
M
achine-learning approach to design fatigue-resistant structure inspired by Pogonias crom

is
Engen, Katinka H

årdvik

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Katinka Hårdvik Engen

Machine-learning approach to design fatigue-
resistant structure inspired by Pogonias
cromis

Pogonias cromis has one of the highest biting forces per
weight encountered in Nature. Recent study has reported
the unusual porous structure of its lower jaw bone that can
withstand high cyclic loads. However, the design principles of
this porous structure are still unknown. In this investigation,
a novel machine-learning approach will be exploited to
understand the design principles and to design fatigue-
resistant structures via numerical simulations and machine
learning.

Master’s thesis in Produktutvikling og produksjon
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
June 2022

M
as

te
r’s

 th
es

is

Katinka Hårdvik Engen

Machine-learning approach to design fatigue-
resistant structure inspired by Pogonias cromis

Pogonias cromis has one of the highest biting forces per weight
encountered in Nature. Recent study has reported the unusual
porous structure of its lower jaw bone that can withstand high
cyclic loads. However, the design principles of this porous
structure are still unknown. In this investigation, a novel
machine-learning approach will be exploited to understand the
design principles and to design fatigue-resistant structures via
numerical simulations and machine learning.

Master’s thesis in Produktutvikling og produksjon
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Sammendrag

Atlanterhavsfisken Pagonias cromis har den høyeste bitekraften per vekt [1], men det nedre
svelgkjevebenet som er ansvarlig for å knuse bløtdyr og skalldyr er relativt porøst [2] sam-
menlignet med kortikalt bein funnet i pattedyr [3] . I denne oppgaven blir mikrostrukturen
til dette beinet utforsket for om det inneholder egenskaper som gjør det spesielt egnet til
å motstå utmattelsesskader. Det vil også bli undersøkt om dette problemet effektivt kan
automatiseres og modelleres ved hjelp av maskinlæringsverktøy og optimaliseringsmetoden
’differential evoulution’.

Resultatene viser at bruk av nevrale nettverk for å undersøke variabel signifikans i strukturen
er mulig med riktige kalibreringer, og modell, og en effektiv fremgangsmåte. Optimalisering
ved bruk av differensiell evolusjon var svært effektiv kombinert med regresjonsmodell estimert
med nevralt nettverk. På grunn av de begrensede tilgjengelige beregningsressursene var den
ikke like robust kombinert med Abaqus, siden den ikke håndterte avbrudd uten å måtte
starte på nytt. Studien viste også at faktorene som beskriver mikrostrukturen i betydelig
grad påvirker strukturenes evne til å motstå tretthetsvrudd. For fast spenning må det kjøres
ytterligere simuleringer for å gi et avgjørende svar på hva som er den optimale strukturen.

Abstract

The Black Drum fish has the highest biting force per weight [1], yet its lower pharyngeal jaw
bone responsible for crushing the mollusks and shellfish is relatively porous [2] compared to
cortical bone found in mammalian bone [3]. In this thesis, the microstructure of this bone
will be investigated to find whether or not it contains properties making it especially suitable
to withstand cyclic fatigue damage. It will also be investigated whether this problem can be
effectively automized and modeled using machine learning tools and optimization differential
evolution.

The results show that using neural networks to examine variable significance in the structure
is an efficient method, possibly with the correct calibrations and inputs and outputs. Op-
timization using differential evolution was very efficient combined with a regression model
obtained with a neural network. Due to the limited available computational resources, it was
not as robust in combination with Abaqus, as it did not handle interruptions without having
to restart. The study also showed that the micro structure’s factors significantly affect the
structures’ ability to withstand fatigue. For fixed stress, further simulations must be run to
give a conclusive answer to what is the optimal structure.

Preface

First, I would like to thank my supervisor Chao Gao and doctoral research fellow Marco
Maurizi who has been exceedingly helpful, available for questions, reminded me of my goal
when I have wandered off, and helped when stuck. The advice has been invaluable, and the
criticism constructive.

Second, I would like to thank my boyfriend, Max, who’s encouraged me when I’ve been un-
constructively discouraged and always there when I needed someone to discuss my problems
with. Your interest has been a massive contribution to this thesis, and your willingness to
help me say my thoughts out load invaluable.

My mom, of course, deserves massive thanks. You are the best, I love you, and I would not
have been here without you!

I would also like to thank my friends and classmates for all the information exchange on the
writing, but most importantly, all the laughs, conversations, and parties. Lifting one’s spirit
has never seemed quite as important.

This has been a ride, and I’ve learned a lot of interesting things, both professionally and
personally. The stress, however, is horrible. I’m never doing this again.

I hope you enjoy it!

K. Engen June 11, 2022

iv

Table of Contents

1 Introduction 7

2 Theory 9

2.1 Bone - an introduction to the material . 9

2.2 The Black Drum Lower pharyngeal jaw bone 12

2.3 Modeling fatigue using Finite Element Method 14

2.4 Cyclic hardening . 16

2.5 Micromechanical modeling and Periodic boundary conditions 19

2.6 Elastoplasticity . 21

2.7 Numerical integration . 21

2.8 Machine learning using neural networks . 23

2.9 Optimizing using differential evolution . 25

2.10 Design of Experiments . 26

3 Methods 28

3.1 Lattice structure . 28

3.2 FE model . 33

3.3 Evaluation of the RVEs . 38

3.4 DoE . 41

3.5 Predicting and understanding the structure using Machine learning 42

3.6 Simplifications . 43

4 Results 44

4.1 Parametric study . 44

4.2 Brute Force . 49

4.3 Result from Differential Evolution using Abaqus directly 52

4.4 Fixed Strain . 53

4.5 Fixed Stress . 53

5 Discussion 55

5.1 What can be learned from the results? . 55

5.2 Further investigations . 56

5.3 Sources of error . 57

Appendix 64

K. Engen June 11, 2022

List of Figures

2.1 Macroscopic view of cortical and trabecular (here: spongy) bone. Figure is
from G. J. Tortora [6] . 10

2.2 The bovine cortical bone. (a) Light-microscopy micrograph and its position
in transverse-radial cross-section of osteonal bovine cortical bone tissue, (b)
schematic illustration of homogeneous model, and (c) schematic illustration
of microstructural model. Figure is from A. A. Abdel-Wahab, A. R. Maligno,
and V. V. Silberschmid [7] . 11

2.3 The architecture and microstructure of the lower pharyngeal jaw bone of the
Black drum. Both figures are from E. Ziv et. al. [2]. 14

2.4 Isotropic hardening . 17

2.5 Linear kinematic hardening . 18

2.6 RVE with PBC. Dv denotes the ’dummy’ node associated with node pairs on
vertical edges, and Dh is the ’dummy’ node associated with node pairs on
horizontal edges. 21

2.7 Illustration of a fully connected, regression neural network. a, b, c and d are
the inputs, xij is the value each node holds depending on the input values,
wijk is the weight attributed to each node connection, and p, q, and r are the
predicted output values. 24

2.8 OFAT illustratory example . 26

2.9 OFAT k, maximized l, and minimized m. 27

3.1 Simplified lattice structure and original scan. 29

3.2 Rigid motion Boundary condition on the RVE 36

3

3.3 Illustration of how mesh-regularity is achieved 37

3.4 Convergence study: R1, R2 = 0.5, ε = 0.006, N=1000. 39

3.5 Convergence study: R1, R2 = 3, ε = 0.006, N=1000 39

3.6 Exemplary stress-strain curve with x1 and x2 points highlighted. 40

4.1 OFAT plots for R1, R2 and fv. 45

4.2 Plot for R1-R2 interaction. Values are the mean for all fv. 46

4.3 R1-R2 interaction plots for different fv. 48

4.4 R1-fv interaction plots for different R2. 48

4.5 R2-R1 interaction plots for different fv. 48

4.6 Illustration of structure with optimal factors as predicted by brute force for
ε=0.8%. 50

4.7 Target-output plots for a, N, and E from the MLP regression model using the
lbfgs optimizer. Data is shuffled, and the value on the x-axis only denotes the
relative placement in the shuffled vector. 51

4.8 Illustration of structure with optimal factors as predicted by differential evo-
lution for ε=0.8%. 52

4.9 Illustration of structure with optimal factors as predicted by differential evo-
lution for ε=0.8%. 53

4.10 Illustration of structure with optimal factors as predicted by differential evo-
lution for σ=300 MPa. 54

A.1 Convergence study: R1, R2 = 0.5, ε = 0.008, N=1000.

A.2 Convergence study: R1, R2 = 1, ε = 0.006, N=1000.

A.3 Convergence study: R1, R2 = 1, ε = 0.008, N=1000.

A.4 Convergence study: R1, R2 = 2, ε = 0.006, N=1000.

A.5 Convergence study: R1, R2 = 2, ε = 0.008, N=1000.

A.6 Convergence study: R1, R2 = 3, ε = 0.008, N=1000.

K. Engen June 11, 2022

List of Tables

2.1 Split plot design example . 27

3.1 Mean values and Standard Deviations for four of the key parameters. Table
is from K. Engen [42] . 29

3.2 Kinematic hardening parameters . 34

3.3 isotropic hardening parameters . 34

3.4 Confirming calculation of c3 . 36

3.5 Convergence study: R1, R2 = 0.5, ε = 0.006, N=1000. 38

3.6 Convergence study: R1, R2 = 3, ε = 0.006, N=1000. 38

3.7 Range of parameters for first round of data-collection 41

3.8 Mean values and standard deviation. Table is from K. Engen (2021) [42]. . . 41

3.9 Range of parameters for second round of data-collection 41

4.1 Factorial design symbols . 46

4.2 Factorial design . 47

4.3 Split Plot symbols . 49

4.4 Split Plot . 49

4.5 Optimal factors as predicted by differential evolution for ε=0.8 %. 49

4.6 Optimal factors as predicted by differential evolution for ε=0.8 %. 52

4.7 Optimal factors as predicted by differential evolution for ε=0.8 %. 53

4.8 Optimal factors as predicted by differential evolution for ε=0.8 %. 54

5

K. Engen June 11, 2022

A.1 Convergence study: R1, R2 = 0.5, ε = 0.008, N=1000.

A.2 Convergence study: R1, R2 = 1, ε = 0.006, N=1000.

A.3 Convergence study: R1, R2 = 1, ε = 0.008, N=1000.

A.4 Convergence study: R1, R2 = 2, ε = 0.006, N=1000.

A.5 Convergence study: R1, R2 = 2, ε = 0.008, N=1000.

A.6 Convergence study: R1, R2 = 3, ε = 0.008, N=1000.

6

K. Engen June 11, 2022

Chapter 1

Introduction

The subjects of this thesis are bio-inspired structures, fatigue, and the potential of machine
learning and optimization in the design of structures. The bio-inspired structure is the
jaw-bone of the Black Drum fish, which is subject to very high cyclic loading [2]. The
microstructure of this bone is different from that seen in mammals, and the possibility of
it containing some success factors for withstanding high cyclic loadings will be investigated.
Machine learning and optimization will be tested as possible data-driven methods for better
understanding the structure’s behavior, along with some conventional Design of Experiments
methods.

The Theory chapter presents the relevant theory needed to understand the methods and re-
sults. This includes the background of the jaw bone and how it differs from mammalian bone,
an introduction to how to simulate fatigue using finite elements in Abaqus, how to simulate
repetitive structures using finite element analysis and periodic boundary conditions, and how
to interpret the numerical results. This chapter will also introduce what machine learning
and deep learning using neural networks are and how this can be used to solve multivariate
problems that are not linearly separable. Optimization using differential evolution will be
introduced, and the mathematical tool, Design of Experiments (DoE), will be used to present
results.

The methods used to create the numerical model, the simplified structure, the multi-layer
perceptron (MLP) model, and the optimization script are introduced in the Methods chapter.
The method used to conduct numerical experiments is also presented.

In the Results chapter, the results obtained regarding the MLP-model and the optimization of

7

K. Engen June 11, 2022

the structure using the different approaches presented in the methods chapter are introduced.

In the Discussion chapter, the results will be discussed. Here the focus will be on the relevance
of the findings and experiences made during the thesis. The resulting optimal factors will
be discussed. In this chapter, the use of machine learning and optimization and its potential
will also be addressed, as will the sources for error and possible further works.

In the Appendix the code used to create the finite element model with PBC as described in
the methods section; interpret the results; create an MLP-model and optimize factors using
differential evolution is added, so the reader can review it, and perhaps find some use for it.
Some additional plots and tables are also put in the Appendix. These were considered as
not integral to the flow of the thesis but potentially interesting to the reader. The Appendix
also contains the project thesis of the author, which includes some work used in the thesis.

8

K. Engen June 11, 2022

Chapter 2

Theory

This section will introduce the theory relevant to the methods used and the results repre-
sented in this thesis. This includes background information on the lower pharyngeal jaw
bone of the Black drum, which is the basis for this thesis; background information on bone
in general; theory on fatigue and fatigue simulation using finite element method; damage
models relevant for fatigue simulation using finite element; mathematical tools to interpret
and understand multivariate problems; machine learning using neural networks to examine
variable significance in multivariate models and optimization using differential evolution as
a solution for optimization of multivariate problems.

2.1 Bone - an introduction to the material

2.1.1 The Black Drum Jaw Bone

Due to its diet consisting primarily of shellfish and ammonites, the lower pharyngeal jaw
bone of Black Drum is subject to high cyclic loading. Further examination of the bone has
shown that its microstructure is unlike that we are familiar with from the mammalian bone
[2].

2.1.2 Comparison of different kinds of bone

Mammalian bone is the bone most extensively described in modern science [4]. Its structures
share several common traits across species. Bones of mammals are built of two kinds of bone

9

K. Engen June 11, 2022

structures: cortical and trabecular bone. The two types have significantly different properties
and purposes, described in the following sections.

Cortical Bone

The cortical bone consists of about 10% soft tissue and makes up 80 % of the skeletal mass.
It forms the outer layer of the bone and is often more prominent in weight-bearing areas such
as the femur [5]. An illustration of the difference between trabecular bone and cortical bone
in humans is provided in figure 2.1. For comparison, the cortical bone of a bovine is depicted
in figure 2.2.

Figure 2.1: Macroscopic view of cortical and trabecular (here: spongy) bone. Figure is from
G. J. Tortora [6]

As can be seen in both these figures, the cortical bone is quite dense and consists of uni-
directional fibers, or lamellae. It does vary across species, but attributes like density and
regularity are seen in all mammals [3].

Loading direction

The unidirectional fibers and the high density of the cortical bone makes it suitable for load-
bearing in the fiber direction. Its placement along the edges in the macrostructure of the
bone has the additional effect of bracing the bone against bending forces.

10

K. Engen June 11, 2022

Figure 2.2: The bovine cortical bone. (a) Light-microscopy micrograph and its position in
transverse-radial cross-section of osteonal bovine cortical bone tissue, (b) schematic

illustration of homogeneous model, and (c) schematic illustration of microstructural model.
Figure is from A. A. Abdel-Wahab, A. R. Maligno, and V. V. Silberschmid [7]

Trabecular Bone

The trabecular bone consists of tiny rods around 100 µm thick, placed without the regular
order associated with the cortical bone. As can be seen in the figure 2.1 it has a sponge-like
appearance, with voids as large as 1 mm wide [8]. These voids are filled with soft tissue (bone
marrow), which makes up about 75 % of its volume [5]. Trabecular bone is also referred to
as spongy or cancellous bone.

As with the cortical bone, the microstructure of trabecular bone varies between mammalian
species. For example, the properties of the trabecular bone belonging to the ostrich are
similar to that of humans, but both are quite different from the equine trabecular bone [9].

Loading direction

The relatively randomized microstructure of the trabecular bone makes it more suitable to
withstand multidirectional loading than, e.g., the cortical bone. Boyle and Kim (2011) [10]
note that trabecular bone has adapted to the dominant loading direction by directing more
rods to align with it.

Trabecular bone is found in the center of long bones, where it supports the cortical exterior.
It is also thought that this is the reason it is more dominant near the joints, as the loading

11

K. Engen June 11, 2022

direction here will shift. Because around 75 % of the volume in the trabecular bone is soft
tissue, it cannot withstand as much pressure as cortical bone. This might cause the bone to
increase in size near the joints.

Fishbone

As mentioned earlier, mammalian bone is the kind most investigated and described in science.
The bone of fish is not as well studied. In 2015 A. Atkins et al. noted

While the structure of mammalian bones is therefore reasonably well studied
in three dimensions (...) similar data with regard to fish bone are lacking. In
particular, the fibrillar arrangement in fish bone lamellae is unknown, as, indeed,
is whether their layered structure consists of lamellar units at all [4].

Fishbone structures can be roughly divided into two types: cellular and acellular [4][3].
Acellular bone, also known as anosteocytic (osteocytes are the cells that make up most of the
human cortical bone), was previously thought to be featureless. An investigation by Atkins
et al. (2015) found it to be just slightly less ordered than cortical bone. It reportedly consists
of thin fibers which are 1-2 µm thick, compared to 2-7 µm for cortical bone. It was also found
to be tougher than mammalian bone and more like bone found in the antlers of deer [4].

The last section of the fish was provided to address the issue of specious variation. It seems
the two-bone system found in mammals might not be directly comparable with fish. The
skeletal of fish’ is complicated, and the fish-bone described are one type from one fish.

2.2 The Black Drum Lower pharyngeal jaw bone

From the last section it is clear that the mammalian bone is relatively well understood by
science, compared to other types of bone like the fish bone. The Black Drum has the highest
biting force per weight [1], yet it’s lower pharyngeal jaw bone is relatively porous compared
to cortical bone [2]. In this section the know features of this structure is described.

12

K. Engen June 11, 2022

2.2.1 Bone structure

The lower pharyngeal jaw (LPJ) consists of two halves of a dental plate, each half supported
by cone-shaped struts. The two halves meet in the middle of the jaw at a suture. The dental
plate is covered with molars, which become larger the closer to the plate’s center. The two
cones will be called struts. These struts are at their largest, where they meet the dental
plates and thin out to where they are connected to the cleithrum. The cleithrum is the bone
transferring motion, much like the jaw in humans, but the LPJ is equipped with an additional
link in the chain - the struts. The macro-structure of the struts is depicted in figure 2.3a.

The load is transferred from the cleithrum through the struts and dental plate, where the
mollusks and shellfish are crushed. These struts are thus subject to cyclic compressive loads.
The macro-structure of these struts is similar to that seen in the mammalian femur. It
has a relatively dense exterior that is relatively ordered in structure and a more porous
interior that is more randomly organized. Here the similarities stop. While the cortical
bone is approximately 97 % dense, the exterior of the LPJ has a porosity of about 50 %. It
is, in other words, significantly less dense than the cortical bone but not as porous as the
trabecular bone. These outer walls of the LPJ struts are also considerably more ordered than
the trabecular bone [2].

The microstructure of the outer walls is depicted in figure 2.3b. It bears a reassembly to
a lattice structure, an open-celled structure of connecting struts. A lattice structure is a
load-bearing structure designed to carry as much load as possible, using as little material as
possible [11]. The outer walls are built up by lamellae (plates) oriented to align with the
load-bearing direction (z-axis). They also roughly align with the radial direction of the struts
and are slightly curved around the z-axis. There are several thinners, transversely oriented
beams connecting the lamellae between these lamellae.

The central, more porous LPJ bone struts section consists of irregularly placed thin rods. It
also varies in porosity, and the voids can vary in size by as much as a factor of 10, in contrast
to the trabecular bone, which is commonly more uniformly distributed [12].

Loading direction

The lamella in the outer walls is the most significant mass in the load-bearing direction,
capable of transferring the load from the cleithrum to the dental plate. They also make the
struts able to withstand bending forces. The beams connecting the lamellas might work as

13

K. Engen June 11, 2022

(a) The architecture of the strut material.

(b) Micro-tomography 3D images of the mid
ventral zone of the strut. White arrows point to

the lamellae, and blue arrows point to the
transversal, supporting beams.

Figure 2.3: The architecture and microstructure of the lower pharyngeal jaw bone of the
Black drum. Both figures are from E. Ziv et. al. [2].

support to absorb in-plane share forces and stabilize the plates [2].

Taking a closer look at the fibers of which the lamellae and beams are made supports this.
The fibers in the lamellae are oriented in the load-bearing direction. The fibers in the beams
merge into the plates, similar to what is observed in joints with trabecular bone.

2.3 Modeling fatigue using Finite Element Method

Direct cyclic is a method of simulating periodic loading that reduces computational time by
extrapolating damage over a given number of steps.

When using Direct Cyclic to study fatigue, this can be done by the Extended Finite Element
Method, also known as XFEM, or by using inelastic strain energy, or Hysteresis energy
accumulated in the elements. Both will be introduced below.

2.3.1 Direct Cyclic

The Direct Cyclic step was introduced as a computationally effective method to predict the
stabilized response of a structure subject to periodic, cyclic loading. This method is valid
for the elastic-plastic structures subject to linear deformations[13] [14]. It ignores changes
in contact, and frictional slipping is treated as non-slip contact. The Direct cyclic step will

14

K. Engen June 11, 2022

have difficulty converging when the structure is close to ratcheting [13].

2.3.2 Linear elastic fracture mechanics and XFEM

Using the extended finite element method (XFEM), a crack can propagate along a path that
is not predefined. It uses enriched elements, eliminating the need to re-mesh the model.

When using XFEM, the user can choose whether they want to define a crack beforehand or
not. If the user does not define a crack, the XFEM must be used in combination with the
Maximum principal stress or strain damage criteria. Abaqus will then search for areas where
the stress or strain exceeds maximum principal stress or strain, and initiate a crack/grow the
existing crack [15].

If the XFEM-method is to be used in combination with fatigue analysis and the Direct cyclic
step, a crack must be defined before the Direct-cyclic step starts. This can be either by e.g.
a static step before the Direct Cyclic step or a user-defined crack [16].

For fatigue analysis, the XFEM follows Paris’ law for crack propagation and crack growth
onset 1. Crack growth onset is defined to be when

f =
N

c1∆Gc2
≥ 1. (2.1)

Here c1 and c2 are material parameters, ∆G is the relative fracture energy release rate, and
N is the cycle number. When the equation 2.1 is satisfied, the elements at the crack-tip will
release only as long as Gmax, the highest energy release rate that occurs during the cyclic
loading, exceeds Gthresh. Gthresh is a material parameter.

When the criteria stated above are satisfied, the crack growth propagation is governed by

da

dN
= c3∆Gc4 , (2.2)

where a is the crack-length, da
dN

is the crack propagation rate and c3 and c4 are material
parameters [17]. When ∆G exceeds Gplastic, the part fractures. In the simulation the crack
will propagate by one element width for each cycle when this occurs.

2.3.3 Continuum damage approach and hysteresis energy

The continuum damage approach uses the accumulated inelastic energy, ∆w, per cycle and
1Note that the crack growth onset refers to the cycle N where the pre-existing crack starts to grow.

15

K. Engen June 11, 2022

material constants to predict damage initiation and prediction. After damage initiates, the
material starts to degrade by a degradation factor, D. D signifies to what degree each element
is degraded, ranging between values from 0 to 1. 0 means no damage, 1 means the element
is no longer capable of carrying any load [18]. Damage initiation is set to be

N = c1∆wc2 , (2.3)

where c1 and c2 are material constants, and N signifies the cycle at which damage initiates
[19]. After this the element degrades at the rate

dD

dN
=

c3∆wc4

L
, (2.4)

where c3 and c4 are material parameters, and L is the element width [20].

When the degradation factor is used, the element’s load-carrying capacity is calculated as

σ = (1−D)σ, (2.5)

where σ is the stress-tensor of the damaged element, and σ is the undamaged stress tensor
of the element [20], i.e what the load bearing capacity of the element would be at this point
in the cycle had it not been damaged.

2.4 Cyclic hardening

A cyclic hardening model describes the response of a material subjected to cyclic loading.
In this section, some models used to describe the behavior of some metals subject to cyclic
loading are introduced.

16

K. Engen June 11, 2022

2.4.1 Isotropic hardening

Implementing an isotropic hardening model, in effect, scale the yield surface of the material
by a scalar value [21] as illustrated in figure 2.4. The yield surface, σ0, of a material given a
certain plastic strain, εp, is being described by the equation

σ0 = σ0 +Q(1− e−bεpl), (2.6)

where σ0 is the yield surface before any plastic strain is accumulated, Q and b are material
parameters [22]. Q is an asymptotic value and is calculated by finding the yield surface of the
stabilized cycle for the material, and b indicates the speed at which the material stabilizes
[21]. Thermodynamic effects are not considered in this thesis.

Figure 2.4: Isotropic hardening

2.4.2 Kinematic hardening

Implementing a linear, kinematic hardening model in effect translates the loading-surface of
the stress-strain curve by a tensorial hardening variable X by

f = fy(σ −X)− k. (2.7)

Here f indicates the present loading function, fy the form of the yield criterion, and k is the
yield stress (can be different from the usually known σy, which is the initial yield stress).
This is illustrated in figure 2.5.

17

K. Engen June 11, 2022

Several variations of linear kinematic hardening are formulated. In Abaqus, one is available
for implementation, Ziegler’s hardening rule, [22] and the basis for this, Prager’s rule.

dX =
2

3
Cdεp, (2.8)

where C is a material parameter, dεp is equivalent plastic strain.

Ziegler’s rule adds a term to Prager’s rule

dX =
2

3
Cdεp +

1

C
XdC, (2.9)

where dC is the change of C with respect to time. As can be seen, if C is set as a constant
value, it is equal to Prager’s rule.

Figure 2.5: Linear kinematic hardening

Nonlinear kinematic hardening

In Prager’s rule, equation 2.8, there is a proportionality between equivalent plastic strain, εp,
and the hardening variable, X. This is removed in the nonlinear kinematic hardening rule
from Lemaitre and Caboche (1990)[21], with the addition of a recall term

dX =
2

3
Cdεp − γXdp, (2.10)

where dp is the change in accumulated plastic strain, and γ is a material parameter referred
to as a decreasing function by Lemaitre and Caboche (1990) [21]. Both C and γ can vary
with accumulated plastic strain, p, but that is not considered in this paper.

18

K. Engen June 11, 2022

2.4.3 Combined isotropic and kinematic hardening

As simply scaling the yield surface, or simply translating the yield surface is not enough to
describe the cyclic response for many materials, a combination of these two were introduced
by Caboche and Lemaitre (1990) [21]. Combining the nonlinear kinematic hardening model
with the isotropic hardening model allows the yield surface of the material model to both
expand and translate.

Superpositioning kinematic models

The evolution of kinematic components, "backstresses" are described in the equation 2.11

dXk =
2

3
Ckdεp − γkXkεp (2.11)

The overall back-stresses are summed together, as shown in equation 2.12

X =
N∑

k=1

Xk (2.12)

Superpositioning several kinematic models, in addition to combining the nonlinear kinematic
and isotropic hardening model, has the added effect that the accuracy of the model is im-
proved for small strains and damping the excessive ratcheting effect that can occur if only
one kinematic backstress is implemented [21].

2.5 Micromechanical modeling and Periodic boundary con-

ditions

A representative volume element is used for modelling structures on a micromechanical level.
The RVE represents the behaviour of the material on this scale. To ensure that the element
deforms periodically, i.e. that the deformed RVE is periodic and spatially filling, periodic
boundary conditions (PBC) are applied [23] [24]. The details of PBC implementation for
RVEs is presented in this section.

19

K. Engen June 11, 2022

2.5.1 Periodic Boundary conditions in 2 dimensions

As metioned above, there are certain requirements an RVE must fulfill when modelling it. It
must be spatially filling, and periodic. This means there will be no cavities or overlaps. If we
define an RVE with several pairs of points along the edges, each pair on the two vertical edges
having the same y-coordinates, and each pair placed on the two horizontal edges having the
same x-coordinated. An illustration of an undeformed RVE with PBC and node pairs A and
B is provided in figure 2.6a. The displacement of each such pair of periodically placed points
A and B is described as

u(B)− u(A) = (F − 1)(X(B)−X(A)) = H(X(B)−X(A)). (2.13)

Here u(A) and u(B) is the displacement at nodes A and B, respectively, (F -1) is the macro-
scopic displacement, and X(A) and X(B) is the position in the reference configuration. For
successfully modeling an RVE, this relation must be applied to each such pair of nodes along
the edges of the RVE [25]. The macroscopic displacement, (F -1), is applied to ’dummy’ nodes,
a node unconnected to the RVE itself. There is one dummy node for each degree of freedom,
i.e. for a 2-dimensional RVEs there would be 2 ’dummy’ nodes, while for 3-dimensional RVEs
there would be 3.

A constrain equation is used to implemenet the constraint described in equation 2.13 in finite
element analysis. For node pair A and B on a 2-dimensional RVE, the equations would be

u(A)1 − u(B)1 − u(D)1 = 0

u(A)2 − u(B)2 − u(D)2 = 0,
(2.14)

where u(X)i denotes the displacement in point X in direction i [24]. Point D refers to the
’dummy’ node associated with the edge-pair the points A and D. An illustration of this
deformation is provided in figure 2.6b.

20

K. Engen June 11, 2022

(a) Undeformed RVE with PBC.
(b) Deformed RVE with PBC.

Figure 2.6: RVE with PBC. Dv denotes the ’dummy’ node associated with node pairs on
vertical edges, and Dh is the ’dummy’ node associated with node pairs on horizontal edges.

2.6 Elastoplasticity

Total strain ε is composed of elastic strain, εe, and inelastic strain, εie. Inelastic strain can
be plastic strain, viscoplastic strain, anelastic strain, among others [21]. In the realm of
elasto-plasticity, strain is defined as consisting only of elastic strain and plastic strain, εp,

ε = εe + εp. (2.15)

2.7 Numerical integration

Numerics is used for problems in arithmetics that cannot be solved exactly. There are several
methods for finding the integral of a function, f, using only some points on it. Two such
methods is the Trapezoidal rule, and the Simpson rule.

2.7.1 Trapezoidal rule

The Trapezoidal rule uses linear interpolation between two points to approximate f, and sums
up these trapezoids for the entire interval of the function as shown in equation 2.16.

21

K. Engen June 11, 2022

∫ b

a

f(x)dx = h(
f(x0) + f(x1

2
+ ...+

f(xn−1) + f(xn)

2
) (2.16)

where n is the number of points on the function f [26].

2.7.2 Simpsons Rule

The Simpson rule merges two intervals neighboring intervals, making one interval with three
known values, and approximates f through these three points using the unique quadratic
function.

∫ b

a

f(x)dx =
h

3
(f(x0) + 4f(x1) + 2f(x2) + ...+ 2f(xn−2) + 4f(xn−1) + f(xn)) (2.17)

The Simpson rule requires an even number of intervals.

2.7.3 Accuracy

Given a set of nodes on a function, it is proved that the Simpsons method is more accurate
than the Trapezoidal rule [27]. A simple proof is provided here.

f(x) = cos(
π

2
x)

∫ 1

0

f(x)dx = 0.63662...
(2.18)

Given the nodes (0, f(0)), (0.5, f(0.5)) and (1, f(1)), the accuracy of the Trapezoidal rule and
the Simpson rule will be demonstrated.

22

K. Engen June 11, 2022

Trapezoidal rule
∫ 1

0

f(x)dx ≈ 1

2
(
f(0) + f(0.5)

2
+

f(0.5) + f(1)

2
)

∫ 1

0

f(x)dx ≈ 0.60355...

e = 0.63662− 0.60355 = 0.03307

(2.19)

Simpson Rule
∫ 1

0

f(x)dx ≈ 16(f(0) + 4f(0.5) + f(1))

∫ 1

0

f(x)dx ≈ 0.63807...

e = 0.63662− 0.63807 = −0.00145

(2.20)

As can be seen from equation 2.19 and 2.20, given the same three nodes, the Simpson-rule
is more accurate.

2.8 Machine learning using neural networks

The motivation for using machine learning in this thesis is to solve a multivariate problem
that is not linearly separable. To do this, a multi-layer perceptron (MLP) will be used.
A multi-layer perceptron is a deep-learning method. Deep learning is a form of machine
learning, where a model learns by exposure to data. This learning can be supervised or
unsupervised. In supervised learning, the model is exposed to a data-set containing input
and outputs or questions and answers. The model then adapts to predict the correct output
corresponding to a known input. A typical example where supervised learning is used is to
predict house prices in an area or classify handwritten numbers from an image. This will be
explained more in detail later. Unsupervised learning is not part of this thesis, but it means
that a model is given a data set that is not labeled. Unsupervised learning would be used,
e.g., for identifying groups with similarities in large data sets, like separating a forest into
trees, birds, insects, etc. This is useful when the groups, or clusters, in a population are not
already known, e.g., in a population of patients with unidentified diseases.

From the example given above alone, it can be seen that machine learning has a wide range

23

K. Engen June 11, 2022

of potential in many fields.

2.8.1 Neural networks

Neural networks ’learn’ by training. A neural network consists of an input layer, one or more
hidden layers, and an output layer, where the data flows from the input layer, through the
hidden layers, and to the output layer. Each hidden layer consists of several nodes, each
of which output, x, to another node is weighed. This is illustrated in figure 2.7. The back-
propagation learning algorithm adjusts these weights as training data is added to the network
so that the network predicts the correct output for a known set of inputs [28]. E.g. for a
regression model, the output would be the predicted value of the variable(s), e.g., pricing of a
house. For a classification model, the output would be the probability that each classification
was the correct one, e.g., which number the image of the handwritten number depicts.

Figure 2.7: Illustration of a fully connected, regression neural network. a, b, c and d are the
inputs, xij is the value each node holds depending on the input values, wijk is the weight

attributed to each node connection, and p, q, and r are the predicted output values.

Such a model is called a multi-layer perceptron (MLP). Several different optimizers are pro-
posed for optimizing the weights, such as the Adam optimizer [29] and the LBFGS (Limited
memory Broyden–Fletcher–Goldfarb–Shanno) optimizer [30][31].

This makes the neural network well suited to predict the correct output for the data it’s
been trained for, but the user also needs to know how well the algorithm performs for data it
hasn’t seen before. The model can be assessed by the coefficient of determination, R2. The
coefficient of determination is defined as

24

K. Engen June 11, 2022

R2 = (1− SSE

SST
), (2.21)

where SSE is the error sum of squares, and SST is the true, or total, the correct sum of
squares, defined as

SSE =
n∑

i=1

(yi − ŷi)
2

SST =
n∑

i=1

(yi − yi)
2

(2.22)

where yi is the true value of the output, ŷi is the predicted value of the output, and yi is
the mean value of y [32] [33]. When all residuals, (y1 - ŷi), is zero, the R2 = 1. The higher
value the R2 has, the better fit it is. Despite this, relying entirely upon the R2 value when
deciding between models is not recommended. E.g., adding an additional term could decrease
the SSE, which could lead to an artificially high R2 value [32].

2.9 Optimizing using differential evolution

Differential evolution is one of the most popular global optimization methods for com-
plex problems and was first proposed in 1996 by Storn [34][35]. Differential evolution is
a population-based, stochastic Evolution Algorithm. I.e., the algorithm goes through the
different combinations of the factors, limited by a set of boundaries (the population) in a
stochastic manner to find the minimum solution. It was proposed as a minimization technique
fulfilling the following five requirements proposed by Storn and Price (1997) [35]:

1) Ability to handle non-differentiable, nonlinear, and multi-modal cost functions.

2) Parallelizability to cope with computation-intensive cost functions.

3) Ease of use, i.e., few control variables to steer the minimization. These variables should
also be robust and easy to choose.

4) Good convergence properties, i.e., consistent convergence to the global minimum in
consecutive independent trials.

25

K. Engen June 11, 2022

Fulfilling these requirements makes the differential evolution method suitable for time-consuming
finite element experiments.

2.10 Design of Experiments

Design of Experiments (DoE) is a mathematical tool used to design the results of experiments
where multiple variables control the result of the experiment. Knowing how to conduct
experiments that are more complex than one input-one output can severely reduce the number
of experiments required, and increase the chance of getting an accurate result [36]. When
conducting experiments where several factors are considered, there are several different ways
to conduct said experiments. Three different approaches will be presented in this section.

2.10.1 OFAT

One factor at a time (OFAT) is a traditional approach used by engineers and scientists to
experiment with several factors. Using this approach, the experimenter changes only one
factor at a time while the other remains constant. I.e., given three factors a, b and c and
fixed factor levels k, l, m, and response p, the experiment could yield a response as seen in
figure 2.8 [36].

(a) OFAT factor k (b) OFAT factor l (c) OFAT factor m

Figure 2.8: OFAT illustratory example

Given the response p(k, l, m) seen in figure 2.8, and assuming the goal is to maximize p, it
would seem that the best factor levels are k = 4, maximize factor l, and minimize factor m.
Here the downside of OFAT comes into play, as this method does not consider the effect one
factor has on the other. For all the experimenters know, the response p with varying k, l=5,
and m=1 could be as illustrated in figure 2.9.

26

K. Engen June 11, 2022

Figure 2.9: OFAT k, maximized l, and minimized m.

Here the overall response p is lower, and the maximum yield is found in k=3, not k=4. This
example illustrates the flaw in using OFAT, based on the literature available on the subject
[36], [37].

2.10.2 Factorial design

For factorial design, each factor is varied n levels. The most common is a 2-level factorial de-
sign. This makes it possible to examine the interaction between the parameters. This design
requires nk experiments, where n is the number of levels each factor k is to be studied [38][39].
If one can assume no interaction between the parameters, the method can be simplified with
the Placket-Burman Design to 4k experiments [40].

2.10.3 Split Plot design

Split Plot design is derived from the factorial design. It is a DoE method where the ex-
perimenter can divide the experiment into bulks. I.e., it lets the experimenter differentiate
between the different factors and single some out for closer examination[41] . For each bulk,
one or more parameter have set factor levels, and within each bulk, the factors that the
experimenter want to look at more closely are varied. An example is a two-factor experiment
with parameters a and b, and response p. The value for b is more important than a, so the
experimenter wants to try three values for b, but five values for a.

a1 a2 a3 a4 a5
b2 p11 p12 p13 p14 p15

b2 p21 p22 p23 p24 p25

Table 2.1: Split plot design example

27

K. Engen June 11, 2022

Chapter 3

Methods

In this chapter, the methods used in this thesis will be described. This is the method relating
to the structure: how the structure and the parameters are defined; the finite element model:
material model, boundary conditions, and mesh; data collection and parametric study: how
the data is collected and on what basis they are evaluated, and what method is used; machine
learning aspect: what method is used to train a neural network model, and what steps are
taken; optimization: methods used to optimize the parameters of the structure depending
on the evaluation criteria.

3.1 Lattice structure

The lattice structure of which the parameters are to be investigated is a simplified geometry
based on image scans of the jaw-bone [2]. The image scan and the simplified lattice structure
can be seen in figure 3.1. The resulting Representative Volume Element (RVE) is illustrated
in figure 3.1c.

Based on the scan in figure 3.1, the mean values and Standard Deviation of the parameters
in figure 3.1 a) were calculated [42]. The result of this can be seen in table 3.1.

3.1.1 Parametric study

The goal of the parametric study is to understand how the different parameters influence the
performance of the structure. The goal was to find the lowest number of factors necessary to

28

K. Engen June 11, 2022

(a) A sketch of simplified lattice structure with
key parameters based on the scan. The figure is

from the authors’ project thesis [42]

(b) Scan of the LBJ bone. 16 areas for
measuring 5 key parameters tv1, tv2, t1,
t2, and α are highlighted. Background
figure in b) is from E. Ziv et al. [2].

(c) Resulting representative volume
element (RVE).

Figure 3.1: Simplified lattice structure and original scan.

Table 3.1: Mean values and Standard Deviations for four of the key parameters. Table is
from K. Engen [42]

Parameter Mean value Standard Deviation [µm] Standard Deviation [%]
t1 71.12 µm 15.94 22.4
tv1 94.12 µm 28.03 29.8
t2 27.37µm 10.48 38
tv2 106.19 µm 30.29 28.5
fv 0.547 0.331 60.57
α 77.69◦ 12.2◦ 15.7

describe the structure to make the parametric study as simple as possible. There are several
different ways to define the geometry of the structure, by Volume fraction, by the angle α,

29

K. Engen June 11, 2022

the values tv1, tv2, t1 and t2, and the relationships between the last four. There a total of
6 unique relations (12 counting the inverse) between tv1, tv2, t1 and t2. Two of these will
be investigated more closely, namely tv2

tv1
and t1

t2
, from here on will these be referred to as

R1 and R2, respectively. The structure can be defined using these two parameters, R1 and
R2, combined with the volume fraction and the angle, α. Making sure one is not influenced
by changing another is key, and the method to do this is demonstrated in the following
sub-sections.

R1

Given a ratio R1 = R1, volume fraction fv = v, t1 = t1 and t2 = t2, if was found that the
new values for tv1 and tv2 was best found by the method in equation 3.5.

We start with the equation for the volume fraction,

v =
Vt − Vv

Vt

=
At − Av

At

= 1− Av

At

v = 1− tv1tv2
(tv1 + t1)(tv2 + t2)

,
(3.1)

where Vt is the volume of the RVE 1 per unit thickness, Vv is the volume of the void-area
per unit thickness, At is the total area of the RVE in the xy-plane defined in figure 3.1, and
Av is the area of the void in the xy-plane. Inserting the relation

tv2
tv1

= R1

tv2 = R1 · tv1
(3.2)

into equation 3.1 and solving for tv1 gives
1figure to explain RVE is needed

30

K. Engen June 11, 2022

v = 1− R1t
2
v1

(tv1 + t1)(R1tv1 + t2)

0 = 1− v − R1t
2
v1

(tv1 + t1)(R1tv1 + t2)

0 = (1− v)(t1t2 +R1t1tv1 + t2tv1 +R1t
2
v1)−R1t

2
v1

0 = (1− v)t1t2 + tv1(R1t1 + t2)(1− v) + t2v1R1(1− v)−R1t
2
v1

0 = c+ btv1 + at2v1

(3.3)

where

a = −R1 · v
b = (R1tv1 + t2)(1− v)

c = (1− v)(t1t2).

(3.4)

tv1, tv2 is then obtained by solving

tv1 =
−b−

√
b2 − 4ac

2a
and

tv2 = R1 · tv1.
(3.5)

By following this method, only tv1, tv2, R1, and the size of the RVE is changed. The volume
fraction, t1, t2 and R2 remains unchanged.

R2

Calculating R2 follows the same procedure as calculating R1. Inserting the relation

t1
t2

= R2

t1 = R2 · t2
(3.6)

31

K. Engen June 11, 2022

into equation 3.1 and solving for t2 gives

v = 1− tv1tv2
(tv1 + t1)(tv2 + t2)

0 = 1− v − tv1tv2
(tv1 +R2t2)(tv2 + t2)

0 = (1− v)(tv1tv2 + t2tv1 +R2t2tv2 +R2t
2
2)− tv1tv2

0 = −v(tv1tv2) + (1− v)(tv1 +R2tv2)t2 + (1− v)R2t
2
2

0 = c+ bt2 + at22

(3.7)

where

a = (1− v)R2 · v
b = (1− v)(tv1 +R2t2)

c = −v(tv1tv2).

(3.8)

t1 and t2 are then obtained by solving

t2 =
−b+

√
b2 − 4ac

2a
and

t1 = R2 · t2
(3.9)

By implementing this method, only t1, t2 and R2, while the volume fraction, the size of the
RVE, tv1, tv2 and R1 remains unchanged.

Volume fraction

Changing the volume fraction, while maintaining the other parameters also requires careful
calculations. Here we maintain the size of the RVE, At, R1 and R2, while the numerical
values of t1, t2, tv1, tv2 is changed.

We start with the definitions of the area of the RVE

32

K. Engen June 11, 2022

At = (tv1 + t1)(tv2 + t2) (3.10)

At, R1 and R2 remaining unchanged is used as the basis for calculating Av, tv1 and tv2 in
equation set 3.11.

Av = At(1− v)

Av = tv1tv2 = R1t
2
v1

tv1 =

√
Av

R1

(3.11)

From here, the method described in sub-section 3.1 is used to find t1 and t2, using the already
known R2, v, tv1 and tv2.

3.2 FE model

3.2.1 Material model

In this section, the mechanical properties of the material implemented in the Finite element
model are described. This model describes an elastic and plastic behavior and the damage
model, i.e. under which criteria and how damage initiates and evolves in the model. The
material described is not being investigated in this thesis.

Cyclic hardening model

The plastic deformation of the finite element model is described using a cyclic hardening
model, as the response to a periodic, cyclic loading and obtaining a stabilized stress-strain
cycle is key when investigating fatigue.

The cyclic hardening model implemented is nonlinear combined isotropic and kinematic cyclic
hardening, as described in section 2.4. The kinematic model consists of a superposition of
several back-stresses, which leads to a less pronounced ratcheting effect [21], as described
in section 2.4. This is important to help with the convergence of the direct cyclic step,

33

K. Engen June 11, 2022

as described in section 2.3. The combination of kinematic and isotropic hardening has the
advantage of describing both a scalar deformation and translation of the stress-strain curve
[22] [21]. The material parameters for the kinematic hardening model and the isotropic
hardening model are collected from a material model developed and tested with experimental
data by Song et al. (2021) [43], and are presented in table 3.2 and 3.3, respectively.

Table 3.2: Kinematic hardening parameters

i 1 2 3 4 5
Ci [MPa] 84844 60486 18041 4935 2426

γi 5085 881.1 163 100.6 9

Table 3.3: isotropic hardening parameters

σ0 [MPa] Q [MPa] b
450 -70 2

Damage model - XFEM and MaxPS

The XFEM method, in combination with the Max Principal Stress damage model, was
investigated as a potentially suitable damage model to investigate the performance of the
different RVE’s. Because a crack cannot be initiated in a Direct cyclic step, it would have to
follow a static step in which the crack was initiated. This method would require confirmation
that a crack was initiated. As this process was supposed to be as automatic as possible, it
was decided that the continuum damage model using Hysteresis energy was a better fit.

Damage model - Hysteresis energy

The damage initiation and damage evolution based on accumulated hysteresis energy (plastic
strain energy) were introduced in Abaqus using keyword editor. The code for this can be
seen in Appendix A.4.3, from line 589. Calculation of the parameter c3 has to be done for
each RVE because it is dependent on the characteristic element length [20].

Because of some discrepancy between sources [43] [20] on how to calculate c3 based on the
element size for use in Abaqus, some simulations using different mesh sizes were run to verify
the computational method. The paper from which the material data is collected indicates
that the c3 value should be calculated in the following manner:

34

K. Engen June 11, 2022

c3 = a/L, (3.12)

where L is the characteristic length of the element, and a is a material constant from the
relation between degradation values in the damage-evolution state, and the plastic strain
energy ∆w

∆D/∆N = a∆wc4 = 1.39e− 3∆w0.095 (3.13)

Song et al. (2021) [43] conclude that the c3 value should be 7.94e-4 because their characteristic
element length L=1.75 mm. The investigation of this author, however, supports that the c3
value should be calculated as

c3 = a · L, (3.14)

to return the same behavior when changing the element size. Three finite-element jobs were
used to conduct the test that led to this conclusion: 1) replication of the results of Song
et al. (2021) to ensure that the model was correct; 2) repeating 1) with half the element
mesh-size calculating c3 as in equation 3.12 using L=0.875; 3) repeat 2) but calculating c3 as
in equation 3.14. As the results in Song et al. (2021) using c3 = 7.94e-4 yielded the correct
results [43], a was calculated based on this c3 value and equation 3.14 for step 3) to be

a =
c3
L

= 0.0004537 (3.15)

yielding

c3 = a · L = 0.0004537 · 0.875 = 0.0003971 (3.16)

for case 3).

The results of the trials can be seen in table 3.4. From these results, it is clear that the
method in equation 3.14 is more accurate; thus, the c3 value for the Fe-models will be
calculated according to equation 3.17.

35

K. Engen June 11, 2022

Table 3.4: Confirming calculation of c3

c3 SDEG at N=1000
1) 7.94e-4 0.2299
2) 1.589e-3 0.6858
3) 3.971e-4 0.2496

Figure 3.2: Rigid motion Boundary condition on the RVE

c3 = 0.000453878 · L (3.17)

3.2.2 Boundary conditions and loads

Periodic boundary conditions (PBC) were used on the RVE. Code written by the author
was used for the implementation of the PBC. This code is available in section A.4.3 lines
188 through 433. In addition to this, boundary conditions were implemented to prevent
rigid motion. The Boundary conditions were tested on the simple square. In addition, 5
RVE geometries were checked for wrongful Reaction forces and out-of-character stresses and

36

K. Engen June 11, 2022

strains, i.e., out-of-place Reaction forces on the boundary conditions and dummy nodes.

Verification

Checking the RF and stress distribution of the model using different boundary conditions.
Referring mainly to the angle RVE and the simple square.

3.2.3 Mesh

The Element type used in the analysis is CPE8R. This is a plane strain, 8 node element with
reduced integration. The validity of this element was checked against the material model
fatigue evolution from Song et al. (2021) [43], checking that the analysis yielded the correct
result using this element and the boundary conditions chosen.

The 8 node element was used instead of the more cost-effective 4-node element because the
deformation of the structure demands a second-degree equation to describe it.

Partition

As the value c3 has to be calculated by the user concerning the element width [20], care
was taken that the elements throughout the mesh had the same width. This was done by
partitioning each RVE in such a manner that the mesh would always be regular, and the
element width could be known without having to measure it manually. The partition and
the meshed part are illustrated in figure 3.3.

(a) Illustration of partition (b) Resulting Mesh

Figure 3.3: Illustration of how mesh-regularity is achieved

37

K. Engen June 11, 2022

Convergence analysis

A convergence analysis was conducted to ensure as low run-time per job as possible. As the
RVEs could vary significantly in absolute sizes, The convergence analysis was performed for
several different RVEs, with regards to the calculated inelastic strain, ∆ w. This was seen
as being a universal approach. As the number of elements along the width of the beams of
the RVE would also be affected by this value, as well as relation t1

t2
, the convergence analysis

was conducted for several different RVEs. The result of the convergence study can be seen in
table 3.5, table 3.6, figure 3.4 and figure 3.52. These are the two most extreme cases. Other
results from the convergence study can be seen in the appendix, A.1.1.

Table 3.5: Convergence study: R1, R2 = 0.5, ε = 0.006, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 34 42.17 0.595
10 136 68.48 0.597 -0.3 %
20 544 212.95 0.584 - 2.2 %
40 2160 775.67 0.581 0.5 %

Table 3.6: Convergence study: R1, R2 = 3, ε = 0.006, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 20 32.13 1.161
10 76 38.48 1.813 + 56.2 %
20 224 60.41 1.727 - 4.7 %
40 904 155.22 s 1.701 1.5 %

3.3 Evaluation of the RVEs

The RVEs will be evaluated based on the number of cycles N it takes for the effective stiffness,
E, of a unique RVE to degrade by a set factor D.

The code written for collecting the different result can be found in the Appendix A.4. The
results were evaluated by the accumulated inelastic strain energy, ∆ w, and the effective
stiffness, E.

2Note the convergence-behaviour in R=3. Instead of converging towards one value from one side, it seems
to oscillate around a value. This could have implications for the stability of the mesh (presented in section
??).

38

K. Engen June 11, 2022

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure 3.4: Convergence study: R1, R2 = 0.5, ε = 0.006, N=1000.

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure 3.5: Convergence study: R1, R2 = 3, ε = 0.006, N=1000

Effective stress and strain in the y-direction were collected for each cycle N for the different
RVEs. The effective stiffness was calculated based on this data. In this case, the effective
stiffness is set to be the slope of the stress-strain curve where the strain is released from its
maximum value in compression, i.e when the strain is decreased from 0.8%. As the Direct
cyclic step is set to a fixed step-increment at 0.1, and the load is applied as a sinus-curve 3,
this means the effective stiffness is calculated as the slope of the stress-strain curve between

3Introduce this earlier

39

K. Engen June 11, 2022

the strains -0.8% (x1i) and -0.76 % (x2i), the two points highlighted in figure 3.6. As the
Direct cyclic step extrapolates damage and does not iterate through every cycle, the exact
step increment where the stiffness decreases by 10 % is calculated using linear interpolation
between the two points around which this transition occurs.

Figure 3.6: Exemplary stress-strain curve with x1 and x2 points highlighted.

The hysteresis energy, or accumulated inelastic strain energy, ∆ w, is calculated using nu-
merical integration and the Simpson rule. As there are 20 points on the stress-strain curve
for each cycle, the error is expected to be small [27].

3.3.1 Data Collection for parametric study

The data collection was done in several steps. After verifying the validity in the model, the
first step was running it for an extensive range of parameters presented in Table 3.7. As
can be seen from the table this results in 450 variations of the RVE and 450 jobs. From the
convergence study and tables 3.6, 3.5 and A.1 through A.6 we can see that the time it takes
to run one job with n=10 ranges from 0.5-2 minutes. Assuming an average of 68 seconds,
this results in 8 hours and 30 minutes of run-time. The computer used was equipped with a
Ryzen AMD Ryzen 7 4700U processor with Radeon Graphics and a clock rate of 2.00 GHz.

The next round of data collection was conducted for a range of parameters based on the work
done on the structure’s geometry in the authors’ project thesis [42]. The parameters focus

40

K. Engen June 11, 2022

Table 3.7: Range of parameters for first round of data-collection

Parameter Values No.
R1 0.33, 0.5, 1, 2, 3 5
R2 0.33, 0.5, 1, 2, 3 5
Vf 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 9
ε 0.6e-02, 0.8e-02 2

Table 3.8: Mean values and standard deviation. Table is from K. Engen (2021) [42].

Parameter Mean value Standard Deviation Standard Deviation [%]
R1 1.128 0.465 41.2
R2 2.598 1.153 44.4
fv 0.547 0.331 60.57
α 77.69◦ 12.2◦ 15.7

on the mean value and the standard deviation of the structure presented in Table 3.8.

For the second round of data collection, the parameter range of [Mean-1SD, Mean - 0.5 SD,
Mean, Mean + 0.5SD, Mean + 1 SD] was chosen to look closer at what happens around the
values for the standard deviation. The numerical values are presented in table 3.9.

Table 3.9: Range of parameters for second round of data-collection

Parameter Values No.
R1 0.663, 0.895, 1.128, 1.360, 1.593 5
R2 1.445, 2.022, 2.598, 3.1745, 3.751 5
Vf 0.216, 0.382, 0.547, 0.713, 0.878 5
ε 0.6e-02, 0.8e-02 2

3.4 DoE

The factors R1, R2, and fv, was chosen to describe the RVEs, reducing the number of factors
to three. To understand the effect these factors have on the RVE and its performance to
withstand fatigue wear, the OFAT approach and full factorial design was tested. The full
factorial design will be implemented to investigate and understand the interaction between
the three factors. The structure has 3 factors and will be set to three levels each, resulting
in 33 = 27 experiments.

41

K. Engen June 11, 2022

3.5 Predicting and understanding the structure using Ma-

chine learning

Part of the goal of this thesis was to investigate if machine learning could be a valuable tool
to understand the structure better, predict the performance of a given RVE and possibly find
an optimal RVE for fatigue life.

The method implemented was a neural-network regression model from sk learn library [33].
Here two optmizers will be tested, the Adam optimizer [29], and as the data-set might be
small, the LBFGS optimizer [30] will also be tested.

The MLPRegressor model takes in a data-matrix X and a set of Y targets. The X-data will
in this case contain three values R1, R2, fv, and the strain in parts per thousand. The Y-data
will be one of the following three: N before E = 0.85E0, i.e the effective stiffness of the RVE
has decreased 15 %; Nonset and relative slope a/E0; or Nonset, slope a and E0.

The MLP model was verified using the coefficient of determination R2, introduced in section
2.8. 20% of the data-set is reserved for testing, and only 80% of the data-set was used for
training the model. The selection of which data was used for training and for testing is
done randomly using the sk learn function shuffle [44] to prevent experimenters’ bias from
impacting the resulting model. This also means the resulting coefficient of determination R2
can differ each time a new model is created. The R2 value will also be reported for each
MLP model used to generate results through performance prediction.

3.5.1 Optimizing using MLP and differential evolution

After creating an MLP model that can successfully predict the performance of a given RVE,
this model could be used to find a global best performing RVE given a set of requirements.
In this case, the function f(X) that was optimized was

f(X) =
DE0(X)

a(X)
+Nonset(X), (3.18)

where X = (R1, R2, fv, ε); E, a and Nonset is predicted from the MLP model; and D is the
degradation of E.

To optimize the function f(X), the differential evolution technique as introduced in section

42

K. Engen June 11, 2022

2.8 from the scipy library [45] was used.

The code used for the optimization of the function f(X) is made available in the appendix
section A.2.

3.5.2 Optimizing using Abaqus and differential evolution

Optimizing using the differential evolution method, combined with the Abaqus solver. I.e.,
instead of the MLP model predicting the result for each combination of factors the differential
evolution algorithm asks to evaluate, the result is calculated by the Abaqus solver. This takes
more time (days instead of seconds), and is risky as the differential evolution optimizer does
not handle interruptions. Because of this inability to handle interruptions, the structures
where each given default material parameters in case of error in the simulation. In this case,
the fault would be reported. In the end result, no such faults occurred. Script is available in
Appendix, section A.3. This was done for both fixed strain and stress. Different outcomes
were expected as effective stiffness varies greatly.

3.6 Simplifications

Simplifications made in this thesis are: a is representative for the slope of the E-degradation
curve for the area of interest: 15% - 30% degradation.

The fact that the FE-model cannot produce a reliable result in the are before 10% degradation
is not detrimental to the experiments conducted.

The convergence-study results are representative for the entire scope of RVE-parameters
covered in this thesis.

Material contribution is not considered.

The effects these simplifications may have on the result will be discussed at the end of this
thesis.

43

K. Engen June 11, 2022

Chapter 4

Results

In this section, the results from the various methods will be presented.

4.1 Parametric study

4.1.1 OFAT

Results: Graphical display shows: minimum fv, minimum R2, and particular R1

The results from the OFAT analysis of the RVE structure are presented graphically in figures
4.1a, 4.1b and 4.1c.

The response N before a 15 % degradation of E was reached, using the OFAT approach
is presented in figure 4.1a, 4.1b and 4.1c. As can be seen from the graphical displays, the
predicted optimal yield is granted by minimizing R2 and fv, and setting R1 ≈ 1.24. This
would predictably lead to a lifetime N > 460, as is the highest recorded using the OFAT.

44

K. Engen June 11, 2022

(a) OFAT R1 (b) OFAT R2

(c) OFAT fv

Figure 4.1: OFAT plots for R1, R2 and fv.

45

K. Engen June 11, 2022

4.1.2 Full factorial

The results from the full factorial design (described in sections 2.10 and 3.4) are presented in
table 4.2. The factor level corresponding to each sign in table 4.2 and each factor is described
in table 4.1. Take e.g row number 4 (excluding the header) in table 4.2: R1=0, R2=0, fv=+,
N15%=420. This means that an RVE with factor levels R1=1.128, R2=2.598 and fv=0.6,
reaches 15% degradation of the effective stiffness, E, at N cycles = 420.

Table 4.1: Factorial design symbols

symbol Factor level
R1 R2 fv

0 1.128 2.598 0.55
+ 1.36 3.174 0.60
- 0.896 2.022 0.50

The values in table 4.2 can be used to better understand the interaction between the factors
R1, R2, and fv [38]. The interaction between R1 and R2 is examined in figure 4.2. In this
plot the effect of altering R1 changes with different levels of R2. I.e. the lines in the plots
aren’t parallel, indicating an interaction between the two factors. The values in the plot are
the average of all three fvs for each point.

Figure 4.2: Plot for R1-R2 interaction. Values are the mean for all fv.

Next, the interaction between R1, R2, and fv are examined. In figure 4.3 the behavior of R1

for different R2 and fv are shown. It can be seen that changing fv has a noticeable effect on

46

K. Engen June 11, 2022

Table 4.2: Factorial design

R1 R2 fv N 15%
0 0 0 434
+ 0 0 436 (+)
0 + 0 437 (+)
0 0 + 420 (-)
0 + + 433 (-)
+ + 0 428 (-)
+ 0 + 447 (+)
+ + + 433 (-)
- 0 0 436 (+)
0 - 0 439 (+)
0 0 - 430 (-)
0 - - 449 (+)
- - 0 428 (-)
- 0 - 442 (+)
- - - 437 (+)
- + + 414 (-)
+ - + 431 (-)
+ + - 438 (+)
+ - - 462 (+)
- - + 430 (-)
- + - 436 (+)
- 0 + 434
0 - + 429 (-)
0 + - 434
+ - 0 440 (+)
+ 0 - 452 (+)
- + 0 420 (-)

the behavior of R1 and R2. It is, therefore, reasonable to assume interaction between the
three factors.

In figure 4.4, R2 and fv are switched. Let’s first look at figure 4.4a. The lines for each
individual volume fraction are not parallel, as seen in figure 4.3. As the fv affects the behavior
of R1 significantly, it would be reasonable to assume interaction between the two. The change
in the R1-fv trends between the different R2 levels, in combination with the trends seen in
figure 4.4a, makes it clear that both fv and R2 have a non-negligible interaction with R1.

In figure 4.5 the data from the full factorial design in table 4.2 is reorganized, so the interaction

47

K. Engen June 11, 2022

(a) R1-R2 interaction for fv =
0.5.

(b) R1-R2 interaction for fv
= 0.55.

(c) R1-R2 interaction for fv =
0.60.

Figure 4.3: R1-R2 interaction plots for different fv.

(a) R1-fv interaction for R2 =
2.02.

(b) R1-fv interaction for R2

= 2.598.
(c) R1-fv interaction for R2 =

3.174.

Figure 4.4: R1-fv interaction plots for different R2.

between factors R2 and fv can be investigated. The trend lines for the different fv levels in,
e.g. figure 4.5a are different. The distinction is arguably more pronounced with the relations
R1-R2 and R1-Vf, but still not negligible, especially when considering figure 4.5c, where the
difference is clear.

(a) R2-fv interaction for R1 =
0.896.

(b) R2-fv interaction for R1

= 1.128.
(c) R2-fv interaction for R1 =

1.36.

Figure 4.5: R2-R1 interaction plots for different fv.

48

K. Engen June 11, 2022

4.1.3 Split plot

The result of the Split plot using two values can be seen in table 4.4. The meaning of the
symbols in table 4.4 is explained in table 4.3. For comparison the values for the mean values,
the middle values of the values in table 4.3 are R1 = 1.13, R2 = 2.598, fv = 0.55. They yield
N=434.

Table 4.3: Split Plot symbols

symbol Factor level
R1 R2 fv

+ 1.593 3.751 0.65
- 0.663 1.445 0.45

Table 4.4: Split Plot

R2
R1 fv + -
- - 435 (+) 444 (+)
- + 417 (-) 435 (+)
+ - 432 (-) 429 (-)
+ + 424 (-) 461 (+)

4.2 Brute Force

Of the 770 data points collected for the MLP-model, the best result was yielded for the
factors presented in table 4.5. The resulting figure is presented in figure 4.6. it took 21 hours
to complete.

Table 4.5: Optimal factors as predicted by differential evolution for ε=0.8 %.

R1 R2 fv N
1.477 2.31 0.5 472

49

K. Engen June 11, 2022

Figure 4.6: Illustration of structure with optimal factors as predicted by brute force for
ε=0.8%.

4.2.1 MLP and optimization

MLP

In this section, the result of the MLP will be presented. The best R2 value (not to be
confused with the factor R2) 2.8 reached for the regression model using the Adam optimizes
(see section 2.8) prediction all three factors a, N, and E0 was 0.96.

The data set collected contained only 770 data points. This is a relatively small sample,
indicating that the lbfgs optimizer could be a better fit [33][31]. Changing the optimizer
from adam to lbfgs yielded an R2 value of 0.97. The R2 value for the three individual
outputs is 0.95, 0.96 and 1 for N, a, and E, respectively.

A graphical display of the target-output plots using the lbfgs-optimizer is presented in figure
4.7. The subplots show that the prediction for E0 is better than for a and N. This level
of accuracy was accomplished by scaling the data using a standard scaler [46], setting the
tolerance of the trainer to 1e-12, and setting the Y = [Nonset, a, E0], as discussed in section
3.5. For 300 data points, the R2 for the regression model predicting all three values was
0.93 using the adam-optimizer. Using Y = [Nonset, a/E0] or Y = [N (E=0.85E0)] resulted
in a much worse prediction, worst-case 0.65 and 0.53 respectively for 770 data points. When
using original data for X and Y instead of scaling, the R2 value was worst-case 0.83 for 770
data points.

50

K. Engen June 11, 2022

(a) Target-output plot for factor a. R2=0.9654. (b) Target-output plot for factor E0. R2=1.0

(c) Target-output plot for factor N. R2 = 0.958.

Figure 4.7: Target-output plots for a, N, and E from the MLP regression model using the
lbfgs optimizer. Data is shuffled, and the value on the x-axis only denotes the relative

placement in the shuffled vector.

51

K. Engen June 11, 2022

Optimizing

The optimal factors, as predicted by the differential evolution in combination with the MLP-
model, are presented in table 4.6. The resulting structure with these factors is illustrated in
figure 4.8. The number of evaluations performed by the optimizer was 1548, and the number
of iterations was 21.

Table 4.6: Optimal factors as predicted by differential evolution for ε=0.8 %.

R1 R2 fv N
2.46136337 1.02242361 0.5718927 506

Figure 4.8: Illustration of structure with optimal factors as predicted by differential
evolution for ε=0.8%.

4.3 Result from Differential Evolution using Abaqus di-

rectly

In this section, the resulting optimal factors and time and resources spent from using the
differential evolution with the Abaqus solver directly are presented.

52

K. Engen June 11, 2022

4.4 Fixed Strain

For the fixed strain of 0.8 %, the optimal factors are presented in table 4.7. The resulting
structure is illustrated in figure 4.9. The number of evaluations performed by the optimizer
was 904, and the number of iterations was 14. It took 17 hours to complete.

Table 4.7: Optimal factors as predicted by differential evolution for ε=0.8 %.

R1 R2 fv N
2.43 1.036 0.56 508

Figure 4.9: Illustration of structure with optimal factors as predicted by differential evolution
for ε=0.8%.

4.5 Fixed Stress

Preliminary results for the fixed, effective stress of 300 MPa, the optimal factors are pre-
sented in table 4.8. The resulting structure is illustrated in 4.10. The number of evaluations
performed by the optimizer was 891, and the number of iterations was 12. It took 38 hours
to complete. Due to the time-demand on the analysis, a final result was not reached. The
error was not enough cycles was included in the analysis, and so higher-performing structures
were disregarded. Analyzing the data points to higher R2 values being better performers,
but further investigations are required.

53

K. Engen June 11, 2022

Table 4.8: Optimal factors as predicted by differential evolution for ε=0.8 %.

R1 R2 fv N
3.32 4.14 0.55 2682

Figure 4.10: Illustration of structure with optimal factors as predicted by differential
evolution for σ=300 MPa.

54

K. Engen June 11, 2022

Chapter 5

Discussion

In this chapter, the various results from the last chapter will be discussed. The focus will
be on the sources of error and what can be read from these results, if there is anything of
interest, and why that is or is not the case.

5.1 What can be learned from the results?

For understanding the interaction between the different parameters, the full factorial method
was the most efficient, and good for visualization and presentation. Using it to find an
optimum structure, was however difficult, and not labor efficient with regards to man-hours.
The OFAT was not appropriate for this structure, as there was a high degree of interaction
between the different factors.

Using the machine-learning algorithm and the Differential Evolution equation to predict the
optimum set of parameters, was more efficient, but required more computational power as
several hundreds of jobs had to be created beforehand. It was, however, robust, in the sense
that the process could stop and start without having lost several hours of work. The optimum
result N=506 was also significantly higher than the value found from the data set it was based
on N=472, proving its efficacy.

Using the differential evolution directly on the Abaqus solver, was the least robust alter-
native. With the computational power accessed by the author, the algorithm had to run
uninterrupted for 2 days, and if interrupted would have to start from scratch. It also did not
require fewer jobs than the MLP combined with DE, but was perhaps more reliable as it did

55

K. Engen June 11, 2022

not have authors’ bias when it came to data selection.

5.1.1 The structure and the method of study

The structure is predicted to have an optimum set of parameters around R1 = 2.46, R2=1.02
and fv=0.57 by the MLP combined with DE, and R1 = 2.43, R2=1.04 and fv=0.56 for DE
combined with Abaqus solver for fixed strain.

The differential evolution combined with the MLP-model provided the same result as the
DE with Abaqus. As the MLP was more robust with regard to interruptions, this could
be a good alternative as long as the predictions of the MLP are good enough. That being
said, when the DE optimization algorithm combined with Abaqus was not interrupted, it
was more time economical than the MLP, requiring 17 hours instead of 21. This is probably
because the DE solver converges towards the RVE with the highest N. The number of cycles
each RVE is analyzed for is fixed, so the longer it takes before damage initiates, the fewer
resources are required to complete the job. As the DE focus on the RVEs with higher N, it
selects the Abaqus jobs that require less time, while for the MLP the jobs are distributed in
the population regardless of N.

The preliminary, optimal structure for fixed stress points to different factors and lifetime
from the fixed strain. This is probably largely caused by the fact that the effective stiffness
depends on the factors. This is arguably a more useful result for load-bearing structures, but
further investigations are needed.

5.2 Further investigations

If there were to be any further investigations on this, or if there was more time, the next
step could be to continue the investigation of optimal structures for a fixed effective stiffness,
or for fixed stress. This is more interesting for load-bearing structures. It would also be
advisable to investigate the validity of the finite element model using physical experiments
with FDM-printed structures and a material model created for the FDM-material. This was,
unfortunately, not something I managed to accomplish in the allotted time.

If further investigations were to be made, however, it would be strongly advised to allocate
better computational resources to save time.

A suggestion for further investigation would also be to investigate finite element analysis

56

K. Engen June 11, 2022

for PBC combined with the cyclic hardening material model and hysteresis energy damage
initiation and evolution. I suggest this, as my investigations show the expected results using
the PBC implemented alone, as well as the material and damage model alone, but combined
they do not function as they should as seen in the convergence study conducted.

5.3 Sources of error

The factors. It could have been better if one of the factors were t1 and tv1, as that would
have made it possible to directly control the amount of material carrying load, and thus the
effective stiffness.

Not using randomized data for the construction of the machine learning. The data collected
for the MLP-model should have been randomized, not chosen to ensure a broad distribution.
This could result in experimenters’ bias.

From the convergence study, it is clear that the results are too varied for the onset of degra-
dation, and should therefore only be used after a certain point. This is approximately where
E = 0.9E0.

No physical experiments were conducted, so there has not been any validation of the model
created, other than the ones described in this thesis.

The range of the R2 value was to limited and should have been expanded to ensure a global
result.

57

K. Engen June 11, 2022

Bibliography

[1] J. R. Grubich. “Disparity between Feeding Performance and Predicted Muscle Strength
in the Pharyngeal Musculature of Black Drum, Pogonias cromis(Sciaenidae)”. In: Envi-
ronmental Biology of Fishes 74.3 (2005), pp. 261–272. issn: 1573-5133. doi: 10.1007/
s10641-005-3218-0. url: https://doi.org/10.1007/s10641-005-3218-0.

[2] E. Ziv et al. “Neither cortical nor trabecular: An unusual type of bone in the heavy-
load-bearing lower pharyngeal jaw of the black drum (Pogonias cromis)”. In: Acta Bio-
materialia 104 (2020), pp. 28–38. issn: 1742-7061. doi: https://doi.org/10.1016/
j.actbio.2020.01.001. url: https://www.sciencedirect.com/science/article/
pii/S1742706120300027.

[3] B. K. Hall. “Chapter 2 - Bone”. In: Bones and Cartilage (Second Edition). Ed. by B. K.
Hall. Second Edition. San Diego: Academic Press, 2015, pp. 17–42. isbn: 978-0-12-
416678-3. doi: https://doi.org/10.1016/B978-0-12-416678-3.00002-1. url:
https://www.sciencedirect.com/science/article/pii/B9780124166783000021.

[4] A. Atkins et al. “The three-dimensional structure of anosteocytic lamellated bone of
fish”. In: Acta Biomaterialia 13 (2015), pp. 311–323. issn: 1742-7061. doi: https:

//doi.org/10.1016/j.actbio.2014.10.025. url: https://www.sciencedirect.
com/science/article/pii/S174270611400467X.

[5] M. Monier-Faugere, M. Chris Langub, and H. H. Malluche. “Chapter 8 - Bone Biopsies:
A Modern Approach”. In: Metabolic Bone Disease and Clinically Related Disorders
(Third Edition). Ed. by Louis V. Avioli and Stephen M. Krane. Third Edition. San
Diego: Academic Press, 1998, 237–280e. isbn: 978-0-12-068700-8. doi: https://doi.
org/10.1016/B978-012068700-8/50009-8. url: https://www.sciencedirect.
com/science/article/pii/B9780120687008500098.

58

https://doi.org/10.1007/s10641-005-3218-0
https://doi.org/10.1007/s10641-005-3218-0
https://doi.org/10.1007/s10641-005-3218-0
https://doi.org/https://doi.org/10.1016/j.actbio.2020.01.001
https://doi.org/https://doi.org/10.1016/j.actbio.2020.01.001
https://www.sciencedirect.com/science/article/pii/S1742706120300027
https://www.sciencedirect.com/science/article/pii/S1742706120300027
https://doi.org/https://doi.org/10.1016/B978-0-12-416678-3.00002-1
https://www.sciencedirect.com/science/article/pii/B9780124166783000021
https://doi.org/https://doi.org/10.1016/j.actbio.2014.10.025
https://doi.org/https://doi.org/10.1016/j.actbio.2014.10.025
https://www.sciencedirect.com/science/article/pii/S174270611400467X
https://www.sciencedirect.com/science/article/pii/S174270611400467X
https://doi.org/https://doi.org/10.1016/B978-012068700-8/50009-8
https://doi.org/https://doi.org/10.1016/B978-012068700-8/50009-8
https://www.sciencedirect.com/science/article/pii/B9780120687008500098
https://www.sciencedirect.com/science/article/pii/B9780120687008500098

K. Engen June 11, 2022

[6] G. J. Tortora. Principles of Human Anatomy. Sixth edition. New York: John Wiley
Son, 2002.

[7] A. A. Abdel-Wahab, A. R. Maligno, and V. V. Silberschmidt. “Micro-scale modelling
of bovine cortical bone fracture: Analysis of crack propagation and microstructure
using X-FEM”. In: Computational Materials Science 52.1 (2012). Proceedings of the
20th International Workshop on Computational Mechanics of Materials - IWCMM
20, pp. 128–135. issn: 0927-0256. doi: https://doi.org/10.1016/j.commatsci.
2011.01.021. url: https://www.sciencedirect.com/science/article/pii/
S0927025611000450.

[8] M. Buehler R. Ritchie and P. Hansma. “Plasticity and toughness in bone”. In: Physics
Today - PHYS TODAY 62 (June 2009). doi: 10.1063/1.3156332.

[9] C. E. Ramírez A et al. “Assessing mechanical behavior of ostrich and equine trabecular
and cortical bone based on depth sensing indentation measurements”. In: Journal of
the Mechanical Behavior of Biomedical Materials 117 (2021), p. 104404. issn: 1751-
6161. doi: https://doi.org/10.1016/j.jmbbm.2021.104404. url: https://www.
sciencedirect.com/science/article/pii/S175161612100093X.

[10] Christopher Boyle and Il Yong Kim. “Three-dimensional micro-level computational
study of Wolff’s law via trabecular bone remodeling in the human proximal femur
using design space topology optimization”. In: Journal of Biomechanics 44.5 (2011),
pp. 935–942. issn: 0021-9290. doi: https : / / doi . org / 10 . 1016 / j . jbiomech .

2010.11.029. url: https://www.sciencedirect.com/science/article/pii/
S002192901000655X.

[11] M.F Ashby. “The properties of foams and lattices”. eng. In: Philosophical transactions
of the Royal Society of London. Series A: Mathematical, physical, and engineering
sciences 364.1838 (2006), pp. 15–30. issn: 1364-503X.

[12] P. Xiao et al. “Can DXA image-based deep learning model predict the anisotropic elastic
behavior of trabecular bone?” In: Journal of the Mechanical Behavior of Biomedical
Materials 124 (2021), p. 104834. issn: 1751-6161. doi: https://doi.org/10.1016/
j.jmbbm.2021.104834. url: https://www.sciencedirect.com/science/article/
pii/S1751616121004756.

[13] 2.2.3 Direct Cyclic Algorithm. url: http://130.149.89.49:2080/v6.13/books/
stm/default.htm.

59

https://doi.org/https://doi.org/10.1016/j.commatsci.2011.01.021
https://doi.org/https://doi.org/10.1016/j.commatsci.2011.01.021
https://www.sciencedirect.com/science/article/pii/S0927025611000450
https://www.sciencedirect.com/science/article/pii/S0927025611000450
https://doi.org/10.1063/1.3156332
https://doi.org/https://doi.org/10.1016/j.jmbbm.2021.104404
https://www.sciencedirect.com/science/article/pii/S175161612100093X
https://www.sciencedirect.com/science/article/pii/S175161612100093X
https://doi.org/https://doi.org/10.1016/j.jbiomech.2010.11.029
https://doi.org/https://doi.org/10.1016/j.jbiomech.2010.11.029
https://www.sciencedirect.com/science/article/pii/S002192901000655X
https://www.sciencedirect.com/science/article/pii/S002192901000655X
https://doi.org/https://doi.org/10.1016/j.jmbbm.2021.104834
https://doi.org/https://doi.org/10.1016/j.jmbbm.2021.104834
https://www.sciencedirect.com/science/article/pii/S1751616121004756
https://www.sciencedirect.com/science/article/pii/S1751616121004756
http://130.149.89.49:2080/v6.13/books/stm/default.htm
http://130.149.89.49:2080/v6.13/books/stm/default.htm

K. Engen June 11, 2022

[14] Direct cyclic analysis. url: http://130.149.89.49:2080/v6.13/books/usb/

default.htm?startat=pt03ch06s02at05.html#usb-anl-adirectcyclic.

[15] The extended finite element method (XFEM). url: https://abaqus-docs.mit.edu/
2017/English/SIMACAECAERefMap/simacae-c-engconcxfemoverview.htm.

[16] Modeling discontinuities as an enriched feature using the extended finite element method.
url: https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-
c-enrichment.htm#simaanl-c-enrichment-t-ApplyingCohesiveMaterialConceptsToXFEMbasedCohesiveBehavior-

sma-topic13.

[17] Low-cycle fatigue criterion. url: http://130.149.89.49:2080/v6.13/books/usb/
default.htm?startat=pt04ch11s04aus69.html#usb- anl- acrackpropagation-

fatigue.

[18] Low-cycle fatigue analysis using the direct cyclic approach. url: https://abaqus-
docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-directcyclicfatigue.

htm#simaanl-c-directcyclicfatigue-t-ProgressiveDamageAndDamageExtrapolationInBulkDuctileMaterialBasedOnContinuumDamageMechanicsApproach-

sma-topic4.

[19] Damage initiation for ductile materials in low-cycle fatigue. url: https://abaqus-
docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageinitfatigue.

htm.

[20] Damage evolution for ductile materials in low-cycle fatigue. url: https://abaqus-
docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolfatigue.

htm.

[21] J. Lemaitre and J.-L- Caboche. Mechanics of solid materials. Cambridge, United King-
dom: Cambridge University Press, 1990. Chap. 5.

[22] 4.3.5 Models for metals subjected to cyclic loading. url: http://130.149.89.49:
2080/v6.13/books/stm/default.htm.

[23] M. Danielsson, D.M. Parks, and M.C. Boyce. “Three-dimensional micromechanical
modeling of voided polymeric materials”. In: Journal of the Mechanics and Physics
of Solids 50.2 (2002), pp. 351–379. issn: 0022-5096. doi: https://doi.org/10.

1016/S0022-5096(01)00060-6. url: https://www.sciencedirect.com/science/
article/pii/S0022509601000606.

[24] M. Okereke and S. Keates. Finite Element Applications, A Practical Guide to the FEM
Process. Cham, Switzerland: Springer International Publishing AG, 2018. Chap. 8.

60

http://130.149.89.49:2080/v6.13/books/usb/default.htm?startat=pt03ch06s02at05.html#usb-anl-adirectcyclic
http://130.149.89.49:2080/v6.13/books/usb/default.htm?startat=pt03ch06s02at05.html#usb-anl-adirectcyclic
https://abaqus-docs.mit.edu/2017/English/SIMACAECAERefMap/simacae-c-engconcxfemoverview.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAECAERefMap/simacae-c-engconcxfemoverview.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-enrichment.htm#simaanl-c-enrichment-t-ApplyingCohesiveMaterialConceptsToXFEMbasedCohesiveBehavior-sma-topic13
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-enrichment.htm#simaanl-c-enrichment-t-ApplyingCohesiveMaterialConceptsToXFEMbasedCohesiveBehavior-sma-topic13
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-enrichment.htm#simaanl-c-enrichment-t-ApplyingCohesiveMaterialConceptsToXFEMbasedCohesiveBehavior-sma-topic13
http://130.149.89.49:2080/v6.13/books/usb/default.htm?startat=pt04ch11s04aus69.html#usb-anl-acrackpropagation-fatigue
http://130.149.89.49:2080/v6.13/books/usb/default.htm?startat=pt04ch11s04aus69.html#usb-anl-acrackpropagation-fatigue
http://130.149.89.49:2080/v6.13/books/usb/default.htm?startat=pt04ch11s04aus69.html#usb-anl-acrackpropagation-fatigue
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-directcyclicfatigue.htm#simaanl-c-directcyclicfatigue-t-ProgressiveDamageAndDamageExtrapolationInBulkDuctileMaterialBasedOnContinuumDamageMechanicsApproach-sma-topic4
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-directcyclicfatigue.htm#simaanl-c-directcyclicfatigue-t-ProgressiveDamageAndDamageExtrapolationInBulkDuctileMaterialBasedOnContinuumDamageMechanicsApproach-sma-topic4
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-directcyclicfatigue.htm#simaanl-c-directcyclicfatigue-t-ProgressiveDamageAndDamageExtrapolationInBulkDuctileMaterialBasedOnContinuumDamageMechanicsApproach-sma-topic4
https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-directcyclicfatigue.htm#simaanl-c-directcyclicfatigue-t-ProgressiveDamageAndDamageExtrapolationInBulkDuctileMaterialBasedOnContinuumDamageMechanicsApproach-sma-topic4
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageinitfatigue.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageinitfatigue.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageinitfatigue.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolfatigue.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolfatigue.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolfatigue.htm
http://130.149.89.49:2080/v6.13/books/stm/default.htm
http://130.149.89.49:2080/v6.13/books/stm/default.htm
https://doi.org/https://doi.org/10.1016/S0022-5096(01)00060-6
https://doi.org/https://doi.org/10.1016/S0022-5096(01)00060-6
https://www.sciencedirect.com/science/article/pii/S0022509601000606
https://www.sciencedirect.com/science/article/pii/S0022509601000606

K. Engen June 11, 2022

[25] M. Danielsson. “Micromechanics, macromechanics and constitutive modeling of the
elasto-viscoplastic deformation of rubber-toughened glassy polymers”. PhD thesis. Mas-
sachusetts Institute of Technology, 2003.

[26] Numerikk. url: https : / / wiki . math . ntnu . no / tma4100 / tema / numerics ? & #

numerisk_integrasjon.

[27] Numerical integration: Introduction. url: https : / / www . math . ntnu . no / emner /

TMA4130/2021h/lectures/SimpleQuadrature.pdf.

[28] S. Abirami and P. Chitra. “Chapter Fourteen - Energy-efficient edge based real-time
healthcare support system”. In: The Digital Twin Paradigm for Smarter Systems and
Environments: The Industry Use Cases. Ed. by Pethuru Raj and Preetha Evangeline.
Vol. 117. Advances in Computers 1. Elsevier, 2020, pp. 339–368. doi: https://doi.
org/10.1016/bs.adcom.2019.09.007. url: https://www.sciencedirect.com/
science/article/pii/S0065245819300506.

[29] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. eng. In:
(2014).

[30] J. Nocedal. “Updating quasi-Newton matrices with limited storage”. eng. In: 35.151
(1980), pp. 773–782. issn: 0025-5718.

[31] D. C. Liu and J. Nocedal. “On the limited memory BFGS method for large scale
optimization”. eng. In: Mathematical programming 45.3 (1989), pp. 503–528. issn: 0025-
5610.

[32] R. E. Walpole et al. Probability statistics for engineers and scientists. eng. 9th ed.
Harlow: Pearson Education, 2016. isbn: 978-1-292-16136-5.

[33] sklearn.neural_network.MLPRegressor. url: https://scikit-learn.org/stable/
modules / generated / sklearn . neural _ network . MLPRegressor . html # sklearn .

neural_network.MLPRegressor.score. accessed: 24.05.2022.

[34] M. F. Ahmad et al. “Differential evolution: A recent review based on state-of-the-art
works”. In: Alexandria Engineering Journal 61.5 (2022), pp. 3831–3872. issn: 1110-
0168. doi: https://doi.org/10.1016/j.aej.2021.09.013. url: https://www.
sciencedirect.com/science/article/pii/S111001682100613X.

[35] R. Storn and K. Price. “Differential Evolution - A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces”. eng. In: Journal of global optimization
11.4 (1997), pp. 341–359. issn: 0925-5001.

61

https://wiki.math.ntnu.no/tma4100/tema/numerics?&#numerisk_integrasjon
https://wiki.math.ntnu.no/tma4100/tema/numerics?&#numerisk_integrasjon
https://www.math.ntnu.no/emner/TMA4130/2021h/lectures/SimpleQuadrature.pdf
https://www.math.ntnu.no/emner/TMA4130/2021h/lectures/SimpleQuadrature.pdf
https://doi.org/https://doi.org/10.1016/bs.adcom.2019.09.007
https://doi.org/https://doi.org/10.1016/bs.adcom.2019.09.007
https://www.sciencedirect.com/science/article/pii/S0065245819300506
https://www.sciencedirect.com/science/article/pii/S0065245819300506
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor.score
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor.score
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor.score
https://doi.org/https://doi.org/10.1016/j.aej.2021.09.013
https://www.sciencedirect.com/science/article/pii/S111001682100613X
https://www.sciencedirect.com/science/article/pii/S111001682100613X

K. Engen June 11, 2022

[36] C. Yuangyai and H.B. Nembhard. “Chapter 8 - Design of Experiments: A Key to
Innovation in Nanotechnology”. In: Emerging Nanotechnologies for Manufacturing. Ed.
by Waqar Ahmed and Mark J. Jackson. Micro and Nano Technologies. Boston: William
Andrew Publishing, 2010, pp. 207–234. isbn: 978-0-8155-1583-8. doi: https://doi.
org/10.1016/B978-0-8155-1583-8.00008-9. url: https://www.sciencedirect.
com/science/article/pii/B9780815515838000089.

[37] T. P. Ryan and J. P. Morgan. “Modern Experimental Design”. In: Journal of statistical
theory and practice. 1.3-4 (2007), pp. 501–506. issn: 1559-8608.

[38] A. Dean, D. Voss, and D. Draguljić. Design and Analysis of Experiments. eng. Springer
texts in statistics. Cham: Springer International Publishing AG, 2017. isbn: 3319522485.

[39] J. Antony. “6 - Full Factorial Designs”. In: Design of Experiments for Engineers and
Scientists (Second Edition). Ed. by Jiju Antony. Second Edition. Oxford: Elsevier,
2014, pp. 63–85. isbn: 978-0-08-099417-8. doi: https://doi.org/10.1016/B978-0-
08-099417-8.00006-7. url: https://www.sciencedirect.com/science/article/
pii/B9780080994178000067.

[40] A. K. Das and S. Dewanjee. “Chapter 3 - Optimization of Extraction Using Mathe-
matical Models and Computation”. In: Computational Phytochemistry. Ed. by Satya-
jit D. Sarker and Lutfun Nahar. Elsevier, 2018, pp. 75–106. isbn: 978-0-12-812364-5.
doi: https://doi.org/10.1016/B978-0-12-812364-5.00003-1. url: https:
//www.sciencedirect.com/science/article/pii/B9780128123645000031.

[41] G. Box and S. Jones. “SPLIT PLOTS FOR ROBUST PRODUCT AND PROCESS
EXPERIMENTATION”. eng. In: Quality engineering 13.1 (2001), pp. 127–134. issn:
0898-2112.

[42] K. H. Engen. “Data driven approach to bio-inspired structures”. In: (2021).

[43] W. Song et al. “Low-Cycle Fatigue Life Prediction of 10CrNi3MoV Steel and Un-
dermatched Welds by Damage Mechanics Approach”. In: Frontiers in Materials 8
(2021). issn: 2296-8016. doi: 10.3389/fmats.2021.641145. url: https://www.
frontiersin.org/article/10.3389/fmats.2021.641145.

[44] sklearn.neural_network.MLPRegressor. url: https://scikit-learn.org/stable/
modules/generated/sklearn.utils.shuffle.html. (accessed: 24.05.2022).

62

https://doi.org/https://doi.org/10.1016/B978-0-8155-1583-8.00008-9
https://doi.org/https://doi.org/10.1016/B978-0-8155-1583-8.00008-9
https://www.sciencedirect.com/science/article/pii/B9780815515838000089
https://www.sciencedirect.com/science/article/pii/B9780815515838000089
https://doi.org/https://doi.org/10.1016/B978-0-08-099417-8.00006-7
https://doi.org/https://doi.org/10.1016/B978-0-08-099417-8.00006-7
https://www.sciencedirect.com/science/article/pii/B9780080994178000067
https://www.sciencedirect.com/science/article/pii/B9780080994178000067
https://doi.org/https://doi.org/10.1016/B978-0-12-812364-5.00003-1
https://www.sciencedirect.com/science/article/pii/B9780128123645000031
https://www.sciencedirect.com/science/article/pii/B9780128123645000031
https://doi.org/10.3389/fmats.2021.641145
https://www.frontiersin.org/article/10.3389/fmats.2021.641145
https://www.frontiersin.org/article/10.3389/fmats.2021.641145
https://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html

K. Engen June 11, 2022

[45] scipy.optimize.differentialevolution. url: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.differential_evolution.html. (accessed:
24.05.2022).

[46] sklearn.preprocessing.StandardScaler. url: https://scikit- learn.org/stable/

modules/generated/sklearn.preprocessing.StandardScaler.html. (accessed:
22.05.2022).

63

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

K. Engen June 11, 2022

Appendix

64

Table of Contents

A

A.1 Methods .

A.1.1 Convergence study .

A.2 Code for Machine learning and Optimization

A.3 Code for optimisation using Abaqus .

A.4 Code for data collection and Calculation .

A.4.1 Creation file .

A.4.2 Post-processing file .

A.4.3 Library .

B

B.1 Project Thesis Katinka Engen 2021 .

K. Engen June 11, 2022

Appendix A

A.1 Methods

A.1.1 Convergence study

Table A.1: Convergence study: R1, R2 = 0.5, ε = 0.008, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 34 50.35 s 0.936
10 136 2 m 0.83 s 0.958 2.3 %
20 544 5 m 55.75 s 0.934 2.5 %
40 2160 874.43 0.928 0.6 %

Table A.2: Convergence study: R1, R2 = 1, ε = 0.006, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 24 38.11 s 0.842
10 118 0 m 58.22 s 1.128 34 %
20 408 1 m 58.41 s 1.176 4.3 %
40 1632 450.22 s 1.163 1.1 %

Table A.3: Convergence study: R1, R2 = 1, ε = 0.008, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 24 0 m 38.09 a 0.945
10 118 1 m 28.42 s 1.727 82.8 %
20 408 3 m 51.33 s 1.823 5.6 %
40 1632 676.47 1.82 0.2%

K. Engen June 11, 2022

Table A.4: Convergence study: R1, R2 = 2, ε = 0.006, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 18 32.05 s 1.151
10 78 40.28 s 1.525 32.5 %
20 312 1 m 18.29 1.573 3.1 %
40 1170 307.87 s 1.579 0.4 %

Table A.5: Convergence study: R1, R2 = 2, ε = 0.008, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 18 34.47 s 1.305
10 78 48.58 s 2.287 75.2 %
20 312 1 m 38.83 s 2.373 3.8 %
40 1170 306.66 2.418 1.90%

Table A.6: Convergence study: R1, R2 = 3, ε = 0.008, N=1000.

n Elements Time [s] ∆ w (N=1000) d ∆ w
5 20 36.44 1.218
10 76 42.35 2.807 30.5 %
20 224 60.41 2.666 5 %
40 904 234.75 2.483 6.80%

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.1: Convergence study: R1, R2 = 0.5, ε = 0.008, N=1000.

K. Engen June 11, 2022

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.2: Convergence study: R1, R2 = 1, ε = 0.006, N=1000.

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.3: Convergence study: R1, R2 = 1, ε = 0.008, N=1000.

K. Engen June 11, 2022

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.4: Convergence study: R1, R2 = 2, ε = 0.006, N=1000.

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.5: Convergence study: R1, R2 = 2, ε = 0.008, N=1000.

K. Engen June 11, 2022

(a) Plastic strain energy, ∆w (b) Effective Stiffness, E’

Figure A.6: Convergence study: R1, R2 = 3, ε = 0.008, N=1000.

K. Engen June 11, 2022

A.2 Code for Machine learning and Optimization

1 import scipy.optimize as optimize

2 from MachineLearning import doTheThing_0

3 from sklearn.preprocessing import StandardScaler

4 import numpy as np

5

6 run = 0

7 D = 0.15

8 regr, RScore, ScalerX, ScalerY = doTheThing_0()

9

10

11 def f(T):

12 global run

13 global D

14 T = ScalerX.transform(T.reshape(1,-1))

15 run += 1

16 output = ScalerY.inverse_transform(regr.predict(T))

17 N, a, E = output[0,0], output[0,1], output[0,2]

18 n_diff = -(D*E) / a

19 N_goal = N + n_diff

20 #output[0,0] = N_goal

21 #output = ScalerY.transform(output.reshape(1,-1))

22 return -N_goal

23

24 def findOptimum():

25 Upper= np.array([3.5, 3.5,0.65, 8]) #np.array([100, 37.85,122.15,

136.48])#↪→

26 Lower = np.array([0.5, 0.5,0.45,8])#np.array([50, 16.89, 66.09,

75.9])#↪→

27

28 bnds = [(Lower[0], Upper[0]), (Lower[1], Upper[1]), (Lower[2],

Upper[2]), (Lower[3], Upper[3])]↪→

29

K. Engen June 11, 2022

30 result = optimize.differential_evolution(f, bounds=bnds)

31

32 T = (result["x"].reshape(1, -1))

33 scaledT = ScalerX.transform(T)

34 nonscaledN = regr.predict(scaledT)

35 N = ScalerY.inverse_transform(nonscaledN.reshape(1,-1))

36

37 print('Result: \n', result)

38

39 return T,N,result

40

41 if __name__ == '__main__':

42 T, N, result = findOptimum()

43

44 g = open('00_Result.txt', 'a')

45 g.write('T: ' + str(T) + ' N: ' + str(N) + '\n')

46 g.close()

A.3 Code for optimisation using Abaqus

1 import scipy.optimize as optimize

2 from MachineLearning import doTheThing_0

3 from sklearn.preprocessing import StandardScaler

4 import numpy as np

5

6 run = 0

7 D = 0.15

8 regr, RScore, ScalerX, ScalerY = doTheThing_0()

9

10

11 def f(T):

12 global run

13 global D

K. Engen June 11, 2022

14 T = ScalerX.transform(T.reshape(1,-1))

15 run += 1

16 output = ScalerY.inverse_transform(regr.predict(T))

17 N, a, E = output[0,0], output[0,1], output[0,2]

18 n_diff = -(D*E) / a

19 N_goal = N + n_diff

20 #output[0,0] = N_goal

21 #output = ScalerY.transform(output.reshape(1,-1))

22 return -N_goal

23

24 def findOptimum():

25 Upper= np.array([3.5, 3.5,0.65, 8]) #np.array([100, 37.85,122.15,

136.48])#↪→

26 Lower = np.array([0.5, 0.5,0.45,8])#np.array([50, 16.89, 66.09,

75.9])#↪→

27

28 bnds = [(Lower[0], Upper[0]), (Lower[1], Upper[1]), (Lower[2],

Upper[2]), (Lower[3], Upper[3])]↪→

29

30 result = optimize.differential_evolution(f, bounds=bnds)

31

32 T = (result["x"].reshape(1, -1))

33 scaledT = ScalerX.transform(T)

34 nonscaledN = regr.predict(scaledT)

35 N = ScalerY.inverse_transform(nonscaledN.reshape(1,-1))

36

37 print('Result: \n', result)

38

39 return T,N,result

40

41 if __name__ == '__main__':

42 T, N, result = findOptimum()

43

44 g = open('00_Result.txt', 'a')

K. Engen June 11, 2022

45 g.write('T: ' + str(T) + ' N: ' + str(N) + '\n')

46 g.close()

A.4 Code for data collection and Calculation

A.4.1 Creation file

1 #Draws, meshes and creates PBC for Buckle and PB analysis

2 #NOTE: Keywords must be edited manually, so these do not submit the jobs, or

do PostProcessing analysis.↪→

3 from abaqus import *

4 from abaqusConstants import *

5 from math import *

6 import sketch

7 import part

8 import mesh

9 import assembly

10 import regionToolset

11 import job

12 import visualization

13

14 from DrawAndMeshLib import getT, getNewT, Model

15 #import math

16 #session.Viewport(name='Viewport: 1', origin=(0.0, 0.0),

width=307.999969482422,↪→

17 # height=170.116683959961)

18 #session.viewports['Viewport: 1'].setValues(displayedObject = None)

19 from datetime import datetime

20 import time

21 import numpy as np

22 #import PySimpleGUI as sg

23

24

K. Engen June 11, 2022

25 #BOTH MODELS:

26 t1= 48.3129513737351

27 tv1= 108.32641187258622

28 t2= 18.6536491790483

29 tv2= 122.23123660344206

30

31 T_0 = [t1, t2, tv1, tv2]

32 #t1/t2

33 sigma = 1.128

34 SD = 0.465

35 R1 = [sigma - SD, sigma - 0.75*SD, sigma - 0.5*SD, sigma - 0.25*SD, sigma,

sigma + 0.25*SD, sigma + 0.5*SD, sigma + 0.75*SD, sigma + SD] #0.9, 1.2,

1.5

↪→

↪→

36 sigma = 2.598

37 SD = 1.153

38 R2 = [sigma - SD, sigma - 0.75*SD, sigma - 0.5*SD, sigma - 0.25*SD, sigma,

sigma + 0.25*SD, sigma + 0.5*SD, sigma + 0.75*SD, sigma + SD]↪→

39 _hx = 20

40

41 alpha = pi/2#1.361

42 r = 0.5

43 Vf_array = [0.45, 0.5, 0.55, 0.6, 0.65]

44

45 #Mdb('Testmdb_1') #only if the database doesnt exist. If it does, insert the

string in the "mdb.save()"↪→

46 openMdb(pathName = 'Testmdb_1.cae')

47

48 from os.path import exists

49

50 for i, n in enumerate(R1):

51 for j, m in enumerate(R2):

52 for k, Vf in enumerate(Vf_array):

53

54 T = getNewT(Vf, T_0)

K. Engen June 11, 2022

55 T = getT(T, n=n, case=1)

56 T = getT(T, n=m, case=2)

57 t1, t2, tv1, tv2 = T[0], T[1], T[2], T[3]

58

59 dependent = OFF #boolean to decide whether assembly instance is

indcependent or dependet. OFF -> independent↪→

60

61 #Beware the naming convention

62 strN = str(int(n*100))

63 strM = str(int(m*100))

64 strVf = '0' + str(int(Vf*100))

65

66 model_name = "Test_R1" + strN + 'R2' + strM + "_Vf" + strVf +

'_20_' # NB: XYplotname has max. num of charachters↪→

67

68 stepName = "DC"

69 materialName = "Steel"

70 jobName = model_name + '_08e'

71

72 path =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ jobName + "_SDEG.txt"

↪→

↪→

73 if exists(path):

74 continue

75

76 geometry = [r, alpha, T]

77

78 model = Model(model_name=model_name, geometry=geometry,

exists=False, hx = _hx, flexElmS=True)↪→

79

80 #m.createPartition()

81 try:

82 model.doItAll()

83 except:

K. Engen June 11, 2022

84 print("Issue getting nodes for PBC in job " + jobName)

85 mdb.save()

86 continue

87

88

mdb.models[model_name].steps['DC'].setValues(maxNumCycles=1000,maxCycleInc

=100)

↪→

↪→

89

90

#mdb.models[model_name].boundaryConditions['Displacement'].setValues(u2=0.8*(m.h/100))↪→

91 #m.createPBC()

92

93 aJob = model.createJob(jobName = jobName)

94

95 #getjob

96 #aJob = mdb.jobs[jobName]

97 mdb.save()

98

99 #Record job-start

100 path =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ "00_timekeeper.txt"

↪→

↪→

101 file_object = open(path, 'a')

102 now = datetime.now()

103 start_time = time.time()

104 current_time = now.strftime("%H:%M:%S")

105 string = '\n' + jobName + ' started at: ' + current_time + '\n'

106 file_object.write(string)

107 file_object.close()

108

109 aJob.submit()

110 aJob.waitForCompletion()

111

112 # Record job-finish time

K. Engen June 11, 2022

113 file_object = open(path, 'a')

114 now = datetime.now()

115 current_time = now.strftime("%H:%M:%S")

116 total_time = time.time() - start_time

117 min = int(total_time / 60)

118 sek = total_time % 60

119 string = jobName + ' finished at: ' + current_time + '. Total

run-time: ' + str(min) + ' min and ' + str(np.round(sek, 2))

+ ' sek (' + str(total_time) +' sek)\n'

↪→

↪→

120 file_object.write(string)

121 file_object.close()

122

123 mdb.save()

124

125 model.postProcessStressStrain(aJob, XYplotname='XYplot' +

jobName + "000")↪→

126

127 model.postProcessSDEG(job = aJob)

K. Engen June 11, 2022

A.4.2 Post-processing file

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def plotStressStrain(r, elm):

5

6 for i, n in enumerate(r):

7 for j, m in enumerate(elm):

8 modelName = 'Test_' + n + '_' + m + '_06e_1000N'

9 f = open(modelName + '_wh_stressStrain.txt', 'r')

10 content = f.readlines()

11 x = np.zeros(len(content))

12 y = np.zeros(len(content))

13 for l, line in enumerate(content):

14 firstNumber = True

15 x_i = ''

16 y_i = ''

17 for c in line:

18 if c==',':

19 firstNumber = False

20 elif firstNumber:

21 x_i += c

22 else:

23 y_i += c

24 x[l] = float(x_i)

25 y[l] = float(y_i)

26 plt.plot(x[:], y[:], label = 'Ratio_' + n + '_' + m)

27 f.close()

28

29

30 plt.xlabel('Strain')

31 plt.ylabel('Stress')

32 plt.title('Stress-Strain curve')

K. Engen June 11, 2022

33 #plt.ylim(top=0.5)

34 plt.legend()

35 plt.show()

36

37 def plotSDEG(r, elm):

38 for i, n in enumerate(r):

39 for j, m in enumerate(elm):

40 map = {'0.33': '03', '0.5': '05', '1': '1', '2': '2', '3': '3'}

41 k = map[str(n)]

42 l = map[str(m)]

43 modelName = 'Test_R' + k + l + '_Vf01_06e_1000N'

44 f = open(modelName + '_SDEG.txt', 'r')

45 content = f.readlines()

46 x = np.zeros(int(len(content)/20))

47 y = np.zeros(int(len(content)/20))

48 count = 0

49 for l in range(0, len(content)-1, 20):

50 firstNumber = True

51 x_i = ''

52 y_i = ''

53 for c in content[l]:

54 if c==',':

55 firstNumber = False

56 elif firstNumber:

57 x_i += c

58 else:

59 y_i += c

60 x[count] = float(x_i)

61 y[count] = float(y_i)

62 dN = x[count] - x[count-1]

63 if (l == len(content) - 1) and (dN < 100):

64 x[count] += 100 - (dN)

65 y_last = y[count-1] + dN * (y[count] - y[count-1]) /

(100)↪→

K. Engen June 11, 2022

66 print(y_last)

67 y[count] = y_last

68 x[count] = 1000

69 count += 1

70 plt.plot(np.log(x[:]), y[:], label = 'Ratio_' + str(n) + '_' +

str(m))↪→

71 f.close()

72

73

74 plt.xlabel('Cycles')

75 plt.ylabel('Degradation factor')

76 plt.title('Degradation')

77 #plt.ylim(top=0.5)

78 plt.legend()

79 plt.show()

80

81 def getSdeg(X, Y):

82 SDEG = np.zeros((len(X), len(Y)))

83 SDEG_temp = 0

84 for i,x in enumerate(X):

85 for j,y in enumerate(Y):

86

87 map = {'0.33': '03', '0.5': '05', '1': '1', '2': '2', '3': '3'}

88 k = map[str(x)]

89 l = map[str(y)]

90 modelname = "Test_R" + k + l + '_Vf09_06e_1000N'

91 f = open(modelname + '_SDEG.txt', 'r')

92 content = f.readlines()

93 #x = np.zeros(len(content))

94 #y = np.zeros(len(content))

95 x_1000 = 0

96 y_1000 = 0

97

98 maxIter = 250

K. Engen June 11, 2022

99 steps = np.zeros(2)

100 sDegs = np.zeros(2)

101 for l in range(1,len(content)-1, 20):

102 firstNumber = True

103 x_i = ''

104 y_i = ''

105 line = content[l]

106 for c in line:

107 if c == ',':

108 firstNumber = False

109 elif firstNumber:

110 x_i += c

111 else:

112 y_i += c

113 x_i = float(x_i)

114 y_i = float(y_i)

115

116 step = x_i

117 steps[0] = steps[1]

118 steps[1] = step

119

120 sDegs[0] = sDegs[1]

121 sDegs[1] = y_i

122 dN = steps[1] - steps[0]

123 if (dN < 100):

124 steps[1] += 100 - (dN)

125 w_1000 = sDegs[0] + dN * (sDegs[1] - sDegs[0]) / (100)

126 sDegs[1] = w_1000

127 steps[1] = 1000

128

129 f.close()

130 SDEG[i,j] = sDegs[1]

131

132 return SDEG

K. Engen June 11, 2022

133

134 def getRelativeStiffness(X,Y, Vf):

135 E_N = np.zeros((len(X), len(Y)))

136 for i, n in enumerate (X):

137 for j, m in enumerate (Y):

138 map = {'0.33': '03', '0.5': '05', '1': '1', '2': '2', '3': '3'}

139 k = map[str(n)]

140 l = map[str(m)]

141 modelname = "Test_R" + k + l + '_Vf0'+ str(int(Vf*10))

+'_06e_1000N'↪→

142 f = open(modelname + '_stressStrain.txt', 'r')

143 content = f.readlines()

144 E_eff = np.zeros(int(len(content)/20))

145 step = np.zeros(int(len(content) / 20))

146 g = open(modelname + '_SDEG.txt', 'r')

147 StepNumber = g.readlines()

148 count = 0

149 for k in range(5, len(content), 20):

150 string1 = content[k]

151 string2 = content[k+1]

152 firstNumber=True

153 x_1 = ''

154 y_1 = ''

155 for c in string1:

156 if c==',':

157 firstNumber = False

158 elif firstNumber:

159 x_1 += c

160 else:

161 y_1 += c

162 firstNumber = True

163 x_2 = ''

164 y_2 = ''

165 for c in string2:

K. Engen June 11, 2022

166 if c == ',':

167 firstNumber = False

168 elif firstNumber:

169 x_2 += c

170 else:

171 y_2 += c

172 step_string = ''

173 firstNumber=True

174 for c in StepNumber[k]:

175 if c == ',':

176 firstNumber = False

177 elif firstNumber:

178 step_string += c

179 x1 = float(x_1)

180 y1 = float(y_1)

181 x2 = float(x_2)

182 y2 = float(y_2)

183 E_eff[count] = (y2-y1)/(x2-x1)

184 step[count] = int(float(step_string))

185 dN = step[count] - step[count - 1]

186 if (k == len(content)-16) and (dN < 100):

187 step[count] += 100 - (dN)

188 w_1000 = E_eff[count - 1] + dN * (E_eff[count] -

E_eff[count - 1]) / (100)↪→

189 E_eff[count] = w_1000

190 step[count] = 1000

191 if E_N[i,j] ==0:

192 E_N[i,j] = 1100

193 if (E_eff[count]/E_eff[0] == 0.9):

194 E_N[i,j] = step[count]

195 continue

196 elif E_eff[count]/E_eff[0] < 0.9:

K. Engen June 11, 2022

197 E_N[i,j] = step[count-1] + ((step[count] -

step[count-2])/(E_eff[count]-E_eff[count-1]))*(E_eff[0]*0.9

- E_eff[count-1])

↪→

↪→

198 continue

199 count += 1

200 return E_N

201

202

203 def ThreeDplot(X, Y, Vf):

204 from mpl_toolkits.mplot3d import Axes3D

205 import matplotlib.pyplot as plt

206 from matplotlib import cm

207 from matplotlib.ticker import LinearLocator, FormatStrFormatter

208 fig, ax = plt.subplots(subplot_kw={"projection": "3d"})

209 X = [0.33, 0.5, 1, 2, 3]

210 Y = [0.33, 0.5, 1, 2, 3]

211 E_N = getRelativeStiffness(X,Y, Vf)

212 X,Y = np.meshgrid(X,Y)

213 print(E_N)

214 surf1 = ax.plot_surface(X, Y, E_N, cmap=cm.coolwarm,

215 linewidth=0, antialiased=False)

216 plt.title("Degradation at N=1000 for Vf: " + str(Vf))

217 plt.xlabel("R1")

218 plt.ylabel("R2")

219 plt.show()

220

221 def plotEffectiveStiffness(r, elm, Vf):

222 for i, n in enumerate (r):

223 for j, m in enumerate (elm):

224 map = {'0.33': '03', '0.5': '05', '1': '1', '2': '2', '3': '3'}

225 k = map[str(n)]

226 l = map[str(m)]

227 modelname = "Test_R" + k + l +

'_Vf0'+str(int(Vf*10))+'_06e_1000N'↪→

K. Engen June 11, 2022

228 f = open(modelname + '_stressStrain.txt', 'r')

229 content = f.readlines()

230 E_eff = np.zeros(int(len(content)/20))

231 step = np.zeros(int(len(content) / 20))

232 g = open(modelname + '_SDEG.txt', 'r')

233 StepNumber = g.readlines()

234 count = 0

235 for i in range(5, len(content), 20):

236 string1 = content[i]

237 string2 = content[i+1]

238 firstNumber=True

239 x_1 = ''

240 y_1 = ''

241 for c in string1:

242 if c==',':

243 firstNumber = False

244 elif firstNumber:

245 x_1 += c

246 else:

247 y_1 += c

248 firstNumber = True

249 x_2 = ''

250 y_2 = ''

251 for c in string2:

252 if c == ',':

253 firstNumber = False

254 elif firstNumber:

255 x_2 += c

256 else:

257 y_2 += c

258 step_string = ''

259 firstNumber=True

260 for c in StepNumber[i]:

261 if c == ',':

K. Engen June 11, 2022

262 firstNumber = False

263 elif firstNumber:

264 step_string += c

265 x1 = float(x_1)

266 y1 = float(y_1)

267 x2 = float(x_2)

268 y2 = float(y_2)

269 E_eff[count] = (y2-y1)/(x2-x1)

270 step[count] = int(float(step_string))

271 dN = step[count] - step[count - 1]

272 if (i == len(content)-16) and (dN < 100):

273 step[count] += 100 - (dN)

274 w_1000 = E_eff[count - 1] + dN * (E_eff[count] -

E_eff[count - 1]) / (100)↪→

275 E_eff[count] = w_1000

276 step[count] = 1000

277 count += 1

278 f.close()

279 g.close()

280 plt.plot(step, E_eff, label = modelname)

281 plt.legend()

282 plt.xlabel('Cycles')

283 plt.ylabel('E\'')

284 plt.title('Effective stiffness Vf: ' + str(Vf))

285 plt.show()

286

287 def plotPlasticStrainEngergy(r, elm):

288 for i, n in enumerate(r):

289 for j, m in enumerate(elm):

290 modelname = 'Test_' + n + '_' + m + '_06e_1000N'

291 f = open(modelname + '_wh_stressStrain.txt', 'r')

292 content = f.readlines()

293 step = np.zeros(int(len(content) / 20))

294 print(modelname, '\nLength: ', len(content))

K. Engen June 11, 2022

295 g = open(modelname + '_wh_SDEG.txt', 'r')

296 StepNumber = g.readlines()

297 count = 0

298 w = np.zeros(int(len(content)/ 20))

299 for i in range(0, len(content)-1, 20):

300 string_i = content[i]

301 x_i = ''

302 y_i = ''

303 firstNumber=True

304 for c in string_i:

305 if c == ',':

306 firstNumber = False

307 elif firstNumber:

308 x_i += c

309 else:

310 y_i += c

311 x0 = float(x_i)

312 y0 = float(y_i)

313 dw = 0

314 for j in range(1, 21):

315 string_i = content[i+j]

316 x_i = ''

317 y_i = ''

318 firstNumber=True

319 for c in string_i:

320 if c == ',':

321 firstNumber = False

322 elif firstNumber:

323 x_i += c

324 else:

325 y_i += c

326 xi = float(x_i)

327 yi = float(y_i)

328 dw += ((yi + y0)/2)*(xi - x0)

K. Engen June 11, 2022

329 x0 = xi

330 y0 = yi

331 #dw += ((y1 + y0) / 2) * (x1 - x0)

332 w[count] = dw

333 step_string = ''

334 firstNumber = True

335 for c in StepNumber[i +j]:

336 if c == ',':

337 firstNumber = False

338 elif firstNumber:

339 step_string += c

340 step[count] = int(float(step_string))

341 dN = step[count] - step[count-1]

342 if (i + j == len(content) -1) and (dN < 100):

343 step[count] += 100 - (dN)

344 w_1000 = w[count-1] + dN*(w[count] - w[count-1])/(100)

345 w[count] = w_1000

346 step[count] = 1000

347 count +=1

348

349

350 f.close()

351 g.close()

352 plt.plot(step, w, label=modelname)

353 print(modelname, ': \n', w)

354 plt.legend()

355 plt.xlabel('Cycles')

356 plt.ylabel('\u0394w')

357 plt.title('Plastic strain energy')

358 plt.show()

359

360 def sumTime():

361 f=open("00_timekeeper.txt")

362

K. Engen June 11, 2022

363 content = f.readlines()

364

365 totalTime = 0

366

367 for l in content:

368 if l[len(l)-2] != ')':

369 continue

370 count = len(l)-2

371 c = l[count]

372 tempNumber = ''

373 while c != '(' and iter:

374 if c.isdigit() or c =='.':

375 tempNumber += c

376 count -= 1

377 c = l[count]

378 number = ''

379 for n in tempNumber[::-1]:

380 number += n

381

382 totalTime += float(number)

383

384 print('Total time: ', totalTime, ' s. ')

385

386 h = int(totalTime / 3600)

387

388 min = int((totalTime - h * 3600) / 60)

389

390 s = (totalTime - h * 3600) % 60

391

392 print('Time: ', str(h), ' h ', str(min), ' min ', str(s), ' sek')

393

394 return totalTime, [h, min, s]

395

396 _Vf = [0.1]

K. Engen June 11, 2022

397 r = [0.33, 0.5, 1, 2, 3]

398

399 for Vf in _Vf:

400 ThreeDplot(r, r, Vf)

401

402 plotEffectiveStiffness(r,r, Vf)

K. Engen June 11, 2022

A.4.3 Library

1 from abaqus import *

2 from abaqusConstants import *

3 from math import *

4 import sketch

5 import part

6 import mesh

7 import assembly

8 import regionToolset

9 import job

10 import interaction

11 import step

12 import os

13

14 def getNewT(Vf, T):

15 #keeps the ralations tv2/tv1 and t1/t2 - but changes the volume fracion

to Vf↪→

16

17 t1, t2, tv1, tv2 = T[0], T[1], T[2], T[3]

18

19 w = tv1 + t1

20 h = t2 + tv2

21 A_t = w * h

22 Av = A_t*(1-Vf)

23

24 n = tv2/tv1

25 tv1 = +sqrt(Av/n)

26 tv2 = n*tv1

27

28 r = t2/t1

29 a = tv2 / 2

30 b = tv1 / 2

31 l = r

K. Engen June 11, 2022

32 m = 2 * (r * a + b)

33 n = 4 * a * b - A_t

34

35 t2 = (-m + sqrt(m ** 2 - 4 * l * n)) / (2 * l)

36 t1 = t2 * r

37 T = [t1, t2, tv1, tv2]

38

39

40 return T

41

42 def GetKeywordPosition(m, blockPrefix, occurrence=1):

43 #if blockPrefix == '':

44 #return len(m.keywordBlock.sieBlocks)+1

45 pos = 0

46 foundCount = 0

47 for block in m.keywordBlock.sieBlocks:

48 if block[0:len(blockPrefix)]==\

49 blockPrefix:

50 foundCount = foundCount + 1

51 if foundCount >= occurrence:

52 return pos

53 pos=pos+1

54 return +1

55

56 def getT(T, n, case = 0):

57 # case: 1 - tv2/tv1; 2 - t1/t2;

58 t1, t2, tv1, tv2 = T[0], T[1], T[2], T[3]

59 w = tv1 + t1

60 h = t2 + tv2

61 A_t = w * h

62 A_v = tv2 * tv1

63 Vf = (A_t - A_v) / A_t

64 print(Vf)

65 if case == 1:

K. Engen June 11, 2022

66 # Vf, t2, t1 stays the same

67 a = -n*Vf

68 b = (n*t1 + t2)*(1-Vf)

69 c = (1-Vf)*(t1*t2)

70 tv1 = (-b - sqrt(b**2 - 4*a*c))/(2*a)

71 tv2 = n*tv1

72 print("tv1: ", tv1)

73 print("tv2: ", tv2)

74

75 T = [t1, t2, tv1, tv2]

76 elif case == 2:

77 r = n

78 a = tv2/2

79 b = tv1/2

80 l = r

81 m = 2*(r*a + b)

82 n = 4*a*b - A_t

83

84 t2 = (-m + sqrt(m**2 - 4*l*n))/(2*l)

85 t1 = t2*r

86 T = [t1, t2, tv1, tv2]

87 elif case ==3:

88 T = T # TODO

89

90 w = tv1 + t1

91 h = t2 + tv2

92 A_t = w * h

93 A_v = tv2 * tv1

94 Vf = (A_t - A_v) / A_t

95 print(Vf)

96 return T

97

98 def get_abwh(t1,t2,tv1,tv2):

99 #gets a, b, w, and h for elliptical RVE

K. Engen June 11, 2022

100 w = tv1 + t1

101 h = t2 + tv2

102 A_t = w * h

103 A_v = tv2 * tv1

104 Vf = (A_t - A_v) / A_t

105

106 A_sq = w * h

107 c_1 = t1 / t2

108 c_0 = w / 2 - c_1 * (h / 2)

109

110 # solve the 2nd degree eq

111 a = (-pi * c_0 + sqrt((pi * c_0) ** 2 + 4 * pi * c_1 * A_sq * (1 - Vf)))

/ (2 * pi * c_1)↪→

112 b = c_1 * a + c_0

113

114 return [a, b, w, h]

115

116 def draw_SV(T, model_name = "RVE_square_void", r=0.5, alpha=pi/2):

117 #Draws the RVE with ellipse void. Not sloped transverse lamella

118 #Sizes is vector containing the sizes: [a, b, w, h]

119 t1, t2, tv1, tv2 = T[0], T[1], T[2], T[3]

120 w = (tv1 + t1)

121 h = t2 + tv2

122 beta = pi/2-alpha

123 myModel = mdb.Model(name=model_name)

124 mySketch = myModel.ConstrainedSketch(name="RVE_square_void", sheetSize =

200)↪→

125 #Create center square

126 #mySketch.rectangle((-tv1/2, tv2/2), (tv1/2,-tv2/2))

127

128

129 #Create translation-vectors for the other ellipses:

130

131 lcx = -w

K. Engen June 11, 2022

132 rcx = w

133 d = h*(0.5-r)

134 tlcy = h/2 - w*tan(beta)

135 trcy = h/2 + w*tan(beta)

136 blcy = -h/2 - w*tan(beta)

137 brcy = -h/2 + w*tan(beta)

138 b = tv1/2

139 a = tv2/2

140 t = tan(beta)

141

142 #Drax center void

143 mySketch.Line((-b, a - b*t), (b, a + b*t))

144 mySketch.Line((b, a + b * t), (b, -a + b*t))

145 mySketch.Line((b, -a + b*t), (-b, -a - b*t))

146 mySketch.Line((-b, -a - b*t), (-b, a - b*t))

147

148

149 if (t2/2 + h*(0.5-r)) < h/2:

150 mySketch.Line((lcx, tlcy - a + d), (lcx+b, tlcy - a + d + b*t))

151 mySketch.Line((lcx+b, tlcy - a + d + b*t), (lcx+b, tlcy + b*t))

152 mySketch.Line((lcx+b, tlcy + b*t), (rcx-b, trcy - b*t))

153 mySketch.Line((rcx-b, trcy - b*t), (rcx - b, trcy - b*t - a + d))

154 mySketch.Line((rcx - b, trcy - b*t - a + d), (rcx, trcy - a + d))

155 mySketch.Line((rcx, trcy - a + d), (rcx, brcy + a + d))

156 mySketch.Line((rcx, brcy + a + d), (rcx - b, brcy + a + d - b*t))

157 mySketch.Line((rcx - b, brcy + a + d - b*t), (rcx - b, brcy - b*t))

158 mySketch.Line((rcx - b, brcy - b*t), (lcx + b, blcy + b*t))

159 mySketch.Line((lcx + b, blcy + b*t), (lcx + b, blcy + b*t + a + d))

160 mySketch.Line((lcx + b, blcy + b*t + a + d), (lcx, blcy + a + d))

161 mySketch.Line((lcx, blcy + a + d), (lcx, tlcy - a + d))

162 elif (t2/2 + h*(0.5-r)) == h/2 :

163 mySketch.Line((-w, tlcy - t2), (-w, tlcy))

164 mySketch.Line((-w, tlcy), (w, trcy))

165 mySketch.Line((w, trcy), (w, trcy - t2))

K. Engen June 11, 2022

166 mySketch.Line((w, trcy - t2), (w - b, trcy - t2 - b*t))

167 mySketch.Line((w - b, trcy - t2 - b*t), (w - b, brcy - b*t))

168 mySketch.Line((w - b, brcy - b*t), (-w + b, -blcy + b*t))

169 mySketch.Line((-w + b, -blcy + b*t), (-w + b, tlcy - t2 + b*t))

170 mySketch.Line((-w + b, tlcy - t2 + b*t), (-w, tlcy - t2))

171 elif (t2/2 + h*(0.5-r)) > h/2:

172 mySketch.Line((-w, tlcy - t2 - a + d), (-w, tlcy))

173 mySketch.Line((-w, tlcy), (w, trcy))

174 mySketch.Line((w, trcy), (w, trcy - t2 - a + d))

175 mySketch.Line((w, trcy - t2 - a + d), (w - b, trcy - t2 - a + d -

b*t))↪→

176 mySketch.Line((w - b, trcy - t2 - a + d - b*t), (w - b, brcy - a + d

- b*t))↪→

177 mySketch.Line((w - b, brcy - a + d - b*t), (w, brcy - a + d))

178 mySketch.Line((w, brcy - a + d), (w, brcy))

179 mySketch.Line((w, brcy), (-w, blcy))

180 mySketch.Line((-w, blcy), (-w, blcy - a + d))

181 mySketch.Line((-w, blcy - a + d), (-w + b, blcy - a + d + b*t))

182 mySketch.Line((-w + b, blcy - a + d + b*t), (-w + b, blcy + a + d +

b*t))↪→

183 mySketch.Line((-w + b, blcy + a + d + b*t), (-w , blcy + a + d))

184

185

186

187 return myModel, mySketch

188

189 def create_nodes_and_PBC(T, model_name, instance_name, strainDirectionX =

False, strainDirectionY=True, alpha = pi/2, dependent = False):↪→

190 #creates the nodes and equationconstraints on the specifies model and

instance↪→

191 t1, t2, tv1, tv2 = T[0], T[1], T[2], T[3]

192 w = (tv1 + t1)

193 h = t2 + tv2

194 beta = pi/2 - alpha

K. Engen June 11, 2022

195 t = tan(beta)

196 myModel = mdb.models[model_name]

197 myAssm = myModel.rootAssembly

198 myAssmInst = myAssm.instances[instance_name]

199 part = myModel.parts[instance_name]

200 if dependent == False:

201 allNodes = myAssmInst.nodes

202 else:

203 allNodes = part.nodes

204 myAssm = part

205

206

207 # finds the outer bounds

208 node0 = allNodes[0]

209 x_min = node0.coordinates[0]

210 x_max = node0.coordinates[0]

211 y_min = node0.coordinates[1]

212 y_max = node0.coordinates[1]

213

214 left_nodes_mesh = []

215 right_nodes_mesh = []

216 top_nodes_mesh = []

217 bottom_nodes_mesh = []

218

219 TRC_mesh = []

220 TLC_mesh = []

221 BRC_mesh = []

222 BLC_mesh = []

223

224 corner = False

225

226 if beta ==0:

227 for node in allNodes:

228 x = node.coordinates[0]

K. Engen June 11, 2022

229 y = node.coordinates[1]

230 if x < x_min:

231 x_min = x

232 elif x > x_max:

233 x_max = x

234

235 if y < y_min:

236 y_min = y

237 elif y > y_max:

238 y_max = y

239

240

241

242 for node in allNodes:

243 x = node.coordinates[0]

244 y = node.coordinates[1]

245 if x == x_min:

246 if y == y_max:

247 TLC_mesh.append(node)

248 corner = True

249 elif y == y_min:

250 BLC_mesh.append(node)

251 corner = True

252 else:

253 left_nodes_mesh.append(node)

254 elif x == x_max:

255 if y == y_max:

256 TRC_mesh.append(node)

257 corner = True

258 elif y == y_min:

259 BRC_mesh.append(node)

260 else:

261 right_nodes_mesh.append(node)

262 elif y == y_max and x != x_max and x != x_min:

K. Engen June 11, 2022

263 top_nodes_mesh.append(node)

264 elif y == y_min and x != x_min and x != x_max:

265 bottom_nodes_mesh.append(node)

266 else:

267 for node in allNodes:

268 x = node.coordinates[0]

269 if x < x_min:

270 x_min = x

271 elif x > x_max:

272 x_max = x

273 for node in allNodes:

274 x = node.coordinates[0]

275 y = node.coordinates[1]

276 if y >= h/2 - w*t and y<= h/2 + w*t + 0.01:

277 y_d = y - h/2

278 r = (y_d-x*t)**2

279 if r<0.0000001:

280 if x==x_min:

281 TLC_mesh.append(node)

282 corner = True

283 elif x==x_max:

284 TRC_mesh.append(node)

285 corner = True

286 else:top_nodes_mesh.append(node)

287 elif x == x_min:

288 left_nodes_mesh.append(node)

289 elif x == x_max:

290 right_nodes_mesh.append(node)

291 elif y >= -h/2 - w*t - 0.01 and y<= - h/2 + w*t:

292 y_d = y + h / 2

293 r = (y_d - x * t) ** 2

294 if r < 0.0000001:

295 if x==x_min:

296 BLC_mesh.append(node)

K. Engen June 11, 2022

297 corner = True

298 elif x==x_max:

299 BRC_mesh.append(node)

300 corner = True

301 else:bottom_nodes_mesh.append(node)

302 elif x == x_min:

303 left_nodes_mesh.append(node)

304 elif x == x_max:

305 right_nodes_mesh.append(node)

306 elif x == x_min:

307 left_nodes_mesh.append(node)

308 elif x == x_max:

309 right_nodes_mesh.append(node)

310

311

312 leftNodes = mesh.MeshNodeArray(left_nodes_mesh)

313 rightNodes = mesh.MeshNodeArray(right_nodes_mesh)

314 topNodes = mesh.MeshNodeArray(top_nodes_mesh)

315 bottomNodes = mesh.MeshNodeArray(bottom_nodes_mesh)

316

317 myAssm.Set(nodes=leftNodes, name="Left_nodeSet")

318 myAssm.Set(nodes=rightNodes, name="Right_nodeSet")

319 myAssm.Set(nodes=topNodes, name="Top_nodeSet")

320 myAssm.Set(nodes=bottomNodes, name="Bottom_nodeSet")

321

322

323

324 if len(leftNodes) != len(rightNodes):

325 exit("Length of right and left nodeset not equal")

326 i = 0

327 for node in leftNodes:

328 temp = [node]

329 string = "L" + str('{:03}'.format(i))

330 node_t = mesh.MeshNodeArray(temp)

K. Engen June 11, 2022

331 myAssm.Set(nodes=node_t, name=string)

332 i += 1

333

334 for node in rightNodes:

335 temp = [node]

336 node_t = mesh.MeshNodeArray(temp)

337 i = 0

338 for node_check in leftNodes:

339 r = (node.coordinates[1] - node_check.coordinates[1] - 2*w*t) **

2↪→

340 if r < 0.000001:

341 string = "R" + str('{:03}'.format(i))

342 myAssm.Set(nodes=node_t, name=string)

343 i += 1

344

345

346 if len(topNodes) != len(bottomNodes):

347 exit("Length of top an bottom nodes not equal")

348 i = 0

349

350

351 for node in topNodes:

352 temp = [node]

353 node_t = mesh.MeshNodeArray(temp)

354 string = "T" + str('{:03}'.format(i))

355 myAssm.Set(nodes=node_t, name=string)

356 i += 1

357

358

359

360 for node in bottomNodes:

361 temp = [node]

362 node_t = mesh.MeshNodeArray(temp)

363 i = 0

K. Engen June 11, 2022

364 for node_check in topNodes:

365 r = (node.coordinates[0] - node_check.coordinates[0]) ** 2

366 if r < 0.000001:

367 string = "B" + str('{:03}'.format(i))

368 myAssm.Set(nodes=node_t, name=string)

369 i += 1

370

371

372

373 for i in range(len(leftNodes)):

374 for j in range(2):

375 CE_name = "LR_" + str('{:03}'.format(i)) + "_" + str(j + 1)

376 LN_name = "L" + str('{:03}'.format(i))

377 RN_name = "R" + str('{:03}'.format(i))

378 if dependent==True:

379 LN_name = instance_name + ".L" + str('{:03}'.format(i))

380 RN_name = instance_name + ".R" + str('{:03}'.format(i))

381 myModel.Equation(name=CE_name,

382 terms=((1.0, RN_name, j + 1), (-1.0, LN_name, j

+ 1), (-1.0, "RP_LR", j + 1)))↪→

383

384 for i in range(len(topNodes)):

385 for j in range(2):

386 CE_name = "TB_" + str('{:03}'.format(i)) + "_" + str(j + 1)

387 TN_name = "T" + str('{:03}'.format(i))

388 BN_name = "B" + str('{:03}'.format(i))

389 if dependent==True:

390 TN_name = instance_name + ".T" + str('{:03}'.format(i))

391 BN_name = instance_name + ".B" + str('{:03}'.format(i))

392 myModel.Equation(name=CE_name,

393 terms=((1.0, TN_name, j + 1), (-1.0, BN_name, j

+ 1), (-1.0, "RP_TB", j + 1)))↪→

394

395 # If there are corners, this should be executed:

K. Engen June 11, 2022

396

397

398 if corner == True:

399 TRC = mesh.MeshNodeArray(TRC_mesh)

400 TLC = mesh.MeshNodeArray(TLC_mesh)

401 BRC = mesh.MeshNodeArray(BRC_mesh)

402 BLC = mesh.MeshNodeArray(BLC_mesh)

403 myAssm.Set(nodes=BLC, name="BLC")

404 myAssm.Set(nodes=BRC, name="BRC")

405 myAssm.Set(nodes=TLC, name="TLC")

406 myAssm.Set(nodes=TRC, name="TRC")

407

408

409 if (strainDirectionX == True and dependent == False): # for strain

in x-direction.↪→

410 myModel.Equation(name="TC_1", terms=((1.0, "TRC", 1), (-1.0,

"TLC", 1), (-1.0, "RP_LR", 1)))↪→

411 myModel.Equation(name="TC_2", terms=((1.0, "TRC", 2), (-1.0,

"TLC", 2), (-1.0, "RP_LR", 2)))↪→

412

413 myModel.Equation(name="BC_1", terms=((1.0, "BRC", 1), (-1.0,

"BLC", 1), (-1.0, "RP_LR", 1)))↪→

414 myModel.Equation(name="BC_2", terms=((1.0, "BRC", 2), (-1.0,

"BLC", 2), (-1.0, "RP_LR", 2)))↪→

415 elif (strainDirectionX==True and dependent ==True):

416 myModel.Equation(name=instance_name + ".TC_1", terms=((1.0,

instance_name + ".TRC", 1), (-1.0, instance_name + ".TLC",

1), (-1.0, "RP_LR", 1)))

↪→

↪→

417 myModel.Equation(name=instance_name + ".TC_2", terms=((1.0,

instance_name + ".TRC", 2), (-1.0, instance_name + ".TLC",

2), (-1.0, "RP_LR", 2)))

↪→

↪→

418

K. Engen June 11, 2022

419 myModel.Equation(name=instance_name + ".BC_1", terms=((1.0,

instance_name + ".BRC", 1), (-1.0, instance_name + ".BLC",

1), (-1.0, "RP_LR", 1)))

↪→

↪→

420 myModel.Equation(name=instance_name + ".BC_2", terms=((1.0,

instance_name + ".BRC", 2), (-1.0, instance_name + ".BLC",

2), (-1.0, "RP_LR", 2)))

↪→

↪→

421 elif (strainDirectionY == True and dependent == False): #for strain

i y-direction↪→

422 myModel.Equation(name="RC_1", terms=((1.0, "TRC", 1), (-1.0,

"BRC", 1),(-1.0, "RP_TB", 1)))↪→

423 myModel.Equation(name="RC_2", terms=((1.0, "TRC", 2), (-1.0,

"BRC", 2),(-1.0, "RP_TB", 2)))↪→

424

425 myModel.Equation(name="LC_1", terms=((1.0, "TLC", 1), (-1.0,

"BLC", 1),(-1.0, "RP_TB", 1)))↪→

426 myModel.Equation(name="LC_2", terms=((1.0, "TLC", 2), (-1.0,

"BLC", 2),(-1.0, "RP_TB", 2)))↪→

427 elif (strainDirectionY == True and dependent == True): #for strain i

y-direction↪→

428 myModel.Equation(name=instance_name + ".RC_1", terms=((1.0,

instance_name + ".TRC", 1), (-1.0, instance_name + ".BRC",

1),(-1.0, "RP_TB", 1)))

↪→

↪→

429 myModel.Equation(name=instance_name + ".RC_2", terms=((1.0,

instance_name + ".TRC", 2), (-1.0, instance_name + ".BRC",

2),(-1.0, "RP_TB", 2)))

↪→

↪→

430

431 myModel.Equation(name=instance_name + ".LC_1", terms=((1.0,

instance_name + ".TLC", 1), (-1.0, instance_name + ".BLC",

1),(-1.0, "RP_TB", 1)))

↪→

↪→

432 myModel.Equation(name=instance_name + ".LC_2", terms=((1.0,

instance_name + ".TLC", 2), (-1.0, instance_name + ".BLC",

2),(-1.0, "RP_TB", 2)))

↪→

↪→

433

434

K. Engen June 11, 2022

435 def postProcess(path, stepName, ovbU, Uname, ovbRF, RFname, setName,

XYplotname):↪→

436 session.Viewport(name='Viewport: 1', origin=(0.0, 0.0),

width=77.2499923706055,↪→

437 height=31.0)

438 session.viewports['Viewport: 1'].makeCurrent()

439 session.viewports['Viewport: 1'].maximize()

440 from caeModules import *

441 from driverUtils import executeOnCaeStartup

442 executeOnCaeStartup()

443 session.viewports['Viewport: 1'].partDisplay.geometryOptions.setValues(

444 referenceRepresentation=ON)

445

446 o3 = session.openOdb(

447 name=path)

448

449 session.viewports['Viewport: 1'].setValues(displayedObject=o3)

450 session.viewports['Viewport: 1'].makeCurrent()

451 odb = session.odbs[path]

452

453 xy_result = session.XYDataFromHistory(name=RFname, odb=odb,

454 outputVariableName=ovbRF,

455 steps=(stepName,),

__linkedVpName__='Viewport:

1')

↪→

↪→

456 c1 = session.Curve(xyData=xy_result)

457 xyp = session.XYPlot(XYplotname)

458 chartName = xyp.charts.keys()[0]

459 chart = xyp.charts[chartName]

460 chart.setValues(curvesToPlot=(c1,),)

461

462 odb = session.odbs[path]

463 xy_result = session.XYDataFromHistory(

464 name=Uname, odb=odb,

K. Engen June 11, 2022

465 outputVariableName=ovbU,

466 steps=(stepName,), __linkedVpName__='Viewport: 1')

467 c1 = session.Curve(xyData=xy_result)

468 xyp = session.xyPlots[XYplotname]

469 chartName = xyp.charts.keys()[0]

470 chart = xyp.charts[chartName]

471 chart.setValues(curvesToPlot=(c1,),)

472 xy1 = session.xyDataObjects[Uname]

473 xy2 = session.xyDataObjects[RFname]

474 xy3 = combine(-xy1, -xy2)

475 xyp = session.xyPlots[XYplotname]

476 chartName = xyp.charts.keys()[0]

477 chart = xyp.charts[chartName]

478 c1 = session.Curve(xyData=xy3)

479 chart.setValues(curvesToPlot=(c1,),)

480 xy1 = session.xyDataObjects[Uname]

481 xy2 = session.xyDataObjects[RFname]

482 xy3 = combine(-xy1, -xy2)

483

484 sDC = 'combine (-"' + Uname + '",-"' + RFname + '")'

485 xy3.setValues(

486 sourceDescription=sDC)

487 tmpName = xy3.name

488 session.xyDataObjects.changeKey(tmpName, setName)

489

490 return session.xyDataObjects[setName]

491

492 class Model:

493

494 shape = "Rectangle"

495

496 def __init__(self, model_name, geometry, exists = False, elmsize = 5, hx

= 10, flexElmS = False):↪→

497 import numpy as np

K. Engen June 11, 2022

498 # geometry: [r, alpha, T]

499 # T: [t1, t2, tv1, tv2]

500 self.name = model_name

501 self.geomtry = geometry

502 self.r, self.alpha, self.T = geometry[0], geometry[1], geometry[2]

503

504 self.beta = pi/2 - self.alpha

505 self.t = tan(self.beta)

506

507 self.h = self.T[1] + self.T[3]

508 self.w = self.T[0] + self.T[2]

509

510 self.elmSize = elmsize

511 if flexElmS:

512 self.elmSize=self.h/hx

513

514 #if self.elmSize > self.T[1]/4:

515 # self.elmSize = self.T[1]/4

516

517 tempInt = np.round(self.T[0] / self.elmSize)

518 if tempInt ==0:

519 tempInt = 1

520

521 self.elementWidth = 0.5*self.T[0]/tempInt

522

523

524 self.stepNames = ["Initial"]

525 self.stepTypes = ["Initial"]

526 self.steps = []

527 self.jobs = []

528

529 if exists:

530 self.model=mdb.models[self.name]

531 self.Assembly = self.model.rootAssembly

K. Engen June 11, 2022

532 self.AssemblyInstance = self.Assembly.instances[self.name]

533

534 def getModel(self):

535 return self.model

536

537 def createPart(self):

538 self.model, self.sketch = draw_SV(self.T, model_name=self.name,

r=self.r, alpha=self.alpha)↪→

539 self.part = self.model.Part(dimensionality=TWO_D_PLANAR,

name=self.name, type=DEFORMABLE_BODY)↪→

540 self.part.BaseShell(sketch=self.sketch)

541

542 h = self.h

543 w = self.w

544 r = self.r

545

546 t = self.t

547

548 self.part.Set(edges=self.part.edges.findAt(((0, h / 2, 0),)),

name="Top_edge")↪→

549 self.part.Set(edges=self.part.edges.findAt(((w, h * (0.5 - r) + w *

t, 0),)), name="Right_edge")↪→

550 self.part.Set(edges=self.part.edges.findAt(((0, -h / 2, 0),)),

name="Bottom_edge")↪→

551 self.part.Set(edges=self.part.edges.findAt(((-w, h * (0.5 - r) - w *

t, 0),)), name="Left_edge")↪→

552 self.part.Set(faces=self.part.faces.findAt(

553 ((-w + 0.1, h * (0.5 - r) - (w - 0.1) * t, 0), (w - 0.1, h *

(0.5 - r) + (w - 0.1) * t, 0)),), name="Face")↪→

554

555 def createMaterial(self, materialName="Steel"):

556 self.material = self.model.Material(name=materialName)

557

K. Engen June 11, 2022

558 def editMaterialElasticPlasticHardening(self, tableElastic = ((205000,

0.3),), tablePlastic = ((450, 84844, 5085, 60486, 881.1, 18041, 163,

4935, 100.6, 2426, 9),), tableHardening = ((450, -70,2),), hardening

= COMBINED, dataType=PARAMETERS, numBackstresses = 5,

hardeningParameters = ON):

↪→

↪→

↪→

↪→

559 # tableElastic: ((E, vy),)

560 # tablePlastic: ((sigma0, C1, gamma1, ..., Cn, gamman),)

561 # tablehardening: ((sigma0, Qinf, b),)

562 self.material.Elastic(table=tableElastic)

563

564 self.material.Plastic(table=tablePlastic, hardening = hardening,

dataType=dataType, numBackstresses=numBackstresses)↪→

565

566 self.material.plastic.CyclicHardening(table = tableHardening,

parameters = hardeningParameters)↪→

567

568 def getMaterial(self):

569 return self.material

570

571 def GetKeywordPosition(self, m, blockPrefix, occurrence=1):

572 # if blockPrefix == '':

573 # return len(m.keywordBlock.sieBlocks) - 1

574 pos = 0

575 foundCount = 0

576 for block in m.keywordBlock.sieBlocks:

577 if block[0:len(blockPrefix)] == \

578 blockPrefix:

579 foundCount = foundCount + 1

580 if foundCount >= occurrence:

581 return pos

582 pos = pos + 1

583

584 return +1

585

K. Engen June 11, 2022

586 def editKeywords(self, findArgument="*Material", insertString = 'ns'):

587 if insertString=='ns':

588 insertString = "*Damage Initiation, criterion=HYSTERESIS

ENERGY\n3162.3,-1.126\n*Damage Evolution, type=HYSTERESIS

ENERGY\n" + str(0.000453878*self.elementWidth) + ",0.095"

↪→

↪→

589

590 self.model.keywordBlock.synchVersions(storeNodesAndElements=

591 False)

592 position = GetKeywordPosition(self.model, findArgument)

593 #self.model.keywordBlock.replace(position, '\n')

594 self.model.keywordBlock.insert(position,

595 insertString)

596

597 def assignSection(self):

598 self.model.HomogeneousSolidSection(material=self.material.name,

name=self.name, thickness=None)↪→

599 self.wholeModelRegion = ((self.part.faces.findAt(((0, -self.h / 2,

0), (self.w, self.h * (0.5 - self.r) + self.w * self.t, 0)),

)),)

↪→

↪→

600 self.part.SectionAssignment(offset=(0.0), offsetField=" ",

offsetType=MIDDLE_SURFACE, region=self.wholeModelRegion,↪→

601 sectionName=self.name)

602

603 def createAssembly(self,instanceName, dependency = OFF):

604 self.InstanceName = instanceName

605 self.Assembly = self.model.rootAssembly

606 self.AssemblyInstance = self.Assembly.Instance(name=instanceName,

part=self.part, dependent=dependency)↪→

607

608 def createDirectCyclicStep(self, stepName="DC", timePeriod = 2,

timeIncrementationMethod = FIXED, initialInc = 0.1, fatigue = ON,

minCycleInc = 1, maxCycleInc = 1000, maxNumCycles=1000):

↪→

↪→

609 previousStep = self.stepNames[-1]

610 self.stepNames.append(stepName)

K. Engen June 11, 2022

611 self.stepTypes.append("DirectCyclic")

612

613 self.steps.append(self.model.DirectCyclicStep(name=stepName,

previous = previousStep, timePeriod = timePeriod,

timeIncrementationMethod = timeIncrementationMethod

↪→

↪→

614 , initialInc = initialInc, fatigue =

fatigue, minCycleInc = minCycleInc,

maxCycleInc = maxCycleInc,

maxNumCycles=maxNumCycles))

↪→

↪→

↪→

615

616 def createPartition(self):

617 # T: [t1, t2, tv1, tv2]

618 t1, t2, tv1, tv2 = self.T[0], self.T[1], self.T[2], self.T[3]

619 b = tv1/2 + t1

620 s = self.model.ConstrainedSketch(name='partitionSketch',

621 sheetSize=2000)

622 s.Line(point1=(-b, -self.t*b + t2/2), point2=(-b,-self.t*b - t2/2))

623 s.Line(point1=(b, self.t * b + t2 / 2), point2=(b, self.t * b - t2 /

2))↪→

624

625 s.Line(point1=(-tv1/2, -self.t * (tv1/2) + tv2/2), point2=(-tv1/2,

-self.t * (tv1/2) + tv2/2 + t2/2))↪→

626 s.Line(point1=(-tv1 / 2, -self.t * (tv1 / 2) - tv2 / 2),point2=(-tv1

/ 2, -self.t * (tv1 / 2) - tv2 / 2 - t2 / 2))↪→

627 s.Line(point1=(tv1 / 2, self.t * (tv1 / 2) + tv2 / 2),

628 point2=(tv1 / 2, self.t * (tv1 / 2) + tv2 / 2 + t2 / 2))

629 s.Line(point1=(tv1 / 2, self.t * (tv1 / 2) - tv2 / 2),

630 point2=(tv1 / 2, self.t * (tv1 / 2) - tv2 / 2 - t2 / 2))

631

632 f1 = self.AssemblyInstance.faces

633

634

self.Assembly.PartitionFaceBySketch(faces=f1.getSequenceFromMask(mask=('[#1

]',),), sketch=s)

↪→

↪→

K. Engen June 11, 2022

635

636 def createPBC(self):

637 rp1 = self.Assembly.ReferencePoint(point=(self.w * 1.5, 0, 0))

638 id_1 = rp1.id

639 rp2 = self.Assembly.ReferencePoint(point=(0, self.h * 0.75, 0))

640 id_2 = rp2.id

641

self.Assembly.Set(referencePoints=(self.Assembly.referencePoints[id_1],),

name="RP_LR")

↪→

↪→

642 self.RP_LR =

regionToolset.Region(referencePoints=(self.Assembly.referencePoints[id_1],))↪→

643

self.Assembly.Set(referencePoints=(self.Assembly.referencePoints[id_2],),

name="RP_TB")

↪→

↪→

644 self.RP_TB =

regionToolset.Region(referencePoints=(self.Assembly.referencePoints[id_2],))↪→

645

646 self.id_2 = id_2

647

648 create_nodes_and_PBC(T = self.T, model_name=self.name,

instance_name= self.name, alpha = self.alpha)↪→

649

650 def createLoads(self, stepName, u2 = 0.6/100, cf2=60, loadType =

'disp'):↪→

651 leftNodes, bottomNodes = [0,0], [0,0]

652 i_min = 0

653 i_max = 0

654 nodeset = self.Assembly.allSets['Top_nodeSet'].nodes

655 for i in range(len(nodeset)):

656 tempNode = nodeset[i]

657 if i ==0:

658 x_max = tempNode.coordinates[0]

659 x_min = tempNode.coordinates[0]

660 if tempNode.coordinates[0] < x_min:

K. Engen June 11, 2022

661 x_min = tempNode.coordinates[0]

662 i_min = i

663 elif tempNode.coordinates[0] > x_max:

664 x_max = tempNode.coordinates[0]

665 i_max = i

666

667 leftNodes[0], leftNodes[1] = "B" + str('{:03}'.format(i_min)), "T" +

str('{:03}'.format(i_min))↪→

668 bottomNodes[1], bottomNodes[0] = "B" + str('{:03}'.format(i_max)),

"B" + str('{:03}'.format(i_min))↪→

669

670 Region = regionToolset.Region(nodes =

(self.Assembly.allSets[leftNodes[0]].nodes +

self.Assembly.allSets[leftNodes[1]].nodes))

↪→

↪→

671

672 self.constraint_X = self.model.DisplacementBC(

673 name='xBC', createStepName='Initial',

674 region=Region, u1=0)

675

676 Region = regionToolset.Region(nodes =

(self.Assembly.allSets[bottomNodes[0]].nodes +

self.Assembly.allSets[bottomNodes[1]].nodes))

↪→

↪→

677 self.constraint_Y = self.model.DisplacementBC(

678 name='yBC', createStepName='Initial',

679 region=Region, u2=0)

680

681 amplitude = self.model.PeriodicAmplitude(name = "PeriodicAmplitude",

frequency = pi, start = 0, a_0 = 0, data = ((0,1),))↪→

682

683 if loadType == 'disp':

684 Region =

regionToolset.Region(referencePoints=(self.Assembly.referencePoints[self.id_2],))↪→

685 self.displacement = self.model.DisplacementBC(

686 name='Displacement', createStepName=stepName,

K. Engen June 11, 2022

687 region=Region, u2=u2, amplitude = "PeriodicAmplitude")

688 else:

689 Region =

regionToolset.Region(referencePoints=(self.Assembly.referencePoints[self.id_2],))↪→

690 self.displacement = self.model.ConcentratedForce(

691 name='Force', createStepName=stepName,

692 region=Region, cf2=cf2, amplitude="PeriodicAmplitude")

693

694 def createMesh(self, elm = mesh.ElemType(elemCode=CPE8R)):

695 Top_edge = self.Assembly.allSets[self.name + ".Top_edge"].edges

696 Bottom_edge = self.Assembly.allSets[self.name +

".Bottom_edge"].edges↪→

697 Left_edge = self.Assembly.allSets[self.name + ".Left_edge"].edges

698 Right_edge = self.Assembly.allSets[self.name + ".Right_edge"].edges

699 Face = self.Assembly.allSets[self.name + ".Face"].faces

700

701

702 seedTopBottom = self.elmSize

703 seedLeftRight = self.elmSize

704

705 self.Assembly.seedPartInstance((self.AssemblyInstance,), size =

self.elmSize)↪→

706 self.Assembly.seedEdgeBySize(edges=Top_edge, size = seedTopBottom,

constraint=FIXED)↪→

707 self.Assembly.seedEdgeBySize(edges=Bottom_edge, size=seedTopBottom,

constraint=FIXED)↪→

708 self.Assembly.seedEdgeBySize(edges=Left_edge, size = seedLeftRight,

constraint=FIXED)↪→

709 self.Assembly.seedEdgeBySize(edges=Right_edge, size=seedLeftRight,

constraint=FIXED)↪→

710

711 self.Assembly.setMeshControls(regions=Face, elemShape=QUAD,

technique=FREE)↪→

K. Engen June 11, 2022

712 self.Assembly.setElementType(regions=self.Assembly.allSets[self.name

+ ".Face"], elemTypes=(elm,))↪→

713

714 def meshPart(self):

715 self.Assembly.generateMesh((self.AssemblyInstance,))

716

717 def createHistoryOuput(self,stepName, region, name = "Hist-2",

variables = ["RF2", "U2", "CF2"]):↪→

718 self.model.HistoryOutputRequest(name=name, createStepName=stepName,

region=region, variables=variables)↪→

719

720 def editFieldOutput(self, name = "F-Output-1", values = ["CF", "RF",

"U", "S", "SDEG", "STATUS", "CYCLEINI", "E"]):↪→

721 self.model.fieldOutputRequests[name].setValues(variables = values)

722

723 def createJob(self, jobName):

724 self.jobs.append(mdb.Job(name = jobName, model = self.model))

725 return self.jobs[-1]

726

727 def submitJobAndWait(self, job):

728 job.submit()

729 job.waitForCompletion()

730

731 def postProcessStressStrain(self, job, stepname = 'DC', XYplotname =

'nS'):↪→

732 import numpy as np

733 cwd = os.getcwd() #path for this directory

734 jobname = job.name

735 path = cwd + '/' + jobname + '.odb'

736

737 RFkey = 'Reaction force: RF2 PI: rootAssembly Node 2 in NSET RP_TB'

738 CFkey = 'Concentrated force: CF2 PI: rootAssembly Node 2 in NSET

RP_TB'↪→

K. Engen June 11, 2022

739 U2key = 'Spatial displacement: U2 PI: rootAssembly Node 2 in NSET

RP_TB'↪→

740

741 if XYplotname == 'nS':

742 XYplotname = 'XYplot' + jobname

743

744 self.xydataObj = postProcess(path = path, ovbU=U2key, Uname='U2' +

jobname, ovbRF=RFkey, RFname='RF2' + jobname, setName = 'Temp' +

jobname, XYplotname=XYplotname, stepName=stepname)

↪→

↪→

745 temparray = np.zeros((len(self.xydataObj.data),2))

746 self.data = ''

747 for i,d in enumerate(temparray):

748 d[0] = self.xydataObj[i][0]/self.h

749 d[1] = self.xydataObj[i][1]/(2*self.w)

750 self.data += str(d[0]) + ',' + str(d[1]) + '\n'

751

752 pathToDataStorage =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ jobname + "_stressStrain.txt"

↪→

↪→

753 f = open(pathToDataStorage, 'w')

754 f.write(self.data)

755 f.close()

756

757 def postProcessSDEG(self, job, stepname = 'DC'):

758 cwd = os.getcwd() #path for this directory

759 jobname = job.name

760 setName = 'XYdata_' + jobname

761 path = cwd + '/' + jobname + '.odb'

762

763 #---

764 from abaqus import *

765 from abaqusConstants import *

766 import numpy as np

K. Engen June 11, 2022

767 session.Viewport(name='Viewport: 1', origin=(0.0, 0.0),

width=307.999969482422,↪→

768 height=170.116683959961)

769 session.viewports['Viewport: 1'].makeCurrent()

770 session.viewports['Viewport: 1'].maximize()

771 from viewerModules import *

772 from driverUtils import executeOnCaeStartup

773 executeOnCaeStartup()

774 o2 = session.openOdb(name=jobname + '.odb')

775

776 session.viewports['Viewport: 1'].setValues(displayedObject=o2)

777 session.viewports['Viewport: 1'].makeCurrent()

778 odb = session.odbs[

779 path]

780 #--

781 mytuple = ()

782

783 for i in range (len(self.AssemblyInstance.elements)):

784 mytuple = mytuple + (xyPlot.XYDataFromHistory(odb=odb,

785 outputVariableName='Scalar stiffness degradation: SDEG PI:

'+ self.name.upper()+' Element '+str(i+1)+' Int Point 1

in ELSET FACE',

↪→

↪→

786 steps=(stepname,), suppressQuery=True,

__linkedVpName__='Viewport: 1'),)↪→

787 x_final = maxEnvelope(mytuple)

788 xy_result = session.XYData(name=setName, objectToCopy=x_final)

789

790 del mytuple

791 self.xySDEGdataObj = session.xyDataObjects[setName]

792 temparray = np.zeros((len(self.xySDEGdataObj.data), 2))

793 self.SDEGdata = ''

794 for i, d in enumerate(temparray):

795 d[0] = self.xySDEGdataObj.data[i][0]/2

796 d[1] = self.xySDEGdataObj.data[i][1]

K. Engen June 11, 2022

797 self.SDEGdata += str(d[0]) + ',' + str(d[1]) + '\n'

798

799 pathToDataStorage =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ jobname + "_SDEG.txt"

↪→

↪→

800 f = open(pathToDataStorage, 'w')

801

802 f.write(str(self.SDEGdata))

803 f.close()

804

805 def getDataFromFile(self, jobname):

806 pathToDataStorage =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ jobname + "_StressStrain.txt"

↪→

↪→

807 f = open(pathToDataStorage, 'r')

808 self.data = f.read()

809 f.close()

810

811 def readAndSortData(self, jobname):

812 pathToDataStorage =

"C:/Users/katin/Documents/Studie/0_V2022/Thesis/FEM/Data/Data/"

+ jobname + "_StressStrain.txt"

↪→

↪→

813 f = open(pathToDataStorage, 'w')

814 self.sortedData = self.data.replace('),', '\n')

815 self.sortedData = self.sortedData.replace('(', '')

816 self.sortedData = self.sortedData.replace(')', '')

817

818 f.write(str(self.sortedData))

819 f.close()

820

821 def doItAll(self):

822 #uses only default values

823

K. Engen June 11, 2022

824 #1. Draws sketch and makes part. Also defines edges and RPs to be

used later↪→

825 self.createPart()

826 #2. Defines material

827 self.createMaterial()

828 self.editMaterialElasticPlasticHardening()

829 #3. Assigns section

830 self.assignSection()

831 #4. Creates Assembly

832 self.createAssembly(instanceName = self.name)

833 #5. Creates Step

834 self.createDirectCyclicStep(maxNumCycles=2000)

835 #5.5. Create partition

836 self.createPartition()

837 #6. Creates mesh

838 self.createMesh()

839 self.meshPart()

840 #7. Creates PBC

841 self.createPBC()

842 #8. Assign Loads and BC

843 self.createLoads(stepName = self.stepNames[-1], u2 =

0.8*(self.h/100), cf2=60*self.w*2)↪→

844 #9. Ask for History output

845 self.createHistoryOuput(stepName = self.stepNames[-1], region =

self.Assembly.allSets["RP_TB"])↪→

846 self.createHistoryOuput(stepName = self.stepNames[-1], region =

self.Assembly.allSets[self.name + ".Face"], name = "Hist-3",

variables=["SDEG"])

↪→

↪→

847 #10. Edit Field Ouput

848 self.editFieldOutput()

849 #11. Edit keywords

850 self.editKeywords()

K. Engen June 11, 2022

Appendix B

B.1 Project Thesis Katinka Engen 2021

Data driven approach to bio-inspired structures

Specialisation Project

K. Engen

MTP
NTNU
Norway

December 20, 2021

K. Engen December 20, 2021

Abstract

The Black drum is a saltwater fish with a diet consisting of crushing oysters and shellfish.
It has one of the highest biting forces per weight [1], and for this it needs a powerful set
of jaws that is resistant to cyclic loading, can handle high uni axial forces as well as being
light weight. This preliminary examination of the micro structure of the lower pharyngeal
jaw bone of the Black Drum fish aims to uncover structural properties fit for making other
robust material that can handle uni-axial cyclic loading., e.g. for damping effects.

The lower pharyngeal jaw consists of a dental-plate and two supporting struts. These struts
have a porous core, and denser walls. These walls have a volume-fraction of 40-60 percent [2].
This is a low volume fraction if compared to e.g. the density of mammalian bone [3][4][5].
Looking at a cross-section of the denser walls, we see thin plates oriented in the load-bearing
direction, and supporting beams connecting these thin plates. These supportive beams can
be there to stabilize, and to prevent shearing between the load-bearing plates [2]. This paper
analyses the stabilizing effect the parameters of the micro structure has.

The thickness of the load-bearing plates, supporting beams and size and shape of the voids
have implications for the stability. Despite this, it seems other mechanisms, e.g. shearing or
fatigue are more likely to be the determining factors, as the structure’s stability at the most
unfavourable found in this examination is still able to withstand roughly twice the stress it
is subject to during operation (150 MPa vs 80 MPa) [2].

1

K. Engen December 20, 2021

Contents

1 Theory 4

1.0.1 The Black Drum Jaw Bone . 4

1.0.2 Comparison on different kinds of bone 4

1.1 The Black Drum Lower pharyngeal jaw bone 7

1.1.1 Bone structure . 7

1.2 Buckling . 8

1.2.1 Bracing . 9

1.3 Micromechanical modelling and Periodic boundary conditions 10

1.3.1 Periodic Boundary conditions in 2 dimensions 10

1.4 Mean values and Standard deviation . 11

2 Method 12

2.1 Defining the lattice structure . 12

2.2 Understanding the structure . 16

2.2.1 Bracing . 16

2.3 Finite element model . 18

3 Results 20

3.1 The lattice structure . 20

3.2 Buckling modes . 20

3.2.1 Local buckling . 21

2

K. Engen December 20, 2021

3.2.2 Global buckling . 21

4 Discussion 23

4.1 Convergence analysis . 23

4.2 Rectangular vs. elliptical voids . 23

4.3 tv2 vs. tv1 . 23

4.3.1 Sources of error . 24

4.4 t1 vs t2 . 24

4.5 Significance . 25

4.6 Missing pieces . 25

3

K. Engen December 20, 2021

Chapter 1

Theory

1.0.1 The Black Drum Jaw Bone

The Black Drum’s jaw bone is subject to very high cyclic loading. The diet of the Black
Drum consists mostly of shellfish and amonites. Yes, the structure of the bone is unlike that
of wich we are familiar: Cortical and Trabecular bone from mammals, and to some degree
bones from fish.

1.0.2 Comparison on different kinds of bone

Cortical Bone

The cortical bone is compact. In humans it consists of about 10% soft tissue, and makes up
80 % of the skeletal mass. It makes up all the outer layer of the bones, and is particularly
found in weight-bearing areas such as the femur [3]. In Figure 1.1 a view of the human bone
can be seen. In figure 1.2 a schematic drawing of the bovine cortical bone can be seen. As
seen in the figure, it is made up of systematically placed lamellae, and is quite dense.

As far as I can understand from my limited review, bones in mammals are roughly similar.
Though the bones and bone structure vary, the cortical and trabecular bone is found in most
mammals, and consist of roughly the same features.

An interesting variety on the bone structure is found in fish, and it seems to be a field not
as well studied as the mammalian bone. As of 2015 A. Atkins et al. wrote

While the structure of mammalian bones is therefore reasonably well studied

4

K. Engen December 20, 2021

Figure 1.1: Macroscopic view of cortical and trabecular (here: spongy) bone. Figure is from
G. J. Tortora [6]

Figure 1.2: The bovine cortical bone. (a) Light-microscopy micrograph and its position in
transverse-radial cross-section of osteonal bovine cortical bone tissue, (b) schematic illustra-
tion of homogeneous model, and (c) schematic illustration of micro-structural model. Figure
is from A. A. Abdel-Wahab, A. R. Maligno, and V. V. Silberschmid [5]

in three dimensions (...) similar data with regard to fish bone are lacking. In
particular, the fibrillar arrangement in fish bone lamellae is unknown, as, indeed,
is whether their layered structure consists of lamellar units at all [7].

Fish bone structures can be divided into two types: cellular and acellular [7][8]. The acellular,
or anostecytic, bone of a fish was previously understood to be relatively featureless, but is
now thought to be layered much like the mammalian lamellar bone, as well as consisting of

5

K. Engen December 20, 2021

a dense array of small-diameter collagen bundles. As the mammalian bone, the anostecytic
bone consists of ordered material, but is less ordered. It also has much thinner individual
lamellae, 1-2 vs. 2-7 µm. The bone studied in this paper also proves to be much tougher
than mammalian bone, like the antlers of deer, without sharing the antler’s micro structure
or mechanisms [7].

The last section of the fish was provided to address the issue of specious variation. It seems
the two-bone system found in mammals might not be directly comparable with fish. The
skeletal of fish’ are complicated, and the fish-bone described are one type from one fish.

Loading direction

Suitable to withstand unidirectional forces, along the length of the fibers. The macro struc-
ture of the bone, with this compact material along the periphery, enables it to withstand
bending-forces effectively.

Trabecular Bone

The trabecular bone is a spongy form of bone, without any systematic placement of fiber
or lamellae, but with rods 100 µm thick, and holes 1 mm thick [9]. Bone marrow makes
up about 75 % of its volume [3]. The histography of the trabecular bone also varies across
species. One example is the ostrich, equine (horse) and human. The morphology of the
ostrich trabecular bone is utterly different from the equine trabecular metatarsal, while the
nanomechanical properties ostrich trabecular bone is similar to the human bone [10].

Loading direction

Due to its randomly-oriented fibers, the trabecular bone is able to withstand multidirectional
loading. This could be the reason it’s found near the joints, where loading direction can vsry.
It is not able to withstand as much pressure as cortical bone, because of it’s porosity, which
could be why bones often increase in size near the joints. Trabecular bone is also found in
the central regions of long bones, e.g. the femur, where it can support the cortical bone. I
also noted in the article about the LPJ bone a theory about the trabecular bone adapting
to the direction of the largest forces [11].

6

K. Engen December 20, 2021

1.1 The Black Drum Lower pharyngeal jaw bone

1.1.1 Bone structure

The geometry and topology of the lower pharyngeal jaw (LPJ) bone seem to differ from cor-
tical and trabecular bone [2]. LBJ seem to be less dense than the cortical bone of mammals,
and not as porous as the trabecular bone. The porosity of the outer wall of the struts of the
bone have a porosity level of about 50 %. This is far more porous than the cortical bones
found at the walls of bones i mammals, in which no more than 3% are voids.

The lower pharyngeal jaw is divided in two. It’s dental plate consists of two halves, with
a suture in the middle. On the plates there are molars, and the molars are larger near the
suture (middle). Each half of the dental plate rests on the thick end of a cone shaped strut.

A cross-section of the struts show a dense, outer wall, and a porous middle-section, as with
cortical bone and trabecular bone in mammalian bone. However, the structure of the outer
wall and the middle-section in the LPJ-bone are not like the cortical and trabecular bone
discussed previously.

The outer walls consist of plates (lamellar sheets) orienten in the load bearing direction, i.e.
along the length of the strut (from now on referred to as the z-axis). They are slightly curved
around the z-axis. In the void between each such plate there are several thinner, transversely
oriented beams, dividing and supporting the plates. These supportive beams are oriented
orthogonal to the load-bearing direction.

The central region of the bone consists of thin rods, and is irregular. Like the trabecular
bone it is non-systematic in the structure, however it also varies in porosity. While the
mammalian bone consist of a uniform distribution of bone matter in the trabecular bone
[11], here the bone can have pores more than 10 times the size of other pores, seemingly
without a predictable pattern.

Loading direction

The thick plates in the the exterior wall of the struts seem to carry the load. On the
macro level, the denser outer wall prevents bending of the strut. The thinner, curved beams,
supporting the load-bearing plates, could protect against in-plane shear-forces and stabilize
the structure on a macro-level [2].

7

K. Engen December 20, 2021

The fibers of the thick plates in the outer wall, are oriented along the z-axis, i.e. in the
loading direction. This is similar to the fibers in cortical bone. For the supporting beams,
the fibers merge into the thicker plates, much like we see for trabecular bone in joints.

1.2 Buckling

Structures subject to compressed load sometimes encounter a stability-problem if the struc-
ture is slender enough, such that for a critical load, Pcr, the structure looses its stability
while the material still behaves linear-elastic [12]. The critical load for a beam is defined as

Pcrit =
π2EI

L2
k

,
(1.1)

where E is the elastic modulus of the material of the beam, I is the second moment of area,
and Lk is the buckling length. The buckling length is the effective length of the structure,
and will be a function of the total length of beam, and how the structure is constrained. An
illustration of this can be seen i figure 1.3.

Figure 1.3: Illustration of two known buckling modes.

The critical stress, σcrit, and the critical strain, ϵcrit for when a structure becomes unstable
is defined as

8

K. Engen December 20, 2021

σcrit =
Pcrit

A
,

ϵcrit =
∆L

L

(1.2)

where A is the area of the cross-section, and ∆L is the deflection of the structure in the
compressed direction as it becomes unstable, and L is the original length of the structure.

1.2.1 Bracing

From equation 1.1, we see that decreasing Lk with a factor 2, increase the critical load, Pcrit

with a factor 4. For long, slender beams, introducing some support along the length of the
beam that stabilizes against the buckling-mode can be effective. An example is seen in figure
1.4.

Figure 1.4: Example of bracing: a spring stabilizing against buckling.

In the figure, a spring is placed on the middle of the length of the beam. Depending on the
stiffness of the spring, the critical load of the beam could be as much as four times as large
as it was without the spring [12].

9

K. Engen December 20, 2021

1.3 Micromechanical modelling and Periodic boundary

conditions

Representative volume elements (RVEs) can be used when studying the deformation mecha-
nisms of a porous material on the microscopic level. For a spatially periodic and space-filling
RVE, the use of periodic boundary conditions (PBCs) on the surface (3D) or edges (2D) of
the RVE ensures that it deforms in a periodic manner [13] [14].

1.3.1 Periodic Boundary conditions in 2 dimensions

When simulation mechanical deformation of an RVE, the modell must fulfill certain require-
ments. The RVE must deform in a periodic manner. This entail that deformation of the
RVE happens in such a manner that it never ceases to be periodic and spatially filling. I.e
no cavities or overlaps forms. The displacement of each pair of periodically placed points A
and B is described as

u(B)− u(A) = (F − 1)(X(B)−X(A)) = H(X(B)−X(A)). (1.3)

Here u(A) and u(B) is displacement at point A and B, respectively, (F -1) is the macroscopic
displacement, and X(A) and X(B) is position in reference configuration. Each periodic pair
of nodes along the edges of the RVE must be constrained with this relation. [15]. The
macroscopic displacement is applied to ’dummy’ nodes. This is a node unconnected to the
RVE itself. For 2-dimensional RVEs there would be 2 ’dummy’ nodes, while for 3-dimensional
RVEs there would be 3.

Using the numerical simulation tool Abaqus, the constraint described in equation 1.3 is
implemented using a constraint-equation. For a periodic pair C and D on a 2-dimensional
RVE, the equations imposed on the pair would be

u(C)1 − u(D)1 − u(P)1 = 0

u(C)2 − u(D)2 − u(P)2 = 0,
(1.4)

10

K. Engen December 20, 2021

where u(X)i denotes the displacement in point X in direction i [14]. Point P refers to the
’dummy’ node associated with the edge-pair the points C and D belongs to.

1.4 Mean values and Standard deviation

Some known formulas for calculating standard deviation of a nonlinear function with mul-
tiple variables, where these variables themselves possess an error in the form of a standard
deviation is found in table 1.1.

Table 1.1: Formulas for calculating error propagation [16]

Function Standard Deviation
f = A

B
σf = |f|

√
(σA

A
)2 + (σB

B
)2 − 2σAB

AB

f = A
B

σf = |f|
√
(σA

A
)2 + (σB

B
)2 + 2σAB

AB

f = aAb σf = | fbσA

A
|

11

K. Engen December 20, 2021

Chapter 2

Method

In order to analyse the structural properties of the structure through Finite Element Analysis,
a simplified lattice structure had to be defined based on the available data from the real bone.

2.1 Defining the lattice structure

The lattice structure’s parameters where defined looking at the scans an 3D rendering of the
jaw bone of the Black Drum [2], shown in figure 2.1.

Figure 2.1: Scan of the jaw-bone of the Black Drum. Figure is from E. Ziv et al. [2].

As can be seen from figure 2.1, the bone is disordered and have significant variations in the
thickness of the lamellar plates, both the vertical and the horizontal. A simplified model
of the structure was made (figure 2.2), and the key parameters where defined. To define a
mean value for each of the key parameters, 16 points where randomly chosen on the scans
and a mean value and standard deviation was calculated. These points can be seen in Figure

12

K. Engen December 20, 2021

2.2.

Figure 2.2: a) Sketch of simplified lattice structure with key parameters based on the scan.
b) Scan of the LBJ bone [2]. 16 areas for measuring 5 key parameters tv1, tv2, t1, t2, andα
are highlighted. Background figure in b) is from E. Ziv et al. [2].

The resulting mean values and standard deviations is reported in table 2.1 These values were
used as basis in the modelling.

Table 2.1: Mean values and Standard Deviations for four of the key parameters.

Parameter Mean value Standard Deviation [µm] Standard Deviation [%]
t1 71.12 µm 15.94 22.4
tv1 94.12 µm 28.03 29.8
t2 27.37µm 10.48 38
tv2 106.19 µm 30.29 28.5
α 77.69◦ 12.2◦ 15.7

Based on the mean values for the key parameters, the volume fraction, Vf , is

Vf =
Atot − Avoid

Atot

= 1− Avoid

Atot

Atot = (t1 + tv1) ∗ (t2 + tv2)

Avoid = tv1 ∗ tv2

Vf = 0.547,

(2.1)

13

K. Engen December 20, 2021

where Atot denotes the total area, and Avoid denotes the void area. Note here that the volume
fraction based on the values in table 2.1, calculated in equation 2.1 is 0.547.

Unitless ratios describing the relationship between the parameters is found in table 2.2. The
standard deviations were calculated based on the equations in section 1.4.

Table 2.2: Mean values and Standard Deviations for four of the key parameters.

Parameter Mean value Standard Deviation [µm] Standard Deviation [%]
tv2
tv1

1.128 0.465 41.2
t1
t2

2.598 1.153 44.4
Vf 0.547 0.331 60.57
α 77.69◦ 12.2◦ 15.7

For simplicity, the distance d was defined as

d = h, (2.2)

where

h = tv2 + t2. (2.3)

As can be seen from figure 2.1, the voids in the bone is not completely rectangular as in the
simplified lattice structure in figure 2.2 a). An alternative simplification with elliptical voids
was created for comparison and is shown in figure 2.3.

Figure 2.3: Structure imitating the elliptical shapes of the void.

In order to maintain a valid comparison of the simplifications, the parameters introduced
in figure 2.3 were defined by the values from the structure in figure 2.2 with the following
relation:

14

K. Engen December 20, 2021

a =
tv2
2

b =
tv1
2

(2.4)

Doing only this, however, changes the volume fraction, as the hollow area now is smaller, but
the overall size is the same, as can be seen in equation 2.5.

Vf =
Atot − Avoid

At

Atot = (t1 + tv1) ∗ (t2 + tv2)

Avoid = πab

Vf = 0.644

(2.5)

In order to maintain the original volume fraction, the ratio t1/t2, and the ratio a/b, a and b
was scaled (equation 2.6).

c =
a

b
=

tv2
tv1

a = cb

Vf = 1− πab

Atot

= 1− πcb2

Atot

b =

√
Atot(1− Vf)

πc

a = cb

(2.6)

15

K. Engen December 20, 2021

2.2 Understanding the structure

2.2.1 Bracing

Looking at the scans of the bone [2] the micro-structure of the bone seems to consist of
several slender walls running in the direction the force applied, with several short supports
running near-orthogonal to these slender walls 2.1. These short, orthogonal supports could
contribute to stability of the structure, as well as preventing inter-lamellar shearing.

Considering the stability of the structure, we can view the orthogonal supporting plates
as stabilizing the longitudinal lamellae, illustrated in figure 2.4, according to the theory
of bracing in section 1.2. Note: as the longitudinal lamella, as well as they’re orthogonal
supports are very thick out of plane it is reasonable to assume stability would first and
foremost be an issue in plane.

Figure 2.4: Orthogonal supports viewed as springs stabilizing the thick lamellae. Figure is
from E. Ziv et al. [2].

Here the springs would have stiffness k, and the longitudinal beam would have the critical
load Pcrit. They’re relationship with the parameters of the structure (figure 2.5) is defined
in equation 2.7.

16

K. Engen December 20, 2021

k =
EA

L

A = t2 · t3
L = tv1

k = A
t2
tv1

Pcrit =
π2EI

L2
k

,

I =
t31 · t3
12

Lk = Lk(tv2, k)

(2.7)

Here E is the young modulus, A the area of the cross section and L the length of the supporting
beam. t3 is the out-of-plane thickness of the structure. I is the second area of moment of
the longitudinal beam about the out-of plane axis, and Lk is the effective length of the beam
(section 1.2).

This neglects part of the resistance against bending that the orthogonal supports provide, i.e.
if the longitudinal lamellae where to bend, this would cause bending in the supporting beams
as well. This bending of the supporting beams also provide a resistance against bending of the
longitudinal lamellae, and would therefore affect the buckling mode of the longitudinal beam.
The supports can break or buckle before the longitudinal lamellae would, due to compressive
forces between two longitudinal lamellae, depending on the stability of the supports relative
to the longitudinal lamellae.

Based on these assumptions, it would seem reasonable to assume that some of the parameters
defining the structure play a more significant role regarding the stability than others.

In order to understand the structure of the bone, and evaluate its success factors completely,
several aspects of the structure can be evaluated. A severely simplified lattice structure can
be described using rectangular-shaped voids, or elliptical voids. The lattice-structure has an
angle, α, and the ratios tv2/tv1, tv1/t1, tv2/t2 and t1/t2.

Evaluation of the two proposed structures (figure 2.2 and 2.3) and the ratios tv2/tv1 and

17

K. Engen December 20, 2021

t1/t2, was carried out for α = 90◦ in the way shown in table 2.3. The ratios for tv2/tv1 and
t1/t2 was chosen based on their respective mean values and standard deviations in table 1.1.

First the structures in figure 2.2 and figure 2.3 will be evaluated for different ratios of tv2/tv1
and t1/t2. This will be done for the angle, α = 90◦ for both structures (figure 2.2 and 2.3).
An overview of the first tests to be done is in table 2.3.

Table 2.3: Tests to evaluate the ratios tv2/tv1, t1/t2, and elliptical vs. rectangular shaped
voids.

Structure Rectangular void Elliptical void
Angle 90◦ 90◦

tv2/tv1 0.6 0.8 1 1.2 1.4 1.6 1.8 0.6 0.8 1 1.2 1.4 1.6 1.8
t1/t2 0.5 1 1.5 2 2.5 3 3.5 0.5 1 1.5 2 2.5 3 3.5

The tests in table 2.3 will be run on for a low volume fraction, 0.4, based on the mean value
and standard deviations in table 1.1.

2.3 Finite element model

The finite element model is made in 2D, planar using shell elements. As the focus is the
simplified lattice structure, and what can be learned from the structure of the bone using
that as a tool, PBC boundary conditions where used (1.3.1). The purpose of these tests will
be to evaluate the geometric contribution of the structure to its stiffness, and the material
will therefor be elastic with parameters E and ν in table 2.4.

Table 2.4: Material data of the LPJ bone [2]

E 6010 MPa
ν 0.3

The representative volume elements (RVE) used to represent the different structures pre-
sented in the last sub-chapter is presented in figure 2.5.

The RVE will be subjected to one linear perturbation with displacement, and one post
Buckling analysis - Static Step, non-linear geometry. The different test-samples will then
be compared on the critical strain, ϵcrit, and critical stress σcrit. During operation the bone
of the fish is subject to forces longitudinal direction. This is simulated by a displacement
applied in y-direction to the dummy-node connecting the top- and bottom edges in the PBC.

18

K. Engen December 20, 2021

Figure 2.5: RVE’s from the structures.

The critical stress and strain is defined as

ϵcrit =
uy

H

σcrit =
RFy

A
,

(2.8)

where H is the total underformed height of the RVE, A is the total undeformed area of the
RVE, uy is displacement in y-direction, and RFy is reaction force in y-direction recorded in
the dummy nodes.

The constraints of a structure is significant for the buckling mode of it [12]. As PBC enforces
constraints on the single RVE that prevents it from behaving differently from it’s neighbour
[15], it could be that there exists global buckling modes with a lower eigenvalue than the local
ones that is not detected by the single RVE. To check for global buckling modes eigenvalue
tests will also be run on "supercells" consisting of mxm RVEs.

19

K. Engen December 20, 2021

Chapter 3

Results

3.1 The lattice structure

3.2 Buckling modes

To check for global buckling, simulations where run on a supercell, or a 2x2 RVE. The analysis
on the 2x2 RVE showed there are global buckling modes for this structure that the 1 RVE
cannot capture. To check for lower globl buckling modes, a convergence study was done on
the elliptical RVE (figure 3.1), where the first eigenvalue was found for a configuration of m
x m RVEs. 3.1.

Figure 3.1: Convergence study of first global Buckle mode. m is the square root of the
number of RVE in the supercell, case0 and case4 has a ratio tv2

tv1
of 0.8 and 1.6 respectively.

The critical strain is given in absolute value.

20

K. Engen December 20, 2021

3.2.1 Local buckling

The eigenvalue analysis on the single cell RVE showed one buckling mode was consistent as
the first, and critical buckle mode. The critical strain for first local buckling mode is in the
range 6-35 % (figure 3.2).

Figure 3.2: a) Critical strain for first local buckle mode for different values of tv2/tv1. Two
values for the elliptical voids is missing due to a convergence issue with the Post Buckling
analysis. b) Critical strain for first local buckle mode for different values of t1/t2.

3.2.2 Global buckling

For the 2x2 RVE "supercell", the critical stress lies in the range 6-22 % (figure 3.3, figure
3.4). The critical nominal stress lies in the range 150-875 MPa.

Figure 3.3: Critical stress and strain for different values of the ratio tv2
tv1

for structure with
elliptical voids (a), and rectangular voids (b).

21

K. Engen December 20, 2021

Figure 3.4: Critical stress and strain for different values of the ratio t1
t22

for structure with
elliptical voids (a), and rectangular voids (b).

For the rectangular structure (figure 2.2), the numerical simulation predicts the same buckle
mode for t1

t2
=0.5, as for local buckling. For all other, the prediction is global buckling, with

lower critical strain for the first buckling mode.

22

K. Engen December 20, 2021

Chapter 4

Discussion

4.1 Convergence analysis

From the convergence analysis it seems global buckling will occur before local buckling,
though this to ascertain this test should be run on the structure with rectangular voids. The
result also varies between the two ratios that where run, so a convergence analysis should
also be done on at least one more ratio to determine a pattern for the convergence.

4.2 Rectangular vs. elliptical voids

The structure with elliptical voids is significantly more stable than the structure with rect-
angular voids for the same parameter values. There seems to be no exception for this based
on the plots in figure 3.3 and 3.4.

Sources for error

The

4.3 tv2 vs. tv1

From the stability analysis of the 2x2 RVE in figure 3.3, we see that the larger tv2 is relative
to tv1 within the standard deviation of the measurements, the lower the critical strain and

23

K. Engen December 20, 2021

stress.

This supports the fact that the critical length of the load-bearing plate increase with tv2,
witch affects the critical load to the power of two (equation 1.1), while the stiffness of the
supporting beam is increased with decreased tv1 to the power of one (equation 2.7).

It also seems that buckling of the supporting beams is not a determining factor for the critical
strain.

There is no obvious optimal ratio within the standard deviation range of the ratio, as the
trendline suggest increasing the ratio further would be better for the stability. This suggests
something other than stability is the determining factor for this ratio, e.g. fatigue or shear-
stabilization.

4.3.1 Sources of error

One source of error here is the missing results of the structure with elliptical voids for the
tv2/tv1 ratios 0.8 and 0.6 due to convergence issues with the numerical analysis. For this
structure we are left to interpret the trendline of the five remaining results.

4.4 t1 vs t2

From the stability analysis of the 2x2 RVE in figure 3.4, we see that the larger t1 is compared
to t2, the higher the critical strain and stress. This conforms with the theory of bracing and
buckling. t1 increases the beams’ second area of moment for in-plane buckling to the power
of three, while t2 only increase the stiffness of the support with to the power of one (section
1.2.

As with the ratio tv1/tv2, there is no obvious optimal ratio within the standard deviation
range of the ratio, as the trendline suggest decreasing the ratio further would be better for
the stability. This suggests something other than stability is the determining factor for this
ratio, e.g. fatigue or shear-stabilization.

24

K. Engen December 20, 2021

4.5 Significance

Overall, it seems that instability occurs at a strain and stress higher that what it is subject
to [2]. The lowest critical strain found for a low volume fraction of 0.4, is 150 MPa.

4.6 Missing pieces

Some tests where not completed. To understand the structure further, the tests done one the
2x2 RVE (figure 3.3 and 3.4) should have been one on a 6x6 RVE following the results of the
convergence analysis of global buckling modes. A convergence analysis should also have been
done on the structure with rectangular voids, and for more ratios to determine a pattern.

The impact the angle, α, and d has on the stability of the structure is also not known.

25

K. Engen December 20, 2021

Bibliography

[1] J. R. Grubich. “Disparity between Feeding Performance and Predicted Muscle Strength
in the Pharyngeal Musculature of Black Drum, Pogonias cromis(Sciaenidae)”. In: Envi-
ronmental Biology of Fishes 74.3 (2005), pp. 261–272. issn: 1573-5133. doi: 10.1007/
s10641-005-3218-0. url: https://doi.org/10.1007/s10641-005-3218-0.

[2] E. Ziv et al. “Neither cortical nor trabecular: An unusual type of bone in the heavy-
load-bearing lower pharyngeal jaw of the black drum (Pogonias cromis)”. In: Acta Bio-
materialia 104 (2020), pp. 28–38. issn: 1742-7061. doi: https://doi.org/10.1016/
j.actbio.2020.01.001. url: https://www.sciencedirect.com/science/article/
pii/S1742706120300027.

[3] M. Monier-Faugere, M. Chris Langub, and H. H. Malluche. “Chapter 8 - Bone Biopsies:
A Modern Approach”. In: Metabolic Bone Disease and Clinically Related Disorders
(Third Edition). Ed. by Louis V. Avioli and Stephen M. Krane. Third Edition. San
Diego: Academic Press, 1998, 237–280e. isbn: 978-0-12-068700-8. doi: https://doi.
org/10.1016/B978-012068700-8/50009-8. url: https://www.sciencedirect.
com/science/article/pii/B9780120687008500098.

[4] S. M. Ott. “Cortical or Trabecular Bone: What’s the Difference?” In: 47 (2018), pp. 373–
375. doi: https://doi.org/10.1159/000489672.

[5] A. A. Abdel-Wahab, A. R. Maligno, and V. V. Silberschmidt. “Micro-scale modelling
of bovine cortical bone fracture: Analysis of crack propagation and microstructure
using X-FEM”. In: Computational Materials Science 52.1 (2012). Proceedings of the
20th International Workshop on Computational Mechanics of Materials - IWCMM
20, pp. 128–135. issn: 0927-0256. doi: https://doi.org/10.1016/j.commatsci.
2011.01.021. url: https://www.sciencedirect.com/science/article/pii/
S0927025611000450.

26

K. Engen December 20, 2021

[6] G. J. Tortora. Principles of Human Anatomy. Sixth edition. New York: John Wiley
Son, 2002.

[7] A. Atkins et al. “The three-dimensional structure of anosteocytic lamellated bone of
fish”. In: Acta Biomaterialia 13 (2015), pp. 311–323. issn: 1742-7061. doi: https:

//doi.org/10.1016/j.actbio.2014.10.025. url: https://www.sciencedirect.
com/science/article/pii/S174270611400467X.

[8] B. K. Hall. “Chapter 2 - Bone”. In: Bones and Cartilage (Second Edition). Ed. by B. K.
Hall. Second Edition. San Diego: Academic Press, 2015, pp. 17–42. isbn: 978-0-12-
416678-3. doi: https://doi.org/10.1016/B978-0-12-416678-3.00002-1. url:
https://www.sciencedirect.com/science/article/pii/B9780124166783000021.

[9] M. Buehler R. Ritchie and P. Hansma. “Plasticity and toughness in bone”. In: Physics
Today - PHYS TODAY 62 (June 2009). doi: 10.1063/1.3156332.

[10] C. E. Ramírez A et al. “Assessing mechanical behavior of ostrich and equine trabecular
and cortical bone based on depth sensing indentation measurements”. In: Journal of
the Mechanical Behavior of Biomedical Materials 117 (2021), p. 104404. issn: 1751-
6161. doi: https://doi.org/10.1016/j.jmbbm.2021.104404. url: https://www.
sciencedirect.com/science/article/pii/S175161612100093X.

[11] P. Xiao et al. “Can DXA image-based deep learning model predict the anisotropic elastic
behavior of trabecular bone?” In: Journal of the Mechanical Behavior of Biomedical
Materials 124 (2021), p. 104834. issn: 1751-6161. doi: https://doi.org/10.1016/
j.jmbbm.2021.104834. url: https://www.sciencedirect.com/science/article/
pii/S1751616121004756.

[12] K. Bell. Konstruksjonsmekanikk, Del II Fashetslære. First edition. Fagbokforlaget Vig-
mostad Bjørke AS, 2015. Chap. 15.

[13] M. Danielsson, D.M. Parks, and M.C. Boyce. “Three-dimensional micromechanical
modeling of voided polymeric materials”. In: Journal of the Mechanics and Physics
of Solids 50.2 (2002), pp. 351–379. issn: 0022-5096. doi: https://doi.org/10.

1016/S0022-5096(01)00060-6. url: https://www.sciencedirect.com/science/
article/pii/S0022509601000606.

[14] M. Okereke and S. Keates. Finite Element Applications, A Practical Guide to the FEM
Process. Springer International Publishing AG, 2018. Chap. 8.

27

K. Engen December 20, 2021

[15] M. Danielsson. “Micromechanics, macromechanics and constitutive modeling of the
elasto-viscoplastic deformation of rubber-toughened glassy polymers”. PhD thesis. Mas-
sachusetts Institute of Technology, 2003.

[16] A.A. Clifford. Multivariate error analysis : a handbook of error propagation and calcu-
lation in many-parameter systems. eng. London, 1973.

28

K. Engen June 11, 2022

M
achine-learning approach to design fatigue-resistant structure inspired by Pogonias crom

is
Engen, Katinka H

årdvik

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Katinka Hårdvik Engen

Machine-learning approach to design fatigue-
resistant structure inspired by Pogonias
cromis

Pogonias cromis has one of the highest biting forces per
weight encountered in Nature. Recent study has reported
the unusual porous structure of its lower jaw bone that can
withstand high cyclic loads. However, the design principles of
this porous structure are still unknown. In this investigation,
a novel machine-learning approach will be exploited to
understand the design principles and to design fatigue-
resistant structures via numerical simulations and machine
learning.

Master’s thesis in Produktutvikling og produksjon
Supervisor: Chao Gao
Co-supervisor: Filippo Berto
June 2022

M
as

te
r’s

 th
es

is

	
	Introduction
	Theory
	Bone - an introduction to the material
	The Black Drum Lower pharyngeal jaw bone
	Modeling fatigue using Finite Element Method
	Cyclic hardening
	Micromechanical modeling and Periodic boundary conditions
	Elastoplasticity
	Numerical integration
	Machine learning using neural networks
	Optimizing using differential evolution
	Design of Experiments

	Methods
	Lattice structure
	FE model
	Evaluation of the RVEs
	DoE
	Predicting and understanding the structure using Machine learning
	Simplifications

	Results
	Parametric study
	Brute Force
	Result from Differential Evolution using Abaqus directly
	Fixed Strain
	Fixed Stress

	Discussion
	What can be learned from the results?
	Further investigations
	Sources of error

	Appendix

	 Appendix
	
	Methods
	Code for Machine learning and Optimization
	Code for optimisation using Abaqus
	Code for data collection and Calculation

	
	Project Thesis Katinka Engen 2021

