
M
iguel Cortés O

tero

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Miguel Cortés Otero

Application of machine learning in
the prediction of FDM part
distortion based on finite element
simulation

Master’s thesis in Industrial Engineering master
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
January 2022

M
as

te
r’s

 th
es

is

Miguel Cortés Otero

Application of machine learning in the
prediction of FDM part distortion
based on finite element simulation

Master’s thesis in Industrial Engineering master
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
January 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

i

Abstract
FDM is the most widespread technology of all the additive manufacturing techniques

nowadays. In recent years, much has been innovated in terms of new materials and

process improvements for FDM printing. This has meant that FDM is not only used for

rapid prototyping as before, but functional structures can be manufactured using this

manufacturing technique. However, this printing technique still lacks dimensional

accuracy for specific applications that require high accuracy. In this work, an approach of

how to improve the dimensional accuracy of FDM printed parts is presented. First, a

numerical simulation framework for additive manufacturing techniques is created based

on Abaqus software (v. 2019 Simulia, Dassault Systems). The deformations of three

different geometries are obtained and analysed using the numerical simulation

framework. In addition, a study of the application of machine learning techniques to

predict FDM part distortions is carried out.

ii

Sammendrag
FDM er den mest utbredte teknologien av alle additive produksjonsteknikker i dag. De

siste årene har mye blitt fornyet når det gjelder nye materialer for FDM-trykk og

prosessforbedringer. Dette har gjort at FDM ikke bare brukes til rask prototyping som

før, men funksjonelle strukturer kan produseres ved hjelp av denne

produksjonsteknikken. Imidlertid mangler denne trykkteknikken fortsatt

dimensjonsnøyaktigh et for spesifikke bruksområder som krever høy nøyaktighet. I dette

arbeidet presenteres en tilnærming for hvordan man kan forbedre dimensjonsnøyaktigh

eten til FDM-trykte deler. Først lages et numerisk simuleringsrammeverk for additive

produksjonsteknikker basert på Abaqus software (v. 2019 Simulia, Dassault Systems).

Deformasjonene til tre forskjellige geometrier oppnås ved hjelp av det numeriske

simuleringsrammever ket og analyseres. I tillegg utføres en studie av broken av

maskinlæringsteknikk er for å forutsi FDM-delforvrengninger.

iii

Table of Contents
List of Figures .. v

List of Tables .. viii

List of Abbreviations (or Symbols) .. ix

1 Introduction ...10

1.1 State of the art of 3D printing technology ..10

1.1.1 How is 3D printing used? ...11

1.1.2 What are the top requirements for material selection?12

1.1.3 What are the top challenges for using your 3D printer/s and which 3D

printing technologies are mainly used? ..12

1.1.4 Benefits and potential of 3D printing ...13

1.2 FDM process ..15

1.2.1 Working principles and applications ..15

1.2.2 Process parameters in FDM ...16

1.2.3 Quality issues in FDM ..18

2 Materials and methods ..20

2.1 Simulation of the FDM process ...20

2.1.1 Material ..20

2.1.2 Studied geometries ..22

2.1.3 Thermomechanical analysis of the FDM process23

2.1.3.1 Element activation ...23

2.1.3.2 Thermal analysis ..25

2.1.3.3 Mechanical analysis ..26

2.1.4 Simulation setup with Abaqus 2019 ..26

2.1.4.1 Thermal analysis ..26

2.1.4.2 Mechanical analysis ..30

2.1.4.3 AM modeler abaqus plugin ..31

3 Simulation results ...36

3.1 First geometry (bead) ...36

3.1.1 Thermal analysis results ..36

3.1.2 Structural analysis results ...39

3.1.3 Part distortion evaluation ..43

3.2 Second geometry (flat spring) ...43

3.2.1 Influence of the time step in the analysis ..45

3.2.2 Thermal analysis results ..46

3.2.3 Structural analysis results ...48

iv

3.2.4 Part distortion evaluation ..50

3.2.5 Validation of the results ..51

3.3 Third geometry (thin wall) ...52

3.3.1 Infill patterns ...53

3.3.2 Thermal analysis results ..55

3.3.3 Structural analysis results ...57

3.3.4 Part distortion evaluation ..60

3.3.5 Parametric study of the influence of process parameters in the part

distortion ...61

4 Machine Learning applications in FDM ..66

4.1 Machine learning algorithms ..66

4.1.1 Supervised learning ..66

4.1.2 Unsupervised learning ..73

4.2 Deep Learning Neural Networks applied to FDM simulation74

4.2.1 What is a neural network? Types of neurons and architecture74

4.2.2 Most used algorithms to train neural networks77

4.2.3 Review of neural networks applied to the FDM printing process79

4.3 Possible applications of neural networks in this work83

5 Potential applications and future work ...86

6 Conclusions ..88

7 References ..89

Appendix 1 ...91

Appendix 2 ...92

v

List of Figures
Figure 1. 1 Purpose of 3D printing technology ..11

Figure 1. 2 Scale of production in 3D printed parts ...12

Figure 1. 3 Top requirements for material selection in 3D printing12

Figure 1. 4 Top challenges for using 3D printing technology13

Figure 1. 5 Most used 3D printing technologies ..13

Figure 1. 6 Main benefits of implementing 3D printing technology14

Figure 1. 7 Fields in which 3D printing needs to grow ..15

Figure 1. 8 Potential usage of 3D printing in the future ..15

Figure 1. 9 Setup of a typical FDM 3D printer ...16

Figure 1. 10 FDM process parameters classification ...17

Figure 1. 11 Build orientation of 0º (horizontal), 45º and 90º (vertical)17

Figure 1. 12 Different layer thickness in FDM process ..18

Figure 1. 13 Stair stepping effect with different layer thickness18

Figure 2. 1 Bead used as the first geometry for the numerical simulation (dimensions in

mm) ...22

Figure 2. 2 Flat spring used as the second geometry for the numerical simulation

(dimensions in mm) ..22

Figure 2. 3 Thin wall used as the third geometry for the numerical simulation (dimensions

in mm) ..23

Figure 2. 4 Model change interaction ...23

Figure 2. 5 Different toolpath for different tool shapes...24

Figure 2. 6 Element activation with the box shape ..25

Figure 2. 8 Young’s modulus dependance with temperature26

Figure 2. 7 Yield stress dependance with temperature ...26

Figure 2. 9 Different steps in the thermal analysis ..27

Figure 2. 10 Basic tab in the step editor ..28

Figure 2. 11 Increment definition of the step..28

Figure 2. 13 Radiation interaction ...28

Figure 2. 12 Convection interaction ...28

Figure 2. 14 Boundary condition for build plate temperature29

Figure 2. 15 Definition of the initial temperature for material extrusion29

Figure 2. 16 Meshing of the wall ...29

Figure 2. 17 Element type selection ..29

Figure 2. 18 Encastre boundary condition in the mechanical analysis30

Figure 2. 19 Thermal analysis output as an input for the mechanical31

Figure 2. 20 Creating an AM model ...32

vi

Figure 2. 21 AM modeler tab ..32

Figure 2. 22 Bead features of the deposition process ...33

Figure 2. 23 Advanced material deposition table ...33

Figure 2. 24 Nozzle event series and bead process ...33

Figure 2. 25 Event series definition ...34

Figure 2. 26 View of the nozzle movement between 100 s and 550 s34

Figure 2. 27 Defining cooling interactions ..35

Figure 3. 1 Bead temperature field evolution in the cooling step37

Figure 3. 2 Temperature field at the end of the cooling step for different meshes37

Figure 3. 3 Selected nodes to perform the convergence study37

Figure 3. 4 Time-dependent temperature field for the top node and different meshes ...38

Figure 3. 5 Time-dependent temperature field for the middle node and different meshes

 ..38

Figure 3. 6 Time-dependent temperature field for the bottom node and different meshes

 ..39

Figure 3. 7 Stress field evolution (misses) in the cooling step (between 0.5 and 2 s)40

Figure 3. 8 Deformation field in the beginning of the cooling step (deformation scaled by

a factor of 10) ..40

Figure 3. 9 Picked nodes for the structural convergence analysis41

Figure 3. 10 Deformation in the x direction for the different mesh sizes41

Figure 3. 11 Deformation in the y direction for the different mesh sizes42

Figure 3. 12 Deformation in the z direction for the different mesh sizes42

Figure 3. 13 Contour beads in the first layer of the flat spring44

Figure 3. 14 Infill pattern used in the flat spring printing ...44

Figure 3. 15 Meshing strategy for the flat spring analysis ..45

Figure 3. 16 Element activation temperature as a function of time step45

Figure 3. 17 Maximum stress at the end of the cooling step with different time steps for

the analysis ...46

Figure 3. 18 Computational time for the analysis as a function of time step46

Figure 3. 19 Thermal distribution as material is continuously added (top layer)47

Figure 3. 20 Selected nodes to plot their temperature profiles47

Figure 3. 21 Thermal profiles of three nodes in different printed layers48

Figure 3. 22 Von Misses stress field in the beginning of the cooling step49

Figure 3. 23 Deformation field at the end of the detachment step with a scale

deformation factor of 5 ...50

Figure 3. 24 Displacement field in the X direction ...50

Figure 3. 25 Displacement field in the Y direction ...50

Figure 3. 26 Displacement field in the Z direction ...50

vii

Figure 3. 27 On the left, stress results extracted from (Cattenone et al., 2019), on the

right, stress results from this present work (end of the printing step)51

Figure 3. 28 On the left, deformation results for the stack direction extracted from

(Cattenone et al., 2019), on the right, deformation results for the stack direction

extracted from the present work (end of the detachment step)52

Figure 3. 29 Contour bead for the thin wall geometry ..52

Figure 3. 30 Meshing strategy for the thin wall ...53

Figure 3. 31 First infill pattern ..53

Figure 3. 32 Second infill pattern ..54

Figure 3. 33 Third infill pattern ...54

Figure 3. 34 Fourth infill pattern ...55

Figure 3. 35 Thermal distributions of the four different infill patterns at the same printing

time ..55

Figure 3. 37 Outer node temperature distribution in the top layer56

Figure 3. 36 Inner node temperature distribution in the top layer56

Figure 3. 38 Stress field at the end of the cooling process ...58

Figure 3. 39 Displacement field in the X direction for different infill patterns58

Figure 3. 40 Displacement field in the Y direction for different infill patterns.................59

Figure 3. 41 Displacement field in the Z direction for different infill patterns60

Figure 4. 1 Representation of a simple linear regression problem68

Figure 4. 2 Logistic function representation ..68

Figure 4. 3 Example of how KNN algorithm works ...69

Figure 4. 4 Decision tree structure ..70

Figure 4. 5 SVM setup for a 2-Dimensional problem ..71

Figure 4. 6 Structure of a random forest classifier ..72

Figure 4. 7 Before and after using k-means clustering algorithm73

Figure 4. 8 Layered structure of a neural network ...75

Figure 4. 9 Shape of a sigmoid function ...75

Figure 4. 10 ReLu activation function ..76

Figure 4. 11 Architecture of a neural network ...77

Figure 4. 12 Neural network architecture ...80

Figure 4. 13 Schematic of the SOM neural network ...81

Figure 4. 14 Results of the SOM-based neural network for specific process parameters .81

Figure 4. 15 Parametric design templates for the repository82

Figure 4. 16 Arquitecture of the 3D CNN ..83

Figure 4. 17 2D image representing an infill pattern for developing a neural network84

viii

List of Tables
Table 2. 1 PLA properties used in the numerical model ..21

Table 2. 2 Event series format used for the toolpath-mesh intersection module24

Table 3. 1 Combination of levels of the three different factors (extrusion temperature =

195 ºC) ...62

Table 3. 2 Combinations of levels of the three different factors (extrusion temperature =

205 ºC) ...62

Table 3. 3 Combinations of levels of the three different factors (extrusion temperature =

210 ºC) ...62

Table 3. 4 Results for all the 36 combinations of levels ..63

Table 3. 5 ANOVA table for the X direction deformation ...63

Table 3. 6 ANOVA table for the Y direction deformation ...64

Table 3. 7 ANOVA table for the Z direction deformation ...65

file:///F:/Norway/Master%20Thesis/Thesis.docx%23_Toc105066383

ix

List of Abbreviations (or Symbols)
STL

AM

SLS

Standard Tessellation Language

Additive Manufacturing

Selective Laser Sintering

SLM Selective Laser Melting

EBM

DMLS

BJ

MJF

DED

LMD

LENS

FDM

LOM

PLT

UAM

SLA

DLP

3D

ML

PLA

ABS

NT

FEA

KNN

SVM

DT

CNN

SI

Electron Beam Melting

Direct Metal Laser Sintering

Binder Jetting

MultiJet Fusion

Direct Energy Deposition

Laser Metal Deposition

Laser Engineered Net Shape

Fused Deposition Modelling

Laminated Object Manufacturing

Paper Lamination Technology

Ultrasonic Additive Manufacturing

Stereolithography

Digital Light Processing

3-Dimensional

Machine Learning

Polylactic Acid

Acrylonitrile Butadiene Styrene

Nodal temperature

Finite Element Analysis

K-Nearest Neighbors algorithm

Support Vector Machine algorithm

Decision Tree algorithm

Convolutional Neural Network

International System of Units

10

1.1 State of the art of 3D printing technology

3D printing or additive manufacturing is the process of making three-dimensional solid

objects from a digital file. The creation of the part is achieved by using additive

processes. The most common technique consists in laying down successive layers of

material until the part is completed. Additive manufacturing enables the production of

complex shapes more efficiently than traditional manufacturing processes (subtractive

manufacturing, like turning, milling, abrasion, etc.), mainly because it avoids wasting

material.

There are five main steps in the printing process of a part:

1. Firstly, a sketch is made from an idea or need.

2. Create the design: after the sketch, a digital model of the part is created with 3D

design software.

3. Then, the digital file is exported as an STL extension.

4. Once the digital file is converted to STL, it must be imported to a slicer program.

In this program, the printing parameters and the different layers are defined. The

output of the program is a file called G-code, containing the instructions that the

printer must follow.

5. Upload the file to the 3D printer and start the printing.

The most used additive manufacturing techniques can be clustered into seven different

groups as stated in (ISO, 2015). These groups are briefly described below:

• Powder bed: thermal energy selectively fuses regions of a powder bed. The raw

material can be metal or plastic, both in powder form. The different processes

grouped here are SLS, SLM, EBM, and DMLS.

• Binder jetting: a liquid bonding agent is deposited to join powder materials. The

raw material can be metal, plastic or ceramic, the three of them in powder form.

The processes derived from binder jetting are BJ, inkjet powder printing, and MJF.

• Directed energy deposition: a nozzle mounted on multi-axis arm deposits

melted material. The raw material is metal in powder or wire form. The processes

grouped here are laser cladding, DED, LMD, LENS, and laser or electron beam

wire deposition.

• Material extrusion: material is drawn via a nozzle, where it is heated. It is

deposited layer by layer. The raw material can be plastic or composites in solid

form. There is only one process in this group, which is the FDM process, the most

common of all additive manufacturing processes.

• Sheet lamination: sheets of material are bonded to form an object. The raw

materials can be paper or metal in solid form. The processes derived from sheet

lamination are LOM, PLT, and UAM.

• Photo-polymerization: liquid photopolymer is selectively cured by light-

activated polymerization. The raw material must be a liquid photopolymer resin.

There are two techniques grouped here: SLA and DLP.

1 Introduction

11

• Material jetting: droplets of build material are selectively deposited. The raw

material must be plastic in ink form. The derived techniques from material jetting

are photopolymer jetting and multi-jet modeling.

Although the techniques explained above are the most used, the 3D printing field is

constantly evolving, and there is a lot of research on new novel techniques and different

trends in the usage of different processes. An explanation of the trends in the use of 3D

printing technology is given in the following sections, based on a survey of 3D printing

users and owners of businesses that use this technology in its manufacturing processes.

The survey was performed in 2021 by the company sculpteo (Moreau, 2021).

1.1.1 How is 3D printing used?

3D printing is proving to be a real manufacturing solution. It started as research and

development for rapid-prototyping purpose but now is considered a real production tool.

Currently, there is an increasing demand for end-use mechanical 3D printed parts,

showing that additive manufacturing is considered a reliable manufacturing technology.

In the figures below, we can see the results of the survey to the questions ‘‘What is the

purpose of your 3D prints?’’ and ‘‘At which scale of manufacturing do you use 3D

printing?’’, respectively.

1

Figure 1. 1 Purpose of 3D printing technology

1 Power users: users of 3D printing in a work context with significant investment and experience using the

technology

12

Figure 1. 2 Scale of production in 3D printed parts

1.1.2 What are the top requirements for material selection?

Here the surveyors are asked about what they consider to be the most important factor

in terms of material selection. The most voted feature is strength with 72% of votes. In

the second place, we have low cost, and easy to use in third place.

Figure 1. 3 Top requirements for material selection in 3D printing

1.1.3 What are the top challenges for using your 3D printer/s and which

3D printing technologies are mainly used?

As additive manufacturing is increasing its importance among manufacturing techniques,

quality control and post-processing continue to be important challenges for the industry.

Nowadays, for high production rates, the repeatability of the parts needs to be very high

and so the quality control.

The respondents of the survey voted quality control as the first top challenge for 3D

printing, post-processing in second place, and file preparation in third place.

13

Figure 1. 4 Top challenges for using 3D printing technology

In terms of usage, FDM is the most used technique for the respondents, followed by SLS

and SLA.

Figure 1. 5 Most used 3D printing technologies

1.1.4 Benefits and potential of 3D printing

There are lots of benefits to using additive manufacturing instead of conventional

manufacturing methods. Some of the more important ones are described below:

14

• Material waste and energy savings: sometimes, for specific geometries,

material supports will be required to hold the part during printing, but the overall

waste is minimal.

• Cost reduction: specially in rapid prototyping cost savings are considerable. The

3D printer setup is much cheaper than a milling setup for example.

• Complexity in the geometries of the parts: additive manufacturing allows to

produce a much more high range of different geometries compared to traditional

manufacturing methods.

• Weight reduction: 3D printing allows creating light parts with increased strength

because of the ability to create complex geometries. Some examples of these

structures are achieved by topology optimization or lattice structures.

• Quick iterative process: continuous design improvement is much easier and

cost saving with the additive manufacturing process.

To the respondents of the survey, the top benefit is the ability to produce complex

geometry parts, followed by quick iteration and mass customization.

Figure 1. 6 Main benefits of implementing 3D printing technology

In terms of the potential of 3D printing, there is optimism regarding the future of this

technology. The question is, ‘‘What does the industry need to grow to become a standard

of production?’’. The respondents highlighted three main elements limiting the adoption

of this technology: lower cost of entry, more reliable technologies, and new materials.

15

Figure 1. 7 Fields in which 3D printing needs to grow

Figure 1. 8 Potential usages of 3D printing in the future

1.2 FDM process

1.2.1 Working principles and applications

This work is focused on the FDM process. In this section, the basics of this 3D printing

technique are explained.

As explained in section 1.1, FDM belongs to the material extrusion group within 3D

printing techniques. FDM utilizes polymers in a filament form as raw material. When the

filament reaches the nozzle of the machine, it is heated to a molten state and then

extruded through the nozzle. The nozzle head can move in three degrees of freedom

(non-planar 3D extrusion is still under research) to deposit the molten polymer on the

build plate as per the G-code instructions.

The filament is continuously fed through the extruder and nozzle of the machine via the

two rollers rotating in opposite directions. The material is deposited on the build plate

16

layer by layer until the part is completed. Multiple nozzles can be used to print

composites with different polymers (Mwema & Akinlabi).

The resolution and effectiveness of the extrusion largely depend on the properties of the

thermoplastic filament. In Figure 1. 9 the setup and different parts of a typical FDM 3D

printer are shown.

Some of the most important applications for the FDM printing technique are listed below:

• It is a very suitable technology for prototyping and rapid tooling of complex

products in low and medium batches.

• There is an increasing tendency of using the FDM process to produce molds for

injection processes and the toy industry production.

• Personalization in the product development process.

• FDM is being applied in the medical field. There is a special interest in using FDM

to produce molds for casting of implants. However, there are still some problems

with the surface roughness of the FDM parts.

• Printing of electrochemical cells for energy storage devices, drug delivery

components, the printing of conductors (electronics), etc.

1.2.2 Process parameters in FDM

The process parameters in FDM can be classified into two different groups: machine and

material parameters. The material parameters depend on the material of the raw

filament used in the print. Each material has different thermal and mechanical properties

that strongly influence the performance of the process. On the other hand, the machine

Figure 1. 9 Setup of a typical FDM 3D printer

17

properties are defined by the G-code file. Some of them are infill pattern, infill density,

raster angle, or temperature among others.

In Figure 1. 10 some of the most important FDM parameters are summarized.

• The build orientation indicates the angle at which the longest dimension of the

part is inclined to the base of the build plate. An example of different build

orientations is shown in Figure 1. 11.

• The layer resolution indicates the thickness of the layers. It may vary from a

few micrometers to millimeters depending on the accuracy of the printer (see

Figure 1. 12).

Figure 1. 10 FDM process parameters classification

Figure 1. 11 Build orientation of 0º (horizontal),

45º, and 90º (vertical)

18

Figure 1. 12 Different layer thicknesses in the FDM process

• The extrusion temperature plays a very important role in the process because

it must be high enough to melt the filament for easy extrusion. The build plate

temperature is also very important to enhance the adhesion of the part with the

build plate and avoid printing failure.

1.2.3 Quality issues in FDM

The quality and performance of the FDM printed parts depend on the choice of the

process parameters summarised in the previous section.

The adhesion between adjacent layers and the extrusion conditions of the filament are

critical for quality printings. Due to the nature of the process, the surfaces of the FDM

printed parts exhibit the back-and-forth tracks of the printing nozzle known as the stair

stepping effect. An image of this effect is shown in Figure 1. 13.

Due to this effect, the surface roughness in FDM printed objects is one of the major

drawbacks of the process. Surface roughness can be diminished at the design stage of

the part by optimizing the slicing parameters and the print resolution. A direct relation

exists between layer thickness and surface roughness: the higher the layer thickness, the

higher the roughness and viceversa. Two main problems limit the minimum layer

thickness value: one is the resolution of the printing machine and the other is the

Figure 1. 13 Stair stepping effect with different layer

thickness

19

increase in the printing time, which may impact the other aspects of manufacturing,

especially during mass production. There are various post-processing methods to lower

the surface roughness, classified into mechanical (machining, sanding, polishing,

abrasion,...) and chemical (painting, vapour deposition,...) methods.

Another problem that can cause mechanical failure and affect the dimensional accuracy

of the part is the lack of adhesion between beads. Parts with a high density of defects

would experience dimensional errors and low mechanical properties (hardness,

toughness,...). Also if there is not enough adhesion between layers, the filament material

of the adjacent layers will be forced to flow and compensate between the resulting

spaces. This may lead to shrinkage of the component causing dimensional errors in the

part. Additionally, porosity and cracks play a crucial role as stress raisers in the part that

can cause part failure because the component cannot absorb the required energy.

There is a continued effort by the scientific community to understand the influence of the

specific parameters on the FDM process and the quality of the printed parts. The

interactions between these parameters are complex and require multi-objective

approaches to enhance the quality of the printings.

20

In this section, the main procedure of the thesis work is going to be described.

2.1 Simulation of the FDM process

In this work, numerical simulation is used to predict the part distortions for the FDM

process.

2.1.1 Material

PLA was the chosen material for this work. Polylactic acid (PLA) is the most extensively

researched and utilized biodegradable and renewable aliphatic polyester. Is a

thermoplastic, high strength, high modulus polymer that proved to be a good substitute

for petrochemical-based polymers and is useful for a lot of medical applications. Its main

advantages are the following (Farah et al., 2016):

1. Eco-friendly: it is derived from renewable sources, biodegradable, recyclable and

compostable.

2. Biocompatibility: it does not produce toxic or carcinogenic effects in local

tissues, which makes it suitable for biomedical applications.

3. Processibility: PLA has better thermal processibility compared to other

biopolymers, e.g., poly(hydroxyl alkanoate) or poly(ethylene glycol).

4. Energy savings: PLA requires 25-55% less energy to produce than petroleum-

based polymers and estimations show that this can be further reduced to less

than 10% in the future, which makes PLA very competitive in terms of cost. This

is because the glass transition temperature varies between 50 and 70ºC and a

melting point temperature ranging between 180 and 220ºC (relatively low

temperatures).

PLA also has drawbacks that limit its use in some applications (Farah et al., 2016):

1. Poor toughness: it is a brittle polymer with only 10% of elongation at break.

This could be dangerous because the brittle fracture is more difficult to detect

than ductile fracture.

2. Slow degradation rate: PLA degrades through the hydrolysis of backbone ester

groups and the rate depends on PLA crystallinity, molecular weight, and its

distribution, morphology, water diffusion rate into the polymer, and the

stereoisomeric content.

3. Hydrophobicity: the static water contact angle is approximately 80º.

4. Lack of reactive side-chain groups: it is chemically inert with no reactive side-

chain groups making its surface and bulk modifications a challenging task.

Thermomechanical properties used in the numerical model

Due to the limited time to perform this work, the needed properties could not be

measured experimentally, so instead a review of the existing research about PLA

properties was done.

2 Materials and methods

21

There are two main options to include material properties in the numerical model. The

first option is to assume the properties as constant with temperature. The other option is

to include the temperature dependence of the properties in the numerical model. The

second option was chosen because the results are much more accurate (Cattenone et al.,

2019).

The thermomechanical properties used to model the behavior of PLA are shown in the

table below:

Property Units Value Temperature

dependance

Reference

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝜌)
𝐾𝑔

𝑚3
 1240 -

(Bhandari & Lopez-

Anido, 2020)

𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝛼)
1

º𝐶
 6.8 ∙ 10−5 -

(Materials

available, 2021)

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜 (𝜗) - 0.36 - (Farah et al.,

2016)

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 (𝐸)
𝑁

𝑚2

3.5 ∙ 109 30 ºC

(Zhou et al., 2016)

3.35 ∙ 109 40 ºC

2.75 ∙ 109 50 ºC

2.2 ∙ 109 55 ºC

1.75 ∙ 109 60 ºC

0.95 ∙ 109 70 ºC

0.75 ∙ 109 80 ºC

0.6 ∙ 109 90 ºC

0.55 ∙ 109 100 ºC

0.5 ∙ 109 120 ºC

0.49 ∙ 109 150 ºC

𝑌𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝜎𝑦)
𝑁

𝑚2

70 ∙ 106 30 ºC

(Zhou et al., 2016)

55 ∙ 106 40 ºC

40 ∙ 106 50 ºC

32.5 ∙ 106 55 ºC

25 ∙ 106 60 ºC

8 ∙ 106 70 ºC

5 ∙ 106 80 ºC

2 ∙ 106 90 ºC

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (к) 𝑊

𝑚 ∙ º𝐶

0.111 48 ºC (Farah et al.,

2016) 0.197 109 ºC

0.195 190 ºC

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 (𝐶𝑝) 𝐽

𝐾𝑔 ∙ º𝐶

1590 55 ºC (Farah et al.,

2016) 1955 100 ºC

2060 190 ºC

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (ℎ)

𝑊

𝑚2 ∙ º𝐶
 100 -

(Bhandari & Lopez-

Anido, 2020)

𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 (𝜀)
-

0.95 -
(Morgan et al.,

2017)

Table 2. 1 PLA properties used in the numerical model

22

2.1.2 Studied geometries

Three simple geometries have been chosen for the development of this work. The first

one is a simple bead of PLA as shown in Figure 2. 1. The real form of the bead in the FDM

process is elliptical but can be approximated as a rectangle. This assumption is made in

the majority of research in the field of numerical simulation of the FDM process. This first

geometry was chosen because of its simplicity and low computational cost. For this

geometry, the model change method (explained in section 2.1.3.1) was used to simulate

the additive manufacturing process.

The second geometry used was a flat spring as shown in Figure 2. 2. This geometry was

used to compare the results of the simulation with the results (Cattenone et al., 2019)

(benchmark) to make sure that the workflow of the simulation was done correctly.

Although the material used in (Cattenone et al., 2019) is ABS and in this work we are

using PLA, the results are comparable.

Figure 2. 2 Flat spring used as the second geometry for the numerical

simulation (dimensions in mm)

Figure 2. 1 Bead used as the first geometry for

the numerical simulation (dimensions in mm)

23

Finally, the third geometry used in the work was a thin wall (see Figure 2. 3) with four

different infill patterns.

2.1.3 Thermomechanical analysis of the FDM process

The analysis is divided into two steps. Firstly, a thermal analysis is performed, solving

the heat equation. The evolution of the temperature field during the printing is obtained

as an output of this analysis. Then, the resulting temperature field is used in the

mechanical analysis to evaluate residual stresses and distortions of the part. The

software used to perform the analysis is Abaqus (v. 2019 Simulia, Dassault Systems).

2.1.3.1 Element activation

As it was described in section 1.2.1, FDM is an additive manufacturing technique, so the

thermomechanical model must reflect how the material is added with time. In Abaqus

software, two different options exist to add material with time: with the model change

interaction and with the toolpath-mesh intersection module.

1. With the model change interaction (see Figure 2. 4), a set of predefined

elements or geometries are deactivated or reactivated in a specific step. This

option has big limitations for big or complex 3D printed models because a lot of

steps and interactions should be defined in order to complete the whole part, so is

not efficient to use this method for element activation.

Figure 2. 4 Model change interaction

Figure 2. 3 Thin wall used as the third geometry

for the numerical simulation (dimensions in mm)

24

2. Toolpath-mesh intersection module: a toolpath represents the motion of a

given component of a machine. In the case of this work, represents the

movement of the printer nozzle. A toolpath is a geometric shape attached to a

reference point that moves along a path. The path is defined with an event series

format (see Table 2. 2), where the time and position of the reference point are

indicated. The basic information needed to create the event series is: (i) the

nozzle position, (ii) the nozzle velocity, and (iii) the cross-sectional dimensions of

the extruded filament. Field variables can be added to the event series as well.

The typical field variable is the on/off to indicate if the nozzle is extruding material

in one toolpath segment or not.

[time] [x] [y] [z] [on/off]

0 0 0.0002 0 1

0.666 0.0398 0.0002 0 1

0.732 0.0398 0.0038 0 1

1.398 0.0002 0.0038 0 1

1.464 0.0002 0.0002 0 0

1.5 0.0004 0.0014 0 1

 Table 2. 2 Event series format used for the toolpath-mesh intersection module

Three shapes are considered for toolpath-mesh intersection: a point, an infinite

line, and a box (see Figure 2. 5). Depending on the application, the shapes should

be chosen to describe the shape of the tool. In addition to these three shapes, a

scan pattern that describes the idealized motion of the tool instead of the actual

path can be used. In the case of the FDM process, the box shape is used.

The real cross section of the beads in the FDM process is typically characterized

by a rectangular shape with round corners, resulting in an ellipsoidal shape. As a

simplifying assumption, the cross section is assumed to be rectangular with

dimensions equal to the ellipse axes. To perform the element activation, a

marching rectangle is imagined moving following the filament centerline indicated

in the event series (coincident with the marching rectangle center as well). If the

center of an element falls within the ideal volume described by the marching

rectangle, then the element is activated. Figure 2. 6 shows how the elements are

activated in this module.

Figure 2. 5 Different toolpath for different tool shapes

25

2.1.3.2 Thermal analysis

In the FDM process, the filament is extruded at the temperature programmed in the G-

code, the nozzle temperature (𝑇𝑛). The molten filament is deposited on the build plate at

the bed temperature indicated in the G-code as well (𝑇𝑏). In addition, the molten filament

exchanges heat with the surroundings at ambient temperature (𝑇𝑎).

There are three different mechanisms for heat exchange: (i) conduction: heat exchange

with the previously deposited material and with the build plate; (ii) convection: heat

exchange with the surroundings via surface film conditions (eq. (3)) and (iii) radiation:

heat exchange generated by the thermal movement of charged particles in the material

(eq. (4)).

The time-spatial temperature field 𝑇(𝑥, 𝑡) is governed by the heat equation (1):

𝝆𝒄�̇� = 𝜵 ∙ (𝒌𝜵𝑻) + 𝒒 (1)

where ρ is the material density, 𝒄 = 𝒄 (𝑻) is the specific heat capacity, 𝒌 = 𝒌(𝑻) is the

thermal conductivity, q is the internal heat source, and t is the time. The initial conditions

of the problem are the nozzle temperature, build plate temperature and ambient

temperature. The Neumann boundary conditions of the process are defined as in

equation (2):

𝒌
𝝏𝑻

𝝏𝒏
+ 𝒒𝒄 + 𝒒𝒓 = 𝟎 ; 𝒙 ∈ 𝑺(𝒕)

(2)

where 𝑞𝑐 is the heat flux due to convection, 𝑞𝑟 is the heat flux due to radiation, 𝑆(𝑡) is the

external surface of the body and n is a vector normal to the surface of the body.

𝒒𝒄 = 𝒉(𝑻 − 𝑻𝒂) (3)

𝒒𝒓 = 𝒌𝒃(𝑻𝟒 − 𝑻𝒂
𝟒)𝝐 (4)

Where 𝑘𝑏 is the Stefan-Boltzmann constant, h is the convection coefficient and 𝝐 is the

emissivity.

Figure 2. 6 Element activation with the box shape

26

2.1.3.3 Mechanical analysis

Assuming a small strain regime, is common to introduce the decomposition:

𝜺 = 𝜺𝒆 + 𝜺𝒑 + 𝜺𝑻

where ε is the total strain, 𝜀𝑒 is the elastic strain, 𝜀𝑝 is the plastic strain and 𝜀𝑇 is the

thermal strain. The definition of these strains is given by the following equations:

𝜺𝒆 = 𝑫−𝟏𝝈 (5)

𝜺𝒑 = 𝝀𝝈𝒅𝒆𝒗 (6)

𝜺𝑻 = 𝜶(𝑻 − 𝑻𝟎)𝑰 (7)

where 𝜎 is the stress, 𝐸 = 𝐸(𝑇) is the Young’s modulus, 𝜐 is the Poisson’s ratio, 𝛼 = 𝛼(𝑇) is

the thermal expansion coefficient, I is the identity, λ is the plastic flow factor, and 𝜎𝑑𝑒𝑣

represents de deviatoric part of the stress tensor:

𝝈𝒅𝒆𝒗 = 𝝈 −
𝟏

𝟑
𝒕𝒓(𝝈)𝑰 (8)

PLA is a semicrystalline resin. Its thermal properties are strongly influenced by the glass

transition temperature 𝑇𝑔. The glass transition indicates an increasing disorder associated

with the molecular structure. It marks the transition from the glassy to the rubbery

mechanical behavior of the material. Young modulus and yield stress are very influenced

by temperature (see Figure 2. 7 and Figure 2. 8).

2.1.4 Simulation setup with Abaqus 2019

This section is going to be explained based on the wall geometry exposed in section

2.1.2.

2.1.4.1 Thermal analysis

Firstly, the part is created using SolidWorks. Then, the part is imported into ABAQUS.

The simulation setup in this software is based on different modules. The detailed

explanation of the simulation setup is explained below.

Property module:

Figure 2. 8 Yield stress dependance

with temperature

Figure 2. 7 Young’s modulus

dependance with temperature

27

In this module, the PLA properties are defined in table 2.1. Then, a solid homogeneous

section is defined and then it is assigned to the whole part.

Assembly module:

Here an instance is created. In this case, is created as a dependent instance, so it must

be meshed on part. We can also adjust the position of the part with respect to the global

coordinate axes.

Step module:

In this module, we define the different steps of the analysis. Three different steps are

defined: printing, cooling, and detachment steps (see Figure 2. 9).

• The printing step represents the material extrusion process. The time length of

the printing step varies with different 3D printed parts, infill density, infill

patterns, layer thickness, etc. For this step, increments of 4 seconds were chosen

to reduce the computational time of the simulation.

• The next step is the cooling, in which the material extrusion process has ended,

and the part remains attached to the build plate at the bed temperature. The

chosen time length, in this case, is 40 seconds with increments of 10 seconds.

• The final step in the simulation is detachment. Here, the build plate is supposed to

be at ambient temperature, and the part is detached from it. The chosen time

length again is 40 seconds and increments of 10 seconds.

In the three different steps, the transient option is chosen in order to know the evolution

of the temperature field with time (see Figure 2. 10). The maximum number of

increments of the step and the max allowable temperature change per increment is a

number high enough to avoid the termination of the simulation in normal conditions (see

Figure 2. 11).

Figure 2. 9 Different steps in the thermal analysis

28

Interaction module:

Here the convection and thermal radiation between the part and the ambient must be

defined. We only define these interactions for the cooling and detachment steps; for the

printing step, these interactions are defined with the am modeler plugin (explained

later).

For these interactions, we must choose the involved surfaces in the interaction, the

ambient temperature, the convection coefficient (or film coefficient), and the emissivity

(see Figure 2. 13 and Figure 2. 12).

Load module:

In this module, the build plate temperature and the initial temperature must be defined.

For the build plate temperature, we simply select the bottom surface in contact with the

build plate and apply a uniform temperature boundary condition at the bed temperature

(see Figure 2. 14).

During the additive manufacturing process, newly deposited material comes in at a given

initial temperature. This temperature is defined for the whole part in the initial step. We

suppose this temperature as the nozzle temperature of the process (see Figure 2. 15).

Figure 2. 10 Basic tab in

the step editor
Figure 2. 11 Increment definition of

the step

Figure 2. 13 Convection interaction Figure 2. 12 Radiation interaction

29

Abaqus applies the initial temperature to the material inside these elements when they

are first activated.

Mesh module:

The part has to be meshed to perform the numerical calculations. To perform the

simulation accurately, the element height has to be equal to or a submultiple of the layer

thickness (or layer height) (Cattenone et al., 2019). The other dimensions of the

elements are recommended to be equal or submultiples of the bead width in the process.

In this work, the element height is equal to the layer height and the two remaining

dimensions are equal to the bead width (see Figure 2. 16). The dimension selection of

the elements was done with the seed edges tool. For the thermal analysis, we must use

heat transfer elements, in the element type tool (see Figure 2. 17).

Figure 2. 14 Boundary condition for

build plate temperature

Figure 2. 15 Definition of the initial

temperature for material extrusion

Figure 2. 17 Element type selection Figure 2. 16 Meshing of the wall

30

Field output requests:

Here we indicate which outputs we want to extract from the model. In the case of the

thermal model, these outputs are nodal temperature (NT), heat flux vector (HFL), and

reaction fluxes (RFL).

The reminder modules are the job module and the visualization module. In the job

module, we run the simulation and in the visualization module, we can access the results

of the simulation.

2.1.4.2 Mechanical analysis

For the mechanical analysis, we use the option copy model to duplicate the thermal

model. We have to change the step, interaction, load, and mesh modules and the field

output requests of the analysis.

Step module:

In this module, we use the option ‘‘replace’’ to change the thermal steps for general

statics. The total time of the steps and the intervals remain the same as in the thermal

model.

Interaction module:

In the interaction module, we simply delete the convection and radiation interactions. No

mechanical interactions take place in this case.

Load module:

Here, the build temperature boundary condition and the nozzle temperature as a

predefined field are deleted. Instead, the boundary condition of encastre in the bottom of

the part in contact with the build plate is defined (see Figure 2. 18). In addition, the

output of the thermal analysis has to be defined as a predefined field of the mechanical

model (see Figure 2. 19), to consider the deformations due to the thermal gradients. In

the distribution option of the predefined fields, we have to choose “From results or output

database file”, and then select the .odb file that we want to include in the structural

analysis. It is also important to modify the predefined field to apply the correct step of

the thermal analysis to the steps in the mechanical one.

 Figure 2. 18 Encastre boundary condition in the

mechanical analysis

31

Mesh module:

Here, in the assign element type tab, we must change the heat transfer elements for 3D

stress elements.

Field output requests:

In the case of the mechanical model, the requested outputs are the stress components

(S), the total strain components (E), and the translations and rotations (UT and UR).

2.1.4.3 AM modeler abaqus plugin

In the 3D printing process, material addition occurs, and a sequential thermos-

mechanical analysis has to be performed in order to know the distortions of the parts.

Since this problem changes with time and is also temperature dependent, a huge amount

of data is needed, that will be used by user subroutines. To help with the integration of

the data into the subroutines in an easy manner, various data structures have been

developed as keywords in the input file of the analysis.

The AM modeler plug-in is available to guide the definition of the keywords from the CAE.

In the following of this section, the different sections of the plug-in will be explained.

• Creating an AM Model (see Figure 2. 20): here, we can choose between

thermal, structural, and thermo-structural analysis types. The process types are

Abaqus builtins (predefined types of AM processes) and custom processes (you

need to define the types yourself). In the present work, we are simulating FDM,

so we select Abaqus builtins.

Finally, we have to choose between sequential or coupled thermo-structural

analysis. In the sequential option, the temperature distribution of the part is

calculated first, and the results of this analysis are used as a thermal load in the

structural analysis. Thermal stress calculates the shrinkage of the part due to

Figure 2. 19 Thermal analysis output

as an input for the mechanical

32

temperature changes. This method can be applied when the deformation of the

structure does not affect the temperature distribution.

However, if the heat flow greatly varies due to thermal deformation, a coupled

analysis should be performed, since thermal deformation and thermal distribution

will be simultaneously changing in correlation. In the present work, sequential

analysis was chosen, because it is assumed that the thermal distribution does not

vary with thermal deformation.

Once the AM model is created, we can see the AM modeler tab as in Figure 2. 21.

It has three main sections: (i)data setup, (ii)model setup, and (iii)simulation

setup. In the data setup section, types for different data structures are

mentioned: parameter tables, property tables, and event series.

• Data setup: in this section, there are three different data structures:

Parameter tables: are used to group process specific parameters that do not

depend on time, space, or material state. The amount and type of parameters

that are included in the parameter table, are determined by the parameter table

type. For some common AM processes, the required parameter table types are

predefined. The predefined parameter table types are shown in Figure 2. 21

(seven different). For simulating the FDM process, we only need to define three

of them: (i)“ABQ_AM.MaterialDepositionAdvanced” (see Figure 2. 23), in which

we can set the activation type to “full” to indicate that elements are activated and

their volume fractions set to one, or set the activation type to “partial” to indicate

that elements are activated when material deposits inside the element and the

volume fractions progressively increase from the minimum volume fraction

Figure 2. 20 Creating an AM model

Figure 2. 21 AM modeler tab

33

threshold to one as more material deposits; (ii) “ABQ_AM.MaterialDepositionBead

(see Figure 2. 22)”, where we specify the stack direction, bead height, bead

width, and deposition position; (iii) “ABQ_AM.MaterialDeposition (see Figure 2.

24)”, in which we include the event series with the nozzle movement during the

printing and we select “Bead” for the FDM process instead of “Roller”.

Property tables: are used to define dependent parameters. These parameters can

depend on temperature, field, and state dependent variables. Parameters such as

material properties and a film coefficient can be defined this way. In the present

work, no property tables are needed because the temperature dependent

properties of PLA were defined in the property module in FEA Abaqus.

Event series: event series were explained in section 2.1.3.1. There are predefined

options for event series types (see Figure 2. 25). In this present work, the

geometries are quite simple, so the event series were created using excel.

However, in order to simulate more complex geometries, it is recommended to

convert the G-code of the part into an event series format by scripting.

Figure 2. 23 Advanced material

deposition table

Figure 2. 22 Bead features of the

deposition process

Figure 2. 24 Nozzle event series

and bead process

34

Finally, to end the data setup process, we use the table collections. Table

collections are containers that encapsulate parameter tables and/or property

tables. This way, they can be grouped together for reference in user subroutines.

To simulate the FDM process as in the present work, only one table collection

containing the three parameter tables is needed.

• Model setup: once the data is obtained and defined, we must select the parts to

be included in the additive manufacturing analysis. It is also possible to visualize

the nozzle movement described by the event series (see Figure 2. 26).

Figure 2. 25 Event series definition

Figure 2. 26 View of the nozzle movement between 100 s and 550 s

35

• Simulation setup: in this section, we assign the table collection to define the

material arrival process, and we also define cooling by means of convection and

radiation (see Figure 2. 27).

Once the AM model is completely defined, we must go to the job module and run the

thermal model. Once the thermal model is completed, we use it as input for the

structural model, and we run it.

Figure 2. 27 Defining cooling interactions

36

3.1 First geometry (bead)

In this section, the results of the numerical simulation for the bead geometry are

explained. The method for the element activation, in this case, was the model change

interaction, as explained in Section 2.1.3.1. This method consists in deactivating the

whole model in the first step of the analysis and then continuously activating elements

step by step.

The dimensions of the bead are: length = 5 mm; width = 0.4 mm; height = 0.2 mm. The

extrusion temperature was supposed 205 ºC; the bed temperature was set to 60 ºC and

the ambient temperature was assumed to be 22 ºC. In addition, the printing speed of the

bed was supposed to be 60 mm/s, so the printing of the simulated bead would last 0.083

seconds. Then, a cooling step of 5 seconds is computed and finally a detachment step of

other 5 seconds in which the deformation of the bead can be appreciated.

3.1.1 Thermal analysis results

The requested field outputs for the thermal analysis are nodal temperature, heat flux

vector, element temperature and reaction fluxes. The most important field variable is the

nodal temperature (NT), which is going to be the input for the structural analysis. In

Figure 3. 1, the variation of the temperature field during the cooling process is shown.

3 Simulation results

37

Figure 3. 1 Bead temperature field evolution in the cooling step

It is common to perform a mesh convergence study to validate the results in a finite

element analysis. To check the consistency of the solution, the analysis will be performed

for 2x2, 4x4, 8x8, and 16x16 elements. In the figure below, the thermal profiles at the

end of the cooling process for the different mesh sizes are represented.

MESH SIZE 2x2

MESH SIZE 4x4

MESH SIZE 8x8

MESH SIZE 16x16

Figure 3. 2 Temperature field at the end of the cooling step for different meshes

From the results in Figure 3. 2, the temperature fields with the different meshes are

almost the same. This means that the simulation converges. However, another

convergency study is performed. This time, we are going to take three nodes in the

middle section of the bead and plot their temperatures over time for the three different

meshes. One node is at the top of the bead, another node in the middle, and the last one

at the bottom (see Figure 3. 3).

 Figure 3. 3 Selected nodes to

perform the convergence study

38

The results for each of the three points are shown in Figure 3. 4, Figure 3. 5, and Figure

3. 6. We can observe that the results for all of the different meshes are very similar. We

can conclude that the analysis is convergent. In the bottom node, we can notice a big

step between 205 ºC and 60 ºC. This is because of the boundary condition of the build

plate temperature.

0

50

100

150

200

250

-2 0 2 4 6 8 10 12

Te
m

p
e

ra
tu

re
 (

ºC
)

Time (s)

Middle node
2x2 MESH 4x4 MESH 8x8 MESH 16x16 MESH

0

50

100

150

200

250

0 2 4 6 8 10

Te
m

p
e

ra
tu

re
 (

ºC
)

Time (s)

Top node

2x2 MESH 4x4 MESH 8x8 MESH 16x16 MESH

Figure 3. 4 Time-dependent temperature field for the top node and different

meshes

Figure 3. 5 Time-dependent temperature field for the middle node and different

meshes

39

3.1.2 Structural analysis results

The requested field variables in the structural analysis are stresses, strains, and

displacements. We are going to focus on stresses and displacements in the three

directions. In Figure 3. 7 and Figure 3. 8 we can see the evolution of the stress field and

deformation field in the cooling step respectively.

0

50

100

150

200

250

0 2 4 6 8 10

Te
m

p
e

ra
tu

re
 (

ºC
)

Time (s)

Bottom node
2x2 MESH 4x4 MESH 8x8 MESH 16x16 MESH

Figure 3. 6 Time-dependent temperature field for the bottom node and

different meshes

40

Figure 3. 7 Stress field evolution (misses) in the cooling step (between 0.5 and 2 s)

The fact that the highest stresses occur at the bottom part of the bead is noticeable.

There is compressive stress in the top of the bead and tensile stress at the bottom.

Figure 3. 8 Deformation field at the beginning of the cooling step (deformation scaled

by a factor of 10)

As in the thermal analysis, we are going to perform a convergence study for the

structural. In this case, the analysis will be performed for 4x4, 8x8, 16x16, and 32x16

element mesh for the deformation results at the end of the cooling step.

We are going to plot one graphic for each deformation direction (x, y, and z). For each

direction, a specific node will be picked for the convergence analysis (see Figure 3. 9).

41

X direction

Y direction

Z direction

Figure 3. 9 Picked nodes for the structural

convergence analysis

0,00E+00

5,00E-07

1,00E-06

1,50E-06

2,00E-06

2,50E-06

3,00E-06

3,50E-06

4,00E-06

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 (

m
)

Time (s)

Deformation in the x direction

4x4 MESH

8x8 MESH

16x16 MESH

32x16 MESH

Figure 3. 10 Deformation in the x direction for the different mesh sizes

42

-4,50E-06

-4,00E-06

-3,50E-06

-3,00E-06

-2,50E-06

-2,00E-06

-1,50E-06

-1,00E-06

-5,00E-07

0,00E+00

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 (

m
)

Time (s)

Deformation in the y direction

4x4 MESH

8x8 MESH

16x16 MESH

32x16 MESH

Figure 3. 11 Deformation in the y direction for the different mesh sizes

0,00E+00

5,00E-07

1,00E-06

1,50E-06

2,00E-06

2,50E-06

3,00E-06

3,50E-06

4,00E-06

4,50E-06

0 2 4 6 8 10

D
ef

o
rm

at
io

n
 (

m
)

Time (s)

Deformation in the z direction

4x4 MESH

8x8 MESH

16x16 MESH

32x16 MESH

Figure 3. 12 Deformation in the z direction for the different mesh sizes

43

The results of the convergence analysis are shown in Figure 3. 10, Figure 3. 11, and

Figure 3. 12. We can see that the three different components of the deformation have

very similar values with the different mesh sizes.

3.1.3 Part distortion evaluation

In this section, we are going to pick the higher deformation values in each direction.

Then, the distortion percentage of the part in each direction is calculated. The

deformation results are picked from the 32x16 mesh size.

Dimensions of the bead in the different directions:

• X direction: 0.4 mm.

• Y direction: 0.2 mm.

• Z direction: 5 mm.

Maximum displacements in the different directions:

• X direction: 0.00358 mm.

• Y direction: -0.00418 mm.

• Z direction: 0.00414 mm.

Distortion percentage in the different directions:

• X direction =
0.00358

0.4
∙ 100 = 0.895%

• Y direction = |
−0.00418

0.2
∙ 100| = 2.09% (absolute value)

• Z direction =
0.00414

5
∙ 100 = 0.083%

The Y direction (stack direction in this case), has the highest percentage of distortion,

followed by the X direction and finally the Z direction (material deposition direction in this

case).

3.2 Second geometry (flat spring)

In this section, the numerical simulation results of the flat spring are discussed. The

element activation, in this case, is performed by the toolpath-mesh intersection module

integrated into the AM modeler plugin described in section 2.1.4.3. For this reason, the

toolpath describing the nozzle movement is introduced with an event series format and

then the software activates elements based on this event series and the user subroutine

UEPACTIVATIONVOL. The toolpath used for the flat spring is divided into a contour path

and an infill path.

• It has two contour beads (see Figure 3. 13) delimiting the perimeter of the part.

44

• The infill pattern is bidirectional and has a raster angle between layers of 90º.

The stack direction is Y in this case (see Figure 3. 13). The dimension of the flat

spring in this direction is 1 mm. Considering a layer height of 0.2 mm, five layers

are needed to build the part. In the first layer, the extrusion direction is the X, in

the second, the Z direction. This pattern is repeated until the part is completely

finished. The extrusion speed is assumed to be 60 mm/s and the infill density of

the part is 100% (all the elements of the model are activated). The infill pattern is

shown in Figure 3. 14. The total time of the printing is 232.85 seconds.

• Meshing strategy: in order to correctly reproduce the printing process, it is

necessary that the element height is equal to or a submultiple of the filament

height. It is also highly recommended that the element width is equal to or a

submultiple of the filament width (Cattenone et al., 2019). So, in this case, the

element height of the mesh is set to the value of the layer height (0.2 mm) and

the element width and element length are set to the value of the extruded bead

width (0.4 mm). The mesh is shown in Figure 3. 15. In this case, we are not going

to perform the analysis with different mesh sizes because it hardly affects the final

results (Cattenone et al., 2019) and would suppose a high computational cost.

Figure 3. 13 Contour beads in the first layer of the flat spring

Figure 3. 14 Infill pattern used in the flat spring printing

45

3.2.1 Influence of the time step in the analysis

Time step in the printing analysis has a noticeable effect on the performance of the

simulation. Firstly, it strongly influences the activation temperature. The activation

temperature should be equal to the extrusion temperature of the nozzle, but it has been

proven that the higher the time step, the lower the activation temperature (see Figure 3.

16).

Some dispersion metrics of the data are calculated: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎2) =

 1548.7 ; 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) = 39.35 º𝐶; 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑉) = 31.6 %.

Now, a study of the influence of the time step on the maximum stress values (von misses

criterion) is performed (see Figure 3. 17). The dispersion metrics in this case have the

following values: 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎2) = 6.546; 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) =

2.56; 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑉) = 10.4%. We can conclude that the time step influences

the thermal analysis more than the structural one.

Figure 3. 15 Meshing strategy for the flat spring analysis

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

A
ct

iv
at

io
n

 t
em

p
er

at
u

re
 (

ºC
)

Time step (s)

Activation temperature

Figure 3. 16 Element activation temperature as a function of time step

46

In addition, the time step also greatly influences the computational time required to

perform the thermal and structural simulation. The smaller the time interval the greater

the computational time required (see Figure 3. 18).

3.2.2 Thermal analysis results

In the thermal analysis, we want to know the temperature distribution in order to use it

as input in the structural analysis, so the nodal temperature is the main output. For the

thermal analysis, the main temperatures of the process were set to the following values:

• Extrusion temperature = 205 ºC

• Bed temperature = 60 ºC

• Ambient temperature = 22 ºC

Figure 3. 18 Computational time for the analysis as a function of time step

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9

Ti
m

e
(m

in
)

Time step (s)

CPU time of simulation

Thermal analysis Structural analysis

Figure 3. 17 Maximum stress at the end of the cooling step

with different time steps for the analysis

18

20

22

24

26

28

0 2 4 6 8 10

St
re

ss
 (

M
P

a)

Time step (s)

Max stress (von misses)

47

In Figure 3. 19, a section view of the temperature field is shown. It corresponds to the

printing of the last layer. We can see how the bottom layers are reheated as molten

material is deposited above them.

Figure 3. 19 Thermal distribution as the material is continuously added (top layer)

In the FDM process, we can appreciate how the layers below are reheated by the addition

of layers on the top. These reheating processes contribute to inducing thermal gradients

in the part and therefore residual stresses. We are going to compare the thermal

evolution of nodes on the top of the first layer, third layer, and fifth layer (see Figure 3.

20) to see the reheating process in FDM printing.

Figure 3. 20 Selected nodes to plot their

temperature profiles

48

In Figure 3. 21 we can see the thermal profiles for points in different layers. These

results were achieved with a time step of 0.25 seconds, so the activation temperature is

less than 205 ºC (extrusion temperature).

• In the first layer, we can see the first temperature drop between the activation

temperature and a temperature a bit lower than the bed temperature (60 ºC).

Then, a reheat takes place due to the deposition of the second layer. The same

process is repeated for the third, fourth and fifth layers. The reheating

temperature decreases layer by layer because there is more distance between the

first layer and the new extruded layers.

• For the third layer node, we can also see the temperature drop at the beginning

between the activation temperature and a temperature around 47 ºC. Then, two

reheat processes take place due to the deposition of the fourth and fifth layers.

• Finally, for the fifth layer node, we only have the initial temperature drop because

is the top layer.

• At time of 282 seconds, the bed temperature condition is removed and there is a

final cooling of the part to the ambient temperature.

3.2.3 Structural analysis results

In Figure 3. 22 and Figure 3. 23 we can see the results for the stress and deformation

fields in the flat spring geometry. We can see the evolution of the stress field at the

beginning of the cooling step and the evolution of the deformation field at the end of the

detachment step, respectively.

For the stress field evolution, we can see that the right side of the part has the lowest

stress values. This is because it was the last printed region of the part and the cooling

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

Te
m

p
er

at
u

re
 (

ºC
)

Time (s)

Temperature evolution in different layers

First layer node

Third layer node

Fifth layer node

Figure 3. 21 Thermal profiles of three nodes in different printed layers

Second

layer

deposition

Third

layer

deposition

Fourth

layer

deposition

Fifth layer

deposition

Bed

temperature

removal

Ambient

temperature

Bed

temperature

49

happens later than in the rest. In addition, we can notice an increase in the residual

stress values due to the cooling process.

Figure 3. 22 Von Misses stress field at the beginning of the cooling step

For the deformation field in the detachment step (see Figure 3. 23), we can see that

some of the bottom nodes of the spring are still in contact with the build plate (dark blue,

with zero displacement), and others have different displacements due to the shrinkage

effect. The corners of the model have the highest displacement values in the stack

direction. The displacements in Figure 3. 23 were scaled by a factor of 5 to see the

deformation pattern clearly.

50

Figure 3. 23 Deformation field at the end of the detachment step with a scale

deformation factor of 5

3.2.4 Part distortion evaluation

Dimensions of the flat spring in the different directions:

• X direction: 65 mm

• Y direction: 1 mm (stack direction in this case)

• Z direction: 40 mm

• Thickness of the flat spring pattern: 5 mm

Maximum displacements in the different directions:

• X direction (see Figure 3. 24): -0.0314 mm.

• Y direction (see Figure 3. 25): 0.278 mm.

• Z direction (see Figure 3. 26): 0.0511 mm.

Figure 3. 24 Displacement field in the X direction

Figure 3. 25 Displacement field in the Y direction

Figure 3. 26 Displacement field in the Z direction

51

Distortion percentages in different directions (X and Z directions compared to the

thickness of the flat spring pattern):

• X direction =
|−0.0314|

5
∙ 100 = 0.63 %

• Y direction =
0.278

1
∙ 100 = 27.8%

• Z direction =
0.0511

5
∙ 100 = 1.02%

From the results we can extract that deformation in the stack direction is much higher

than in the rest of the dimensions due to warpage. There is a high contact area between

the piece and the build plate, and the dimension in the stack direction is only 1 mm,

which also contributes to the high displacement value in this direction.

3.2.5 Validation of the results

(Cattenone et al., 2019) was used as a benchmark for the flat spring simulation. In this

work, the simulation is performed with PLA material instead ABS and with different

process parameters. But the field distribution should be comparable, so we use

(Cattenone et al., 2019) to validate the results. If we validate the results, this means

that the numerical simulation procedure is correct, so we can perform analysis in the

same way to different geometries, such as the thin wall explained in section 2.1.2.

We are only going to compare the structural results. This is because the structural

analysis depends on the thermal results. So if the thermal results are not in agreement

with (Cattenone et al., 2019), the structural ones will not be either.

Figure 3. 27 On the left, stress results extracted from (Cattenone et al., 2019), on the

right, stress results from this present work (end of the printing step)

In Figure 3. 27, we can see the stress distribution comparison between both works at the

end of the printing process. The stress distribution is almost the same, with the smaller

stresses in the corners of the model and almost a uniform distribution in the rest of the

part. The values in the present work are higher, this is because we are using PLA, which

has higher values for Young’s modulus and yield stress than in the case of ABS.

52

Figure 3. 28 On the left, deformation results for the stack direction extracted from

(Cattenone et al., 2019), on the right, deformation results for the stack direction

extracted from the present work (end of the detachment step)

In Figure 3. 28, we can see the deformation results for the stack direction in each work.

There are big similarities between the two deformation fields. The values in the present

work are smaller than in (Cattenone et al., 2019), because the thermal expansion

coefficient in the ABS was set to 9 𝑥 10−5 º𝐶−1 and in the PLA was set to 6.8 𝑥 10−5 º𝐶−1.

3.3 Third geometry (thin wall)

As with the flat spring, the element activation method is performed by the toolpath-mesh

intersection module integrated into the AM modeler plugin in Abaqus. In this case, we are

going to study four different infill patterns, so four different event series were generated

representing the corresponding nozzle movement. These event series were generated

with excel because of the simplicity of the part. We are also going to perform a

parametric study in sections later to see the impact of some parameters on the part

distortion.

• In this case, only one contour bead is printed (see Figure 3. 29). The layer

thickness, in this case, is also set to 0.2 mm. The wall height is 30 mm, so there

are 150 layers in the printing process. This entails a high computational cost for

the analysis. The printing time for the thin wall strongly varies depending on the

infill pattern, being the minimum printing time of 431.83 seconds for the first infill

pattern. The dimensions of the wall are 30 mm in height; 40 mm long and 4 mm

wide.

Figure 3. 29 Contour bead for the thin wall geometry

53

• For the meshing strategy, in this case, we set the element heigh as the filament

height (0.2 mm) and the element width and length as the filament width (0.4

mm) (see Figure 3. 30).

3.3.1 Infill patterns

In this section, the four different infill patterns are described in detail. As it was said, the

infill pattern influences the printing and computational times.

Infill pattern nº1:

The first infill pattern is shown in Figure 3. 31. It is a unidirectional pattern printed in the

X direction. It has 0.8 mm spacing between beads. The printing time for the whole part

with this pattern is 431.83 seconds. For this pattern we can calculate the part density as

follows:

• Total area of the base = 40 ∙ 4 = 160 𝑚𝑚2

• Contour area = 2 ∙ 39.2 ∙ 0.4 + 2 ∙ 4 ∙ 0.4 = 34.56 𝑚𝑚2

• Infill area = 2 ∙ 39.2 ∙ 0.4 = 31.36 𝑚𝑚2

• Part density =
34.56+31.36

160
∙ 100 = 41.2%

Figure 3. 31 First infill pattern

Figure 3. 30 Meshing strategy for the thin wall

54

Infill pattern nº2:

The second infill pattern is shown in Figure 3. 32. It is also a unidirectional pattern

printed in the X direction. It has a 0.4 mm spacing between beads. The printing time for

the whole part, in this case, is 661.79 seconds. The part density in this case:

• Total area of the base = 40 ∙ 4 = 160 𝑚𝑚2

• Contour area = 34.56 𝑚𝑚2

• Infill area = 4 ∙ 39.2 ∙ 0.4 = 62.72 𝑚𝑚2

• Part density =
34.56+62.72

160
∙ 100 = 60.8%

Figure 3. 32 Second infill pattern

Infill pattern nº3:

The third infill pattern is shown in Figure 3. 33. It is a unidirectional pattern but in this

case printed in the Y direction. The spacing between beads is 6 mm. The printing time is

435.689 seconds and the part density:

• Total area of the base = 160 𝑚𝑚2

• Contour area = 34.56 𝑚𝑚2

• Infill area = 3 ∙ 0.8 ∙ 3.2 + 2 ∙ 0.4 ∙ 3.2 = 10.24 𝑚𝑚2

• Part density =
34.56+10.24

160
∙ 100 = 28%

Infill pattern nº4:

The fourth and final infill pattern is shown in Figure 3. 34. In this case, is a bidirectional

pattern printed in the X and Y directions with a raster angle of 90º. The printing time is

642.66 seconds and the part density:

• Total area of the base = 160 𝑚𝑚2

• Contour area = 34.56 𝑚𝑚2

Figure 3. 33 Third infill pattern

55

• Infill area = 2 ∙ 0.4 ∙ 3.2 + 3 ∙ 0.8 ∙ 3.2 + 2 ∙ 39.2 ∙ 0.4 = 41.6 𝑚𝑚2

• Part density =
31.36+34.56

160
∙ 100 = 47.6%

Figure 3. 34 Fourth infill pattern

3.3.2 Thermal analysis results

Before starting with the results, some aspects of the simulation have to be clarified. As it

was said in sections before, the simulation requires high computational time. So, in order

to simulate in a comprehensive time-lapse, the printing step was simulated with a time

step of 4 seconds both for the thermal and structural simulations. This will cause the

activation temperature will not be the same as the extrusion temperature as it is

explained in section 3.2.1.

In Figure 3. 35, the thermal distributions of the different infill patterns are shown for the

printing time of 220 seconds. The extrusion temperature was set to 205 ºC and the bed

temperature to 60 ºC.

Figure 3. 35 Thermal distributions of the four different infill patterns at the same

printing time

56

We can appreciate how the bottom layers are at the bed temperature, then there is a

transition to the ambient temperature (dark blue) and the newly extruded material is

represented by the red color. We can also notice that infill patterns 1 and 3 have more

extruded layers at 220 seconds of printing. This is because the part density in these infill

patterns is less than in the second and fourth patterns.

In Figure 3. 36, we pick the same node in the outer surface of the wall for all the

different infill patterns and compare the thermal evolution with time. In Figure 3. 37, we

pick an internal node, and we do the same. The picked nodes are in the middle of the X

dimension of the wall and in the top layer.

0

10

20

30

40

50

60

70

80

90

400 450 500 550 600 650 700 750

Te
m

p
er

at
u

re
 (

ºC
)

Printing time (s)

Outer node temperature

pattern 1 pattern 2 pattern 3 pattern 4

Figure 3. 36 Outer node temperature distribution in the top layer

Figure 3. 37 Inner node temperature distribution in the top layer

0

10

20

30

40

50

60

70

80

400 450 500 550 600 650 700 750

Te
m

p
er

at
u

re
 (

ºC
)

Printing time (s)

Inner node temperature

pattern 1 pattern 2 pattern 3 pattern 4

57

From Figure 3. 37 and Figure 3. 36, we can notice that the activation temperature for

infill patterns 1 and 3 is higher than for patterns 2 and 4, which are the patterns with

less part density. Temperatures tend to ambient temperature as time goes on. A rough

calculation of the cooling rate at the beginning of the nodes cooling was performed taking

into account the two first points of each infill pattern (time, temperature) and calculating

the slope.

For the outer node:

• Infill pattern 1: -9.4 ºC/s

• Infill pattern 2: -6.82 ºC/s

• Infill pattern 3: -8.76 ºC/s

• Infill pattern 4: -6.28 ºC/s

For the inner node:

• Infill pattern 1: -3.6 ºC/s

• Infill pattern 2: -11.55 ºC/s

• Infill pattern 3: -7.77 ºC/s

• Infill pattern 4: -6.8 ºC/s

The cooling rate is related to the polymer crystallization temperature (Poel et al., 2011).

The higher the cooling rate, the lower the crystallization temperature of the polymer.

3.3.3 Structural analysis results

In Figure 3. 38, the stress field for the different infill patterns is shown. The extrusion

temperature was set to 205 ºC and the bed temperature was set to 60 ºC.

Infill pattern nº1

Infill pattern nº2

Infill pattern nº3

Infill pattern nº4

58

Figure 3. 38 Stress field at the end of the cooling process

From Figure 3. 38, we can see that the higher stresses take place in the bottom corners

and along the edges in the stack direction. The higher stresses take place in infill

patterns nº2 and nº4 (very close to each other), followed by pattern nº1 and finally

pattern nº3 with the lowest stress values.

In Figure 3. 39, Figure 3. 40, and Figure 3. 41, we can see the nodal displacement

results in the three different directions for the different infill patterns. The results are

scaled by a factor of 10 to clarify the deformation behavior of the part.

Displacements in the X direction

Infill pattern nº1

Infill pattern nº2

Infill pattern nº3

Infill pattern nº4

Figure 3. 39 Displacement field in the X direction for different infill patterns

For the X displacements, we can notice symmetry in the deformation pattern with respect

to the plane x=20 mm in all four infill patterns. The maximum displacement in the X

direction takes place for the infill pattern nº 4, with a value of -0.0377 mm, followed by

infill pattern nº 2 with 0.0376 mm, infill pattern nº 3 with -0.0362 and finally, the infill

pattern nº 1 with 0.0358 mm.

59

Displacements in the Y direction

Infill pattern nº1

Infill pattern nº2

Infill pattern nº3

Infill pattern nº4

Figure 3. 40 Displacement field in the Y direction for different infill patterns

Displacements in the Z direction

Infill pattern nº1

Infill pattern nº2

Infill pattern nº3

Infill pattern nº4

60

Figure 3. 41 Displacement field in the Z direction for different infill patterns

For the Y displacements (see Figure 3. 40), we can assume symmetry in the deformation

pattern with respect to the plane Y=2mm except for the infill pattern nº 2. Anyway, Y

displacement values are not as symmetric as the X displacement values.

The maximum displacement for the Y direction takes place for the infill pattern nº 2, with

a value of 0.0332 mm, followed by infill pattern nº 1 with -0.0242 mm, infill pattern nº

4, with -0.013 mm and finally infill pattern nº 3 with -0.0128 mm. Infill patterns nº4 and

nº3 are the only ones with infill patterns in the Y direction, so this is the reason why the

deformation in the Y direction is smaller.

For the Z displacements, there is symmetry with respect to the plane Y=20 mm. The

maximum displacement for the Z direction takes place for the infill pattern nº 2, with a

value of -0.0058 mm, followed by infill pattern nº 4 with -0.00538 mm, infill pattern nº 1

with -0.00536 mm and finally, infill pattern nº 3 with -0.00482 mm.

3.3.4 Part distortion evaluation

Dimensions in the different directions of the thin wall:

• X direction: 40 mm

• Y direction: 4 mm

• Z direction: 30 mm

-Infill pattern nº1

Maximum displacements in the different directions:

• X direction: -0.0358 mm

• Y direction: -0.0242 mm

• Z direction: -0.0536 mm

Distortion percentages in different directions:

• X direction =
|−0.0358|

40
∙ 100 = 0.0895%

• Y direction =
|−0.0242|

4
∙ 100 = 0.605%

• Z direction =
|−0.0536|

30
∙ 100 = 0.179%

-Infill pattern nº2

Maximum displacements in the different directions:

• X direction: 0.0376 mm

• Y direction: 0.0332 mm

• Z direction: -0.058 mm

Distortion percentages in the different directions:

• X direction = 0.094%

• Y direction = 0.83%

61

• Z direction = 0.19%

-Infill pattern nº3

Maximum displacements in the different directions:

• X direction: -0.0362 mm

• Y direction: -0.0128 mm

• Z direction: -0.0482 mm

Distortion percentages in the different directions:

• X direction = 0.09%

• Y direction = 0.32%

• Z direction = 0.16%

-Infill pattern nº4

Maximum displacements in the different directions:

• X direction: -0.0377 mm

• Y direction: -0.013 mm

• Z direction: -0.054 mm

Distortion percentage in the different directions:

• X direction = 0.094%

• Y direction = 0.325%

• Z direction = 0.18%

3.3.5 Parametric study of the influence of process parameters in the part

distortion

In this section, we are performing a parametric study to see the influence of three

different process parameters on the part distortion (for the thin wall geometry). The

three parameters that we are analyzing here are infill pattern, extrusion temperature,

and bed temperature. These are called factors, and we are performing the analysis with

different values of these factors, called levels. The factors and their levels are the

following:

• Infill pattern: pattern 1, pattern 2, pattern 3, and pattern 4 (the same infill

patterns explained in section 3.3.1).

• Extrusion temperature: 195 ºC, 205 ºC and 210 ºC.

• Bed temperature: 55 ºC, 60 ºC and 65 ºC

To perform the experiments with all the combinations of levels, we should perform 4 ∙ 3 ∙

3 = 36 different simulations. All combinations of factors are shown in Table 3. 1, Table 3.

2, and Table 3. 3.

Pattern Extrusion temperature

1 195 ºC 195 ºC 195 ºC

2 195 ºC 195 ºC 195 ºC

3 195 ºC 195 ºC 195 ºC

4 195 ºC 195 ºC 195 ºC

62

Bed temperature 55 ºC 60 ºC 65 ºC

Table 3. 1 Combination of levels of the three different factors (extrusion temperature =

195 ºC)

Pattern Extrusion temperature

1 205 ºC 205 ºC 205 ºC

2 205 ºC 205 ºC 205 ºC

3 205 ºC 205 ºC 205 ºC

4 205 ºC 205 ºC 205 ºC

Bed temperature 55 ºC 60 ºC 65 ºC

Table 3. 2 Combinations of levels of the three different factors (extrusion temperature =

205 ºC)

Pattern Extrusion temperature

1 210 ºC 210 ºC 210 ºC

2 210 ºC 210 ºC 210 ºC

3 210 ºC 210 ºC 210 ºC

4 210 ºC 210 ºC 210 ºC

Bed temperature 55 ºC 60 ºC 65 ºC

Table 3. 3 Combinations of levels of the three different factors (extrusion temperature =

210 ºC)

The objective is to calculate the influence of each parameter in the maximum

displacements of the different directions (X, Y, and Z) using the ANOVA table tool. For

doing this, we will need to calculate three different ANOVA tables, one for each direction.

The results of the experiments are shown in Table 3. 4. The deformation values are given

in absolute value and in milimeters.

nº Pattern Extrusion

temperature

Bed

temperature

X maximum

displacement

Y maximum

displacement

Z maximum

displacement

1 1 195 ºC 55 ºC 0.0359 0.0238 0.0529

2 1 205 ºC 55 ºC 0.0360 0.0242 0.0533

3 1 210 ºC 55 ºC 0.0360 0.0246 0.0538

4 1 195 ºC 60 ºC 0.0359 0.0238 0.0531

5 1 205 ºC 60 ºC 0.0359 0.0242 0.0536

6 1 210 ºC 60 ºC 0.0360 0.0243 0.0538

7 1 195 ºC 65 ºC 0.0358 0.0238 0.0534

8 1 205 ºC 65 ºC 0.0359 0.0242 0.0538

9 1 210 ºC 65 ºC 0.0359 0.0244 0.0540

10 2 195 ºC 55 ºC 0.0375 0.0330 0.0573

11 2 205 ºC 55 ºC 0.0377 0.0328 0.0578

12 2 210 ºC 55 ºC 0.0377 0.0328 0.0580

13 2 195 ºC 60 ºC 0.0375 0.0334 0.0576

14 2 205 ºC 60 ºC 0.0376 0.0332 0.0581

15 2 210 ºC 60 ºC 0.0378 0.0332 0.0583

16 2 195 ºC 65 ºC 0.0375 0.0338 0.0580

17 2 205 ºC 65 ºC 0.0376 0.0337 0.0584

18 2 210 ºC 65 ºC 0.0376 0.0337 0.0586

19 3 195 ºC 55 ºC 0.0361 0.0125 0.0475

20 3 205 ºC 55 ºC 0.0362 0.0127 0.0479

63

21 3 210 ºC 55 ºC 0.0363 0.0127 0.0481

22 3 195 ºC 60 ºC 0.0361 0.0126 0.0478

23 3 205 ºC 60 ºC 0.0362 0.0128 0.0482

24 3 210 ºC 60 ºC 0.0362 0.0128 0.0484

25 3 195 ºC 65 ºC 0.0360 0.0128 0.0481

26 3 205 ºC 65 ºC 0.0361 0.0129 0.0485

27 3 210 ºC 65 ºC 0.0362 0.0130 0.0487

28 4 195 ºC 55 ºC 0.0378 0.0128 0.0531

29 4 205 ºC 55 ºC 0.0378 0.0130 0.0535

30 4 210 ºC 55 ºC 0.0377 0.0130 0.0537

31 4 195 ºC 60 ºC 0.0378 0.0129 0.0534

32 4 205 ºC 60 ºC 0.0377 0.0130 0.0538

33 4 210 ºC 60 ºC 0.0377 0.0131 0.0540

34 4 195 ºC 65 ºC 0.0378 0.0130 0.0537

35 4 205 ºC 65 ºC 0.0377 0.0131 0.0541

36 4 210 ºC 65 ºC 0.0377 0.0132 0.0543

Table 3. 4 Results for all the 36 combinations of levels

In this study, the additive model is going to be used for ANOVA. The additive model

assumes that the effects on the outcome of a particular level change for one explanatory

variable do not depend on the level of another explanatory variable. If we used the

interaction model, overfitting would happen.

ANOVA table for the X displacement and coefficients of the linear additive model

To accept the hypothesis that one factor is statistically relevant, we are assuming a level

of significance higher than 95%, or what is the same, a p-value less than 0.05.

Table 3. 5 ANOVA table for the X direction deformation

64

In the case of Table 3. 5, the results show that all the factors are statistically relevant for

the X direction displacement. The infill pattern is the most influential factor (lowest p-

value), followed by the extrusion temperature and finally the bed temperature (highest

p-value).

ANOVA table for the Y displacement and coefficients of the linear additive model

Table 3. 6 ANOVA table for the Y direction deformation

As shown in Table 3. 6, there are only two statistically relevant factors for the Y direction

displacement: the infill pattern and the bed temperature. Both have lower p-values than

0.05 but the infill pattern has more statistical significance. On the contrary, the extrusion

temperature, in this case, is not statistically relevant because its p-value is higher than

0.05.

ANOVA table for the Z displacement

65

Table 3. 7 ANOVA table for the Z direction deformation

In the case of Table 3. 7, the three factors have high statistical significance. First, the

highest F value corresponds to the infill pattern (more statistical significance), followed

by the extrusion temperature and, finally the bed temperature.

66

Until now, we have only used numerical simulation for predicting the deformations due to

the FDM process. As we saw in other sections of this present work, the numerical

simulation of this type of process involves a high computational and time cost.

In this situation, we need to use other methods that allow us to achieve results in a

reasonable time and computational cost. This could be an opportunity to use a machine

learning model.

In this section, the basic machine learning algorithms are described with some examples,

and then a more detailed analysis is made of the neural networks applied to FDM.

4.1 Machine learning algorithms

An algorithm can be described as a set of logical instructions following a specific flow in

order to solve one specific problem.

Machine learning (ML) is a branch of artificial intelligence (AI) and computer science.

There are a lot of possible definitions for machine learning, for example: ‘‘A computer

program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with

experience E’’.

The most common machine learning algorithms can be divided into three main groups:

supervised learning, unsupervised learning, and reinforcement learning. In the upcoming

sections, these three groups are described (Brownlee, 2016).

4.1.1 Supervised learning

These are algorithms that use a known dataset (called training dataset) to make

predictions. The training dataset includes input data and response values. From it, the

supervised learning algorithm seeks to build a model that can make predictions of the

response values for a new dataset.

A common example used to explain the supervised learning algorithms is the similarity

with a classroom scene. The teacher explains difficult content to the students that can

not learn on their own by giving them the answers. This is how we teach the machine

with supervised learning algorithms.

Supervised machine learning includes two major processes: classification and regression.

• Classification: in this type of process, a set of data is categorized into classes. It

can be a binary classification problem (e.g. the prediction of whether it will rain or

not, with two outputs ‘‘yes’’ or ‘‘not’’) or a multi-class classification problem (more

possible outputs). The most common classification problems nowadays are speech

recognition, face detection, handwriting recognition, document falsification, etc.

• Regression: it is a model prediction method in which the output is a continuous

numerical value. It establishes a relationship between a single dependent variable

dependent on several independent ones. For example, calculate a house price

based on different parameters (e.g. house size, number of rooms, etc.).

4 Machine Learning applications in FDM

67

Now we are going to talk about the most used algorithms for supervised learning. Some

of these algorithms can be used in regression, classification, or even both.

1. Linear regression

It is only used in regression problems and is one of the most used because of its

simplicity in implementation.

Linear regression is a linear model, i.e., a model that assumes that the output variable

(y) can be calculated as a linear combination of the input variables (x). When we only

have a single input variable, it is called simple linear regression (see Figure 4. 1).

Otherwise, it is called multiple linear regression.

A linear regression model assigns coefficients to each input value. The representation of

a simple regression problem would be:

𝑦 = 𝛼0 + 𝛼1 ∙ 𝑥

which is the equation of a straight line, being 𝛼0 the so-called intercept or the bias

coefficient and 𝛼1 the weight of the input variable x.

Training a linear regression model means estimating the values of the coefficients that

correlate the input values with the output value. There are different techniques to

estimate these coefficients. Here we are going to talk about the most used three

techniques.

• Ordinary least squares: seeks to minimize the sum of the squared residuals.

Given a regression line through the data, we calculate the distance from each

point of the training data to the regression line, square it, and sum all of the

squared errors together. This is the quantity that the least square method seeks

to minimize.

• Gradient descent: starts assigning random values to each coefficient. For each

pair of input and output values, the sum of the squared errors is calculated. A

learning rate is used as a scale factor and the coefficients are updated in the

direction of minimizing the error. It is an iterative process repeated until a

minimum sum squared error is achieved or no further improvement is possible.

The learning rate defines the size of the improvement step to take in each

iteration.

• Regularization: these methods seek to minimize the squared error of the model

and also reduce the complexity of the model. These methods are effective to use

when there is collinearity in the input data and least squares would overfit the

training data.

68

2. Logistic regression

It is the primary option for binary classification problems. The function used at the core

of the method is the logistic or sigmoid function (see Figure 4. 2). It is like a smooth step

function. For very negative values, the sigmoid function returns values close to 0; on the

contrary, for very positive values the function returns values close to 1. The difference

between the sigmoid and step function is that for any input value, the sigmoid function

will return a value in the interval (0,1). The analytical expression of the logistic function:

1

1 + 𝑒−𝑥

Being x the input value.

The representation of a logistic regression model looks similar to the representation in

linear regression. In this case, we are also calculating linear coefficients to predict an

output dependent on input values, but the output is a binary value rather than a

numerical value. The representation of a logistic regression model is shown below:

𝑦 =
𝑒𝛼0+𝛼1∙𝑥

1 + 𝑒𝛼0+𝛼1∙𝑥

The logistic regression models the probability of the default class. Then, the probability

prediction must be transformed into a binary value (0 or 1). Again, to estimate the

coefficients of the model (learning process), an algorithm must be used. This is done

using maximum-likelihood estimation from the training data. This learning algorithm is

used by a variety of machine learning algorithms, although it does make assumptions

about the distribution of the data. The best coefficients would result in a model that

Figure 4. 1 Representation of a simple linear regression problem

Figure 4. 2 Logistic function representation

69

would predict a value very close to 1 for the default class and a value very close to 0 for

the other class.

3. K-Nearest neighbors

This algorithm can be used for classification and regression problems. KNN has no model

other than storing the entire dataset, learning is not required in this case.

Predictions with this algorithm are made for a new data point by searching through the

entire training set for the K most similar instances and summarizing the output variable

for those K instances. For classification this might be the mode class value, in regression

this might be the mean output variable.

A distance measure has to be used in order to determine which of the K instances in the

dataset are most similar to a new input. For real value input variables, the euclidean

distance is the most used one, but there are other popular distance measures (e.g.,

Minkowski distance, Manhattan distance, etc.). This measure has to be selected based on

the properties of the data.

KNN works well with a small number of input variables but struggles when the number of

input variables is very large. This is because the dimensionality of the problem increases

as more input values are added. Distance in high-dimensional problems is unintuitive.

4. Decision tree

This algorithm is also called CART (Classification and Regression Trees). It can be used

for classification or regression predictive modeling. The representation of a decision tree

is a binary tree where each node represents an input variable (x) and a split on that

variable. The leaf nodes contain an output variable (y), used to make a prediction. The

tree can be stored as a graph or a set of rules (see Figure 4. 4).

Figure 4. 3 Example of how KNN algorithm works

70

Creating a binary decision tree is a process of dividing up the input space. Recursive

binary splitting is used to divide the input space. It consists of a numerical procedure

where all the values are lined up and different split points are tried and tested using a

cost function. The split with the lowest cost is selected. For regression, the cost function

is the sum squared error across all training examples:

∑(𝑦𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)2

𝑛

𝑖=1

Where y is the output for the training example and prediction is the predicted output of

the tree. For classification problems, the Gini cost function is used, and it provides an

indicator of how mixed the training data assigned to each node is (how pure the leaf

nodes are):

𝐺 = ∑ 𝑝𝑘 ∙ (1 − 𝑝𝑘)

𝑛

𝑘=1

Where G is the cost function, 𝑝𝑘 is the number of training instances with class k in the

rectangle of interest. A node that has all classes of the same type will have G=0. The

algorithm must have a stopping criterion, and the most used one is to use a minimum

count of the number of training instances assigned to each leaf node.

5. Support Vector Machines (SVM)

Maximal-Margin Classifier: hypothetical classifier that best explains how SVM works in

practice. It consists in calculating a hyperplane that splits the input variable space (e.g.,

two input variables create a two-dimensional space). In two dimensions, the hyperplane

can be visualized as a line with the notation:

𝛼0 + 𝛼1 ∙ 𝑥1 + 𝛼2 ∙ 𝑥2 = 0

Where 𝑥1 and 𝑥2 are the input variables, 𝛼1 and 𝛼2 are the coefficients that determine the

slope of the line, and 𝛼0 is the intercept. The coefficients are found by the learning

algorithm. Using this line, classifications can be made.

Figure 4. 4 Decision tree structure

71

The distance between the line and the closest data points is called the margin. The

optimal line is the one that can separate two classes with the largest margin. The

relevant points to defining the line are called support vectors.

Soft Margin Classifier: real data is messy and cannot be separated perfectly with a

hyperplane. In this case, the constraint of maximizing the margin is relaxed, so some

points in the training data can violate the separating line. New coefficients are introduced

to give the margin wiggle room in each dimension (slack variables). The parameter that

tunes this margin wiggle is called C. It defines the magnitude of the wiggle allowed

across all dimensions. The higher the value of C, the more wiggle allowed.

SVM (kernels): SVM is implemented using a kernel. The learning of the hyperplane in

linear SVM is done by transforming the problem using some linear algebra. The equation

for making a prediction for a new input:

𝑓(𝑥) = 𝐵0 + ∑(𝑎𝑖 ∗ (𝑥 ∗ 𝑥𝑖))

𝑛

𝑖=1

Where 𝑥𝑖 are each of the support vectors, x is the input, and 𝐵0 and 𝑎𝑖 are estimated from

the training data by the learning algorithm. There are different kernels apart from the

linear that allow different kinds of classification.

The most used method to calculate the different parameters of the SVM model is the

Sequential Minimal Optimization (SMO), which breaks the problem into sub-problems

that can be solved analytically.

6. Bagging and Random forest

Random Forest is a type of ensemble machine learning algorithm called Bootstrap

Aggregation or bagging.

Bootstrap method: used to estimate a quantity from a data sample. The procedure is to

create many random sub-samples with replacement of the original data set, extract the

quantity from each sub-sample and finally calculate the average. This method is used in

machine learning algorithms to estimate the learning coefficients of different models.

Figure 4. 5 SVM setup for a 2-Dimensional problem

72

Bootstrap Aggregation (Bagging): this is a simple and powerful ensemble method. It

combines the predictions from multiple machine learning algorithms to make more

accurate predictions. Bagging can be used to reduce the variance of some algorithms

(like decision trees). Decision trees are sensitive to specific data when they are trained.

If the training data is changed (e.g. trained with a subset of the data) the predictions

may differ. So in this case we are generating a lot of different samples of data and

decreasing the variance of the model. The only parameter when bagging decision trees is

the number of trees to create.

Random Forests are an improvement over bagged decision trees. Bagged decision trees

still have a lot of structural similarities with decision trees that can result in high

correlation in their predictions. In Decision Trees, when selecting a split point, the

learning algorithm is allowed to look through all variables. In Random Forest, the

learning algorithm is limited to a random sample of features which to search. This

number has to be specified as a parameter of the algorithm.

7. Naive Bayes

It is a simple but powerful classification algorithm. This algorithm is based on the Bayes’

Theorem with the independence assumptions between predictors. Based on naive Bayes,

Gaussian naive Bayes is used for classification based on the binomial distribution of data.

𝑃(𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑐𝑙𝑎𝑠𝑠) ∙ 𝑃(𝑐𝑙𝑎𝑠𝑠)

𝑃(𝑑𝑎𝑡𝑎)

Where P(class/data) is the probability of a new data point having either class, given the

data point, which is the value that we want to calculate; P(class) is the prior probability

of class; P(data/class) is the probability of predictor given class and P(data) is the prior

probability of predictor or marginal likelihood. Finally, the class with a higher probability

is the chosen one.

Figure 4. 6 Structure of a random forest classifier

73

4.1.2 Unsupervised learning

In unsupervised learning algorithms, direct control of the developer is not needed. The

desired results are unknown and yet to be defined, and they work with unlabeled data.

Some usages for unsupervised learning algorithms are: exploring the structure of the

information, extracting valuable insights, and detecting patterns in the data (very

interesting for big-data applications).

Unsupervised learning includes two major processes: clustering and dimensionality

reduction.

• Clustering: the exploration of data used to segment it into different groups or

clusters based on their internal patterns without prior knowledge of group

credentials.

• Dimensionality reduction: if there is a lot of noise in the input data, these

algorithms use dimensionality reduction to remove this noise and keep the

relevant information.

Now, we are going to talk about the most common unsupervised learning algorithms.

1. K-means clustering

The objective of this algorithm is to group similar data points together and discover hide

patterns in the data. This algorithm looks for a fixed number (k) of clusters in the

dataset. The parameter of the model ‘‘k’’ is the number of needed centroids in the

dataset. A centroid represents the center of the cluster. Once the centroids are defined,

then every data point is allocated to each of the clusters through reducing the cluster

sum of squares.

For the learning process, the algorithm starts with a first group of random centroids, that

are used as the beginning points for each cluster and then performs iterative calculations

to optimize the position of the centroids. There are two ways to stop the iteration: the

centroids have stabilized or the defined number of iterations has been reached.

2. t-SNE

This algorithm is a dimensionality reduction technique and its primary use is for

visualization purposes. We are going to dissect the t-SNE name (t-Distributed Stochastic

Neighbor Embedding):

Figure 4. 7 Before and after using k-

means clustering algorithm

74

• Embedding: high-dimensional data represented in a lower dimensional space.

• Neighbor: data-point that is close to the data point of interest.

• Stochastic: use of randomness in the iterative process when searching for a

representative embedding.

• T-Distributed: probability distribution used by the algorithm to calculate similarity

scores in the lower dimensional embedding.

Step 1: determining the similarity of points by measuring distances between the point of

interest and the rest and placing them on a normal curve. Then, some scaling is applied

to account for variations in the density of different regions. The result of the calculations

is a matrix with similarity scores between each pair of points.

Step 2: then, the algorithm maps all the points onto a lower-dimensional space and

calculates again similarities between points. This time, the algorithm uses a t-distribution

Step 3: now, the goal of the algorithm is to make the new similarity matrix look like the

original one using an iterative approach.

3. Principal component analysis

It is a dimensionality reduction algorithm to transform a set of features in a dataset into

a smaller number of features trying to retain as much information as possible. Some

advantages of using this algorithm are: removing correlated features (reduces the

training time of a machine learning model) and reduces overfitting. Some disadvantages

are: independent variables are less interpretable, there is some part of the information

that is lost and scaling of the features is required prior to processing.

4.2 Deep Learning Neural Networks applied to FDM simulation

In this section, we introduce and explain the concept of neural networks. Then, a review

of its applications in the FDM technology is done.

4.2.1 What is a neural network? Types of neurons and architecture

Neural networks, also known as Artificial Neural Networks (ANN) are a subset of machine

learning and the core of deep learning. Their structure is inspired by the human brain,

mimicking the way that biological neurons signal to one another.

Neural networks are structured in different layers. There is one input layer, one output

layer, and one or more hidden layers (see Figure 4. 8).

75

There are different types of artificial neurons. The most used ones are the perceptron

and the sigmoid neuron (Nielsen, 2019).

• Perceptron: nowadays, other types of neural networks are commonly used. But

to understand the basics of neural networks, it is worth understanding

perceptrons. A perceptron takes binary inputs (𝑥𝑖) and produces a single binary

output (y). To compute the output, weights (𝜔𝑖) that express the importance of

the respective inputs are introduced. The neuron’s output is determined by

whether the weighted sum of its inputs is less or greater than a threshold value:

Now, the concept of bias is introduced to simplify the notation. The bias is

calculated as b = -threshold. So the notation changes to:

If the bias is very positive, it is easy for the neuron to output a 1. On the

contrary, if the bias is very negative, it is difficult for the neuron to output a 1.

To tune the weight and biases of each neuron, learning algorithms are used. The

bad thing about perceptrons is that a small change in the weights or biases can

cause a complete flip in the output, this is because we are introducing sigmoid

neurons below.

• Sigmoid neurons: small changes in their weights and biases cause a small

change in their output (y). The inputs of this neuron can have values between 0

and 1. It also has weights for each input (𝜔1, 𝜔2, . . .) and a bias, b. The output, in

this case, is calculated as 𝜎(𝜔 ∙ 𝑥 + 𝑏), where 𝜎 is the sigmoid function, expressed

by:

 𝜎(𝑧) =
1

1 + 𝑒−𝑧

So the output of a sigmoid neuron can be expressed as:

Figure 4. 8 Layered structure of a neural network

Figure 4. 9 Shape of a sigmoid function

76

1

1 + 𝑒𝑥𝑝(− ∑ 𝜔𝑗𝑥𝑗 − 𝑏)𝑗

When ∑ 𝜔𝑗𝑥𝑗 − 𝑏𝑗 is a very high value, the output is close to 1, just like the

perceptron. Otherwise, if it is a very low value, the output is close to 0, again like

the perceptron. But it is only when ∑ 𝜔𝑗𝑥𝑗 − 𝑏𝑗 is of modest size that there is much

deviation from the perceptron model.

The sigmoid function is called an activation function of the neuron. There are

more activation functions, and the sigmoid is commonly used in the neural

network field. The output of a sigmoid function can be any real number between 0

and 1.

• ReLu activation function: may be the most used activation function for neural

networks nowadays. The definition of this function f(x) is simple: it takes the

value zero for values of x<0 and the value x when x>0 (see Figure 4. 10)

• Softmax activation function: takes vectors of real numbers as inputs, and

normalizes them into a probability distribution proportional to the exponentials of

the input numbers. The output value of this function will be in the range of 0 and

1 and the elements will add up to 1 (probability distribution). It is used in the

output layer of neural network classifiers, other multiclass classification methods,

and reinforcement learning. The analytical form of the softmax function is shown

below.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗) =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, . . . , 𝐾

Architecture of neural networks

Suppose we have the network in Figure 4. 11:

Figure 4. 10 ReLu activation function

77

The leftmost layer is the input layer, which contains the input neurons. The rightmost

layer is the output layer and contains the output neurons (in this case only one output).

The layers in the middle are the hidden layers (not input or output layers).

The design for the input and output layers is often straightforward because it depends on

the format of the input data and the output that we want to obtain. To design the hidden

layers, there are no simple rules of thumb. There are many design heuretics developed

by researchers which help to get the desired behavior of the net. Up to now, we only

talked about networks where the output from one layer is the input of the next layer, so

there are no loops. However, there are other networks in which feedback loops are

possible. These models are called recurrent neural networks, which are very promising.

4.2.2 Most used algorithms to train neural networks

For a neural network to learn, the objective is the minimization of a loss index. The loss

index is a function that measures the performance of the neural network on a data set.

The loss function has an error and a regularization term. The error term evaluates how

the model fits the data set and the regularization term prevents overfitting of the data.

The loss function depends on the biases and weights of the neural network.

Summed up, the learning process for neural networks is basically searching the weights

and biases of the network at which the loss function takes a minimum value. This process

often is a non-linear problem (the loss function is non-linear). Iterative algorithms have

to be applied in order to solve it. The start point of the process is to pick random values

of weights and biases and then, with each iteration of the algorithm, the weights and

biases are changing while the loss function decreases.

Now, we are going to describe the most used algorithms in the neural network learning

process.

1. Gradient descent

We will denote the weights and biases as a parameter vector 𝜔, the loss function in one

point as 𝑓(𝑖) and the gradient as 𝑔(𝑖). The method begins at a point 𝜔(0) and, until a stop

criterion is satisfied, moves from 𝜔(𝑖) to 𝜔(𝑖+1) in the training direction of −𝑔(𝑖), so one

iteration of this algorithm works as we can see below:

Figure 4. 11 Architecture of a neural network

78

𝜔(𝑖+1) = 𝜔(𝑖) − 𝑔(𝑖)𝜂(𝑖)

Where the parameter 𝜂 is the learning rate. This value is obtained by one-dimensional

optimization along the training direction at each step. In some cases, a fixed value for

the learning rate is used.

The gradient descent requires many iterations for some functions with narrow valley

structures. In addition, the gradient direction is in which the loss function decreases the

most rapidly, but not necessarily produce the fastest convergence. Even so, is the

recommended algorithm for massive neural networks because it stores the gradient

vector (n size), not the Hessian matrix (𝑛2 size).

2. Newton’s method

It is a second order algorithm because it uses the Hessian matrix, H (second derivatives).

Considering the cuadratic approximation of the loss function 𝑓 at 𝜔(0) using Taylor’s

series:

𝑓 = 𝑓(0) + 𝑔(0) ∙ (𝜔 − 𝜔(0)) + 0.5 ∙ (𝜔 − 𝜔(0))2 ∙ 𝐻(0)

The Newton’s method equation is usually denoted as:

𝜔(𝑖+1) = 𝜔(𝑖) − (𝐻(𝑖)−1 ∙ 𝑔(𝑖))𝜂

Where 𝜂 is the training rate. The vector 𝐻(𝑖)−1 ∙ 𝑔(𝑖) is called Newton’s training direction.

Newton’s method requires fewer steps than the gradient descent but the computational

cost is much higher because it has to store the Hessian matrix and its inverse.

3. Conjugate gradient

Motivated to accelerate the convergence in the gradient descent algorithm. It avoids the

storage of the Hessian matrix, evaluation, and inversion as Newton’s requires.

In this algorithm, the search to diminish the loss function is performed along with

conjugate directions, which generally provide faster convergence than gradient descent

directions. It starts with an initial parameter vector 𝜔(0)and an initial training direction

vector 𝑑(0) = −𝑔(0). Then, the algorithm constructs a sequence of training directions as:

𝑑(𝑖+1) = 𝑔(𝑖+1) + 𝑑(𝑖) ∙ 𝛾(𝑖)

Where 𝛾 is called the conjugate parameter. The parameters are then improved as:

𝜔(𝑖+1) = 𝜔(𝑖) + 𝑑(𝑖) ∙ 𝜂(𝑖)

The training rate 𝜂 is found by line minimization. This method has proved to be more

effective than gradient descent.

4. Stochastic gradient descent

79

The gradient descent has a big problem for large datasets, i.e. its amount of computation

for each step. Let’s imagine we have 20000 data points and 15 features. The sum of

squared residuals consists of as many terms as data points, 20000. In each iteration, the

derivative of this function with respect to all the features has to be computed,

20000*15=300000 computations per iteration. If we are taking 1000 iterations,

300000000 computations per step are needed. This would be a very slow process.

The SGD randomly picks one data point from the whole data set at each iteration to

reduce the computations enormously. The algorithm can also sample a small number of

data points at each step and that is called mini-batch gradient descent.

5. Backpropagation method

Is a method of adjusting the weights and biases to minimize the loss function by moving

from the right (output layer) to the left (input layer). Is one of the preferred methods to

train a neural network.

The first step in the algorithm is to initialize the weights and biases randomly and

calculate the error between the prediction and the label. Then, the weights and biases of

the previous layers are updated using the stochastic gradient descent algorithm,

following the equation:

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 − (𝛼 ∙
𝑑𝐸

𝑑𝜔
)

Where 𝜔𝑛𝑒𝑤 is the new weight, 𝜔𝑜𝑙𝑑 is the old one, 𝛼 is the learning rate and
𝑑𝐸

𝑑𝜔
 is the

partial derivative of the error with respect to the weight. This is an iterative process for

each layer.

For the calculation of the rate of change of error to the weights and biases (
𝑑𝐸

𝑑𝜔
), the chain

rule in different steps is used.

4.2.3 Review of neural networks applied to the FDM printing process

In (Mohamed et al., 2021) an application of ANN (Artificial Neural Networks) for modeling

and optimization of dimensional accuracy in cylindrical FDM parts is explained. The

proposed ANN model has six process parameters as inputs (i.e. slice thickness, air gap,

raster angle, part print direction, bead width, and number of contours) and two different

part distortions of the cylindrical parts (percentage difference in length and percentage

difference in diameter).

The objective of the neural network is to understand the input-output relationships and

also determine the optimum process setting for the minimum distortion in the part. To

obtain the optimum settings, K-fold cross-validation was used. This algorithm partitions

the data into K-subsets. Some of the K subsets are used to train the data and the

remaining subsets are used for prediction. The fit goodness of the ANN model was

evaluated based on 𝑅2, root mean square error (RMSE), and mean absolute deviation

(MAD).

The number of hidden layers was determined by trial and error and the optimum value

was found to be 10 hidden layers. The neural network structure is shown in Figure 4. 12

80

10 hidden layers were selected based on the high 𝑅2 and minimum sum of squares of the

error.

The 𝑅2 for the validation set in both models exceeds 98% and the RMSE values are very

close to zero. This is a confirmation of the accurate predictions that the model can

perform in data not used for training.

In (Khanzadeh et al., 2018), an unsupervised neural network is used to categorize point

cloud measurements of FDM printed parts to cluster those measurements which have

similar deviations in terms of severity and direction.

The point cloud of the parts is generated by a 3D laser scanner, and the geometric

deviations can be calculated by comparing the point cloud data with the CAD model of

the part.

For the experimental results, two process parameters are varied: the extrusion

temperature, with five different levels (220 ºC, 225 ºC, 230 ºC, 235 ºC, and 240 ºC),

and the infill percentage, with four levels (70%, 80%, 90%, and 100%). This means that

there are twelve possible treatments, but in some of them, the failure of the printing

occurred.

The chosen unsupervised approach is the concept of SOM (Self Organizing Map), useful

to identify different parameters types of geometric deviations associated with specific

process conditions. It maps high-dimensional input data into a 2-D space, preserving the

topological relationship between the data. The clustered data reduce the dimensionality

and characterize the similarity along the data points.

In Figure 4. 13, we can see a neural network schematic, with three input attributes (the

three geometric deviations in the three directions Δ𝑥, Δ𝑦, 𝑎𝑛𝑑 Δ𝑧) and 16 different clusters

as the output of the network. This network is composed of three types of entities: input

neurons, connection vectors, and output neurons. The vectors connect the input neurons

to the output neurons and neighboring output neurons to each other. Each vector has a

weight produced randomly in the initialization procedure and updated in the training. The

network in Figure 4. 13 yields a quadrilateral map with at most four connections for each

neuron with its neighbors.

Figure 4. 12 Neural network architecture

81

In (Khanzadeh et al., 2018), a 5x5 hexagonal (at most 6 connections for each neuron

with its neighbors) SOM was used, which means 25 different clusters. The more clusters

in the SOM model, the more subtle differences among geometric deviations can capture,

but the model is more sensitive to noise. Lower-order models capture the major types of

geometric deviations, but not the subtle differences. In Figure 4. 14, it can be seen the

results for specific process parameters. Each hexagon represents one cluster, and the

number inside is the number of points classified in each cluster.

The results were verified using the k-means unsupervised algorithm and both showed

concordance in the results.

In (Williams et al., 2019), the objective is to investigate the extent to which enforcing

design repository standardization impacts the capability of a machine learning model to

analyze new geometrical data. For this purpose, a 3D CNN (convolutional Neural

Network) that assesses build metrics of part mass, required support part mass, and build

time for creating new FDM printed parts is implemented.

An artificial design repository was created to achieve greater sample size and

consistency. It includes planar and curved surfaces, a variety of bounding box aspect

ratios, and concave and convex geometries. The repository was based on 18 parametric

design templates (see Figure 4. 15).

Figure 4. 13 Schematic of the SOM neural network

Figure 4. 14 Results of the SOM-based neural

network for specific process parameters

82

Modeling the designs in Figure 4. 15 parametrically, thousands of different designs were

obtained. Designs are modeled in four steps: defining the design parameters, creating

the CAD model, creating a tessellated mesh, and finally the conversion to a binary voxel

representation (64x64x64 element matrix). The material presence is represented by a 1

and the void is represented by 0.

Four different treatments were applied to the artificial repository: no transformation (N),

translation (T), rotation (R), and translation plus rotation (T+R). In total, 16 artificial

repositories were created, four for each treatment. The total number of unique

geometries in the study was 72000. All artificial repositories were used as training and

testing data but never mixed during the training process.

3 different 3D convolutional neural networks were used, one for each quantitative build

metric estimation. In Figure 4. 16, the chosen architecture for the neural networks is

shown. They accept a voxel-based 3D geometric input (262,144 individual points) and

consist of 10 layers.

Figure 4. 15 Parametric design

templates for the repository

83

In the results, it is shown how the CNN model can predict with high accuracy the needed

mass for the part and the build time (average COD values above 0.9 for all the training

treatments) and with much less accuracy the support material mass (average COD below

0.8 for all the training treatments).

4.3 Possible applications of neural networks in this work

In the previous, we have reviewed some of the applications of machine learning in the

FDM printing field with satisfactory results.

In the present work, a numerical simulation method was studied in order to simulate the

FDM printing process. The thermal and structural results of the simulation could be used

to develop predictive machine learning models. At the same time, with these predictive

tools, the FDM techniques could be enhanced to achieve more accuracy and

standardization in the parts. This would be a very important step since in some fields

FDM cannot be used yet due to its lack of dimensional precision.

In this section, we are going to describe some ideas of how neural networks could be

implemented using the results of the studied numerical simulation in this work.

Figure 4. 16 Arquitecture of the 3D CNN

84

1. Deformation prediction of a thin wall FDM printed part in the three directions

based on the infill pattern

For this case, the starting point is a fixed wall geometry, with defined height, width, and

thickness. The objective of this application is to predict the deformation values for

different infill patterns. In the case of this work (section 3.3.1), only four infill patterns

were studied. In order to train a neural network successfully, thousands of different infill

patterns would be needed.

To reach this amount of different data, a cellular automaton-like method could be used to

generate different infill patterns. The input data would be pixels that define a 2D image

as we can see in Figure 4. 17, where the black pixels represent material and the white

pixels represent void.

A cellular automaton method consists of a collection of colored cells on a grid of specified

shape that evolves through a number of discrete time steps according to a set of rules

based on the states of neighboring cells.

One possible configuration for the input data could be 100x10, having a total of 1000

pixels for each input image. A very used approach for processing 2D images is the CNNs

(Convolutional Neural Networks).

The prediction of the deformation in the three directions based on the infill pattern is a

regression supervised problem. This means that we need to create labeled training data.

FEA (Finite Element Analysis) can be used to calculate the deformations of the training

data. The training data could be created experimentally, but it is not cost worthy since a

lot of different parts should be printed.

Knowing that we have 1000 pixels as inputs and 3 deformation values as outputs, we

have the number of input and output neurons defined, respectively.

To choose the number of hidden layers, we have to look at the dimensionality of the

input data. In this case, our input data (pixels) only has two states (1 for material, 0 for

void), so one or two hidden layers could work. Let’s say we choose two hidden layers.

Then, to choose the number of neurons in the hidden layers, a typical criterion is used:

𝑛º ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = √𝑛º 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝑛º 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 = √3000 = 54.77

Also, the number of neurons should keep on decreasing in subsequent layers to get more

and more close to pattern and feature structure. Having this into account, 35 neurons

Figure 4. 17 2D image representing an infill pattern for developing a neural network

85

are chosen for the first hidden layer and 15 for the second hidden layer, making a total

of 50 hidden neurons.

The activation function chosen for this example is the ReLU, which works very well with

regression problems like in this case. The chosen loss function is the mean squared error

(MSE) between the predicted value and the true value (given by FEA or experimental

measurement). The algorithm used to find the weigths and biases that minimize the loss

function is the Adam optimizer mechanism. This is basically an optimized gradient

descent algorithm that converges faster. For this optimizer to work, the learning rate and

batch size have to be defined. Common values for these hyper-parameters are 0.01 and

64 respectively.

2. Deformation prediction of a thin wall FDM printed part in the three directions

dependent on the infill density, extrusion temperature, and bed temperature

In this work, we performed simulations with different infill patterns (and different infill

densities), extrusion temperatures, and bed temperatures. With each combination of

factors, the deformation results are different. Instead of having to predict the

deformation results by running long numerical simulations, we could develop a machine

learning model to predict the results much faster.

In this case, this problem is also a regression supervised problem. We need labeled data

(FEA or experimental measurements) to train the model. We have three inputs and three

outputs (deformations in the three directions), so the architecture of the network is 3-n-

3. We have low-dimensional data as input, so one hidden layer should be enough. The

number of neurons is often chosen by trying different options and choosing the optimum

value, but between 6 and 10 hidden neurons seem reasonable.

The chosen activation function, in this case, is also ReLU and the loss function is the

mean squared error. The training algorithm used could be the Adam optimizer again, but

due to the simplicity of this neural network, the stochastic gradient descent could be

used to avoid too much complexity in the coding.

86

The simulation framework developed in this work has lots of applications in many

industries nowadays. It is worth mentioning that with the developed simulation

framework in this work, almost every additive manufacturing process could be simulated.

Numerical simulation of manufacturing processes like additive manufacturing has lots of

advantages, some of them are:

• Predicting material behavior and validating additive manufacturing designs when

optimizing for manufacturing.

• Flexibility: finite element is a flexible method of analysis. It can be applied to

different geometries and process conditions and obtain robust results.

• Troubleshooting: when the behavior of the process does not agree with the

expectations, numerical simulations can help to determine the main reason for the

problem and suggest solutions.

• Numerical simulations can obtain accurate results for high non-linear models, like

in the case of additive manufacturing models.

• Numerical simulations can be used to generate data to develop data-driven

prediction models with high accuracy. The accuracy of the data-driven models

depend on the quality of the data used to train the model.

There are a lot of engineering fields in which high-dimensional accuracy parts are

needed. In these fields, lightweight parts play an important role in order to minimize the

material and energy needed in the process and improving efficiency. Thus, additive

manufacturing is a very promising technique to achieve these goals. The most important

engineering fields in which high accuracy additive manufacturing parts could play a major

role in the future are:

• Aerospace: aerospace components require highly complex geometric structures in

sometimes very tight spaces, so the high dimensional precision of the printing is a

key factor. Thus, consistent manufacturing processes are needed to improve the

repeatability of the parts. Adittive manufacturing can be used to produce

lightweight parts by mass optimization and reduce storage needs.

• Medical: additive manufacturing has increasing importance in the medical field.

The main tasks for the AM technology in the medical field are medical models,

used for pre- and postoperative planning and training, training for students, etc;

implants, that can be directly or indirectly additively manufactured to replace

defective or missing tissue (e.g. dental applications); tools and medical devices

that allow or enhance clinical performance; biomanufacturing, in which the

materials need to be biologically compatible with the human body. All of these

applications require high dimensional accuracy in the 3D printing process.

• Transportation: automotive companies are adopting 3D printing technology to

fabricate car components and develop personalized services, especially in luxury

brands, with components like carbon fiber.

5 Potential applications and future work

87

For all these applications that require high accuracy in the 3D printing, the optimization

of the process parameters is a promising perspective in order to achieve high

dimensional fidelity and repeatability in the process. Machine learning models could be

used to predict the geometric deviation of the parts and obtain the optimum process

parameters for a minimum part distortion.

There are still some challenges to taking advantage of the full potential of the coupling

between numerical simulation and machine learning in the field of additive

manufacturing. Some of the most important challenges are described below.

• Regarding the numerical simulation, the most field of improvement, especially for

the FDM simulation, is the modeling of the contact between the part and the build

plate, to evaluate the adhesion force, which is influenced by local imperfections,

impurities, and a non-uniform temperature distribution of the build plate. To avoid

the influence of this adhesion force, a raft is usually printed first. The raft is

wasted material, so if the numerical simulation could model this interaction, we

may avoid this material waste by adjusting the process parameters. Another field

of improvement regarding numerical simulation is reducing the time and

computational costs needed. This could be improved by optimizing the element

activation algorithms.

• More research on how to integrate ML into simulation has to be done. ML

techniques can be integrated into a model in order to reduce model order and

offer approximate but simpler solutions. This would cause a noticeable reduction

in simulation time.

• Specialization of the ML predictive models: existing research on the application of

ML techniques to additive manufacturing has a very general vision. Thus, the

general results of this research are not applicable to all cases. To fully extract the

ML potential, the ML models should be personalized for each part geometry and

machine. This way, the specialized ML model would predict the performance of the

process with more accuracy than using a generalized model.

88

In this work, we developed a simulation framework based on Abaqus software and we

studied the application of machine learning techniques to the FDM process using the

simulation results. Regarding the simulation, we can conclude that:

• Numerical simulation of additive manufacturing processes requires a lot of time

and computational resources.

• For element activation in the printing process simulation, we have compared two

methods: model change and the toolpath-mesh intersection method. It was found

that the toolpath intersection method is more efficient since there is no need to

define a lot of steps and interactions for activating subsets of elements in each

step, unlike the model change method.

• We simulated with different time steps in the printing step of the simulation. It

was found that the printing step influences more the thermal analysis results than

the structural results. For the thermal results, the smaller the time step, the

higher the activation temperature of the elements (in the limit of a time step of

zero, should be the same as the extrusion temperature of the nozzle). The time

step also greatly influences the simulation time (the smaller the time step, the

more time required for the simulation).

• From the deformation results, it is worth mentioning that the infill pattern has the

least dimensional distortion in the Y and Z directions. All the infill patterns have

approximately the same dimensional distortion in the X direction.

• A parametric study for the thin wall geometry was performed. The parameters

included in the study were four different infill patterns, three bed temperatures,

and three extrusion temperatures. The response was the maximum displacement

in the three directions, so one ANOVA table for each direction was computed. The

results showed that the infill pattern was the most influential factor for the three

directions. For the X direction, all the factors showed to be influential for the

deformation response; for the Y direction the only factor that was not influential

was the extrusion temperature; for the Z direction, the three parameters are

influential.

Regarding the machine learning application in the additive manufacturing prediction:

• It was concluded that ML techniques can be applied to additive manufacturing

processes with high accuracy results.

• Interaction between numerical simulation and machine learning models is needed

in order to develop more efficient predictive models. This can be done in two

ways: generating the training data with the simulation results or introducing

machine learning models into the simulation to reduce the problem order and get

simpler and faster solutions.

6 Conclusions

7 References

Akbas, O. E., Hira, O., Hervan, S. Z., Samankan, S., & Altinkaynak, A. (2020).

 Dimensional accuracy of FDM-printed polymer parts.

An, N., Yang, G., Yang, K., Wang, J., Li, M., & Zhou, J. (2021) Implementation of Abaqus

user subroutines and plugin for thermal analysis of powder-bed electron-beam-melting

additive manufacturing process.

Bhandari, S., & Lopez-Anido, R. A. (2020). Discrete-event simulation thermal model for

extrusion-based additive manufacturing of PLA and ABS. Materials, 13(21), 4985.

Brownlee, J. (2016). Master machine learning algorithms.

Cattenone, A., Morganti, S., Alaimo, G., & Auricchio, F. (2019). Finite element analysis of

additive manufacturing based on fused deposition modeling: distortions prediction

and comparison with experimental data. Journal of Manufacturing Science and

Engineering, 141(1).

Courter, B., Jing Bi, V.S, & J. Hansen, S. C. (2017). Finite Element Simulation of the

Fused Deposition Modelling Process.

Equbal, A., Akhter, S., Equbal, Md. A., & Sood, A. K. (2021). Application of Machine

Learning in Fused Deposition Modeling: A Review.

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of

PLA, and their functions in widespread applications—A comprehensive review.

Advanced drug delivery reviews, 107, 367-392.

Gardan, J. (2016). Additive manufacturing technologies: state of the art and trends.

ISO, A. (2015). ASTM52900-15. Standard Terminology for Additive Manufacturing—

General Principles—Terminology.

Khanolkar, M. P., Abraham, A., McComb, C., & Basu, S. (2020). Using Deep Image

Colorization to Predict Microstructure-Dependent Strain Fields. 48th SME North

American Manufacturing Research Conference, NAMRC 48.

Khanzadeh, M., Rao, P., Jafari-Marandi, R., Smith, B. K., Tschopp, M. A., & Bian, L.

(2018). Quantifying geometric accuracy with unsupervised machine learning:

Using self-organizing map on fused filament fabrication additive manufacturing

parts. Journal of Manufacturing Science and Engineering, 140(3).

Kiendl, J., Gao, C. (2020). Controlling toughness and strength of FDM 3D-printed PLA

components through the raster layup.

Liu, G., Zhang, X., Chen, X., He, Y., Cheng, L., Huo, M., Yin, J., Hao, F., Chen, S., Wang,

P., Yi, S., Wan, L., Mao, Z., Chen, Z., Wang, X., Cao, Z., & Lu, J. (2021). Additive

manufacturing of structural materials.

Materials available. (2021).

Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2021). Modeling, analysis, and

optimization of dimensional accuracy of FDM-fabricated parts using definitive

screening design and deep learning feedforward artificial neural network.

Advances in Manufacturing, 9(1), 115-129.

Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2016). Mathematical modeling and

FDM process parameters optimization using response surface methodology based

on Q-optimal design. www.elsevier.com/locate/apm

Moreau, C. (2021). The state of 3D printing. Sculpteo.

Morgan, R. V., Reid, R. S., Baker, A. M., Lucero, B., & Bernardin, J. D. (2017). Emissivity

measurements of additively manufactured materials.

Mwema, F. M., & Akinlabi, E. T. Fused Deposition Modeling: Strategies for Quality

Enhancement. Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-48259-6

Nasiri, S., & Khosravani, M. R. (2021). Machine learning in predicting mechanical

behavior of additively manufactured parts.

Nielsen, M. (2019). Neural Networks and Deep Learning.

https://doi.org/10.1007/978-3-030-48259-6

Poel, G. V., Mathot, V. B., & Ye, P. (2011). Crystallization Temperature vs. Cooling Rate:

the Link with “Real-Life” Polymer Processes. Inc. PerkinElmer. Differential

Scanning Calorimetry.

Pereira, L. N. (2019). The effects of 3D printing Parameters and Surface Treatments on

Convective Heat Transfer Performance.

Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., & Carou, D. (2018).

Surface Quality Enhacement of Fused Deposition Modeling (FDM) Printed Samples

Based on the Selection of Critical Printing Parameters.

Song, X., Feih, S., Zhai, W., Sun, C., Li, F., Maiti, R., Wei, J., Yang, Y., Oancea, V.,

Brandt, L. R, & Korsunsky, A. M. (2020). Advances in additive manufacturing

process simulation: Residual stresses and distortion predictions in complex

metallic components.

Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions

on the bonding quality of FDM polymer filaments.

Sun, Y., Hanhan, I., Sangid, M. D., & Lin, G. (2020) Predicting Mechanical Properties

from Microstructure Images in Fiber-reinforced Polymers using Convolutional

Neural Networks.

Vahabli, E. & Rahmati, S. (2017). Improvement of FDM parts' surface quality using

optimized neural networks - medical case studies.

Williams, G., Meisel, N. A., Simpson, T. W., & McComb, C. (2019). Design repository

effectiveness for 3D convolutional neural networks: application to additive

manufacturing. Journal of Mechanical Design, 141(11).

Zhou, C., Guo, H., Li, J., Huang, S., Li, H., Meng, Y., Yu, D., de Claville Christiansen, J.,

& Jiang, S. (2016). Temperature dependence of poly (lactic acid) mechanical

properties. RSC advances, 6(114), 113762-113772.

Zhu, Z., Anwer, N., Huang, Q., & Mathieu, L. (2018). Machine learning in tolerancing for

additive manufacturing. CIRP Annals

Appendix 1
In this appendix, the code to obtain the ANOVA tables needed for the parametric study of

the wall geometry. The code was implemented in the statistical tool R.

defx <-

c(0.0359,0.036,0.036,0.0359,0.0359,0.036,0.0358,0.0359,0.0359,0.0375,0.0377

,0.0377,0.0375,0.0376,0.0378,0.0375,0.0376,0.0376,0.0361,0.0362,0.0363,0.03

61,0.0362,0.0362,0.0360,0.0361,0.0362,0.0378,0.0378,0.0377,0.0378,0.0377,0.

0377,0.0378,0.0377,0.0377)

defy <-

c(0.0238,0.0242,0.0246,0.0238,0.0242,0.0243,0.0238,0.0242,0.0244,0.033,0.03

28,0.0328,0.0334,0.0332,0.0332,0.0338,0.0337,0.0337,0.0125,0.0127,0.0127,0.

0126,0.0128,0.0128,0.0128,0.0129,0.013,0.0128,0.013,0.013,0.0129,0.013,0.01

31,0.013,0.0131,0.0132)

defz <-

c(0.0529,0.0533,0.0538,0.0531,0.0536,0.0538,0.0534,0.0538,0.054,0.0573,0.05

78,0.058,0.0576,0.0581,0.0583,0.058,0.0584,0.0586,0.0475,0.0479,0.0481,0.04

78,0.0482,0.0484,0.0481,0.0485,0.0487,0.0531,0.0535,0.0537,0.0534,0.0538,0.

054,0.0537,0.0541,0.0543)

A <-

c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4)

B <-

c(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3)

C <-

c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3)

pattern <- as.factor(A)

extrusiontemp <- as.factor(B)

bedtemp <- as.factor(C)

resx <- lm(defx~pattern+extrusiontemp+bedtemp)

resy <- lm(defy~pattern+extrusiontemp+bedtemp)

resz <- lm(defz~pattern+extrusiontemp+bedtemp)

anova(resx)

anova(resy)

anova(resz)

Appendix 2
In this work, the used geometries for the numerical analysis were simple, so the toolpath

was calculated using excel. For complex geometries is not efficient to use excel, and

scripting should be used to convert the G-code directly into an event series format. In

this appendix, a code that allows this conversion is presented. It is only compatible with

the slicer Replicator G, so if another slicer is used, the code will have to be modified. To

generate the event series, the command line should have the following format: abaqus

python generateEventSeries.py g_code_filename roller_pad_dimension

delay_between_layers power. Two output files are generated, the laser toolpath and the

roller pad dimension for each layer. If we want only the toolpath for FDM analysis, we

simply set the power to zero.

1. Main Function

if __name__ =="__main__":

#def main():

 import os,sys

 #---------

 #Handling arguments

 #---------

 if len(sys.argv)!=5:

 print("The python script should be called with 4 arguments -

'generateEventSeries.py toolPathFileName rollerPadDimension

delayBetweenLayers powerOftheLaser' Eg generateEventSeries.py cube.gCode

0.5 10 400")

 exit()

 fileName = sys.argv[1]

 rollerPad = sys.argv[2]

 userDelay = sys.argv[3]

 userPower = sys.argv[4]

 #fileName = 'Model-Horizontal.gcode'

 #rollerPad = .5

 #userDelay=10

 #userPower=300

 try:

 rollerPad = float(rollerPad)

 except:

 print ("The roller pad value should be a float")

 exit()

 try:

 userDelay = float(userDelay)

 except:

 print ("The delayBetweenLayers value should be a float")

 exit()

 try:

 userPower = float(userPower)

 except:

 print ("The power value should be a float")

 exit()

 if not os.path.isfile(fileName):

 print ("The file path does not exist")

 exit()

 head,onlyFileName = os.path.split(fileName)

 #-----

 #Importing the appropriate reader

 #--------

 neutralFormList = ['txt','npf','sim']

 if onlyFileName[-3:].lower() in neutralFormList:

 onlyFileName = onlyFileName[:-4]

 import LayerObjectReader as myGcode

 elif onlyFileName[-5:].lower() =='gcode' or gCodeFileName[-2:].lower()

=='nc':

 if onlyFileName[-5:].lower() =='gcode':

 onlyFileName = onlyFileName[:-6]

 else:

 onlyFileName = onlyFileName[:-3]

 import GcodeReader as myGcode

 constWidth= 0.4

 Layers = myGcode.CreateLayers(fileName,constWidth)

 #-----------------

 #Writing the Event Series data

 #-----------------

 PowerFile = onlyFileName+"_EventSeries_Power.inp"

 RollerFile =onlyFileName+"_EventSeries_Roller.inp"

 f1=open(PowerFile,'w')

 f2= open(RollerFile,'w')

 tPrev=0.0

 #-----

 #Getting the yMin.yMax for all the layers

 #-------

 ymin,ymax=None,None

 for layer in Layers:

 if len(layer.pathPoints)==0:

 continue

 for path in layer.pathPoints:

 y = path.y

 ymin = y

 ymax=y

 break

 try:

 v1= float(ymin)

 v2 =float(ymax)

 except:

 raise ValueError("The minimum y value of the layers could not be

determined the plugin will now exit")

 sys.exit()

 for layer in Layers:

 if len(layer.pathPoints)==0:

 continue

 for path in layer.pathPoints:

 y = path.y

 if ymin > y:

 ymin=y

 if ymax<y:

 ymax=y

 range = ymax- ymin

 ymin -= rollerPad*range

 ymax+= rollerPad*range

 modifiedlayerStartTime = 0

 prevLayerEndTime = 0

 #Modifying time for user delay

 for layer in Layers:

 if len(layer.pathPoints)==0:

 continue

 modifiedlayerStartTime=prevLayerEndTime+userDelay

 originalLayerStartTime = 0.0+layer.pathPoints[0].t

 layer.pathPoints[0].t = modifiedlayerStartTime

 cnt=0

 lPathPoints = layer.pathPoints

 for path in lPathPoints[1:]:

 cnt+=1

 currTime = 0.0+path.t

 newTime = modifiedlayerStartTime+currTime-

originalLayerStartTime

 path.t= newTime

 prevLayerEndTime=lPathPoints[-1].t

 for layer in Layers:

 if len(layer.pathPoints)==0:

 continue

 z=layer.modifiedZpos + 0.5*layer.avgHeight

 xAv= 0.0

 tCurr = layer.pathPoints[0].t

 vecPow = []

 #--------

 #Switching the power by one row

 #---------

 lPathPoints = layer.pathPoints

 for path in lPathPoints[1:]:

 vecPow.append(path.width)

 vecPow.append(0.0)

 #for path in layer.pathPoints:

 pathCnt=-1

 for path in layer.pathPoints:

 pathCnt+=1

 x= path.x

 y = path.y

 t = path.t

 pow = vecPow[pathCnt] #This is used to store power for .npf

file

 if pow>0 and userPower>0:

 pow = userPower

f1.write(str(t)+","+str(x)+","+str(y)+","+str(z)+","+str(pow)+"\n")

 xAv/=len(layer.pathPoints)

 f2.write(str(tPrev)+","+str(xAv)+","+str(ymin)+","+str(z)+",1\n")

 f2.write(str(tCurr)+","+str(xAv)+","+str(ymax)+","+str(z)+",0\n")

 tPrev = layer.pathPoints[-1].t

 f1.close()

 f2.close()

 #f3.close()

 print ("Successfully generated the Event Series files \n"+PowerFile

+"\n"+RollerFile+"\n")

#main()

2. Gcode reader

import re

from ReaderSupporClasses import Point as myPoint

from ReaderSupporClasses import StateObject as myState

from ReaderSupporClasses import Layer as myLayer

from ReaderSupporClasses import PathPoint as myPath

import sys,math

tol = 1e-5

###

#Support Functions

#~~~

def updateX(inpString):

 reX = re.compile(r" X([-+]?\d+\.?\d*)",re.I)

 match=reX.search(inpString)

 if match:

 val = match.group(1)

 fval=float(val)

 endPos=match.end() #Gives the end position in the string...

 return ('X',True,fval,endPos)

 else:

 return ('X',False,None,None)

#~~~

def updateY(inpString):

 #reY = re.compile(r" Y([-+]?\d+\.?\d*?)[/b]+",re.I|re.M)

 reY = re.compile(r"Y([-+]?\d+\.?\d*)",re.I)

 match=reY.search(inpString)

 if match:

 val = match.group(1)

 fval=float(val)

 endPos=match.end() #Gives the end position in the string...

 return ('Y',True,fval,endPos)

 else:

 return ('Y',False,None,None)

#~~~

def updateZ(inpString):

 reZ = re.compile(r" Z([-+]?\d+\.?\d*)",re.I)

 match=reZ.search(inpString)

 if match:

 val = match.group(1)

 fval=float(val)

 endPos=match.end() #Gives the end position in the string...

 return ('Z',True,fval,endPos)

 else:

 return ('Z',False,None,None)

#~~~

def updateF(inpString):

 reF = re.compile(r" F([-+]?\d+\.?\d*)",re.I)

 reW = re.compile(r" W([-+]?\d+\.?\d*)",re.I)

 match=reF.search(inpString)

 if not match:

 return ('F',False,None,None)

 tableMatch = reW.search(inpString) #if F and W comes together then the

F represents the motion of the table..

 if tableMatch:

 return ('F',False,None,None) #which is ignored..

 val = match.group(1)

 fval=float(val)

 endPos=match.end() #Gives the end position in the string...

 return ('F',True,fval,endPos)

#~~~

def updateE(inpString):

 reE = re.compile(r" E([-+]?\d+\.?\d*)",re.I)

 match=reE.search(inpString)

 if match:

 val = match.group(1)

 fval=float(val)

 endPos=match.end() #Gives the end position in the string...

 return ('E',True,fval,endPos)

 else:

 return ('E',False,None,None)

#~~~

def updatePumpSwitch(inpString):

 rePumpOn = re.compile(r"M101\b",re.I)

 rePumpOn2 = re.compile(r"M102\b",re.I) #This paramter has to be

understoood For time being (4/19/2015) this is assumed to be turning the

pump on....

 rePumpOff = re.compile(r"M103\b",re.I)

 matchOn1 = rePumpOn.search(inpString)

 matchOn2 = rePumpOn.search(inpString)

 matchOff = rePumpOff.search(inpString)

 #pumpSwitch = existingPumpState

 if matchOn1 or matchOn2:

 pumpSwitch = True

 elif matchOff:

 pumpSwitch = False

 #didItSwitch = existingPumpState ^ pumpSwitch

 return ('PS',True,pumpSwitch,0) #Improve

#~~~

def updatePumpSwitchNL(inpString):

 #This code is for the national lab... they work with M62 and m64 for

pumps and not m101 and m103 (which are extruders)

 #This function takes in both the existing pumpState checks whether the

pump has been turned on or off...

 #This is added to fix the discrepancy in the ORNL path.. in which the

pump still oozes out material even after it is turned off..

 #This lead to some materials not being activated...

 #The idea now is to understand whether the pump is switched on or off

..which is done using an exclusive or..

 #Once it is determined then if the pump is turned on .. then it is

updated otherwise

 #The pump is only turned off when the next F is encountered..

 #This is a fix ..entirely specific to the ORNL data...

 rePumpOn = re.compile(r"\(Turn Pump ON\)",re.I)

 rePumpOff = re.compile(r"\(Turn Pump OFF\)",re.I)

 match1 = rePumpOn.search(inpString)

 match2 = rePumpOff.search(inpString)

 #pumpSwitch = existingPumpState

 if match1:

 pumpSwitch = True

 elif match2:

 pumpSwitch = False

 #didItSwitch = existingPumpState ^ pumpSwitch

 return ('PS',True,pumpSwitch,0) #Improve

#~~~

def getDistanceCoords(x1,y1,x2,y2):

 d = (x1-x2)**2 + (y1-y2)**2

 dist = d**.5

 return dist

#main()

#~~~

def getDistance(P1,P2):

 d = (P1.x-P2.x)**2 + (P1.y-P2.y)**2 + (P1.z-P2.z)**2

 dist = d**.5

 return dist

#~~~

def updateIdleTime(inpString):

 #This function matches the P values ...which represents the dead

state...

 reDeadStP = re.compile(r" P(\d+\.?\d*?) ",re.I|re.M)

 reDeadStS = re.compile(r" S(\d+\.?\d*?) ",re.I|re.M)

 matchP=reDeadStP.search(inpString)

 matchS=reDeadStS.search(inpString)

 if matchP:

 val = matchP.group(1)

 fval=float(val) #this value represents the time in milliSeconds..

 fval /= 1000.0

 endPos=matchP.end() #Gives the end position in the string...

 return ('IT',True,fval,endPos)

 elif matchS:

 val = matchS.group(1)

 fval=float(val) #this value represents the time in seconds..

 endPos=matchS.end() #Gives the end position in the string...

 return ('IT',True,fval,endPos)

 else:

 return ('IT',False,None,None)

###

Main Function

###

def CreateLayers(fileName,constWidth):

 print("Starting GCode Translator")

 if not fileName:

 return None

 #-----------------------

 #Input data

 #-----------------------

 f=open(fileName,'r')

 #f2=open("MotionStates.txt",'w')

 GcodeTxt= f.read()

 #---

 #Creting the GCommand dictionary

 #The reader is the main dictionary with the information on what to to

do after reading the first parameter....

 #The key will be the first field like G0,G01 or G11 .. which will be

pointing to the appropriate read function...

 #---

 reader={}

 reader['G01'] = [updateX,updateY,updateZ,updateF,updateE]

 reader['G1'] = [updateX,updateY,updateZ,updateF,updateE]

 reader['G0'] = [updateX,updateY,updateZ,updateF,updateE]

 reader['M62'] = [updatePumpSwitchNL,updateIdleTime] #This is for the

pump to turn on... ORNL thing..

 reader['M63'] = [updatePumpSwitchNL,updateIdleTime] #This is for the

pump to turn off... ORNL thing..

 reader['M101'] = [updatePumpSwitch,updateIdleTime]

 reader['M103'] = [updatePumpSwitch,updateIdleTime]

 reader['G4'] = [updateIdleTime]

 #------

 #Globals

 #------

 Layers=[] #list of layers

 #--

-

 #Getting the first point from the GCode data....

 #The code will be starting to look for the line with the first

material deposit.

 #The idea is to match code 64 or 101 and then look for the last

state in the strings before the first match..

 #This will get the last point before the machine starts depositing

material .. this is deemed as the first point before the material

deposition starts

 #--

-

 repumpStart = re.compile(r"M101\b.*?\n",re.I|re.M|re.DOTALL)

 rePumpSt2 = re.compile(r"M64\b",re.I)

 pumpStMatch = repumpStart.search(GcodeTxt)

 pumpStMatch2= rePumpSt2.search(GcodeTxt)

 if pumpStMatch: #Depending on various machines, the search code could

be expanded

 pumpStindex = pumpStMatch.start()

 elif pumpStMatch2:

 pumpStindex = pumpStMatch2.start()

 else:

 raise ValueError,"The Gcode data is not found as expected when

looking for the first instance for the extruder/pump start"

 x=None

 y=None

 z=None

 f=None

 MachineReadiness = GcodeTxt[:pumpStindex]

 reXval = re.compile(r" X([-+]?\d+\.?\d*)",re.I|re.M)

 reYval = re.compile(r" Y([-+]?\d+\.?\d*)",re.I|re.M)

 reZval = re.compile(r" Z([-+]?\d+\.?\d*)",re.I|re.M)

 reFval = re.compile(r" F([-+]?\d+\.?\d*)",re.I|re.M)

 reEval = re.compile(r" E([-+]?\d+\.?\d*)",re.I|re.M)

 ReValPos=[reXval,reYval,reZval]

 ReValRate = [reFval,reEval]

 firstPoint =[]

 for res in ReValPos:

 matches = res.findall(MachineReadiness)

 if matches:

 val = matches[-1]

 fval=float(val)

 firstPoint.append(fval)

 else:

 raise ValueError,"The Translator could not determine the x,y,z

position before the Extruder was turned on"

 x,y,z=firstPoint[0],firstPoint[1],firstPoint[2]

 for res in ReValRate:

 matches = res.findall(MachineReadiness)

 if matches:

 val = matches[-1]

 fval=float(val)

 firstPoint.append(fval)

 else:

 firstPoint.append(0.0) #In case initial F and E are missing it

is set to 0

 #startPoint = myPoint(x,y,z)

 startSpeed = firstPoint[3]

 startPumpState = False

 startExtrudeRate = firstPoint[4]

 startIdleTime=0.0

 startAcceleration = False

 startState =

myState(startIdleTime,x,y,z,startSpeed,startAcceleration,startPumpState,sta

rtExtrudeRate)

 #--

 #Finding the Units....

 #G20 - inches

 #G21 - mm

 #--

 ReUnit = re.compile(r"^G20 ",re.I|re.M)

 UnitMatch = re.search(ReUnit,MachineReadiness)

 if UnitMatch:

 print "\tUnits are in Inches"

 unitScale = 25.4

 else:

 print "\tUnits are in mm"

 unitScale = 1.0 # Not sure what to do with these now..

 #---------------------------------------

 #Finding the filament diameter..

 #Determining the cross section of the filament.

 #---------------------------------------

 if constWidth <=0.0:

 reFilDia = re.compile(r'Filament_Diameter.*: (\d*\.\d*)',re.I|re.M)

 fildiaMatch = reFilDia.search(GcodeTxt)

 if fildiaMatch:

 filDia = fildiaMatch.group(1)

 filDia = float(filDia)

 print "\tthe filament dia was found to be = ",filDia

 else:

 raise ValueError," The Gcode reader could not find the filament

diameter\nAdd a comment of the form 'Filament_Diameter_(mm): 1.82' to the

gCode file or use the constant width option"

 filXsection = 0.25*filDia*filDia*(math.pi)

 #-----------------------------------

 #Geting the rest of the Gcode block..

 #-----------------------------------

 ActiveGcodeTxt = GcodeTxt[pumpStindex:]

 linesinGcode = ActiveGcodeTxt.splitlines()

 motionStates = []

 motionStates.append(startState)

 # This is going to grasp the first line parameter...

 StartcodeRe=re.compile(r'(^\w*)')

 import copy

 for line in linesinGcode:

 line+="\n" #this is to match the end of line ..

 GcodeMatch = StartcodeRe.search(line)

 if GcodeMatch:

 command = GcodeMatch.group(1)

 command =command.upper()

 if not reader.has_key(command):

 continue

 FuncTocheck = reader[command] #this will give a list of function to

match for...

 newState=copy.deepcopy(motionStates[-1]) #Only when the Gcode

matches and the state has to be updated ..then the copy operation is done..

 # Idletime should be reverted back to 0...

 newState.setIdleTime(0.0)

 #This is still expensive.. should think about something better ...

#Improve..

 paramPos={} #This is a dictionary of parameter and position and is

needed for determining acceleration.. Might have to be changed later..

 for funcs in FuncTocheck:

 #Fupdate = False

 #layer=myLayer(cnt)

 param,isNew,newVal,pos = funcs(line)

 #Now to get the appropriate update function from the

motionState object

 if isNew :

 updateFunc = newState.updateParam(param)

 else:

 continue

 if param=='E'and constWidth<=0.0:

 newVal*=filXsection

 updateFunc(newVal)

 paramPos[param]=pos

 if paramPos.has_key('F'):

 fpos= paramPos['F']

 newState.setAcceleration(False)

 keyList = paramPos.keys()

 keyList.remove('F')

 for ps in keyList:

 position = paramPos[ps]

 if position < fpos:

 newState.setAcceleration(True)

 break

 motionStates.append(newState)

 #Now to get the material deposition width for each pass..

 motionStates[0].width = 0.0

 motionStates[0].time = 0.0

 cumTime = 0.0

 #layerHeight = 1.0

 layerHeight = 1.0

 widthScaleFactor=1.0

 for i in range(1,len(motionStates)):

 preState = motionStates[i-1]

 currState = motionStates[i]

 x1,y1 = currState.x,currState.y

 x2,y2 = preState.x,preState.y

 dist = getDistanceCoords(x1,y1,x2,y2)

 matDeposited = currState.getE() - preState.getE()

 if dist and constWidth<=0.0:

 width = widthScaleFactor*matDeposited /(dist*layerHeight)

 currState.width = width

 elif dist and constWidth>0.0:

 width = constWidth

 currState.width = width

 elif not dist:

 currState.width = 0.0

 #Time Calculations..

 DeadState = currState.getIdleTime()

 Accel = currState.getAcceleration()

 if DeadState: #Dead state ..then add the necessary time

 cumTime +=DeadState

 currState.setTime(cumTime)

 continue

 if dist<=tol:

 prevTime = preState.getTime()

 currState.setTime(prevTime)

 continue

 v=currState.getF()

 u=preState.getF()

 if Accel: #If acceleration found .. add the time for acceleration

 if abs(v - u) > tol:

 a = (v**2 - u**2)/(2*dist)

 t = (v - u)/a

 t*=60 #to change it to s

 cumTime+=t

 currState.setTime(cumTime)

 else: #constant velocity motion...

 t= dist/v #assuming that v is always going to be there ..

 t*=60 #To get time in

 cumTime+=t

 currState.setTime(cumTime)

 else: #constant velocity motion..

 t= dist/v #assuming that v is always going to be there ..

 t*=60 #To get time in

 cumTime+=t

 currState.setTime(cumTime)

 #for mStates in motionStates:

 # f2.write(str(mStates))

 #f2.close

 #--

--

 #The assumption is that when E changes that is where the model starts

...All other points are ignored...

 #Creating the layer object...

 Layers=[]

 heightNew=None

 bNewLayer = False

 #Creating the layers

 cnt=0

 totHeight=0.0

 for mStates in motionStates:

 MatWidth = mStates.width

 height = mStates.z

 if cnt==0 and MatWidth>tol:

 newLayer = myLayer(0)

 newLayer.zPos = height

 Layers.append(newLayer)

 cnt+=1

 continue

 elif cnt>0 :

 prevLayerHeight = Layers[cnt-1].zPos

 if prevLayerHeight < height and MatWidth>tol:

 newLayer = myLayer(cnt)

 newLayer.zPos = height

 newLayer.avgHeight = height-prevLayerHeight

 newLayer.modifiedZpos = height - 0.5*(height-

prevLayerHeight)

 totHeight+= newLayer.avgHeight

 Layers.append(newLayer)

 cnt+=1

 continue

 avgHeight = totHeight/(cnt-1)

 #Populating the layer with path points..

 for layer in Layers:

 height = layer.zPos

 for i in range(1,len(motionStates)):

 currState = motionStates[i]

 prevState = motionStates[i-1]

 if currState.width>tol and abs(currState.z-height)<tol:

 #Set the first path Point

 lenPaths = len(layer.pathPoints)

 if lenPaths==0:

 if layer.layerNumber ==0:

 timeToSubtract = prevState.time

 X = prevState.x

 Y = prevState.y

 T = prevState.time - timeToSubtract

 layer.setPathPoints(X,Y,T,0.0)

 XCurr= currState.x

 YCurr= currState.y

 TCurr= currState.time - timeToSubtract

 WCurr= currState.width

 layer.setPathPoints(XCurr,YCurr,TCurr,WCurr)

 #This is another important bug fix..

 #The issue was that while looking for only paths with

positive width .. the start points were not being recognized

 # These are points which could be determined in two ways

 #Checking if the pumps were turned on or off at that point

.. This method is not good becuase sometimes the pump turns on and does not

move..

 #The other method is to see if the previous state has a

width =0.0 then the previous point is added to the path..#More

brainstorming needed..

 elif(lenPaths > 0 and prevState.width <tol):

 X = prevState.x

 Y = prevState.y

 T = prevState.time - timeToSubtract

 W = prevState.width

 layer.setPathPoints(X,Y,T,W)

 #Adding data from the current path

 X = currState.x

 Y = currState.y

 T = currState.time-timeToSubtract

 W = currState.width

 layer.setPathPoints(X,Y,T,W)

 elif(lenPaths > 0 and prevState.width >tol):

 X = currState.x

 Y = currState.y

 T = currState.time-timeToSubtract

 W = currState.width

 layer.setPathPoints(X,Y,T,W)

 #Scaling the width to adjust for layer height..

 #The width for each path was determined by using unit layer height.

 if constWidth<=0.0:

 for layer in Layers:

 for paths in layer.pathPoints:

 currWidthVal = paths.width

 if currWidthVal<tol:

 paths.width = 0.0

 if currWidthVal > tol:

 a=math.pi*avgHeight*avgHeight*0.25

 newWidth = currWidthVal - a

 newWidth /= avgHeight

 newWidth = newWidth + avgHeight

 paths.width = newWidth

 print "\tnumber of layers = ",len(Layers)

 print "\tAverage height of layers = ",avgHeight

 print "Gcode Reader successful"

 #--

 #Before beginning the origin has to be found out

 #And the start time has to be scaled...

 #All this data is obtained from the first Layer..

 #Determining the origin of the model..

 layer0 = Layers[0]

 modelOrigX = layer0.pathPoints[0].x

 modelOrigY = layer0.pathPoints[0].y

 modelOrigZ = layer0.zPos -avgHeight

 layer0.modifiedZpos = modelOrigZ + 0.5* avgHeight

 modelOrigin = myPoint(modelOrigX,modelOrigY,modelOrigZ)

 layer0.setOrigin(modelOrigin)

 layer0.setAvgHeight(avgHeight)

 #Scaling the VAlues to mm...

 #for layer in Layers:

 # layer.setUnits(unitScale)

 #--------

 #Writing the layer object dump

 #--------

 f2 = open('LayerObjectDump.txt','w')

 for layer in Layers:

 layer.setMinWidth()

 f2.write(str(layer))

 f2.close()

 return Layers

3. Layer Object Reader

import re

from ReaderSupporClasses import Layer as myLayer

from ReaderSupporClasses import Point as myPoint

def CreateLayers(fileName,constWidth):

 constWidth=None #This width is not used. This argument is added so as

to have consistency between the CreateLayer function in Gcode reader and

Layer object reader

 f=open(fileName,'r')

 sLayer = f.read()

 Layers=[]

 srcStr1 =r"^ Layer Number ="

 reLayerNums = re.compile(srcStr1,re.I|re.DOTALL|re.M)

 #lsLayers =re.findall(reLayerNums,sLayer)

 lSplitLayers = re.split(reLayerNums,sLayer)

 #---------

 #Getting the layer height

 #--------

 srcStr2 =r"step between layer =(.*)\n"

 reLayerNums = re.compile(srcStr2,re.I|re.M)

 srcStepSize = re.search(reLayerNums,sLayer)

 sStepSize = srcStepSize.groups()[0]

 sStepSize = sStepSize.strip()

 steplayerHeight = float(sStepSize)

 LzPositions=[]

 avgLayerHeight=0.0

 cnt=0

 for layer in lSplitLayers[1:]:

 #Improvement .. Get the string till path points...

 #Get the layer number...

 srcLayNum = r"^ Layer Number = (\d+)"

 reLayerNum = re.compile(srcLayNum,re.M|re.I)

 reLaySrch = re.search(reLayerNum,layer)

 layNum= int(reLaySrch.groups(1)[0])

 layNum-=1

 #print layNum

 #Get the layer position...

 srcLayPos = r"^ Layer Zpos = ([-+]?\d+\.?\d*)"

 reLayerZPos = re.compile(srcLayPos,re.M|re.I)

 reLayZpos = re.search(reLayerZPos,layer)

 layerZpos= float(reLayZpos.groups(1)[0])

 LzPositions.append(layerZpos)

 #print layerZpos

 #Get the main data block...

 sreBlock = r"power\n(.*?)\n\n"

 reBlock = re.compile(sreBlock,re.I|re.M|re.DOTALL)

 sBlock = re.search(reBlock,layer)

 #dataBlock = sBlock.groups(1)[0]

 #listDataBlocks = dataBlock.split("\n")

 currLayer= myLayer(layNum)

 currLayer.setZpos(layerZpos)

 currLayer.setAvgHeight(steplayerHeight)

 currLayer.setModifiedZpos(layerZpos)

 if sBlock==None:

 Layers.append(currLayer)

 continue

 else:

 dataBlock = sBlock.groups(1)[0]

 listDataBlocks = dataBlock.split("\n")

 for datalines in listDataBlocks:

 path = datalines.split(",")

 try:

 x = float(path[0])

 y = float(path[1])

 t = float(path[2])

 w = float(path[4])

 except:

 break

 #

 currLayer.setPathPoints(x,y,t,w)

 try:

 currLayer.setMinWidth()

 except:

 print currLayer.layerNumber,"Is the layer number"

 print currLayer

 Layers.append(currLayer)

 #Determining the layer height and average layer height..

 #f=open("NewLayerObject.txt",'w')

 #for layer in Layers:

 # f.write(str(layer))

 #f.close()

 return Layers

4. Reader Support Classes

import copy

class StateObject(object):

 """description of class"""

#~~

~~~~~~~ 

    def __init__(self,IdleTime= 

None,X=None,Y=None,Z=None,Rate=None,Acceleration=None,PumpState=None,Extrud

eRate=None,Time=None): 

        self.idleTime= IdleTime 

        self.x = X 

        self.y = Y 

        self.z = Z 

        self.rate=Rate #This is the F parameter 

        self.acceleration = Acceleration 

        self.pumpSwitch=PumpState 

        self.extrudeRate = ExtrudeRate #This is the E parameter.. 

        self.time=Time 

        self.width = None 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def printState(self):

 print "\nx = ",self.point.x," y = ",self.point.y," z =

",self.point.z," Feed Rate = ",self.rate, "Is pump On = ",self.pumpSwitch,\

 "ExtrudeRate = ",self.extrudeRate

###

########

 # GET FUNCTIONS

 #######################

#~~

~~~~~~~ 



 

    def getIdleTime(self): 

        return self.idleTime 

 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def getX(self):

 return self.x

#~~

~~~~~~~ 

    def getY(self): 

        return self.y 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def getZ(self):

 return self.z

#~~

~~~~~~~ 

    def getF(self): 

        return self.rate 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def getAcceleration(self):

 return self.acceleration

#~~

~~~~~~~ 

    def getPumpState(self): 

        return copy.deepcopy(self.pumpSwitch) 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def getE(self):

 return self.extrudeRate

#~~

~~~~~~~ 

    def getTime(self): 

        return self.time 

 

 

    

###########################################################################

######## 

    # SET FUNCTIONS  

    ####################### 

    def setIdleTime(self,IdleTime): 

        self.idleTime = IdleTime 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def setX(self,xval):

 self.x = xval

#~~

~~~~~~~ 

    def setY(self,yval): 



 

        self.y = yval 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def setZ(self,zval):

 self.z = zval

#~~

~~~~~~~ 

    def setF(self,frate): 

        self.rate = frate 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~ 

 def setAcceleration(self,Acceleration):

 self.acceleration = Acceleration

#~~

~~~~~~~     

    def setPumpState(self,pumpSw): 

        self.pumpSwitch = pumpSw 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~     

 def setE(self,ExtrudeRate):

 self.extrudeRate = ExtrudeRate

#~~

~~~~~~~     

    def setTime(self,Time): 

        self.time = Time 

    

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~     


###

########

 # SUPPORT FUNCTIONS

 #######################

 #This is only for setting up the x,y,z,f and E paramters .. with the

idea that in future the I,J parameters will be added.

 #This will retrun the appropriate set functions ..and the arguments

will be passed by the client code...

 #The input argument has to be a string of the form shown in the

dictionary key ..

 def updateParam(self,arg):

 paramDict={}

 paramDict['X']=self.setX

 paramDict['Y']=self.setY

 paramDict['Z']=self.setZ

 paramDict['F']=self.setF

 paramDict['E']=self.setE

 paramDict['IT']=self.setIdleTime

 paramDict['PS']=self.setPumpState

 return paramDict[arg]

#~~

~~~~~~~~~~~~~~~~~~~~~ 

    #String representation. 

    def __str__(self): 

             

        str2return = "\n"+ "IdleT= "+str(self.idleTime).ljust(10)+ "  ,  

"+"X= "+str(self.x).ljust(10)+ "  ,  " +"Y= "+str(self.y).ljust(10)+ "  ,  

"+"Z= "+str(self.z).ljust(10) \ 

                +"  ,  "+"F= "+str(self.rate).ljust(10)+ "  ,  "+"IsA= 

"+str(self.acceleration)+"  ,  "+"Pump = "+str(self.pumpSwitch)+"  ,  "+"E= 

"+str(self.extrudeRate)+\ 

                "  ,  "+"W= "+str(self.width)+"  ,  "+"Time= 

"+str(self.time) 

         

        return str2return 

     

 

 

 

###########################################################################

################################# 

#Class 2 -> Layer Class 

###########################################################################

################################ 

 

 

 

 

#from stateObject import StateObject as myState 

#from point import Point as myPoint 

#from PathPoint import PathPoint as myPath 

 

tol =0.001 

 

class Layer(object): 

    """description of class""" 

    def __init__(self,LayerNumber): 

        self.layerNumber = LayerNumber 

        self.origin = None 

         

        self.avgHeight=None         

        self.zPos = None 

        self.modifiedZpos= None 

        self.minWidth = None 

        self.pathPoints=[] 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setOrigin(self,point): 

        self.origin = point 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    #The modified Zpos is requried to make the tip head travel through the 

thickness of the layer instead of being at the top 

    #This is done by subtracting the half of the layer height from the 

zposition 

    def setModifiedZpos(self,Zmodified): 

        self.modifiedZpos = Zmodified 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setZpos(self,Z): 

        self.zPos = Z 



 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setAvgHeight(self,height): 

        self.avgHeight = height 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setOrigin(self,point): 

        self.origin = point 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def appendState(self,state): 

        self.motionStates.append(state) 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def appendPathPoints(self,pathPoint): 

        self.pathPoints.append(pathPoint) 

     

 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    #def __repr__(self): 

    #    print "\n\n\n-----------------------------------------------------

-----------------" 

    #    print "\n                  Layer Number = ", self.layerNumber 

    #    print "\n---------------------------------------------------------

-------------" 

 

    #    print "\n Layer Number = ",self.layerNumber 

    #    print "\n\n  x  ,   y  ,  z  ,  F ,  pump\n" 

    #    for m in self.motionStates: 

    #        print "\n",m.getX,m.getY,m.getZ,m.getF,m.getPumpState             

 

        #        self.origin = None 

         

        #self.avgHeight=None         

        #self.zPos = None 

        #self.modifiedZpos= None 

        #self.pathPoints=[] 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def __str__(self): 

 

        if self.origin: 

            origString = "\n Layer Origin = "+ str(self.origin.x)+ " , " + 

str(self.origin.y)+ " , " + str(self.origin.z) 

        else: 

            origString = '' 

 

        str1=\ 

            "\n\n\n--------------------------------------------------------

--------------"+\ 

            "\n                  Layer Number = " + str(self.layerNumber) + 

\ 

            "\n------------------------------------------------------------

----------"+\ 

            "\n Layer Number = "+str(self.layerNumber) + origString + \ 

            "\n Layer Zpos = "+ str(self.zPos) + \ 

            "\n Layer Modified zPos = "+str(self.modifiedZpos) + \ 

            "\n Layer height = " +str(self.avgHeight) +\ 

            "\n Layer Min Width = " +str(self.minWidth) +\ 

            "\n\n Path Points are ...... \n"+\ 

            "\nx                   y           Time              width" 

         



 

 

        str2='' 

        for paths in self.pathPoints: 

            str2+="\n"+str(paths.x).ljust(10)+ "  ,  

"+str(paths.y).ljust(10)+ "  ,  " +str(paths.t).ljust(10)+"  ,  " 

+str(paths.width).ljust(10) 

        strRep = str1+str2 

 

        return strRep 

 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setZPosFromLayer(self): 

 

        if len(self.motionStates)==0: 

            print 'The motion States are empty and Z position cannot be 

set' 

            return 

                 

        for motionStates in self.motionStates: 

            if motionStates.pumpSwitch: 

                zPos = motionStates.getZ() 

                self.setZpos(zPos) 

                break 

     

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setPathPoints(self,X,Y,T,Width): 

 

        #The idea of Time Modifier is to subtract a certain value from the 

time.. 

        #normally the start time is not when the machine starts but a later 

value after the machine checks for readines.. 

        #This time is there in the motionStates object which is not useful 

from an analysis standPoint.. 

        x = X 

        y=  Y 

        t= T 

        w = Width 

        myPathPt = PathPoint(x,y,t,w) 

        self.appendPathPoints(myPathPt) 

         

 

 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    # GET Functions ............ 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def getZpos(self): 

        return float(self.zPos) 

 

         

 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    # Support Functions ............ 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

    def setUnits(self,scaleFactor): 



 

         

        if self.origin: 

            self.origin.scale(scaleFactor)         

        self.avgHeight *=scaleFactor 

        self.zPos *=scaleFactor 

        self.modifiedZpos *=scaleFactor 

         

        for pathPoints in self.pathPoints: 

            pathPoints.x *=scaleFactor 

            pathPoints.y *=scaleFactor 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setMinWidth(self): #This functions sets the minimum width for the 

layer.. this has to be used by the Translator code for Wgrid creation.. 

        wmin = self.pathPoints[1].width #the first path point width is 0.. 

assuming the second path point width as minimum.. 

        if wmin<tol: 

            raise ValueError, "The minimum width cannot be 0....." 

 

        for i in range(1,len(self.pathPoints)): 

            w = self.pathPoints[i].width 

            if wmin > w and w>tol: 

                wmin =w 

 

        if wmin<tol: 

            raise ValueError, "The minimum width cannot be 0....." 

 

        self.minWidth = wmin 

        pass 

     

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setWidthScale(self,scaleFactor):   #This is to scale the width of 

the path.. 

 

        if scaleFactor<=0.0: 

            raise ValueError, "The scale factor for width should be 

positivie" 

            return None 

        for paths in self.pathPoints: 

            paths.width*=scaleFactor 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def setTimeScale(self,scaleFactor):  #This is to scale the time factor 

of the path... 

 

        if scaleFactor<=0.0: 

            raise ValueError, "The scale factor for width should be 

positivie" 

            return None 

        for paths in self.pathPoints: 

            paths.t*=scaleFactor 

       

             

###########################################################################

################################# 

#Class 3 -> PathPoint Class 

###########################################################################

################################       

class PathPoint(object): 

    """description of class""" 

 



 

    def __init__(self,X,Y,T,W): 

        self.x = X 

        self.y = Y 

        self.t = T 

        self.width = W 

         

 

 

 

 

 

###########################################################################

################################# 

#Class 4 -> Point Class 

###########################################################################

################################      

 

class Point(object): 

    """description of class""" 

 

    def __init__(self,X,Y,Z): 

        self.x = X 

        self.y = Y 

        self.z = Z 

 

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    def scale(self,Scale): 

        self.x *= Scale 

        self.y *= Scale 

        self.z *= Scale 

 



M
iguel Cortés O

tero

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Miguel Cortés Otero

Application of machine learning in
the prediction of FDM part
distortion based on finite element
simulation

Master’s thesis in Industrial Engineering master
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
January 2022

M
as

te
r’s

 th
es

is


