with OS in the center we can place the TS in one of four regions.
Similarly, the relative bearing from TS to OS can be assigned regions with region 1 pointed directly
at the OS and the rest following in a clockwise rotation. Courtesy of (Thyri and Breivik 2022).

sensible to start by considering rule 7; is there any risk of collision between the OS and
any other vessel? A common risk assessment tool is to calculate the distance at Closest
Point of Approach (dCPA) and time to Closest Point of Approach (tCPA) between two
vessels as shown by Kufoalor et al. 2018 and Figure 6:

tCPA
AB =

{
PBA·VA|B
||VA|B ||2 if ||VA|B || > 0

0 otherwise
(2.23a)

dCPA
AB = ||(PA + tCPA

AB VA)− (PB + tCPA
AB VB)|| (2.23b)

where VA|B = VA −VB with VA ∈ R2, VB ∈ R2, PA ∈ R2 and PB ∈ R2 being the
respective velocities and positions of two given vessels A and B parameterized in NED.
To determine if the OS and a given TS should be considered to be in an active situation,
the calculated dCPA can be compared to some lower threshold limit. If the dCPA is
below the set threshold the next step is to assert which COLREGs rule is currently in
effect for the OS, this is what will be called ’active COLREGs situation’ for the rest of
this thesis, and asserting which COLREGs is currently in effect will be called ’COLREGs
classification’.

There have been multiple studies on COLREGs classification, (Woerner 2016) lays
out an algorithmic approach based on the relative bearings between the OS and a given
TS. In this algorithm numerical values from the COLREGs rules are used as the criteria
for determining which COLREGs situation the OS finds itself in.

The algorithm yields the expected results, but it’s a bit opaque and hard to follow.

15

(Tam and Bucknall 2010) suggests a similar approach formulated in a more natural
language that is easier and more intuitive to follow. This method first considers the
relative bearing from the TS to the OS:

ϕ = atan2((ETS − E), (NTS −N))− χ (2.24)

where (NTS , ETS) and (N,E) are the positions of the TS and OS respectively, and χ is
the course of the OS. With the OS as a centerpiece, 4 sectors can be defined by angles
offset from the OS’s course. The relative bearing ϕ deciding which sector the TS is in.
Similarly, the relative bearing from the TS to the OS can be used to determine COLREGs
situation. See Figure 7 for a visualization.

With the COLREGs situation classified, the last step is to determine the constraints
so that the OS behaves compliant with the rules. One method, which was written about
in the author’s Specialization project, is to add circular regions as constraints tied to
the position and heading of the TS in which the OS is in an active situation with. An
example of what a singular constraint placed like this would look like can be seen in
Figure 8. To achieve this the trajectory of the TS must be discretized with the same
time step size as the OS. At each control interval in the NLP, using the known values
for the heading and position of the TS at that instance ψTSk

, (NTSk
, ETSk

), calculate
an appropriate constraint origin:

odc =
[
NTSk

ETSk

]
+H ∗

[
cos(ϕc)
sin(ϕc)

]
(2.25)

whereH > 0 is the desired distance from the center of the TS to the constraint origin, and
ϕc is the desired relative bearing from the TS to the constraint origin. The constraints
are added to g(ω) the following way:

g(ω) =


...

||Xk − odc||
...

 (2.26)

where Xk are the north and east positions in the decision variables ω. The square root
of the lower bounds value for g(ω) denotes the radius of the circle constructed by the
constraint function, the upper bound value should be infinite.

2.4 Target Ship Prediction

The apparent COLREGs compliance of the trajectory planner and collision avoidance
algorithm can only be as good as its ability to infer intent and predict the trajectories
of other TSs. Inferring intent and tracking other TS is an important task for human
navigators, and a key part of collision avoidance. An ASV might have the instruments
required to achieve full spatial and situational awareness, but it’s ability to fully utilize
these instruments is often underdeveloped.

To address the issue of intent inferring, (Cho et al. 2018) proposes a method that
provides a decision-making procedure for safe navigation by predicting the maneuvering
intent of TSs. In their work, a graphical model is constructed to infer intent by combining
an intent model with a dynamic model. Each action of the TS influence the ship’s
assigned maneuvering intent probability, which denotes a probability that the ship is
going to be compliant or non-compliant w.r.t COLREGs. In another study, (Schöller et
al. 2021) attempts to predict the trajectory of TSs via an estimation scheme consisting
of a Long Short-term Memory model in a Generative Adverserial Network configuration.
The estimation scheme is backed by historical Automatic Identification System (AIS)
data and outputs a probabilistic heat map of the future trajectory of TSs.

In a similar sense, (Zhang et al. 2021) notes in their survey how massive AIS data can

16

Own Ship

Target Ship

Constraint

Figure 8: Example of a single placed constraint based on the position, heading, and COLREGs
classification. Depicted would be a suggested placement for a Give-way situation.

Figure 9: Photo of a typical ENC, here we can see the lines formed by saving AIS positional data
over time. Image courtesy of Olex AS.

be used for global route optimization by creating set waypoints based on the information
extracted from massive AIS data. This AIS data can easily be compiled by storing the
positional data of AIS transponders over a period of time, as see in Figure 9, which is
the result of saving data for about three days.

This thesis will make no attempts at implementing a prediction method for tracking
and inferring the intent of TSs. However, it will operate under the assumption that the
technology for more accurately predicting the trajectories of TSs is coming, and one of
the key points of study for this thesis is the question of how improved prediction capacity

17

will affect the behavior of the proposed trajectory planning algorithm. In this thesis, the
prediction capabilities afforded to the algorithm will be one of two options.
1. ’simple prediction’ which is simply assuming that TS will maintain a steady speed and
course over ground, a common method as noted by (Huang et al. 2020) in their review.
2. ’full prediction’ which is some nebulous futuristic interaction and intent aware predic-
tion method that is able to accurately predict the future trajectory of TS.

18

3 Trajectory Planner

Legend

Algorithm

Function

External System

Struct

CasADi

Trajectory Planinng and Collision Avoidance Algorihtm

COLREGs

Assessment

Simplify

Tracks

Dynamic

Horizon

CasADi

Setup

Feasibility

Check

Reference from

LOS Guidance

Dynamic

Obstacles

NLP construction NLP

Solver

w_opt

Top level

GUIDANCE,

NAVIGATION,

CONTROL

system

Vessel

Tracks

Static Obstacles

Settings

Figure 10: A simplified overview of the developed algorithm.

This chapter presents a step-by-step walkthrough of the developed trajectory planning
and collision avoidance algorithm, and explains some of the design decisions that were
made during development. Additionally, the chapter will include some analysis of prob-
lems that arose during development, and the implementations that were made to over-
come them. First the general data flow of the algorithm is presented so that an intuition
can be gained as for how the individual parts of the algorithm are connected. Secondly
each step of the algorithm is presented in the order of execution from top to bottom.
Lastly a brief look at how the output from the algorithm is put to use.

The algorithm was developed in MATLAB and the whole project repo can be found
at: https://github.com/ErlHes/TrajectoryPlanning masteroppgave

3.1 Data Flow

The core of the design is to construct a path following trajectory that is simultaneously
able to comply with COLREGs and avoid getting stuck on terrain or other obstacles.
The data flow of the algorithm is depicted in Figure 10, to avoid clutter the diagram
does not include every subfunction and minor detail, it’s a representative diagram, not a
blueprint. On the left we begin with a higher level system, the algorithm relies on getting
information about its own vessel and information about other ships, in the diagram
called ”tracks”. Additionally, static obstacles and miscellaneous other settings for both
debugging and behavior tuning is to be supplied from said higher level system.

The algorithm is designed so that full prediction is the assumed standard prediction
level. For testing and debugging purposes the tracks structure can be modified to emulate
the form factor of a simple prediction level, in a real implementation the simplification
should not be necessary as the data in the tracks struct should already be in the correct
format for either prediction level. The data in the tracks struct is parsed through a
COLREGs assessment algorithm to determine if any of the TSs need to be considered
an active dynamic obstacle. If a TS is deemed to be active the tCPA and COLREGs
situation is determined and kept as a flag. The flag is stored in a persistent variable that
the COLREGs assessment algorithm checks to avoid overwriting the classification of an
active situation.

20

https://github.com/ErlHes/TrajectoryPlanning_masteroppgave

Next, the information stored in the Vessel struct, the struct dedicated to the OS,
is used to calculate the desired time horizon for this call’s MPC. Horizon distance and
discretization step length are then needed by the CasADi setup function to create the
RK4 method that discretizes the vessel dynamics. On the very first call of the algorithm
the feasibility check is skipped, because there is no previous trajectory to parse, on all
subsequent calls of the function the previously calculated optimal trajectory is checked
for infeasibility. Feasibility, time horizon and discretization step information is then used
to generate a reference trajectory for the OS, a trajectory is also generated for all the
TS in the tracks struct, which are used to place dynamic constraints later.

The last step of the setup is to initialize the NLP using the OS’s initial conditions,
which creates the first six decision variables of ω0 and the first six elements of the
constraint function g(ω). Afterwards, the algorithm iterates through all the control
intervals, NP , from K = 0 : NP − 1, as decided by discretization step length and time
horizon, constructing the NLP piece by piece in the following order:
First three new decision variables τk are made, the appropriate reference states are
extracted from the reference trajectory, making sure that the heading reference doesn’t
wrap the wrong way about [0, 2π]. Then the discretized dynamics are used to integrate
one control interval forward using ω0, τk, and the reference values. Six new decision
variables, ωk + 1, and their shooting constraints are made. Lastly dynamic and static
obstacles are placed in g and k is incremented by one.

After the NLP is constructed the initial guess for ω is replaced by the previous optimal
trajectory if it was feasible. When the NLP is solved the time it took is recorded, and if
it didn’t take too long to solve we save the solution to be used as the previous optimal
trajectory for the next time the algorithm runs. Some plots for debugging can then be
made if desired, and the resulting optimal states for the next control interval returned
as the output of the algorithm.

3.2 Setup

The setup is all the code that is run from when the trajectory planning algorithm is
called, up until the construction of the NLP. This is the modular part of the code,
where functionality can easily be added or removed without having to refactor the rest
of the algorithm. Anything from new and improved situational awareness models to
reference trajectory creation and COLREGs compliance ideas slot right into the setup.
Of course these mentioned systems could just as well exist outside the trajectory planning
algorithm, but for this thesis it’s designed as an all-in-one package.

In the current version of the trajectory planning algorithm there are four major and
four minor tasks to get through in the setup. First the major tasks:

• Conduct COLREGs assessment.

• Calculate dynamic horizon.

• Run CasADi initialization.

• Generate reference trajectories for OS and TSs

and the four minor tasks:

• Declare and initialize persistent variables.

• Initialize dynamic obstacles, and simplify tracks if needed.

• Conduct feasibility check on the previous optimal trajectory if it exists.

• Fetch static obstacles, this is only a task because of how the MATLAB simulator is set up.

21

Persistent Variables

In MATLAB, persistent variables are stored in memory when a script has terminated,
and is loaded back as they were the next time the script runs. This can be used to
create rudimentary state machines, or to check the outcome of the previous iteration for
anomalies. Persistent variables are declared without an initialization, and the method
for initializing them without overwriting every time is shown in Algorithm [1].

Algorithm 1 Function: Initialize persistent variable

persistent Var
if isempty(Var) then

Var ← Initial value
end if

Because persistent variables persist, it is advised to manually clear the script when
starting the MATLAB simulator, otherwise residual persistent variables from unrelated
scenario files can cause debugging problems. In the algorithm there are seven persistent
variables. Two are used to store the optimal trajectory between iterations. One to store
the discretized function F, so it doesn’t have to be remade every time the algorithm runs.
Another for storing COLREGs flag to act as a state machine. One for storing a variable
called ”firsttime”, used to execute code only the first time the algorithm is called. One
that enables or disables obstacles, only left intact as a debugging tool. And the last one
to store the previous iterations heading reference, which is used to prevent a WrapTo2Pi
problem. The WrapTo2Pi proplem is discussed later in Chapter 4.2.13

The reason there are two persistent variables to store the previous optimal trajectory
is poor planning: the original optimal trajectory was dumped if it took too long to solve
the NLP. But later when I implemented a feasibility check this would cause issues since
feasibility and time-to-solve for the NLP are not necessarily linked. Saving the previous
optimal trajectory twice so that one is use for feasibility check, while the other is the
initial guess substitution candidate, was a very quick hack solution that worked well
enough that it survived until the final version of the code.

Simplify Prediction

This part of the setup is only necessary in simulations, the idea is to prepare the tracks
struct so that it can be parsed by the COLREGs assessment algorithm regardless of
desired prediction level. Since it is much easier to truncate excess waypoints and ’step
down’ from full prediction to simple, than the other way around, the algorithm was
developed with full prediction level as the standard. If it’s desired to step down to a
simple prediction level the tracks simply need to be parsed though algorithm [2].

Algorithm 2 Function: Simplify TS prediction

for i = 1 :size(tracks,2) do
if simple then

tracks(i).wp(1:2) ← tracks(i).eta(1:2)
tracks(i).wp(3:4) ← tracks(i).eta(1:2)

+ 1 nmi * [cos(tracks(i).eta(3)) , sin(tracks(i).eta(3))]T

tracks(i).wp = [tracks(i).wp(1:2)T , tracks(i).wp(3:4)T]
tracks(i).current wp ← 1

end if
end for

22

COLREGs assessment

The COLREGs assessment algorithm solves two problems, the first is figuring out if a
TS vessel will be within close enough proximity that it should be considered an active
COLREGs situation. The second problem is deciding which COLREGs situation such
an encounter might be. For two vessels with constant speed and course this is a rather
simple task; first apply the equations (2.23), and then run a COLREGs assessment
function such as one laid out by (Thyri and Breivik 2022). However, if we want to take
advantage of full prediction level a bit more logic is needed to assure full coverage of the
intended path. Another functionality needed to ensure COLREGs compliance is a state
machine that holds onto the designated COLREGs situations, the rules state that once
a situation has started it persists until both vessels are clear of each other.

The idea for the implementation in this thesis is to extend the dCPA and tCPA check
so that it’s conducted for every waypoint in the OS and TS reference path. That way
it’s possible to know roughly where both vessels should be at the dCPA point. The
COLREGs assessment algorithm is therefor split into two parts; the first part is an
extended CPA check, the second part is the COLREGs situation assessment.

A function getCPAlist is created to take two vessel structs as input, one as the assigned
OS, and the other the TS. The function iterates through all the waypoints in the OS
assigned struct and does three things:

• Figure out the pose of the OS and TS.

• Run the CPA check from said pose.

• Calculate the time and distance to next OS waypoint so that the pose of the TS at that point
can be accurately found.

Finding the pose of the OS is trivial, the first iteration of the function the pose is just
the current position and course of the vessel, for all subsequent waypoints the waypoints
themselves are the position and the heading is the direction towards the next waypoint.
The last waypoint does not need to be checked because at that point the OS stops moving.
While this is a fantastically simple way of integrating forward through the waypoints,
the trade-off is less accuracy of the CPA check when turning. Finding the pose of the
TS is slightly more involved since there are no waypoints to lean on, the method here is
different from for the OS. To begin we know where the TS is when the check is conducted,
time and an assumption of constant velocity is then used to calculate the pose.

With the pose of both vessels calculated, the next step is to check the CPA, which is
the same equation as (2.23), the values for dCPA and tCPA, as well as the pose of both
vessels are stored in vectors for later. The tCPA value is also added to a timer which is
used to track how much time is passing for the OS to reach the checked waypoints. The
full path CPA check is then run with the vessel inputs flipped, so that the TS waypoints
are checked, the lowest values of each CPA list are then compared to select which dCPA
is truly the shortest distance. If both dCPA and tCPA are under some set threshold a
COLREGs classification is set.

Dynamic Horizon

The purpose of the dynamic horizon is to shorten the amount of control intervals when
the OS approaches the final destination. The reason for this is that having many control
intervals stationary at the end position can unbalance the cost function and lead to poor
performance for the remainder of the path. The dynamic horizon can also be coded so
that it’s dynamic with respects to COLREGs situations; always having enough control
intervals to clear the further out COLREGs situation, but less control intervals than the

23

nominal value so the NLP can be solved faster, which would lead to a better reactive
performance.

The distance between two waypoints WP1 = (N1, E1), WP0 = (N0, E0) is calculated
by the following equation:

D1 =
√
(N1 −N0)2 + (E1 − E0)2 (3.1)

which means the distance to goal is the sum of all distances between waypoints:

Dgoal =

N∑
wp=1

Dwp (3.2)

with WP0 being the position of the OS and WPN being the goal. Assuming a near
constant velocity the time to reach goal is:

Tgoal =
Dgoal√
u2 + v2

(3.3)

where u and v are the surge and sway speeds of the OS. It’s not necessary for this check to
be 100% accurate, it is expected that the OS will deviate from the path due to physical
constraints and obstacles anyway. To prevent accidentally dividing by zero the surge
speed is capped at a lower bound value of 0.001m/s.

1 i f v e s s e l . nu (1) < 0 .001
2 v e s s e l . nu (1) = 0 . 0 0 1 ;
3 end

Now is where there should have been an implementation for comparing the time to
reach goal with the greatest active COLREGs situation tCPA, and picked one of them
as the time horizon. Sadly that functionality ended up being implemented wrongly and
therefor left out of the final version of the code because the tCPA list was not sanitized to
only include active COLREGs situations. The correct way of determining time horizon
should be:

Algorithm 3 Dynamic Horizon

if Any cflag is set then
tempselect ← min value between Tgoal and maxseconds
finaltime ← min value between tempselect and Active tCPAmax + 20

else
finaltime ← min value between Tgoal and maxseconds

end if
h ← Desired step length
N ← ceil(finaltime / h)

where h and maxseconds are constants for this thesis, N is the number of control intervals.
In the current version of the algorithm only the finaltime under the if sentence condition
is hard-coded to return false, due to the aforementioned poor implementation.

CasADi setup

The CasADi setup is where the vessel model and dynamics from (2.1) are implemented,
as well as the cost function and RK4 method from (2.2). As the chapter title suggests,
everything is implemented using CasADi’s framework. The pose and velocity vectors
are combined as one SX.sym vector, while the forces and torque is their own vector. A
vector for the references is also created.

1 % System matr i ce s .

24

Table 1: Estimated model parameters for Milliampere (Pedersen 2019).

Parameter Value Unit
m11 2131.80 Kg
m12 1.00 Kg
m13 141.02 Kgm
m21 -15.87 Kg
m22 2231.89 Kg
m23 -1244.35 Kgm
m31 -423.76 Kgm
m32 -397.64 Kgm
m33 4351.56 Kgm2

2 x = SX. sym(’ x ’ , 6) ; % x = [N, E, ps i , u , v , r] ’
3 tau = SX. sym(’ tau ’ , 3) ; % tau = [Fx , Fy , Fn] ’ ;
4 x r e f = SX. sym(’ x r e f ’ , 6) ; % x r e f = [Nref , Eref , P s i r e f , Surge r e f ,

sway re f , r r e f] ’

The vessel mass matrix M, (2.4), is created with the following parameter values:

while the values for C are c13 = −m22 ∗ x(5), c23 = m11 ∗ x(4), c31 = −c13, c32 =
−c23. The dampening matrix D was originally implemented the way (Pedersen 2019)
explains, however turned out to be very computationally expensive for the IPOPT solver.
For the sake of brevity, and because full scale tests using the Milliampere ferry fell through
due to maintenance, the simplified diagonal matrix (2.7) was instead implemented, using
some very generous dampening factors:

D =

200 0 0
0 200 0
0 0 1000

 (3.4)

The differential equation for ν is then:

ν̇ = M\(τ − (C+D) ∗ x(4 : 6)) (3.5)

which can then be used to integrate ν forward one step-length with simple Euler integ-
ration:

ν = x(4 : 6) + hν̇ (3.6)

The equation for η̇ is the same as (2.1), with ψ being x(3).

η̇ =

cos(x(3)) − sin(x(3)) 0
sin(x(3)) cos(x(3)) 0

0 0 1

ν (3.7)

With everything set up, the cost function L can be created and defined as a CasADi
function as so:

1 %% Cost func t i on and weights .
2 Kp = diag ([8∗10ˆ−1 , 8∗10ˆ−1]) ; % Tuning parameter f o r p o s i t i o n a l

r e f e r e n c e dev i a t i on .
3 Ku = 6 .7∗10ˆ2 ; % Tuning parameter f o r surge r e f e r e n c e dev i a t i on .
4 Kv = 7 .2∗10ˆ2 ; % Tuning parameter f o r suppre s s ing sway .
5 Kfy = 1 ∗ 10ˆ−5;
6 % Experimental co s t on heading r e f e r e n c e :
7 K phi = 6∗10ˆ−5;
8

9 R2 = [cos (x (3)) −s i n (x (3)) ; . . .

25

10 s i n (x (3)) cos (x (3))] ;
11 Error = R2 ’ ∗ (x (1 : 2) − x r e f (1 : 2)) ;
12

13 L = Error ’∗ Kp ∗ Error + Ku ∗ (x (4)−x r e f (4)) ˆ 2 . . .
14 + Kv ∗ (x (5)−x r e f (5)) ˆ2 + Kfy ∗ tau (2) ˆ 2 . . .
15 + K phi ∗ (s sa (x (3)−x r e f (3))) ˆ2 ;
16

17 %% Continous time dynamics .
18 f = Function (’ f ’ , {x , tau , x r e f } , {xdot , L}) ;

The parameter values on the weights were chosen by trial and error until the tra-
jectory planning algorithm managed to track a reference path reasonably well. Cost on
deviation from heading reference is actually undesirable, in a real use case for the al-
gorithm disturbances such as wind, waves and currents would knock the heading about
and cause undue increases in cost. The correct course should naturally be found when
velocities are restricted to only surge, the optimal way to move is in the direction of
the goal after all. However, one of the quirks of using numerical optimization to guide
a vehicle is that the solver has no idea what a boat or a heading is. If the reference
trajectory experiences a discontinuous jump in course by leaving the bounds of [0, 2π]
and wrapping around the algorithm might have the great idea to turn the long way
around. A miniscule cost associated with turning the wrong way was experimented with
to mitigate that possibility.

The last step in the CasADi setup is to discretize the continuous time dynamics by
using a RK4 method:

1 % Dis c r e t e time dynamics .
2 M = 4; %RK4 s t ep s per i n t e r v a l
3 DT = T/N/M;
4 X0 = MX. sym(’X0 ’ ,6) ;
5 Tau = MX. sym(’Tau ’ , 3) ;
6 Xd = MX. sym(’Xd ’ ,6) ;
7 X = X0 ;
8 Q = 0 ;
9 f o r j =1:M

10 [k1 , k1 q] = f (X, Tau , Xd) ;
11 [k2 , k2 q] = f (X + DT/2 ∗ k1 , Tau , Xd) ;
12 [k3 , k3 q] = f (X + DT/2 ∗ k2 , Tau , Xd) ;
13 [k4 , k4 q] = f (X + DT ∗ k3 , Tau , Xd) ;
14 X=X+DT/6∗(k1 +2∗k2 +2∗k3 +k4) ;
15 Q = Q + DT/6∗(k1 q + 2∗ k2 q + 2∗ k3 q + k4 q) ;
16 end
17 F = Function (’F ’ , {X0 , Tau , Xd} , {X, Q} , . . .
18 { ’ x0 ’ , ’ tau ’ , ’Xd ’ } , { ’ x f ’ , ’ q f ’ }) ;

If you are wondering why the system is initialized with SX.sym but the RK4 method
uses MX.sym I have no answer; CasADi’s example pack includes an example for direct
multiple shooting, that example includes an RK4 method on the form shown above.
Since my algorithm uses the direct multiple shooting example as a skeleton this RK4
method with MX.sym was carried along until the final version.

Once we have constructed F it can be stored as a persistent variable in MATLAB,
then there is no need to rerun CasADi setup potentially saving milliseconds.

Feasibility check

Later it will be shown how the previous optimal trajectory can be substituted in for an
initial guess to feed the IPOPT solver. While that will be discussed later, the need for

26

a feasibility check arose after frustration with the optimal trajectory getting stuck in an
infeasible state. The first idea to check for feasibility was to somehow read the printout
CasADi outputs to the MATLAB command window, but to the author’s knowledge hat
turned out to be impossible. Luckily there is a very easy way to conduct the check
manually.

In this context feasibility means the trajectory is physically possible, a jump that
covers more distance than the vessel dynamics allows means the trajectory is infeasible.
To check for feasibility simply iterate through each point in the previous optimal traject-
ory and check the distance to the next one. Distance is calculated with the same general
formula as (3.1). If the distance between two points is greater than some set limit then
the trajectory is deemed to have been infeasible, which will have ramifications later. In
this thesis the limit for feasibility is a very generous five meters, a lot more than the
Milliampere ferry’s max speed of two meters per second can move, but obviously this
limit must be tuned to fit the vessel it’s controlling.

Reference from LOS

The theory behind this chapter was thoroughly discussed in (2.2), most of the code for
this was also provided by Emil Thyri, the MATLAB simulator’s developer, as it is a
necessity for simulating TSs. Therefor this chapter will be brief. The logic implemented
is no different from the discussed theory, one modification that was made specifically
for this thesis was functionality for reducing the speed before creating the reference
trajectory. If the feasibility check discussed above deems the previous optimal trajectory
to have been infeasible, something has possibly gone very wrong in the path ahead. The
feasibility check says nothing about what went wrong, so in absence of information the
best course of action would be to reduce the vessel’s speed until the path ahead clears.

This reference trajectory does not have to be made using LOS guidance, any guidance
law for path or trajectory planning can be applied as long as it is easily discretized to
the same step length as the trajectory planning algorithm uses. One important criteria
for picking a reference trajectory method is to consider runtime, it would be ill-advised
to use an algorithm that takes a very long time to calculate a trajectory.

3.3 NLP Construction and Solver

With the setup out of the way it’s time to construct and solve the NLP. This part of
the algorithm mostly consists of piecing together CasADi’s framework and calculating
constraints. Construction of the decision variable vector ω and the constraint function
vector g(ω) is done piece wise in the following way:

Algorithm 4 Construction of CasADi sym vectors and their bounds

Xk ← MX.sym([’X ’num2str(k)] , n) ▷ where n is the amount of elements in Xk
ω ← [ω , {Xk}]
ωlb ← [Xk(1)lb, ..., Xk(n)lb]
ωub ← [Xk(1)ub, ..., Xk(n)ub]
ω0 ← [Xk(1)ref, ..., Xk(n)ref] ▷ Only applicable for the decision variables

Using the general algorithm, the shooting gap constraints look like this as an example:

1 g = [g {Xk end − Xk }] ;
2 lbg (g counter : g counter+5) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
3 ubg (g counter : g counter+5) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
4 g counter = g counter + 6 ;

27

where Xk end is the end of the previous integration step and Xk are the newest decision
variables, this will be discussed soon. Here, the length of the upper and lower bounds
are pre-allocated to make the NLP slightly more computationally efficient, it adds up
over the course of a long simulation. MATLAB will complain about memory allocation
for g, but testing showed that it was faster to do it this way than pre-allocating a list.

Integration step

To integrate one control interval forward first create three new decision variables for forces
using the general form shown in algorithm [4]. The upper and lower bounds for these
decision variables are the max force and torque the engine can output. The appropriate
velocity and position references are then extracted from the reference trajectory. In the
case for this algorithm the reference trajectory calculates velocities in NED, so they will
have to be transformed to BODY in order to be useful. The position reference is straight
forward, but the heading reference needs a bit of work to make sure things don’t get
messy.

To begin with the reference trajectory does not output heading, but it can easily be
found by considering the velocity references, which are in NED. The direction of the
velocity in NED is the desired course. We allow ourselves to use this course as heading
reference, even though as discussed in the theory; that’s not an ideal situation.

For the first loop of the NLP construction it’s important to make sure the heading
reference is the same signed angle as the initial position heading. This is done by check-
ing the difference between heading ref - initial heading versus wrapTo2Pi(heading ref) -
initial heading. Whichever resulting angle is the smallest is the version of the heading
reference we want to keep. For every k after 0 The heading reference is kept in the correct
sign with the following code:

1 e t a r e f (3) = p r e v i o u s e t a r e f (3) . . .
2 + ssa (e t a r e f (3) − p r e v i o u s e t a r e f (3)) ;
3 p r e v i o u s e t a r e f = e t a r e f ;

where ssa() is the shortest signed angle of the difference, and previous eta ref(3) is the
heading reference from the previous control interval.

With the references gathered the discretized time dynamics are used to integrate one
control interval forward, with the end states of the integration saved to use as shooting
constraints, and the cost saved in an integrator variable. New decision variables are then
made for the next control interval and new shooting gap constraints are made to ensure
consistency between the intervals.

In the end it looks something like this:

1 Tauk = MX. sym ([’ Tau ’ num2str (k)] , 3) ;
2 w = [w {Tauk }] ;
3 lbw(7+k∗9:9+k∗9)= [−800; −800; −800];
4 ubw(7+k∗9:9+k∗9) = [8 0 0 ; 800 ; 8 0 0] ;
5 w0(7+k∗9:9+k∗9) = [0 ; 0 ; 0] ;
6

7 % fe t ch r e f e r e n c e va lue s
8 e t a d o t r e f = [r e f e r e n c e t r a j e c t o r y l o s (3 : 4 , k+1) ; . . .
9 (atan2 (r e f e r e n c e t r a j e c t o r y l o s (4 , k+2) ,

r e f e r e n c e t r a j e c t o r y l o s (3 , k+2)) − . . .
10 atan2 (r e f e r e n c e t r a j e c t o r y l o s (4 , k+1) ,

r e f e r e n c e t r a j e c t o r y l o s (3 , k+1))) / h] ;
11

12 s u r g e r e f = sq r t (e t a d o t r e f (1) ˆ2 + e t a d o t r e f (2) ˆ2) ;
13 nu r e f = [s u r g e r e f ; 0 ; e t a d o t r e f (3)] ;

28

14 e t a r e f = [r e f e r e n c e t r a j e c t o r y l o s (1 : 2 , k+1) ; . . .
15 atan2 (e t a d o t r e f (2) , e t a d o t r e f (1))] ;
16

17 % We want the r e f e r e n c e to s t a r t c l o s e to i n i t i a l p o s i t i o n .
18 i f k == 0
19 unwrap d i f f = abs (e t a r e f (3) − i n i t i a l p o s (3)) ;
20 wrap d i f f = abs (wrapTo2Pi (e t a r e f (3)) − i n i t i a l p o s (3)) ;
21

22 i f unwrap d i f f > wrap d i f f % check i f d i s t ance between r e f
23 % and i n i t p o s i s g r e a t e r when unwrapped
24 e t a r e f (3) = wrapTo2Pi (e t a r e f (3)) ;
25 end
26 p r e v i o u s e t a r e f = e t a r e f ;
27 end
28

29 %% Heading con t r o l
30 i f k > 0
31 e t a r e f (3) = p r e v i o u s e t a r e f (3) + ssa (e t a r e f (3) −

p r e v i o u s e t a r e f (3)) ;
32 p r e v i o u s e t a r e f = e t a r e f ;
33 end
34

35 x r e f i = [e t a r e f ; nu r e f] ;
36

37 % Int eg r a t e un t i l the end o f the i n t e r v a l .
38 Fk = F(’ x0 ’ , Xk , ’ tau ’ , Tauk , ’Xd ’ , x r e f i) ;
39 Xk end = Fk . x f ;
40 J = J + Fk . q f ;
41

42 % New NLP va r i ab l e f o r s t a t e at the end o f i n t e r v a l .
43 Xk = MX. sym ([’X ’ num2str (k+1)] , 6) ;
44 w = [w {Xk }] ;
45 lbw(10+k∗9:15+k∗9) = [− i n f ; − i n f ; − i n f ; −2.3; −2.3; −pi / 4] ;
46 ubw(10+k∗9:15+k∗9) = [i n f ; i n f ; i n f ; 2 . 3 ; 2 . 3 ; p i / 4] ;
47 w0(10+k∗9:15+k∗9) = [x r e f i (1) ; x r e f i (2) ; x r e f i (3) ; x r e f i (4)

; x r e f i (5) ; x r e f i (6)] ;
48

49 % Add con s t r a i n t s .
50 g = [g {Xk end − Xk }] ;
51 lbg (g counter : g counter+5) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
52 ubg (g counter : g counter+5) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
53 g counter = g counter + 6 ;

Dynamic Obstacles Constraints

The new control interval now needs constraints to ensure a collision free trajectory,
starting with the dynamic constraints. First check if there are any constraints, if there
are none the whole step can simply be skipped. Similarly, we want to skip this step if
it’s the first time the algorithm is run, the reason why discussed later. Next, iterate
through all the TSs in the tracks struct and check their assigned COLREGs flags. Each
COLREGs situation should have their own constraint locations, however the optimal
placement will depend on situation complexity, available space, velocities of the ships
involved, and other factors. In this thesis the placement is simplified greatly by having
just pattern for each situation.

The general implementation for placing a constraint is the following function:
where offset is the angle offset from the TS’s heading, and the Offsetdist is the distance

29

Land

Circle constraint

Own Ship

Figure 11: First approach to placing static obstacle constraints, accurate but leads to overload of
constraints and poor computational performance.

Land

Circle constraint

Own Ship

Figure 12: Second approach to placing static obstacle constraints, avoiding the constraint overload
at the cost of greatly reducing available space.

from the center of the TS to the placement of the constraint origin point. The origin
point is placed in g(ω) as shown in (2.26) while the square of the desired radius of the
constraint is placed in g(ω)lb.

Static Obstacles Constraints

A singular static obstacle Osi is presumed to be in the form of a polygon with n corners
parameterized in NED so that:

Osi =


N1 E1

N2 E2

...
...

Nn En


T

(3.8)

30

Algorithm 5 General function for placing dynamic constraint origin point

Offsetangle ← atan2(TS.traj(4,k+1) , TS.traj(3,k+1)) + offset
Offsetdir ← [cos(Offsetangle) , sin(Offsetangle)]
odc ← TS.traj(1:2 , k+1) + Offsetdist * Offsetdir

where the point (N1 , E1) is the first point of the polygon defining the obstacle, and the
following points are sequential in either a clockwise or counter-clockwise direction. With
N obstacles that can be put together on the form:

Os = [Os1 , NaN , Os2 , ... , NaN , ON] ∈ R2×c (3.9)

where NaN = [NaN , NaN]T is inserted between each obstacle to separate them, and
the column dimension c is dependent on the amount and shape of the obstacles.

Properly incorporating static obstacles into the algorithm proved to be a bit of a
hassle. The first solution, seen in Figure 11, was to iterate through every polygon in the
static obstacle matrix, interpolating every edge to create a saturation of points that would
be used as the center for circular constraints, akin to the dynamic obstacles. This was a
terrible idea because it meant simulations with lots of static obstacles ended up having
hundreds of thousands of constraints, which made the NLP impossible to solve. The
second solution, seen in Figure 12, was to increase the size of the circular constraints
significantly so that less were needed. This worked for a while during initial testing
and experiments, but eventually proved to obstruct far too much usable space. This
was especially noticeable in tighter corridors of water such as a canal or near a pier.
Constraints could also end up blocking the waters on the other side of a static obstacle,
potentially making it impossible to traverse around oblong static obstacles. Eventually
the idea of the scan lines came about. At first the scan lines were going to be used to
place circular constraints, but it didn’t take long to realize that reusing the logic of cross
track error from LOS guidance would be a much better idea.

In the final version of the algorithm, static obstacle constraints can be generated the
following way:
Consider a fan of scan lines radiating from the OS with fixed length and angle. The
intersection point between a scan lines and the line between any two columns in Os

forms the basis of the constraint osc = (on , oe) in NED.
The constraint function is the cross track error between the position of the vessel and a
line orthogonal to the scan line which crosses the point osc, calculated like in (2.8):

oscye = − sin(γp) ∗ (N − on) + cos(γp) ∗ (E − oe) (3.10)

where (N, E) are the north and east position of the OS, and γp is the angle of the
orthogonal line w.r.t NED. See Figure 13 for a visualization of the geometry. The scan
lines are generated at each discretized step of the reference trajectory, and every found
intersection between a line the static obstacles has its own associated cross track error
that is added to the function g(ω):

g(ω) =


...

oscye

...

 (3.11)

with the lower bounds of g(ω) defining the allowed distance between the vessel and the
constraint lines, while the upper bounds should be infinite. This creates a convex free
set bound by the static obstacles around the reference trajectory.

The algorithm for creating the intersection points and finding the appropriate angle
for the constraint line is a bit involved. Since every control interval needs its own set
of constraints we need to iterate forward in time through decision variables that don’t

31

N

E

osc

oscye

γp

Land

Line constraint

Scan lines

Own Ship

Figure 13: Geometry for straight line constraints used to handle static obstacles.

exist yet. The solution is to instead use the previous optimal trajectory if it exits, or
the reference trajectory if we must. This will create a slight distortion in where the
static obstacles end up being placed. But, the distortion is less prominent the closer
we are to the current position of the OS, so it’s not that big of a deal as the problem
corrects itself when it draws near. While iterating through the selected trajectory the scan
lines are fairly easy to construct, but conducting the intersection check is actually very
complicated. Luckily there exists a MATLAB function for just this purpose, polyxpoly,

Land

Line constraint

Scan lines

Own Ship

Figure 14: Current approach to placing static obstacle constraints, ditching the circular constraints
in favor of straight lines based on proximity. Combines the best of both prior versions.

32

which comes as part of the MATLAB mapping toolbox. Polyxpoly outputs the x, y, and
an index for which polygon edge were part of the intersection. It does this for every
intersection it finds, when we run the check using all the scan lines and all the static
obstacle polygons at the same time this can lead to some duplicate hits. In a similar vein
it is possible for a scan line to completely pass through an obstacle polygon, in which
case it would intersect twice, with the second intersection being on the backside of the
obstacle. Both the backside intersection and duplicate intersections are undesirable, the
output from polyxpoly can be ”sanitized” with the following code snip:

1 [xi , yi , i i] = polyxpoly (x , y , xbox , ybox) ;
2 % Keep f i r s t h i t :
3 A = [xi , yi , i i] ;
4 [˜ , uidx] = unique (A(: , 3) , ’ s t ab l e ’) ;
5 A without dup = A(uidx , :) ;
6 x i = A without dup (: , 1) ;
7 y i = A without dup (: , 2) ;
8 i i = A without dup (: , 3 : 4) ;

The static obstacle constraint parameters can then be collected by combining the xi and
yi vectors into a single matrix, keeping in mind that the output has the x and y-axis
opposite from what we have gotten used to by now. The implementation for calculating
the angle γp (here called pi p) is:

1 s t a t i c o b s c o n s t r a i n t s = ze ro s (3 , l ength (x i)) ;
2 f o r i = 1 : l ength (x i)
3 i n t e r s e c t i o n p o i n t = [y i (i) ; x i (i)] ;
4 %ho r r i b l e 2am spaghe t t i :
5 l i n e = pos − i n t e r s e c t i o n p o i n t ; % The vec to r that takes us from

i n t e r s e c t i o n po int cur rent p o s i t i o n
6 t r an spo s ed l i n e = [− l i n e (2) ; l i n e (1)] ; % Get Orthogonal o f s a id

vec to r .
7 tangent = i n t e r s e c t i o n p o i n t + t r an spo s ed l i n e ; % c r ea t e po int

along orthogona l vec to r
8

9 p i p = atan2 (tangent (2) − i n t e r s e c t i o n p o i n t (2) , tangent (1) −
i n t e r s e c t i o n p o i n t (1)) ;

10 s t a t i c o b s c o n s t r a i n t s (: , i) = [i n t e r s e c t i o n p o i n t (1) ;
i n t e r s e c t i o n p o i n t (2) ; p i p] ;

11 end

where pos is the position of the OS. But instead of all this you could use the bearing from
the OS to the intersection point to know which scan line resulted in said intersection,
each scan line can only have one orthogonal vector, and they can be pre-calculated and
put in a list. You then only have to grab the correct index from the list to get your angle
pi p. The constraint function placed in g(ω) is Equation (3.10), with the lower bound
value for g deciding how close the OS is allowed the line. In this thesis that lower bound
is hard-coded to be 5 meters, but just as with dynamic obstacles this value should really
be some function of the complexity of the situation.

Solver

After the construction of the NLP is finished a solver instance is created with CasADi,
selecting IPOPT as the desired solver. Additionally, the solver instance is able to take in
a few options for changing tolerances and tweaking other aspects of the solver. There are
three options which are very useful for the algorithm. The first is options.ipopt.max iter,
which lets us set a hardcap on how many iterations the IPOPT solver is allowed to use.
Great for reducing runtime. The second option is the options.ipopt.print level, which
controls how much information is printed to the command window, this has no actual

33

effect solver, but printing to command window takes time. Lowering the print level is
great for running simulations faster.

In the final version of the algorithm I’ve set options.ipopt.max iter to 200 for the
first time the algorithm runs, and 400 for the rest. The reason is that the IPOPT solver
generally gets very close to a solution in just a few iterations, but then takes a really long
time to get all the way to the finish line. For the first iteration there are no obstacles
enabled, if the solver can’t get to the optimal solution in 200 iterations then it’s not
going to get to one in 2000 either. With obstacles enabled 400 iterations seems like a
nice compromise between wanting a fast solution, and giving the solver enough tries to
get reasonably close to an optimum.

After setting the options and creating the solver instance, the very last task left
before solving is to substitute the initial guess ω0 with the previous optimal trajectory
if was deemed feasible by the feasibility check. Having an initial guess that is close to an
optimal solution makes the NLP a lot easier to solve. This is also why the initial guess
ω0 is filled with the reference values while constructing the NLP, it’s a lot better to have
some initial guess than to guess 0 for everything (Gros 2017). Because the amount of
control intervals will vary between calls some logic is implemented to make sure the new
ω0 is of the same size. Either by grafting on some reference values or by trimming the
end, depending on if it’s too long or short.

The solver instance is then executed and timed, as long as it took less than 30 seconds
to solve we save the result for next time otherwise next iteration will have to rely on the
reference as an initial guess.

34

4 Simulation Results

To test the capabilities of the trajectory planning algorithm it is useful to conduct sim-
ulations of various scenarios. With a simulator it is possible to cover a wide assortment
of scenarios in a timely fashion, this helps explore the full range of the algorithm’s be-
havior without having to conduct time-consuming full scale tests. NTNU also has a
full-scale functional prototype of an autonomous ferry that could be used to conduct
real life tests. However, during the period of working on this thesis the ferry was out
of commission due to a thruster failure. The MATLAB simulator used for this thesis
was developed by Emil Thyri and is used with permission. In this chapter the results
are presented with figures to show the development of the scenario over time, in ad-
dition to these figures there exists a YouTube video compiling all the results in video
format, the video can be found as an attachment to the thesis, or by following this link:
https://www.youtube.com/watch?v=522OtL2MRGo.

All the simulations are conducted under the assumption that the OS has perfect vision
for spotting and tracking dynamic obstacles. Disturbances are also largely ignored, the
simulation features no current or wind induced sideslip, crab angle is also not considered.

4.1 Scenario Overview

The scenarios used for this thesis are constructed to test both trajectory planning and
collision avoidance capabilities through a combination of both trivial and complex situ-
ations. The scenarios are also designed so that behavior differences between full and
simple TS prediction can be observed. Any time we encounter a TS that maintains a
steady course and velocity there will not be any observable difference, therefor most of the
scenarios are constructed so that encounters occur when ships are turning. The first set
of scenarios are simple situations to establish baseline behavior in the various COLREGs
situations. In these scenarios there are only two agents and there are mostly no mean-
ingful differences observed between simple and full prediction of TSs. The second set of
scenarios are more complex by featuring more agents and longer paths to follow. These
scenarios often feature multiple COLREGs situations that can even overlap, additionally
TSs will not be considerate of the OS and will exhibit reckless behavior in order to test
a sort of worst case scenario. The complex scenarios also incorporate static obstacles to
show how the algorithm handles both types of obstacles at the same time.

Simple COLREGs Situations

These scenarios feature two agents, the OS and the TS, each entering a fully open space
while maintaining a steady course and fixed speed. The agents then cross in manners as
described by the COLREGs rules discussed in prior chapters.

Turning COLREGs Situations

Similar to the simple COLREGs situations these scenarios all feature two agents who
enter a fully open space. The difference is as the name implies that these scenarios
feature a turn by the TS. Shortly after both agents are in motion the TS will alter its
course, changing the COLREGs situation from one apparent situation to another. These
scenarios were made to see if a difference between prediction level can be eked out in
open water conditions.

36

https://www.youtube.com/watch?v=522OtL2MRGo

Canals

This scenario features a set of canals that form a T-junction as well as a choke point on
one of the junction points that restricts the traversable space. There are three agents
present, and they all meet roughly at the choke point, the scenario is set up so that the
dynamic constraints of the TSs completely block the path of the OS if full prediction is
used.

Fjord

The fjord is constructed as a miniature version of the Trondheimsfjord, this scenario is
designed as a stress test of COLREGs situations. With multiple TSs crossing, turning
and overtaking the OS simultaneously this scenario will show how the trajectory planning
algorithm differs with prediction level.

Helløya

The situation in this scenario is specifically modelled after a spot near Brønnøysund and
is not an entirely uncommon situation when in transit along the coast of Norway. Traffic
that wishes to avoid the narrow pass leading in to or out of Brønnøysund’s will elect to
take a wider path on the outside of the local archipelago. The result is a path with a
very prominent turn that is invisible at a glance, but very obvious to any experienced
navigator. The simulation is conducted with the OS arriving from both the north and
south direction with both full and simple prediction enabled.

Skjærg̊ard with Traffic

Skjærg̊ard is a Norwegian term for a section of ocean where there are many small islands
and skerries, while the term translates to archipelago a skjærg̊ard is generally small in
scale. This scenario puts a lot of stress on the trajectory planner which has to deal with
both moving dynamic obstacles and the static obstacles that are sometimes blocking the
reference path.

Skjærg̊ard without Traffic

A simpler archipelago scenario, this scenario was designed to stress test the algorithm’s
capacity for handling static obstacles.

Miscellaneous

These scenarios are not meant to simulate any specific situation, rather these are meant
to showcase quirks, features, and bugs encountered while developing and testing the
algorithm. While some problems shown here were taken care of and are no longer present
in the current iteration of the algorithm they are nonetheless important to showcase and
discuss.

4.2 Simulation Results

Following this chapter there will be a lot of very similar looking figures. The left figure
will always feature the already travelled trajectories, as well as the active static obstacles
immediately around the OS and the first ten dynamic constraint circles. The figure on

37

the right features the projected optimal trajectory, the reference path and trajectory,
and active dynamic obstacle constraint origin points. Both figures feature velocity vec-
tors on all vessels, and for both figures the sizes of the vessels are exaggerated so that
they’re visible. Each scenario will be briefly looked at on its own, pointing out obser-
vations or discrepancies from what one would expect. If a scenario did not show any
significant difference between prediction levels the figures for the simple prediction were
not included, the accompanying shows every scenario in full, both with simple and full
prediction. Afterwards some typical issues, quirks and problems will be looked at before
a general discussion caps off the chapter.

While the figures are pretty to look at, it is highly recommended watching the video
results to see the full picture.

One thing to disclose before jumping in: Over the course of the thesis these simula-
tions were run many times, and while the results are always consistent for consecutive
reruns, the simulation seem to be very sensitive to daily cosmic radiation. The simula-
tions could be run one day, then something unrelated in the MATLAB files were changed,
and then the results would be different the next day. This is important because the plots
had to be remade a few times for the thesis, but not for the YouTube video. There are
some discrepancies between the two versions, but the overall results are still the same.

38

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =1.1st =1.1s

(a)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =1.1st =1.1s

(b)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(c)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(d)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(e)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(f)

Figure 15: Simple Head-on. Result independent of prediction level.

39

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =1.1st =1.1s

(a)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =1.1st =1.1s

(b)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(c)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100
N

o
rt

h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(d)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(e)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(f)

Figure 16: Simple Give-way. Result independent of prediction level.

40

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =1.1st =1.1s

(a)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =1.1st =1.1s

(b)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(c)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100
N

o
rt

h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(d)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(e)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(f)

Figure 17: Simple Stand-on. Here shown with full prediction, OS correctly stands on.

41

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =1.1st =1.1s

(a)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =1.1st =1.1s

(b)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(c)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]
Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(d)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(e)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(f)

Figure 18: Simple Stand-on. Here shown with simple prediction, the OS can be observed to yield
when it shouldn’t.

42

4.2.1 Simple Head-On

The simple situations are not really meant to test anything, rather this scenario and the
others are used for establishing a baseline of capabilities. For example for this scenario
specifically it is established that the OS will always attempt to pass the head-on vessel
on the port side when the conditions are ideal. This result holds for both simple and full
prediction levels. The result for this scenario is seen in Figure 15.

4.2.2 Simple Give-Way

This scenario shows how the algorithm behaves when giving way to a crossing vessel. It
might actually be a bit overzealous with this constraint size, but that’s something that
can be tuned with further experimentation. One important observation to make from this
simple scenario is when obstacles are enabled on the second iteration of the algorithm,
the constraints block the previous optimal trajectory and causes it to be infeasible. This
is more clearly observed in the video version. When the infeasibility is detected the next
result is a much shorter path as the speed is reduced, and then finally the full trajectory
that gives way is found. This very simple simulation highlights one of the potential
problems with the algorithm, if it’s turned on while the OS is in an active COLREGs
situation performance might be poor. The results are seen in Figure 16.

4.2.3 Simple Stand-On

This scenario is one of the two scenarios that assumes a cooperative TS, controlling the
TSs to be cooperative turned out to be a real time sink, for longer scenarios it simply
wasn’t worth the effort to include a TS that didn’t affect the OS. This is also the first
simulation where a difference between simple and full prediction can be observed, and it’s
mostly the fault of poor constraint placement, which will be more thoroughly discussed
in Chapter 4.3. The full prediction result can be seen in Figure 17 and shows that the
OS does not deviate from its speed or course, which is exactly the behavior we would
want. The simple prediction version on the other hand, seen in Figure 18 turns to cross
behind the incoming TS.

43

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(a)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(b)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(c)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(d)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =75.1st =75.1s

(e)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =75.1st =75.1s

(f)

Figure 19: Head-on with a turn. Result for this were the same regardless of prediction level.

44

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(a)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(b)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(c)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(d)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =75.1st =75.1s

(e)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =75.1st =75.1s

(f)

Figure 20: Give-way with a turn, here with full prediction. Observe the OS not expecting to have
to yield until it’s almost too late.

45

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(a)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(b)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(c)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(d)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =75.1st =75.1s

(e)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =75.1st =75.1s

(f)

Figure 21: Give-way with a turn, here with simple prediction. Observe as the OS gets dragged
along by the constraints of the turning TS.

46

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =25.1st =25.1s

(a)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =25.1st =25.1s

(b)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =50.1st =50.1s

(c)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200
N

o
rt

h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =50.1st =50.1s

(d)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Dynamic obstacles constraint

t =75.1st =75.1s

(e)

0 20 40 60 80 100 120 140 160 180 200

East [m]

0

20

40

60

80

100

120

140

160

180

200

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =75.1st =75.1s

(f)

Figure 22: Stand-on with turn. Result independent of prediction level.

47

4.2.4 Turn Head-On

Very similar result to the straight path head-on situation, which is not entirely unexpec-
ted. One aspect of this scenario that has become very obvious with hindsight is that the
incoming TS should have approached from northwest instead of northeast. That way any
a poorly calculated optimal trajectory would have been dragged towards the wrong side
for the crossing. Instead, as the situation is set up the trajectory will always be pushed
towards crossing on the correct side. The results for this scenario are seen in Figure 19.

4.2.5 Turn Give-Way

This scenario finally shows a huge difference in behavior between the prediction levels.
With full prediction the OS anticipates the incoming TS’s intent to cross. Though the
prediction is not perfect and the OS actually gets caught inside the constraints for one
iteration. The result with full prediction is seen in Figure 20, and aside from getting
caught and pushed out by the constraints the behavior is pretty good. With simple
prediction on the other hand, as seen in Figure 21, the optimal trajectory gets caught by
the incoming crossing TS’s constraints and dragged along some 100 meters off-course.

4.2.6 Turn Stand-On

The results for this scenario was not affected by prediction level, in fact nothing at all
happens in this scenario. Which is exactly the desired result, but it’s not very interesting
to read or write about. The results are seen in Figure 22.

48

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]
Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =1.1st =1.1st =1.1s

(a)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =1.1st =1.1st =1.1s

(b)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =25.1st =25.1st =25.1s

(c)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =25.1st =25.1st =25.1s

(d)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =50.1st =50.1st =50.1s

(e)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =50.1st =50.1st =50.1s

(f)

49

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =75.1st =75.1st =75.1s

(g)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =75.1st =75.1st =75.1s

(h)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =101.1st =101.1st =101.1s

(i)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250
N

o
rt

h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =101.1st =101.1st =101.1s

(j)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =126.1st =126.1st =126.1s

(k)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =126.1st =126.1st =126.1s

(l)

Figure 23: Canals. Here shown with full prediction.

50

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =1.1st =1.1st =1.1s

(a)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =1.1st =1.1st =1.1s

(b)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =25.1st =25.1st =25.1s

(c)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250
N

o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =25.1st =25.1st =25.1s

(d)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =50.1st =50.1st =50.1s

(e)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =50.1st =50.1st =50.1s

(f)

51

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =75.1st =75.1st =75.1s

(g)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =75.1st =75.1st =75.1s

(h)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =101.1st =101.1st =101.1s

(i)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250
N

o
rt

h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =101.1st =101.1st =101.1s

(j)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =126.1st =126.1st =126.1s

(k)

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =126.1st =126.1st =126.1s

(l)

Figure 24: Canals. Here shown with simple prediction.

52

200 250 300 350 400 450 500 550

East [m]

450

500

550

600

650

700

750

800

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(a)

200 250 300 350 400 450 500 550

East [m]

450

500

550

600

650

700

750

800

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

300 350 400 450 500 550 600 650

East [m]

500

550

600

650

700

750

800

850

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(c)

300 350 400 450 500 550 600 650

East [m]

500

550

600

650

700

750

800

850

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(e)

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

53

550 600 650 700 750 800 850 900

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(g)

550 600 650 700 750 800 850 900

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

600 650 700 750 800 850 900 950

East [m]

600

650

700

750

800

850

900

950

N
or

th
 [m

]

t =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(i)

600 650 700 750 800 850 900 950

East [m]

600

650

700

750

800

850

900

950

N
or

th
 [m

]

t =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

650 700 750 800 850 900 950 1000

East [m]

650

700

750

800

850

900

950

1000

N
or

th
 [m

]

t =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(k)

650 700 750 800 850 900 950 1000

East [m]

650

700

750

800

850

900

950

1000

N
or

th
 [m

]

t =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(l)

Figure 25: Fjord. Here shown with full prediction. Observe the OS handles the stress test pretty
well.

54

200 250 300 350 400 450 500 550

East [m]

450

500

550

600

650

700

750

800

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(a)

200 250 300 350 400 450 500 550

East [m]

450

500

550

600

650

700

750

800

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1st =99.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

300 350 400 450 500 550 600 650

East [m]

500

550

600

650

700

750

800

850

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(c)

300 350 400 450 500 550 600 650

East [m]

500

550

600

650

700

750

800

850

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1st =149.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(e)

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1st =254.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

55

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(g)

500 550 600 650 700 750 800 850

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1st =274.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

600 650 700 750 800 850 900 950

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(i)

600 650 700 750 800 850 900 950

East [m]

550

600

650

700

750

800

850

900

N
or

th
 [m

]

t =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1st =314.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

650 700 750 800 850 900 950 1000

East [m]

650

700

750

800

850

900

950

1000

N
or

th
 [m

]

t =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(k)

650 700 750 800 850 900 950 1000

East [m]

650

700

750

800

850

900

950

1000

N
or

th
 [m

]

t =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1st =349.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(l)

Figure 26: Fjord. Here shown with simple prediction. Observe the OS behaves much more
erratically compared to the full prediction level.

56

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =124.1st =124.1st =124.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(a)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =124.1st =124.1st =124.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =174.1st =174.1st =174.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(c)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500
N

or
th

 [m
]

t =174.1st =174.1st =174.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =229.1st =229.1st =229.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(e)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =229.1st =229.1st =229.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

Figure 27: Helløya. Here, the OS behaves to expectations independently of prediction level.

57

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =44.1st =44.1st =44.1st =44.1st =44.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(a)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =44.1st =44.1st =44.1st =44.1st =44.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =74.1st =74.1st =74.1st =74.1st =74.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(c)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500
N

or
th

 [m
]

t =74.1st =74.1st =74.1st =74.1st =74.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =109.1st =109.1st =109.1st =109.1st =109.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(e)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =109.1st =109.1st =109.1st =109.1st =109.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

58

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =154.1st =154.1st =154.1st =154.1st =154.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(g)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =154.1st =154.1st =154.1st =154.1st =154.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =189.1st =189.1st =189.1st =189.1st =189.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(i)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500
N

or
th

 [m
]

t =189.1st =189.1st =189.1st =189.1st =189.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =224.1st =224.1st =224.1st =224.1st =224.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(k)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =224.1st =224.1st =224.1st =224.1st =224.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(l)

Figure 28: Helløya in reverse. Here with full prediction, the OS behaves to expectations.

59

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =44.1st =44.1st =44.1st =44.1st =44.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(a)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =44.1st =44.1st =44.1st =44.1st =44.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =74.1st =74.1st =74.1st =74.1st =74.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(c)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500
N

or
th

 [m
]

t =74.1st =74.1st =74.1st =74.1st =74.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =109.1st =109.1st =109.1st =109.1st =109.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(e)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =109.1st =109.1st =109.1st =109.1st =109.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

60

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =154.1st =154.1st =154.1st =154.1st =154.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(g)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =154.1st =154.1st =154.1st =154.1st =154.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =189.1st =189.1st =189.1st =189.1st =189.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(i)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500
N

or
th

 [m
]

t =189.1st =189.1st =189.1st =189.1st =189.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =224.1st =224.1st =224.1st =224.1st =224.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Dynamic obstacles constraint

(k)

0 50 100 150 200 250 300 350 400 450 500

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
or

th
 [m

]

t =224.1st =224.1st =224.1st =224.1st =224.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(l)

Figure 29: Helløya in reverse. Here with simple prediction, the OS behaves slightly erratically.

61

4.2.7 Canals

Results are seen with full prediction in Figure 23, and with simple prediction in Figure
24. This was the first scenario designed to be a bit more complicated than just an open
ocean encounter. In this scenario there are walls blocking the available space, as well as a
bottleneck that gets blocked by the constraints of the incoming TSs. The TS approaching
from the north also turns in a way that would be obvious to a navigator, but not easily
understood by a simple prediction algorithm.

The immediate difference between the prediction levels is that full prediction foresees
the bottleneck closing and slams the breaks. Leading to a jittery trajectory as the
algorithm goes through the following process:
1.) First the algorithm is able to find a feasible and optimal solution when obstacles are
disabled.
2.) Then the obstacles are enabled which break the continuity of the previous optimal
trajectory, making the newest optimal trajectory infeasible.
3.) The speed is then reduced, and the algorithm is able to find an optimal solution
because the bottleneck is not blocked for long.
4.) Because the previous trajectory was feasible the speed is set back to the nominal
value, the bottleneck is once again blocked leading to an infeasible path.
Repeating step 3 and 4 until an opening between all the constraints finally shows itself.
Every time the NLP is infeasible the result used in the MPC might not have consistent
heading or speed with the previous control interval, which is why the result looks so
jittery.

The simple prediction version on the other hand, presuming that one of the north-
ernmost TS will simply phase through the wall, proceeds without a care. As the OS
gets closer to the bottleneck, so too does the constraints about to block the way. This
is why the optimal trajectory bulges upwards, luckily the gap is not closed for long, and
the OS is able to pass without having to go through the same song and dance as the full
prediction version.

4.2.8 Fjord

The result for full prediction is seen in Figure 25, and with simple prediction in Figure
26. This scenario is full of uncooperative TSs, and the simple prediction level algorithm
is unable to cope. With all the overlapping crossing TS turning onto the path of the
OS, as well as a TS overtaking from behind the algorithm is not able to find a consistent
trajectory, jumping between different optimal solutions over the course of the simulation.
The full prediction results on the other hand are pretty good with the OS being able
to make it through the crucible with very few adjustments to the course, passing the
oncoming TS pack on the correct side as well.

While runtime optimization isn’t the focus of this thesis, it should be noted that the
full prediction level simulation was significantly faster to run, mostly due to the NLP
being solved much faster when the constraints don’t move around as much.

4.2.9 Helløya

The results for this scenario are seen in Figure 27 and are similar enough for both
prediction levels that only full prediction is shown. Considering the simple scenarios it
should be no surprise that the OS is able to pass by the first TS on the correct side. The
invisible turn is also handled really well by both prediction levels. The boring results here
lead to the idea that it’s probably the direction of the turn that makes it so that there
is no difference between the prediction levels, so a reverse of the scenario was created.

62

4.2.10 Helløya Reversed

The only scenario that features the OS heading southwards, which lead to a very inter-
esting discovery that has since been patched out: The algorithm could for the longest
time not handle turning from some angles to another, the heading reference would pick
the wrong turn direction, and so the resulting trajectory would take a loop. This was
discussed in Chapter 3.3 and will be discussed a bit more in the miscellaneous results.
Back to Helløya in reverse, the results for full prediction are in Figure 28, and simple in
Figure 29. This time the ’invisible’ turn is handled differently depending on prediction
level, with the simple prediction trajectory being pushed towards cutting the corner,
while the full prediction version ends up crossing in front. Later the Head-on TS is easily
avoided by both prediction levels.

Not captured in these figures, but observable in the video version, is the overtaking
going very poorly for the simple prediction level. This is likely due to the fact that the
constraints for the overtaking TS ends up being placed on top of the initial guess, making
the solver scramble to find a new solution.

63

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =24.1st =24.1st =24.1st =24.1st =24.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(a)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =24.1st =24.1st =24.1st =24.1st =24.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =49.1st =49.1st =49.1st =49.1st =49.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(c)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =49.1st =49.1st =49.1st =49.1st =49.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(e)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

64

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(g)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =174.1st =174.1st =174.1st =174.1st =174.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(i)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600
N

or
th

 [m
]

t =174.1st =174.1st =174.1st =174.1st =174.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =200.1st =200.1st =200.1st =200.1st =200.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(k)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =200.1st =200.1st =200.1st =200.1st =200.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(l)

Figure 30: Skjærg̊ard with traffic. Here with full prediction.

65

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =24.1st =24.1st =24.1st =24.1st =24.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(a)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =24.1st =24.1st =24.1st =24.1st =24.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(b)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =49.1st =49.1st =49.1st =49.1st =49.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(c)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600
N

or
th

 [m
]

t =49.1st =49.1st =49.1st =49.1st =49.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(d)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(e)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =99.1st =99.1st =99.1st =99.1st =99.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(f)

66

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(g)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =149.1st =149.1st =149.1st =149.1st =149.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(h)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

t =174.1st =174.1st =174.1st =174.1st =174.1s

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

(i)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600
N

or
th

 [m
]

t =174.1st =174.1st =174.1st =174.1st =174.1s

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

(j)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

Own ship
Target ships
Own ship trajectory
Target ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =217.1st =217.1st =217.1st =217.1st =217.1s

(k)

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
or

th
 [m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Static obstacles
Dynamic constraint origin

t =217.1st =217.1st =217.1st =217.1st =217.1s

(l)

Figure 31: Skjærg̊ard with traffic. Here with simple prediction.

67

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Own ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =101.1s

(a)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o
rt

h
 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Static obstacles
Dynamic constraint origin

t =101.1s

(b)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Own ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =251.1s

(c)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Static obstacles
Dynamic constraint origin

t =251.1s

(d)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Own ship
Own ship trajectory
Static obstacles
Static obstacles constraint
Dynamic obstacles constraint

t =400.1s

(e)

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h
 [

m
]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Static obstacles
Dynamic constraint origin

t =400.1s

(f)

Figure 32: Skjærg̊ard without traffic simulation. Result independent of prediction level due to no
TSs.

68

4.2.11 Skjærg̊ard with Traffic

This was the final scenario created and is one of the more complex ones. This scenario
combines sporadic static obstacles with different COLREGs situations, the third TS
in particular ended up being a lot of trouble for the simple prediction level algorithm.
The results for full prediction are seen in Figure 30, and the simple in Figure 31. This
scenario was very easy with the full prediction level, when anticipating the incoming
TS’s turn, the path remains unblocked by constraints and the crossing happens without
a hitch. With a simple prediction level on the other hand, the algorithm has an absolute
nightmare trying to find a way through, getting stuck in a loop of infeasible results that
aren’t easily captured in a single frame but very obvious in the video results. When the
incoming TS finally starts to turn the algorithm is able to find an opening and get past.

4.2.12 Skjærg̊ard without Traffic

This is a simple path following scenario, result seen in Figure 32. This scenario was
designed to stress test the static obstacle implementation, and I dare say it passes with
flying colors. The reference path in this scenario is intentionally placed too close to some
obstacles so that the effect of the constraints can be observed. Here, we see that the
very last static obstacle is placed slightly on top of the reference path, but the trajectory
planner has no problem going around.

4.2.13 Miscellaneous

Over the course of this thesis, these simulations have been run countless times. Occasion-
ally a quirk is spotted, but it’s then quickly patched out or fixed by the aforementioned
cosmic radiation. However, I had the foresight to save some of the more interesting ones,
which will now be discussed a bit on their own before moving on to the general discussion.

Bad Prediction:
This is a very important result to highlight, but not one that is shown in any of the
scenarios presented. If the prediction is wrong about where the TS is going, it can be
awful for the algorithm. The same of course goes for malicious actors or TSs who are
non COLREGs complaint. All three can lead to the OS getting caught inside active
dynamic constraints, which the IPOPT solver absolutely can not handle, the results are
seen in Figure 33. This is one of the risks of using numerical optimization and placing
hard constraints on the position, of course the hard constraints are meant to be safety
boundaries, if they are violated you most likely have bigger problems than the trajectory
planner spitting out gibberish. If the OS is ever inside a hard constraint like this there
needs to be a contingency algorithm ready to step in and make escape maneuvers.

Blocked Path:
This isn’t really a problem as much as it is the author wanting to show more closely
what happens during the first three iterations of the Canals simulation. This is so that
the looping process mentioned when discussing the Canals result are a bit easier to
understand. The first frame is the first time the algorithm has been run, in this state
there are no obstacles enabled and the optimal trajectory closely hugs the reference. In
the next frame the obstacles are enabled, and the resulting trajectory becomes split in
half and infeasible as one side of the trajectory ends up on the far side of the blockading
obstacle. The last frame shows the resulting trajectory after the speed reference was
lowered drastically, observe how the beginning of the optimal trajectory wiggles a bit as
it isn’t actually possible to slow down as fast as the reference demands. These are seen
in Figure 34.

”Wrap To 2 PI” Problem:
Finally, a closer look at the nebulous wrap2topi problem that has been mentioned a
couple of times. This is a special simulation to show the consistency of the problem, the

69

first plot in Figure 35 shows the heading reference and ”optimal” values for each control
interval k. The second plot shows the projected optimal trajectory. When trying to
turn from a heading due south towards a heading due west the reference for the heading
experiences a discontinuity as it jumps from π radians to −π

2 radians. And for some
reason the solver decides to follow the reference, when at the time of this simulation
the heading and heading reference did not appear in the cost function. I have no idea
why the heading was followed like this, to my knowledge the heading should come ”by
itself” based on the dynamics of the system and the suppression of any sway. When only
surge is allowed the heading has to be pointing in the right direction to keep up with
the reference trajectory, it shouldn’t matter if it’s out of phase by 2nπ radians. The
core of this problem was never discovered, but a fix was luckily not too complicated to
implement. The fix was discussed when constructing the NLP in Chapter 3.3.

Trajectory Stuck:
This quirk is mostly amusing, but can be a killer if left unpatched. In Figure 36 you can
see the projected optimal trajectory nicely tucked inside a small island, where it is stuck
and can not get out. The problem that caused this is two-fold. The first issue is that the
algorithm is unable to settle on a consistent trajectory, which means that the static obs
will flicker in and out of being active. Recall that the static obstacles are created using
the previous optimal trajectory as an anchor for checking future positions. The second
problem is that the static constraint lines are active in both directions; it is proximity to
the line that is illegal, not being on a ”wrong” side. So if the optimal trajectory jumps
around a lot because the solver is unable to find a good consistent optimal solution it
might eventually jump inside a static obstacle polygon and get stuck. The fix for this
problem turned out to be rather simple luckily, I just needed to check for feasibility
before substituting in the previous optimal path as initial guess.

Leaning into Turns:
This problem is simply a quirk of numerical optimization and my cost function. If you
look at Figure 37 you will see that the OS turns ever so slightly the wrong way before
executing the Give-way maneuver. This is actually a very big deal with respect to
COLREGs, and therefore a highly undesired behavior. Sadly the root of the problem is
not easy to fix, by ”leaning” the wrong way like this the overall trajectory is closer to
the reference and is thus the optimal trajectory. This is because the OS has a pretty bad
turning radius, taking turns straight on leads to understeering that can take a long time
to recover from. The problem could be mitigated by having a better cost function, one
that would punish flip-flip behavior like this. Luckily it’s not that big of a problem; in a
real life scenario dampening and inertia would (hopefully) suppress this issue.

70

0 10 20 30 40 50 60 70 80 90 100
East [m]

0

10

20

30

40

50

60

70

80

90

100

N
or

th
 [

m
]

Simulation with constraint circles

(a) When prediction goes wrong, the OS can get caught by moving constraints. Old
style figure.

0 10 20 30 40 50 60 70 80 90 100
East [m]

0

10

20

30

40

50

60

70

80

90

100

N
or

th
 [

m
]

Projected future trajectory

W
opt

Transit path
reference trajectory

(b) When caught inside an active constraint, the solver is unable to find a feasible
solution. Old style figure.

Figure 33: This is what can happen when the prediction does not match the actual trajectory of
the TSs.

71

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]
Own ship

Target ships

Own ship trajectory

Target ship trajectory

Dynamic obstacles constraint (first 10)

t =0.1st =0.1st =0.1s

(a) Start of simulation, no active obstacles.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

Optimal trajectory

Reference path

Reference trajectory

Own ship

Target ships

Dynamic constraint origin

t =0.1st =0.1st =0.1s

(b) Start of simulation, no active obstacles.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t =0.1st =0.1st =0.1s

Own ship

Target ships

Own ship trajectory

Target ship trajectory

Static obstacles

Static obstacles constraint

Dynamic obstacles constraint (first 10)

(c) Obstacles activate, breaking the optimal traject-
ory.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t =0.1st =0.1st =0.1s

Optimal trajectory

Reference path

Reference trajectory

Own ship

Target ships

Static obstacles

Dynamic constraint origin

(d) Obstacles activate, breaking the optimal traject-
ory.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t =1.1st =1.1st =1.1s

Own ship

Target ships

Own ship trajectory

Target ship trajectory

Static obstacles

Static obstacles constraint

Dynamic obstacles constraint (first 10)

(e) Speed is reduced, resulting in a shorter optimal
trajectory.

0 50 100 150 200 250

East [m]

0

50

100

150

200

250

N
o

rt
h

 [
m

]

t =1.1st =1.1st =1.1s

Optimal trajectory

Reference path

Reference trajectory

Own ship

Target ships

Static obstacles

Dynamic constraint origin

(f) Speed is reduced, resulting in a shorter optimal
trajectory.

Figure 34: How the optimal path is calculated with lower speed when infeasibility is detected.

72

0 50 100 150 200 250 300 350 400

Discretized time [k]

-4

-3

-2

-1

0

1

2

3

4

P
s
i
(r

a
d
)

Psi ref

Psi opt

(a) Here we see the heading reference and optimal values, at about k = 50, and again
around 200 we can see that the heading reference experiences a discontinuous jump
as it wraps from π to −π.

0 10 20 30 40 50 60 70 80 90 100

East [m]

0

10

20

30

40

50

60

70

80

90

100

N
o

rt
h

 [
m

]

Optimal trajectory
Reference path
Reference trajectory
Own ship
Target ships
Dynamic constraint origin

t =0.1st =0.1s

(b) When the heading reference experiences a discontinuity the optimal trajectory
becomes weird.

Figure 35: Without proper course reference, this would sometimes happen.

73

180 200 220 240 260 280 300 320 340 360

East [m]

360

380

400

420

440

460

480

500

520

540

560

N
o

rt
h

 [
m

]

Figure 36: Here we see the optimal trajectory getting caught inside a static obstacle and getting
stuck.

74

60 65 70 75 80 85 90 95

East [m]

40

45

50

55

60

65

70

75

N
o
rt

h
 [
m

]

(a) By zooming in it is observed that the OS turns slightly to port side.

40 50 60 70 80 90 100 110 120

East [m]

40

50

60

70

80

90

100

110

120

N
o
rt

h
 [
m

]

(b) Meanwhile, the optimal trajectory is clearly a turn to starboard.

Figure 37: A quirk of numerical optimization, sometimes turning to the wrong side leads to a
’smoother’ curve.

75

4.3 Discussion

The developed algorithm is mostly able to guide the OS through the presented scenarios.
All the simulations were conducted on a desktop computer with an intel i9-12900k CPU
and 16 GB of ram, the computer was running MATLAB 2021b on Windows 10. The
IPOPT solver would nominally take between 700ms and 3 seconds to solve the control
problem depending on the complexity of the situation and accuracy of the initial guess.
These aren’t terrible numbers for a mid-level trajectory planner algorithm, ocean and
coastal transit is usually characterized by open spaces and slow big vessels. When using
this algorithm in a canal crossing situation the dynamic horizon distance could be tuned
way down from its normal 5-minute horizon, which would reduce the time to solve the
NLP significantly. But these are the nominal times, if the problem ends up being infeas-
ible due to blockades or dynamic constraints the solver takes significantly longer to arrive
at a solution, sometimes taking up to 90 seconds before hitting the maximum allowed
iterations. Similarly, a poor initial guess can also skyrocket the computation time to
solve the NLP, though the nominal time for solving with a poor guess is usually around
10 to 30 seconds. These are inherent problems with using numerical optimal control that
can be mitigated with better situation analysis, state machines for controlling how many
control intervals the NLP should have. As well as system logic for deciding how much
time the IPOPT solver is allowed to spend, sometimes it’s better to pull the plug and
try again with a better initial guess.

One of the reasons that parameter values haven’t been mentioned too much in this
thesis is lack of testing, or rather the way test numbers scale exponentially the more
parameters are tested. The cost function was tuned until it was able to reasonably track
a reference path in open waters without any obstacles, but it’s probably far from an ideal
cost function. Tuning the cost coefficients affects both the computational efficiency of
the algorithm and the behavior of the OS. Likewise, placements of dynamic constraints
seems like a never ending endeavor, and ultimately the algorithm needs more advanced
logic to dynamically place constraints not just based on COLREGs situation, but situ-
ation complexity, available space, OS and TS velocity, number of other active crossings.
The placement implementation in this algorithm is far too simplistic to emulate true
COLREGs compliance, looking only at which COLREGs rule to follow and the tCPA
for placing constraints only close to the crossing.

I believe that true COLREGs compliance with numerical optimal control needs a
dynamic cost function and a state machine for monitoring actively applying COLREGs
rules. Monitoring the compliance of observed TSs is also necessary in order to know if
escape maneuvers might be necessary. A dynamic cost function might have weights on
turning and speeds in addition to keeping up with a reference and staying fuel efficient.
The weights of all of these would change depending on if the OS is in a Give-way or
Stand-on situation. Other factors could also affect the dynamic cost function such as
shape of available space and number of TS. The algorithm could also use a better velocity
reference; LOS guidance sort of just barrels through with fixed speed. While speed should
be maintained if possible to not confuse other vessels about the OS’s intents sometimes
it is necessary to slow down, which this algorithm doesn’t handle very well. A reference
filter could also alleviate issue, smoothing out the sudden jump in surge velocity from 2
m/s to 0.5 m/s.

As for prediction level differences the results weren’t as different as I had hoped, but
it’s not actually that surprising considering most ocean transit involves straight lines
and waypoints. One way I could have eked out more of a difference is by having more
complicated dynamic obstacle placements. If active constraints were placed further away
from the relevant TS instead of just in its near vicinity, it would force the algorithm
to take evasive maneuvers earlier. This would make the full prediction level algorithm
react to crossings that haven’t yet started, while the simple prediction level algorithm
would get caught inside moving dynamic constraints. Ultimately I felt like this was too
much of a disadvantage imposed on the simple prediction level. Until a smarter dynamic
obstacle constraint placement algorithm is developed one should be extremely careful

76

with hard placing constraints far out from the TS, careless placement of constraints can
lead otherwise perfectly solvable and easy situations to be impossible.

Something else that has been mentioned a few times but not been discussed well is
the design decision to not have any obstacles enabled for the first time the algorithm
runs. The rationale is quite simple, if the algorithm is enabled in a situation where
immediate evasive maneuvers are necessary something else has already gone wrong. By
not having obstacles enabled for the first iteration an optimal trajectory can be found
very quickly, which can be used as an initial guess in the next iteration when obstacles are
enabled again. This feature was especially useful for scenarios that start in an infeasible
state, meaning the path is completely blocked like in the Canals simulation. In such a
case the IPOPT solver not only spends an extremely long time looking for a solution,
the resulting trajectory is often very bad, sometimes turning the OS around to face a
completely different direction. By having a proper initial guess before the infeasibility
kicks in the solver is able to maintain reasonable runtime, and most of the trajectory up
until the jump will be good to use. Still, starting the vessel inside an active constraint
such as near a pier would actually be a very bad idea with this algorithm, similarly
docking is not supported at all. The way the constraints are coded, the algorithm is
unable to get close to land, docking is actually impossible. If one wants to implement the
developed algorithm from this thesis and also have docking functionality a state machine
needs to monitor if the OS is in a docking or transit situation, and switch over to a
secondary planner for the docking parts.

Lastly, there were some experiments with placing bigger islands dead center on the
reference path, but those wasn’t given enough time to yield good results, and were
ultimately scrapped. The algorithm doesn’t work all too well if the reference path or
reference trajectory passes through an obstacle. It is able to adjust to small mistakes
where the reference strafes close by an obstacle, but it can’t find its way if too much of
the reference ends up in illegal positions. Of course, this isn’t entirely unexpected, if the
planner was able to deftly dodge all sorts of islands in the middle of the reference path
it wouldn’t need waypoints at all.

4.4 Improvements over Previous Version

It was mentioned way back in the preface that this thesis is a continuation of the author’s
specialization project, (Hestvik 2019), so let’s take a look at some improvements made
since then.

Improvements in computational efficiency.
The current version of the trajectory planner is much more efficient due mostly to a much
better way of implementing active constraints. In the current version of the algorithm
dynamic constraints are only active around a timed window around the tCPA. Static
obstacles that are further away are also not converted into constraints because they would
be too far away from the scan lines. The increase in computation efficiency has allowed
the extension of the time horizon out to 5 minutes or over if needed. Computational
efficiency also made it possible to use a more accurate model of the vessel, though accurate
dampening is still rough for the solver. Computational efficiency also directly affects the
likelihood of finding an optimal solution within a reasonable timeframe, which means the
algorithm can be run more often and react better to unmodelled disturbances or other
unexpected changes.

Improved static obstacles.
This has already been mentioned multiple times, the old version of the algorithm would
use circular constraints like those of the dynamic obstacles. This approach was horribly
inefficient and would constrict the available space needlessly. The new implementation
is better in practically every way. The only foreseeable drawback of the new method
are the scan lines themselves, static obstacles that are small might be able to thread the
needle for a very long time, which could lead to an obstacle suddenly appearing very

77

close to the OS, or getting close enough to cause worry or panic in an observer thinking
that the vessel might crash. Of course this could be fixed by having more scan lines, and
then a better algorithm for finding and removing constraints which overlap by a lot.

Minor improvements in dynamic obstacle constraint culling.
New in this version of the algorithm is only placing dynamic obstacle constraints down in
control intervals which are close to the tCPA, the closest point of the crossing. This ties
in to the increased computational efficiency, but it also means the algorithm performs
better when there are many TSs in the area. In the previous version, a crossing situation
between the OS and a nearby TS might be affected by the constraints from a far away
TS. This cross interference between constraints tied to different TSs will not happen as
much in the new version.

The feasibility check.
This simple check has made the algorithm much better at handling infeasible situations.
In the previous version the algorithm could sometimes enter ’death spirals’ when the
problem became infeasible, with the initial guess getting worse and worse every time as
the solver never managed to find a solution. The positive effects the feasibility check has
had on the algorithm has already been thoroughly discussed.

Improved COLREGs assessment.
By implementing the dCPA and tCPA check before asserting COLREGs situation the
algorithm has achieved better situational awareness. No longer is every TS in the near
vicinity designated as an active situation with constraints enabled. The current version
also includes better logic for maintaining an assigned COLREGs situation, and then
reclassifying as SAFE after the involved vessels are far enough away from each other
again.

78

5 Conclusion and Future Work

Conclusion

Using a combination of maneuvering theory and numerical optimal control, a trajectory
planning and collision avoidance algorithm has been developed. The algorithm was tested
in two different configurations, one with perfect information about other vessel’s future
trajectories, called ”full prediction”, and the other using linear interpolation to estimate
other vessel’s future trajectories, called ”simple prediction”. In testing, it was found that
having full prediction more often than not led to better COLREGs compliance in a variety
of situations, all other factors equal. With simple prediction the developed algorithm
would often encounter hitches as the constraints on the optimal control problem would
move between iterations, which led to poorer performance both in terms of computational
efficiency and observable COLREGs compliance.

While the technology for having full prediction does not yet exist, this thesis has shown
that achieving better prediction than simple linear interpolation would be beneficial even
with no other changes made. Research into bettering the technology for intent inferring
and trajectory predictions is therefore a worthy pursuit.

Formulating the control objective as a NonLinear Programming problem, using Model
Predictive Control (MPC) as a means for guiding the Own Ship has also shown itself
to be a viable method for mid-level trajectory planning and collision avoidance. Using
the CasADi framework and an IPOPT solver to solve the optimal control problem, the
algorithm was able to calculate the optimal trajectory for the next 5 minutes of transit
in 0.7 to 3 seconds under normal conditions. Under strained conditions or if the optimal
control problem became infeasible it could take upwards of 90 seconds for the algorithm
to arrive at a solution, though nominal times under these tougher conditions were usually
in the 10-30 seconds range.

The algorithm is able to navigate congested waters, avoid static obstacles, and slow
down in the event of a blockade the Own Ship can’t get past. The algorithm features
COLREGs situation assessment functionality, which is able to correctly identify which
of the COLREGs rules apply to the Own Ship when encountering another vessel.

All that said, the algorithm suffers from a fair few shortcomings in terms of missing
functionality or hard-coded parameter values that only work in a certain type of situ-
ations. Among the aspects of the algorithm which are not satisfactory are:

• Inadequate situational awareness for threshold values that dictate safety.

• A static cost function, unable to adjust to COLREGs situations.

• Lack of adaptability when placing dynamic constraints.

• No functionality for culling out of reach or overlapping constraints.

• Hard-coded discretization step length, not possible to shorten for handling complicated situ-
ations, or extended when there is nothing happening.

• The dynamic horizon for the MPC could incorporate more variables than it currently does,
most importantly it should be shortened in response to having a lot of active COLREGs
situations.

These aspects are the basis of future improvement work.

80

Future Work

Multiple avenues for improvements have already been suggested sporadically in the thesis.
The first one being a look at implementing a dynamic cost function. The ability to ad-
just the cost parameters in response to either COLREGs rules changing or unmodelled
disturbances could greatly improve the algorithm’s COLREGs-awareness and general
performance. As the algorithm stands now, only constraints influence its COLREGs-
awareness. This can be improved with a cost function which penalizes turning and
adjusting speed when in Stand-On, and encourages deviation from the reference traject-
ory when in Give-Way.

The next important area to improve is dynamic thresholds for safety limits, this
includes values such as:

• The Lower bounds limit for static obstacles.

• The dCPA and tCPA thresholds for making a COLREGs assessment.

• The size of circular dynamic constraints.

The two values for constraints are fairly self-explanatory, a static parameter for minimum
distance to an obstacle will inevitably lead to problems. For example in a port or a small
canal it is okay for the minimum distance to obstacles to be small because the speeds are
low. But on the ocean where big industrial ships are encountered the minimum distance
needs to be much bigger. The values for these thresholds need to take into account
available information such as Target Ship’s and Own Ship’s sizes and velocities. As for
the tCPA and dCPA thresholds, these are used to determine if a Target Ship should be
considered an active situation, making these thresholds dynamic based on the situation
would improve the COLREGs-awareness of the algorithm as well as performance as only
active situation Target Ships need active constraints.

Another sought after feature would be adaptable placement of dynamic constraints.
To emulate true COLREGs-awareness, more logic is needed for the placement of dynamic
constraints. The current implementation of the algorithm does for example not take
action early enough when in open waters, which could be solved by placing constraints
further away from the Target Ship. But the implementation needs to be sensitive to
complex situations where available space is limited.

Next, more input parameters for the dynamic horizon function. Including more
factors such as amount of active COLREGs situations when deciding how long the time
horizon should be could improve the computational efficiency of the algorithm. When
there are many active COLREGs situations the optimal control problem becomes more
difficult to solve, shortening the time horizon in these situations would ensure the al-
gorithm is more capable at arriving at a solution quickly enough to take action. In a
similar vein the discretization step length should be dynamic so that the algorithm can
have more or less control intervals depending on the complexity of the situation.

Over to some less important work, but still fairy valuable in terms of effort to reward
ratio, would be having a reference filter on both reference trajectory and output from
the algorithm. Parsing the references and outputs through a reference filter would help
ensure feasibility.

81

References

Andersson, Joel A.E., Joris Gillis, Greg Horn, James B. Rawlings and Moritz Diehl (2019). ‘Cas-

ADi: A software framework for nonlinear optimization and optimal control’. In: Mathematical

Programming Computation 11.1, pp. 1–36.

Cho, Yonghoon, Jungwook Han and Jinwhan Kim (2018). ‘Intent inference of ship maneuvering

for automatic ship collision avoidance’. In: IFAC-PapersOnLine 51.29, pp. 384–388.

Cockcroft, A.N. and J.N.F. Lameijer (2012). Guide to the Collision Avoidance Rules. Oxford:

Butterworth-Heinemann. Cockcroft, AN and Lameijer, JNF.

Eriksen, H. Bjørn-Olav and Morten Breivik (2017). ‘MPC-based mid-level collision avoidance for

ASVs using nonlinear programming’. In: 2017 IEEE Conference on Control Technology and

Applications (CCTA) (Mauna Lani Bay Hotel). IEEE. Hawaii, USA, pp. 766–772.

Fossen, Thor I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley

& Sons.

Fossen, Thor I. and Tristan Perez (2004). Marine Systems Simulator (MSS). url: https://github.

com/cybergalactic/MSS.

Gros, Sebastien (2017). Numerical optimal control, lecture 4: Shooting methods. Video lecture. url:

https://www.youtube.com/watch?v=UqWRcbdwPP8.

Hestvik, Erlend (2019). MPC-based trajectory planning and COLREGs-aware collision avoidance.

Specialization project report, Norwegian University of Science and Technology (NTNU). Trond-

heim, Norway.

Huang, Yamin, Linying Chen, Pengfei Chen, Rudy R. Negenborn and PHAJM. Van Gelder (2020).

‘Ship collision avoidance methods: State-of-the-art’. In: Safety science 121, pp. 451–473.

IMO (1972). International Regulations for Preventing Collisions at Sea. Wikisource Archive. url:

https://en.wikisource.org/wiki/International Regulations for Preventing Collisions at Sea.

Kongsberg Maritime (2022). Autonomous ship project, key facts about YARA Birkeland. url:

https ://www.kongsberg.com/maritime/support/themes/autonomous- ship- project- key- facts-

about-yara-birkeland/.

Kufoalor, D. K.M., E. F. Brekke and T. A. Johansen (2018). ‘Proactive Collision Avoidance for

ASVs using a Dynamic Reciprocal Velocity Obstacles Method’. In: 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp. 2402–2409. doi: 10.1109/

IROS.2018.8594382.

Lekkas, Anastasios M. and Thor I. Fossen (2013). ‘Line-of-sight guidance for path following of

marine vehicles’. In: Advanced in marine robotics, Lambert Academic Publishing, pp. 63–92.

82

https://github.com/cybergalactic/MSS
https://github.com/cybergalactic/MSS
https://www.youtube.com/watch?v=UqWRcbdwPP8
https://en.wikisource.org/wiki/International_Regulations_for_Preventing_Collisions_at_Sea
https://www.kongsberg.com/maritime/support/themes/autonomous-ship-project-key-facts-about-yara-birkeland/
https://www.kongsberg.com/maritime/support/themes/autonomous-ship-project-key-facts-about-yara-birkeland/
https://doi.org/10.1109/IROS.2018.8594382
https://doi.org/10.1109/IROS.2018.8594382

Loe, A.G Øivind (2008). ‘Collision avoidance for unmanned surface vehicles’. MA thesis. Trond-

heim, Norway: Norwegian University of Science and Technology (NTNU).

Park, Shinkyu, Michal Cap, Javier Alonso-Mora, Carlo Ratti and Daniela Rus (2020). ‘Social Tra-

jectory Planning for Urban Autonomous Surface Vessels’. In: IEEE Transactions on Robotics

37.2, pp. 452–465.

Pedersen, Anders Aglen (2019). ‘Optimization based system identification for the milliAmpere

ferry’. MA thesis. Trondheim, Norway: Norwegian University of Science and Technology

(NTNU).

Qin, S. Joe and Thomas A. Badgwell (1997). ‘An overview of industrial model predictive control

technology’. In: AIche symposium series. Vol. 93. 316. New York, NY: American Institute of

Chemical Engineers, 1971-c2002., pp. 232–256.

Schöller, Frederik ET., Thomas T. Enevoldsen, Jonathan B. Becktor and Peter N. Hansen (2021).

‘Trajectory prediction for marine vessels using historical AIS heatmaps and long short-term

memory networks’. In: Proceedings of 13th IFAC Conference on Control Applications in Marine

Systems, Robotics, and Vehicles. Vol. 54. 16. IFAC. Oldenburg, Germany: Elsevier, pp. 83–89.

Tam, CheeKuang and Richard Bucknall (2010). ‘Collision risk assessment for ships’. In: Journal

of Marine Science and Technology 15.3, pp. 257–270.

Thyri, Emil Hjelseth and Morten Breivik (2022). ‘A domain-based and reactive COLAV method

with a partially COLREGs-compliant domain for ASVs operating in confined waters’. In: Field

Robotics 2, pp. 632–677. doi: https://doi.org/10.55417/fr.2022022.

Vagale, Anete, Rachid Oucheikh, Robin T. Bye, Ottar L. Osen and Thor I. Fossen (2021). ‘Path

planning and collision avoidance for autonomous surface vehicles I: A review’. In: Journal of

Marine Science and Technology 26, pp. 1292–1306.

Vestad, Vegard Nitter (2019). ‘Automatic and practical route planning for ships’. MA thesis.

Trondheim, Norway: Norwegian University of Science and Technology (NTNU).

Wächter, Andreas and Lorenz T. Biegler (2006). ‘On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming’. In: Mathematical programming

106.1, pp. 25–57.

Woerner, Kyle (2016). ‘Multi-contact protocol-constrained collision avoidance for autonomous mar-

ine vehicles’. PhD thesis. Massachusetts Institute of Technology, USA.

Wright, Stephen, Jorge Nocedal et al. (1999). ‘Numerical optimization’. In: Springer Science 35.67-

68, p. 7.

Zeabuz (2022). Urban autonomous ferry. url: https://www.zeabuz.com/.

83

https://doi.org/https://doi.org/10.55417/fr.2022022
https://www.zeabuz.com/

Zhang, Xinyu, Chengbo Wang, Lingling Jiang, Lanxuan An and Rui Yang (2021). ‘Collision-

avoidance navigation systems for Maritime Autonomous Surface Ships: A state of the art sur-

vey’. In: Ocean Engineering 235, p. 109380.

84

Appendix

A Source Code for Algorithm Main Loop

1 f unc t i on [v e s s e l , r e s u l t i n g t r a j e c t o r y] = MPC with Assist (v e s s e l ,
t racks , parameters , s e t t i n g s)

2 import ca sad i .∗
3

4 %%
5 %% INITIAL CONDITIONS and p e r s i s t e n t v a r i a b l e s
6 %%
7 p e r s i s t e n t prev ious w opt
8 p e r s i s t e n t prev ious w opt F
9 p e r s i s t e n t F

10 p e r s i s t e n t f i r s t t im e
11 p e r s i s t e n t o b s t a c l e s t a t e
12 p e r s i s t e n t c f l a g s
13 p e r s i s t e n t p r e v i o u s e t a r e f
14 % pe r s i s t e n t p imu l t i p l i e r
15 % pe r s i s t e n t p r e v i o u s f e a s i b i l i t y
16

17 % I n i t i a l i z e CasADi
18

19 i f (isempty (f i r s t t im e))
20 f i r s t t im e = 1 ;
21 o b s t a c l e s t a t e = f a l s e ; % No ob s t a c l e s on f i r s t i t e r a t i o n
22 prev ious w opt = [] ;
23 c f l a g s = [] ;
24 prev ious w opt F = [] ;
25 p r e v i o u s e t a r e f = [] ;
26 % p imu l t i p l i e r = 0 ;
27 % p r e v i o u s f e a s i b i l i t y = 0 ;
28 end
29

30

31 %I n i t i a l i z e COLREGs f l a g .
32 i f (isempty (c f l a g s)) % THIS CAN BE USED TO HARDCODE FLAGS IF

NEEDED:
33 c f l a g s = ze ro s ([1 , s i z e (t racks , 2)]) ;
34 % c f l a g s = [2 , 1] ;
35 end
36

37 %% Se t t i n g s
38 s imple = s e t t i n g s . s imple ; % Enable to d i s ca rd a l l t r a f f i c

pattern a s s i s t a n c e .
39 % chaos = 0 ; % Do not use
40 % p imu l t i p l i e r = 0 ;
41 %%
42

43 i f ˜ isempty (t r a ck s)
44 dynamic obs (s i z e (t racks , 2)) = s t r u c t ;
45 e l s e
46 dynamic obs = [] ; % Fa i l s a f e in case the re are no dynamic

ob s t a c l e s pre sent .
47 end
48

49 f o r i = 1 : s i z e (t racks , 2)

86

50

51 i f s imple
52 t r a ck s (i) .wp(1 : 2) = [t r a ck s (i) . e ta (1) ; t r a ck s (i) . e ta (2)

] ;
53 t r a ck s (i) .wp(3 : 4) = [t r a ck s (i) . e ta (1) ; t r a ck s (i) . e ta (2)]

+ . . .
54 1852 ∗ [cos (t r a ck s (i) . e ta (3)) , s i n (t r a ck s (i) . e ta

(3))] ’ ;
55 t r a ck s (i) .wp = [t ra ck s (i) .wp(1 : 2) ’ t r a ck s (i) .wp(3 : 4) ’] ;

% Truncate exce s s waypoints .
56 t r a ck s (i) . current wp = 1 ;
57 end
58

59 [dynamic obs (i) . c f l a g , dynamic obs (i) . dcpa , dynamic obs (i) .
tcpa] = COLREGs assessment (v e s s e l , t r a ck s (i) , c f l a g s (i)) ;

60 c f l a g s (i) = dynamic obs (i) . c f l a g ; % Save f l a g in p e r s i s t e n t
va r i ab l e f o r next i t e r a t i o n .

61 end
62

63 [N, h] = DynamicHorizon (ve s s e l , dynamic obs) ;
64 % T = N ∗ h ;
65

66 i f (isempty (F))
67 F = CasadiSetup (h ,N) ;
68 end
69

70

71 %% Fe a s i b i l i t y check
72 % i f N < 180
73 % f i x e d f e a s = 1 ;
74 % e l s e
75 % f e a s i b i l i t y = 1 ;
76 % end
77

78 % OLD AND OUTDATED STUFF
79 %%%
80 % prev ious f e a s . | F e a s i b i l i t y | ob s t a c l e s t a t e %
81 %%%
82 % 1 | 1 | 1 %
83 % 0 | 1 | 0 %
84 % 1 | 0 | 0 %
85 % 0 | 0 | 0 %
86 %%%
87

88 i f ˜ isempty (prev ious w opt F)
89 f e a s i b i l i t y = f e a s i b i l i t y c h e c k (prev ious w opt F) ;
90 e l s e
91 f e a s i b i l i t y = 1 ;
92 end
93

94 % OLD AND OUTDATED STUFF
95 % ob s t a c l e s t a t e = f a l s e ;
96 % i f p r e v i o u s f e a s i b i l i t y && f e a s i b i l i t y
97 % ob s t a c l e s t a t e = true ;
98 % end
99 % p r e v i o u s f e a s i b i l i t y = f e a s i b i l i t y ;

100

101 % f e a s i b i l i t y = 1 ;

87

102

103 %%
104

105 % I n i t i a l i z e p o s i t i o n and r e f e r e n c e t r a j e c t o r y .
106 i n i t i a l p o s = v e s s e l . e ta ;
107 i f wrapTo2Pi (i n i t i a l p o s (3)) < pi /6
108 % i n i t i a l p o s (3) = wrapTo2Pi (i n i t i a l p o s (3)) ; % THIS NEEDS

MORE WORK
109 i f ˜ isempty (prev ious w opt) && ssa (i n i t i a l p o s (3)−

prev ious w opt (3)) > pi
110 i f i n i t i a l p o s (3) > prev ious w opt (3)
111 i n i t i a l p o s (3) = wrapTo2Pi (i n i t i a l p o s (3)) ;
112 end
113 e l s e i f ˜ isempty (prev ious w opt)
114 i n i t i a l p o s (3) = wrapTo2Pi (i n i t i a l p o s (3)) ;
115 end
116 end
117 i n i t i a l v e l = v e s s e l . nu ;
118

119 % re f e r e n c e LOS f o r OS and TS
120 [r e f e r e n c e t r a j e c t o r y l o s , ˜] =

r e f e r e n c e t r a j e c t o r y f r om dynam i c l o s gu i d an c e (v e s s e l ,
parameters , h , N, f e a s i b i l i t y) ;

121 f o r i = 1 : s i z e (t racks , 2)
122 dynamic obs (i) . t r a j =

r e f e r e n c e t r a j e c t o r y f r om dynam i c l o s gu i d an c e (t r a ck s (i) ,
parameters , 0 . 5 , N, f e a s i b i l i t y) ;

123 end
124

125 %% Obstac le s
126 enab l e S t a t i c ob s = ob s t a c l e s t a t e ; %Obstac le s t a t e i s pure ly

f o r debugging .
127 enable dynamic obs = ob s t a c l e s t a t e ;
128 s t a t i c o b s = get g loba l map data () ;
129 % in t e r p o l a t e d s t a t i c o b s = I n t e r p o l a t e s t a t i c o b s (s t a t i c o b s) ;
130 % St a t i c o b s c o n s t r a i n t s = S t a t i c o b s t a c l e s c h e c k (s t a t i c ob s ,

r e f e r e n c e t r a j e c t o r y l o s) ;
131 % THIS CHECK IS HANDELED IN THE MAIN LOOP NOW
132

133

134 %% NLP i n i t i a l i z a t i o n .
135 % Star t with empty NLP.
136 w={};
137 w0 = ze ro s (9∗N+6 ,1) ; % I n i t i a l guess .
138 lbw = ze ro s (9∗N+6 ,1) ;
139 ubw = ze ro s (9∗N+6 ,1) ;
140 J = 0 ;
141 g={};
142 lbg = ze ro s (50∗N+6 ,1) ;
143 ubg = ze ro s (50∗N+6 ,1) ;
144

145 % ” l i f t ” i n i t i a l c ond i t i on s .
146 Xk = MX. sym(’X0 ’ , 6) ;
147 w = [w {Xk }] ;
148 lbw (1 : 6) = [− i n f ; − i n f ; − i n f ; −2.5; −2.5; −pi / 4] ;
149 ubw(1 : 6) = [i n f ; i n f ; i n f ; 2 . 5 ; 2 . 5 ; p i / 4] ;
150 w0(1 : 6) = [i n i t i a l p o s (1) ; i n i t i a l p o s (2) ; i n i t i a l p o s (3) ;

i n i t i a l v e l (1) ; i n i t i a l v e l (2) ; i n i t i a l v e l (3)] ;

88

151

152

153 % Uk = MX. sym(’U0 ’ , 3) ;
154 % w = {w{ :} , Uk} ;
155 % lbw = [lbw ; −2.5; −2.5; −pi / 4] ;
156 % ubw = [ubw ; 2 . 5 ; 2 . 5 ; p i / 4] ;
157 % w0 = [w0 ; 0 ; 0 ; 0] ;
158

159 g = [g , { [i n i t i a l p o s ; i n i t i a l v e l] − Xk }] ;
160 lbg (1 : 6) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ’ ;
161 ubg (1 : 6) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ’ ;
162

163 % g = [g , { i n i t i a l v e l − Xk }] ;
164 % lbg = [lbg ; 0 ; 0 ; 0] ;
165 % ubg = [ubg ; 0 ; 0 ; 0] ;
166

167 %%
168 %% MAIN LOOP
169 %%
170 loopdata = ze ro s (N+1 ,7) ;
171 s t a t i c o b s c o l l e c t i o n = [] ;
172 NaNs = [NaN; NaN; NaN] ;
173 c o r i g i n s = ze ro s (2 ,50∗N+6) ;
174 c r ad i u s = ze ro s (50∗N+6 ,1) ;
175 c counte r = 1 ;
176 g counter = 7 ;
177 %loopdata = [k x r e f i u r e f i]
178 f o r k = 0 :N−1
179 % New NLP va r i ab l e f o r c on t r o l .
180

181 Tauk = MX. sym ([’ Tau ’ num2str (k)] , 3) ;
182 w = [w {Tauk }] ; %#ok<AGROW>
183 lbw(7+k∗9:9+k∗9)= [−800; −800; −800];
184 ubw(7+k∗9:9+k∗9) = [8 0 0 ; 800 ; 8 0 0] ;
185 w0(7+k∗9:9+k∗9) = [0 ; 0 ; 0] ;
186

187 % Int eg r a t e un t i l the end o f the i n t e r v a l .
188 e t a d o t r e f = [r e f e r e n c e t r a j e c t o r y l o s (3 : 4 , k+1) ; . . .
189 (atan2 (r e f e r e n c e t r a j e c t o r y l o s (4 , k+2) ,

r e f e r e n c e t r a j e c t o r y l o s (3 , k+2)) − . . .
190 atan2 (r e f e r e n c e t r a j e c t o r y l o s (4 , k+1) ,

r e f e r e n c e t r a j e c t o r y l o s (3 , k+1))) / h] ;
191

192 s u r g e r e f = sq r t (e t a d o t r e f (1) ˆ2 + e t a d o t r e f (2) ˆ2) ;
193 nu r e f = [s u r g e r e f ; 0 ; e t a d o t r e f (3)] ; %Burde være v e s s e l .

speed som r e f e r a n s e .
194 % nu re f = [sq r t (e t a d o t r e f (1) ˆ2 + e t a d o t r e f (2) ˆ2) ; 0 ;

e t a d o t r e f (3)] ;
195 % nu re f = v e s s e l . e t a d o t r e f ;
196

197 e t a r e f = [r e f e r e n c e t r a j e c t o r y l o s (1 : 2 , k+1) ; atan2 (
e t a d o t r e f (2) , e t a d o t r e f (1))] ;

198 % e t a r e f = [r e f e r e n c e t r a j e c t o r y l o s (1 : 2 , k+1) ; wrapTo2Pi (
atan2 (e t a d o t r e f (2) , e t a d o t r e f (1)))] ;

199

200 % We want the r e f e r e n c e to s t a r t c l o s e to i n i t i a l p o s i t i o n .
201 i f k == 0
202 unwrap d i f f = abs (e t a r e f (3) − i n i t i a l p o s (3)) ;

89

203 wrap d i f f = abs (wrapTo2Pi (e t a r e f (3)) − i n i t i a l p o s (3))
;

204

205 i f unwrap d i f f > wrap d i f f % check i f d i s t ance between
r e f and i n i t p o s i s g r e a t e r when unwrapped

206 e t a r e f (3) = wrapTo2Pi (e t a r e f (3)) ;
207 end
208 p r e v i o u s e t a r e f = e t a r e f ;
209 end
210

211

212 %% Test g r e i e r
213 i f k > 0
214 e t a r e f (3) = p r e v i o u s e t a r e f (3) + ssa (e t a r e f (3) −

p r e v i o u s e t a r e f (3)) ;
215 p r e v i o u s e t a r e f = e t a r e f ;
216 % unwrap d i f f = abs (e t a r e f (3) − p r e v i o u s e t a r e f (3)) ;
217 % wrap d i f f = abs (wrapTo2Pi (e t a r e f (3)) −

p r e v i o u s e t a r e f (3)) ;
218 %
219 % i f unwrap d i f f > wrap d i f f % check i f d i s t ance

between r e f and i n i t p o s i s g r e a t e r when unwrapped
220 % e t a r e f (3) = wrapTo2Pi (e t a r e f (3)) ;
221 % end
222 % pr e v i o u s e t a r e f = e t a r e f ;
223 end
224 % i f k > 0
225 % i f wrapTo2Pi (p r e v i o u s e t a r e f (3)) > 21∗ pi /12 &&

wrapTo2Pi (e t a r e f (3)) < 3∗ pi /12 % Pos i t i v e wrap
226 % p imu l t i p l i e r = p imu l t i p l i e r + 2∗ pi ;
227 % end
228 % i f wrapTo2Pi (p r e v i o u s e t a r e f (3)) < 3∗ pi /12 &&

wrapTo2Pi (e t a r e f (3)) > 21∗ pi /12 % Negative wrap
229 % p imu l t i p l i e r = p imu l t i p l i e r − 2∗ pi ;
230 % end
231 % end
232 % e t a r e f (3) = e t a r e f (3) + p imu l t i p l i e r ;
233 % pr e v i o u s e t a r e f = e t a r e f ;
234 %%
235 % e t a r e f = [r e f e r e n c e t r a j e c t o r y l o s (1 : 2 , k+1) ; 0] ;
236

237 x r e f i = [e t a r e f ; nu r e f] ;
238

239 Fk = F(’ x0 ’ , Xk , ’ tau ’ , Tauk , ’Xd ’ , x r e f i) ;
240 Xk end = Fk . x f ;
241 J = J + Fk . q f ;
242

243 % New NLP va r i ab l e f o r s t a t e at the end o f i n t e r v a l .
244 Xk = MX. sym ([’X ’ num2str (k+1)] , 6) ;
245 w = [w {Xk }] ; %#ok<AGROW>
246 lbw(10+k∗9:15+k∗9) = [− i n f ; − i n f ; − i n f ; −2.3; −2.3; −pi / 4] ;
247 ubw(10+k∗9:15+k∗9) = [i n f ; i n f ; i n f ; 2 . 3 ; 2 . 3 ; p i / 4] ;
248 w0(10+k∗9:15+k∗9) = [x r e f i (1) ; x r e f i (2) ; x r e f i (3) ;

x r e f i (4) ; x r e f i (5) ; x r e f i (6)] ;
249

250 % Uk = MX. sym ([’ U ’ num2str (k+1)] , 3) ;
251 % w = {w{ :} , Uk} ;
252 % lbw = [lbw ; −2.5; −2.5; −pi / 4] ;

90

253 % ubw = [ubw ; 2 . 5 ; 2 . 5 ; p i / 4] ;
254 % w0 = [w0 ; 0 ; 0 ; 0] ;
255

256 % Add con s t r a i n t s .
257 g = [g {Xk end − Xk }] ; %#ok<AGROW>
258 lbg (g counter : g counter+5) = [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
259 ubg (g counter : g counter+5)= [0 ; 0 ; 0 ; 0 ; 0 ; 0] ;
260 g counter = g counter + 6 ;
261

262

263 i f ˜ isempty (dynamic obs) && ˜ f i r s t t im e &&
enable dynamic obs

264

265 f o r i = 1 : s i z e (dynamic obs , 2)
266

267 i f dynamic obs (i) . c f l a g == 1 % HEAD ON
268 i f (k > (f l o o r (dynamic obs (i) . tcpa /h) − f l o o r (30/h)

)) && (k < (f l o o r (dynamic obs (i) . tcpa /h) +
f l o o r (30/h)))

269 %% Constra int rundt bå ten , o r i g o o f f s e t t i l
s tyrbord

270 %Constra int 1 :
271 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i

, p i /2 , 13) ;
272 c rad = 22 ;
273 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
274 lbg (g counter) = c rad ˆ2 ;
275 ubg (g counter) = i n f ;
276 g counter = g counter + 1 ;
277 c o r i g i n s (: , c counte r) = c o r i g ;
278 c r ad i u s (c counte r) = c rad ;
279 c counte r = c counte r + 1 ;
280

281 %Constra int 2 :
282 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i

, p i /2 , 38) ;
283 c rad = 5 ;
284 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
285 lbg (g counter) = c rad ˆ2 ;
286 ubg (g counter) = i n f ;
287 g counter = g counter + 1 ;
288 c o r i g i n s (: , c counte r) = c o r i g ;
289 c r ad i u s (c counte r) = c rad ;
290 c counte r = c counte r + 1 ;
291 end
292 e l s e i f dynamic obs (i) . c f l a g == 2 % GIVE WAY
293 i f (k > (f l o o r (dynamic obs (i) . tcpa /h) − f l o o r (20/h)

)) && (k < (f l o o r (dynamic obs (i) . tcpa /h) +
f l o o r (20/h)))

294 %% Forbudt å sn ike seg f o r b i f o r r an ta r g e t sh ip
295 %c o r i g = p l a c e dyn con s t r a i n t (dynamic obs ,

c on t r o l
296 % in t e r va l , TS id ,

ang le
297 % o f f s e t , d i s t anc e

o f f s e t)

91

298 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i
, p i /8 , 10) ;

299 c rad = 18 ;
300 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
301 lbg (g counter) = c rad ˆ2 ;
302 ubg (g counter) = i n f ;
303 g counter = g counter + 1 ;
304 c o r i g i n s (: , c counte r) = c o r i g ;
305 c r ad i u s (c counte r) = c rad ;
306 c counte r = c counte r + 1 ;
307

308 %Constra int 2 :
309 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i

, p i /12 , 33) ;
310 c rad = 10 ;
311 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
312 lbg (g counter) = c rad ˆ2 ;
313 ubg (g counter) = i n f ;
314 g counter = g counter + 1 ;
315 c o r i g i n s (: , c counte r) = c o r i g ;
316 c r ad i u s (c counte r) = c rad ;
317 c counte r = c counte r + 1 ;
318 end
319 e l s e i f dynamic obs (i) . c f l a g == 3 % STAND ON
320 i f (k > (f l o o r (dynamic obs (i) . tcpa /h) − f l o o r (20/h)

)) && (k < (f l o o r (dynamic obs (i) . tcpa /h) +
f l o o r (20/h)))

321 %% Contraint rundt TS som s ikkerhe t smarg in
322 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i

, pi , 0) ;
323 c rad = 7 ;
324 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
325 lbg (g counter) = c rad ˆ2 ;
326 ubg (g counter) = i n f ;
327 g counter = g counter + 1 ;
328 c o r i g i n s (: , c counte r) = c o r i g ;
329 c r ad i u s (c counte r) = c rad ;
330 c counte r = c counte r + 1 ;
331 end
332 e l s e i f dynamic obs (i) . c f l a g == 4 % OVERTAKING
333 i f (k > (f l o o r (dynamic obs (i) . tcpa /h) − f l o o r (20/h)

)) && (k < (f l o o r (dynamic obs (i) . tcpa /h) +
f l o o r (20/h)))

334 %% Constra int rundt TS som s ikkerhe t smarg in
335 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i

, 0 , 0) ;
336 c rad = 10 ;
337 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) − c o r i g)

}] ; %#ok<AGROW>
338 lbg (g counter) = c rad ˆ2 ;
339 ubg (g counter) = i n f ;
340 g counter = g counter + 1 ;
341 c o r i g i n s (: , c counte r) = c o r i g ;
342 c r ad i u s (c counte r) = c rad ;
343 c counte r = c counte r + 1 ;

92

344 end
345 e l s e i f dynamic obs (i) . c f l a g == 5 % SAFE
346 i f dynamic obs (i) . dcpa < 20
347 i f (k > (f l o o r (dynamic obs (i) . tcpa /h) − f l o o r

(20/h))) && (k < (f l o o r (dynamic obs (i) . tcpa
/h) + f l o o r (20/h)))

348 c o r i g = p l a c e dyn con s t r a i n t (dynamic obs ,
k , i , 0 , 0) ;

349 c rad = 8 ;
350 g = [g {(Xk(1 : 2) − c o r i g) ’∗ (Xk(1 : 2) −

c o r i g) }] ; %#ok<AGROW>
351 lbg (g counter) = c rad ˆ2 ;
352 ubg (g counter) = i n f ;
353 g counter = g counter + 1 ;
354 c o r i g i n s (: , c counte r) = c o r i g ;
355 c r ad i u s (c counte r) = c rad ;
356 c counte r = c counte r + 1 ;
357 end
358 end
359 end
360 end
361 end
362

363 %s t a t i c ob s t a c l e c on s t r a i n t s :
364 i f (e n ab l e S t a t i c ob s) && ˜ f i r s t t im e && (˜ isempty (s t a t i c o b s

))
365 s e l e c t e d t r a j e c t o r y = r e f e r e n c e t r a j e c t o r y l o s ;
366 i f (˜ isempty (prev ious w opt))
367 s e l e c t e d t r a j e c t o r y = prev ious w opt ;
368 end
369 s t a t i c o b s c o n s t r a i n t s =

S t a t i c o b s t a c l e s c h e c k I t e r a t i v e (s t a t i c ob s ,
s e l e c t e d t r a j e c t o r y , k) ;

370 s t a t i c o b s c o l l e c t i o n = [s t a t i c o b s c o l l e c t i o n ,
s t a t i c o b s c o n s t r a i n t s , NaNs] ; %#ok<AGROW>

371 f o r i = 1 : s i z e (s t a t i c o b s c o n s t r a i n t s , 2)
372 s t a t i c o b s y 1 = s t a t i c o b s c o n s t r a i n t s (1 , i) ;
373 s t a t i c o b s x 1 = s t a t i c o b s c o n s t r a i n t s (2 , i) ;
374 p i p = s t a t i c o b s c o n s t r a i n t s (3 , i) ;
375

376 S t a t i c o b s c r o s s t r a c k d i s t a n c e = abs (−(Xk(2)−
s t a t i c o b s x 1) ∗ cos (p i p) + (Xk(1) −
s t a t i c o b s y 1) ∗ s i n (p i p)) ;

377 g = [g { S t a t i c o b s c r o s s t r a c k d i s t a n c e }] ; %#ok<
AGROW>

378 lbg (g counter) = 5 ;
379 ubg (g counter) = i n f ;
380 g counter = g counter + 1 ;
381 end
382

383 % % OLD CODE:
384 % [˜ , c o l s] = s i z e (S t a t i c o b s c o n s t r a i n t s) ;
385 % fo r i = 1 : c o l s
386 % g = [g , {(Xk(1 : 2) − S t a t i c o b s c o n s t r a i n t s (: , i))

’∗ (Xk(1 : 2) − S t a t i c o b s c o n s t r a i n t s (: , i)) − 5ˆ2}] ; % Endre
c on s t r a i n t s

387 % lbg = [lbg ; 0] ;
388 % ubg = [ubg ; i n f] ;

93

389 % end
390 end
391

392

393 loopdata (k+1 , :) = [k , x r e f i ’] ;
394

395 end
396

397 %%%
398 %% Optimal s o l u t i o n and updating s t a t e s
399 %%%
400 loopdata (end , :) = [k+1, x r e f i ’] ;
401

402 % Truncate lbg , ubg :
403 lbg = lbg (1 : g counter −1) ;
404 ubg = ubg (1 : g counter −1) ;
405

406 % Create an NLP so l v e r .
407 prob = s t r u c t (’ f ’ , J , ’ x ’ , v e r t c a t (w{ :}) , ’ g ’ , v e r t c a t (g { :})) ;
408 % opt ions = s t r u c t ;
409 opt ions . ipopt . max i ter = 400 ;
410 opt ions . ipopt . p r i n t l e v e l = 0 ;
411 opt ions . ipopt . n lp sca l ing method = ’ none ’ ;
412 opt ions . ipopt . d u a l i n f t o l = 5 ;
413 opt ions . ipopt . t o l = 5e−3;
414 opt ions . ipopt . c o n s t r v i o l t o l = 1e−1;
415 % opt ions . ipopt . hes s ian approx imat ion = ’ l imi t ed−memory ’ ;
416 opt ions . ipopt . c omp l i n f t o l = 1e−1;
417 opt ions . ipopt . a c c e p t ab l e t o l = 1e−2;
418 opt ions . ipopt . c o n s t r v i o l t o l = 0 . 0 1 ;
419 opt ions . ipopt . a c c e p t a b l e d u a l i n f t o l = 1e10 ;
420 opt ions . ipopt . a c c e p t ab l e c omp l i n f t o l = 0 . 0 1 ;
421 % opt ions . ipopt . a c c ep t ab l e ob j c hang e t o l = 1e20 ;
422 % opt ions . ipopt . d i v e r g i n g i t e r a t e s t o l = 1e20 ;
423

424 i f (f i r s t t im e)
425 opt ions . ipopt . max i ter = 200 ;
426 opt ions . ipopt . p r i n t l e v e l = 5 ;
427 f i r s t t im e = 0 ;
428 end
429 s o l v e r = n l p s o l (’ s o l v e r ’ , ’ ipopt ’ , prob , opt ions) ;
430

431 % Replace w0 with prev ious w opt :
432 % i f (˜ isempty (prev ious w opt)) && f e a s i b i l i t y ==

p r e v i o u s f e a s i b i l i t y && f e a s i b i l i t y
433 i f (˜ isempty (prev ious w opt)) && f e a s i b i l i t y
434 endindex = min (s i z e (lbw , 1) , s i z e (prev ious w opt , 1)) ;
435 i f endindex < s i z e (lbw , 1)
436 % Add back w0 from NLP cons t ruc t i on to f i l l the gap :
437 prev ious w opt (end+1: s i z e (lbw , 1)) = w0(s i z e (

prev ious w opt , 1) +1:end) ;
438 endindex = s i z e (lbw , 1) ;
439 end
440 w0 = prev ious w opt (1 : endindex) ;
441 end
442

443 % Solve the NLP.
444 c l o ck = t i c ;

94

445 s o l = s o l v e r (’ x0 ’ , w0 , ’ lbx ’ , lbw , ’ ubx ’ , ubw , . . .
446 ’ lbg ’ , lbg , ’ ubg ’ , ubg) ;
447 So lver t ime = toc (c l o ck) ; %Check here to see how long i t took to

c a l c u l a t e w opt . i f So lver t ime exceeds f o r example 6
seconds we know something might have went wrong .

448 w opt = f u l l (s o l . x) ;
449 % w opt (3 : 9 : end) = wrapTo2Pi (w opt (3 : 9 : end)) ;
450

451 prev ious w opt = w opt ;
452 prev ious w opt F = w opt ;
453 p r e v i o u s f e a s i b i l i t y = f e a s i b i l i t y ;
454 i f So lver t ime > 30
455 prev ious w opt = [] ;
456 end
457 %% Var iab l e s f o r p l o t t i n g
458 p lo t eve ry th ing (loopdata , w opt , v e s s e l , t racks ,

r e f e r e n c e t r a j e c t o r y l o s , c o r i g i n s , c rad iu s , s e t t i n g s ,
s t a t i c o b s c o l l e c t i o n) ;

459

460 o b s t a c l e s t a t e = true ;
461

462 %% Update v e s s e l s t a t e s
463 v e s s e l . e ta = w opt (10 : 1 2) ;
464 % ve s s e l . nu = w opt (4 : 6) ;
465 v e s s e l . nu = w opt (13 : 1 5) ;
466 v e s s e l . e t a dot = rotZ (v e s s e l . e ta (3)) ∗ v e s s e l . nu ;
467 r e s u l t i n g t r a j e c t o r y = [w opt (1 0 : 9 : end) , w opt (1 1 : 9 : end) , w opt

(1 2 : 9 : end) , w opt (1 3 : 9 : end) , w opt (1 4 : 9 : end) , w opt (1 5 : 9 :
end)] ’ ; % TODO

B Helper Functions

1 f unc t i on F = CasadiSetup (h , N)
2 import ca sad i .∗
3

4 T = h ∗ N;
5

6 %% CasADi setup
7

8 % System matr i ce s .
9 x = SX. sym(’ x ’ , 6) ; % x = [N, E, ps i , u , v , r] ’

10 tau = SX. sym(’ tau ’ , 3) ; % tau = [Fx , Fy , Fn] ’ ;
11 x r e f = SX. sym(’ x r e f ’ , 6) ; % x r e f = [Nref , Eref , P s i r e f ,

Surge r e f , sway re f , r r e f] ’
12

13

14 % [R, M, C, D] = SystemDynamics (x , u) ; % Usikker på hvorv idt
det funker

15 % å sende CasADi systemer inn i en subfunks jon . Burde jo gå ,
men l a r

16 % være f o r nå .
17 % Model Parameters .
18 Xu = −68.676; % Kg/ s
19 Xuu = −50.08; % Kg/m
20 Xuuu = −14.93; % Kgs/(mˆ2)
21 % Xv = −25.20; % Kg/ s
22 % Xr = −145.3; % Kgm/ s
23 % Yu = 90 . 1 5 ; % Kg/ s
24 Yv = −8.69; % Kg/ s
25 Yvv = −189.08; % Kg/m
26 Yvvv = −0.00613;% Kgs/(s ˆ2) ? Kgs/(mˆ2) ?
27 % Yrv = −3086.95; % Kg
28 % Yr = −24.09; % Kgm/ s
29 % Yvr = −338.32; % Kg
30 % Yrr = 1372 . 06 ; % Kg(mˆ2)
31 % Nu = −38.00; % Kgm/ s
32 % Nv = −97.26; % Kgm/ s
33 Nvv = −18.85; % Kg
34 Nrv = 5552 . 23 ; % Kgm
35 Nr = −230.19; % Kg(mˆ2) / s
36 Nrr = −0.0063; % Kg(mˆ2)
37 Nrrr = −0.00067;% Kgms
38 % Nvr = −5888.89; % Kgm
39

40 m11 = 2131 . 80 ; % Kg
41 m12 = 1 . 0 0 ; % Kg
42 m13 = 141 . 0 2 ; % Kgm
43 m21 = −15.87; % Kg
44 m22 = 2231 . 89 ; % Kg
45 m23 = −1244.35; % Kgm
46 m31 = −423.76; % Kgm
47 m32 = −397.64; % Kgm
48 m33 = 4351 . 56 ; % Kg(mˆ2)
49

50 c13 = −m22∗x (5) ;
51 c23 = m11∗x (4) ;
52 c31 = −c13 ;
53 c32 = −c23∗x (5) ;

96

54

55 d11 = −Xu − Xuu ∗ abs (x (4)) − Xuuu∗(x (4) ˆ2) ;
56 d22 = −Yv − Yvv∗abs (x (5)) − Yvvv∗(x (5) ˆ2) ;
57 d23 = d22 ;
58 d32 = −Nvv∗abs (x (5)) − Nrv ∗abs (x (6)) ;
59 d33 = −Nr − Nrr∗abs (x (6)) − Nrrr ∗(x (6) ˆ2) ;
60

61

62 % System dynamics .
63 R = [cos (x (3)) −s i n (x (3)) 0 ; . . .
64 s i n (x (3)) cos (x (3)) 0 ; . . .
65 0 0 1] ;
66 M = [m11 m12 m13 ; . . .
67 m21 m22 m23 ; . . .
68 m31 m32 m33] ;
69 C = [0 0 c13 ; . . .
70 0 0 c23 ; . . .
71 c31 c32 0] ;
72 % D = [d11 0 0 ; . . .
73 % 0 d22 d23 ; . . .
74 % 0 d32 50∗d33] ;
75 %
76 % M = eye (3) ∗1000 ;
77 D = diag ([2 00 , 200 , 1000]) ;
78 % C = ze ro s (3) ;
79

80 % Tau = p i ck th r e e (tau) ; %f a i l e d exper iement .
81 nu dot = M\(tau −(C+D) ∗x (4 : 6)) ;
82 nu = x (4 : 6) + h∗nu dot ; % This could almost c e r t a i n l y use a

be t t e r i n t e g r a t o r method .
83 e ta dot = R∗nu ;
84

85 xdot = [e ta dot ; nu dot] ;
86

87 % Funker bra :
88 % Kp = diag ([8∗10ˆ−1 , 8∗10ˆ−1]) ;
89 % Ku = 6∗10ˆ2;
90 % Kv = 8∗10ˆ2;
91

92 % Object ive func t i on .
93 Kp = diag ([8∗10ˆ−1 , 8∗10ˆ−1]) ; % Tuning parameter f o r

p o s i t i o n a l r e f e r e n c e dev i a t i on .
94 Ku = 6 .7∗10ˆ2 ; % Tuning parameter f o r surge r e f e r e n c e dev i a t i on

.
95 Kv = 7 .2∗10ˆ2 ;
96 % Kv = 0 ;
97 % Kr = 3∗10ˆ2; % Tuning parameter f o r yaw ra t e r e f e r e n c e

dev i a t i on .
98 % Kt = 10ˆ2 ;
99 R2 = [cos (x (3)) −s i n (x (3)) ; . . .

100 s i n (x (3)) cos (x (3))] ;
101 Error = R2 ’ ∗ (x (1 : 2) − x r e f (1 : 2)) ;
102 Kfy = 1 ∗ 10ˆ−5;
103

104 %Test f o r heading
105 K phi = 6∗10ˆ−5;
106

107 %L = Kp ∗ norm(P − x r e f) ˆ2 + Ku ∗ (u (1) − ur e f (1)) ˆ2 + Kr ∗ (u

97

(2) − ur e f (2)) ˆ2 ;
108 %L = (P − x r e f) ’∗ Kp ∗ (P − x r e f) + Ku ∗ (u 0 ’∗ u 0 − ur e f (1) ’∗

ur e f (1)) ˆ2 ;
109 %L = (P − x r e f) ’∗ Kp ∗ (P − x r e f) + Ku ∗ (u (1) − ur e f (1)) ˆ2 +

Kr ∗ (u (2) − ur e f (2)) ˆ2 ;
110 L = Error ’∗ Kp ∗ Error + Ku ∗ (x (4)−x r e f (4)) ˆ2 + Kv ∗ (x (5)−

x r e f (5)) ˆ2 + Kfy ∗ tau (2) ˆ2 + K phi ∗ (s sa (x (3)−x r e f (3)))
ˆ2 ;% + Kr ∗ (x (6) − x r e f (6)) ˆ2 + Kt ∗ (tau ’∗ tau) + Ku ∗ (x
(4) − x r e f (4)) ˆ2 ;

111

112 % Continous time dynamics .
113 f = Function (’ f ’ , {x , tau , x r e f } , {xdot , L}) ;
114

115 % Dis c r e t e time dynamics .
116 M = 4; %RK4 s t ep s per i n t e r v a l
117 DT = T/N/M;
118 f = Function (’ f ’ , {x , tau , x r e f } , {xdot , L}) ;
119 X0 = MX. sym(’X0 ’ , 6) ;
120 Tau = MX. sym(’Tau ’ , 3) ;
121 Xd = MX. sym(’Xd ’ ,6) ;
122 X = X0 ;
123 Q = 0 ;
124 f o r j =1:M
125 [k1 , k1 q] = f (X, Tau , Xd) ;
126 [k2 , k2 q] = f (X + DT/2 ∗ k1 , Tau , Xd) ;
127 [k3 , k3 q] = f (X + DT/2 ∗ k2 , Tau , Xd) ;
128 [k4 , k4 q] = f (X + DT ∗ k3 , Tau , Xd) ;
129 X=X+DT/6∗(k1 +2∗k2 +2∗k3 +k4) ;
130 Q = Q + DT/6∗(k1 q + 2∗ k2 q + 2∗ k3 q + k4 q) ;
131 end
132

133 F = Function (’F ’ , {X0 , Tau , Xd} , {X, Q} , { ’ x0 ’ , ’ tau ’ , ’Xd ’ } , {
’ x f ’ , ’ q f ’ }) ;

134 end

98

1 f unc t i on [dCPA, tCPA] = ClosestApproach (pos OS , pos TS , vel OS ,
vel TS)

2 %Returns the d i s t anc e at c l o s e s t po int o f approach and time un t i l
c l o s e s t

3 %point o f approach . Assuming both v e s s e l s maintain a f i x ed course and
4 %speed .
5 vel AB = vel OS − vel TS ;
6 pos BA = pos TS − pos OS ;
7

8 tCPA = 0 ;
9 i f (norm(vel AB , 2) > 0)

10 tCPA = dot (pos BA , vel AB) / norm(vel AB , 2) ˆ2 ;
11 end
12

13 dCPAfunc = (pos OS + tCPA ∗ vel OS) − (pos TS + tCPA ∗ vel TS) ;
14 dCPA = norm(dCPAfunc , 2) ;
15

16 i f tCPA < 0
17 dCPA = norm(pos BA , 2) ;
18 tCPA = 0 ;
19 end
20

21 end

99

1 f unc t i on [f l a g , dCPA, tCPA] = COLREGs assessment (v e s s e l , t racks ,
c f l a g)

2 %% THIS FUNCTION EVALUATES ONE TARGET SHIP ONLY. TO EVALUATE MORE
THE FUNCTION MUST BE CALLED FOR EACH TARGET SHIP IN YOUR
SITUATION.

3 % a13 = 112 . 5 ; % Overtaking t o l e r an c e
4 % a14 = rad2deg (p i /8) ; % head−on t o l e r an c e
5 % a15 = rad2deg (p i /8) ; % c r o s s i n g aspect l im i t
6

7 %% Calcu la te dCPA and tCPA, check i f COLREGs assessment i s needed :
8 % [dCPA, tCPA] = ClosestApproach (v e s s e l . e ta (1 : 2) , t r a ck s . eta (1 : 2) ,

v e s s e l . e t a dot (1 : 2) , t r a ck s . e ta dot (1 : 2)) ;
9 [dCPAlist , tCPAlist , po s OS l i s t , p o s TS l i s t] = getCPAlist (v e s s e l ,

t r a ck s) ;
10

11 %Keep the lowest dCPA found , t h i s i s the only dCPA we ’ re i n t e r e s t e d
in

12 %I f the re should ever be mul t ip l e equa l l y low dCPAs we are in a
unsupported

13 %sp e c i a l case that needs more development .
14 dCPA = min(dCPAlist) ;
15 dCPAminlist = f i nd (dCPAlist == dCPA) ;
16 tCPA = tCPAlist (dCPAminlist (1)) ;
17 pos OS = po s OS l i s t (1 : 3 , dCPAminlist) ;
18 pos TS = po s TS l i s t (1 : 3 , dCPAminlist) ;
19

20 [TSdCPAlist , TStCPAlist , t s p o s TS l i s t , t s p o s OS l i s t] =
getCPAlist (t racks , v e s s e l) ;

21 TSdCPA = min(TSdCPAlist) ;
22 TSdCPAminlist = f i nd (TSdCPAlist == TSdCPA) ;
23

24 %HACKJOB
25 %This i s a f a i l s a f e to prevent MATLAB from throwing an e r r o r and

ha l t i n g
26 %the program should any o f the Target Ships in the s imu la t i on be at

t h e i r
27 %f i n a l d e s t i n a t i on .
28 i f (˜ isempty (TStCPAlist))
29 TStCPA = TStCPAlist (TSdCPAminlist (1)) ;
30 tspos OS = t s p o s OS l i s t (1 : 3 , TSdCPAminlist) ;
31 tspos TS = t s p o s TS l i s t (1 : 3 , TSdCPAminlist) ;
32 e l s e
33 TStCPA = 0 ;
34 tspos OS = [0 0 0] ’ ;
35 tspos TS = [100 1 0 0] ’ ;
36 end
37 %END of HACKJOB
38

39 i f TSdCPA < dCPA
40 dCPA = TSdCPA;
41 tCPA = TStCPA;
42 pos OS = tspos OS ;
43 pos TS = tspos TS ;
44 end
45

46 %N̊a vet v i hva dCPA og tCPA er , kan nå sammenligne med en e l l e r
annen

47 %kvant i t e t f o r å s e om det er hø v e l i g å s e t t e COLREGs f l a g på TS .

100

48 %HVIS v i ø nsker å s e t t e COLREGs f l a g m̊a v i ogs å v i t e hvor OS og TS
er i

49 %fo rho ld t i l hverandre , og hv i l k e kurs begge har nå r v i s t a r t e r på
banen

50 %som tar os s t i l denne dCPAen .
51 OSareal = v e s s e l . s i z e (1) ∗ v e s s e l . s i z e (2) ;
52 TSareal = t rack s . s i z e (1) ∗ t r a ck s . s i z e (2) ;
53

54 dCPAgrense = (OSareal + TSareal + max(OSareal , TSareal)) / 2 ; % En
e l l e r annen funks jon av s t ø r r e l s e r

55 %Hvis problemet b l i r u n f e a s i b l e kan det hende v i b l i r nødt t i l å
senke

56 %denne grensen , men det er en funks jon f o r en annen dag .
57

58 tCPAgrense = 3 ∗ dCPAgrense ;
59

60

61

62 %% Conduct COLREGs assessment
63 i f (dCPA < dCPAgrense) && (tCPA < tCPAgrense) && c f l a g == 0
64 % Angles between OS and TS
65 phi 1 = rad2deg (p i /8) ;
66 % phi 1 = rad2deg (p i /15) ;
67 phi 2 = 112 . 5 ;
68

69 b0 = rad2deg (wrapTo2Pi (atan2 ((pos TS (2)−pos OS (2)) , (pos TS (1)−
pos OS (1))) − wrapToPi (pos OS (3)))) ; % Re la t i v e from OS to
TS

70

71 b0 180 = rad2deg (wrapToPi (deg2rad (b0))) ;
72

73 a0 = rad2deg (s sa (atan2 (pos OS (2)−pos TS (2) , pos OS (1)−pos TS (1))
− pos TS (3))) ; % Re la t i v e from TS to OS

74

75 % d i s t = sq r t ((t r a ck s . eta (2) − v e s s e l . e ta (2)) ˆ2 + (t ra ck s . eta
(1) − v e s s e l . e ta (1)) ˆ2) ;

76 %a0 360 = rad2deg (wrapTo2Pi (deg2rad (a0))) ;
77 %
78 %
79 % phi TS = atan2 ((v e s s e l . e ta (2)−t r a ck s . eta (2)) , (v e s s e l . e ta (1)

− t r a ck s . eta (1))) ;
80 % psi TSR = track s . eta (3) − v e s s e l . e ta (3) − phi TS ;
81 %
82 % phi TS = wrapTo2Pi (phi TS) ;
83 % psi TSR = wrapTo2Pi (psi TSR) ;
84

85 % 1 = HO
86 % 2 = GW
87 % 3 = SO
88 % 4 = OT
89 % 5 = SF
90 i f c f l a g == 0 %%
91 i f abs (b0 180) < phi 1 % TS i s d i r e c l y ahead o f OS
92 i f abs (a0) < phi 1 % TS i s f a c i n g OS
93 f l a g = 1 ;
94 e l s e i f a0 > phi 1 && a0 < phi 2 % TS i s f a c i n g towards

OS’ s s tarboard
95 f l a g = 3 ;

101

96 e l s e i f a0 < (−phi 1) && a0 > (−phi 2) % TS i s f a c i n g
towards OS’ s port

97 f l a g = 2 ;
98 e l s e % TS i s f a c i n g away

from OS
99 f l a g = 4 ;

100 end
101 e l s e i f b0 > phi 1 && b0 < phi 2 %TS i s ahead on OS’ s

s tarboard
102 i f abs (a0) < phi 1
103 f l a g = 2 ;
104 e l s e i f a0 > phi 1 && a0 < phi 2
105 f l a g = 5 ;
106 e l s e i f a0 < (−phi 1) && a0 > (−phi 2)
107 f l a g = 2 ;
108 e l s e
109 f l a g = 4 ;
110 end
111 e l s e i f b0 180 < −phi 1 && b0 180 > −phi 2 %TS i s ahead on

OS’ s port s i d e
112 i f abs (a0) < phi 1
113 f l a g = 3 ;
114 e l s e i f a0 > phi 1 && a0 < phi 2
115 f l a g = 3 ;
116 e l s e i f a0 < (−phi 1) && a0 > (−phi 2)
117 f l a g = 5 ;
118 e l s e
119 f l a g = 4 ;
120 end
121 e l s e
122 i f abs (a0) < phi 1
123 f l a g = 3 ;
124 e l s e i f a0 > phi 1 && a0 < phi 2
125 f l a g = 3 ;
126 e l s e i f a0 < (−phi 1) && a0 > (−phi 2)
127 f l a g = 3 ;
128 e l s e
129 f l a g = 5 ;
130 end
131 end
132 e l s e % hackjob , needs more work to c l e a r s i t u a t i o n s proper ly .
133 f l a g = c f l a g ;
134 end
135

136

137 %% Woerner method
138 % i f b0 > 112 .5 && b0 < 247 .5 && abs (a0) < a13
139 % f l a g = ’SO ’ ;
140 % e l s e i f a0 360 > 112 .5 && a0 360 < 247 .5 && abs (b0 180) < a13 ,
141 % f l a g = ’GW’ ;
142 % e l s e i f abs (b0 180) < a14 && abs (a0) < a14
143 % f l a g = ’HO’ ;
144 % e l s e i f b0 > 0 && b0 < 112 .5 && a0 > −112.5 && a0 < a15
145 % f l a g = ’GW’ ;
146 % e l s e i f a0 360 > 0 && a0 360 < 112 .5 && b0 180 < −112.5 && b0 180

< a15
147 % f l a g = ’SO ’ ;
148 %

102

149 % e l s e
150 % f l a g = ’SO ’ ;
151 e l s e
152 f l a g = c f l a g ;
153 end
154

155 i f dCPA > (dCPAgrense+30)
156 f l a g = 0 ;
157 end
158

159

160 end

103

1 f unc t i on [N, h] = DynamicHorizon (v e s s e l , dynamic obs)
2 % Calcu la te an appropr ia te number o f time s t ep s and step l ength based

on
3 % di s t anc e to goa l and other v e s s e l s .
4

5 %Distance to goa l :
6 %d i s t = sq r t ((t r a ck s . eta (2) − v e s s e l . e ta (2)) ˆ2 + (t ra ck s . eta (1) −

v e s s e l . e ta (1)) ˆ2) ;
7 d i s t an c e t o goa l = 0 ;
8 f o r i = s i z e (v e s s e l .wp, 2) :−1: v e s s e l . current wp+2
9 distbetweenWP = sqr t ((v e s s e l .wp(1 , i) − v e s s e l .wp(1 , i −1)) ˆ2 + ((

v e s s e l .wp(2 , i) − v e s s e l .wp(2 , i −1)) ˆ2)) ;
10 d i s t an c e t o goa l = d i s t an c e t o goa l + distbetweenWP ;
11 end
12 distancetonextWP = sqr t ((v e s s e l .wp(1 , v e s s e l . current wp+1) − v e s s e l . e ta

(1)) ˆ2 + ((v e s s e l .wp(2 , v e s s e l . current wp+1) − v e s s e l . e ta (2)) ˆ2)) ;
13 d i s t an c e t o goa l = d i s t an c e t o goa l + distancetonextWP ;
14 i f v e s s e l . nu (1) < 0 .001
15 v e s s e l . nu (1) = 0 . 0 0 1 ;
16 end
17 Timetogoal = d i s t an c e t o goa l / v e s s e l . nu (1) ;
18

19

20 %Getting past r e l e van t TS :
21 %some func t i on
22 %return TimetopassTS
23 i f (˜ isempty (dynamic obs))
24 a l lTcpas = [dynamic obs . tcpa] ;
25 maxtCPA = max(a l lTcpas) + 20 ; % Add time , we want to pass the

encounter , not j u s t reach i t .
26 end
27

28 %compare time to pass goa l and time to pass TS, we want to keep the
29 %sma l l e s t o f thee s e two
30

31 %max time o f n minutes :
32 maxminutes = 5 ;
33 maxseconds = maxminutes ∗ 60 ;
34 minminutes = 3 ;
35 minseconds = minminutes ∗ 60 ;
36

37 % WRONG
38 % minste t id = max(minseconds , maxtCPA) ;
39 % f i n a l t ime = min ([Timetogoal , maxseconds , mins te t id]) ;
40

41 % CORRECT, but never used
42 i f (f a l s e) % <− TODO: check i f any c f l a g s are s e t .
43 maxtime = min ([Timetogoal , maxseconds]) ;
44 f i n a l t im e = min ([maxtime , maxtCPA]) ;
45 e l s e
46 f i n a l t im e = min ([Timetogoal , maxseconds]) ;
47 end
48 % f i n a l t ime = min ([Timetogoal , maxseconds]) ;
49

50

51

52

53 h = 0 . 5 ; % s t a t i s k f o r nå .

104

54 N = c e i l (f i n a l t im e / h) ;
55

56 %% HARDCODING
57 % h = 0 . 5 ;
58 % N = c e i l (45 / h) ;
59

60 end

105

1 f unc t i on f e a s i b i l i t y = f e a s i b i l i t y c h e c k (prev ious w opt)
2 north opt = prev ious w opt (1 : 9 : end) ;
3 ea s t op t = prev ious w opt (2 : 9 : end) ;
4

5 f e a s i b i l i t y = 1 ;
6

7 f o r i = 1 : l ength (north opt)−1
8 x1 = ea s t op t (i) ;
9 x2 = ea s t op t (i +1) ;

10 y1 = north opt (i) ;
11 y2 = north opt (i +1) ;
12 d i s t = sq r t ((x2−x1) ˆ2 + (y2−y1) ˆ2) ;
13 i f d i s t > 5
14 f e a s i b i l i t y = 0 ;
15 end
16 %i f d i s t ance to next po int > 5
17 % BIG ERROR, NOT FEASIBLE
18 %e l s e
19 %f e a s i b l e .
20

21 end
22 end

106

1 f unc t i on [dCPAlist , tCPAlist , po s OS l i s t , p o s TS l i s t] =
getCPAlist (v e s s e l , t r a ck s)

2 dCPAlist = [] ;
3 tCPAlist = [] ;
4 po s TS l i s t = [] ;
5 po s OS l i s t = [] ;
6 wptstimer = 0 ; % timer used to c a l c u l a t e the po s i t i o n o f the other sh ip

at c e r t a i n wpts .
7

8 %%
9

10 f o r i = v e s s e l . current wp : s i z e (v e s s e l .wp, 2)−1
11 % NAIV APPROACH
12 % % % % % % % % %For each OS t r a n s i t waypoint , check the dCPA and

tCPA f o r each TS t r a s i t
13 % % % % % % % % %waypoint .
14 % % % % % % % % [pos OS , vel OS] = VesselReadout (v e s s e l , i) ;
15 % % % % % % % % fo r j = t rack s . current wp : s i z e (t r a ck s .wp, 2)−1
16 % % % % % % % % [pos TS , vel TS] = VesselReadout (tracks , j) ;
17 % % % % % % % % [dCPA, tCPA] = ClosestApproach (pos OS , pos TS ,

vel OS , vel TS) ;
18 % % % % % % % % dCPAlist (i , j) = dCPA;
19 % % % % % % % % tCPAlist (i , j) = tCPA;
20 % % % % % % % % end
21 % NAIV APPROACH ˆ
22

23 %Fra v e s s e l . eta , hvor lang t i d ta r det å nå ne s t e wpt?
24 %Fra nes te wpt , hvor lang t i d ta r det å nå ne s t e wpt? <− repeat f o r

a l l e
25 %wpts . Anta konstant f a r t he l e ve i en .
26

27 %Find pose at cur rent OS waypoint
28 [pos OS , vel OS] = VesselWPReadout (v e s s e l , i) ;
29 [pos TS , vel TS] = whereisTS (tracks , wptstimer) ;
30

31 heading OS = atan2 (vel OS (2) , vel OS (1)) ;
32 heading TS = atan2 (vel TS (2) , vel TS (1)) ;
33

34 %Do cpa check
35 [dCPA, tCPA] = ClosestApproach (pos OS , pos TS , vel OS , vel TS) ;
36 dCPA = round (dCPA∗1000) /1000 ;
37 tCPA = tCPA + wptstimer ; % hå per de t t e b l i r r e t t .
38 pos OS = [pos OS ; heading OS] ;
39 pos TS = [pos TS ; heading TS] ;
40 po s OS l i s t = [po s OS l i s t , pos OS] ;
41 po s TS l i s t = [po s TS l i s t , pos TS] ;
42

43

44 %step forward one waypoint .
45 distancetonextWP = sqr t ((v e s s e l .wp(1 , i +1) − pos OS (1)) ˆ2 + ((v e s s e l

.wp(2 , i +1) − pos OS (2)) ˆ2)) ;
46 timetonextWP = distancetonextWP / norm(v e s s e l . nu (1 : 2) , 2) ; %Distanse

OG time to next wp er redundant , e g e n t l i g kunne j eg k l a r t meg
med en .

47 wptstimer = wptstimer + timetonextWP ;
48 dCPAlist = [dCPAlist , dCPA] ;
49 tCPAlist = [tCPAlist , tCPA] ;
50

107

51

52 end
53 end

108

1 f unc t i on c o r i g = p l a c e dyn con s t r a i n t (dynamic obs , k , i , r a d o f f s e t
, o f f s e t d i s t)

2 o f f s e t a ng = atan2 (dynamic obs (i) . t r a j (4 , k+1) , dynamic obs (i) . t r a j (3 ,
k+1)) + r a d o f f s e t ;

3 o f f s e t d i r = [cos (o f f s e t a ng) ; s i n (o f f s e t a ng)] ;
4 % o f f s e t d i s t = 10 ; % Should i d e a l l y be based some func t i on o f

Invo lved ve s s e l ’ s speeds
5 o f f s e t v e k t o r = o f f s e t d i s t ∗ o f f s e t d i r ;
6 c o r i g = dynamic obs (i) . t r a j (1 : 2 , k+1) + o f f s e t v e k t o r ;
7 end

109

1 f unc t i on s t a t i c o b s c o n s t r a i n t s = S t a t i c o b s t a c l e s c h e c k I t e r a t i v e (
obsmatrix , t r a j e c t o r y , k)

2 %Fi r s t check i f we ’ re us ing r e f e r e n c e LOS t r a j e c t o r y or prev ious w opt
3 w opt = 0 ;
4 i f s i z e (t r a j e c t o r y , 1) > 4
5 w opt = 1 ;
6 end
7

8 %% I n i t i a l i z e
9 % sta r tpo s = t r a j e c t o r y (1 : 2 , 2) ;

10 % heading = v e s s e l . e ta (3) ;
11 % heading = atan2 (t r a j e c t o r y (2 , 2)−v e s s e l . e ta (2) , t r a j e c t o r y (1 , 2)−

v e s s e l . e ta (1)) ;
12 x = [] ;
13 y = [] ;
14 %% Polygons
15 xbox = obsmatrix (2 , :) ;
16 ybox = obsmatrix (1 , :) ;
17

18 %Find po s i t i o n
19 i f (w opt)
20 ypos = t r a j e c t o r y (1 : 9 : end) ;
21 xpos = t r a j e c t o r y (2 : 9 : end) ;
22 i f k < l ength (xpos)
23 pos = [ypos (k+1) ; xpos (k+1)] ;
24 e l s e
25 pos = [ypos (l ength (ypos)) ; xpos (l ength (xpos))] ; % <−

Contingency that should never occur .
26 end
27 e l s e
28 pos = t r a j e c t o r y (1 : 2 , k+1) ;
29 end
30

31 %Generate i n t e r s e c t i o n scan l i n e s
32 f o r j = −pi : p i /6 : p i
33 ang = j ; % should probably inc lude heading
34 d i r = [cos (ang) ; s i n (ang)] ;
35 %% RADIUS OF SCAN HERE
36 d i s t = 50 ;
37 %%
38 vektor = d i s t ∗ d i r ;
39 checkpos = pos + vektor ;
40 x = [x , pos (2) , checkpos (2) , NaN] ;
41 y = [y , pos (1) , checkpos (1) , NaN] ;
42 end
43

44 [xi , yi , i i] = polyxpoly (x , y , xbox , ybox) ;
45 % Keep f i r s t h i t :
46 A = [xi , yi , i i] ;
47 [˜ , uidx] = unique (A(: , 3) , ’ s t ab l e ’) ;
48 A without dup = A(uidx , :) ;
49 x i = A without dup (: , 1) ;
50 y i = A without dup (: , 2) ;
51 i i = A without dup (: , 3 : 4) ;
52

53 %% TEST CODE
54 % te s tx = [] ;
55 % te s ty = [] ;

110

56 % mapshow(xbox , ybox , ’ DisplayType ’ , ’ polygon ’ , ’ L ineSty le ’ , ’ none ’)
57 % mapshow(x , y , ’ Marker ’ , ’+ ’)
58 % mapshow(xi , yi , ’ DisplayType ’ , ’ point ’ , ’ Marker ’ , ’ o ’)
59 % fo r i = 1 : l ength (x i)
60 % te s t p o i n t = [y i (i) ; x i (i)] ;
61 % l i n e = t e s t p o i n t − pos ;
62 % l i n e = [− l i n e (2) ; l i n e (1)] ;
63 % point1 = t e s t p o i n t + l i n e ;
64 % point2 = t e s t p o i n t − l i n e ;
65 % te s t x = [tes tx , po int1 (2) , po int2 (2) , NaN] ;
66 % te s t y = [tes ty , po int1 (1) , po int2 (1) , NaN] ;
67 % mapshow(tes tx , te s ty , ’ Marker ’ , ’ x ’)
68 % end
69 %%
70 %% Generate l i n e s :
71 s t a t i c o b s c o n s t r a i n t s = ze ro s (3 , l ength (x i)) ;
72 f o r i = 1 : l ength (x i)
73 i n t e r s e c t i o n p o i n t = [y i (i) ; x i (i)] ;
74 %ho r r i b l e 2am spaghe t t i :
75 l i n e = pos − i n t e r s e c t i o n p o i n t ; % The vec to r that takes us from

i n t e r s e c t i o n po int cur rent p o s i t i o n
76 t r an spo s ed l i n e = [− l i n e (2) ; l i n e (1)] ; % Get Orthogonal o f s a id

vec to r .
77 tangent = i n t e r s e c t i o n p o i n t + t r an spo s ed l i n e ; % c r ea t e po int

along orthogona l vec to r
78

79 % pi p = atan2 (tangent (1) − i n t e r s e c t i o n p o i n t (1) , tangent (2) −
i n t e r s e c t i o n p o i n t (2)) ; % THIS COULD BE OPTIMIZED WITH A TABLE,

80 p i p = atan2 (tangent (2) − i n t e r s e c t i o n p o i n t (2) , tangent (1) −
i n t e r s e c t i o n p o i n t (1)) ;

81 % check l i n e ID −> lookup corre spond ing ang le :)
82 s t a t i c o b s c o n s t r a i n t s (: , i) = [i n t e r s e c t i o n p o i n t (1) ;

i n t e r s e c t i o n p o i n t (2) ; p i p] ;
83

84 % %% Debug code
85 % te s t x = [tangent (2) , i n t e r s e c t i o n p o i n t (2) , NaN] ;
86 % te s t y = [tangent (1) , i n t e r s e c t i o n p o i n t (1) , NaN] ;
87 % mapshow(tes tx , t e s t y)
88 end
89 end

111

1 f unc t i on [pos OS , vel OS] = VesselWPReadout (v e s s e l , i)
2 %Reads out the po s i t i o n and v e l o c i t y o f the v e s s e l at each waypoint in

i t ’ s
3 %t r a n s i t . I f the index o f the wpt we ’ re read ing i s the same as cur rent

wpt
4 %we in s t ead read out cur rent p o s i t i o n and v e l o c i t y .
5 pos OS = v e s s e l .wp(1 : 2 , i) ;
6 Heading OS = atan2 (v e s s e l .wp(2 , i +1)−v e s s e l .wp(2 , i) , v e s s e l .wp(1 , i +1)

−v e s s e l .wp(1 , i)) ;
7 vel OS = rotZ (Heading OS) ∗ v e s s e l . nu ;
8 vel OS = vel OS (1 : 2) ;
9 i f i == v e s s e l . current wp %When we examine the cur rent a c t i e wp ;

use cur rent l o c a t i o n in s t ead .
10 pos OS = v e s s e l . e ta (1 : 2) ;
11 vel OS = v e s s e l . e t a dot (1 : 2) ;
12 end
13

14 end

112

1 f unc t i on [pos TS , vel TS] = whereisTS (tracks , wptstimer)
2 pos TS = track s . eta (1 : 2) ;
3 vel TS = track s . e ta dot (1 : 2) ;
4 WPlim = s i z e (t r a ck s .wp, 2) ;
5

6 pos = t rack s . eta (1 : 2) ;
7 d i s t anc e = wptstimer ∗ norm(t ra ck s . nu (1 : 2) , 2) ;
8 WPindex = t rack s . current wp ;
9 i f WPindex < WPlim

10 distancetonextWP = sqr t ((t r a ck s .wp(1 ,WPindex+1) − pos (1)) ˆ2 +
((t r a ck s .wp(2 ,WPindex+1) − pos (2)) ˆ2)) ;

11 e l s e
12 distancetonextWP = 0 ;
13 end
14 whi le d i s t anc e > 0
15 i f d i s t ance > distancetonextWP
16 pos = t rack s .wp(1 : 2 ,WPindex+1) ;
17 d i s t anc e = d i s t anc e − distancetonextWP ;
18 WPindex = WPindex + 1 ;
19 i f WPindex < WPlim
20 distancetonextWP = sqr t ((t r a ck s .wp(1 ,WPindex+1) − pos

(1)) ˆ2 + ((t r a ck s .wp(2 ,WPindex+1) − pos (2)) ˆ2)) ;
21 e l s e
22 distancetonextWP = 0 ;
23 pos TS = pos ;
24 vel TS = [0 , 0] ’ ;
25 d i s t anc e = 0 ;
26 end
27 e l s e
28 %Beveg os s (d i s t ane) l angs banen t i l ne s t e WP
29 %se t t d i s t anc e t i l nu l l .
30 d i r e c t i o n = t rack s .wp (: ,WPindex+1) − pos ;
31 t r a v e l = d i s t anc e / distancetonextWP ;
32 pos TS = pos + t r a v e l ∗ d i r e c t i o n ;
33 vel TS = rotZ (atan2 (d i r e c t i o n (2) , d i r e c t i o n (1))) ∗ t r a ck s . nu

;
34 vel TS = vel TS (1 : 2) ;
35 d i s t anc e = 0 ;
36 end
37 end
38 end

113

CO
LREG

s-aw
are and M

PC-based trajectory planning and collision avoidance for autonom
ous surface vessels

Erlend H
estvik

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Erlend Hestvik

COLREGs-aware and MPC-based
trajectory planning and collision
avoidance for autonomous surface
vessels

Master’s thesis in Industrial Cybernetics
Supervisor: Morten Breivik
Co-supervisor: Emil Hjelseth Thyri
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Previous Work
	Problem Description
	Contributions
	Outline

	Background Theory
	Vessel Modelling
	Trajectory Planning
	Collision Avoidance
	Target Ship Prediction

	Trajectory Planner
	Data Flow
	Setup
	NLP Construction and Solver

	Simulation Results
	Scenario Overview
	Simulation Results
	Simple Head-On
	Simple Give-Way
	Simple Stand-On
	Turn Head-On
	Turn Give-Way
	Turn Stand-On
	Canals
	Fjord
	Helløya
	Helløya Reversed
	Skjærgård with Traffic
	Skjærgård without Traffic
	Miscellaneous

	Discussion
	Improvements over Previous Version

	Conclusion and Future Work
	References
	Appendix
	Source Code for Algorithm Main Loop
	Helper Functions

