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Abstract

The extreme value theory for applications in such a responsible branch of industry
as offshore and maritime engineering requires a robust, straightforward and reli-
able method for estimating the statistics of extremes. A method must be able to
extract as much statistical information as possible from a recorded time series of
data. In addition, a method must be capable to utilize the information regarding
the temporal dependence structure of the process, as well as spatial dependence
characteristics of the given time series in the bivariate case.

In this thesis, a newly developed method for the purpose of predicting extremes
associated with the observed process is studied thoroughly and improved. The
method is referred to as the average conditional exceedance rate (ACER) method.
It avoids the problem of having to decluster the data to ensure independence,
which is a requisite component in the application of, for example, the standard
peaks-over-threshold (POT) method. Moreover, the ACER method is specifically
designed to account for statistical dependence between the sampled data points
in a precise manner. The proposed method also targets the use of sub-asymptotic
data to improve prediction accuracy. The research shows that the ACER method,
if properly implemented, is able to provide a statistical representation with error
bounds of the exact extreme value distribution given by the data. In the first
part of the thesis, the method is demonstrated in detail by application to both
synthetic and real environmental data. From a practical point of view, it appears to
perform better than the POT and block maxima methods, and, with an appropriate
modification, it is directly applicable to non-stationary time series.

In the second part of the thesis, the ACER method for estimation of extreme
value statistics is extended in a natural way to also cover the case of bivariate time
series. This is achieved by introducing a cascade of conditioning approximations
to the exact bivariate extreme value distribution. The results show that when the
cascade converges, an accurate empirical estimate of the extreme value distribution
can be obtained. It is also revealed that the possible functional representation of the
empirically estimated bivariate ACER surface can be derived from the properties
of the extreme-value copula.

In this thesis, application of the bivariate ACER method is substantially studied
for bivariate synthetic data. Finally, performance of the method is demonstrated
for measured coupled wind speed and wave height data as well as simultaneous
wind speed measurements from two separate locations.
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mized asymmetric logistic model, A2(ξ, η), ( ); optimized logistic sur-
face, G2(ξ, η), (◦ ◦). Boxes indicate return period levels in years. . . . 158

5.26 Map of the part of Norway with marked weather stations: A – Sula
station, B – Nordøyan Fyr station. . . . . . . . . . . . . . . . . . . . . 159

5.27 Coupled observations of Wind speed data observed at the Sula station
(ξ axes) and at the Nordøyan Fyr station (η axes). . . . . . . . . . . . 159

5.28 Comparison between univariate ACER estimates for different degrees of
conditioning: a) wind speed data from the Sula station; b) wind speed
data from the Nordøyan Fyr station. . . . . . . . . . . . . . . . . . . . 160

5.29 Comparison between Bivariate ACER surface estimates for different de-
grees of conditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xii



List of figures

5.30 Contour plot of the empirically estimated Ê1 surface, (• •), and the opti-
mized asymmetric logistic A1, ( ), and optimized Gumbel logistic G1,
(◦ ◦), surfaces based on marginal univariate ACER. Boxes indicate levels
on a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.31 Contour plot of the empirically estimated Ê96 surface, (• •), and the
optimized asymmetric logistic A96, ( ), and optimized Gumbel logistic
G96, (◦ ◦), surfaces based on marginal univariate ACER. Boxes indicate
levels on a logarithmic scale. . . . . . . . . . . . . . . . . . . . . . . . 162

5.32 Contour plot of the return period levels for the optimized asymmetric
logistic A1 surface, ( ), and the Gumbel logistic model with Gumbel
marginals GMM , ( ). Boxes indicate return period levels in years. . . 163

xiii





List of tables

2.1 Domain of attraction of maxima of some underlying distributions. . . 10

3.1 Return level estimates and 95% CI (BCI = CI by bootstrap) for three
methods. A η̂100 - 100-years return level estimated by the ACER method;
A CI - ACER confidence interval estimated by the simplified extrapo-
lation approach; A BCI - ACER confidence interval estimated by the
bootstrap; G η̂100

MM - 100-yr return level estimated by the Gumbel method
using the method of moments; G BCIMM - 95% CI by bootstrap for the
Gumbel method using the method of moments; G η̂100

MLE - 100-yr return
level estimate by the Gumbel method with maximum likelihood approach
applied; G BCIMLE - 95% CI by bootstrap for the Gumbel method us-
ing MLE; GP η̂100 - 100-yr return level estimate for the POT method
based on the Generalized Pareto distribution; GP n.p. BCI - 95% CI by
non-parametric bootstrap for the GP distribution; GP p. BCI - 95% CI
by parametric bootstrap for the POT method; Exp η̂100 - 100-yr return
level estimate for the POT method using Exponential distribution. . 49

3.2 Results of the optimization procedure used to estimate the 100-year re-
turn value by the ACER method for ε̂k(η) with k = 1 for all weather
stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Predicted 100-year return period levels for Torsvåg Fyr and Hekkingen
Fyr weather stations by the ACER-method for different degrees of con-
ditioning, Annual maxima and POT methods, respectively. . . . . . . 68

3.4 Predicted 100-year return period levels for Nordøyan Fyr, Sula and
Obrestad Fyr weather stations by the ACER-method for different de-
grees of conditioning, Annual maxima and POT methods, respectively. 69

3.5 Comparison table for 95%CI by the non-parametric bootstrap and the
ACER extrapolation of confidence bands. . . . . . . . . . . . . . . . . 70

3.6 Comparison table for 95%CI by the non-parametric bootstrap and the
ACER extrapolation. Relative difference is displayed in the second col-
umn. Red intervals on top visualize the initial ACER CI with marked
η̂100yr; blue intervals from bottom – non-parametrically bootstrapped
CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Probability of success, number of η1 exceedances and sample size for five
stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xv



List of tables

3.8 Parametric bootstrap for estimation the 95%CI (’Case a’ approach). Rel-
ative difference is displayed in the second column. Red intervals on top
visualize the initial ACER CI with marked η̂100yr; blue intervals from
bottom show parametrically bootstrapped CI. . . . . . . . . . . . . . . 74

3.9 Parametric bootstrap for estimation the 95%CI (’Case b’ approach).
Relative difference is displayed in the second column. Red intervals on
top visualize the initial ACER CI with marked η̂100yr; blue intervals from
bottom show parametrically bootstrapped CI. . . . . . . . . . . . . . . 75

3.10 Predicted return period levels by the General ACER method, A η̂Tyr,
Annual maxima method, GEV η̂Tyr

MM, and POT method, GP η̂Tyr, respec-
tively, for the (a) case: γ = 0.3 and α = 2 · 103. . . . . . . . . . . . . . 78

3.11 Predicted return period levels by the General ACER method, A η̂Tyr,
Annual maxima method, GEV η̂Tyr

MM, and POT method, GP η̂Tyr, respec-
tively, for the (b) case: γ = 0.5 and α = 3 · 103. . . . . . . . . . . . . . 79

3.12 Predicted return period levels by the ACER method for different degrees
of conditioning, Annual maxima and POT methods, respectively. . . . 84

5.1 Response of the linear system. The Hausdorff distances dH between con-
tour lines of the T -year return levels (T = 20, 50 and 100 years) of the
averaged surfaces for different levels of dependence, ρ. The reference,
¯̂E20, is the average of the 100 MC empirically estimated ACER surfaces;
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¯̂E20, Ā20), are indicated in parentheses. . 141
5.2 Synthetic winds with the Gumbel-Haugaard copula. The Hausdorff dis-

tances dH between contour lines of the T -year return levels (T = 20, 50
and 100 years) of the averaged surfaces and the exact return level True
(defined by Eq.(5.85)) for different levels of dependence ρ. Ā1 – av.100 of
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Chapter 1

Introduction

In this chapter, the main statements of the problem in extreme value statistics
are presented. The essences of some background cornerstones necessary for better
understanding of the work and its continuity is included. The structure of the
thesis is also addressed in this chapter. The main focuses of the thesis are: the
detailed investigation of the performance of recently developed average conditional
exceedance rate (ACER) method on the ground of a significant amount of both
simulations and observational studies; development of the ACER method for the
bivariate case and investigation of its properties with implication of a certain copula
models.

1.1 Motivation

In nature, extreme events occur almost worldwide and cause incalculable human
losses, in addition to billions of dollars in damages, each year. For example, accord-
ing to the Intergovernmental Panel on Climate Change (IPCC), in 2012 overall
damages caused by natural disasters came to US $170 billion and insured losses
US $70 billion. Of the 905 documented natural loss events, 93% of which were
weather-related disasters, 45 percent were meteorological events (storms), 36 per-
cent were hydrological events (floods), 7 percent were geophysical events (earth-
quakes and volcanic eruptions). Deaths during natural catastrophes in 2012 stood
at 9,600 – substantially below the 10-year annual average of 106,000 (Löw, 2015).
Thus, although 2012 was a moderate year, this statistics is still high.

In 2011 IPCC estimated that annual losses have ranged since 1980 from a few
billion to above US$ 200 billion (in 2010 dollars), with the highest value for 2005
(the year of Hurricane Katrina)(NOAA, 2015). The global weather-related disaster
losses reported over the last few decades reflect mainly monetized direct damages
to assets, and are unequally distributed. Loss estimates are lower bound estimates
because many impacts, such as loss of human lives, cultural heritage, and ecosystem
services, are dimensionless, and thus they are poorly reflected in estimates of losses
(Smith and Katz, 2013).

The effects of weather-related hazards, such as windstorms, hurricanes, ty-
phoons and landslides, are also known to have been severe. Earthquakes, nature’s
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1. Introduction

most destructive force, caused the highest economic losses. Figure (1.1) illustrates
some of the possible damages caused by weather-related disasters.

(a) (b)

(c) (d)

Figure 1.1: Impact of extreme events: a) A wind turbine caught fire in high winds.
Scotland, December 2011; b) Thunder Horse oil platform damaged during Hurri-
cane Dennis. Gulf of Mexico, July 2005; c) The “Prestige” oil tanker burst during
a storm off Galicia, then split in half and sank. Spanish coast, 13-19 of November
2002; d) Horrific impact of Hurricane Sandy. Northeastern United States, October
2012.

“Prepared is protected”, therefore, studying the statistics of extreme events and
predicting their occurrence is a first and important step in the mitigation of these
disasters. Thus, extreme value theory is clearly appropriate and useful for pre-
dicting extreme events related to large-scale environmental processes. In addition,
this theory and its practical implementation are also highly important in areas of
application such as the reliability of structures or, more generally, failure analysis
of engineering systems, resistance or capacity estimation of engineering materials,
and the effect on marine structures of environmental processes such as wind, ocean
waves and currents. The design of the structures subjected to environmental loads,
e.g., offshore platforms, ships, aircraft, and tall buildings, include analyses of load
effects, particularly of extreme loads and load effects. Thus, the development of
efficient and accurate methods for estimating extreme value statistics of load effect
processes is crucial for the development of rational design provisions for offshore
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1.2. Background

structures, as an example.
The major problem associated with extreme value prediction in practice has

been the analysis and application of certain probability models and probability
distributions with unknown parameters to be estimated based on the observed
data.

1.2 Background

The classical univariate theory of extreme values was developed by Maurice R.
Fréchet, Sir Ronald A. Fisher and Leonard H.C. Tippett in the twenties of the
twentieth century. Boris Gnedenko and Emil J. Gumbel showed that the largest
or smallest value from a set of independently distributed random variables tends
to an asymptotic distribution that only depends on that of the basic variable.
After standardization using suitable norming and centering constants, the limit
distribution is shown to belong to one of three types, as noted by Gnedenko and
Laurens de Haan. In Chapter 2 these results are presented in more detail.

In practice, extreme value statistics have often been based on these asymptotic
results. Thus, parameter estimation problems for the asymptotic distributions are
directly related to problems of optimization and parametric curve fitting to the
observed data.

Although univariate techniques are now standard, these methods for estimating
extremes (wind speeds, wave heights, structural responses, etc.) from observed
data series are commonly based on assuming either that epochal extreme values
are Gumbel distributed or by adopting a peaks-over-threshold (POT) approach,
assuming that the exceedances above high thresholds follow a generalized Pareto
distribution. An important weakness of these approaches is that they depend on
adopting asymptotic distributions, which cannot be verified in practice due to the
difficulty of ascertaining that the data at hand are of a truly asymptotic character.

Naess and Gaidai (2008) developed an accurate and efficient method for esti-
mating extreme values of stochastic processes under certain conditions on the de-
pendence structure of the time series under study. The method is based on Monte
Carlo simulations. It is therefore highly suitable for use in the estimation of ex-
treme values of combined stochastic load effect models because Monte Carlo sim-
ulations are very often possible in such cases. However, in some cases, the adopted
assumption about the dependence structure, which amounts to the so-called Pois-
son assumption of independent up-crossing events of high response levels, may be
inaccurate.

This has resulted in a method that appears to be more appropriate for the pur-
pose of predicting extremes than the traditional methods. It is based on a cascade
of conditioning approximations that makes it easy to account for dependence effects
in the data series. This method is referred to as the ACER method, and its devel-
opment for extreme value prediction based on sampled data has been described by
Naess and Gaidai (2009), Naess, Gaidai, and Batsevych (2009).

However, it is clear that a timescale must be included in conjunction with time
series phenomena, for example, exceedance times and exceedances are jointly vi-
sualized in a scatterplot. This was a first step towards using multivariate data.
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1. Introduction

The mathematical theory of multivariate extremes is a novel and rapidly grow-
ing field. Several areas are well developed, and there are the Block and Threshold
models that are analogous to the univariate case. For the univariate case, these
models have only asymptotic justifications, and their suitability for any practical
application must be verified with care. The first problem that arises when work-
ing in a multidimensional context is the lack of a “natural” definition of extreme
values; essentially, this is due to the fact that different concepts of ordering are
possible. In addition, dimensionality creates difficulties for both model validation
and computation, and models are less fully prescribed by the general theory.

In two and more dimensions, there does not exist a simple distinction in three
basic domains of attraction, and there is no reason for the univariate marginals
of a multivariate distribution to share the same type of limiting Extreme Value
probability law. This should be modelled using copulas, in which the marginals
will no longer represent a problem.

A potential method for investigating bivariate data consists of studying the
dependence function and the marginals separately. Because copulas describe and
model the dependence structure between random variables, independently of the
marginal laws involved, it is intuitive to use and develop a theory of copulas. This
approach not only simplifies the analysis of the phenomenon under investigation but
also provides the possibility of introducing new parameters for the characterization
of the extreme behaviour of the system.

Furthermore, in a multidimensional environment, the issue of dependence be-
tween different variables plays a fundamental role. Indeed, quantifying dependence
is a central theme in probabilistic and statistical methods for multivariate extreme
values. An important activity within the present Ph.D. project is to investigate
the possibility of extending the univariate ACER method to the bivariate case. A
preliminary study conducted by Naess (2011) indicates that this is possible, which
would represent a major achievement in the analysis of bivariate extreme value
data. The bivariate ACER function would make it possible to represent, in a sta-
tistical sense, the exact bivariate extreme value distribution that is inherent in the
data. In the general case, this has not previously been achieved.

1.3 Overview of the Thesis

The thesis is written in the following order:

Chapter 1 The overview of the problem of the univariate extreme value analy-
sis, as well as bivariate extreme value analysis – a special case of the multivariate
data analysis, is given in this Chapter. The outline of the thesis and summary of
main contributions of the research are emphasized in this Chapter.

Chapter 2 The cornerstones of the classical univariate theory of extreme values
are presented in Chapter 2. The most essential conclusions and derivations of the
annual or block maximum method and the Peaks-Over-Threshold or POT method
are mentioned in this Chapter. Particularly, the precise algorithms for practical
application of both methods are presented. In addition, the accurate expressions
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for a T -year return period level ηTyr for each of the two approaches are derived in
Chapter 2. This material lays the background for understanding of the univariate
ACER method, which is discussed in Chapter 3, as well as for its straightforward
application for comparison purposes.

Chapter 3 As previously mentioned, the major problem of extremes is an anal-
ysis of certain probability distributions with unknown parameters to be estimated
based on the observed data. Although extreme value analysis has its peculiarities, it
cannot be examined in an isolated manner. Therefore, the analysis of extreme val-
ues must be embedded in other approaches of main stream statistics, such as data
analysis, nonparametric curve estimation, survival analysis, time series analysis,
regression analysis, robust statistics and parametric inference.

The research activities presented in Chapter 3 of this Ph.D. project involve
several tasks. The ACER method for univariate extreme value prediction is studied
in more details and developed further. Particularly, the main emphasis is placed
on the parameter estimation problems for the asymptotic distributions and on the
related problems of optimization methods for non-linear least squares parametric
curve fitting to the observed data. The improved optimization algorithm based on
the constrained minimization for the specific problem is proposed and discussed in
Section 3.4.1.

Chapter 3 presents a detailed comparison between T -year return levels predicted
by three estimation approaches (ACER, block maxima and POT). The study is
based on the Monte Carlo-simulated data, as well as on real environmental data
sets. Methods for bootstrap 95% confidence intervals of the predicted extreme value
are also discussed.

A notable achievement of the present research is the development and intro-
duction of the robust and straightforward standalone application that implements
the ACER method for practical applications (Karpa, 2012).

Finally, note that the considerable part of the material presented in Chapter 3
has been published in the journal papers, notably in Karpa and Naess (2013) and
Naess, Gaidai, and Karpa (2013).

Chapter 4 This Chapter is focused on representations and modeling tech-
niques for extremes of a bivariate process. Particularly, by analogy with the Fisher-
Tippett-Gnedenko Theorem given in Chapter 2 for the univariate case, property of
the limiting joint extreme value distribution for the bivariate case is described. In
addition, Chapter 4 addresses the main concepts of the approach to modelling of
bivariate extreme value distributions using copulas. These ideas appear to be vital
for the bivariate ACER method presented in the next Chapter.

Chapter 5 A lack of data means that the precision of extreme value estimates
is often poor. The way to overcome this problem is to incorporate additional in-
formation, suggesting the use of multivariate, particularly bivariate, models. Ad-
ditionally, in many cases, it is of interest to be able to make predictions about
extensional effects, but full random field modelling is impossible. In such cases,

5



1. Introduction

bivariate extreme value distributions can be very helpful in making indicative pre-
dictions of extensional effects. Thus, Chapter 5 of the thesis is the conversion to the
bivariate case and development of the model for the exact bivariate extreme value
distribution that is inherent in the sampled data. In Chapter 5, the conditioning
approach of the ACER method is developed for implementation in the bivariate
framework. The possible functional representation for prediction purposes of the
bivariate ACER surface is developed by virtue of the extreme value copulas. The
optimization methods for non-linear least square problems for surface matching are
also explored in Chapter 5.

A significant part of Chapter 5 addresses analyses of the overall performance
of the bivariate ACER method by application to synthetic bivariate data, as well
as to bivariate field measurements of oceanographic data.

The material presented in Chapter 5 has been partially published in the journal
papers, that is in Naess and Karpa (2015a,b).

Chapter 6 This Chapter provides abstract conclusions and presents achieve-
ments of the research. It also lists possible directions for future research.

References Lists the references used in the thesis.
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Chapter 2

Classical Univariate Extreme Value
Theory

The classical univariate theory of extreme values was developed by Fréchet (1927),
and Fisher and Tippett (1928). Gnedenko (1943) and Gumbel (1958b) showed that
the largest value from a set of independently distributed random variables tends
to an asymptotic distribution that only depends upon that of the basic variable.
After standardization using suitable norming and centering constants, the limit
distribution is shown to belong to one of three types, as pointed out by Gnedenko
(1943) and de Haan (1976).

In this chapter, the distributions of the largest values of a given sample is con-
sidered and two different approaches are presented. We commence by considering
the idea of max-stable distributions. Then, the limit distributions of maxima are
calculated by using the annual block maximum method. The three types of extreme
value distribution, notably, the Gumbel, the Fréchet, and the Weibull distributions
are presented. Followed by this, the Generalized Extreme Value distribution, which
covers all the three types of limit distributions, is derived. A useful tools and crite-
ria for characterizing in a synthetic way the probabilistic structure of the extremes
are also provided. In Section 2.2, the Peaks-Over-Threshold method is presented.
In compliance with it, the extremes are studied by considering their exceedances
over a given threshold. The Generalized Pareto distribution is derived. Estimating
the T -year return period level is of particular interest for both approaches.

2.1 Annual Maximum Models

In this section, we focus on the statistical behaviour of the maximum value of a
sequence of independent identically distributed random variables. The asymptotic
behaviour of the distribution function of extreme values and its limiting form for
large N are discussed.
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2. Classical Univariate Extreme Value Theory

2.1.1 Max-stability and Three Types of Extreme Value
Distributions

Let us consider a sequence X1, . . . , XN of independent identically distributed ran-
dom variables with the common distribution function FX(η). In practice, the Xi

are typically realizations of a stochastic process X(t) measured at equidistant dis-
crete times, e.g., hours, days, etc. The key concept of the extreme value theory is
the largest value of this sequence, which can be defined as follows:

X̂N = max {X1, . . . , XN} . (2.1)

The objective is to analyse the statistical properties of the random variable X̂N .
Theoretically, under i.i.d. assumption, the exact distribution function F (η) of X̂N

is defined as:

F (η) = Prob
(
X̂N ≤ η

)
= Prob

(
XN ≤ η, . . . ,X1 ≤ η

)
i.i.d
=

N∏
i=1

Prob
(
Xi ≤ η

)
=
[
FX(η)

]N
.

(2.2)

Thus, the problem concerning extreme values in principle can be solved if the
distribution FX(η) is known and the sample size N is given. Nevertheless, these
conditions are not available in most practical cases. First, the sample size N might
be not known if, e.g., the data are censored and some amount of information is
lost. In addition, the underlaying distribution function FX(η) is very rarely known
in practice. Clearly, one can use standard statistical methods for estimating FX(η)
from the given data and then replace the theoretical one in Eq.(2.2) with this
estimate. However, the uncertainty of relatively low significance in the estimate of
FX(η) can lead to substantial inconsistency for FNX (η) as N increases.

This implies that a reasonable alternative approach is to accept that FX(η) is
unknown. Thereafter, it is essential to find distribution families G(η) that approx-
imate FNX (η) asymptotically, which can only be estimated from the largest values
X̂N (Coles, 2001). A preliminary study of the behaviour of FNX (η) is required for
this purpose. It is necessary to take into account that for any level η smaller than
the right endpoint ω(FX) ..= sup{η : FX(η) < 1} of the support of FX , the following
holds:

lim
N→∞

FNX (η) =

{
1, if FX(η) ≡ 1,

0, otherwise,
(2.3)

which is the limit distribution of maximum degenerates to a point mass on ω(FX).
The standard way to operate is to apply a linear transformation of the form:

X̂*
N =

X̂N − aN
bN

, (2.4)

where {aN : ∀N aN ∈ R} and {bN : ∀N bN ∈ R+} are the sequences of location
and scaling constants, respectively, that are required to stabilize X̂N as N in-
creases and to ensure that the limit lim

N→∞
FNX
(
aN + bN η

)
exists and is a non-

degenerate distribution. This procedure (similar to the one used in deriving the
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2.1. Annual Maximum Models

Central Limit Theorem) aims to identify a non-degenerate limit distribution after
a suitable renormalization of the variables involved. In connection with this, an
important definition can be given, cf., Salvadori et al. (2007).

Definition 2.1. (Maximum domain of attraction). The distribution FX is
said to belong to the maximum domain of attraction of the non-degenerate distri-
bution G if sequences of constants {aN} and {bN > 0} exist such that:

lim
N→∞

FNX
(
aN + bN η

)
= G(η) . (2.5)

It means that convergence occurs at the continuity points of the limiting function
G, cf. Leadbetter et al. (1983).

The entire range of possible limit distributions G(η) is given by The Extremal
Types Theorem. This key result was discovered first by Fisher and Tippett (1928)
and later proved in complete generality by Gnedenko (1943). Note that de Haan
(1976) used a more recent, simple approach to prove this result.

Theorem 2.1. (Fisher-Tippett-Gnedenko). Let X1, . . . , XN constitute
a sample of independent and identically distributed random variables, and let X̂N =
max {X1, . . . , XN}. If normalizing sequences {aN} and {bN > 0} exist such that
for X̂*

N given by Eq. (2.4) holds

lim
N→∞

Prob
{
X̂*
N ≤ η

}
= G(η), η ∈ R, (2.6)

where G(η) is a non-degenerate distribution, then G belongs to one of the following
three types of limit (or asymptotic) distributions of maxima:

Gumbel (Type I) : G0(η) = exp

[
− exp

(
− η − µ

σ

)]
, −∞ < η < ∞; (2.7)

Fréchet (Type II) : G1,α(η) =

0, η ≤ µ,
exp

[
−
(
η−µ
σ

)−α ]
, η > µ;

(2.8)

Weibull (Type III) : G2,α(η) =

exp

[
−
(
− η−µ

σ

)α ]
, η < µ,

1, η ≥ µ.
(2.9)

Here, µ ∈ R is a location parameter, σ ∈ R+ is a scale parameter, and α ∈ R+ is
a shape parameter.

In this way, Theorem (2.1) states that the rescaled sample
{
X̂N

}
converges

in distribution to a variable having a distribution within one of the families of
the extreme value distributions named the Gumbel, Fréchet and Weibull. The im-
plication of the Theorem (2.1) means that if X̂N can be stabilized with suitable
sequences {aN} and {bN}, the corresponding normalized variable X̂*

N has a limit-
ing distribution that must be one of the three types of extreme value distribution.
The significance of this result is that irrespective of the underlying distribution

9



2. Classical Univariate Extreme Value Theory

FX(η) of the X(t), the extreme value X̂*
N is governed in the limit exclusively by

one of the three types of extreme value distributions. Thus, in this sense the theo-
rem provides an extreme value analog of the Central Limit Theorem. In Table (2.1)
some underlying distributions FX(η) frequently used in applications are listed are
listed together with the corresponding limiting distributions of maxima (cf., e.g.
Salvadori et al. (2007)).

Underlying distribution, FX(η) Distribution of maxima, G(η)

Gaussian Gumbel
Exponential Gumbel
Rayleigh Gumbel
Lognormal Gumbel
Gamma Gumbel
Gumbel Gumbel
Pareto Fréchet
Cauchy Fréchet
Fréchet Fréchet
Uniform Weibull
Weibull Weibull

Table 2.1: Domain of attraction of maxima of some underlying distributions.

It is observed that the three types of asymptotic distributions in Theorem (2.1)
have different forms of behaviour. For the Weibull distribution its right endpoint
ω (G2,α) is finite, whereas for both Gumbel and Fréchet distributions it is infinite.
Clearly, the density of the Gumbel distribution decays exponentially, while the PDF
of the Fréchet has a polynomial type of decrease. Different behaviour of the three
types EVD is caused by the different forms of tail behaviour for the distribution
function FX(η) of the X. In particular, if it is known or can be assumed with high
certainty that the underlying probability distribution has a cumulative distribution
function of the exponential-type, then the distribution of maxima converges to
the Gumbel (Type I) distribution (Ochi, 1990). A more precise definition of the
exponential-type distribution is given by von Mises as the distribution that satisfies
the following condition:

lim
η→∞

d

dη

[
1− FX(η)

fX(η)

]
= 0 . (2.10)

The exponential type distribution is unlimited towards the extreme value and all
moments exist.

The Fréchet extreme value distributions emerge from the initial distribution,
which has an infinite right endpoint and has only a finite number of moments.
Distributions that have this property are called Cauchy-type distributions. The
Cauchy-type distribution must satisfy the condition

lim
η→∞

{1− FX(η)} · ηk = a, (2.11)

10



2.1. Annual Maximum Models

where k, a ∈ R+ and moments of order less than k only exist. (Ochi, 1990)
The Type III extreme value distribution is related to underlying initial distri-

butions that have either an upper or a lower limit boundary, that is, limited-type
distributions.

Apparently, in applications of extreme value theory there might be certain dif-
ficulties associated with choosing the asymptotic distribution. First, the available
dataset does not allow to make an accurate and robust decision on the appropri-
ate extreme value distribution family. Even when such a decision is made, further
propositions presume the choice to be correct, and do not allow to account for the
uncertainty involved, even if the uncertainty appears to be significant. Therefore,
the models in Theorem (2.1) can be unified into a single compact family of models
termed the Generalized Extreme Value (GEV) distribution.

Theorem 2.2. (GEV distribution of maxima). Under the conditions of The-
orem 2.1, Gγ(η) is a member of the GEV family of maxima given by, for{
η : 1 + γ η−µ′

σ′ > 0
}
,

Gγ(η) = exp

{
−
[
1 + γ

(
η − µ′
σ′

)]−1/γ
}
, (2.12)

where µ′ ∈ R is a location parameter, σ′ ∈ R+ is a scale parameter, and γ ∈ R is a
shape parameter. The limit case γ = 0 yields the Gumbel (G0) distribution, given
by Eq. (2.7)

The Fréchet distribution is obtained for γ > 0, whereas the Weibull distribu-
tion corresponds to the case γ < 0 in this parameterization. The subset of the
GEV family with γ = 0 is interpreted as the limit of (2.12) as γ → 0, leading to
the Gumbel family with distribution function (2.7). Coles (2001) asserts that the
unification of the original three families of limiting distributions of maxima into
a single family simplifies statistical implementation. The data themselves deter-
mine the most appropriate type of tail behavior via the introduced parameter γ.
Moreover, uncertainty in the parameter γ can be considered to be a measure of the
uncertainty involved in choosing one of the original asymptotic distribution as most
appropriate for a given dataset. At the same time, fitting the GEV distribution is
simply a curve fitting procedure, regardless of the available information about the
nature of the given data.

Extreme value distributions are characterized by their max-stability.

Definition 2.2. (Max-stable distribution). The distribution G is called max-
stable if there exist sequences of constants {aN} and {bN > 0} such that:

GN
(
aN + bN η

)
= G(η) . (2.13)

This definition implies that the relocated and rescaled maximum under the
distribution function G is distributed according to G. For the standard Gumbel
distribution the constants are bN = logN and aN = 1, for the standard Fréchet
distribution bN = 0 and aN = N1/α. Finally, for the standard Weibull distribution

11



2. Classical Univariate Extreme Value Theory

bN = 0 and aN = N−1/α. In general, a distribution is max-stable if, and only if, it
belongs to the GEV family (Coles, 2001; Salvadori et al., 2007).

The following theorem provides a description of the maximum domain of attrac-
tion. According to von Mises (1936); Jenkinson (1955); Falk and Marohn (1993),
these sufficient conditions are proven to be widely and easily applicable.

Theorem 2.3. Suppose that FX(η) has a positive derivative fX(η) on [η0, ω(FX)).
Then, FX belongs to the domain of attraction of each of the three types of extreme
value distributions if the following are satisfied, respectively:

Type I : lim
η→∞

fX(η)

1− FX(η)
= c, for some c ∈ (0, ∞); (2.14)

Type II : lim
η→∞

η fX(η)

1− FX(η)
= α > 0; (2.15)

Type III : lim
η ↑ω(FX)

(
ω(FX)− η

)
fX(η)

1− FX(η)
= α > 0. (2.16)

The following theorem provides necessary and sufficient conditions for the distri-
bution FX(η) to belong to a given domain of attraction for maxima, cf. Leadbetter
et al. (1983). This criterion was introduced by Gnedenko (1943).

Theorem 2.4. (Max-domain of attraction for maxima). The necessary and
sufficient conditions for the distribution function FX(η) of the random variables of
the independent and identically distributed sequence {Xj} to belong to each of three
types are as follows:

Type I: There exists some strictly positive function g(η) such that

lim
η→∞

1− FX
(
η + t g(η)

)
1− FX(η)

= exp(−t), for all t ∈ R; (2.17)

It may be shown that
∫∞

0

(
1−FX(u)

)
du < ∞ when the Type I limit holds, and

one appropriate choice of g is given by g(η) =
∫ ω(FX)

η

(
1− FX(u)

)
du/

(
1− FX(η)

)
for η < ω(FX);

Type II: ω(FX) =∞ and lim
η→∞

1− FX(t η)

1− FX(η)
= t−α, ∀t ∈ R+; (2.18)

Type III: ω(FX) <∞ and lim
h ↓ 0

1− FX
(
ω(FX)− t h

)
1− FX(ω(FX)− h)

= tα, ∀t ∈ R+, (2.19)

where α ∈ R+ indicate the shape parameter of the Type II and Type III distribu-
tions, respectively.
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2.1. Annual Maximum Models

As the corollary of Theorem 2.4, the norming constants aN and bN can be
calculated as follows (Salvadori et al., 2007):

Type I (Gumbel): aN = F−1
X

(
1− 1

N

)
, bN = F−1

X

(
1− 1

N e

)
− aN ;

(2.20)

Type II (Fréchet): aN = 0 , bN = F−1
X

(
1− 1

N

)
; (2.21)

Type III (Weibull): aN = ω(F ) , bN = aN − F−1
X

(
1− 1

N

)
,

(2.22)

where F−1
X is the quantile function associated with the distribution FX .

2.1.2 Estimation of the T-year return level

Oceanographic data, as any environmental data, are usually collected using a daily
or even more frequent (e.g., ten minutes, one hour, three hours, etc.) temporal
resolution. For instance, consider a sample of maximum one-hour wind gust, or
a sample of three-hour significant wave height. In practical applications, the in-
terest is often focussed on the block (year or any other period, such as a month
or season) maxima. Consequently, the independent observations X1, . . . , XN can
be partitioned into k consecutive independent blocks of length m for some large
value of m. k is the number of observed years (blocks), and m is generally chosen
to correspond to the number of observations in a year or any other period. Then,
the maximum observation is calculated for each block. This generates a sample of
block maxima of size k, X̂m1

, . . . , X̂mk . This sample is then used to estimate the
parameters of the extreme value distribution (the distribution of maxima). If blocks
contain data observed during a time period of one year, then the block maxima are
termed the annual maxima.

One of the major objectives of statistical analysis is estimating the high quan-
tiles of the distribution function. Particularly, in common terminology of the ex-
treme value theory, the concept of T -year return level is used. We introduce the
T -year return level ηTyr as the threshold such that the mean number of exceedances
over ηTyr within the time span of length T years (or any other period such as days,
months or seasons) is equal to 1. In this context, note that there is one observation
per each year (or other considered period), cf., Reiss and Thomas (2007)

Now, if we consider random variables X̂1, . . . , X̂T with the common distribu-
tion function G, then the T -year return level ηTyr is the solution of the following
equation:

E

(
T∑
i=1

1
(
X̂i ≥ η

))
= 1 . (2.23)

13



2. Classical Univariate Extreme Value Theory

Apparently,

E

(
T∑
i=1

1
(
X̂i ≥ η

))
=

T∑
i=1

Prob
(
X̂i ≥ η

)
= T (1−G(η)) . (2.24)

Therefore,

ηTyr = G−1(1− 1/T ) . (2.25)

Thus, ηTyr is the (1−1/T ) quantile of the distribution G. In other words, level ηTyr

is exceeded by the annual (block) maximum in any particular year (block) with
probability 1/T . Therefore, in case of the Generalized extreme value distribution,
estimates of extreme quantiles of GEV are obtained by inverting Eq. (2.12):

ηTyr =

µ−
σ
γ

{
1− [− log(1− 1/T )]

−γ
}
, for γ 6= 0,

µ− σ log {− log(1− 1/T )} , for γ = 0;
(2.26)

Note that plot of ηTyr versus − log(1 − 1/T ) on a logarithmic scale is a return
level plot. It exhibits linear behaviour in the case γ = 0, the plot is convex with
asymptotic limit as T → ∞ at µ − σ/γ for γ < 0, whereas for the case γ > 0 the
plot is concave and has no finite bound (cf. Coles (2001)). Because of the simplicity
of interpretation and construction of the graph, the return level plot is particularly
convenient as a diagnostic tool.

2.2 Threshold Models

The approach described in previous Section 2.1 represents the standard procedure
to analyze the extreme values. Theorems (2.1) and (2.2) provide a model for the
distribution of block maxima. In application, the data are sectioned into blocks
of equal length and the extreme value distribution is fitted to the set of block
maxima. However, the approach has some drawbacks. First of all, the choice of
block size generates uncertainty caused by significant bias or large variance. Blocks
of too small size mean that approximation by the asymptotic distribution is likely
to be poor, leading to bias in estimation and extrapolation. Large blocks, on the
other hand, generate few block maxima, leading to large estimation variance. But
above all, the block maxima method discards important sample information. In
fact, the extremal behavior of a phenomenon usually lasts for some period in a
given block. In this way, the most extreme event, as a rule, occurs in a cluster of
neighboring rough events. Hoverer, only the most extreme observation will generate
the annual maximum. As a consequence, all the remaining information concerning
the extremal dynamics developed during the preceding and succeeding periods will
be discarded. In this section, an alternative approach to the analysis of this type of
extremal behavior is given. The maxima is analyzed via the Peaks-Over-Threshold
(POT) method, which avoid the procedure of blocking. According to Balkema
and de Haan (1974); Pickands (1975), the POT method is based on the so-called
Generalized Pareto (GP) distribution.
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2.2. Threshold Models

2.2.1 The Generalized Pareto distribution of maxima

As before, let X1, X2, . . . be a sequence of independent identically distributed ran-
dom variables with the common distribution function FX(η). In practice, the Xi

are realizations of a stochastic process X(t). It is natural to accept that the ex-
tremal behaviour of the process can be modeled by those events that exceed some
high threshold u, that is {Xi > u}. In other words, a description of the stochastic
behavior of extreme events is given by the excess values above a given threshold. It
can be described by the conditional probability Fu(y) ..= Prob

(
X−u ≤ y |X > u

)
:

1− Fu(y) = Prob
(
X > u+ y |X > u

)
=

1− FX(u+ y)

1− FX(u)
, y > 0 . (2.27)

Because in most practical applications, the underlying distribution FX(η) is un-
known, so is the probability in (2.27). Therefore, a natural way to proceed is to
approximate the conditional law (2.27) by a distribution that would be indepen-
dent of the distribution FX . The following Pickands-Balkema-de Haan theorem
(Balkema and de Haan, 1974; Pickands, 1975) is fundamental in the analysis of
maxima using the POT method, and implicitly defines the Generalized Pareto
distribution.

Theorem 2.5. (Pickands-Balkema-de Haan). Let X1, . . . , XN be a sample of
independent and identically distributed random variables governed by distribution
FX. If FX satisfies the conditions of Theorem (2.2) (and, hence, Theorem (2.1)),
then, for u� 1 the conditional distribution Fu(y) of the exceedances (X − u) can
be approximated as

lim
u→∞

Fu(y) = Wγ(y) ..= 1−
(

1 + γ
y

σ̃

)−1/γ

, y > 0 , (2.28)

for (1 + γy/σ̃) > 0. Here σ̃ > 0,

σ̃ = σ′ + γ(u− µ′) (2.29)

and γ (−∞ < γ <∞) are, respectively, scale and shape parameters; µ′ and σ′ are
location and scale parameters of the GEV distribution Gγ given by Eq. (2.12) in
Theorem (2.2). The shape parameter γ is equal to that of the corresponding GEV
distribution Gγ in (2.12). In the limit case γ = 0, Wγ(y) reduces to the Exponential
distribution with parameter 1/σ̃

W0(y) ..= 1− exp
{
− y
σ̃

}
, y > 0 , (2.30)

The distribution defined in Eq. (2.28) (and Eq. (2.30) in case γ = 0) is called
the Generalized Pareto (GP) distribution (in the canonical form).

The asymptotic result (2.28) implies that the Generalized Pareto distribution
can be used to represent the conditional cumulative distribution function of the
excess y = X − u of the observed variate X over the threshold u, given that
X > u for sufficiently large u. The assumption of a Poisson process model for the
exceedance times combined with GP distributed excesses can be shown to lead
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2. Classical Univariate Extreme Value Theory

to the generalized extreme value (GEV) distribution for corresponding extremes
(Leadbetter et al., 1983; Leadbetter, 1995). In this way, Balkema and de Haan
(1974); Pickands (1975) have shown that, asymptotically, the excess values above
a high level will follow a GP distribution if, and only if, the parent distribution
belongs to the domain of attraction of one of the extreme value distributions.
Moreover, the parameters of the GP distribution of threshold excesses Wγ(y) are
uniquely determined by those of the associated GEV distribution of block maxima
(2.12). Note that values of the GEV parameters are generally speaking dependent
on the block sizeN , whereas the calculation of the scale parameter σ̃ = σ′+γ(u−µ′)
is unperturbed by the changes in µ′ and σ′ which are self-compensating, and the
shape parameter of the GP distribution γ is invariant to block size. Thus, the
shape parameter γ is dominant in determining the qualitative behaviour of the
generalized Pareto distribution (Coles, 2001). The cases γ > 0, γ = 0 and γ < 0
correspond to Fréchet (Type II) (2.8), Gumbel (Type I) (2.7), and Weibull (Type
III) (2.9) domains of attraction, respectively, cf., Section 2.1.1.

Interestingly enough, there is the simple analytical relationship between Gener-
alized Pareto distribution W and extreme value distribution G (cf., e.g. Reiss and
Thomas (2007)):

W (y) = 1 + log G(y) , if log G(y) > −1 . (2.31)

Thus, the duality between the extreme value distributions (see page 9) and the
GP families can be described schematically as follows (Reiss and Thomas, 2007;
Salvadori et al., 2007):

Gumbel, G0 ⇔ Exponential, W0(y) = 1− exp

{
− y − µ

σ

}
, y ≥ µ ; (2.32)

Fréchet, G1,α ⇔ Pareto, W1,α(y) = 1−
(
y − µ
σ

)−α
, y ≥ µ+ σ ; (2.33)

Weibull, G2,α ⇔ Beta, W2,α(y) = 1−
(
− y − µ

σ

)α
, µ− σ ≤ y ≤ µ, (2.34)

where, µ ∈ R is a location parameter, σ ∈ R+ is a scale parameter, and α ∈ R+ is
a shape parameter. Note that the Exponential distribution function W0(y) is equal
to zero for y < µ; the Pareto distribution is equal to zero for y < µ+ σ; the Beta
distribution (properly reparametrized) is equal to zero for y < µ− σ and equal to
1 for y > µ.

2.2.2 Selection of the threshold

From Theorem (2.5) the following algorithm for extreme value modeling emerges. It
is assumed that the initial unprocessed observed data X1, . . . , XN are independent
and identically distributed measurements of a process X(t) governed by FX(η).
In addition, the POT method is build on the property of the data, according to
which peaks over the selected threshold should occur randomly in time according
to an approximate Poisson process (Leadbetter, 1983; Leadbetter et al., 1989). In
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practice, however, extreme events of X(t) often are dependent and have a tendency
to cluster, which violates the Poisson assumption. Therefore, some declustering
algorithm should be performed in advance to select the largest value in each of the
clusters, and then use a Poisson distribution for the number of clusters. The selected
observations should be separated by amount of time sufficient for the exceedances
to be independent, see, for example, Reiss and Thomas (2007).

After the sample has been processed, its extremes X(1), . . . , X(k(u)) are defined
as those observations that exceed the selected high threshold u: ∀ i X(i) > u, where
k(u) is the number of observations that exceed u. Then, the threshold excesses are
calculated as yi = X(i) − u, for i = 1, . . . , k(u). According to Theorem (2.5),
the yi can be regarded as independent realizations of a random variable whose
distribution can be approximated by a generalized Pareto distributionWγ(y). This
implies fitting a GP distribution to the obtained excesses yi, followed by model
verification and extrapolation.

The POT method allows to analyse considerably more data and, hence, more
information about the extremal behaviour of the process than the block maxima
approach. Unlike the latter, the first method interprets to be extreme those ob-
servations which exceed a high threshold. The challenge of choosing the threshold
is analogous to the choice of block size in the block maxima approach, implying
a balance between bias and variance. In this case, too low threshold level yields
bigger amount of exceedances and reduces the variance. At the same time, it is
more likely to violate the asymptotic basis of the model (u→∞), leading to bias.
Too high threshold level will generate only a few excesses, so that the variance of
the fitted GP model will be high (Coles, 2001). There are two standard methods
to define as low as possible threshold that can provide a reasonable approximation.
One consist in assessment of the stability of parameter estimates based on the fit-
ting of model across a range of different thresholds. The other method consists in
exploration of the data prior to model estimation.

The second method is based on the properties of the generalized Pareto distri-
bution. If Y is governed by a GP distribution Wγ(y) (2.28) with parameters σ and
γ, then the mean value E(Y ) is

E(Y ) =

{
σ

1−γ , γ < 1 ,

∞ , γ ≥ 1;
(2.35)

Under the assumption that the generalized Pareto distribution is a valid model of
the excesses of a threshold u0 generated by the observations of X(t), Eq. (2.35)
implies:

E(X − u0 |X > u0) =
σu0

1− γ , γ < 1 , (2.36)

where σu0
denote the scale parameter of the model that depends on the threshold

u0, see Eq. (2.29). If the generalized Pareto distribution is a valid model for the
excesses of the threshold u0, then the model should also be true for all thresholds
u > u0. In this case, due to (2.29), it can easily be verified that σu = σu0

+γ (u−u0)
(note that the shape parameter γ remains independent of u the GPD is valid).
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2. Classical Univariate Extreme Value Theory

Hence,

E(X − u |X > u) =
σu0

+ γ (u− u0)

1− γ , γ < 1 . (2.37)

Note that for the given sample X1, . . . , XN , E(X −u |X > u) denotes the mean of
the excesses of the threshold u. Therefore, Eq. (2.37) means that if the generalized
Pareto distribution is true model, then the mean of the excesses of the threshold u is
a linear function of u. The sample mean of the excesses of u provides the empirical
estimates of E(X − u |X > u) for each value of u. The estimates are expected to
change linearly with u, at those levels of u for which the GP distribution is valid.
This leads to the following practical procedure. First, the R-element grid of u-levels
as linearly spaced values between Xmin and Xmax is generated. The exceedances
X(1), . . . , X(k(ur)) are defined for each element ur of the grid for r = 1, . . . , R. The
sample mean is estimated:

m̂(ur) =
1

k(ur)

k(ur)∑
i=1

(
X(i) − ur

)
, r = 1, . . . , R . (2.38)

Plot
{(
ur, m̂(ur)

)
, r = 1, . . . , R

}
is called the mean residual life plot. Above a

threshold u0 at which the generalized Pareto distribution becomes a valid model for
the distribution of excesses, the mean residual life plot should exhibit approximately
linear behaviour in u. Confidence intervals can be added to the plot based on the
approximate normality of sample means (Coles, 2001).

2.2.3 T-year return period levels

The T -year return period level of a given process, in years, is defined as the inverse
of the probability that the specified value ηTyr will be exceeded once every T years.

Suppose that a generalized Pareto distribution Wγ(y) (2.28) with parameters
σ and γ is a reliable model for exceedances of a threshold u by the observations
X1, . . . , XN of a process X(t). Then, from (2.27) and (2.27) it follows that for some
x = (y + u) > u

Prob
(
X > x |X > u

)
=
(

1 + γ
x− u
σ

)−1/γ

. (2.39)

If λu denotes the probability of X exceeding the threshold u, that is, λu =
Prob (X > u), then

Prob (X > x) = λu

(
1 + γ

x− u
σ

)−1/γ

. (2.40)

Now, it is assumed that N measurements X1, . . . , XN of a process X(t) were taken
during ny observation years. In this way, it implies the presumption that there
are NT/ny observations during T years. Hence, the level ηTyr that is exceeded on
average once in T years, i.e., once every NT/ny observations is the solution of

λu

(
1 + γ

ηTyr − u
σ

)−1/γ

=
ny
NT

. (2.41)
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Rearranging,

ηTyr = u+
σ

γ

[(
λuNT

ny

)γ
− 1

]
, (2.42)

unless γ = 0, in which case

ηTyr = u+ σ log

(
λuNT

ny

)
. (2.43)

Estimation of return levels requires the substitution of parameter values by their
estimates. Parameters σ and γ are substituted by the corresponding maximum
likelihood estimates. An estimate of the probability of an individual observation
exceeding the threshold u, λu, can be done in a natural way by introducing the
mean exceedance rate of the threshold u

λ̂u =
k(u)

N
,

where N is the total number of observations, whereas k(u) is the number of obser-
vations that exceed u. Note that because the number of exceedances of u follows
the binomial distribution B(N, λu), λ̂u is also the maximum likelihood estimate of
λu. Therefore, Eqs.(2.42) and (2.43) can be modified as follows:

ηTyr =


u+ σ

γ

[(
k(u)T
ny

)γ
− 1
]
, for γ 6= 0 ;

u+ σ log
(
k(u)T
ny

)
, for γ = 0 .

(2.44)
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Chapter 3

The Average Conditional Exceedance
Rates (ACER) Method. Univariate
Case

3.1 Problem Statement

Let us consider a stochastic processX(t) that has been observed over a time interval
such as

(
0, T

)
. A finite number of measured values X1, . . . , XN , which have been

derived from the observed process, are at our disposal. Assume that the data series
Xj , j = 1, . . ., N is allocated to the discrete times t1, . . . , tN in

(
0, T

)
. This could

simply be the observed values of X(t) at each tj , j = 1, . . ., N , or it could be
average values or peak values over smaller time intervals centred at the tjs. The
object of our interest is the extreme value X̂N = max{Xj ; j = 1, . . ., N}. Our
goal is to accurately determine the distribution function F (η) = Prob

(
X̂N ≤ η

)
= Prob

(
XN ≤ η, . . .,X1 ≤ η

)
of the X̂N . Specifically, we want to accurately

estimate F (η) for large values of η.
An underlying premise for the development here is that a rational approach to

study the extreme values of the sampled time series is to consider exceedances of
the individual random variables Xj above given thresholds, as in the POT method.
Another appropriate concept is to analyse the highest observations in each indepen-
dent group of exceedances above a threshold, as required by the Method of Inde-
pendent Storms (Cook, 1982), or simply to consider a block maxima as in classical
extreme value theory. The alternative approach of considering the exceedances by
upcrossing of given thresholds by a continuous time stochastic process was devel-
oped by Naess et al. (2007); Naess and Gaidai (2008).

The latter approach originally derived by Naess and Gaidai (2009) would be the
appropriate way to address the recorded data time series of environmental loads,
such as wind speeds, wave heights observed at a given location, etc.
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3.2 Cascade of Conditioning Approximations

In the following, we outline the principle behind a cascade of approximations based
on conditioning, where the first approximation is a one-step memory approximation
and thus carries some resemblance to a Markov chain approximation. However, it is
emphasized that this first approximation is not equivalent to such an approximation
(Naess and Moan, 2012; Naess and Gaidai, 2008, 2009).

As discussed above, the joint distribution function F (η) cannot generally be
estimated directly from the data. However, by introducing a cascade computable
sequence of conditioning approximations Fk(η) of F (η), such that Fk(η) → F (η)
as k increases, this problem can be solved in practice in a very efficient and elegant
manner. The definition of Fk(η) is as follows.

From the definitions of F (η) and X̂N , we obtain

F (η) = Prob
(
X̂N ≤ η

)
= Prob

(
XN ≤ η, . . . , X1 ≤ η

)
= Prob

(
XN ≤ η|XN−1 ≤ η, . . . , X1 ≤ η

)
· Prob

(
XN−1 ≤ η, . . . ,X1 ≤ η

)
=

N∏
j=2

Prob
(
Xj ≤ η |Xj−1 ≤ η, . . . , X1 ≤ η

)
· Prob

(
X1 ≤ η

)
(3.1)

Initially, we assume that all variables Xj are statistically independent. This implies
that the first approximation of the cascade is obtained as follows:

F (η) =

N∏
j=1

Prob
(
Xj ≤ η

)
=

N∏
j=1

(
1− α1j(η)

)
≈ F1(η) ..= exp

(
−

N∑
j=1

α1j(η)

)
, η →∞,

(3.2)

where α1j(η) ..= Prob
(
Xj > η

)
, j = 1, . . . , N , and F1(η) is defined by the last

equality of Eq. (3.2); the assignment symbol ..= means "by definition". Note that
the approximation exp(−x) ≈ 1 − x is accurate to within .5% for values of |x| as
high as 0.1, and the accuracy rapidly increases for decreasing values of |x|. This in
turn justifies its application here because the probability to exceed a high level η
tends to zero.

In general, the variables Xj are statistically dependent. In such a case, a one-
step memory conditioning will measurably account, to a certain extent, for depen-
dence between the Xjs. Therefore, the next approximation is obtained by assuming
that

Prob
(
Xj ≤ η|Xj−1 ≤ η, . . .,X1 ≤ η

)
≈ Prob

(
Xj ≤ η|Xj−1 ≤ η

)
, (3.3)
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for j = 2, . . . , N . Therefore, by this approximation,

F (η) ≈
N∏
j=2

Prob
(
Xj ≤ η |Xj−1 ≤ η

)
· Prob

(
X1 ≤ η

)
=

N∏
j=2

(
1− α2j(η)

)
·
(
1− α11(η)

)
≈ F2(η) ..= exp

(
−

N∑
j=2

α2j(η)− α11(η)

)
,

η →∞,

(3.4)

where we have introduced the notation α2j(η) ..= Prob
(
Xj > η |Xj−1 ≤ η

)
for

2 ≤ j ≤ N .
In the next step, through conditioning on one additional data point, the third

level of approximation is achieved. It is assumed that

Prob
(
Xj ≤ η|Xj−1 ≤ η, . . .,X1 ≤ η

)
≈ Prob

(
Xj ≤ η|Xj−1 ≤ η,Xj−2 ≤ η

) (3.5)

for j = 3, . . . , N . By adopting this approximation in Eq (3.1), it is obtained that

F (η) ≈
N∏
j=3

Prob
(
Xj ≤ η|Xj−1 ≤ η,Xj−2 ≤ η

)
· Prob

(
X2 ≤ η |X1 ≤ η

)
· Prob

(
X1 ≤ η

)
=

N∏
j=3

(
1− α3j(η)

)
·
(
1− α22(η)

)
·
(
1− α11(η)

)
≈ F3(η) ..= exp

(
−

N∑
j=3

α3j(η)− α22(η)− α11(η)

)
,

η →∞ ,

(3.6)

where we have introduced the notation

α3j(η) ..= Prob
(
Xj > η |Xj−1 ≤ η,Xj−2 ≤ η

)
, 3 ≤ j ≤ N .

It is realized that by continuing this conditioning process, a general kth approx-
imation will be obtained. By introducing the notation

αkj(η) ..= Prob
(
Xj > η |Xj−1 ≤ η, . . . , Xj−k+1 ≤ η

)
, 1 ≤ k ≤ j ≤ N.

Evidently, αkj(η) denotes the probability of exceedance of Xj conditioned on k−1
immediately preceding non-exceedances. Therefore, the general approximation will
assume the form (k ≥ 2),

F (η) ≈ Fk(η) ..= exp

(
−

N∑
j=k

αkj(η)−
k−1∑
j=1

αjj(η)

)
,

η →∞,
(3.7)
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It should be emphasized that the one-step memory approximation adopted in
Eqs. (3.3) and (3.4) is not a Markov chain approximation, cf. Smith (1992); Coles
(1994); Smith et al. (1997); furthermore, the k-step memory approximations in
Eq. (3.7) do not lead to kth-order Markov chains either (Yun, 1998, 2000). An effort
to relinquish the Markov chain assumption to obtain an approximate distribution
of clusters of extremes was reported by Segers (2005).

Summarizing the cascade, the following has been obtained for η →∞, cf. Karpa
and Naess (2013):

F1(η) = exp

(
−

N∑
j=1

α1j(η)

)
;

F2(η) = exp

(
−

N∑
j=2

α2j(η)− α11(η)

)
;

F3(η) = exp

(
−

N∑
j=3

α3j(η)− α22(η)− α11(η)

)
;

...

Fk(η) = exp

(
−

N∑
j=k

αkj(η)−
k−1∑
j=1

αjj(η)

)
;

←
− k increases

FN (η) ≡ F (η) = Prob(XN ≤ η, . . . , X1 ≤ η) .

(3.8)

Thus, we have constructed a sequence or cascade
{
Fk(η)

}N
k=1

of conditional prob-
ability distributions that has the target distribution function F (η) of the extreme
value X̂N as the limit. The process of constructing the sequence and its properties
follow from the definition of the extreme value distribution F (η) and the properties
of conditional probability.

It is natural to assume that the degree of dependence between observed values
{Xj} of the time series X(t) separated by k lags decreases as k ↑ N and is equal
to zero for k = N . Therefore, for this cascade of approximations to have practical
significance, it is implicitly assumed that there is a ke satisfying ke � N such
that effectively, F (η) = Fke(η). Then, F1(η) ≤ F2(η) ≤ . . . ≤ Fke(η) = F (η).
Note that for k-dependent stationary data sequences, that is, for data where
Xi and Xj are independent whenever |j − i| > k, then F (η) = Fk+1(η) ex-
actly and lim

N→∞
F1(η) = lim

N→∞
F (η) (Watson, 1954). In fact, it can be shown that

lim
N→∞

F1(η) = lim
N→∞

F (η) is true for conditions weaker than k-dependence (Lead-

better et al., 1983). However, for finite values of N , the picture is considerably
more complex, and purely asymptotic results should be used with some caution.
Cartwright (1958) used the notion of k-dependence to investigate the effect on
extremes of correlation in sea wave data time series.

It will be verified that the property ke � N is indeed satisfied for the type
of data analysed in the present research. Furthermore, under this assumption, for
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all k values of interest, k � N , implying that
k−1∑
j=1

αjj(η) is generally negligible in

comparison with
N∑
j=k

αkj(η). This leads to the approximation, which is applicable

to both stationary and non-stationary data,

F (η) ≈ Fk(η) ≈ exp

(
−

N∑
j=k

αkj(η)

)
, k = 1, 2, . . . , (3.9)

Therefore, estimation of the extreme value distribution using the described
conditioning approach reduces to estimation of the set of αkj(η) functions (Naess
and Gaidai, 2009).

It is important to note that under the assumption that all of the variables Xj

are statistically independent, it follows from the definition of α1j(η) that
N∑
j=1

α1j(η)

is equal to the expected number of exceedances of the threshold η during the
time interval

(
0, T

)
. Thus, Eq. (3.2) expresses the assumption that the sequence

of exceedance events follow a Poisson distribution. Consequently, this clarifies

the essence of Eq. (3.7) by interpreting the expressions
N∑
j=k

αkj(η) +
k−1∑
j=1

αjj(η)

≈
N∑
j=k

αkj(η) as the expected effective number of exceedances subjected to k − 1

immediately preceding non-exceedances.

3.3 Estimation of the ACER

The concept of the average conditional exceedance rate (ACER) of order k is now
introduced as follows:

εk(η) =
1

N − k + 1

N∑
j=k

αkj(η) , k = 1, 2, . . . (3.10)

By combining Eqs. (3.10) and (3.9), it is instantly obtained that

F (η) ≈ Fk(η) ≈ exp
(
− (N − k + 1) εk(η)

)
. (3.11)

In practice, there are typically two scenarios for the underlying process X(t).
We may consider it to be either a stationary process or even an ergodic process. The
other alternative is to view X(t) as a process that depends on certain parameters
whose variation in time may be modelled as an ergodic process in its own right.
For each set of parameter values, the premise is that X(t) can be modelled as
an ergodic process. This is the scenario that can be used to model the long-term
statistics of wind speed (Naess, 1984).

For both of these scenarios, the empirical estimation of the ACER function
εk(η) proceeds in a completely analogous manner by counting the total number of
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favourable incidents, that is, exceedances conditional on the requisite number of
preceding non-exceedances, for the total data time series and then finally dividing
by N − k + 1 ≈ N . Note that the expressions given thus far also apply to the case
of non-stationary time series.

The numerical estimation of the ACER functions is based on counting the
requisite events. First, it starts by defining random functions:

Ajk(η) = 1{Xj > η, Xj−1 ≤ η, ..., Xj−k+1 ≤ η}
Bjk(η) = 1{Xj−1 ≤ η, ..., Xj−k+1 ≤ η} ,

(3.12)

for k ≥ 2, j = k, . . ., N , where 1{A} denotes the indicator function of some event
A. Then,

αjk(η) =
E[Akj(η)]

E[Bkj(η)]
, k ≥ 2, j = k, . . . , N , (3.13)

where E[·] is the expectation operator. Under the assumption that the process X(t)
is ergodic, we have εk(η) = αkk(η) = . . . = αkN (η). Then, by replacing ensemble
means with corresponding time averages, it may be assumed that for the time series
at hand,

εk(η) = lim
N→∞

N∑
j=k

akj(η)

N∑
j=k

bkj(η)

. (3.14)

We use akj(η) and bkj(η) to designate the realizations of the random functions
Akj(η) and Bkj(η), respectively, for the observed time series. Then, the estimate
ε̂k(η) of the ACER function εk(η) can be expressed as:

ε̂k(η) =

N∑
j=k

akj(η)

N∑
j=k

bkj(η)

. (3.15)

Figure (3.1) illustrates the process of counting the exceedances. In this figure,
the black points indicate non-exceedances of the level η = 1.5. These points are
taken into account for bkj(η). All of the observations marked by circles (◦) denote
exceedances considered for a1j(η). The exceedances that have an additional mark
in the form of a star (×+) within a rectangle are considered for a2j(η). To count
the exceedances with two immediately preceding non-exceedances, that is a3j(η),
only observations with (�) marks are used. Finally, three dots (· · ·) indicate data
points that should be used to count akj(η) with k > 3. From this consideration, it
is evident that for εk(η) with a lower degree of conditioning k, significantly more
data are available, which reduces statistical uncertainty in the estimation.
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Figure 3.1: Counting of the exceedances of level η = 1.5 for sampled time series:
• – non-exceedances; ◦ – unconditional exceedances considered for a1j(η); ×+ –
marks for conditional exceedances considered for a2j(η); � – marks for conditional
exceedances considered for a3j(η). Three dots (· · ·) within rectangles indicate ex-
ceedances that could be considered for akj(η) with k > 3.

Evidently, lim
η→∞

E[Bkj(η)] = 1. Therefore, it is convenient to introduce the mod-

ified ACER function as follows:

ε̃k(η) =

N∑
j=k

E[Akj(η)]

N − k + 1
, (3.16)

for which the following holds: lim
η→∞

ε̃k(η)/εk(η) = 1. It turns out that the modified

ACER function ε̃k(η) for k ≥ 2 is easier to use for non-stationary or long-term
statistics than εk(η). Because the focus is on the values of an ACER function at the
extreme levels, any function that provides a correct estimate at these levels may be
used. This is true for ε̃k(η). However, some care should be exercised when selecting
the data to be used in the statistical analysis because this modified version of the
ACER function exhibits a strong spurious decrease for lower η levels, a tendency
that increases with increasing k (Naess et al., 2010).

To show why ε̃k(η) defined by Eq. (3.16) may be applicable for non-stationary
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time series, from Eqs. (3.9) and (3.13), it is recognized that

F (η) ≈ exp

(
−

N∑
j=k

αkj(η)

)
= exp

(
−

N∑
j=k

E[Akj(η)]

E[Bkj(η)]

)

'
η→∞

exp

(
−

N∑
j=k

E[Akj(η)]

)
.

(3.17)

If the time series can be partitioned into L blocks such that E[Akj(η)] remains ap-
proximately constant within each block and such that

∑
j∈C`

E[Akj(η)] ≈ ∑
j∈C`

akj(η)

for a sufficient range of η values, where C` denotes the set of indices for the data
in block no. `, ` = 1, . . . , L, then

N∑
j=k

E[Akj(η)] =

L∑
`=1

∑
j∈C`

E[Akj(η)]

≈
L∑
`=1

∑
j∈C`

akj(η) =

N∑
j=k

akj(η) .

(3.18)

Hence, we may write

F (η) ≈ exp
(
− (N − k + 1)ˆ̃εk(η)

)
, η →∞ , (3.19)

where

ˆ̃εk(η) =
1

N − k + 1

N∑
j=k

akj(η) . (3.20)

It is of interest to note which events are actually counted for the estimation of
the various εk(η), k ≥ 2. Let us start with ε2(η). It follows from the definition of
ε2(η) that ε2(η) ·(N−1) can be interpreted as the expected number of exceedances
above the level η, satisfying the condition that an exceedance is counted only if
it is immediately preceded by a non-exceedance. A reinterpretation of this is that
ε2(η) · (N − 1) is equal to the average number of groups of exceedances above η,
for the realizations considered within the time interval

(
0, T

)
, where a group of

exceedances is defined as a maximum number of consecutive exceedances above
η. In general, εk(η) · (N − k + 1) then equals the average number of groups of
exceedances above η during the observation period

(
0, T

)
, separated by at least

k − 1 non-exceedances (Naess and Gaidai, 2009). If the analysed time series is
obtained by extracting local peak values from a narrow band response process, it
is interesting to note the similarity between the ACER approximations and the
envelope approximations for extreme value prediction (Naess and Gaidai, 2008;
Vanmarcke, 1975).

Alternative statistical approaches that account for the effect of clustering on
the extreme value distribution were studied in papers by Leadbetter (1983); Hsing
(1987, 1991); Leadbetter (1995); Ferro and Segers (2003); Robert (2009). In these
works, the emphasis was on the notion of an extremal index, which characterizes
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the clumping or clustering tendency of the data and its effect on the extreme value
distribution. However, note that these effects are automatically accounted for by
the ACER functions (Naess, Gaidai, and Karpa, 2013).

Now, we can consider the problem of estimating a confidence interval for εk(η).
In the case in which several realizations of the time series X(t) are provided, or
the time series can be appropriately sectioned into R blocks, say, that is several
annual realizations, or realizations of other duration of time, the sample estimate
of εk(η) would be:

ε̂k(η) =
1

R

R∑
r=1

ε̂
(r)
k (η) , (3.21)

where R is the number of realizations, and the ε̂(r)
k (η) can be estimated using either

the result from Eq. (3.15), that is

ε̂
(r)
k (η) =

Nr∑
j=k

a(r)
kj (η)

Nr∑
j=k

b(r)
kj (η)

, (3.22)

in case the considered stochastic process is assumed to be stationary, or the result
from Eq. (3.20):

ε̂
(r)
k (η) =

1

Nr − k + 1

Nr∑
j=k

a(r)
kj (η) , (3.23)

for the non-stationary time series. The index (r) here refers to sample number r
and Nr denotes the size of the sample number r, such that for Nr values holds
R∑
r=1

Nr = N .

After the sample average conditional exceedance rate has been estimated, the
95% confidence interval for εk(η) can then be determined. First, the sample stan-
dard deviation ŝk(η) can be estimated by the basic formula

ŝ2
k(η) =

1

R− 1

R∑
r=1

(
ε̂

(r)
k (η)− ε̂k(η)

)2

. (3.24)

Assuming that realizations are independent, a good approximation of the 95%
confidence interval for the value εk(η) is CI =

(
CI−(η), CI+(η)

)
, where

CI±(η) = ε̂k(η) ± τ · ŝk(η)√
R
, (3.25)

can be compared with Karpa and Naess (2013). Here, τ = t−1
(

(1−0.95)/2, R−1
)

is the corresponding quantile of the Student’s t-distribution with R− 1 degrees of
freedom, cf. Rees (2001).
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Alternatively, and as it also applies to the non-stationary case, as mentioned
previously in Section 3.2, it is consistent with the adopted approach to assume
that the stream of conditional exceedances over a threshold η constitute a Poisson
process, possibly non-homogeneous. This leads to the following result:

Var

[
N∑
j=k

Akj(η)

]
= E

[
N∑
j=k

Akj(η)

]
= (N + k − 1) ε̃k(η) . (3.26)

Therefore, using the normal distribution with mean (N +k−1) ε̃k(η) and variance
(N + k− 1) ε̃k(η) to approximate the Poisson distribution, for high levels η, limits
of a 95 % confidence interval of ε̃k(η), and also εk(η), can be estimated as,

CI±(η) = ε̂k(η)
(
1± 1.96√

(N − k + 1)ε̂k(η)

)
. (3.27)

This, primarily, should be applied to the case when only one realization of the time
series is available.

3.4 Functional Representation of the ACER Function

Using only the empirically estimated average conditional exceedance rates, the
extreme value estimation cannot be achieved. The parametric representation of
the ACER curve as a continuous function of η is required. It shall be derived in
this section.

Unfortunately, the available extreme values observed from the sampled time
series do not necessarily constitute the asymptotic distribution, or at least proving
that they are truly asymptotic is in fact a nontrivial task. This implies the relevance
of expanding the domain of our interest to the sub-asymptotic levels. More reason
for the justification of this effort is the fact that the ACER functions allow us to use
sub-asymptotic data with low statistical uncertainty, which is clearly an advantage.

Two scenarios for a time series and their distribution laws have been considered
in this research. First, we focused on the case in which the underlying distribution
belongs to the domain of attraction of the asymptotic extreme value distribution
of the Gumbel type (2.7). This approach was originally derived and studied by
Naess and Gaidai (2009); Naess et al. (2010). The extension of the asymptotic
distribution to a parametric class of extreme value distribution tails that to some
extent have the capacity to capture sub-asymptotic behaviour is more transparent,
and perhaps more obvious, for the Gumbel case, cf. Naess et al. (2013). The second
scenario was obtained assuming that the asymptotic behaviour of the underlying
process takes form of the so-called generalized extreme value (GEV) distribution
(2.12). In this approach, Naess et al. (2013) proposed that the class of parametric
functions needed for the prediction of extreme values for the general case can be
modelled on the relation between the Gumbel distribution and the general extreme
value distribution.
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3.4.1 The Asymptotic Gumbel case

The implication of the asymptotic distribution being of the Gumbel type on the
possible sub-asymptotic parametric forms of the εk(η) function cannot easily be
determined in any detail. It cannot be done using only the sampled time series and
estimated ε̂k(η) as a basis for the estimation of extremes either. However, using the
asymptotic extreme value distribution of the Gumbel type as a guide, it is argued
by Naess and Gaidai (2009) that the behaviour of the ACER function in the tail
is typically dominated by a function of the form exp{−a(η − b)c}. Here, a, b and c
are suitable constants, whereas the values of η start from an appropriate tail level
η1 such that b ≤ η1 ≤ η. Hence, it is assumed that

εk(η) = qk(η) exp
{
− ak(η − bk)ck

}
, η ≥ η1 ≥ bk , (3.28)

where the function qk(η) is slowly varying compared to the exponential function
exp{−ak(η − bk)ck} and ak, bk, and ck are suitable constants that will generally
be dependent on k. Note that the values ck = qk = 1 correspond to the Gumbel
asymptotic form, which implies that the Gumbel distribution would be obtained
in the special case where the extreme value data are truly asymptotic.

Note that from Eq. (3.28), it follows that

− log

∣∣∣∣∣log

(
εk(η)

qk(η)

)∣∣∣∣∣ = − ck log(η − bk)− log(ak) , (3.29)

Therefore, under the employed assumptions, a plot of − log
∣∣log

(
εk(η)/qk(η)

)∣∣ ver-
sus log(η − bk) will exhibit an almost perfectly linear behaviour in the tail, which
suggests a linear extrapolation strategy.

Naess and Gaidai (2009) argued that although the function qk(η) is generally
not a constant function, its variation at the tail levels is often significantly slower
compared to the function exp{−ak(η−bk)ck}. This allows us to replace the function
qk(η) by a constant value, qk, potentially by adjusting the tail marker η1. The
validity of this approach has been successfully demonstrated by Naess and Gaidai
(2008); Naess, Gaidai, and Haver (2007); Naess, Gaidai, and Teigen (2007) for mean
up-crossing rate estimation for extreme value analysis of the response processes
related to different dynamic systems.

Thus, for the estimation problem, it is assumed that the ACER functions can
be represented in the tail as follows,

εk(η) = qk exp
{
− ak(η − bk)ck

}
, η ≥ η1 ≥ bk , (3.30)

where ak, bk, ck, and qk are appropriate constants. In a certain sense, the expression
in Eq. (3.30) introduces a minimal class of parametric functions that can be used for
our purpose. This representation of the ACER function makes it possible to achieve
a few important tasks (Naess et al., 2013). First, the class is sufficiently flexible to
capture, to a certain extent, the sub-asymptotic behaviour of any extreme value
distribution, that is, asymptotically Gumbel. Particularly, the parametric class
contains the asymptotic form given by ck = qk = 1 as a special case. Finally, the
parametric functions agree with a wide range of known special cases, of which a
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very important example is the extreme value distribution for a regular stationary
Gaussian process, which has ck = 2.

This immediately puts us in a position to apply a linear extrapolation strategy
for deep tail prediction problems.

The tail marker η1

Initially, it is important to discuss in some detail how the tail marker η1 is defined.
First, log(ε̂k(η)) should be plotted versus levels of η. Visual inspection of this plot
helps to identify the tail marker η1. The value chosen for η1 corresponds to the
beginning of regular tail behaviour of the ACER function on a logarithmic scale in
a sense to be discussed below.

Better understanding of the behaviour of the ACER function requires analysis
of its components akj(η) and bkj(η). We discovered in (3.22) and (3.23) that

ε̂
(r)
k (η) =

a(r)
k (η)

b(r)
k (η)

, or ε̂(r)
k (η) =

a(r)
k (η)

Nr − k + 1
, (3.31)

depending on whether the concerned process is stationary or non-stationary, re-

spectively. Here, we use a(r)
k (η) ..=

N∑
j=k

a(r)
kj (η) and b(r)

k (η) ..=
N∑
j=k

b(r)
kj (η) to ease the

notation. As before, the index (r) refers to the sample number r , 1 ≤ r ≤ R.
First, we analyse the behaviour of function bk(η), that is, the sum of realiza-

tions of the random function Bkj(η), see Eq. (3.12). As previously discussed in
Section 3.3, lim

η→∞
E[Bkj(η)] = 1. This implies that lim

η→∞
bk(η) = N − k + 1 holds

for bk(η). In addition, from the definition of Bkj(η), it follows that bk(η) increases
monotonically from zero to N − k + 1 on its support – the interval

[
X(1), X(N)

]
,

where X(k) is the k-th order statistic of the given sample. The typical behaviour of
bk(η) is illustrated in Figure (3.2). Functions b(r)

k (η) for four out of twenty realiza-
tions of a generated narrow band process with 5·104 data points per one realization
are plotted versus η/σ levels for k = 16.

Thus, because functions b(r)
k (η) are monotonically increasing, their reciprocals

decrease monotonically on the sub-asymptotic levels of η, on which we are focused.
b(r)
k (η) degenerates to the value 1/(N − k + 1) in the far tail.
The aforementioned implies that variation in the εk(η) substantially depends on

the variation in the function ak(η). From the definition of akj(η) as the realization
of the random function Akj(η), cf. Eq. (3.12), it follows that the total number
of observations that exceed level η and succeed k − 1 non-exceedances is low for
lower magnitudes of η because most of the data exceed these levels. As η reaches
values that are typical for the given time series, the function ak(η) increases due
to the increased availability of the appropriate observations. After missing the
extremum at a certain point, the function ak(η) begins to decrease on the interval
that corresponds to sub-asymptotic and asymptotic levels of η because the number
of exceedances of these levels decreases. Therefore, it can be concluded that the
function ak(η) reaches its local maximum point close to the vicinity of the mode of
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Figure 3.2: Behavior of the estimated functions b(r)
k (η) for a stationary process for

k = 16.

the observed time series and subsequently decreases as η tends to the right endpoint
of the process.

Therefore, when choosing the level of the beginning of regular behaviour of
ak(η), the mode of the analysed time series should be taken into consideration. The
attention should be drawn to the fact that the time series might be multimodal,
or in other words, the probability density function of the time series might have
several local maxima. In this case, the rightmost local maximum point should be
considered. After passing this point function, ak(η) decreases regularly, so does the
εk(η) function. If R realizations of the time series are available, the tail marker
η1 can, for instance, be defined as η1 = max

{
η

(r)
1 ; r = 1, . . . , R

}
, where η(r)

1 =

arg max
η∈V

{
a(r)
k (η)

}
for each r = 1, . . . , R, and V here denotes the neighborhood of

the argument of rightmost local maximum point of the PDF. Since the histogram
of the given data set is a simple and reliable diagnostic tool for defining modes,
hence it would always be useful to plot it prior to beginning the ACER analysis.

Figures (3.3) - (3.5) illustrate the above-described process for estimating the tail
marker η1 for three types of processes: a generated Gaussian narrow band process,
a generated bimodal process and observed real data, respectively. In Figures (3.3a),
(3.4a) and (3.5a), the histogram is plotted for each time series. As clearly shown
in Figure (3.4a), the probability density function of the generated bimodal process
has two local maxima, of which we are interested only in the rightmost. For the
generated Gaussian narrow band process and the observed hourly maximum of the
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3 s wind gust recorded during 12 years, both are unimodal processes that can also
be affirmed by their histograms (3.3a) and (3.5a), respectively. The behaviour of
the ak(η) function for each example is shown in Figures (3.3b), (3.4b) and (3.5b).
Four realizations of ak(η), that is, a(r)

k (η), r = 1, . . . , 4, are plotted against nor-
malized levels η/σ. It is clear that for all three cases functions, a(r)

k (η) reach their
local maxima on levels of local maxima of the corresponding PDFs, or close to
the neighborhood of these levels. Thereafter, curves of a(r)

k (η) subside regularly on
the sub-asymptotic levels. Finally, plots of the estimated ACER function with the
chosen levels of conditioning k are presented in Figures (3.3c), (3.4c) and (3.5c).
The regular behaviour of the εk(η) can be recognized within the context of the be-
haviour of the corresponding a(r)

k (η) functions. The tail marker η1 is automatically
estimated using the Matlab-based standalone downloadable application created to
implement the ACER method (Karpa, 2012). The tail marker η1 is shown by the
red diamond on the εk(η) line. As a final remark, note that within the aforemen-
tioned software, the estimated tail marker η1 can be considered rather as a hint,
and expert users can change its value during use.

Estimation of parameters

We now proceed to the question of finding the optimal values of the parameters
a, b, c, q of the ACER fit:

ε(η) = q exp
{
− a(η − b)c

}
, η ≥ η1 ≥ b . (3.32)

The index k is suppressed here and wherever applicable to simplify the notation.
Tentatively, we remove from consideration the very tail of the data, where

uncertainty is high. As a practical procedure, Naess and Gaidai (2009) proposed
neglecting data points where the relative confidence band width is greater than
some constant δ. In this manner, we discard all points for which the following
holds:

τ ŝ(η)/
√
R

ε̂(η)
> δ , (3.33)

where the value chosen for δ depends on the actual accuracy of the considered data
tail, and its value would typically be in the interval (0.5, 1]. Setting this parameter
equal to 1 leaves sufficient data points for the weighted optimization problem and
also ensures that no complex numbers will occur during calculations (Karpa, 2012).

Now, it is expedient to adopt the mathematical programming approach by
optimizing the fit on the log level. Naess and Gaidai (2009) presented the following
mean square error function to be minimized:

F (a, b, c, q) =

I∑
i=1

w′i
(
log ε̂(ηi)− log q + a(ηi − b)c

)2
, (3.34)
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Figure 3.3: Estimation of the tail marker η1 of the εk(η) for k = 16 for the synthetic
Gaussian narrow band process with twenty realizations. (a) – histogram of the
process; (b) – plot of the four out of twenty estimated functions a(r)

16 (η); (c) – plot
of the ε̂16(η) against η/σ on a logarithmic scale with marked tail marker η1 = 0.31σ;
σ = 1.8.

where η1 < . . . < ηI are the levels at which the ACER function has been empirically
estimated, and w′i = wi/

∑I
j=1 wj with

wi =
1[

logCI+(ηi)− logCI−(ηi)
]θ , θ = 1 or 2 , (3.35)

denoting the normalized weight factors that place more emphasis on the more re-
liable estimates of the ε̂k(ηi) (Karpa and Naess, 2013). The choice of weight factor
is, of course, to some extent arbitrary, and if it is considered more appropriate to
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Figure 3.4: Estimation of the tail marker η1 of the εk(η) for k = 3 for the synthetic
bimodal narrow band process with 200 realizations. (a) – histogram of the process;
(b) – plot of the four out of 200 estimated functions a(r)

3 (η); (c) – plot of the ε̂3(η)
against η/σ on a logarithmic scale with marked tail marker η1 = 2σ; σ = 2.7 · 103.

place greater emphasis on the larger data, this can be simply achieved by assigning
a value of 1 to the variable θ in the definition of wi in Eq. (3.35). The optimization
task can also be viewed as a weighted linear regression problem, as it will be dis-
cussed hereinafter. From this perspective, it emerges that the best linear unbiased
estimators (BLUE) are obtained for another type of the weight factors (Draper
and Smith, 1998; Montgomery et al., 2001). In this case, the ‘best’ weight factors
are presented as follows,

wi =
1

Var
(

log ε̂k(ηi)
) . (3.36)
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Figure 3.5: Estimation of the tail marker η1 of the εk(η) for k = 4 for the wind
speed data observed during twelve years. (a) – histogram of the process; (b) – plot
of the four out of twelve estimated functions a(r)

4 (η); (c) – plot of the ε̂4(η) against
η/σ on a logarithmic scale with marked tail marker η1 = 1.9σ; σ = 5.5.

However, in practice, there are no benefits of the choice presented by Eq. (3.36)
over the one defined by Eq. (3.35). In fact, the weight factors have disadvantages
in both cases. Thus, in the alternative case given by Eq. (3.36), the summation
in Eq. (3.34) would have to stop at those values of ηi for which at least one R
realizations ε̂(r)(ηi) becomes zero. This usually occurs at undesirably small values
of η1. In case of using Eq. (3.35), the summation in Eq. (3.34) would have to stop
at the high values of ηi for which CI−(ηi) becomes negative. For this reason, the
condition given by Eq. (3.33) has been applied in advance. Finally, it appears that
using the weight factors defined by Eq. (3.35) retains considerably more significant
data points than the other one.
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It is discussed at some length by Naess and Gaidai (2009) that for the optimiza-
tion task at hand, the Levenberg-Marquardt least-squares optimization method
(Gill et al., 1981; Forst and Hoffmann, 2010) combined with the error function in
Eq. (3.34) can be used. After the initial values q0, b0, a0 and c0 for the parame-
ters are chosen, this method has usually worked quite well. We use c0 = 2 as the
starting value of the corresponding parameter. Then, it appears to be natural to
use the mean value of the concerned time series (≡ µ̂) as the initial value b0. If
this value is higher than the tail marker η1, then it should obviously be replaced
by the latter, as it follows from the assumption in Eq. (3.30). The availability of
these two values makes it possible to find the remainder of the initial parameters.
By taking the logarithm of both sides of Eq. (3.30), the following simple linear
regression problem arises:

log ε̂(ηi) = −a(ηi − b0)c0 + log q , (3.37)

where log ε̂(ηi) is the regressand and (ηi − b0)c0 is the regressor of the model. The
solution of this problem provides us with the initial values of two other parameters,
q and a: the computed slope of the regression fit gives −a0, and the intercept of
the regression fit gives log q0.

As discussed by Naess et al. (2013), if the parameter c is equal to 1.0 or close
to 1.0, the optimization problem becomes ill-posed or close to ill-posed because
there is an infinite number of (b, q) values that provide exactly the same value
of F (a, b, c, g). Therefore, there is no well-defined optimal solution in parameter
space. A possible method to facilitate this problem is to fix the q value, and one
option is q = 1. Another choice for fixing the q is the ACER function estimated at
the mean value of the concerned time series, that is, q = ε̂(µ̂) (Valberg, 2010).

Note that the optimization problem specified by Eq. (3.34), was implemented
in MATLAB, version 7.9.0.529 (R2009b) and earlier. Unfortunately, the embedded
Levenberg-Marquardt algorithm does not handle constraints of any type (Matlab,
2009), although it is advisable to consider the constrained optimization as the one
that can provide more reasonable values for the parameters. It is known, how-
ever, that the Levenberg-Marquardt method can be applied for solving constraint
optimization problems (Kanzow et al., 2004). This algorithm has already been im-
plemented by (Lourakis, 2004) and can also be implemented in MATLAB. Hence, a
natural direction for future research involves employing the Levenberg-Marquardt
algorithm for constrained optimization.

In general, to improve the robustness of the results, it is recommended that a
nonlinearly constrained optimization be applied (Forst and Hoffmann, 2010). From
our experience, the trust-region approach for constrained minimization (Sun and
Yuan, 2006; Moré and Sorensen, 1983; Wu and Wu, 1991) is well suited for the
task. The constrained optimization problem with the objective function defined in
Eq. (3.34) and nonlinear inequality constraints is written as:

F (a, b, c, q)→ min ;

log q − a(ηi − b)c ≤ 0 , i = 1, . . . , I ;

{a, b, c, q} ∈ S(4) ,

(3.38)
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where the constraints domain S(4) is defined as:

S(4) =
{
{a, b, c, q} ∈ R4

∣∣ a, c, q ∈ (0, +∞); b ∈ (bmin, η1]
}
. (3.39)

The system of inequality constraints is evident from the definition of the estimate
ε̂(η) of the ACER function, given by Eqs. (3.15) or (3.20), as it follows that for
all η holds ε̂(η) ≤ 1. This implies that under the assumption we made on the
functional representation of the ACER in Eq. (3.30), ∀ i = 1, . . . , I log ε̂(ηi) =
log q − a(ηi − b)c ≤ 0.

The bounds, defined by the constraints domain S, for the values of a, c and q are
evident. These parameters should remain positive to ensure that the properties of
the cumulative distribution function defined by Eq. (3.11) are fullfilled. In addition,
it was reported by Karpa and Naess (2013) that the c value can be further bounded.
Based on the underlying statistics of environmental data, particularly of wind speed
data, it appears to be reasonable to restrict the range of the c values to the interval
1 ≤ c ≤ 3. Finally, regarding the margins of the b value, the right bound is defined
by the tail marker η1, which implies that in this case ∀ η ≥ η1, the difference
(η − b) remains non-negative. The left end point of the location parameter b is,
generally speaking, unlimited; therefore, the bmin value can be set to −∞. However,
in our research, we used the value that also reflects the underlying statistics of the
observed data, namely, the minimal possible value of the considered process, which
is bmin = 0 in the case of wind speeds.

Scrutiny of the tail representation of the ACER function and the objective
function in Eq. (3.34) ascertains that if b and c are fixed constants, the optimization
problem reduces to a standard weighted linear regression problem of the form:

yi = −a xi + log q, (3.40)

with the corresponding mean square error function:

F (a, q; b, c) =

I∑
i=1

w′i
(
yi − log q + a xi

)2
, (3.41)

where yi = log ε(ηi) and xi = (ηi− b)c, i = 1, . . . , I. Thus, with both b and c fixed,
the optimal values of a and q are found using closed-form weighted linear regression
formulas in terms of normalized weights w′i derived from Eq. (3.35), yi and xi, cf.,
e.g., Ryan (2008); Carroll and Ruppert (1988):

a∗(b, c) = −

I∑
i=1

w′i(xi − x)(yi − y)

I∑
i=1

w′i(xi − x)2

= − Cov(x, y)

Var(x)
,

(3.42)

and

log q∗(b, c) = y + a∗(b, c)x, (3.43)
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where x =
I∑
i=1

w′i xi with a similar definition of y, and as it is observed after

the second equal sign in Eq. (3.42), Cov(·, ·) and Var(·) are the weighted sample
covariance and variance, respectively.

Now, the nonlinear optimization procedures are to be applied for finding the op-
timal values of the parameters b and c. We substitute the expressions in Eqs. (3.42)
and (3.43) into the objective function in (3.41) such that the modified mean square
error function to be minimized takes the following form:

F̃ (b, c) = F
(
a∗(b, c), b, c, q∗(b, c)

)
= Var(y)− Cov2(x, y)

Var(x)
, (3.44)

The Levenberg-Marquardt method may now be applied to the function F̃ (b, c)
to determine the optimal b∗ and c∗. In the present research, the interior-point
approach to constrained minimization (Byrd et al., 2000; Waltz et al., 2006) was
also used for this purpose. The optimization problem with bound constraints only
is stated as: {

F̃ (b, c)→ min ,

bmin < b ≤ η1 , 0 < c < +∞ .
(3.45)

The same considerations for the lower and upper bounds of the b and c values,
which were previously discussed, are relevant here. It is also possible to subject the
minimization to the nonlinear inequalities of the form

y − Cov(x, y)(x− xi)/Var(x) ≤ 0 , i = 1, . . . , I , (3.46)

which emerges from the corresponding set of constraints presented in (3.38) by
replacing log q and a with the corresponding expressions from Eqs. (3.42) and
(3.43). The use of this set of nonlinear inequality constraints induces a direction for
further study. However, the minimization problem (3.45) with bound constraints
only works well and thus far appears to be robust. The final step is now to apply
Eqs. (3.42) and (3.43) to find the optimal a∗ and q∗.

As a final comment, it is worth pointing out that optimal values of the parame-
ters a, b, c and q may also be determined using a sequential quadratic programming
(SQP) method incorporated in the NAG Numerical Library (Numerical Algorithms
Group, 2010). Research on the efficiency of this toolbox for the described problem
is to be performed in the future.

3.4.2 The General case

Thus far, we have analysed the class of parametric functions presented in Eq. (3.30)
as the possible sub-asymptotic parametric forms of εk(η). This approach was based
on the assumption that the asymptotic distribution is of the Gumbel type. In this
subsection, the general case will be discussed.

Although the extension of the asymptotic Gumbel case to the proposed class
of sub-asymptotic distributions was fairly evident, this is not equally so for the
general case. Naess et al. (2013) assumed that the class of parametric functions
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required for predicting the extreme values for the general case can be modelled
on the relation between the Gumbel distribution and the so-called generalized
extreme value distribution (GEV), cf. Leadbetter et al. (1983); Coles (2001); Reiss
and Thomas (2007). This approach leads to the assumption that for independent
data in the general case, the ACER function ε1(η) can be expressed in the tail
asymptotically as

ε1(η) '
η→∞

[
1 + ξ

(
a(η − b)

)]−1/ξ

(3.47)

where a > 0, b, are ξ are constants such that
[
1 + ξ

(
a(η − b)

)]
> 0. This represen-

tation follows from the explicit form of the generalized extreme value distribution,
expressed by Eq. (2.12) in Section 2.1. For the dependent data, it is reasonable
to use a type of approximation similar to that for the asymptotic Gumbel case,
cf. Section 3.4.1. In this case, the sub-asymptotic part of the tail of the ACER
function is assumed to follow a curve largely of the form

[
1 + ξ

(
a(η− b)c

)]−1/ξ for
the considered range of η : η ≥ η1 ≥ b, where a > 0, c > 0, ξ > 0 and b are proper
constants (Naess et al., 2013). The tail marker η1 is chosen to correspond to the
beginning of regular tail behaviour of the ACER function on a logarithmic scale as
before, cf., Section 3.4.1. Hence, it is assumed that

εk(η) = qk(η)
[
1 + ξk

(
ak(η − bk)ck

)]−1/ξk
, η ≥ η1 ≥ bk , (3.48)

where the function qk(η) is slowly varying compared with the function[
1 + ξk

(
ak(η − bk)ck

)]−1/ξk
and ak > 0, ck > 0, ξk > 0 and bk are suitable con-

stants that, generally speaking, are dependent on k.
It is worth considering two special cases of the general expression in Eq. (3.48).

The values qk(η) ≡ 1 and c = 1 correspond to the asymptotic limit given by (3.47).
When ξk = 0, the general expression (3.48) degenerates to the asymptotic Gumbel
case qk(η) exp

{
− ak(η − bk)ck

}
presented in Eq. (3.28).

An alternative equivalent form to Eq. (3.48) is to assume that

εk(η) =
[
1 + ξk

(
ak(η − bk)ck + dk(η)

)]−1/ξk
, η ≥ η1 ≥ bk , (3.49)

where the function dk(η) is weakly varying compared with the function
ak(η − bk)ck . The equivalence between Eqs. (3.48) and (3.49) can easily be de-
rived by setting the value of ξk to zero in both equations, causing degeneration to
the asymptotic Gumbel case (3.28). Therefore, it may be simply concluded that
dk(η) = log qk(η). However, for estimation purposes, the form given by Eq. (3.48)
is preferable because it leads to simpler estimation procedures, which will be dis-
cussed later.

For practical recognition of the ACER functions given by (3.48), it is convenient
to assume that the unknown function qk(η) varies sufficiently slowly to be replaced
by a constant. In general, qk(η) is not constant, but its variation in the tail region
is assumed to be sufficiently slow to allow for its replacement by a constant. Hence,
as in the Gumbel case, it is essentially assumed that qk(η) can be replaced by a
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constant qk for the considered range of η : η ≥ η1 with an appropriately chosen
tail marker η1. Again, for simplicity of notation, the index k will be suppressed.
Consequently, the ACER function can now be written as

ε(η) = q
[
1 + ã(η − b)c

]−γ
, η ≥ η1 ≥ b , (3.50)

where ã = ξa, γ = 1/ξ.
Prior to the data analysis, the tail marker η1 is estimated. The value chosen for

η1 is identified from visual inspection of the plot
(
ηi, log ε̂(ηi)

)
, i = 1, . . . , I, and it

corresponds to the beginning of regular tail behaviour as discussed in Section 3.4.1.
However, note that the problem of defining the tail marker η1 for time series with
heavy tails requires further scrutiny in future research.

The parameters q, ã, b, c and γ are determined as the solution of the log-level
optimization problem, as for the Gumbel case. The mean square error function for
the estimated ε̂(η) to be minimized in the general case is written as

F (ã, b, c, q, γ) =

I∑
i=1

w′i

[
log ε̂(ηi)− log q + γ log

(
1 + ã(ηi − b)c

)]2
, (3.51)

where the normalized weight factors w′i = wi/
∑I
j=1 wj are defined as previously

through Eq. (3.35). Because the summation in Eq. (3.51) has to stop before CI−(η)
becomes negative for the very tail of the data, the condition (3.33) has to be
previously applied, as it was for the Gumbel case.

It is now possible to proceed to the problem of finding the optimal parameters of
(3.51). An option for estimating the five parameters ã, b, c, q, γ is again to use the
Levenberg-Marquardt least squares optimization method Naess et al. (2013). As
previously discussed for the Gumbel case (see Section 3.4.1), it is also reasonable
to apply the constrained minimization based on the trust-region approach, cf. Sun
and Yuan (2006); Moré and Sorensen (1983), and on the interior-point approach
for constrained minimization (Byrd et al., 2000; Waltz et al., 2006). In this case,
the optimization problem with only the bound constraints is written as:{

F (ã, b, c, q, γ)→ min ,

{ã, b, c, q, γ} ∈ S(5) ,
(3.52)

where the constraint domain S(5) is similar to the one given by Eq. (3.39) and is
now defined as:

S(5) =
{
{ã, b, c, q, γ} ∈ R5

∣∣ ã, c, q, γ ∈ (0, +∞); b ∈ (bmin, η1]
}
. (3.53)

Note that for future research on the general case, it would be relevant, inter
alia, to include the nonlinear inequality constrain of the form log q − γ log

(
1 +

ã(ηi − b)c
)
≤ 0.

In addition, the estimation problem can be simplified by reducing it to a stan-
dard weighted linear regression problem. It is easy to see that for the fixed val-
ues ã, b and c in Eq. (3.51), the optimal values of γ and log q are found using
closed-form weighted linear regression formulas in terms of wj , yi = log ε̂(ηi)
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and xi = 1 + ã(ηi − b)c (Naess et al., 2013). Here, the optimal values of γ and
log q are given by relations analogous to Eqs. (3.42) and (3.43), respectively. To
calculate the final optimal set of parameters, the Levenberg-Marquardt method,
or other methods that tolerate constraints, may then be used on the function
F̃ (ã, b, c) = F

(
ã, b, c, q∗(ã, b, c), γ∗(ã, b, c)

)
to find the optimal values ã∗, b∗ and

c∗. Then, the corresponding γ∗ and q∗ can be calculated.
The NAG Numerical Library (Numerical Algorithms Group, 2010) may also

be used to apply a sequential quadratic programming method to find the optimal
parameters ã∗, b∗, c∗, q∗ and γ∗.

3.4.3 The T-year return level by the ACER

As discussed in Section 2.1.2, the T -year return level ηTyr is a threshold that is
exceeded by the observation in the given year (or any other period) once in T years
(or any other periods), that is, with probability 1/T :

Prob{X > ηTyr} =
1

T
(3.54)

Thus, evidently,

F 1yr(ηTyr) = 1− 1

T
, (3.55)

where F 1yr(η) denotes the distribution function of the yearly extreme value.
Returning to the ACER function, it is observed in Section 3.2 and from

Eq. (3.11) that the cumulative distribution can be effectively expressed as:

F (η) = Fk(η) = exp
(
− (N − k + 1) εk(η)

)
. (3.56)

The definition of the average conditional exceedance rate (3.10) implies that the
F (η) here is the distribution of the extreme value of X(t) during the observation
period

(
0, T

)
because the expression εk(η) · (N − k + 1) is the expected effective

number of exceedances subjected to k− 1 immediately preceding non-exceedances
and recorded for the duration

(
0, T

)
. Now, let us assume that the time interval(

0, T
)
takes ny observation years (or corresponding periods). In this case, over

the time of one year, the expected effective number of conditional exceedances is
εk(η) · (N − k + 1)/ny. Therefore,

F 1yr(η) = exp

(
− (N − k + 1)

ny
εk(η)

)
. (3.57)

After matching Eqs. (3.55) and (3.57), it clearly emerges that

εk(ηTyr) = − ny
(N − k + 1)

log

(
1− 1

T

)
. (3.58)

Here, the precise explicit form of the T -year return level ηTyr expressed in terms
of the fitted ACER function for the asymptotic Gumbel case is:

ηTyr =

[
1

a
log

(
− q (N − k + 1)

ny log(1− 1/T )

)]1/c

+ b , (3.59)
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with the estimated optimal parameters a, b, c and q in Eq. (3.32). In the general
case, the T -year return level ηTyr is expressed as:

ηTyr =

{
1

ã

[(
− ny log(1− 1/T )

q (N − k + 1)

)−1/γ

− 1

]}1/c

+ b , (3.60)

where the parameters ã, b, c, q and γ are optimally estimated for Eq. (3.50).

3.4.4 Estimation of the 95% confidence interval

After we have determined the T -year return level of the extreme value distribution
given by a particular ACER function as provided by the fitted parametric curve,
the 95% confidence interval of the deep tail quantile has to be estimated.

To obtain a reasonable and sufficiently precise estimate of the confidence inter-
val, a bootstrapping method is recommended (Efron and Tibshirani, 1993). How-
ever, this procedure cannot be applied to observed real data because, e.g., sampling
with replacement would demolish the dependence structure of the stochastic pro-
cess. Therefore, this method will be presented in the section on extreme value
prediction for synthetic data.

A simple first estimation of a confidence interval for the extreme value predicted
using the parametric ACER function was proposed by Naess and Gaidai (2009);
Naess et al. (2009). It starts from re-anchoring the empirical confidence band to the
optimally fitted curve. For this purpose, the individual confidence intervals CI±(ηi)
for the point estimates ε̂(ηi) of the ACER function are centred on the fitted one,
that is:

CI±(ηi) = ε(ηi) ± τ ·
ŝ(ηi)√
R
, i = 1, . . . , I , (3.61)

where the ACER curve ε(ηi) is defined either by Eq. (3.32) or by Eq. (3.50).
Subsequently, in the work of Naess, Gaidai, and Batsevych (2009), the au-

thors perturbed the optimal values of each parameter linearly around their 5%-
neighborhood to construct a range of ACER curves. Only those curves that re-
mained within the re-anchored empirical 95% confidence interval were taken into
consideration. Evidently, each of the selected curves provides a prediction for the
extreme return level of interest. Thus, the ultimate values determine an optimized
confidence interval of the desired return value; see Naess and Gaidai (2009); Naess
et al. (2009, 2010).

Comparison of the described procedure with the results obtained using a non-
parametric bootstrapping method for the synthetic data revealed that the size of
the 95% confidence interval is underestimated in the first case. Therefore, the au-
thors attempted to eliminate this inconsistency in the length of the 95% confidence
band in their later research. Karpa and Naess (2013); Naess et al. (2013) hypothe-
sized that the class of parametric curves specified by Eq. (3.32) or by Eq. (3.50) fully
describes the behaviour of the ACER functions in the tail. Under this assumption,
corresponding parametric curves are fitted to the given set of points

(
ηi, CI

+(ηi)
)

and
(
ηi, CI

−(ηi)
)
for i = 1, . . . , I of the re-anchored confidence band (3.61). The
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same fitting procedure as described above in Section 3.4.1 is adopted to find the
optimal curve. Apparently, the points (3.61) are considered for levels ηi bounded
by the tail marker η1 and the condition given by Eq. (3.33) as before. Regarding
the selection the weight factors of the corresponding mean square error function,
the same weights as for the ACER optimization are used here. This appears to be
reasonable because as presented by Eq. (3.35), the weights give less significance to
more uncertain points in the tail as required. Furthermore, the fitted curves are
extrapolated to the level of interest and thereby provide the first estimate of a 95%
confidence interval of the predicted return level Naess et al. (2013). This procedure
appears to provide confidence intervals that are consistent in length but slightly
shifted compared with the results obtained using a non-parametric bootstrapping
method. A comparison of both these methods of estimating the confidence intervals
is presented in the section Section 3.5.1 on extreme value prediction for synthetic
data.

As a final point, it has been observed, in particular by Karpa and Naess (2013),
that the predicted return value is not very sensitive to the choice of tail marker η1,
provided it is chosen with some care. This property is easily recognized by looking
at the way the optimized fitting is performed. If the tail marker is in the appropriate
domain of the ACER function, the optimal fitted curve does not appreciably change
by moving the tail marker (Naess et al., 2013).

3.5 Numerical Illustrations

3.5.1 Monte Carlo analysis of synthetic independent wind data

In this section, we illustrate the performance of the ACER method and the estima-
tion of the 95% confidence interval. The extreme value statistics will be analysed by
application to synthetic data for which the exact extreme values can be calculated
(Naess and Clausen, 2001).

Let us consider 20 years of synthetic wind speed data with 100 observations
per year, amounting to 2000 data points. This is not a considerable amount of
data for detailed statistics; however, this case may represent a real situation in
which only a limited data sample is available. Therefore, it is crucial to utilize all
available data when providing extreme value estimates. As it will be shown, the
tail extrapolation technique provided by the ACER method performs better than
asymptotic methods such as POT or Gumbel.

As previously performed by Naess and Clausen (2001); Naess and Gaidai (2009),
we also assumed that the underlying normalized stochastic process X(t) is a sta-
tionary Gaussian process with a zero mean value and a standard deviation equal
to one. It was also assumed that the mean zero up-crossing rate ν+(0) is such that
the product ν+(0)T = 103, where T = 1 year. According to Naess and Clausen
(2001), this appears to be typical for the wind speed process. Using the Poisson
assumption and the Rice formula, see, for example, Naess and Moan (2012), the
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distribution of the yearly extreme value of X(t) is then calculated using the formula

F 1yr(η) = exp
{
−ν+(η)T

}
= exp

{
−ν+(0)T exp

(
−η

2

2

)}
= exp

{
−103 exp

(
−η

2

2

)}
,

(3.62)

where T = 1 year, ν+(η) is the mean up-crossing rate per year, and η is the scaled
wind speed. Using expression (3.62), the 100-year return period value η100yr is then
calculated as the solution to equation F 1yr(η100yr) = 1−1/100. Thus, the 100-year
value is η100yr = 4.80.

Extreme value analysis of wind data is generally performed based on the fact
that the peak events extracted from measurements of the wind speed process should
be separated by 3-4 days. This is done to obtain approximately independent data,
as required by the POT method. (Naess and Haug, 2010).

Accordingly, the Monte Carlo simulated peak event data to be used for the
synthetic example were generated from the following extreme value distribution,
which was also used by Naess and Clausen (2001):

F 3d(η) = exp

{
−q exp

(
−η

2

2

)}
, (3.63)

where q = ν+(0)T = 10, which corresponds to T = 3.65 days, such that F 1yr(η) =(
F 3d(η)

)100. This implies the necessity to generate 100 data points from one year;
thus, in total (i.e., in 20 years), the data amounted to 2000 data points.

To obtain an idea about the performance of the ACER, POT and Gumbel
methods, 200 independent 20-year Monte Carlo simulations were conducted by
analogy with the work by Naess, Gaidai, and Karpa (2013) as follows. For the
ACER method, it was naturally decided to analyse data with no conditioning
on previous observations. Because the generated data points (i.e., T = 3.65 days
maxima) are independent, the ACER function εk(η) is independent of k. Therefore,
we set k = 1. Because the 200 independent simulations were performed in a loop and
because there was no capability to analyse each sample for the purposes of defining
the tail marker η1, it was decided to fix this variable to the level 2.3. This decision
was based on the analysis of several independent 20-year simulations. To estimate
a 95% confidence interval for each estimated value of the ACER function ε1(ηi)
for the chosen range ηi, i = 1, . . . , I of η values, the required standard deviation
ŝk(η) in Eq. (3.25) was based on 20 estimates of the ACER function using the
yearly data. This provided a 95% confidence band on the optimally fitted curve
based on 2000 data points. From these data, the predicted 100 year return level
was obtained using Eq. (3.59) from the relation ε̂1(η100yr) = − log(0.99)/100. A
non-parametric bootstrapping method was also used to estimate a 95% confidence
interval based on 1000 resamples of size 2000. For this purpose, we used the Matlab
(2009) Statistics Toolbox routine bootstrp to sample with replacement from 2000
Monte Carlo simulated T = 3.65 days peak events. The 100-year return level η100yr

was estimated using the ACER method for each of the 1000 replicate samples.
The POT prediction of the 100-year return level was based on using the max-

imum likelihood estimates (MLE) of two parameters of the generalized Pareto
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distribution for a specific choice of threshold. One of the unfortunate features of
the POT method is that the predicted 100-year value may vary significantly with
the choice of the threshold u0 (Karpa and Naess, 2013; Naess et al., 2013), There-
fore, for the synthetic data, we also followed the standard recommended procedures
for identifying a suitable threshold (Coles, 2001). Again, because 200 independent
Monte Carlo simulations were performed in a loop, it was decided to fix the thresh-
old at the level u0 = 3. On average, this choice retains 200 exceedances over the
threshold out of 2000 data points, which is sufficient to provide the MLE (Braun-
stein, 1992). The decision was based on the analysis of a mean residual life plot, as
shown in Figure (3.6).
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Figure 3.6: Mean residual life plot for 20 years Monte Carlo simulated 3.65 days
wind peaks.

The 95% confidence interval was obtained using the non-parametric bootstrap
method as it was done for the ACER method. The Matlab (2009) gpfit routine for
the generalized Pareto distribution was applied to 1000 samples that had been ob-
tained by sampling with replacement from 2000 Monte Carlo simulated data. Here,
for the given threshold u0 = 3, we produced a sample of 1000 POT predictions,
from which the 95% CI was estimated. In addition, for comparison purposes, the
95% confidence interval was also estimated from the parametrically bootstrapped
PDF of the generalized Pareto estimate for the given threshold u0 = 3. A sample
of 1000 data sets was used.

Note that under the assumptions we made for this model and the fact that the
normal distribution belongs to the Type I domain of attraction (Leadbetter et al.,
1983), the true asymptotic distribution of maxima is the Gumbel extreme value
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distribution (2.7). This means that the shape parameter of the GEV distribution
in (2.12) is γ = 0, which immediately implies that the true asymptotic distribution
of threshold excesses is the exponential distribution of the form (2.30). The POT
method used here, however, is based on adopting the generalized Pareto distribu-
tion Wγ(y), Eq. (2.28). The reason is simply that this is the recommended proce-
dure (Coles, 2001), which is somewhat unfortunate but understandable because the
GP distribution provides greater flexibility in terms of curve fitting (Naess et al.,
2013). The correct asymptotic distribution of exceedances was also used on this ex-
ample. However, poor results for the estimated return period values were obtained.
The price to pay for using the GP distribution is that the estimated parameters
may easily lead to an asymptotically inconsistent extreme value distribution.

The 100 year return level predicted by the Gumbel method was based on us-
ing the method of moments for parameter estimation on the sample of 20 yearly
extremes. This choice of estimation method is due to the small sample of extreme
values. The 95% confidence interval was obtained from the parametrically boot-
strapped PDF of the Gumbel prediction. This was based on a sample of 10,000 data
sets of 20 yearly extremes. The results obtained using the method of moments were
compared with the corresponding results obtained using the maximum likelihood
method. Although there were individual differences, the overall picture was one of
very good agreement.

Table (3.1) compares the predicted values and confidence intervals for a selection
of 20 over 200 simulated cases together with average values. It is observed that
the average of the 200 predicted 100 -year return levels is slightly better for the
ACERmethod than for both the POT and the Gumbel methods. More significantly,
however, the 100 year return levels predicted by the ACER method vary from 4.44
to 5.22, whereas the same for the POTmethod vary from 4.12 - 5.62; for the Gumbel
method based on the method of moments, the range is 4.27 - 5.77, and the range is
4.26 - 5.41 for the maximum likelihood estimation approach. Hence, in this case, the
ACER method performs consistently better than both of these methods. It is also
observed from the estimated 95% confidence intervals that the ACER method, as
implemented in our research, provides higher accuracy than the other two methods.
Finally, note that the confidence intervals of the 100 year return levels estimates
by the ACER method obtained using either the simplified extrapolated confidence
band approach or by non-parametric bootstrapping are very similar except for a
slight mean shift. As a final comparison, the 200 bootstrapped confidence intervals
obtained for the ACER method missed the target value η100yr = 4.80 only three
times; for the Gumbel method, six times; and for the POT method, the number of
misses was 37 times for non-parametric bootstrapping and 35 times for parametric
bootstrapping.

An example of the ACER plot and the results obtained for one set of data are
presented in Figure (3.7). The predicted 100-year value is 4.85 with a predicted 95%
confidence interval of (4.45, 5.09). Figure (3.8) presents POT predictions based on
MLE for different thresholds in terms of the number n of data points above the
threshold. The predicted value is 4.7 at n = 204, whereas the 95% confidence inter-
val is (4.25, 5.28). The same data set as in Figure (3.7) was used. This was also used
for the Gumbel plot shown in Figure (3.9). In this case, the predicted value based
on the method of moments (MM) is η100yr

MM = 4.75, with a parametric bootstrapped
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3. The Average Conditional Exceedance Rates (ACER) Method. Univariate
Case

95% confidence interval of (4.34, 5.27). Prediction based on the Gumbel-Lieblein
BLUE method (GL), cf., e.g., Cook (1985), is η100yr

GL = 4.73, with a parametric
bootstrapped 95% confidence interval equal to (4.35, 5.14).
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Figure 3.7: Synthetic data ACER ε̂1, Monte Carlo simulation (∗∗∗); optimized curve
fit (—); empirical 95% confidence band (- -); optimized confidence band (· · ··). Tail
marker η1 = 2.3

3.5.2 Wind speeds from 5 stations

Extreme wind speed prediction is an important issue for designing structures ex-
posed to weather variations. Significant efforts have been devoted to the problem of
predicting extreme wind speeds on the basis of data measured by various authors
over several decades, see, for example, Perrin et al. (2006); Cook and Harris (2004);
Harris (2001); Palutikof et al. (1999); Naess (1998a); Cook (1982) for extensive ref-
erences to previous works.

In this section, we present the analysis of real wind speed data using the ACER
method to obtain numerical estimates of extreme wind speeds. Measurements were
provided by the Norwegian Meteorological Institute (2012) and downloaded from
the Climate Data Web Services of the Institute. The hourly maximum of the 3 s
wind gust (10 meters above the ground) was analysed for five weather stations off
the coast of Norway: at A – Torsvåg Fyr weather station (station number 90800),
at B – Hekkingen Fyr station (no.88690), at C – Nordøyan Fyr (station number
75410), at D – Sula station (no. 65940) and at E – Obrestad Fyr weather station
(no. 44080). Figure (3.10) shows the geographical position of each station.
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3.5. Numerical Illustrations
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Figure 3.8: The point estimate η̃100yr of the 100-year return period value based
on 20 years synthetic data as a function of the number n of data points above
threshold. The return level estimate = 4.7 at n = 204.

Data were recorded for 13 years (1997-2010) at Torsvåg, for 14 years (1998-2012)
at Hekkingen (station B), for 13 years (1999-2012) at station C, for 12 years (1998-
2010) at Sula (station D), and for 16 years (1994-2010) at station E. The objective
of the analysis is to estimate a 100-year return level of wind speed. Variations in
the wind speed caused by seasonal variations in the wind climate during the year
makes the wind speed a non-stationary process on the scale of months. Moreover,
due to global climate change, yearly statistics may vary on the scale of years. The
latter is, however, a slow process, and for the purpose of long-term prediction, we
assume here that a quasi-stationary model of the wind speeds applies within a time
span of 100 years. This may not be entirely true, however (Naess et al., 2013). For
analysis of the data with the ACER method using the Matlab-based standalone
downloadable application for general use that has been created for this purpose
(Karpa, 2012), the data series were divided into one-year records. In this way,
the standard deviation of the ACER function estimates can be calculated fairly
accurately.

Figures (3.5.2) - (3.13) present plots of the time series observed from the
Torsvåg, Sula and Obrestad stations, respectively.

Note that the samples from the Torsvåg Fyr and Obrestad Fyr stations contain
outlying observations, such as 45.3 m/s in June 06, 1997; 43.7 m/s in May 10,
2001; and 60.8 m/s in September 09, 2008 for the Obrestad Fyr station and 45.3
m/s in July 12, 1998 and July 31, 1999 for the Torsvåg Fyr station. Such wind
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Case
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Figure 3.9: The point estimate η̃100yr of the 100-year return period value based on
20 years synthetic data. Lines are fitted by the method of moments – solid line
(—) and the Gumbel-Lieblein BLUE method – dash-dotted lite (– · –). The return
level estimate by the method of moments is 4.75, by the Gumbel-Lieblein BLUE
method is 4.73

speeds are clearly spurious for the corresponding time periods and latitudes. More-
over, observations from the weather stations in the close vicinity of Obrestad Fyr
confirm that no heavy storm occurred during the period in question, whereas no
information from the stations in the vicinity of Torsvåg Fyr is available. Therefore,
the outliers from the Obrestad Fyr station have to be rejected, whereas the out-
liers from Torsvåg Fyr are retained, primarily to show the invariance of the ACER
method to observations of this type.

In Figures (3.5.2) - (3.18), ε̂k(η) is plotted versus wind speeds η/σ for different
values of k for five stations. The figures reveal that there is a significant dependence
between consecutive data, which is clearly reflected in the effect of conditioning on
previous data values.

Notably, the dependence effect is to some extent already captured by ε̂2, that
is, by conditioning only on the value of the previous data point. Subsequent condi-
tioning on more than one previous data point does not lead to substantial changes
in ACER values, particularly for tail values. On the other hand, to fully elucidate
the dependence structure of these data, it was necessary to carry the conditioning
process to higher orders of k. It is clearly observed that the dependence between
the data largely accounted for by k = 48 because there is a marked degree of
convergence in the tail of ε̂k(η) for k ≥ 48. Note that k = 48 clearly corresponds
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3.5. Numerical Illustrations

to exceedances separated by two days for hourly observations. Here, ε̂96, that is,
four-days declustered data, is considered to represent the final converged results.
This means that ε̂96 ≈ ε̂k in the tail for ∀k > 96; thus, for any practical application,
there is no need to consider conditioning of an even higher order than 96.

Clearly, the most important information for the prediction of a 100-year value
is provided by the far tail the ACER function. Therefore, from a practical perspec-
tive, for extreme value estimation, ε̂1(η) can be used. The reason for this is that
Figures (3.5.2) - (3.18) reveal that all of the ACER functions converge in the tail.

Figure 3.10: Map of Norway with marked weather stations in decreasing order from
the top: A – Torsvåg Fyr weather station (station number 90800); B – Hekkingen
Fyr (88690); C – Nordøyan Fyr (75410); D – Sula station (65940); E – Obrestad
Fyr (44080).
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3. The Average Conditional Exceedance Rates (ACER) Method. Univariate
Case

Figure 3.11: Observations from Torsvåg Fyr station (A)

Figure 3.12: Observations from Sula station (D)
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3.5. Numerical Illustrations

Figure 3.13: Observations from Obrestad Fyr station (E)

This clearly demonstrates the power of an ACER function plot as a diagnostic tool
to determine the value of k required for extreme value estimation in a particular
case. Although there are significant dependence effects for the lower wind speeds,
for the extreme wind speeds, these effects are largely absent. This makes it possible
to choose k = 1, which makes considerably more data available for estimation, with
a possible reduction of uncertainty in estimation as a result.

In Table (3.2), the results for the parametric estimation of the 100-year return
value using the ACER program (Karpa, 2012) and its 95% CI are listed together
with the optimal parameters q, b, a and c of the ε1(η) curve.

Note that the estimated values of the shape parameter c are typical for the
underlying statistics of wind speeds for Norway considered in the present work.

Figures (3.5.2) - (3.23) present the results from the parametric estimation of
the return value and its 95% CI for ε̂1(η) for each station.

The annual maxima method is applied to the wind gust data to compare the
estimated 100-year return level values. The Gumbel estimate η̂100yr is based on
the method of moments (MM) and the Gumbel-Lieblein BLUE method (GL),
cf., e.g., Cook (1985). A computer program was written in the Matlab language
to implement both methods. Figures (3.5.2) - (3.28) present the observed yearly
extremes extracted from the hourly data together with fitted straight lines on the
Gumbel probability plot. Here, the 100-year return level values for the first station
with outliers included are η̂100yr

MM = 51.33 m/s and η̂100yr
GL = 51.57 m/s, whereas in

the case of rejected outlying observations, η̂100yr
MM = 44.31 m/s and η̂100yr

GL = 45.84

m/s. For the Hekkingen Fyr and Nordøyan Fyr stations, η̂100yr
MM = 58.1 m/s with
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Figure 3.14: A - Torsvåg Fyr wind speed statistics, 13 years of hourly data; out-
liers are included. Comparison between ACER estimates for different degrees of
conditioning; σ = 5.30 m/s.
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Figure 3.15: B - Hekkingen wind speed statistics, 14 years of hourly data. Compar-
ison between ACER estimates for different degrees of conditioning; σ = 5.72 m/s.
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Figure 3.16: C - Nordøyan wind speed statistics, 13 years of hourly data. Compar-
ison between ACER estimates for different degrees of conditioning; σ = 6.01 m/s.
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Figure 3.17: D - Sula wind speed statistics, 12 years of hourly data. Comparison
between ACER estimates for different degrees of conditioning; σ = 5.49 m/s.
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Figure 3.18: E - Obrestad Fyr wind speed statistics based on 16 years of hourly
data. Comparison between ACER estimates for different degrees of conditioning;
σ = 5.47 m/s.

Station η̂100yr 95% CI (η̂100yr)
optimal parameters

q∗ b∗ a∗ c∗

A - Torsvåg;
incl. outliers

47.5 (42.1, 50.7) 0.44 9.02 0.1 1.33

A - Torsvåg;
without outliers

47.2 (39.9, 50.6) 0.47 8.49 0.09 1.36

B - Hekkingen 60.5 (53.1, 64.9) 0.27 0 0.008 1.78
C - Nordøyan 51.9 (48.4, 53.1) 1.02 0 0.008 1.9
D - Sula 46.3 (43.4, 47.8) 0.58 0 0.005 2.07
E - Obrestad 48.4 (43.2, 50.7) 0.29 12.34 0.13 1.27

Table 3.2: Results of the optimization procedure used to estimate the 100-year
return value by the ACER method for ε̂k(η) with k = 1 for all weather stations.
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3.5. Numerical Illustrations

3 4 5 6 7 8 9 10

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

η/σ

A
C

E
R

1(η
)

8.95

Figure 3.19: A - Torsvåg Fyr: plot of ε̂1(η) on a log10 scale vs. η/σ (*); optimized
curve fit (—); empirical 95% CI (- -); optimized 95% CI (· · ··). Tail marker η1 =
2.07σ; σ = 5.30 m/s.
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Figure 3.20: B - Hekkingen Fyr: plot of ε̂1(η) on a log10 scale vs. η/σ (*); optimized
curve fit (—); empirical 95% CI (- -); optimized 95% CI (· · ··). Tail marker η1 =
4.02σ; σ = 5.72 m/s.
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Figure 3.21: C - Nordøyan Fyr: plot of ε̂1(η) on a log10 scale vs. η/σ (*); otimized
curve fit (—); empirical 95% CI (- -); optimized 95% CI (· · ··). Tail marker η1 =
2.08σ; σ = 6.01 m/s.
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Figure 3.22: D - Sula: plot of ε̂1(η) on a log10 scale vs. η/σ (*); optimized curve
fit (—); empirical 95% CI (- -); optimized 95% CI (· · ··). Tail marker η1 = 2.36σ;
σ = 5.49 m/s.
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Figure 3.23: E - Obrestad Fyr: plot of ε̂1(η) on a log10 scale vs. η/σ (*); optimized
curve fit (—); empirical 95% CI (- -); optimized 95% CI (· · ··). Tail marker η1 =
2.5σ; σ = 5.47 m/s.

η̂100yr
GL = 60.63 m/s and η̂100yr

MM = 51.5 m/s with η̂100yr
GL = 55.5 m/s, respectively.

Finally, for the Sula and Obrestad Fyr stations, the 100-year return level values
are η̂100yr

MM = 48.66 m/s with η̂100yr
GL = 52.9 m/s and η̂100yr

MM = 48.59 m/s with
η̂100yr
GL = 53.79 m/s, respectively.

Although the Gumbel-Lieblein BLUE method is considered to be one of the best
available conventional Gumbel methods, the application of the GL method requires
tables of the BLUE coefficients that are not available for annual data with a sample
size N > 25, cf., Harris (2001). The observed results reveal the sensitivity of this
method to outliers, as well as for the method of moments. Additionally, note that
the Gumbel-Lieblein BLUE method appears to have a tendency to overestimate
the predicted return level values, whereas the method of moments appears to be
reasonably stable for the studied sets of data (Karpa and Naess, 2013).

The POT method was also applied to the wind gust time series. Following
WAFO-group (2000), the data were declustered beforehand. Declustering was per-
formed in such a way that peak events separated by 3.5 days or more were extracted
from the measured data and selected for the analysis to achieve approximate inde-
pendence of the exceedances (Naess, 1998b). Figures (3.5.2) - (3.33) present POT
estimates η̃100yr for different threshold numbers based on the MLE, cf., e.g., Coles
(2001). Estimations were obtained using the Matlab (2009) Statistics Toolbox rou-
tine gpfit. It is interesting to observe the unstable characteristics of the estimates
over a range of threshold values, whereas they are quite stable on either side of this
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Figure 3.24: A - Torsvåg Fyr: the point estimate η̂100yr of the 100-year return
period value by the Gumbel method. Lines are fitted by the method of moments
(—) and the Gumbel-Lieblein BLUE method (– · –); σ = 5.30 m/s.
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Figure 3.25: B - Hekkingen Fyr: the point estimate η̂100yr of the 100-year return
period value by the Gumbel method. Lines are fitted by the method of moments
(—) and the Gumbel-Lieblein BLUE method (– · –); σ = 5.72 m/s.
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Figure 3.26: C - Nordøyan Fyr: the point estimate η̂100yr of the 100-year return
period value by the Gumbel method. Lines are fitted by the method of moments
(—) and the Gumbel-Lieblein BLUE method (– · –); σ = 6.01 m/s.
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Figure 3.27: D - Sula: the point estimate η̂100yr of the 100-year return period value
by the Gumbel method. Lines are fitted by the method of moments (—) and the
Gumbel-Lieblein BLUE method (– · –); σ = 5.49 m/s.
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Figure 3.28: E - Obrestad Fyr: the point estimate η̂100yr of the 100-year return
period value by the Gumbel method. Lines are fitted by the method of moments
(—) and the Gumbel-Lieblein BLUE method (– · –); σ = 5.47 m/s.

range, providing predictions that are more in line with the results from the other
two methods.

In Tables (3.3) - (3.4), the 100-year return period values are listed together
with the predicted 95% confidence intervals for all methods and each station. For
the case of the annual maxima method, the 95% confidence intervals are estimated
from a parametric bootstrapping of the Gumbel estimates based on a sample of
10,000 data sets of 13, 14, 13, 12 and 16 yearly extremes. For the POT method, the
bootstrapped 95% confidence intervals are estimated using Matlab (2009) Statistics
Toolbox routine bootstrp. Ten thousand samples are generated by sampling with
replacement from the observed exceedances above a high threshold.

3.5.3 Bootstrapping for ACER

In this section, we discuss the performance of the ACER scheme in estimating
the 95% CI on the basis of the observed real environmental data. Previously, the
100-year return wind speeds from the five weather stations and their confidence
intervals were determined through ACER analysis with different degrees of condi-
tioning. As mentioned in Section 3.4.4, estimation of the 95% CI for the predicted
extreme value by the extrapolation of confidence bands is a rather simple first
estimation of a confidence interval. Of course, the bootstrapping methods would
provide more reasonable and accurate estimates. However, this primarily applies
to synthetic data with a known underlying distribution because then a bundle of
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3.5. Numerical Illustrations

90 100 110 120 131 140 150 160 170 180
9

9.1

9.2

9.3

9.4

9.5

n

η10
0y

r /σ
9.32

Figure 3.29: A - Torsvåg Fyr, POT approach: the point estimate η̃100yr of the
100-year return period value as a function of the number n of data points above
threshold. The return level estimate 49.41 m/s is at n = 131; σ = 5.30 m/s.
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Figure 3.30: B - Hekkingen Fyr, POT approach: the point estimate η̃100yr of the
100-year return period value as a function of the number n of data points above
threshold. The return level estimate 53.48 m/s is at n = 185; σ = 5.72 m/s.
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Figure 3.31: C - Nordøyan Fyr, POT approach: the point estimate η̃100yr of the
100-year return period value as a function of the number n of data points above
threshold. The return level estimate 47.8 m/s is at n = 161; σ = 6.01 m/s.
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Figure 3.32: D - Sula, POT approach: the point estimate η̃100yr of the 100-year
return period value as a function of the number n of data points above threshold.
The return level estimate 43.42 m/s is at n = 120; σ = 5.49 m/s.
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Figure 3.33: E - Obrestad Fyr, POT approach: the point estimate η̃100yr of the
100-year return period value as a function of the number n of data points above
threshold. The return level estimate 46.1 m/s is at n = 151; σ = 5.47 m/s.

replicate time series can be generated and the corresponding ACER functions can
be estimated and extrapolated to the extreme value levels. Nevertheless, it is im-
portant to examine the possible methods for constructing confidence intervals from
the bootstrap for the observed data. Parametric and non-parametric models will
be considered to compare the results.

Non-parametric bootstrap

To perform the non-parametric bootstrap in our case, it is natural to use a sampling
with replacement from the set of observed data Efron and Tibshirani (1993). The
scheme implies an equal occurrence probability for any observation, which means
that the observations are independent. This inevitably involves that only the case
of ACER analysis with no conditioning, e.g. εk(η) with k = 1, and its results can
be considered here.

To perform the analysis, 1000 replicated samples were generated for each of the
five weather stations. Note that for clarity, the values of the tail marker η1 and
the parameter δ were kept the same as for the ACER analysis of the original time
series. After generating a sample of size 103 of 100-year return levels estimated
using the ACER method, the right and left ends of the 95% confidence interval are
defined by the 2.5th and 97.5th percentiles, respectively.

In Table (3.5), the bootstrap-estimated 95% confidence intervals (95% BCI) in
the second column are listed together with the average of 103 MC η̂100yr in the
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third column for all stations. For comparison purposes, the initial results of the
ACER analysis are shown in the fourth and fifth columns (cf. Table (3.2)).

As shown in Table (3.5), the results were as expected: the mean value of the
1000 samples of the 100-year return period is close to the initial η̂100yr, and the
confidence interval estimated by the ACER extrapolation is approximately 40%

Station Method Spec η̂100yr, m/s 95% CI (η̂100yr), m/s

A - Torsvåg;
incl. outliers

ACER,
various k

1 47.46 (42.11, 50.71)
2 48.18 (41.48, 51.31)
4 46.96 (42.25, 49.63)
24 48.36 (43.44, 51.63)
48 47.54 (43.46, 49.75)
72 47.44 (44.39, 48.79)
96 48.78 (44.53, 51.61)

Annual
maxima

MM 51.33 (43.08, 61.57)
GL 51.57 (44.24, 60.67)

POT – 49.41 (40.95, 59.42)

A - Torsvåg;
without outliers

ACER,
various k

1 47.21 (39.94, 50.60)
2 47.79 (41.13, 50.93)
4 46.32 (42.00, 49.04)
24 47.22 (43.26, 50.04)
48 46.38 (43.60, 48.19)
72 46.32 (44.24, 47.37)
96 47.80 (44.45, 49.95)

Annual
maxima

MM 44.31 (39.36, 50.39)
GL 45.84 (40.72, 52.41)

POT – 42.62 (39.01, 47.31)

B - Hekkingen

ACER,
various k

1 60.47 (53.1, 64.9)
2 62.23 (53.3, 70.0)
4 63.03 (53.0, 74.5)
24 60.63 (51.3, 70.7)
48 60.44 (51.3, 77.0)
72 58.06 (51.2, 66.4)
96 59.19 (52.0, 68.3)

Annual
maxima

MM 58.10 (50.8, 67.3)
GL 60.63 (53.0, 70.1)

POT – 53.48 (48.9, 57.0)

Table 3.3: Predicted 100-year return period levels for Torsvåg Fyr and Hekkingen
Fyr weather stations by the ACER-method for different degrees of conditioning,
Annual maxima and POT methods, respectively.
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shorter than the 95% BCI due to the higher uncertainty related to the sampling
with replacement. In addition, the ACER 95% CI is slightly shifted to the left,
which is caused by the behaviour of the CI−(η) curve in the tail.

The relative difference and visual comparison of the 95% CI estimated by both
methods is presented in Table (3.6). The initial 95% CI estimated by the ACER

Station Method Spec η̂100yr, m/s 95% CI (η̂100yr), m/s

C - Nordøyan

ACER,
various k

1 51.85 (48.4, 53.1)
2 51.48 (46.1, 54.1)
4 52.56 (46.7, 55.7)
24 52.90 (47.0, 56.2)
48 54.62 (47.7, 57.6)
72 53.81 (46.9, 58.3)
96 54.97 (47.5, 60.5)

Annual
maxima

MM 51.5 (45.2, 59.3)
GL 55.5 (48.0, 64.9)

POT – 47.8 (44.8, 52.7)

D - Sula

ACER,
various k

1 46.33 (43.41, 47.77)
2 46.81 (44.08, 49.04)
4 47.99 (44.80, 50.57)
24 46.65 (44.10, 48.07)
48 46.83 (44.28, 48.03)
72 45.80 (43.01, 46.96)
96 45.69 (42.32, 47.01)

Annual
maxima

MM 48.66 (41.58, 57.58)
GL 52.90 (44.29, 63.39)

POT – 43.42 (39.07, 47.80)

E - Obrestad

ACER,
various k

1 48.38 (43.18, 50.74)
2 48.11 (42.38, 50.69)
4 48.81 (42.34, 51.59)
24 47.90 (42.87, 50.53)
48 48.90 (43.82, 50.72)
72 49.47 (44.06, 51.52)
96 48.55 (43.46, 49.96)

Annual
maxima

MM 48.59 (42.10, 56.84)
GL 53.79 (46.16, 63.53)

POT – 46.10 (41.00, 55.00)

Table 3.4: Predicted 100-year return period levels for Nordøyan Fyr, Sula and
Obrestad Fyr weather stations by the ACER-method for different degrees of con-
ditioning, Annual maxima and POT methods, respectively.
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Station 95% BCI Av. 103 A 95% CI η̂100yr

A - Torsvåg;
incl. outliers

(42.78, 57.80) 48.29 (42.11, 50.71) 47.46

A - Torsvåg;
without outliers

(42.58, 51.46) 47.18 (39.94, 50.60) 47.21

B - Hekkingen (53.93, 75.04) 62.52 (53.12, 64.92) 60.47
C - Nordøyan (48.69, 57.08) 52.32 (48.43, 53.14) 51.85
D - Sula (44.64, 50.80) 47.23 (43.41, 47.77) 46.33
E - Obrestad (42.54, 53.73) 48.12 (43.18, 50.74) 48.38

Table 3.5: Comparison table for 95%CI by the non-parametric bootstrap and the
ACER extrapolation of confidence bands.

method together with the estimated η̂100yr are represented by red lines, whereas
the bootstrapped 95% CI is shown as a blue line. Note that in the case of the
analysis of data from the Torsvåg station without outliers, the initial A 95% CI is
20% wider (-20% in the table) than the bootstrapped CI.

Thus, the results of the analysis reveal that estimation of the 95% CI through
the extrapolation of confidence bands using the ACER scheme can generally provide
a reasonable estimate. Although this method is a first-stage estimation, it is not as
time consuming as the bootstrap method and provides 95% CI estimation for any
degree of conditioning k.

Parametric bootstrap

Now let us discuss possible approaches for the parametric bootstrap based on
the parametrically fitted ACER curve. As derived in Section 3.2 and Section 3.3,
the extreme value distribution F (η) associated with the observed time series is
represented by the average conditional exceedance rates as follows

F (η) ≈ exp
[
− (N − k + 1) εk(η)

]
≈ exp

[
− qk (N − k + 1) exp

{
− ak(η − bk)ck

}]
, η ≥ η1 ≥ b .

(3.64)

where the exactness of F (η) is provided by conditioning on previous k − 1 data
points, which captures the essential structure of the given time series. Clearly,
Eq.(3.64) does not provide us with any opportunities for the prompt deduction of
the explicit form of the underlying distribution FX(η) or for revealing the depen-
dence relation of the data that we need. Therefore, the only way to progress in this
study is to assume independence of the data and to provide the analysis solely for
εk(η), k = 1. The assumption yields:[

FX(η)
]N

= F (η) ≈ exp
[
− q (N − k + 1) exp

{
− a(η − b)c

}]
, η ≥ η1 ≥ b .

(3.65)
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Thus, a general form of the cumulative distribution function would be :

FX(η) ≈ exp
[
− q exp

{
− a(η − b)c

}]
, η ≥ η1 ≥ b . (3.66)

Station Rel.diff Intervals comparison

A - Torsvåg;
incl. outliers

43%

40 45 50 55 60

42.78 57.8

42.11 50.7147.46

A - Torsvåg;
without outliers

-20%

38 40 42 44 46 48 50 52

42.58 51.46

39.94 50.647.21

B - Hekkingen 44%

50 55 60 65 70 75

53.93 75.04

53.12 64.9260.47

C - Nordøyan 44%

48 50 52 54 56 58

48.69 57.08

48.43 53.1451.85

D - Sula 29%

42 44 46 48 50 52

44.64 50.8

43.41 47.7746.33

E - Obrestad 32%

42 44 46 48 50 52 54

42.54 53.73

43.18 50.7448.38

Table 3.6: Comparison table for 95%CI by the non-parametric bootstrap and the
ACER extrapolation. Relative difference is displayed in the second column. Red
intervals on top visualize the initial ACER CI with marked η̂100yr; blue intervals
from bottom – non-parametrically bootstrapped CI.
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It will be referred to as ’Case a’ of the parametric bootstrap. To be able to generate
samples above the tail marker η1, we modify CDF FX(η) to obtain a monotone
distribution function F̃X(η), η ≥ η1, such that F̃X(η1) = 0, as follows:

F̃X(η) =
FX(η)− FX(η1)

1− FX(η1)
(3.67)

In addition to the approximation (3.66) and modification (3.67), it was de-
cided to apply substitution exp(−x) ≈ 1− x in Eq. (3.66) to obtain the following
representation (referred to as ’Case b’):

F ′X(η) ≈ 1− q exp{−a(η − b)c} , η ≥ η1 ≥ b , (3.68)

with the corresponding modification

F̃ ′X(η) =
F ′X(η)− F ′X(η1)

1− F ′X(η1)
= 1− exp{−a

(
(η − b)c − (η1 − b)c

)
}. (3.69)

As we can see, the parameter q is eliminated in Case b. This was indeed the reason
to employ Case b because we assumed that the experimental uncertainty of the
bootstrap could potentially be reduced.

Finally, by applying inverse transformations to Eqs. (3.67) and (3.69), we obtain
expressions to be used directly in the generation of samples. Thus, the inverse for
Eq. (3.67) for ’Case a’ has the form

η =

{
− 1

a
log

[
− 1

q
log
(
U ·
(
1− FX(η1)

)
+ FX(η1)

)]}1/c

+ b , (3.70)

where U is a random variable uniformly distributed at [0, 1], and FX(η1) is value
of the CDF (3.67) at the point η1. To generate samples from the CDF (3.69) for
’Case b’, the corresponding inverse is given by the equation:

η =

[
− 1

a
log (1− U) + (η1 − b)c

]1/c

+ b , (3.71)

with the random variable U uniformly distributed at [0, 1].
Finally, the sample size of a synthetic time series should be defined. For this

purpose, it was naturally decided to use the original sample with respect to the
number of observations above the tail marker η1. To randomize the sample size
of each generated sample, we used a binomial model. The number of elements
in each time series was decided to be random and binomially distributed, with
the number of trials equal to the original sample size. The observed exceedance
probability above the tail marker η1, that is, the ratio of the number of the observed
exceedances over η1 to the sample size, defines the probability of success for each
trial. In the following Table (3.7), these numbers, i.e., the probability of success,
number of η1 exceedances and sample size, are presented for each station:

We note that for the parametric bootstrap regarding the Torsvåg station, we
considered only the case with outliers included. In addition, the data in the table
reveal that for the Hekkingen station, the chosen tail marker η1 does not allow
a sufficient amount of data for the ACER analysis to be retained. Therefore, the
uncertainty of the analysis is rather high, and the results might not be reliable, as
it will be shown below.
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Station p0 = n(η ≥ η1)/N

A - Torsvåg 0.34 = 38 421/112 898
B - Hekkingen 0.03 = 3 437/112 170
C - Nordøyan 0.40 = 45 575/112 770
D - Sula 0.24 = 22 839/96 785
E - Obrestad 0.24 = 33 594/139 253

Table 3.7: Probability of success, number of η1 exceedances and sample size for five
stations.

Case a

One-thousand time series were drawn from the CDF (3.67) using Eq. (3.70) for
five weather stations. All required parameters q, b, a and c of the optimized curve
εk(η), k = 1 for the simulation were taken from Table (3.2).

A sample of 103 of the of 100-year return levels η̂100yr estimated by the ACER
method defines a 95% confidence interval.

In the following Table (3.8), bootstrap-estimated 95% confidence intervals (95%
BCI) are listed for five stations together with a graphic comparison between the
initial 95% CI depicted by a red line and 95% BCI shown by a blue line.

The results presented in Table (3.8) show that the confidence intervals estimated
by both methods have nearly identical lengths. The initial 95% confidence interval
for three stations is approximately 30% shorter then the parametric 95% BCI,
whereas in the other two stations it is longer, which indicates the same level of
uncertainty for both approaches. At the same time, it is clear that the existent
essential systematic error causes a considerable shift of the bootstrapped confidence
interval to the right.

Case b

Similarly, 1000 simulations were performed using the CDF (3.69) via Eq. (3.71) for
the five weather stations. A sample of 103 of the of 100-year return levels η̂100yr

estimated by the ACER method defines a 95% confidence interval.
Table (3.9) presents the bootstrap-estimated 95% confidence intervals (95%

BCI) for the five stations. In addition, a graphic comparison between the initial
95% CI (depicted by a red line) and 95% BCI (blue line) is shown.

The results in Table (3.9) indicate that the ’Case b’ scheme yields 95% con-
fidence intervals that are identical to those obtained from the ’Case a’ approach.
As shown, the length of the initial ACER CI is approximately 20% shorter then
the BCIs in three cases. In this way, it is reasonable to state that the stochastic
uncertainty, which, properly speaking, is described by the confidence interval, is
virtually equal for the ’Case b’ parametric bootstrap and the ACER approach.
However, a salient shift of the BCI to the right reflects the substantial systematic
error of the considered approach.

Thus, we can ascertain that the considered parametric bootstrap approaches
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provide the 95% CI estimate, the consistency of which is however questionable. In
addition, the considered parametric bootstrap can be used only with the data as-
sumed to be independent, and as for any bootstrap approach, its execution requires
considerable time.

Thus, summarizing the above discussion, we can conclude that the adoption of

Station Rel.diff Intervals comparison

A - Torsvåg; -30%

40 45 50 55

46.93 53.55

42.11 50.7147.46

B - Hekkingen 37%

50 55 60 65 70 75 80 85

62.65 81.46

53.12 64.9260.47

C - Nordøyan 29%

48 50 52 54 56 58 60

51.62 58.23

48.43 53.1451.85

D - Sula 37%

42 44 46 48 50 52 54

46.7 53.58

43.41 47.7746.33

E - Obrestad -14%

42 44 46 48 50 52 54 56

48.3 54.93

43.18 50.7448.38

Table 3.8: Parametric bootstrap for estimation the 95%CI (’Case a’ approach).
Relative difference is displayed in the second column. Red intervals on top visu-
alize the initial ACER CI with marked η̂100yr; blue intervals from bottom show
parametrically bootstrapped CI.
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the method of extrapolating the confidence bands using the ACER fit can remain
the main approach for estimating the 95% CI of the T -year return level. The main
advantages of this approach are the prompt and straightforward realization, its
applicability to any degree of data conditioning k, and its estimated confidence
interval appears to be credible.

Station Rel.diff Intervals comparison

A - Torsvåg; -48%

42 44 46 48 50 52 54

46.87 52.7

42.11 50.7147.46

B - Hekkingen 31%

50 55 60 65 70 75 80 85

63.49 80.57

53.12 64.9260.47

C - Nordøyan 16%

48 50 52 54 56 58

51.41 57.02

48.43 53.1451.85

D - Sula 25%

42 44 46 48 50 52 54

46.72 52.55

43.41 47.7746.33

E - Obrestad -16%

42 44 46 48 50 52 54 56

48.25 54.75

43.18 50.7448.38

Table 3.9: Parametric bootstrap for estimation the 95%CI (’Case b’ approach).
Relative difference is displayed in the second column. Red intervals on top visu-
alize the initial ACER CI with marked η̂100yr; blue intervals from bottom show
parametrically bootstrapped CI.
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3.5.4 Synthetic data from the heavy tail distribution for the
general ACER

In this section, the performance of the general ACER approach discussed in
Section 3.4.2 will be illustrated. We will analyse the extreme value statistics for
the synthetic data with known exact extreme values.

As discussed in the introduction to Section 3.4, the ACER function represented
by a four-parameter curve Eq. (3.28) was developed for the analysis of processes
with Gumbel-type behaviour on asymptotic levels. Instead, the five-parameter gen-
eral ACER case Eq. (3.51) applies to the processes that follow distributions with
heavier tails. By this, we imply that it is known or can be assumed with a high cer-
tainty that the CDF does not have an exponential-type tail behaviour (Ochi, 1990).
Thus, for our synthetic example for the general case, it was decided to consider the
following underlying heavy tail distribution:

FX(η) = 1−
(

1 + γ
η2

η + a

)− 1
γ

, η ≥ 0, (3.72)

such that
(

1 + γ η2

η+a

)
> 0.

It is easy to ascertain that the distribution Eq. (3.72) does not satisfy neither
the sufficient conditions Eq (2.10) and Eq. (2.14) mentioned in Section 2.1.1 nor
the criterion Eq. (2.17).

To generate a random variableX that follows the distribution FX(η), the inverse
transformation of the Eq. (3.72) was applied. Quite simple derivations end up with
the following expression for X:

X =
1

2

(
K +

√
K2 + 4Ka

)
, (3.73)

where K = 1
γ

(
(1− U)−γ − 1

)
and U ∼ U(0, 1) is a uniformly distributed random

variable.
This setup allows us to generate a sample of N independent values X1, . . . , XN

that follow the distribution (3.72). In compliance with the above, the distribution
function G(η) of the extreme value MX = max {X1, . . . , XN} would simply be

G(η) = Pr {X1 ≤ η, . . . , XN ≤ η} = {FX(η)}N . (3.74)

Any T -year return period value ηTyr can be calculated as the solution of the equa-
tion FX(ηTyr) =

(
1− 1/T

)1/N , provided N here is the amount of data per year.
As the final point, it was ascertained that to obtain a true fat tail distribution,

values of the α parameter should be in range α > 103, while the γ values should be
γ < 1. Figure (3.34) illustrates the behaviour of the density function for a range of
values of parameter α for fixed γ = 0.3 (3.34a) and fixed γ = 0.5 (3.34b).

These figures reveal that in both examples, the PDFs behave in much the same
way; however, it was decided to consider two cases, namely, (a) with γ = 0.3 and
α = 2 ·103 and (b) with γ = 0.5 and α = 3 ·103. Now we can proceed directly to the
simulations. Let us assume we stock 30 years of synthetic observations, such that
the annual record contains N = 300 data points such that the total amount of data
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Figure 3.34: Plot of the probability density function of of the distribution FX(η)
(3.72) for different values of parameter a. a) parameter γ = 0.3; b) parameter
γ = 0.5.

contains 9000 observations. This amount is not large for a detailed analysis, yet it
brings the study closer to a real situation when a limited data sample is available.
Thus, for the considered case (a), the 10-year and 100-year values are respectively
η10yr = 273.54 and η100yr = 410.83, while in case (b), they are η10yr = 615.33 and
η100yr = 1201.4.

To obtain an idea about the performance of the general ACER method as
compared to the POT method and the annual maxima method based on the GEV
distribution, 1000 independent 30-year Monte Carlo simulations were performed
for both scenarios. For the ACER method, it was evident to analyse the ACER
curve ε̂k(η) for k = 1 with no conditioning on previous observations, because the
generated from Eq. (3.73) data points are i.i.d. With regard to the value of the
tail marker η1, it was ascertained that the rational level to fix this parameter to is
1.7σ for both scenarios.

The POT prediction was based on using the maximum likelihood estimates
(MLE) of two parameters of the generalized Pareto distribution for a chosen thresh-
old level. Mean residual life plots for several realizations revealed the reasonable
values of this parameter for both cases. Thus, the threshold u0 was fixed at the
level 80 for the case (a), whereas u0 = 130 in case (b).

Predictions of the return levels by the annual maxima method was based on
using the maximum-likelihood estimation of the three-parameter generalized ex-
treme value (GEV) distribution. Sample of 30 yearly extremes was used for the
analysis.

In the present research, it was decided to confine the analysis to the prediction
of the return levels without estimating 95% confidence intervals. Substantially,
this decision was based on the fact that the method of extrapolating the confi-
dence bands using the ACER fit in general case has a tendency to overestimate
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the interval. This makes the estimate inconsistent. Thus, the problem of estimating
confidence interval for general ACER requires further analysis and will be consid-
ered in future research.

The results of the selected 16 out of 1000 independent 30-year Monte Carlo
simulations for the case (a) are presented in Table (3.10) and for the case (b) –
in Table (3.11). It is observed that the estimated average of the 1000 predicted

No. A η̂10yr GEV η̂10yr
MM GP η̂10yr A η̂100yr GEV η̂100yr

MM GP η̂100yr

1 255.00 262.35 256.55 356.83 387.46 348.04
2 277.04 287.41 271.20 414.88 441.28 375.22
4 290.89 280.07 280.12 449.23 402.07 398.71
6 241.94 247.41 246.59 329.62 387.94 330.11
8 270.22 312.28 279.48 408.86 1,005.45 412.71
10 274.90 285.93 263.11 410.76 476.50 354.61
20 234.60 247.26 251.25 297.99 497.86 332.70
40 289.51 276.98 273.23 466.16 410.66 391.82
60 279.20 274.45 265.66 433.34 377.20 373.51
80 274.21 262.68 265.81 405.97 352.91 366.85
100 317.99 315.65 294.61 531.29 495.21 425.23
200 272.32 249.49 251.88 416.23 280.01 338.20
400 258.68 255.50 252.84 372.61 350.30 341.71
600 303.02 316.49 302.45 492.93 605.70 465.36
800 286.66 293.54 285.37 434.46 429.82 409.83
1000 265.12 274.15 267.07 382.77 418.09 370.81

Av. 1000 275.08 272.45 268.73 412.63 421.95 376.21
Min 1000 223.76 217.71 222.62 276.66 237.07 275.66
Max 1000 346.39 369.41 322.64 626.83 1,185.20 512.28
2.5th P 239.28 234.43 238.43 313.60 278.81 308.45
97.5th P 321.58 322.62 306.17 553.71 731.30 470.31
True 273.54 410.83

Table 3.10: Predicted return period levels by the General ACER method, A η̂Tyr,
Annual maxima method, GEV η̂Tyr

MM, and POT method, GP η̂Tyr, respectively, for
the (a) case: γ = 0.3 and α = 2 · 103.

10 - year return period levels η̂10yr by the annual maxima method (GEV η̂10yr
MM in

the Tables) is more precise in both cases (a) and (b). However, the average of
the 1000 predicted 100 - year return levels η̂100yr by the general ACER method is
considerably more accurate and closer to the theoretical value than by the other
methods.

Note that based on the available sample of 1000 predicted return levels, it is
possible to estimate its 2.5th and 97.5th percentiles. These values can be consid-
ered as left and right bounds of the 95% confidence interval. Thus, in case (a),
95% of 1000 predicted 100 - year return levels by the general ACER method lie in-
side the interval (313.60, 553.71), whereas the same for the block maxima method
vary from (278.81, 731.30); for the POT method, the interval is (308.45, 470.31).
In case (b), 95% of the predicted 100 - year return levels by the general ACER
method lie within the range (738.96, 1917.79); 95% predictions by the annual max-
ima method stay inside the interval (639, 3173.65); for the POT method, the inter-
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No. A η̂10yr GEV η̂10yr
MM GP η̂10yr A η̂100yr GEV η̂100yr

MM GP η̂100yr

1 560.06 511.05 548.34 937.38 752.65 880.96
2 516.25 555.51 566.93 827.67 1,454.38 965.58
4 1,018.05 800.13 921.83 3,029.60 1,373.29 2,384.55
6 500.29 526.29 492.81 806.09 949.42 745.11
8 577.33 594.20 612.07 983.42 1,240.46 1,062.23
10 635.83 621.25 614.35 1,165.83 1,334.78 1,056.05
20 612.06 649.80 608.62 1,118.95 1,200.91 1,038.75
40 575.03 555.66 568.18 983.13 791.50 934.37
60 577.29 472.66 526.79 980.00 571.50 803.73
80 755.51 717.74 722.47 1,713.92 1,274.72 1,478.62
100 561.21 539.40 569.71 975.98 1,176.86 974.35
200 540.15 521.08 507.69 921.72 952.55 776.66
400 615.20 671.99 614.36 1,184.65 1,614.68 1,106.89
600 731.42 612.51 649.23 1,648.59 855.70 1,217.49
800 707.65 598.49 625.88 1,428.97 1,094.52 1,061.48
1000 599.43 584.98 585.53 1,089.79 1,027.28 983.71

Av. 1000 622.00 617.16 609.88 1,203.02 1,334.17 1,096.89
Min 1000 447.56 426.00 453.81 618.15 484.78 624.25
Max 1000 1,018.05 1,200.37 921.83 3,029.60 15,138.90 2,384.55
2.5th P 494.44 483.66 500.47 738.96 639 771.47
97.5th P 796.30 839.49 751.30 1,917.79 3,173.65 1,596.32
True 615.33 1201.40

Table 3.11: Predicted return period levels by the General ACER method, A η̂Tyr,
Annual maxima method, GEV η̂Tyr

MM, and POT method, GP η̂Tyr, respectively, for
the (b) case: γ = 0.5 and α = 3 · 103.

val is (771.47, 1596.32). It is easy to see that in case of the general ACER method
there is a minor shift of the interval to the right in both scenarios, however for the
annual maxima method the right-wing bias is significant. The POT method has the
tendency to underestimate the interval in both cases. Therefore, the general ACER
method performs consistently better and with higher accuracy than the other two
methods. At the same time, it is important to emphasise that the general ACER
case requires further research. Specifically, it concerns some aspects of the optimal
curve fitting, as mentioned in Section 3.4.2, estimation of the 95% confidence in-
tervals and analysis of the real data that follow the fat-tailed distributions (e.g.,
financial data) by the general ACER.

In Figure (3.35) the general ACER function and the fitted curve are plotted for
the selected sets of data from the cases (a) and (b). The predicted 100-year return
level η̂100yr = 356.83 in case (a) and η̂100yr = 937.38 in (b) scenario. Corresponding
data sets were used in Figure (3.36) to illustrate the results of the annual maxima
method by the GEV fit. The predicted values based on the maximum-likelihood
estimation are η̂100yr = 387.46 and η̂100yr = 752.65 for the cases (a) and (b),
respectively. Finally, Figure (3.37) presents POT predictions based on MLE for
different thresholds in terms of the number n of observations above the threshold.
The predicted value in case (a) is η̂100yr = 348.04, whereas in case (b) η̂100yr =
880.96.
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Figure 3.35: Plot of the general ACER ε̂1(η) on a log10 scale vs. η/σ (*); otimized
curve fit (—); empirical 95% CI (- -). Tail marker η1 = 1.7σ.
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Figure 3.36: The point estimate of the 99% fractile of the Extreme value distribution
by the Frechet method based on the 30 blocks of synthetic data.

3.5.5 Extreme tether tension

In this section we shall study data obtained from model tests of an offshore platform
for oil production. The Heidrun tension leg platform (TLP) is a large concrete
platform installed at a depth of 347 m in the Norwegian Sea. It is designed with
four circular columns forming a square, with a square ring pontoon. Extensive
model tests at a 1:55 scale were conducted in MARINTEK’s 50 m × 80 m Ocean
Basin in Trondheim in 1993. The mass of the TLP in ultimate limit state (ULS)
conditions was 257, 888 tonnes, and the drift was 79.3 m. All data given here are in
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Figure 3.37: The point estimate of 99% fractile of the Extreme value distribution
as a function of the number n of data points above the threshold.

prototype scale. A sketch depicting the TLP from the side is shown in Figure (3.38).

The column diameter was 31 m, except in a small section in the wave zone
where it was 31.6 m. The centre-to-centre distance between columns was 80.0 m.
The pontoon has a rectangular cross-section, with a height 13.0 m and width 16.0 m.

The actual prototype tether group of four tethers at each column was modelled
by a single equivalent tether, designed to correspond to the prototype with respect
to stiffness, drag and weight properties.

The original test program included a number of different irregular wave test
conditions and a large number of measuring channels, cf., (Naess et al., 2009). In
this study, we concentrate on one severe ULS condition. It is specified in terms of
the following sea state, which is a unidirectional (long crested) sea: significant wave
height Hs = 15.7 m and spectral peak period Tp = 17.8 s.

The platform had a 45 degrees heading relative to the waves. The most heavily
loaded tether is designated T10, and it is positioned towards the waves. Six different
random realizations with a duration of 3 hours each were run. Thus, the resulting
statistics correspond to a duration of 18 hours for the given sea state.

A particular observation from the model tests was the strongly non-Gaussian
behaviour of the measured tensions, particularly in these high sea states. Thus, res-
onant high-frequency oscillations occurred, known as "ringing", which are excited
by higher-order wave forces on columns in high and steep individual waves (Faltin-
sen et al., 1995; Stansberg, 1997). This comes in addition to the more commonly
known "springing", excited by second-order sum-frequency forces. The extraordi-
nary statistical behaviour was a main reason why these sea states were run with
6 realizations each. A time series sample from the measurements is shown in Fig-
ure (3.39), which clearly displays the ringing phenomenon caused by a steep wave.
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Figure 3.38: Heidrun TLP as seen from the side.

A basic statistical analysis of the 18 hours of time series for tension T10
shows that the mean tension µ = 97,537.5 kN, while the standard deviation σ
= 5,698.73 kN. As shown from the plotted part of the time series in Figure (3.40),
the considered process is rather densely sampled.

Evidently, heavy and extreme loads on the tether caused by a steep wave are
represented by the peak values of the time series. Thus, for practical purposes, it
was decided to conduct the ACER analysis for the process obtained by extracting
peak events from the observed data. In Figure (3.41), the ACER functions εk(η)
are plotted for k = 1, . . . , 6.

It is observed that there is a significant effect of dependence in the time series,
which is reflected in the fact that the εk(η), for k = 2, . . . , 6, are noticeably smaller
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Figure 3.39: Short time series samples of wave elevation and tether tension T10,
with a "ringing" event caused by a steep wave.

than ε1(η) over the whole range of response values. The figure reveals that there is
no tendency for ε1(η) to merge with εk(η) for k = 2, . . . , 6 for the visible (available)
range of tensions η. However, it is observed that a good approximation is already
obtained for k = 2 and that convergence is certainly achieved for k = 4. To empha-
size this point, the predicted value of the 90% fractile of the 3-hour extreme value
distribution by the ACER method based on ε1 is found to be η0.90 = 184,562.64 kN,
with the 95% confidence interval (156,345.46, 210,692.98) kN. Here, parameters of
the optimal curve are as follows: q = 0.12, b = 109, 806.47, a = 0.009 and c = 0.62.
The fractile η0.90 estimated by means of ε4 is 182,339.55 kN, with a 95% confidence
interval of (158,443.62, 211,994.43) kN. The parameters of the optimal curve are as
follows: q = 0.19, b = 109, 588.07, a = 0.047 and c = 0.48. The tail marker is η1 =
112,000 kN in both cases. It is noticeable that the predicted 90% percentile value by
the ACER method based on ε4(η) is slightly lower (1.2%) than the corresponding
value based on ε1(η). Hence, the effect of statistical dependence in the available
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Figure 3.40: Part of the time series of tether tension T10, with marked peak events.

realization on the predicted 0.90 fractile of the 3-hour extreme value distribution
is of some importance. It is also noted that the predicted statistical uncertainty is
approximately the same in both cases.

To highlight the predictions based on the ACER, POT and Gumbel methods,
we estimated the 99% percentile of the 3-hour extreme value distribution provided
by the three methods. The obtained results are briefly summarized in Table (3.12):

Method Spec η̂0.99, kN 95% CI (η̂0.99), kN

ACER, various k 1 216,829.99 (170,697.58, 262,164.41)
4 223,375.18 (177,404.33, 291,157.60)

Annual maxima MM 218,414.13 (171,488.33, 279,250.21)

POT – 205,754.55 (163,600.31, 273,673.86)

Table 3.12: Predicted return period levels by the ACERmethod for different degrees
of conditioning, Annual maxima and POT methods, respectively.

Corresponding plots are presented in Figures (3.42) - (3.44). Note the large
variability in the POT estimates depending on the choice of threshold.
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Figure 3.41: Plot of empirical ACER εk(η) for different degrees of conditioning
k = 1, . . . , 6 based on the time series of the peak values, cf. Figure (3.40); σ =
5,698.73 kN.

3.5.6 Analyses of the narrow-banded time series

In engineering mechanics, a classical extreme response prediction problem is the
case of a lightly damped mechanical oscillator subjected to random forces. To illus-
trate this prediction problem, we shall investigate the response process of a linear
mechanical oscillator driven by Gaussian white noise. Let X(t) denote the displace-
ment response; the dynamic model can then be expressed as Ẍ(t) + 2ζωeẊ(t) +
ω2
eX(t) = W (t), where ζ = relative damping, ωe = undamped eigenfrequency, and
W (t) = a stationary Gaussian white noise (of suitable intensity). By choosing a
small value for ζ, the response time series will exhibit narrow band characteristics,
that is, the spectral density of the response process X(t) will assume significant
values only over a narrow range of frequencies. This manifests itself by producing a
strong beating of the response time series, which means that the size of the response
peaks will change slowly in time; see Figure (3.45). A consequence of this is that
neighbouring peaks are strongly correlated, and there is a conspicuous grouping of
the peak values. Hence, the problem with accurate prediction because the usual
assumption of independent peak values is then violated.

Many approximations have been proposed to address this correlation problem,
but no completely satisfactory solution has been presented. In this section, we will
show that the ACER method solves this problem efficiently and elegantly in a
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Figure 3.42: Tether tension: plot of empirical ACER ε̂4 on a log10 scale vs. η/σ
(*); optimized curve fit (—); empirical 95% confidence band (- -); optimized 95%
CI (· · ··). Tail marker η1 = 19.65σ kN. σ = 5,698.73 kN.

statistical sense. In Figure (3.46), some of the ACER functions for the example
time series are shown. It can be verified from Figure (3.45) that there are approx-
imately 32-35 sample points between two neighbouring peaks in the time series.
To illustrate this point, we have chosen to analyse the time series consisting of all
sample points. Typically, in practice, only the time series obtained by extracting
the peak values would be used for the ACER analysis. In the present case, the
first ACER function is then based on assuming that all of the sampled data points
are independent, which is obviously completely incorrect. The second ACER func-
tion, which is based on counting each exceedance with an immediately preceding
non-exceedance, is simply an upcrossing rate. Using this ACER function is largely
equivalent to assuming independent peak values. It is now interesting to observe
that the 25th ACER function can hardly be distinguished from the second ACER
function. In fact, the ACER functions after the second do not change appreciably
until one starts to approach the 32nd, which corresponds to hitting the previous
peak value in the conditioning process. Therefore, the important information con-
cerning the dependence structure in the present time series appears to reside in
the peak values, which may not be very surprising. It is observed that the ACER
functions exhibit a significant change in value as a result of accounting for the
correlation effects in the time series. To verify the full dependence structure in the
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Figure 3.43: Tether tension: the point estimate η̂0.99 of the 0.99 fractile of the 3 hour
extreme value distribution by the Gumbel method. Line is fitted by the method of
moments (—). σ = 5,698.73 kN.

time series, it is necessary to continue the conditioning process down to at least the
64th ACER function. In the present case, there is virtually no difference between
the 32nd and the 64th, which shows that the dependence structure in this particu-
lar time series is captured almost completely by conditioning on the previous peak
value. It is interesting to contrast the method of dealing with the effect of sampling
frequency discussed here with that of Robinson and Tawn (2000).

To illustrate the results obtained by extracting only the peak values from the
time series, which would be the approach typically chosen in an engineering anal-
ysis, the ACER plots for this case are shown in Figure (3.47). By comparing the
results from Figures (3.46) and (3.47), it can be verified that they are in very close
agreement by recognizing that the second ACER function in Figure (3.46) corre-
sponds to the first ACER function in Figure (3.47) and by noting that there is a
factor of approximately 32 between the corresponding ACER functions in the two
figures. This is because the time series of peak values contains approximately 32
times less data than the original time series.

In addition, it is of importance to pay particular attention to the positional
relationship of the plots of the ACER functions with low degrees of conditioning for
narrow-banded processes. From the discussions conducted in the previous sections,
it can naturally be concluded that the ACER function with a lower degree of
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Figure 3.44: Tether tension: the point estimate η̃0.99 of the 0.99 fractile of the 3
hour EVD by the POT approach as a function of the number n of data points
above threshold. The 0.99 fractile estimate 36.1σ is at n = 130 for the threshold
υ0 = 21.5σ. σ = 5,698.73 kN.

conditioning is, in general, not less than the one with a higher degree:

ε̂ki(η) ≥ ε̂kj (η) for any ki ≤ kj . (3.75)

Clearly, for any non-stationary time series, the law (3.75) is identically true
because, for empirical ACER function estimation, Eq. (3.20) is applied. At the same
time, it appears that this assertion does not necessarily apply for the stationary
processes. Particularly, the rule does not hold for the densely sampled stationary
narrow-band processes.

To illustrate the considered subject, let us scrutinize two stationary time series.
The first process is the response of the linear oscillator to the Gaussian white noise
we described in the beginning of the present section. As mentioned, two neighboring
peaks of the time series are separated by approximately 32-35 sample points; see
Figure (3.45). In the second case, we have an autoregressive (AR) random process,
part of which is presented in Figure (3.48).

The figure reveals that the time series was sampled quite densely and that
there are approximately 55-60 observations between two neighboring peak values.
Therefore, the degree of conditioning k ≤ 20 for the first case and k ≤ 30 for
the second can actually be considered as low. Now, the attentive scrutiny of the
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Figure 3.45: Part of the narrow-band response time series of the linear oscillator
with fully sampled and peak values indicated.

logarithmic plot of the ACER functions with low k values discloses the opposite
layout than the one defined by the Eq. (3.75); see Figures (3.5.6) and (3.49).

It is directly observed that conditioning on more previous observed data points
yields an increase in the corresponding ACER function, e.g., in the case of the
response process, the ACER function ε̂20(η) with conditioning on k − 1 = 19
previous observations takes on higher values than, for instance, the ε̂k(η) for k = 2
with conditioning on one preceding data point. At the same time, attention should
be drawn to the fact that this effect vanishes after reaching a higher k degree, cf.,
Figure (3.46).

According to the arguments stated in Section 3.3, the ACER functions of both
narrow-banded processes were estimated using Eq. (3.15), as for any stationary
process, that is:

ε̂k(η) =
ak(η)

bk(η)
. (3.76)

Here, to simplify the expression, we used the notations

ak ..=

N∑
j=k

akj ; bk ..=

N∑
j=k

bkj ,

where akj and bkj are the realizations of the indicator functions defined by
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Figure 3.46: Comparison between ACER estimates for different degrees of condi-
tioning for the narrow-band time series.

Eq. (3.12). Thus, the behaviour of the ACER function is defined by the functions
ak(η) and bk(η).

Apparently, for every η value, the function ak(η) represents the total number
of observations that exceed the η level and follow immediately after a sequence of
at least k − 1 non-exceedances. What is crucial here is that for a densely sampled
narrow-band time series, the number of η-level exceedances that come after k − 1
consecutive non-exceedances can remain invariant. This occurs if the degree of
conditioning remains low, that is, if k − 1 is substantially less than the average
number of data points between adjacent peaks. Regarding the bk(η) function, its
mathematical meaning is simply the total number of sequences of observations of
length k− 1 that do not exceed level η. Evidently, for any time series and for all η,
the function bk(η) with a lower k parameter takes on a higher value. This result
is explained by the fact that the shorter sequence of non-exceedances, the greater
the total number of such sequences is. To complete the discourse, let us consider
plots of the corresponding ak(η) and bk(η) functions.

In Figures (3.5.6) and (3.51), the layout of the ak(η) functions for both pro-
cesses is demonstrated. It is observed that for all k, the functions exhibit the same
behaviour and coincide almost entirely.

Corresponding parts of the bk(η) functions are presented in Figures (3.5.6)
and (3.53). These plots show that the estimated bk(η) curve with the smallest
parameter k is on top of all other curves.
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Figure 3.47: Comparison between ACER estimates for different degrees of condi-
tioning based on the time series of the peak values, cf. Figure (3.45).
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Figure 3.48: Part of the sampled AR random process with peak values indicated.
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Figure 3.49: Comparison between ACER estimates for different low degrees of
conditioning k for the narrow-band response process.
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Figure 3.50: Comparison between ACER estimates for different low degrees of
conditioning k for the autoregressive process.
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Figure 3.51: Comparison between significant parts of the estimated ak(η) functions
for low values of k parameter for the narrow-band response process.
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Figure 3.52: Comparison between significant parts of the estimated ak(η) functions
for low values of k parameter for the narrow-band autoregressive process.
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Figure 3.53: Comparison between significant parts of the estimated bk(η) functions
for low values of k parameter for the narrow-band response process.
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Figure 3.54: Comparison between significant parts of the estimated bk(η) functions
for low values of k parameter for the narrow-band autoregressive process.
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Thus, by comparing the results from Figures (3.5.6) - (3.5.6) and Figures (3.51) -
(3.53), respectively, it becomes clear that in our case, the behaviour of the ACER
functions solely depends on the layout of the corresponding bk(η) curves. Further-
more, it is observed from Eq. (3.76) that the inverse ratio holds, which explains
the discussed positional relationship between several ε̂k(η) for the selected range
of small values of the parameter k.

In conclusion, it should be noted that there is no accurate definition for the
conception of a low k value that can be applied to any densely sampled narrow-
band process. Individual detailed visual inspection of the data plot can hardly serve
the task. Plotting the ACER curves for all k = 1, 2, ... can be time consuming, and
the figure itself can be overloaded and obscure. In addition, the inverse positioning
of the ε̂k(η) functions confuse the actual dependence structure of a process, which
is crucial. Therefore, it appears that the only solution to this would be extracting
the peak values and resumption of the ACER analysis based on the process of
maxima.
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Chapter 4

Bivariate Extreme Value Theory

The mathematical theory of multivariate extremes, particularly bivariate extremes,
is a relatively novel field. The extension of extreme value statistics from the uni-
variate to the bivariate case involves several challenges. First, there is no direct
generalization of the univariate extreme value type theorem to the bivariate case.

Several areas, such as the Gumbel’s logistic and mixed models, see Gumbel
(1960b,a, 1961); Gumbel and Mustafi (1967), appear to be quite well developed.
However, for the univariate case, these models have only asymptotic justifications.
The later results on possible bivariate asymptotic extreme value distributions were
derived on the basis of the aforementioned Gumbel’s logistic and mixed models. The
results are presented by Tiago de Oliveira (1982, 1984); Pickands (1981); Marshall
and Olkin (1988), and others. However, these models became, in a sense, too general
to be of much practical value, and their suitability for any practical application
must be checked with care. It is also important to note that the recent work of Yue
et al. (1999); Yue (2000, 2001b,a); Yue and Wang (2004) explored the usefulness of
a bivariate extremal distribution, notably the Gumbel logistic model for describing
bivariate hydrological extreme events.

Many efforts have been made to model and estimate a function that describes
the dependence structure between extreme components. A considerable contribu-
tion to the development of the dependence measures is made by, e.g., de Haan and
Resnick (1977); Coles and Tawn (1991, 1994); Coles et al. (1999) and Schlather
and Tawn (2003); Eastoe et al. (2013). Nevertheless, there are no precise estima-
tion tools that allow us to decide on the joint distribution of the bivariate extremes
from a given set of bivariate data. Of course, the marginal data sets can be used to
derive estimates of the marginal extreme value distributions, as in Zachary et al.
(1998); de Haan and de Ronde (1998), but the joint distribution is still a long way
off.

A popular method for addressing the problem of bivariate extremes is to adopt
a copula model to represent the joint distribution structure (Nelsen, 2006). This
copula is then combined with asymptotic extreme value distributions to represent
the marginal distributions, typically of the GEV type (Coles, 2001). For this pur-
pose, a range of different copula models have been proposed (see Waal and Gelder
(2005); Tawn (1988)). The main problem with this approach is that it is rather
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ad hoc. That is, there appears to be no theoretical justification for choosing one
particular copula over the other. Even in case of the bivariate extreme value cop-
ula (Pickands, 1981; Balakrishnan and Lai, 2009), due to the properties of the
dependence function, generally speaking, there are an infinite number of models.

The conditional extremes model developed by Heffernan and Tawn (2004) and
subsequently used, for example, by Jonathan et al. (2010); Ewans and Jonathan
(2014), provides a rather novel approach to model the marginal and dependence
structure of multivariate extremes. First, the marginal distribution of each variable
is transformed from the original scale to a standard Gumbel scale. Consequently,
the threshold exceedences of a marginal variable are modeled independently using
the generalized Pareto distribution, whereas the dependence structure is modeled
for pairs of transformed variables. What counts here is that the model assumptions
eventually lead to the collection of separate semiparametric conditional models
being fitted through ad hoc methods. The complicated nature of the methods may
restrict the applicability of the model.

Efforts have also been invested in an attempt to extend the peaks-over-threshold
(POT) method to the multivariate case (Kaufmann and Reiss, 1995; Falk and
Reiss, 2003). The bivariate POT framework also faces the same tasks of defining
the dependence function. This has not yet resulted in a method with the same
prediction capabilities as the univariate POT.

4.1 Bivariate Extreme-Value Distributions

Let us consider a bivariate stochastic process Z(t) =
(
X(t), Y (t)

)
, with dependent

component processes X(t) and Y (t), which has been observed over a time interval,
e.g., (0;T ). Suppose that the sampled values (X1, Y1), . . . , (XN , YN ) are allocated
to the times 0 ≤ t1 < . . . < tN ≤ T . This sequence can be considered to be a
series of vectors that are replicas of a random vector with a HZ(ξ, η) distribution.
In a maritime setting, the vector

(
X(t), Y (t)

)
might represent pairs of wind speeds

measured at two neighboring locations or simultaneously recorded wave elevation
and wind speed values. By analogy with the univariate case, the classical theory
of bivariate extremes is based on limiting the behaviour of the block maxima. It
starts with defining the vector of component-wise maxima ẐN , as follows,

ẐN =
(
X̂N , ŶN

)
, with X̂N = max

1≤i≤N
{Xi} and ŶN = max

1≤j≤N
{Yj} . (4.1)

The classical asymptotic theory of bivariate extreme values studies the ẐN , as
N → ∞. Because the sequence of vectors {Zi} is assumed to be an independent
version of a random vector with common bivariate distribution HZ(ζ), where we
used the notation ζ = (ξ, η), then

Prob
(
ẐN ≤ ζ

)
= Prob

(
max

1≤i≤N
Zi ≤ ζ

)
=
[
HZ(ζ)

]N
, (4.2)

because max
1≤i≤N

Zi ≤ ζ holds if, and only if, Z1 ≤ ζ, . . . , ZN ≤ ζ. Thus, ẐN in (4.2)

follow
[
HZ(ζ)

]N if Zi are governed by HZ(ζ).
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4.1. Bivariate Extreme-Value Distributions

By analogy with the univariate case, the exact distribution function
[
HZ(ζ)

]N
can be replaced by a limiting distribution. If

lim
N→∞

HN
Z

(
aN + bN ζ

)
= H(ζ) , (4.3)

for two-component vectors bN and aN > 0, then H(ζ) is called a bivariate extreme
value distribution and HZ(ξ, η) belongs to the max-domain of attraction of H(ξ, η).

Let FX(ξ) and GY (η) denote margins of HZ(ζ). From (4.3), it follows that

lim
N→∞

FNX
(
aN,1 + bN,1 ξ

)
= F (ξ) ;

lim
N→∞

GNY
(
aN,2 + bN,2 η

)
= G(η) ,

(4.4)

where F (ξ) and G(η) are marginal distributions of H(ζ). Hence, each marginal
of a bivariate extreme value distribution is necessarily a univariate extreme value
distribution.

Now, the task is partly resolved by recognizing that {Xi} and {Yi} can be
considered separately and are sequences of independent random variables. Thus,
classical univariate extreme value theory applies to both components. This implies
possible simplification of the presentation by assuming the Xi and Yi variables
have a known marginal distribution. Other marginal distributions, whose extremal
properties are determined by the univariate characterizations, can always be trans-
formed into this known form. The three types extreme-value distributions also can
be transformed to each other. Gumbel and Goldstein (1964), Gumbel (1965), Gum-
bel and Mustafi (1967), Tiago de Oliveira (1962, 1984) assumed Gumbel marginals,
whereas, e.g., de Haan and Resnick (1977) and Kotz and Nadarajah (2000) chose
Fréchet marginals F (a) = exp (−1/a). All three types can be easily transformed to
exponential variates, and, for example, Pickands (1981), Tawn (1988), Reiss and
Thomas (2007) choose exponential marginals.

Without loss of generality and for simplified representations, it is assumed that
the distribution functions FX(ξ) and GY (η) of the components {Xi} and {Yi},
respectively, both standard Fréchet distributions, cf., e.g., Coles (2001):

FX(ϑ) = GY (ϑ) = exp

(
− 1

ϑ

)
, ϑ > 0 . (4.5)

The standard Fréchet distribution is the GEV distribution with parameters µ = 0,
σ = 1 and γ = 1. Therefore, due to the max-stability of any GEV distribution (see
Definition 2.2), which in our case is fulfilled with constants aN = 0 and bN = N ,
for independent observations, holds:

Prob
(
X̂N/N ≤ ϑ

)
= Prob

(
ŶN/N ≤ ϑ

)
= exp

(
− 1

ϑ

)
, ϑ > 0 . (4.6)

Therefore, to be able to carry out the above results for each marginal, it is essential
to introduce the re-scaled vector Ẑ*

N =
(
X̂N/N, ŶN/N

)
.

By analogy with the Fisher-Tippett-Gnedenko Theorem 2.1 for the univariate
case, the following theorem describes the property of the limiting joint distribution
for the bivariate case.
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Theorem 4.1. Let Ẑ*
N =

(
X̂N/N, ŶN/N

)
be the re-scaled vector of component-

wise maxima, where X̂N and ŶN are defined by (4.1) and the (Xi, Yi) are inde-
pendent vectors with standard Fréchet marginal distributions. If a non-degenerate
distribution function H(ξ, η), such that

Prob(X̂N/N ≤ ξ, ŶN/N ≤ η)
d−→ H(ξ, η) , (4.7)

exists, then H(ξ, η) has the form

H(ξ, η) = exp
{
− V (ξ, η)

}
; ξ > 0, η > 0 , (4.8)

where

V (ξ, η) = 2

1∫
0

max

(
w

ξ
,

1− w
η

)
dA(w) , (4.9)

and A is a distribution function on [0, 1] satisfying the mean value constraint

1∫
0

w dA(w) =
1

2
. (4.10)

If the limit in Eq. (4.7) exists, then the distribution function H(ξ, η) defines
the class of bivariate extreme value distributions. From Theorem 4.1 follows the
existence of bijective correspondence between the H(ξ, η) family and set of A(w)
distribution functions on [0, 1] subject to the condition (4.10). If A(w) is differen-
tiable and has a density, then the entire model is considered to be a differentiable
bivariate extreme value distribution. Alternatively, bivariate extreme value distri-
butions are also generated by measures A(w) that are not differentiable. It appears
to be important to consider two examples that characterize two limit states of the
dependence between processes X(t) and Y (t). When A(w) is a measure that places
mass 0.5 on w = 0 and w = 1, that is A(0) = A(1) = 0.5, condition (4.10) is
trivially satisfied, and it follows that V (ξ, η) = 1/ξ + 1/η by Eq (4.9); hence, for
ξ > 0, η > 0, the bivariate extreme value distribution is

H(ξ, η) = exp

{
−1

ξ
− 1

η

}
= exp

(
−1

ξ

)
exp

(
−1

η

)
. (4.11)

This function corresponds to the case of independent X and Y . Similarly, if a
measure A(w) places unit mass on w = 0.5, that is, A(0.5) = 1, Eq. (4.10) is again
satisfied trivially. Then, from Eq. (4.9), it follows that V (ξ, η) = max

(
1/ξ, 1/η

)
,

and for ξ > 0, η > 0, the corresponding bivariate extreme value distribution is

H(ξ, η) = exp

{
−max

(
1

ξ
,

1

η

)}
= min

{
exp

(
−1

ξ

)
, exp

(
−1

η

)}
, (4.12)

which is the distribution function of variables that are marginally standard Fréchet
but which are perfectly dependent: X = Y with probability 1.
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An important class of differentiable bivariate extreme value distributions is the
logistic family, also referred to as the Type B bivariate extreme value distribution
(Balakrishnan and Lai, 2009). Developed by Gumbel (1960b) and Gumbel and
Mustafi (1967), it has subsequently been widely used for modelling of environmental
extremes (see, for example, works by Yue (2001b,a)). The logistic family with
standard Fréchet marginals takes the following form:

H(ξ, η) = exp

{
−
((

1

ξ

)m
+

(
1

η

)m)1/m
}
, (4.13)

for m ≥ 1 and ξ > 0, η > 0. The relation between (4.13) and general forms
(4.9) and (4.8) is not trivial, yet, the distribution function (4.13) is derived for the
certain density function a(w; m) of A(w), the expression of which can be found
in the literature (see Coles (2001)). The main reason for the popularity of the
logistic family is its flexibility because subject to the value of the m parameter
distribution, (4.13) covers all levels of dependence from independence for m = 1
to perfect dependence.

Thus, overall, it can be concluded that measure A(w) comprises the dependence
structure between components X(t) and Y (t).

Because any non-degenerate univariate asymptotic extreme value distribution
can be written as a GEV distribution (see Theorem 2.2):

F (ϑ) = exp

{
−
[
1 + γ

(
ϑ− µ
σ

)]−1/γ
}
,

it follows that the complete class of asymptotic bivariate extreme value distribu-
tions can be obtained simply by generalizing the marginal distributions. Specifi-
cally, using the assignments

ξ̃ ..=

[
1 + γx

(
ξ − µx
σx

)]1/γx

and η̃ ..=

[
1 + γy

(
η − µy
σy

)]1/γy

,

the complete family of bivariate extreme value distributions, with arbitrary GEV
margins, has a distribution function of the form

H(ξ, η) = exp
{
− V (ξ̃, η̃)

}
,

given that [1 + γx (ξ − µx)/σx] > 0, [1 + γy (η − µy)/σy] > 0, and where the
functions V and A satisfy (4.9) and (4.10). Note that parameters of the GEV
marginal distributions are {γx, µx, σx} and {γy, µy, σy}, respectively.

It is noticed that function V (ξ, η) defined in (4.9) is homogeneous of negative
degree −1, because for any constant c > 0, holds: V (c−1 ξ, c−1 η) = c V (ξ, η). This
property and Eq. (4.8) lead to

HN (ξ, η) = H
(
N−1 ξ, N−1 η

)
, (4.14)

or in more compact form, HN (ζ) = H(N−1 ζ). In addition, it is possible to show
that HN

(
aN + bN ζ

)
= H(ζ) for some vectors bN and aN > 0. Therefore, distri-

bution H defined in (4.8) has the property of max-stability. Like in the univariate
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case (see Section 2.1.1), it can be shown that distributions of the type (4.8) are the
only max-stable distributions, accurate to within the chosen marginal distributions
(Resnick, 2008). Finally, it can be proved that H is an extreme value distribution
if, and only if, it is max-stable distribution.

Despite the fact that Theorem 4.1 provides a complete and straightforward
description of bivariate extreme distributions, the class of possible asymptotic dis-
tributions is wide. The reason is that the only constraint on H(ξ, η) in Eq. (4.8)
is given by (4.9). Particularly, any distribution function A on [0, 1] in (4.9) that
satisfies the mean value constraint

∫ 1

0
w dA(w) = 1/2, ensures a valid limit in (4.8).

This leads to difficulties, as the asymptotic family has no finite parameterization.
One reasonable way to deal with the problem is to possibly use nonparametric
methods of estimation. This is also complicated by the fact that nonparametric
estimators can hardly be constrained accurately to satisfy functional conditions of
the type (4.10).

A possible alternative is to use parametric sub-families of distributions for A,
leading to sub-families of distributions for H. In this way, only a small subset of
the complete class of limit distributions for H is obtained. Yet it is possible to
ensure that a wide sub-class of the entire limit family is approximated. That is,
parametric families for A, and hence H, can be obtained, such that every member
of the full limit class for H can be closely approximated by a member of the sub-
family generated by the family of A. In principle, it is simple to require a parametric
family for A on [0, 1] whose mean is equal to 0.5 for every value of the parameter.
The corresponding family for H are generated then by substituting A into (4.9)
and (4.8). In practice, however, it is not so easy to generate a parametric family
with parameter-free mean and for which the integral in (4.9) can be controlled.

An alternative way of modeling bivariate extreme value distribution consists
of studying the dependence structure and the marginals separately. Since copulas
describe and model the dependence structure between random variables, indepen-
dently of the marginal laws involved, it appears to be expedient to introduce the
mathematical theory of copulas.

4.2 Bivariate Extreme-Value Analysis via Copulas

The copula theory is a relatively new and growing field. The construction and
properties of copulas have been studied rather extensively during the last 20 years
or so. Hutchinson and Lai (1990) were among the early authors who popularized the
study of copulas. Nelsen (1999) presented a comprehensive treatment of bivariate
copulas, while Joe (1997) devoted a chapter of his book to multivariate copulas.
Further authoritative updates on copulas are given in Nelsen (2006).

In this section, the general definition of a copula will be surveyed first. All the
theoretical justifications can be found in, e.g. Joe (1997); Nelsen (2006). A more
detailed survey can also be found in Sempi (2003). Thereafter, the extreme value
copula will be presented.
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4.2.1 Basic properties of a bivariate copula

Let I = [0, 1] denote a unit interval.

Definition 4.1. (Bivariate copula). A bivariate copula C(u, v) is a function
C : I × I → I such that:

• For every u, v ∈ I

C(u, 0) = 0, C(u, 1) = u, C(0, v) = 0, C(1, v) = v, (4.15)

• A copula is continuous in u and v; copula satisfies the stronger Lipschitz
condition: ∣∣C(u2, v2)− C(u1, v1)

∣∣ = |u2 − u1|+ |v2 − v1| ; (4.16)

• For 0 ≤ u1 < u2 ≤ 1 and 0 ≤ v1 < v2 ≤ 1,

Prob
(
u1 ≤ U ≤ u2, v1 ≤ V ≤ v2

)
= C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) > 0 .

(4.17)

With the given definition, it is not difficult to verify that any finite convex linear
combination of bivariate copulas Ci is also a bivariate copula. In other words, for
k ∈ N and with λi ≥ 0, such that

∑k
i=1 λi = 1, let C be given by C(u, v) =∑k

i=1 λi Ci(u, v). Then C is a copula.
Sklar’s theorem below expounds the role that copulas play in the relation-

ship between bivariate distribution functions and their univariate marginals (Sklar,
1959). As before, FX(ξ) and GY (η) denote the marginal distribution functions of
the random variables X and Y , respectively.

Theorem 4.2. (Sklar, bivariate case). Let HXY (ξ, η) be a joint distribution
function with marginals FX(ξ) and GY (η). Then, there exists a copula C such that,
for all ξ, η ∈ [−∞, ∞],

HXY (ξ, η) = C
(
FX(ξ), GY (η)

)
. (4.18)

If FX and GY are continuous, then the copula C is unique; otherwise, C is uniquely
determined on (Range of FX × Range of GY ). Conversely, if C is a copula and FX
and GY are univariate distribution functions, then HXY given by (4.18) is a joint
distribution function with marginals FX and GY .

This can also lead to the following essential result that plays a fundamental role
in practical applications.

Corollary 4.3. Let C, HXY (ξ, η) and FX(ξ) and GY (η) be as in Theorem 4.2,
and let us assume that FX, GY are continuous strictly increasing marginals. Then
∀ (u, v) ∈ I2

C(u, v) = HXY

(
F−1
X (ξ), G−1

Y (η)
)
. (4.19)
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In addition, it is important to make an example of the following three special
copulas:

W2(u, v) = max{u+ v − 1, 0} ;

Π2(u, v) = u v ;

M2(u, v) = min{u, v} .
(4.20)

It is easy to verify that W2, Π2 and M2 are valid copulas (Embrechts et al., 1999).
Note that the copulas W2 and M2 provide general bounds, since for any bivariate
copula C and ∀ (u, v) ∈ I2, W2(u, v) ≤ C(u, v) ≤ M2(u, v). In particular, for
continuous random variables X and Y the following holds:

1. The variable Y is a strictly decreasing function of X with probability one if,
and only if, CXY = W2. Random variables with copula W2 are often called
counter-monotonic.

2. The variables Y and X are independent if, and only if, their copula is Π2:
obviously, HXY = Π2

(
FX , GY

)
= FX GY .

3. The variable Y is a strictly increasing function of X with probability one if,
and only if, CXY = M2. Random variables with copula M2 are often called
co-monotonic.

A particular subclass of copulas, called Archimedean, features many useful prop-
erties. According to Genest et al. (1998), Archimedean copulas provide a host of
models that are versatile in terms of both the nature and strength of the association
they induce between the variables.

In some situations, there exists a function ϕ such that

ϕ
(
C(u, v)

)
= ϕ(u) + ϕ(v). (4.21)

Evidently, we also have an equivalent presentation: ϕ
(
HXY (ξ, η)

)
= ϕ

(
FX(ξ)

)
+

ϕ
(
GY (η)

)
, that is bivariate distribution function HXY can be written as a sum

of functions of marginals FX and GY . Because the expressions that can be used
for the construction of copulas is of particular interest, it is necessary to solve the
relation (4.21). First, the inverse of ϕ should be defined properly (Nelsen, 2006)

Definition 4.2. Let ϕ : I → [0, ∞] is continuous and strictly decreasing, and
ϕ(1) = 0. Let ϕ−1 denote the ordinary inverse function of ϕ. The pseudo-inverse
of ϕ is the function ϕ[−1] : [0, ∞]→ I given by

ϕ[−1] =

{
ϕ−1 0 ≤ t ≤ ϕ(0)
0 ϕ(0) ≤ t ≤ ∞

Clearly, if ϕ(0) = ∞, then ϕ[−1] = ϕ−1. Also ϕ is convex if, and only if, ϕ[−1]

is convex. Then, function C(u, v) of the form

C(u, v) = ϕ[−1]
(
ϕ(u) + ϕ(v)

)
is a copula if, and only if, the pseudo-inverse ϕ[−1] is a convex decreasing function.
Copulas of the form above are called Archimedean copulas. The function ϕ is called
a generator of the copula.
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An important example of Archimedean copula is the Gumbel copula (also
known as Gumbel-Hougard copula)

C(u, v) = exp
{
−
[
(− log u)α + (− log v)α

]1/α}
, α ≥ 1 . (4.22)

In this case, ϕ = (− log t)α.

4.2.2 Bivariate extreme value copula

Let random variables X and Y be joined by the copula C and also let ĈN denote
the copula of component-wise maxima X̂N and ŶN defined in (4.1). From Theorem
3.3.1 of Nelsen (2006), it is known that

ĈN (u, v) = CN
(
u1/N , v1/N

)
, (u, v) ∈ I2.

The limit of the sequence
{
ĈN
}

leads to the following definition of an extreme
value copula.

Definition 4.3. A copula CE is an extreme value copula if there exists a copula
C such that

lim
N→∞

CN
(
u1/N , v1/N

)
= CE

(
u, v

)
, (u, v) ∈ I2 . (4.23)

C is said to belong to the domain of attraction of CE. It is also easy to verify
that CE satisfies the relationship

CE
(
uk, vk

)
= CkE

(
u, v

)
, k > 0. (4.24)

Eq. (4.24) emphasizes a fundamental feature of EV copulas known as max-stability
property, cf., e.g. Salvadori et al. (2007).

An important example of the extreme value copula is the Gumbel-Hougaard
copula (4.22). Note that, in fact, there is no other Archimedean copula that is also
an extreme-value copula.

Pickands (1981) obtained a general form of a bivariate extreme-value copula of
a joint bivariate extreme value distribution with EV marginals F (ξ) and G(η), as
follows:

CE (u, v) = exp

{
log
(
uv
)
D
(

log(u)

log(uv)

)}
, (u, v) ∈ I2 . (4.25)

where the dependence function D(·) satisfies D(x) : [0, 1]→ [ max(x, 1− x), 1], cf.
also Gudendorf and Segers (2010). Properties of the dependence function D(·) are
as follows:

• D(0) = D(1) = 1.

• max(x, 1− x) ≤ D(x) ≤ 1, for 0 ≤ x ≤ 1.

• D(x) = 1 implies that CE = u v, that is, the components of a bivariate
extreme value vector are independent.
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• D(x) = max(x, 1−x) implies that the components are equal with probability
one.

• D is convex. In this way, D
(
λx+ (1− λ) y

)
≤ λD(x) + (1− λ)D(y).

• If Di are dependence functions, so is
∑n
i=1 αiDi, where ∀i αi ≥ 0 and∑n

i=1 αi = 1.
D may or may not be differentiable. In the former case, H has a joint density
everywhere; in the latter, H has a singular component and is not differentiable in
a certain region of its support.

Evidently, a set of the dependence functions D is infinite dimensional, which
gives a large freedom in the construction of the extreme value copula. At the
same time, this leads to difficulties, for no finite parametrization exists for such a
family. In practical applications, only parametric subfamilies are used. However, by
a careful choice, it is possible to ensure that a wide enough subclass of the entire
limit family is approximated. We shall consider some key examples of D.

Gumbel (1958a, 1960b, 1965) described two general forms for bivariate extreme
value distributions in terms of the marginals (univariate extreme-value distribu-
tions). Type A bivariate extreme value distribution is also known as the mixed
model. It is given by the following joint CDF:

H(ξ, η) = F (ξ)G(η) exp

{
−θ
[

1

logF (ξ)
+

1

logG(η)

]−1
}
. (4.26)

The corresponding copula is given as

CE(u, v) = uv exp

(
−θ log u log v

log uv

)
, (4.27)

The mixed model sets

D(x) = θx2 − θx+ 1 , 0 ≤ θ ≤ 1 . (4.28)

Type B bivariate extreme value distribution is also referred to as the logistic
model (see also Eq.(4.13)):

H(ξ, η) = exp

{
−
[(
− logF (ξ)

)m
+
(
− logG(η)

)m] 1
m

}
,m ≥ 1 . (4.29)

The copula that corresponds to the Type B extreme-value distribution is the
Gumbel-Hougard copula described by Eq. (4.22). The logistic model sets

D(x) = [xm + (1− x)m]1/m, m ≥ 1 . (4.30)

It is clear that for m = 1 the components are independent, whereas for m→∞ the
M2(u, v) copula is obtained, which corresponds to the complete dependence model.
(see Eq. (4.20) on page 104). The Pearson product-moment correlation coefficient
is ρ = 1−m−2 (Gumbel and Mustafi, 1967; Yue, 2001a).
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Type C bivariate extreme value distribution, or the biextremal model, is an
example of a non-differentiable model, cf., e.g. Tiago de Oliveira (1974, 1984). For
this distribution, the joint distribution function is

H(ξ, η) = exp
[
min

{
logF (ξ); logG(η) + logF (ξ)(1− φ)

}]
,

0 ≤ φ ≤ 1 .
(4.31)

The corresponding copula is defined by the dependence function of the form

D(x) = max{x, 1− φx}, 0 ≤ φ ≤ 1 . (4.32)

More results for this copula can be found, in particular, in Balakrishnan and Lai
(2009).
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Chapter 5

The ACER Method. Bivariate Case

In reliability engineering and design of offshore structures, probabilistic approaches
are frequently adopted. They require the estimation of extreme quantiles of oceano-
graphic data based on statistical information. Due to strong correlation between
such random variables as, e.g., wave heights and wind speeds, application of the
multivariate, or bivariate in the simplest case, extreme value theory is sometimes
necessary.

In this chapter we demonstrate that the concept of average conditional ex-
ceedance rate (ACER) can be extended in a natural way to also cover several
dimensions, in particular, two. A vehicle, first obtained by Naess (2011), provides
a nonparametric statistical estimate of the bivariate extreme value distribution
given by a bivariate time series. It will be shown that the bivariate ACER function
is able to cover both spatial and temporal dependence characteristics of the given
time series. Thus, it covers all simultaneous and non-simultaneous extreme events.
From a practical point of view, this makes it possible to investigate the true be-
havior of the bivariate extreme value distribution for a particular case, and at the
same time check the validity of the proposed copula models for bivariate extremes.

As the first effort in investigating the functional representation of the em-
pirically estimated bivariate ACER surface, the bivariate extreme value copula
approach is adopted. Specifically, Naess and Karpa (2015a,b) use the asymmet-
ric logistic and Gumbel logistic models combined with asymptotically consistent
marginal extreme value distributions based on the univariate ACER functions.
Since the univariate ACER functions have proved to portray accurately the
marginal tail behaviour, this may offer an opportunity to verify to some extent
the viability of copula models to capture the dependence structure of bivariate
extreme value distributions.

5.1 Cascade of Bivariate Conditioning Approximations

Let us consider a bivariate stochastic process Z(t) =
(
X(t), Y (t)

)
with depen-

dent component processes, which has been observed over a time interval, such
as (0, T ). Similarly to the univariate case, we assume that the sampled values
(X1, Y1), . . . , (XN , YN ) are allocated to the (generally equidistant) discrete times
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5. The ACER Method. Bivariate Case

t1, . . . , tN in (0, T ). Our goal now is to accurately determine the joint distribution
function of the extreme value vector ẐN =

(
X̂N , ŶN

)
, with components X̂N =

max {Xj ; j = 1, . . . , N}, and ŶN with a similar definition. Particularly, we want
to accurately estimate the joint distribution H(ξ, η) = Prob

(
X̂N ≤ ξ, ŶN ≤ η

)
=

Prob (XN ≤ ξ, YN ≤ η . . . , X1 ≤ ξ, Y1 ≤ η) for large values of ξ and η.
In the following, we outline the implementation of a cascade of approximations

based on conditioning, where the first approximation is a one-step memory approx-
imation, which may be considered a Markov-like approximation. This approxima-
tion concept was described by Naess (1985, 1990). However, it is emphasized that
it is not a Markov chain approximation.

From the definition of H(ξ, η), it follows that

H(ξ, η) =Prob
(
XN ≤ ξ, YN ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
=Prob

(
XN ≤ ξ, YN ≤ η |XN−1 ≤ ξ, YN−1 ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
·Prob

(
XN−1 ≤ ξ, YN−1 ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
=

N∏
j=2

Prob
(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
·Prob

(
X1 ≤ ξ, Y1 ≤ η

)
(5.1)

The development of the cascade of conditioning approximations begins by con-
sidering the following basic case of independent sample points (Naess, 2011).

Independent sample points

The first approximation of the cascade is obtained by assuming that variables Xj

of the component X(t) are statistically independent, with the same assumption for
the component Y (t). In this special case, we obtain

H(ξ, η) =

N∏
j=1

Prob
(
Xj ≤ ξ, Yj ≤ η

)
=

N∏
j=1

{
1− Prob(Xj > ξ)− Prob(Yj > η) + Prob(Xj > ξ, Yj > η)

}
. (5.2)

Now, we introduce the assignment:

α1j(ξ; η) ..= Prob(Xj > ξ);

β1j(η; ξ) ..= Prob(Yj > η);

γ1j(ξ, η) ..= Prob(Xj > ξ, Yj > η),

(5.3)

for 1 ≤ j ≤ N . Note that although neither α1j(ξ; η) depend on η nor β1j(η; ξ)
depend on ξ, we keep this notation for the correctness of the further derivations.
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Eq. (5.2) can then be rewritten as

H(ξ, η) =

N∏
j=1

{
1− α1j(ξ; η)− β1j(η; ξ) + γ1j(ξ, η)

}

≈ H1(ξ, η) = exp

−
N∑
j=1

(
α1j(ξ; η) + β1j(η; ξ)− γ1j(ξ, η)

) ; ξ, η →∞ , (5.4)

where the approximation 1 − x ≈ exp(−x) has been applied to the sum(
α1j(ξ; η) + β1j(η; ξ) − γ1j(ξ, η)

)
. The relative error of this approximation is up

to 0.5% for values of |x| < 0.1, and it rapidly decreases for decreasing values of |x|.

Conditioning on one and two previous sample points

In general, the variables Xj are statistically dependent, as are the variables Yj . In
this case, the first genuine conditioning approximation is obtained by neglecting
all previous conditioning events except for the immediate predecessor in Eq. (5.1),
that is,

Prob
(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
≈ Prob

(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η

)
, for j = 2, . . . , N.

(5.5)

Consequently, the following one-step memory approximation is adopted:

H(ξ, η) ≈
N∏
j=2

Prob
(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η

)
·Prob

(
X1 ≤ ξ, Y1 ≤ η

)
(5.6)

This may be rewritten as

H(ξ, η) ≈
N∏
j=2

{
1− Prob

(
Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η

)
− Prob

(
Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η

)
+ Prob

(
Xj > ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η

)}
·
{

1−Prob(X1 > ξ)− Prob(Y1 > η) + Prob(X1 > ξ, Y1 > η)
}

(5.7)

By introducing the notation

α2j(ξ; η) ..= Prob
(
Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η

)
;

β2j(η; ξ) ..= Prob
(
Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η

)
;

γ2j(ξ, η) ..= Prob
(
Xj > ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η

)
,

(5.8)

111
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for 2 ≤ j ≤ N , we obtain as in Eq. (5.4) that for high values of ξ and η, the
following approximation holds:

H(ξ, η) ≈
N∏
j=2

{
1− α2j(ξ; η)− β2j(η; ξ) + γ2j(ξ, η)

}
·
{

1− α11(ξ; η)− β11(η; ξ) + γ11(ξ, η)
}

≈ H2(ξ, η) = exp

−
N∑
j=2

(
α2j(ξ; η) + β2j(η; ξ)− γ2j(ξ, η)

)

−
(
α11(ξ; η) + β11(η; ξ)− γ11(ξ, η)

) ; ξ, η →∞ .

(5.9)

To extend the process of approximatingH(ξ, η), the third level of approximation
is achieved by assuming that

Prob
(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , X1 ≤ ξ, Y1 ≤ η

)
≈ Prob

(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
,

(5.10)

for j = 3, . . . , N . Therefore, Eq. (5.1) can be rewritten as:

H(ξ, η) ≈
N∏
j=3

Prob
(
Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
·Prob

(
X2 ≤ ξ, Y2 ≤ η |X1 ≤ ξ, Y1 ≤ η

)
·Prob

(
X1 ≤ ξ, Y1 ≤ η

)
(5.11)

By employing the complementary event, this can be rewritten as

H(ξ, η) =

N∏
j=3

{
1− Prob

(
Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
− Prob

(
Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
+ Prob

(
Xj > ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)}
·
{

1− Prob
(
X2 > ξ |X1 ≤ ξ, Y1 ≤ η

)
− Prob

(
Y2 > η |X1 ≤ ξ, Y1 ≤ η

)
+ Prob

(
X2 > ξ, Y2 > η |X1 ≤ ξ, Y1 ≤ η

)}
·
{

1− Prob(X1 > ξ)− Prob(Y1 > η) + Prob(X1 > ξ, Y1 > η)
}
.

(5.12)
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Now, we are able to introduce the following assignment:

α3j(ξ; η) ..= Prob
(
Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
;

β3j(η; ξ) ..= Prob
(
Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
;

γ3j(ξ, η) ..= Prob
(
Xj > ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η, Xj−2 ≤ ξ, Yj−2 ≤ η

)
,

(5.13)

for 3 ≤ j ≤ N .

H(ξ, η) =

N∏
j=3

{
1− α3j(ξ; η)− β3j(η; ξ) + γ3j(ξ, η)

}
·
{

1− α22(ξ; η)− β22(η; ξ) + γ22(ξ, η)
}

·
{

1− α11(ξ; η)− β11(η; ξ) + γ11(ξ, η)
}

≈ H3(ξ, η) = exp

−
N∑
j=3

(
α3j(ξ; η) + β3j(η; ξ)− γ3j(ξ, η)

)
−
(
α22(ξ; η) + β22(η; ξ)− γ22(ξ, η)

)
−
(
α11(ξ; η) + β11(η; ξ)− γ11(ξ, η)

) ; ξ, η →∞ .

(5.14)

Conditioning on k − 1 previous sample points

It has been observed that in the univariate case, conditioning on one previous
data point is sometimes sufficient for capturing the effect of dependence in the
time series to a large extent (Karpa and Naess, 2013; Naess and Gaidai, 2009).
However, there are also cases in which conditioning on one previous data point is
not sufficient. This can only be ascertained by a method that shows the complete
picture regarding the importance of dependence on the extreme value distribution.
Our proposed solution to this situation is obtained by introducing a cascade of
conditioning approximations beyond the one- or two-step approximation presented
above.

We start by defining the following set of events,

Ckj(ξ, η) =
{
Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η

}
(5.15)

From Eq. (5.1) and conditioning on not more than k − 1 previous data points,
where k = 2, . . . , N and j ≥ k, it is observed that

H(ξ, η) =

N∏
j=k

Prob
(
Xj ≤ ξ, Yj ≤ η | Ckj(ξ, η)

)
· Prob

(
Ckk(ξ, η)

)
, (5.16)

where

Prob
(
Ckk(ξ, η)

)
= Prob

(
Xk−1 ≤ ξ, Yk−1 ≤ η | Ck−1,k−1(ξ, η)

)
·Prob

(
Ck−1,k−1(ξ, η)

)
. (5.17)
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By introducing the notation

αkj(ξ; η) ..= Prob
(
Xj > ξ | Ckj(ξ, η)

)
;

βkj(η; ξ) ..= Prob
(
Yj > η | Ckj(ξ, η)

)
;

γkj(ξ, η) ..= Prob
(
Xj > ξ, Yj > η | Ckj(ξ, η)

)
,

(5.18)

for k ≤ j ≤ N , it can now be shown that

N∏
j=k

Prob
(
Xj ≤ ξ, Yj ≤ η | Ckj(ξ, η)

)

≈ exp

−
N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

) ; ξ, η →∞ . (5.19)

Similarly, it is found that

Prob
(
Ckk(ξ, η)

)
≈ exp

{
−
(
αk−1,k−1(ξ; η) + βk−1,k−1(η; ξ)− γk−1,k−1(ξ, η)

)}
·Prob

(
Ck−1,k−1(ξ, η)

)
≈ exp

−
k−1∑
j=1

(
αjj(ξ; η) + βjj(η; ξ)− γjj(ξ, η)

) ; ξ, η →∞ .

(5.20)

Hence, we finally obtain the result

H(ξ, η) ≈ Hk(ξ, η) = exp

−
N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)

−
k−1∑
j=1

(
αjj(ξ; η) + βjj(η; ξ)− γjj(ξ, η)

) ; ξ, η →∞ .

(5.21)

Thus, based on the definition of the extreme value distribution H(ξ, η) and
the properties of conditional probability, we have constructed a set

{
Hk(ξ, η)

}N
k=1

of conditional probability distributions that converges to the target distribution
H(ξ, η) of the extreme value ẐN =

(
X̂N , ŶN

)
in the limit as k increases.
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Summarizing the cascade, we have:

H1(ξ, η) = exp

−
N∑
j=1

(
α1j(ξ; η) + β1j(η; ξ)− γ1j(ξ, η)

) ;

H2(ξ, η) = exp

−
N∑
j=2

(
α2j(ξ; η) + β2j(η; ξ)− γ2j(ξ, η)

)

−
(
α11(ξ; η) + β11(η; ξ)− γ11(ξ, η)

) ;

H3(ξ, η) = exp

−
N∑
j=3

(
α3j(ξ; η) + β3j(η; ξ)− γ3j(ξ, η)

)
−
(
α22(ξ; η) + β22(η; ξ)− γ22(ξ, η)

)
−
(
α11(ξ; η) + β11(η; ξ)− γ11(ξ, η)

) ;

...

Hk(ξ, η) = exp

−
N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)

−
k−1∑
j=1

(
αjj(ξ; η) + βjj(η; ξ)− γjj(ξ, η)

) ;

↓ (k increases)

H(ξ, η) = Prob
(
XN ≤ ξ, YN ≤ η . . . ,X1 ≤ ξ, Y1 ≤ η

)

(5.22)

For most applications and to have practical significance, the following assump-
tion on this cascade of approximations is made: there is an effective ke satisfy-
ing ke � N such that H(ξ, η) = Hke(ξ, η). Then, H1(ξ, η) ≤ H2(ξ, η) ≤ . . . ≤
Hke(ξ, η) = H(ξ, η). Note that for a k-dependent stationary bivariate stochas-
tic process Z(t) =

(
X(t), Y (t)

)
, that is, for data where Zi and Zj are indepen-

dent componentwise whenever |j − i| > k, then H(ξ, η) = Hk+1(ξ, η) exactly
and lim

N→∞
H1(ξ, η) = lim

N→∞
H(ξ, η) (Watson, 1954). In fact, it can be shown that

lim
N→∞

H1(ξ, η) = lim
N→∞

H(ξ, η) is true for conditions weaker than k-dependence

(Leadbetter et al., 1983). However, for finite values of N , the picture is consid-
erably more complex, and purely asymptotic results should be used with some
caution.

It will be verified that the property ke � N is indeed satisfied for the type
of data analysed in the present research. Furthermore, under this assumption,
k−1∑
j=1

(
αjj(ξ; η) + βjj(η; ξ) − γjj(ξ, η)

)
is generally negligible compared to the sum
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N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)
. This leads to the approximation

H(ξ, η) ≈ Hk(ξ, η) ≈ exp

−
N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

) ; ξ, η →∞ ,

(5.23)

from which it emerges that for the estimation of the bivariate extreme value
distribution, it is necessary and sufficient to estimate the sequence of functions{(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)}N
j=k

(Naess and Karpa, 2015a; Naess, 2011).

5.2 Empirical Estimation of the Bivariate ACER

To obtain a more compact representation, it is expedient to introduce the concept
of the kth-order bivariate average conditional exceedance rate (ACER) function,
as follows:

Ek(ξ, η) =
1

N − k + 1

N∑
j=k

(
αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η)

)
, k = 1, 2, . . . (5.24)

Hence, when N � k, we may write

H(ξ, η) ≈ exp {− (N − k + 1) Ek(ξ, η)} , ξ, η →∞ . (5.25)

From this equation, the result for, e.g., Prob(ŶN ≤ η | X̂N ≤ ξ) follows by
writing

Prob(ŶN ≤ η | X̂N ≤ ξ) =
H(ξ, η)

Prob(X̂N ≤ ξ)
≈ exp{− (N − k + 1)

(
Ek(ξ, η)− εk(ξ)

)
} ; ξ, η →∞ , (5.26)

where εk(ξ) is the kth-order univariate ACER function for the time series X(t)
(Karpa and Naess, 2013; Naess and Gaidai, 2009).

A few more details on the numerical estimation of the ACER functions are
useful. We start by introducing a set of random functions. For k = 2, . . . , N and
k ≤ j ≤ N , let

Akj(ξ; η) = 1{Xj > ξ,

Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η};

Bkj(η; ξ) = 1{Yj > η,

Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η};

Gkj(ξ, η) = 1{Xj > ξ, Yj > η,

Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η};

Ckj(ξ, η) = 1{Ckj(ξ, η)} =

1{Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η},

(5.27)

116



5.2. Empirical Estimation of the Bivariate ACER

where 1{A} denotes the indicator function of some event A.
From these definitions, it follows that

αkj(ξ; η) =
E[Akj(ξ; η)]

E[Ckj(ξ, η)]
, (5.28)

βkj(η; ξ) =
E[Bkj(η; ξ)]

E[Ckj(ξ, η)]
, (5.29)

γkj(ξ, η) =
E[Gkj(ξ, η)]

E[Ckj(ξ, η)]
, (5.30)

where E[·] denotes the expectation operator.
Assuming ergodicity of the process Z(t) =

(
X(t), Y (t)

)
, then clearly Ek(ξ, η) =(

αkk(ξ; η) + βkk(η; ξ)− γkk(ξ, η)
)

= . . . =
(
αkN (ξ; η) + βkN (η; ξ)− γkN (ξ, η)

)
, and

it may be assumed that for the bivariate time series at hand

Ek(ξ, η) = lim
N→∞

N∑
j=k

(
akj(ξ; η) + bkj(η; ξ)− gkj(ξ, η)

)
N∑
j=k

ckj(ξ, η)

, (5.31)

where akj(ξ; η), bkj(η; ξ), gkj(ξ, η) and ckj(ξ, η) are the realized values of Akj(ξ; η),
Bkj(η; ξ), Gkj(ξ, η) and Ckj(ξ, η), respectively, for the observed time series.

Clearly, lim
ξ,η→∞

E[Ckj(ξ, η)] = 1. Hence, lim
ξ,η→∞

Ẽk(ξ, η) / Ek(ξ, η) = 1, where

Ẽk(ξ, η) = lim
N→∞

N∑
j=k

(
E[Akj(ξ; η)] + E[Bkj(η; ξ)]− E[Gkj(ξ, η)]

)
N − k + 1

. (5.32)

The advantage of using the modified bivariate ACER function Ẽk(ξ, η) for k ≥ 2
is that it is easier to use for non-stationary or long-term statistics than Ek(ξ, η).
Because our focus is on the values of the ACER functions at the extreme levels, we
may use any function that provides correct predictions of the appropriate ACER
function at these extreme levels.

To demonstrate why Eq. (5.32) may be applicable for non-stationary time series,
it is recognized that when ξ, η →∞,

H(ξ, η) ≈ exp{− (N − k + 1) Ek(ξ, η)} ≈ exp{− (N − k + 1) Ẽk(ξ, η)}

= exp

−
N∑
j=k

(
E[Akj(ξ; η)] + E[Bkj(η; ξ)]− E[Gkj(ξ, η)]

) . (5.33)

If the non-stationary time series can be segmented into K blocks such that
E[Akj(ξ; η)], E[Bkj(η; ξ)] and E[Gkj(ξ, η)] remain approximately constant within
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each block and such that∑
j∈Ci

E[Akj(ξ; η)] ≈
∑
j∈Ci

akj(ξ; η),

∑
j∈Ci

E[Bkj(η; ξ)] ≈
∑
j∈Ci

bkj(η; ξ) and

∑
j∈Ci

E[Gkj(ξ, η)] ≈
∑
j∈Ci

gkj(ξ, η)

for a sufficient range of ξ, η values, where Ci denotes the set of indices for block

no. i, i = 1, . . . ,K, then
N∑
j=k

E[Akj(ξ; η)] ≈
N∑
j=k

akj(ξ; η) with a corresponding

approximations of
N∑
j=k

E[Bkj(ξ; η)] and
N∑
j=k

E[Gkj(ξ; η)] (Naess, 2011). Hence, for a

non-stationary bivariate time series, it is obtained that (ξ, η →∞),

H(ξ, η) ≈ exp{− (N − k + 1)Êk(ξ, η)} , (5.34)

where

Êk(ξ, η) =
1

N − k + 1

N∑
j=k

(
akj(ξ; η) + bkj(η; ξ)− gkj(ξ, η)

)
, (5.35)

Now, we consider the problem of estimating confidence intervals for the bivariate
ACER function. If several realizations of the time series Z(t) =

(
X(t), Y (t)

)
are

provided or if the time series can be appropriately sectioned into several records,
e.g., several annual or other time span records, then the sample estimate of Ek(ξ, η)
would be

Êk(ξ, η) =
1

R

R∑
r=1

Ê(r)
k (ξ, η) , (5.36)

where R is the number of realizations (samples), and

Ê(r)
k (ξ, η) =

N∑
j=k

(
a(r)
kj (ξ; η) + b(r)

kj (η; ξ)− g(r)
kj (ξ, η)

)
N∑
j=k

c(r)
kj (ξ, η)

, (5.37)

for the stationary time series, or

Ê(r)
k (ξ, η) =

1

N − k + 1

N∑
j=k

(
a(r)
kj (ξ; η) + b(r)

kj (η; ξ)− g(r)
kj (ξ, η)

)
, (5.38)

for non-stationary time series, where the index (r) refers to realization no. r. The
sample standard deviation ŝk(ξ; η) can then be estimated by the standard formula,

ŝ2
k(ξ; η) =

1

R− 1

R∑
r=1

(
Ê(r)
k (ξ, η)− Êk(ξ, η)

)2

. (5.39)
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Assuming that the realizations are independent, Eq. (5.39) leads to a good ap-
proximation of the 95 % confidence interval CI =

(
CI−(η),CI+(η)

)
for the value

Ek(ξ, η), where

CI±(ξ, η) = Êk(ξ, η)± τ · ŝk(ξ, η)√
R

, (5.40)

and τ = t−1
(

(1 − 0.95)/2, R − 1
)
is the corresponding quantile of the Student’s

t-distribution with R− 1 degrees of freedom.

5.3 The T-year Return Level by the Bivariate ACER

In the previous section, we introduced the concept of bivariate average condi-
tional exceedance rates and derived the methodology for its empirical estimation.
Note that from the definition of Ek(ξ, η) follows that Ek(ξ, η) · (N − k + 1) rep-
resents the expected number of the bivariate observations Zj = (Xj , Yj) such
that its components exceed corresponding levels ξ and η and follow after at least
k − 1 previous simultaneous non-exceedances. Thus, the bivariate ACER function
Eke(ξ, η), where ke is such that

H(ξ, η) = Hke(ξ, η) = exp {− (N − k + 1) Eke(ξ, η)} ,

is able to describe the dependence structure of the considered bivariate time series,
and it defines the exact joint distribution function.

This implies the capability to obtain high quantiles of the bivariate extreme
value distribution. Thus, the joint T -year return period contour associated with
the event that either X̂N or ŶN or both are exceeded, see, for example, Salvadori
et al. (2007), that is,

{(
X̂N > ξTyr

)
∨
(
ŶN > ηTyr

)
∨
(
X̂N > ξTyr ∧ ŶN > ηTyr

)}
,

is represented by

1−H1yr(ξTyr, ηTyr) =
1

T
, (5.41)

where H1yr(ξ, η) is the joint distribution function of the annual maxima. Assuming
that the duration of the observation period of the bivariate process Z(t) is ny years,
then

H1yr(ξ, η) = exp

{
− N − k + 1

ny
Ek(ξ, η)

}
. (5.42)

From Eqs. (5.41) and (5.42), it follows that the joint T -year return levels
(ξTyr, ηTyr) are obtained as the solution of the implicit equation:

Ek(ξTyr, ηTyr) = − log

(
1− 1

T

)
ny

N − k + 1
. (5.43)

5.4 Functional Representation of the Empirically
Estimated Bivariate ACER Surface

Clearly, the empirically estimated kth-order bivariate average conditional
exceedance rate does not provide the necessary information for estimating high
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quantiles of the joint extreme value distribution. The behaviour of the bivariate
ACER as a continuous function of two variables cannot be determined using avail-
able statistical data. Therefore, the sub-asymptotic functional form of the ACER
surface Ek(ξ, η) can potentially be obtained approximately through the copula rep-
resentation of a bivariate extreme value distribution.

From the result by Sklar (1959), for any pair of random variables (X, Y ) with
marginal distribution functions FX(ξ) and GY (η), the joint distribution function
HXY (ξ, η) = Prob(X ≤ ξ, Y ≤ η) can be presented by the bivariate copula C(u, v)
as follows (see Theorem 4.2 on page 103): HXY (ξ, η) = C

(
FX(ξ), GY (η)

)
, cf.,

e.g., Nelsen (2006); Balakrishnan and Lai (2009). This result also applies to any
bivariate extreme value distribution.

As discussed in Section 4.2.2 on page 105, Pickands (1981) discovered that a
bivariate copula CE is an extreme-value copula if and only if

CE (u, v) = exp

{
log
(
uv
)
D
(

log(u)

log(uv)

)}
; 0 < u < 1, 0 < v < 1 , (5.44)

where the Pickands dependence function D(·) is a convex function and satisfies
D(x) : [0, 1]→ [ max(x, 1− x), 1], cf., Gudendorf and Segers (2010).

Considering the above, any bivariate extreme value distribution H(ξ, η) with
marginal univariate extreme value distributions F (ξ) and G(η) is given by the
formula:

H(ξ, η) = exp

{
log
(
F (ξ)G(η)

)
D
(

log
(
F (ξ)

)
log
(
F (ξ)GY (η)

))} . (5.45)

We assume that asymptotically consistent marginal extreme value distributions
F (ξ) and G(η) are represented by the corresponding univariate ACER functions,
that is:

F (ξ) ≈ exp
{
− (N − k + 1)εxk(ξ)

}
, ξ ≥ ξ1 ;

G(η) ≈ exp
{
− (N − k + 1)εyk(η)

}
, η ≥ η1 ,

(5.46)

where the sub-asymptotic functional form of the univariate ACER functions is
defined previously to be

εxk(ξ) = qxk exp{−axk(ξ − bxk)c
x
k} , ξ ≥ ξ1 ;

εyk(η) = qyk exp{−ayk(η − byk)c
y
k} , η ≥ η1 .

(5.47)

Now, substituting Eq. (5.46) into Eq. (5.45) the following representation of the
bivariate extreme value distribution applies:

H(ξ, η) = exp

{
− (N − k + 1)

(
εxk(ξ) + εyk(η)

)
D
(

εxk(ξ)

εxk(ξ) + εyk(η)

)}
,

ξ ≥ ξ1, η ≥ η1.

(5.48)

On the other hand, as it was discovered before, the bivariate extreme value dis-
tribution can be expressed through the bivariate ACER function, as
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H(ξ, η) = exp {− (N − k + 1) Ek(ξ, η)} for high values of ξ and η. Thereby, ac-
cording to Naess and Karpa (2015a), the functional form of the bivariate ACER
surface can possibly be obtained by:

Ek(ξ, η) =
(
εxk(ξ) + εyk(η)

)
D
(

εxk(ξ)

εxk(ξ) + εyk(η)

)
, ξ ≥ ξ1, η ≥ η1. (5.49)

Consequently, our aim now is to find the dependence function D(·) that would
provide optimal fit of the parametrical surface defined by Eq. (5.49) to the empirical
bivariate ACER surface Êk(ξ, η).

As described by Tawn (1988), subject to the form of the dependence function
D(·), different parametric bivariate extreme-value distributions can be considered.
As discussed in Section 4.1, these models can be classified as differentiable, e.g.,
those for which a bivariate density exists, and non-differentiable models. By setting
D(x) = θx2−θx+1 for 0 ≤ θ ≤ 1, the Type A bivariate extreme value distribution
of two correlated Gumbel-distributed random variables, or Gumbel mixed (GM)
model, is obtained (see Section 4.2.2). This differentiable model was first introduced
by Gumbel (1960a,b); Gumbel and Mustafi (1967). Another differentiable model is
acquired by settingD(x) = [xm+(1−x)m]1/m,m ≥ 1, where parameterm describes
the association between two marginals. This is the Type B distribution or Gumbel
logistic (GL) model, cf., e.g. Gumbel (1960b, 1961); Gumbel and Mustafi (1967);
Hougaard (1986). As discussed in Section 4.2.2, in this case, the bivariate extreme
value distribution is:

HG(ξ, η) = exp

{
−
[(
− logF (ξ)

)m
+
(
− logG(η)

)m] 1
m

}
= exp

{
− (N − k + 1)

[(
εxk(ξ)

)m
+
(
εyk(η)

)m] 1
m

}
, ξ ≥ ξ1, η ≥ η1 .

(5.50)

Thus, the possible general functional form of the bivariate ACER surface, evidently
takes the following form:

Gk(ξ, η) =
[(
εxk(ξ)

)m
+
(
εyk(η)

)m] 1
m

, ξ ≥ ξ1, η ≥ η1; m ≥ 1. (5.51)

The Type C distribution, also known as the biextremal model, cf. Tiago de
Oliveira (1984), can be considered as an example of a non-differentiable model. In
this case, the dependence function is D(x) = max(x, 1 − θx) for 0 ≤ θ ≤ 1, see
Eq. (4.32).

In the literature, differentiable models have typically received the greatest in-
terest, and they have been used to analyse bivariate environmental events. Yue
et al. (1999); Yue (2000) applied the Gumbel mixed (GM) model to rainfall data
to provide storm frequency analysis. Yue (2001b,a) also studied the Gumbel logistic
(GL) model with application to flood peaks – flood volume pair of bivariate data.

In the work by Yue and Wang (2004), a comparison between the Gumbel mixed
and Gumbel logistic models was performed. The authors argued that both mod-
els are appropriate and provide similar estimates of the joint distribution of two
Gumbel-distributed random variables whose Pearson product moment correlation
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coefficient is 0 ≤ ρ ≤ 2/3. When ρ > 2/3, the GM model cannot be applied (Tiago
de Oliveira, 1982; Yue and Wang, 2004). For these reasons, it was decided to con-
sider the Gumbel logistic model (5.50) and (5.51) as the one that fits better the
objectives of the present research.

In the dependence function D(·) for the Gumbel logistic model, Tawn (1988)
added the extra parameters φ and θ to obtain further flexibility. This lead to the
asymmetric logistic (AL) model, which sets

D(x) = [φmxm + θm(1− x)m]
1/m

+ (θ − φ)x+ 1− θ, (5.52)

where 0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1 and m ≥ 1. Note that when θ = φ = 1, the
logistic model (4.29) is obtained. When θ = 1, we get the Type C distribution
(4.31). In addition, when θ = φ we have a non-differentiable Gumbel’s model, see,
for example, Marshall and Olkin (1967). Thus, the asymmetric logistic is able to
approximate several families of distributions.

In this case, the bivariate extreme value distribution can be expressed as:

HA(ξ, η) = exp

{
−
[(
− φ logF (ξ)

)m
+
(
− θ logG(η)

)m] 1
m

+(1− φ) logF (ξ) + (1− θ) logG(η)

}
.

(5.53)

Using the general formula from Eq (5.49), functional form of the bivariate
ACER surface in the asymmetric logistic case Ak(ξ, η) is obtained by:

Ak(ξ, η) =
[(
φεxk(ξ)

)m
+
(
θεyk(η)

)m] 1
m

+ (1− φ)εxk(ξ) + (1− θ)εyk(η) , ξ ≥ ξ1, η ≥ η1 ,

(5.54)

where 0 ≤ θ ≤ 1, 0 ≤ φ ≤ 1 and m ≥ 1.
As mentioned, subject to the values of parameters, the asymmetric logistic

model is able to cover several other bivariate dependence structures (cf., e.g. Bal-
akrishnan and Lai (2009)). However, it is evident that the higher number of the
unknown parameters, the higher overall uncertainty of the model and its predic-
tions are. Therefore, in the present research, it was decided to consider and analyse
both logistic Gk(ξ, η) defined by Eq. (5.51) and asymmetric logistic Ak(ξ, η) defined
by Eq. (5.54) bivariate ACER surfaces.

Estimation of parameters

We now proceed to the question of finding the optimal values of the parameters.
First, the respective optimal parameters q, b, a and c of the univariate ACER func-
tions given by Eq. (5.47) are estimated by the procedure described in Section 3.4.1.
This procedure also automatically works up both components X and Y of the bi-
variate process, i.e. it generates a discrete grids {ξi} and {ηj} at which the ACER
functions ε̂xk, ε̂

y
k has been empirically estimated, and defines the tail markers ξ1,

η1 with further taking into consideration only those data which are not less than
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these levels. The procedure also includes rejection of the very tail of the data, where
uncertainty is high (see Eq.(3.33)).

As discussed by Naess and Karpa (2015a,b), after the bivariate ACER surface
Êk(ξ, η) has been empirically estimated, it is important to introduce the following
mean square error function:

FA(m, θ, φ) =

Nη∑
j=1

Nξ∑
i=1

w′ij

[
log Êk(ξi, ηj)− logAk

(
εxk(ξi), ε

y
k(ηj)

)]2
, (5.55)

where Nη, Nξ are numbers of grid points {ξi} and {ηj}, respectively, at which the
bivariate ACER surface Êk and corresponding univariate ACER function has been
empirically estimated, and w′ij = wij/

∑∑
wij with

wij =
(
logCI+(ξi, ηj)− logCI−(ξi, ηj)

)−2
, (5.56)

denoting normalized weight factors that place more emphasis on the more reliable
estimates. Here, we used the notation Ak

(
εxk(ξi), ε

y
k(ηj)

)
to emphasis that the op-

timally fitted parametric curves εxk and εyk from Eq. (5.47) has been evaluated at
points ξi, ηj and substituted into Eq. (5.54). Analogous mean square error function
FG(m) is introduced for the logistic model Gk(ξ, η) (5.51).

Now, we adopt the mathematical programming approach by minimizing the
objective function (5.55). The optimal parameters θ∗, φ∗ and m∗ can be found as
the solution of the following constrained optimization problem:{

FA(m, θ, φ)→ min ;

{m, θ, φ} ∈ S , (5.57)

with the constraints domain

S =
{
{m, θ, φ} ∈ R3

∣∣ θ, φ ∈ [0, 1]; m ∈ [1, +∞)
}
. (5.58)

In case of the logistic model, the problem is defined as follows:{
FG(m)→ min ;

m ≥ 1.
(5.59)

For the optimization task, the Trust-region-reflective nonlinear least-squares
optimization algorithm can be used, as well as the interior-point algorithm to find
minimum of constrained nonlinear multivariable function (Matlab, 2009). These
method has usually worked quite well with the chosen initial values m0, θ0 and φ0

for the parameters. We use θ0 = φ0 = 0.5 as the starting value of the correspond-
ing parameters. Then, it appears to be reasonable to use the estimate 1/

√
(1− ρ)

as the initial value m0. Here, ρ is the Pearson product-moment correlation coeffi-
cient between the observed data of X and Y , which has been used for the ACER
analysis, that is larger than the tail markers ξ1 and η1, respectively.

123



5. The ACER Method. Bivariate Case

Note on the Hausdorff distance

Scrutiny of the objective function in Eq. (5.55) reveals that it actually represents a
type of distance measure between two surfaces on the log level. In this context, the
problems (5.57) and (5.59) can be considered as the tasks of surface matching by
minimizing the distance measure. Note that the commonly used distance measure
to determine the difference between two different representations of the same 3D
geometric shapes, such as point sets, curves, or surfaces, discrete or continuous,
is the Hausdorff distance measure, cf., e.g. Alt and Guibas (2000); Cignoni et al.
(1998).

The classical Hausdorff distance measure dH(A, B) (see Huttenlocher et al.
(1993)) between two finite point sets A = {a1, . . . , ap} and B = {b1, . . . , bq} of
sizes p and q, respectively, is defined as

dH(A, B) = max
{

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
}
,

where d(·, ·) is some underlying norm on the points of A and B, typically, the
Euclidean distance.

The term maxa∈A minb∈B d(a, b) finds the point a ∈ A that is utmost from any
point of B and measures the distance from this point a to its nearest neighbor in
B, using the given norm d(a, b). In other words, it ranges points of A in order of
their distances to the nearest point of B and then uses the largest distance. So,
if maxa∈A minb∈B d(a, b) = r, then each point of A must be within distance r of
some point of B, and there also is at least one point of A that is exactly at the
distance r from the nearest point of B (the most mismatched point of A). Thus
intuitively, the expression ’the Hausdorff distance equals r’, that is dH(A, B) = r,
means that every point of A is within a distance r of some point of B and vice
versa.

This definition concerns the point sets, but as long as curves, images and sur-
faces can be interpreted as point sets, it can be generalized to these objects (Sim
et al., 1999). For example, because any 3-D surface is specified by the matrix of its
values, the number of columns can be considered as the dimension of the associ-
ated Euclidean space, whereas the number of rows is treated then as the number
of observations.

From the aforementioned, it naturally emerges that in our case, e.g. for the
asymmetric logistic model Eq. (5.54), the optimal parameters {m∗, θ∗, phi∗} ∈ S
are those, that minimize the following modified objective function F̃A(m, θ, φ):

F̃A(m, θ, φ) = dH

(
log Êk(ξi, ηj), logAk

(
εxk(ξi), ε

y
k(ηj)

))
,

i = 1, . . . , Nξ, j = 1, . . . , Nη
(5.60)

In the present research, the authors attempted to apply the target function
Eg. (5.60) in the bivariate ACER analysis. The Matlab (2009) routine
HausdorffDist(P,Q,lmf,dv) developed by Danziger (2009) was used for the task.
The results revealed that the optimization based on the function (5.60), gener-
ally speaking, does not improves the fit. Note that the adopted routine estimates
the Hausdorff distance based on the Euclidean norm. Therefore, the function F̃A
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actually differs from the FA defined in (5.55) by the lower number of summands,
but above all, the main and significant disadvantage of the objective F̃A is that it
leaves out of account the weight factors W ′ = {w′ij}, which appear to be signifi-
cant in the ACER analysis. Nevertheless, the Hausdorff distance is considered an
important issue in tackling the problem of surface matching. Thus, it is assumed
that the possible improvements, e.g. rational including of the weight factors in the
objective function F̃A(m, θ, φ), will be examined in further research.

5.5 Analysis of the Simulated Data by the Bivariate ACER
Method

In this section, the bivariate ACER method will be analysed by application to
synthetic data. First, we will study the performance of the bivariate ACER method
applied to the bivariate narrow-banded process, being the response of the linear
system to the Gaussian white noise excitation. Then, the case for which the exact
extreme values can be calculated will be considered.

5.5.1 Response of the linear system to the white noise
excitation

Let us consider two stationary processes X(t) and Y (t), being the responses of
a single degree of freedom linear system to the stationary Gaussian white noise
excitations. The X(t) component is assumed to be the response of the system to
the white noise excitation W1(t), whereas the stationary process Y (t) is assumed
to be the response of the same linear system to the input signal W̃ (t), as shown
schematically in the following diagram:

W1(t) −→ linear system −→ X(t)

W̃ (t) −→ H(s) −→ Y (t)
white noise
excitations

stationary
responses

The corresponding equations of motion are given by

Ẍ + 2ζ0ω0Ẋ + ω2
0X = W1(t),

Ÿ + 2ζ0ω0Ẏ + ω2
0Y = W̃ (t),

(5.61)

with specific damping constant ζ0 and resonance frequency ω0 = 2π/T0. The white
noise excitation W̃ (t) is given by

W̃ (t) =

(
α√

α2 + (1− α)2
W1(t) +

(1− α)√
α2 + (1− α)2

W2(t)

)
, 0 ≤ α ≤ 1 (5.62)

whereW1(t) andW2(t) are independent stationary Gaussian white noise excitations
with the autocorrelation function E

[
W1(t)W1(t+τ)] = E

[
W2(t)W2(t+τ)

]
= δ(τ).

The way that the excitation W̃ (t) is defined implies that it is also a stationary
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Gaussian white noise with the autocorrelation function RW̃ (τ) = E
[
W̃ (t)W̃ (t +

τ)
]

= δ(τ). This implies that the power spectral densities SW1
(ω) and SW̃ (ω) of

both excitations are equal and take value 1/(2π), that is SW1
(ω) = SW̃ (ω) =

1/(2π) ..= S(ω) (cf., e.g. Newland (1993)).
In this case, the two-sided power spectral densities (PSD) of both processes

X(t) and Y (t) are equal and given as:

SX(ω) = SY (ω) = |H(ω)|2 S(ω) =
1

2π
(
(ω2

0 − ω2)2 + (2 ζ0 ω0 ω)2
) , (5.63)

where the frequency response function of the linear system H(ω) is:

H(ω) =
1

(ω2
0 − ω2) + i (2 ζ0 ω0 ω)

. (5.64)

In this way, because the excitation processes W1(t) and W̃ (t) are dependent, so
are the corresponding response processes X(t) and Y (t) (Naess and Moan, 2012).
The response processes are also Gaussian with zero mean, due to the proper-
ties of a linear oscillator (see, e.g. Ochi (1990)). Then, the correlation coefficient
ρXY = E[X(t)Y (t)]/σXσY between the dependent processes X(t) and Y (t) can be
obtained as:

ρXY =
RXY (0)

σXσY
, (5.65)

where RXY (0) is the cross-correlation function RXY (τ) between processes X(t) and
Y (t) evaluated at point τ = 0. From the spectral analysis it is known that

RXY (τ)|τ=0 =

∫ ∞
−∞

SXY (ω)eiωτdω

∣∣∣∣
τ=0

=

∫ ∞
−∞

SXY (ω)dω . (5.66)

The cross-spectrum SXY (ω) of two jointly stationary processes X(t) and Y (t) is
found as

SXY (ω) = H(ω)
∗
H(ω)SW1W̃

= |H(ω)|2 SW1W̃
, (5.67)

where H(ω)
∗ is complex conjugate of the frequency response function H(ω) (Naess

and Moan, 2012). The cross-spectrum SW1W̃
of the excitationsW1(t) and W̃ (t) can

easily be found as

SW1W̃
=

α

2π
√
α2 + (1− α)2 (5.68)

The variances σ2
X and σ2

Y of both processes are equal and can be expressed in
terms of the power spectral densities SX(ω) = SY (ω) (see Eq. (5.63)) as follows,

σ2
X = σ2

Y =

∫ ∞
−∞
|H(ω)|2 S(ω)dω =

1

2π

∫ ∞
−∞
|H(ω)|2dω . (5.69)
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Thus, by Eq. (5.63) and Eqs. (5.65) - (5.69), it is found that

ρXY =
α

2π
√
α2 + (1− α)2 σXσY

∫ ∞
−∞
|H(ω)|2 dω =

α√
α2 + (1− α)2

. (5.70)

Therefore, two dependent response processesX(t) and Y (t) compose a bivariate
stochastic process Z(t) =

(
X(t), Y (t)

)
. By changing the values of α, it is possible

to control the correlation coefficient ρ between the components, as illustrated in
Figure (5.1). For the Monte Carlo simulations, which will be described hereinafter,
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Figure 5.1: Correlation coefficient ρ between X and Y for different values of α.
(red) – theoretical values; (blue) – sample estimates.

it was decided to consider values of α that result in the following values of the
correlation coefficient ρ = {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}. The limiting value
α = 0 yields ρ = 0, that is, the Gaussian response processes are uncorrelated.
Another limit case α = 1 implies that ρ = 0, and hence the time series X(t) and
Y (t) are fully correlated and, in fact, are equal with probability one. In Figure (5.2),
105 bivariate observations of the process Z(t) (X(t) component on the x-axis versus
Y (t) on the y-axis) are plotted for three cases of values of parameter ρ to illustrate
the corresponding correlation effect.

It was also decided to consider the case of fixed ζ0 = 0.05 and ω0 = 3. By
this, the spectral densities of both processes SX(ω) = SY (ω) are concentrated in a
narrow frequency band, see Figure (5.3). This implies that the peak events of the
time series X(t) and Y (t) have a tendency to occur in groups, that is, the response
processes are narrow banded (see Section 3.5.6). Figure (5.4) illustrates parts of
the generated response processes and their peak values. First, it is observed that
both time series exhibit narrow band characteristics and that the neighbouring
data points of each process are strongly dependent. In addition, the correlation
effect between the components X(t) and Y (t) is also displayed. Apparently, the
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(a) α = 0, ρ = 0 (b) α = 0.43, ρ = 0.6 (c) α = 0.88, ρ = 0.99

Figure 5.2: Scatterplot of the simulated 105 bivariate response events for different
values of α (and ρ).
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Figure 5.3: Plot of the two-sided narrow power spectral density with ζ0 = 0.05
and ω0 = 3 (see Eq. (5.63)).

peaks of both time series occur substantially independently when the ρ value is
low, cf. Figure (5.4a), whereas the peak events occur on full concordance for the
high values of ρ, see Figure (5.4c).

In summary, the aforementioned model allows us to generate a bivariate time
series that possesses both spatial and temporal dependence characteristics, and
therefore, is of particular interest for the bivariate ACER analysis.

Behaviour of the bivariate ACER surface

It appears to be important to first consider the question of typical behaviour of
the bivariate ACER surface Êk(ξ, η).
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(a) α = 0, ρ = 0
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(b) α = 0.43, ρ = 0.6
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(c) α = 0.88, ρ = 0.99

Figure 5.4: Part of the narrow-band response time series X(t) (black) and Y (t)
(red) with indicated peak values, for different values of α (and ρ).

Let us consider 100 blocks of the bivariate response process Z(t)
=
(
X(t), Y (t)

)
with 1000 bivariate observations in one block, so that the total

number of observations is 105 bivariate data points. This amount of data is suf-
ficient to answer a need of a fairly accurate estimation of the empirical bivariate
ACER surface Êk(ξ, η). The Matlab (2009) Simulink model was build and used
to generate two response processes X(t) and Y (t) for each of eight values of the
correlation coefficient ρ.

First, the univariate average conditional exceedance rates ε̂xk(ξ) and ε̂yk(η) were
estimated for different degrees of conditioning k for each value of ρ. Because the
spectral densities of the response processes are equal and do not depend on the
parameter α, the dependence structure, inherent in the data, remains identical
for both time series for all values of ρ. Therefore, the estimated univariate ACER
functions ε̂k with the chosen range of k exhibit the same behavioral pattern for
every response process and for every ρ value. This is confirmed by Figure (5.5).
It shows the ACER functions ε̂xk(ξ) and ε̂yk(η) plotted for k = 1; 4; 10; 20; 40; 60.
Without loss of generality, we chose the case α = 0.43, ρ = 0.6.

Figure (5.5) reveals that there is a significant dependence effect between con-
secutive data. It is reflected in the fact that there is a noticeable difference between
the three groups of the ACER functions. The first curve ε̂1 is based on the assump-
tion that all of the sampled data are independent. It is noticeably bigger than the
rest of the ACER functions and cannot be used for the further analysis, because
the assumption is incorrect. The ACER function ε̂4 can hardly be distinguished
from the ε̂10, though none of them can fully capture the dependence effect in the
data. Finally, it is observed that for k ≥ 20, where the ε̂k with k = 20 takes into
account the neighbouring peak values, the full convergence has been achieved.

This demonstrates that the dependence structure is entirely accounted for by
the ACER line ε̂k, k = 20. For this reason, it was decided to focus our further
attention on the ACER functions with index k = 20.

It should be emphasized here that for the ACER analysis of the bivariate ex-
tremes, the chosen time series has to consists of all sample points. That is, the peak
values should not be extracted from the data array for the analysis, in contrast to
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Figure 5.5: Comparison between univariate ACER estimates for different degrees
of conditioning; ρ = 0.6.

the univariate ACER analysis, especially of the narrow band time series. The main
valid reason for this is that the cascade of bivariate conditioning approximations
(see Section 5.1) is based on the bivariate sampled data allocated to the same time.
In other words, observations of each component have to occur (or to be sampled)
simultaneously. Evidently, this framework can be violated by extracting the peak
values.

Now, the empirical bivariate ACER functions can be estimated for the same
degrees of conditioning k = 1; 4; 10; 20; 40; 60. The cascade of Êk(ξ, η) surfaces for
the case ρ = 0.6 is shown in Figure (5.6). Êk(ξ, η) with k = 1 is the upper most, then
the following group of Ê4 and Ê10 that match on the entire ξ − η domain. Finally,
the group of surfaces with k ≥ 2 that match entirely, is the lower most. The same
arguments as in the univariate case are applied to make the decision about the
bivariate ACER surface to be used in the analyses. That is, there is virtually no
difference between the 20th and the 60th ACER surfaces, which shows that the
dependence structure in this particular time series is captured almost completely
by conditioning on previous 19 sampled values. As long as estimation of the surface
Ê20 is more accurate due to availability of more data, it is reasonable to choose the
surface with the degree of conditioning k = 20.

In addition, as it is seen from the figure, the cross section of the surfaces at
the high level of η gives the univariate ACER functions of the X(t) observations,
while the cross section at a high ξ level represents the empirical univariate ACER
function of the time series Y (t), respectively.

The aforementioned statements concern solely the internal coherence of the
sampled data of each component of the bivariate process, that is the temporal
dependence of the processes. Apparently, correlation between two components of
the time series, or spatial dependence, has a substantial impact on the bivariate
ACER surface Êk(ξ, η).
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Figure 5.6: Comparison between bivariate ACER surface estimates for different
degrees of conditioning. Êk(ξ, η) surfaces are plotted on a log10 scale; ρ = 0.6.

As discussed in Section 5.4, the joint extreme value distribution H(ξ, η) of
the bivariate extreme value vector ẐN =

(
X̂N , ŶN

)
with marginal extreme value

distributions F (ξ) and G(η), respectively, is given by

H(ξ, η) = CE
(
F (ξ), G(η)

)
. (5.71)

where the extreme value copula CE is defined as

CE (u, v) = exp
{

log(u v)D
(
log(u)/log(u v)

)}
for 0 < u < 1, 0 < v < 1. It comprises information about the inter-component
dependencies. In fact, the dependence structure is given by the Pickands function
D(x) : [0, 1] 7−→ [ max(x, 1− x), 1] (Pickands, 1981). Two boundary values of the
function D(·) lead to two trivial cases. For statistical independent components X(t)
and Y (t), the dependence function D = 1, and therefore

H(ξ, η) = F (ξ)G(η) . (5.72)

On the contrary, in case of complete dependence of X(t) and Y (t), the dependence
function becomes D(x) = max(x, 1 − x). This leads to the following result (cf.,
e.g. Nelsen (2006))

H(ξ, η) = min
{
F (ξ), G(η)

}
. (5.73)

On the other hand, it has been discovered before in Section 5.2, Eq. (5.25), that
the joint extreme value distribution H(ξ, η) can be presented through the bivari-
ate ACER function Ek(ξ, η), as H(ξ, η) = exp {− (N − k + 1) Ek(ξ, η)}. It is also

131



5. The ACER Method. Bivariate Case

assumed that the marginal EVD F (ξ) and G(η) are presented through the corre-
sponding univariate ACER functions, as shown in Eqs. (5.46) and (5.47). Now, we
can substitute the right-hand side of these expressions into Eqs. (5.72) and (5.73).
This yields to the following results. If Eq. (5.72) holds, that is, the components
X(t) and Y (t) are independent, then evidently,

Ek(ξ, η) = εxk(ξ) + εyk(η). (5.74)

Oppositely, for the fully dependent processesX(t) and Y (t), from Eq. (5.73) follows:

exp
{
− (N − k + 1) Ek(ξ, η)

}
= min

{
exp

{
− (N − k + 1) εxk(ξ)

}
, exp

{
− (N − k + 1) εyk(η)

}}
.

(5.75)

And hence,

− (N − k + 1) Ek(ξ, η)

= min
{
− (N − k + 1) εxk(ξ), −(N − k + 1) εyk(η)

}
,

(5.76)

from which it finally emerges that

Ek(ξ, η) = max
{
εxk(ξ), εyk(η)

}
. (5.77)

Therefore, behaviour of the bivariate ACER function Ek(ξ, η) varies from(
εxk(ξ) + εyk(η)

)
to max

{
εxk(ξ), εyk(η)

}
with growth of the dependence between two

processes. To verify the aforementioned, we use the estimated ACER functions of
the response processesX(t) and Y (t). The bivariate ACER surface Ê20(ξ, η) and the
surfaces composed of the univariate ACER functions as given by
Eqs. (5.74) and (5.77), are considered.

For the case ρ = 0, that is, for the uncorrelated components, the surfaces
Ê20(ξ, η) and

(
ε̂x20(ξ) + ε̂y20(η)

)
match entirely along the domain, within the inher-

ent statistical uncertainty. This, in addition, indicates that the components are
independent and hence, they are jointly normally distributed. Figure (5.7) shows
the contour plot of the Ê20(ξ, η) together with

(
ε̂x20(ξ) + ε̂y20(η)

)
on a log10 scale.

The bivariate ACER surfaces Ê20(ξ, η) and max
{
ε̂x20(ξ), ε̂y20(η)

}
estimated from

the fully correlated observations (ρ = 1) also coincide entirely. In Figure (5.8),
contour lines of the decimal logarithm of both surfaces are plotted together.

As a final point, the contour lines of the Ê20(ξ, η) surface for different values of
ρ were considered. Contour lines were estimated for the same fixed range of levels
of the bivariate ACER function: log10 Ê20 = {−1.5, −1.7, −1.9, −2.1, −2.4, −2.6,
−2.9, −3.2, −3.6} and plotted. Figure (5.9) enables to track the change in the
behaviour of the Ê20(ξ, η) surface as the correlation coefficient ρ increases from
0 to 1. It is observed that for low-correlated data (ρ ≤ 0.5), the ACER surfaces
behave rather identically, whereas for higher values of ρ, the contour lines tend
to sharpen on the diagonal, that is, the joint distribution converges to the form
Ê20(ξ, η) = max

{
ε̂x20(ξ), ε̂y20(η)

}
as ρ→ 1.

The Monte Carlo simulation

In this part, the overall performance of the bivariate ACER method will be studied
by application to repeated random samples of the generated response processes
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Figure 5.7: Contour plot of the ACER surface Ê20(ξ, η), (• •), and the surface(
ε̂x20(ξ)+ ε̂y20(η)

)
, (◦ ◦). Surfaces are estimated empirically for the case ρ = 0. Boxes

indicate levels on a log10 scale.

of the linear system to the white noise excitations. The bivariate extreme value
statistics will be based on 100 independent the Monte Carlo simulations for every
value of the parameter α, that is, for eight considered cases of the correlation ρ
between the components.

As before, let us consider 100 blocks of the bivariate response process Z(t) =(
X(t), Y (t)

)
with 1000 bivariate observations in one block, that is, in total, there

are 105 bivariate data available. This amount is assumed to be satisfactory for
accurate empirical estimation of the bivariate ACER function Êk. As discussed
above, the dependence structure in this particular time series is entirely accounted
for by the ACER surface estimated by conditioning on not less than 19 previous
sampled values, that is, for k = 20. Ê20(ξ, η) corresponds to reaching the previous
peak values of the narrow-banded processes X(t) and Y (t) in the conditioning
process. Therefore, it appears to be efficient to perform the extreme value analysis
based on this surface. In addition, the ACER surface Ê20 practically coincides with
the one based on the exact bivariate extreme value distribution that is inherent in
the data. This makes it possible to use the accurately estimated Ê20 as a benchmark
for comparison with the fitted asymmetric logistic model Ak(ξ, η) from (5.54) and
the fitted logistic model Gk(ξ, η) from (5.51).

Also, for comparison purposes, it was decided to consider the common approach
of assuming Gumbel marginal extreme value distributions combined with a logistic
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copula, that is, the Type B bivariate EVD:

HG(ξ, η) = exp

{
−
[(
− logF (ξ)

)m
+
(
− logG(η)

)m]1/m}
, (5.78)

where

F (ξ) = exp
{
− exp (− (ξ − µx)/σx)

}
,

G(η) = exp
{
− exp (− (η − µy)/σy)

} (5.79)

are the Gumbel marginal distributions of the extreme values X̂N and ŶN . As dis-
cussed by Gumbel and Mustafi (1967); Yue (2001a), the estimator of the parameter
m is given by m̂ = 1/

√
(1− ρ̂), where ρ̂ is the estimated product-moment corre-

lation coefficient between X̂N and ŶN . Thus, if the sample size of ẐN =
(
X̂N , ŶN

)
is sufficiently large, the parameters µx, µy, σx, σy and m can by estimated fairly
accurately.

To obtain an idea about the performance of the bivariate ACER method and,
in addition, to highlight the results obtained by applying the Type B bivariate ex-
treme value distribution, 100 independent 100-block Monte Carlo simulations were
conducted as follows. Based on the generated 105 bivariate response data, the uni-
variate ACER functions ε̂x20(ξ) and ε̂y20(η), as well as the bivariate ACER surface
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Figure 5.9: Contour plot of the empirically estimated ACER surface Ê20(ξ, η), (• •),
for increasing values of ρ. Boxes indicate the same level lines of the Ê20 on a log10

scale.
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Ê20(ξ, η) were estimated. Because the response time series X(t) and Y (t) have the
same spectral density and, therefore, identical magnitudes, it was decided to set
the tail markers at the same level, that is, ξ1 = η1 = 0.7. Then, the correspond-
ing optimization procedures (see Section 3.4.1) were applied to find the optimal
values of the parameters of the univariate ACER functions εx20 and εy20. Followed
by that, the asymmetric logistic A20(ξ, η) and the logistic G20(ξ, η) models with
the optimized univariate ACER marginals were fitted to the empirically estimated
Ê20, using the techniques defined by Eqs. (5.57) and (5.59), respectively. Finally,
based on the parametric surfaces A20 and G20, the T -year return period levels were
obtained as the solution of the Eq. (5.43).

The bivariate return levels predicted by the Gumbel logistic model with Gumbel
marginals was based on the sample of 100 block extremes. Five estimators µ̂x, µ̂y,
σ̂x, σ̂y and m̂ of the parameters of the model were constructed using the method
of moments. This method was chosen as one of the most commonly used robust
methods of estimation. In addition, it was agreed that the method of moments
provides rather accurate estimates based on the 100 sample points. Subsequently,
the Gumbel logistic model with Gumbel marginals estimated by the method of
moments will be referred to as GMM (ξ, η). The T -year return period levels were
obtained as the solution of the equation

GMM (ξTyr, ηTyr) = 1− 1/T . (5.80)

Obviously, 100 Monte Carlo empirically estimated bivariate ACER functions, as
well as the corresponding fitted and estimated surfaces cannot provide any distinct
conclusions regarding the method. Therefore, it appears to be natural to estimate
the 100 average surfaces of each model. Any 3D surface is given by a matrix of
Z-values calculated at each (x, y) point, together with the corresponding grid on
the X-Y plane. In our case, the surfaces are designated by the matrices of values of
the ACER function (empirically estimated in case of Ê20, or calculated otherwise).
Number of columns of the matrix is equal to Nξ and corresponds to the number of
points of division {ξi} of the ξ-axis (corresponds to the X-axis), whereas number of
rows is equal to Nη, that is, to the number of points {ηj} on the axis η (≡ Y ), cf.
Eq. (5.55). Note that the ξ-η grid was created prior to the Monte Carlo simulations
to ensure concordance of the surfaces. Therefore, the 100 average of each surface
can be estimated as the mean values for elements along the third dimension of the
three-dimensional array formed by 100 matrices. In Figure (5.10), this process is
illustrated graphically via the contour plot of the T -year return period levels. It is
observed that the black solid lines correspond to the contours the T -year return
levels of each of the fitted MC A20 surfaces, whereas the red line corresponds to
the contour of the surface Ā20 obtained by the averaging of the 100 fitted surfaces
A20.

In this manner, the average of the 100 Monte Carlo surfaces were estimated for
each of eight considered values of the correlation coefficient ρ: average of the 100
empirically estimated ACER surfaces, ¯̂E20, the averages of the optimized asymmet-
ric logistic and optimized logistic models, Ā20 and Ḡ20, respectively, as well as the
average of the estimated Gumbel logistic models with Gumbel marginals, ḠMM .
Figures (5.11) and (5.12) present contour plots of the 20-year, 50-year and 100-year
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return period levels for the averages of the 100 Monte Carlo surfaces, for all values
of ρ (and α).

The figures reveal that the estimated average of 100 MC empirical bivariate
ACER surfaces ¯̂E20(ξ, η) exhibits a behaviour analogous to the one demonstrated
in Figure (5.9). That is, for the low-correlated data (ρ ≤ 0.6) the contour lines
behave rather identically and have smooth curvature on the diagonal. At the same
time, it is observed that the ¯̂E20 surface captures high correlation between the data,
which is indicated by the contour lines that tend to sharpen on the diagonal as ρ
increases.

Figures (5.11) and (5.12) also demonstrate equally high degree of concordance
between the average empirical ACER surface ¯̂E20 and the averages of the optimized
asymmetric logistic and logistic surfaces Ā20 and Ḡ20, respectively. In addition, the
level of agreement between the contour lines of Ā20 and Ḡ20 allows to infer that
these surfaces actually coincide entirely. Finally, regarding the average of 100 MC
estimated Gumbel logistic models with Gumbel marginals, ḠMM (ξ, η), it is clearly
observed that the level of agreement between the contours of ¯̂E20 and ḠMM is high
only for short return periods, that is for T < 50. For T > 50 the distinction is
rather significant.

Apparently, the visual images, like any other qualitative index, have, to a certain
extent, low capacity to enclose the complete information about mutual alignment
of the contour lines. Therefore, it appears to be appropriate to introduce a quan-
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Figure 5.10: Estimation of the average of the 100 Monte Carlo simulated surfaces
illustrated by the contour plot of the T -year return level. Contours of the optimized
asymmetric logistic MC simulated surfaces, A20, ( ); contour of the average of
the 100 MC surfaces, Ā20, ( ).

137



5. The ACER Method. Bivariate Case

titative index too. One of the possible methods that can be adopted in our case to
measure the reciprocal distance between two contour lines of a similar behaviour
is to apply the Hausdorff distance based on the Euclidean norm d(·, ·) on a R2

space, cf. e.g. Alt et al. (1995); Alt and Guibas (2000). As discussed in Section 5.4,
intuitively, the Hausdorff distance between 2D curves A and B given by the cor-
responding sets of points A = {a1, . . . , aNA}, B = {b1, . . . , bNB}, where ∀ai and
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Figure 5.11: Response of the linear system. Contour plot of the T -year return lev-
els (T = 20, 50 and 100 years) for the averaged surfaces: average of the 100 MC
empirically estimated ACER surfaces, ¯̂E20, (• •); av.100 of the optimized asymmet-
ric logistic models, Ā20, ( ); av.100 of the optimized logistic models, Ḡ20, (◦ ◦);
av.100 of the estimated Gumbel logistic models with Gumbel marginals, ḠMM ,
( ). Boxes indicate return levels in years. The case of ρ = 0, 0.2, 0.4 and 0.6.
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∀bj ∈ R2, is defined as follows. First, the Euclidean distances from any fixed point
ai ∈ A to all points of B are calculated and the shortest distance is taken, that
is the distance min

j=1...NB
{d(ai, bj)}. This procedure is passed across all the points

ai ∈ A, i = 1 . . . NA. Then, the maximum of the calculated minima is obtained as
max

i=1...NA
min

j=1...NB
{d(ai, bj)}. Because this function is, generally speaking, asymmet-
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Figure 5.12: Response of the linear system. Contour plot of the T -year return lev-
els (T = 20, 50 and 100 years) for the averaged surfaces: average of the 100 MC
empirically estimated ACER surfaces, ¯̂E20, (• •); av.100 of the optimized asymmet-
ric logistic models, Ā20, ( ); av.100 of the optimized logistic models, Ḡ20, (◦ ◦);
av.100 of the estimated Gumbel logistic models with Gumbel marginals, ḠMM ,
( ). Boxes indicate return levels in years. The case of ρ = 0.8, 0.9, 0.95 and 0.99.
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5. The ACER Method. Bivariate Case

ric, the distance from B to A is calculated in the same manner. Finally, the largest
of these two values would define the Hausdorff distance.

In our case, it was decided to consider the ACER ¯̂E20 surface as the reference
and to measure the Hausdorff distance between the contours of this surface and
the corresponding contours of the rest of the surfaces. Note that the magnitudes of
the response time series X(t) and Y (t) are of the same units. It is also noted that
both time series are zero-mean processes with equal standard deviation. Therefore,
it was decided to calculate the Hausdorff distances directly. Otherwise, it would be
necessary to initially relocate and rescale the measuring units.

In Table (5.1) the Hausdorff distances between the contours of the average
ACER surface ¯̂E20 and the rest of the surfaces are listed for all considered return
periods (first column) and for all cases of the correlation between the data(second
column). Distances between the contour lines of the surface ¯̂E20 and the average
of the fitted asymmetric logistic surfaces, Ā20, are listed in the third column. This
value, dH(

¯̂E20, Ā20), is considered to be the benchmark for estimating the relative
difference (listed in parentheses) with the other distances. It is clearly observed
from column four of the table that the difference between the surfaces Ā20 and Ḡ20

is indeed insignificant. Moreover, in case of the highly correlated data (ρ ≥ 0.6) the
optimized logistic model Gk appears to provide better fit. Finally, the table data
confirm that the Type B EVD given by the surface GMM can provide satisfactory
predictions for short return periods (see column 5), whereas for return period of
50 or 100 years the level of disagreement with the empirical ACER surface can be
three times higher than for the optimized models.

5.5.2 Synthetic wind speeds coupled by a copula

In this section, the bivariate ACER methodology will be studied in more detail in
a study on synthetic bivariate wind speed data coupled by a copula model with
known extreme value distribution, and therefore a known T -year return period level(
ξTyr, ηTyr

)
. The idea developed in this section is a natural extension of the research

expound in Section 3.5.1. To get an idea about the performance of the bivariate
ACER method and the existing Gumbel logistic model with Gumbel marginals
fitted by the method of moments, Monte Carlo simulations will be carried out to
produce 100 bivariate data samples. It will be observed that the predicted 100-year
return period levels was consistently better for the ACER method.

First, the Gumbel-Haugaard (logistic) copula (Gumbel and Mustafi, 1967; Bal-
akrishnan and Lai, 2009) will be considered. Then, it will be assumed that the
bivariate wind speed data are combined by the Gaussian copula.

The Gumbel-Haugaard copula

Let us consider 70 years of synthetic coupled wind speed data, amounting to 7000
data points, which is not sufficient to perform a detailed bivariate statistical analy-
sis. However, this case fully represents a real situation in which only a limited data
sample is available. Under these conditions, it is crucial to utilize all available data
to provide extreme value estimates.
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5.5. Analysis of the Simulated Data by the Bivariate ACER Method

By analogy with Section 3.5.1, it is assumed here that each component of the
underlying stochastic bivariate process Z(t) =

(
X(t), Y (t)

)
is stationary and Gaus-

sian with a mean value of zero and standard deviation equal to one. It is also
assumed that the mean zero up-crossing rates ν+

x (0) and ν+
y (0) are such that the

products ν+
x (0)T and ν+

y (0)T are equal to 103 for T = 1 year. This appears to be
typical for the wind speed process.

The Monte Carlo-simulated data to be used for the synthetic example are the
peak events Z3d(t) =

(
X3d(t), Y 3d(t)

)
extracted from component-wise measure-

ments of the wind speed process and separated by 3.65 days to obtain approximate

Return period ρ dH(
¯̂E20, Ā20) dH(

¯̂E20, Ḡ20);
(rel.diff,%)

dH(
¯̂E20, ḠMM );

(rel.diff,%)

20 years

0 0.035 0.037 (+7.4%) 0.045 (+29.1%)
0.2 0.039 0.040 (+3.8%) 0.052 (+33.1%)
0.4 0.024 0.024 (+0.4%) 0.034 (+40.9%)
0.6 0.021 0.021 (−0.3%) 0.032 (+53.6%)
0.8 0.020 0.020 (−0.6%) 0.025 (+25.4%)
0.9 0.017 0.017 (−0.5%) 0.021 (+21.3%)
0.95 0.022 0.022 (−0.2%) 0.020 (−10.0%)
0.99 0.020 0.020 (−0.1%) 0.013 (−34.0%)

50 years

0 0.049 0.052 (+5.5%) 0.102 (+107.7%)
0.2 0.055 0.056 (+2.8%) 0.109 (+97.7%)
0.4 0.046 0.046 (+0.1%) 0.095 (+104.8%)
0.6 0.052 0.052 (−0.2%) 0.103 (+99.7%)
0.8 0.046 0.045 (−0.5%) 0.086 (+89.6%)
0.9 0.029 0.029 (−0.3%) 0.060 (+103.0%)
0.95 0.022 0.022 (−0.3%) 0.055 (+147.6%)
0.99 0.021 0.021 (+0.0%) 0.049 (+139.4%)

100 years

0 0.073 0.075 (+3.7%) 0.158 (+117.6%)
0.2 0.078 0.080 (+1.9%) 0.167 (+113.4%)
0.4 0.083 0.083 (+0.0%) 0.166 (+99.5%)
0.6 0.065 0.065 (−0.4%) 0.150 (+130.9%)
0.8 0.065 0.065 (−0.2%) 0.140 (+113.4%)
0.9 0.051 0.051 (−0.3%) 0.117 (+129.5%)
0.95 0.028 0.028 (+0.0%) 0.091 (+226.9%)
0.99 0.042 0.042 (+0.0%) 0.110 (+161.4%)

Table 5.1: Response of the linear system. The Hausdorff distances dH between
contour lines of the T -year return levels (T = 20, 50 and 100 years) of the averaged
surfaces for different levels of dependence, ρ. The reference, ¯̂E20, is the average of
the 100 MC empirically estimated ACER surfaces; Ā20 – av.100 of the optimized
asymmetric logistic surfaces; Ḡ20 – av.100 of the optimized logistic surfaces; ḠMM

– av.100 of the estimated Gumbel logistic models with Gumbel marginals. The
relative differences with respect to the benchmark dH(

¯̂E20, Ā20), are indicated in
parentheses.
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5. The ACER Method. Bivariate Case

independence (Naess, 1998b). Thereafter, based on the Rice formula, the marginal
extreme value distributions of the peak event data are

F 3d(ξ) = exp

{
−qx exp

(
−ξ

2

2

)}
G3d(η) = exp

{
−qy exp

(
−η

2

2

)}
,

(5.81)

for given qx = ν+
x (0)T and qy = ν+

y (0)T , where T = 3.65 days. It is also assumed
that the dependence structure between the two marginal peak wind speed variables
X3d(t) and Y 3d(t) is described by the Gumbel-Haugaard copula (4.22) of the form

C(u, v) = exp
{
−
[
(− log u)m + (− log v)m

]1/m}
, m ≥ 1 , (5.82)

where the dependence parameterm can be expressed through the Pearsonś product
moment correlation coefficient ρ as follows, m = 1/

√
(1− ρ), cf., e.g., Gumbel and

Mustafi (1967); Balakrishnan and Lai (2009).
Accordingly, the bivariate extreme value distribution of the peak event data is:

H3d(ξ, η) = exp
{
−
[
(− logF 3d(ξ))m + (− logG3d(η))m

]1/m}
= exp

{
−
[
qmx exp

(
−m ξ2

2

)
+ qmy exp

(
−m η2

2

)]1/m
}
.

(5.83)

Based on the approximate independence of the peak event data separated by 3-4
days, the distribution of the yearly extreme value of Z3d(t) is then calculated by
the formula

H1yr(ξ, η) =
(
H3d(ξ, η)

)100

= exp

{
−100

[
qmx exp

(
−m ξ2

2

)
+ qmy exp

(
−m η2

2

)]1/m
}
.

(5.84)

This implies that the exact T -year return period pairs
(
ξTyr, ηTyr

)
are calculated

as a solution of the equation

H1yr(ξTyr, ηTyr) = 1− 1/T . (5.85)

In our setup, we assumed qx = qy = ν+(0)T = 10. In other words, there are
at the average 10 mean zero up-crossings within the period T that corresponds to
T 3d ≈ 3.65 days. Thus, the assumption satisfies the condition of 103 mean zero
up-crossings per year, as required (cf., e.g. Naess and Clausen (2001)). In fact, this
constrains us to generate precisely 100 bivariate peak events from one year. To
supply the process of empirical estimation of the bivariate ACER function with
more accuracy, 70 years of observations were considered (in contradistinction to
Section 3.5.1, where only 20 years were considered).

It was decided to analyse several cases of the degree of dependence between
the components X3d(t) and Y 3d(t) expressed in terms of the Pearson product-
moment correlation coefficient ρ: ρ = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}, so
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5.5. Analysis of the Simulated Data by the Bivariate ACER Method

that m = {1.29, 1.41, 1.58, 1.83, 2.24, 3.16, 4.47, 10}. Figure (5.13) illustrates the
mutual alignment of the components of bivariate wind peak events for three out
of eight values of ρ (and m). It is clearly observed that the spatial dependence

(a) ρ = 0.4, m = 1.29 (b) ρ = 0.8, m = 2.24 (c) ρ = 0.99, m = 10

Figure 5.13: Scatterplot of the simulated bivariate wind peak events coupled by
the Gumbel-Haugaard copula for three different values of ρ (and m).

increases as ρ → 1 (⇔ m → +∞). Note that the mass density is concentrated
mainly at the bottom left side of the data cluster.

Finally, to obtain an idea about the performance of the bivariate ACER method
and the Type B extreme value distribution, that is, assuming Gumbel marginal
distributions combined with a Gumbel-Hougaard copula, 100 independent 70-year
Monte Carlo simulations were performed for each value of ρ. By analogy with the
descriptions given on page 134, Section 5.5.1, the algorithm of bivariate extreme
value analyses based on the Monte Carlo simulated data was performed according
to the following steps.

1. 70 blocks of synthetic bivariate data with 100 observations per block, amount-
ing to 7000 data points, were generated. The uniform components u and v
were combined by the Gumbel-Hougaard copula in (5.82) using the Matlab
(2009) Statistics Toolbox routine copularnd(’Gumbel’,m,N). Routine uses the
Marshal-Olkin method of sampling the Archimedean copulas described by,
e.g. Devroye (1986); Frees and Valdez (1998). The precise equations can be
found in Melchiori (2006). Then, the peak events were sampled from the
3-day extreme value distributions F 3d(ξ) and G3d(η) given by (5.81).

2. Because the peak eventsX3d are assumed to be independent and separated by
3.65 days, and because the data are sampled from F 3d(ξ) independently, there
is no temporal dependence characteristic of the time series. The same applies
to process Y 3d. This implies no need of conditioning on the previous data
points when estimating the ACER function. Thus, the empirical univariate
ACER functions ε̂x1(ξ) and ε̂y1(η) as well as the bivariate ACER surface Ê1
were estimated based on 7000 observations.

3. The optimization procedures described in Section 3.4.1 were used to find
the optimal values of the parameters q, b, a and c of the univariate ACER
functions εx1 and εy1. Note that because the generated time series follow the
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5. The ACER Method. Bivariate Case

identical distributions F 3d and G3d, the tail markers ξ1 and η1 were fixed at
the same level 2.4.

4. The asymmetric logistic A1 (5.54) and logistic G1 (5.51) models with opti-
mized univariate ACER marginals were fitted to the empirically estimated
Ê1.

5. Five parameters of the Gumbel logistic distribution with the Gumbel
marginals, given by Eqs.(5.78)-(5.79), were estimated by the method of mo-
ments. The location and scale parameters of Gumbel marginals F and G,
and the dependence parameter m were estimated based on the samples of 70
annual extremes of X3d and Y 3d, respectively.

6. Entries 1-5 were replicated 100 times in a loop to provide independent Monte
Carlo simulations.

7. Average surfaces of the corresponding 100 Monte Carlo simulated surfaces
were estimated, that is ¯̂E1, Ā1, Ḡ1 and ḠMM .

As previously mentioned, the procedure was performed eight times for each value
of ρ.

The results of the analysis are presented via contour lines of the T -year bivariate
return levels for the 100 Monte Carlo average surfaces ¯̂E1, Ā1, Ḡ1, and ḠMM .
Note that the contour lines in fact represent the solutions of the corresponding
implicit equations Eq. (5.43), Eq. (5.80) and Eq. (5.85) for the exact return levels.
Figures (5.14) and (5.15) present contour plots of the 20-, 50- and 100-year return
period levels for the averaged surfaces.

In the first place, it is important to draw attention to the positional relationship
of contours of the exact return period levels (True, red solid line ( )), and the
average of 100 empirically estimated bivariate ACER surfaces ( ¯̂E1, red dots (• •)).
The figures reveal that with allowance for the sampling uncertainties and for a
certain spacing inaccuracy of the discrete empirical bivariate ACER surface, the
level of agreement between these two lines is actually remarkable for every value
of return period T and for all values of parameter ρ. This allows to accept the
fact that the empirically estimated bivariate ACER surface, in effect, provides an
estimate of the true extreme value distribution.

Figures (5.14) and (5.15) also reveal equally high degree of agreement between
the exact bivariate yearly extreme value distribution (5.84) and the averages of
the optimally fitted asymmetric logistic surfaces, Ā1, and the optimized logistic
surfaces, Ḡ1. It is clearly observed that the contours of the optimally fitted surfaces
Ā1 and Ḡ1 virtually match, which means that for any practical purpose there is
no need to use the model with two extra parameters θ and φ. Finally, figures
also demonstrate that the Gumbel logistic distribution with Gumbel marginals
estimated by the method of moments, GMM , on average remains in acceptable
agreement with the exact return levels for short periods, whereas for T = 50 and
100 years the divergence is significant.

In Table (5.2) the Hausdorff distances between the contours are listed for all
considered return periods and for all values of the correlation coefficient ρ (see page
137 for more details). Naturally, the distances to the exact bivariate return level
True is of interest. Because the both processes X3d(t) and Y 3d(t) were sampled
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5.5. Analysis of the Simulated Data by the Bivariate ACER Method

from the identical distributions and are measured in the same units, the Hausdorff
distances were calculated directly. It was also decided to consider the distance
between the true levels True and the levels of Ā1 as the reference value for the
relative differences with the other distances.
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(c) ρ = 0.6, m = 1.58
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ρ = 0.7

(d) ρ = 0.7, m = 1.83

Figure 5.14: Synthetic winds with the Gumbel-Haugaard copula. Contour plot of
the T -year return levels (T = 20, 50 and 100 years) for the averaged surfaces: aver-
age of the 100 Monte Carlo empirically estimated ACER surfaces, ¯̂E1, (• •); av.100
of the optimized asymmetric logistic models, Ā1, ( ); av.100 of the optimized
logistic models, Ḡ1, (◦ ◦); av.100 of the estimated Gumbel logistic models with
Gumbel marginals, ḠMM , ( ). The exact return levels are defined by Eq.(5.85),
True, ( ). Boxes indicate return levels in years. The case of ρ = 0.4, 0.5, 0.6 and
0.7.
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5. The ACER Method. Bivariate Case

In general, the presented data confirm the conclusions we made based on the
visual inspection of the Figures (5.14) and (5.15). However, it is also observed that
the one-parameter logistic model G1, on average, provides either better estimation
of the return period levels, that is, it matches with the exact levels from 5 to 10%
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(a) ρ = 0.8, m = 2.24
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ρ = 0.95

(c) ρ = 0.95, m = 4.47
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Figure 5.15: Synthetic winds with the Gumbel-Haugaard copula. Contour plot of
the T -year return levels (T = 20, 50 and 100 years) for the averaged surfaces: aver-
age of the 100 Monte Carlo empirically estimated ACER surfaces, ¯̂E1, (• •); av.100
of the optimized asymmetric logistic models, Ā1, ( ); av.100 of the optimized
logistic models, Ḡ1, (◦ ◦); av.100 of the estimated Gumbel logistic models with
Gumbel marginals, ḠMM , ( ). The exact return levels are defined by Eq.(5.85),
True, ( ). Boxes indicate return levels in years. The case of ρ = 0.8, 0.9, 0.95 and
0.99.
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better than the asymmetric logistic model A1, or the relative difference between
dH(True, Ā1) and dH(True, Ḡ1) is ignorable. In addition, the table reveals that the
Hausdorff distance between the correct levels True and the contours of the surface
GMM can, on average, be up to seven times lager than the corresponding distances
for the logistic model G1.

The Gaussian copula

It is known that the bivariate ACER logistic Gk(ξ, η) and asymmetric logistic
Ak(ξ, η) models both emerge from the Gumbel-Haugaard copula, cf. Section 5.4.

Return period ρ dH(True, Ā1)
dH(True, Ḡ1);
(rel.diff,%)

dH(True, ḠMM );
(rel.diff,%)

20 years

0.4 0.015 0.013 (−12.2%) 0.041 (+167.8%)
0.5 0.011 0.010 (−10.7%) 0.038 (+248.1%)
0.6 0.020 0.019 (−4.2%) 0.042 (+110.5%)
0.7 0.007 0.006 (−10.5%) 0.033 (+371.3%)
0.8 0.010 0.010 (−4.1%) 0.028 (+170.0%)
0.9 0.015 0.016 (+2.1%) 0.020 (+34.4%)
0.95 0.021 0.021 (+0.4%) 0.015 (−27.0%)
0.99 0.018 0.018 (+0.1%) 0.009 (−49.1%)

50 years

0.4 0.016 0.014 (−10.6%) 0.099 (+516.0%)
0.5 0.016 0.015 (−9.0%) 0.095 (+480.5%)
0.6 0.030 0.029 (−4.0%) 0.095 (+218.8%)
0.7 0.016 0.016 (−2.0%) 0.090 (+449.4%)
0.8 0.024 0.024 (+1.1%) 0.082 (+248.8%)
0.9 0.034 0.034 (+0.5%) 0.072 (+112.5%)
0.95 0.041 0.041 (+0.2%) 0.066 (+62.2%)
0.99 0.036 0.036 (+0.0%) 0.058 (+61.8%)

100 years

0.4 0.025 0.022 (−8.7%) 0.153 (+523.5%)
0.5 0.026 0.025 (−4.4%) 0.149 (+476.6%)
0.6 0.045 0.045 (+1.0%) 0.145 (+224.3%)
0.7 0.032 0.032 (+1.2%) 0.143 (+344.9%)
0.8 0.041 0.041 (+0.6%) 0.134 (+225.6%)
0.9 0.053 0.053 (+0.3%) 0.123 (+132.2%)
0.95 0.060 0.060 (+0.1%) 0.115 (+90.9%)
0.99 0.054 0.054 (+0.0%) 0.106 (+96.4%)

Table 5.2: Synthetic winds with the Gumbel-Haugaard copula. The Hausdorff dis-
tances dH between contour lines of the T -year return levels (T = 20, 50 and
100 years) of the averaged surfaces and the exact return level True (defined by
Eq.(5.85)) for different levels of dependence ρ. Ā1 – av.100 of the optimized asym-
metric logistic surfaces; Ḡ1 – av.100 of the optimized logistic surfaces; ḠMM – av.100
of the estimated Gumbel logistic distributions with Gumbel marginals. The rela-
tive differences with respect to the reference value dH(True, Ā1), are indicated in
parentheses.
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Therefore, intuitively, it was rather expected to obtain a good performance of these
models in application to the bivariate process sampled from the Gumbel-Haugaard
copula. Thus, it was also decided to study the case of non-Archimedean, elliptical
copula – the Gaussian copula (Joe, 1997; Balakrishnan and Lai, 2009).

As in the previous example defined on page 140), we consider 70 years of syn-
thetic coupled wind speed data, amounting to 7000 data points. It is also assumed
that the peak events X3d(t) and Y 3d(t) are separated by 3.65 days and follow the
same marginal distributions, as defined by Eq. (5.81) (qx = qy = ν+(0)T = 10).
Now, it is assumed that the dependence structure between the two marginal peak
wind speed variables X3d(t) and Y 3d(t) is specified by the Gaussian copula for a
given correlation coefficient ρ. The bivariate Gaussian (Normal) copula is given by
(see corollary 4.3)

C(u, v) = Ψ
(
Φ−1(u), Φ−1(v)

)
=

1

2π
√

1− ρ2

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
exp

[
−s

2 − 2ρst+ t2

2(1− ρ2)

]
dsdt , 0 < ρ < 1 ,

(5.86)

where Ψ denote the standard bivariate normal distribution function and Φ denote
the standard univariate normal distribution function. Thus, the bivariate extreme
value distribution of the peak event data in this case can be presented in a simplified
form as follows,

H̃3d(ξ, η) = Ψ
(

Φ−1
(
F 3d(ξ)

)
, Φ−1

(
G3d(η)

) )
. (5.87)

Subsequently, the distribution of the bivariate annual extreme value is given by the
formula

H̃1yr(ξ, η) =

[
Ψ
(

Φ−1
(
F 3d(ξ)

)
, Φ−1

(
G3d(η)

) )]100

. (5.88)

This leads to the implicit equation for the exact T -year return period pairs(
ξTyr, ηTyr

)
:

H̃1yr(ξTyr, ηTyr) = 1− 1/T . (5.89)

Thus, the copula type and everything that it yields are the only differences from
the previous case. The other terms of the Monte Carlo framework were retained
without changes.

In Figure (5.16) the bivariate process of the 3.65-day peak wind events is plotted
for three out of eight values of the correlation coefficient ρ. Note that the mass
density is concentrated more at the top right side of the data cluster.

It is expedient now to analyse the bivariate ACER method based on the data ob-
tained from 100 independent Monte Carlo simulations. After the Gumbel-Haugaard
copula was replaced by the Gaussian copula, all seven steps of the algorithm de-
scribed on page 143 were reproduced in a similar manner eight times for each value
of ρ. The results of the analysis are presented in Figures (5.17) and (5.18). Contour
lines of the 20-year, 50-year and 100-year return period levels for the averaged em-
pirical ACER surface ¯̂E1, the averaged asymmetric logistic and logistic surfaces Ā1
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5.5. Analysis of the Simulated Data by the Bivariate ACER Method

(a) ρ = 0.4 (b) ρ = 0.8 (c) ρ = 0.99

Figure 5.16: Scatterplot of the simulated bivariate wind peak events coupled by
the Gaussian copula for three different values of ρ.

and Ḡ1, respectively, and the averaged surface of the Type B bivariate EVD, ḠMM ,
are plotted together with the true return period levels calculated using Eq. (5.89).

Several key conclusions can be made based on the detailed visual inspection of
the figures:

1. As in case of the Gumbel-Haugaard copula, contours of the empirically es-
timated discrete bivariate ACER surface Ê1, on average, coincide with the
exact return period levels depicted by red solid line. Several discrepancies
(cf., e.g. Figures (5.17c), (5.18a)) can be explained by the uncertainties in-
herent in the sampled data and, especially, by a certain spacing inaccuracy
relevant for the estimated contour lines of the discrete surface. Thus, the
empirical ACER surface can potentially be a robust estimate of the exact
extreme value distribution;

2. It is observed that the average of the optimized asymmetric logistic surfaces,
that is Ā1, appears to be in full agreement with the logistic model Ḡ1. How-
ever, it is also evident that the degree of agreement between the exact return
period levels (5.89) derived from the Gaussian copula, and the contours of
both fitted AL and GL ACER models is lower as compared with the case of
the Gumbel-Haugaard copula. The mismatch is specifically observable along
the diagonal sections, which are of particular interest in the study of the de-
pendence properties (cf., e.g. Nelsen (2006)). Thus, further in-depth study of
the possible sub-asymptotic functional form of the empirical ACER surface
is required.

And finally,
3. figures demonstrate that contour lines of the Type B bivariate EVD with

Gumbel marginals estimated by the method of moments, that is GMM , on
average, agree with the exact return levels for the return period T = 20 only.
It is also noticed that the level lines of ḠMM , in general, hold the same shape
as the exact levels, though the shift from the exact levels is rather significant.

In Table (5.3) the Hausdorff distances to the exact bivariate return level True
are listed for all considered return periods and for all values of the correlation
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5. The ACER Method. Bivariate Case

coefficient (see page 137 for more details).
The data in the table reveal that the one-parameter GL model G1 in some

cases can provide, on average, better estimation of the return period levels than
the AL model A1. In addition, an interesting comparison with the data given in
Table (5.2) on page 147 can be made. Note that the comparison is correct because
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Figure 5.17: Synthetic winds with the Gaussian copula. Contour plot of the T -
year return levels (T = 20, 50 and 100) for the averaged surfaces: average of the
100 Monte Carlo empirically estimated ACER surfaces, ¯̂E1, (• •); av.100 of the
optimized asymmetric logistic models, Ā1, ( ); av.100 of the optimized logistic
models, Ḡ1, (◦ ◦); av.100 of the estimated Gumbel logistic models with Gumbel
marginals, ḠMM , ( ). The exact return levels are defined by Eq.(5.89), True,
( ). Boxes indicate return levels in years. The case of ρ = 0.4, 0.5, 0.6 and 0.7.
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5.5. Analysis of the Simulated Data by the Bivariate ACER Method

the peak wind events follow the same distribution in both cases. It appears that the
distances between the exact levels and contours of the fitted surfaces Ā1 and Ḡ1 in
case of the Gaussian copula are roughly two times bigger than the corresponding
distances in Table (5.2) for the Gumbel-Haugaard copula. This clearly reflects the
fact that the performance of the optimally fitted AL and GL models defined in
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(d) ρ = 0.99

Figure 5.18: Synthetic winds with the Gaussian copula. Contour plot of the T -
year return levels (T = 20, 50 and 100) for the averaged surfaces: average of the
100 Monte Carlo empirically estimated ACER surfaces, ¯̂E1, (• •); av.100 of the
optimized asymmetric logistic models, Ā1, ( ); av.100 of the optimized logistic
models, Ḡ1, (◦ ◦); av.100 of the estimated Gumbel logistic models with Gumbel
marginals, ḠMM , ( ). The exact return levels are defined by Eq.(5.89), True,
( ). Boxes indicate return levels in years. The case of ρ = 0.8, 0.9, 0.95 and 0.99.
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5. The ACER Method. Bivariate Case

Eqs. (5.51) and (5.54) deteriorated for the case of the Gaussian copula.

5.6 Measured Wind Speed–Wave Height Data

In the reliability engineering and design of offshore structures probabilistic ap-
proaches are frequently adopted. They require the estimation of extreme quantiles
of oceanographic data based on the statistical information. Due to strong correla-
tion between such random variables as e.g. wave heights and wind speeds, applica-
tion of the multivariate, or bivariate in the simplest case, extreme value theory is
sometimes necessary.

Return period ρ dH(True, Ā1)
dH(True, Ḡ1);
(rel.diff,%)

dH(True, ḠMM );
(rel.diff,%)

20 years

0.4 0.044 0.040 (−7.3%) 0.042 (−4.6%)
0.5 0.047 0.045 (−4.9%) 0.040 (−15.6%)
0.6 0.045 0.043 (−4.5%) 0.048 (+5.7%)
0.7 0.056 0.055 (−2.6%) 0.032 (−42.7%)
0.8 0.060 0.059 (−1.8%) 0.031 (−48.8%)
0.9 0.058 0.058 (−0.8%) 0.018 (−68.5%)
0.95 0.041 0.041 (−0.4%) 0.019 (−54.4%)
0.99 0.022 0.022 (+0.0%) 0.015 (−31.9%)

50 years

0.4 0.023 0.022 (−3.9%) 0.101 (+331.0%)
0.5 0.027 0.027 (−2.3%) 0.095 (+249.4%)
0.6 0.031 0.031 (−0.5%) 0.109 (+251.9%)
0.7 0.036 0.035 (−1.8%) 0.092 (+154.0%)
0.8 0.043 0.043 (−1.0%) 0.082 (+91.1%)
0.9 0.043 0.043 (−0.6%) 0.071 (+65.6%)
0.95 0.029 0.029 (−0.3%) 0.064 (+124.4%)
0.99 0.012 0.012 (−0.1%) 0.066 (+430.7%)

100 years

0.4 0.033 0.033 (−1.3%) 0.155 (+370.5%)
0.5 0.035 0.035 (−0.8%) 0.146 (+316.6%)
0.6 0.041 0.041 (−0.6%) 0.165 (+298.4%)
0.7 0.036 0.036 (−0.4%) 0.148 (+311.8%)
0.8 0.035 0.035 (−0.2%) 0.131 (+274.6%)
0.9 0.032 0.032 (−0.1%) 0.121 (+277.8%)
0.95 0.031 0.030 (−0.1%) 0.110 (+260.5%)
0.99 0.020 0.020 (+0.0%) 0.115 (+480.7%)

Table 5.3: Synthetic winds with the Gaussian copula. The Hausdorff distances
dH between contour lines of the T -year return levels (T = 20, 50 and 100 years)
of the averaged surfaces and the exact return level True (the reference, defined
by Eq.(5.85)) for different levels of dependence ρ. Ā1 – av.100 of the optimized
asymmetric logistic surfaces; Ḡ1 – av.100 of the optimized logistic surfaces; ḠMM

– av.100 of the estimated Gumbel logistic models with Gumbel marginals. The
relative differences with respect to the reference value dH(True, Ā1), are indicated
in parentheses.
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5.6. Measured Wind Speed–Wave Height Data

Wind speed (WS - 3 hours mean) and significant wave height (Hs - total sea)
data measured in the Norwegian sea at location N 65.29, E 7.32 were analysed
by Naess and Karpa (2015b) to obtain numerical estimates of bivariate extremes.
Figure (5.19) shows the geographical position of the measurement site. The data

Figure 5.19: Map of the part of Scandinavia with marked location.

were recorded during 54 years (1957 - 2011), eight times per day (every three
hours).

Figure (5.20) presents the scatterplot of the observed data. As shown in this
figure, there is a strong dependence between two time series.

The Pearson product-moment correlation coefficient is found to be ρ = 0.79.
The Kendall’s rank correlation coefficient (Kendall, 1938) is τ = 0.56, and Spear-
man’s ρ (Spearman, 1904) is equal to 0.7, which also indicates nonlinear agreement
between WS and Hs.

Note that the available bivariate observations have low accuracy. This partic-
ularly applies to the significant wave height data, where the graduating mark is
0.1 meters and there are on average 98 unique numerical values of the Hs data
per year. Clearly, for a fairly accurate estimation of the bivariate ACER functions,
more data are required. Therefore, to increase the sample size of each record (real-
ization), it was decided to divide the data series into 18 three-year records for the
analysis. Furthermore, in this way, the standard deviation of the ACER function
estimates can be calculated fairly accurately.

The univariate ACER functions ε̂k were estimated first using the Matlab-based
standalone downloadable application (Karpa, 2012). In Figures (5.21a) - (5.21b),
ε̂k is plotted versus different levels of wind speeds and wave heights, respectively,
for different values of k. From both figures, it is clearly observed that there is a
significant time dependence between WS observations and between Hs data. It is
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5. The ACER Method. Bivariate Case

Figure 5.20: Coupled observations of Wind speed data (ξ axes) and significant wave
height data (total sea, η axes).
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Figure 5.21: Comparison between univariate ACER estimates for different degrees
of conditioning: a) wind speed data; b) significant wave height (total sea) data.

also understood that this dependence effect is largely accounted for by k = 16
because there is a marked degree of convergence in the tail of ε̂k for k ≥ 16 in both
cases. Clearly, k = 16 corresponds to exceedances separated by at least two days of
non-exceedances for three-hour observations. For k ≥ 32, that is, four-day declus-
tered data, full convergence has been achieved. Figures (5.21a) and (5.21b) also
demonstrate that for extreme value estimation, ε̂2 can be used because the ACER
functions for k ≥ 2 all converge in the far tail. This, inter alia, clearly demonstrates
the power of an ACER function plot as a diagnostic tool to determine the value
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5.6. Measured Wind Speed–Wave Height Data

of k required for extreme value estimation in a particular case. Although there
are significant dependence effects for the WS and Hs data with lower magnitudes,
for the extreme values, these effects are largely absent. This makes it possible to
choose k = 2, which makes considerably more data available for estimation, with
a possible reduction of uncertainty in the estimation as a result.

Figures (5.22a) - (5.22b) present plots of the optimized parametrical fit to the
data for ε̂k for k = 2 for both time series. In particular, the 100-year return level
value and its 95% CI are estimated parametrically and plotted. For the wind speed
data, the optimal parameters are q = 0.05, b = 0.1, a = 1.9 · 10−4, and c = 3.14,
whereas for the Hs data, the parameters of the optimal curve are q = 0.04, b =
−2.27, a = 0.02, and c = 2.23.
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Figure 5.22: Plot of ε̂2 versus the observed data on a logarithmic scale for the
optimized parameter values: a) wind speed data; ξ1 = 14.5; b) significant wave
height (total sea) data; η1 = 4.5.

Figure (5.23) presents the empirically estimated bivariate ACER surfaces
Êk(ξ, η) for different values of k on a logarithmic scale. Êk(ξ, η) with k = 1 is
the upper most, then the following surfaces match in the tail for k ≥ 2. As shown
in this figure, the cross-section of the surfaces at the high level of wave height η
provides the univariate ACER functions of the wind speed data, whereas the cross-
section at a high wind speed level represents the univariate ACER of the Hs time
series.

The same arguments as in the univariate case are applied to determine the
bivariate ACER surface to be used in the analyses. That is, as long as the surfaces
for k ≥ 2 all converge in the tail and estimation of Ê2(ξ, η) is more accurate due
to the availability of more data, we would choose the surface with the degree of
conditioning k = 2.

The optimal parameters of the asymmetric logistic fit were found to be mA = 7,
θ = 1 and φ = 0.91. Because the additional parameters θ and φ are close to one,
it would appear reasonable to consider the logistic model defined by Eq.(5.51).
The same optimization procedure as in the asymmetric logistic case was applied
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5. The ACER Method. Bivariate Case

Figure 5.23: Comparison between Bivariate ACER surface estimates for different
degrees of conditioning. Êk(ξ, η) surfaces are plotted on a logarithmic scale

to obtain the optimal dependence parameter of the logistic copula mG = 4.78.
Figures (5.24) and (5.25) show the contour plots of the optimized asymmetric

logistic fit, A2(ξ, η), to the data for the Ê2(ξ, η) surface and the contour plots of
the optimized Gumbel logistic surface, G2(ξ, η).

In Figure (5.24), contour lines of three surfaces are plotted for those levels
of ξ and η, where the bivariate ACER surface Ê2(ξ, η) has been empirically esti-
mated. Contour lines that correspond to the return period levels are presented in
Figure (5.25).

These figures reveal that the empirical bivariate ACER surface Ê2 captures
high correlation between the data, as do the optimally fitted G2 and A2 surfaces.
Note that the contour lines of the bivariate ACER surface of fully correlated data
would show up as lines that consist of only horizontal and vertical line segments.
This happens because for such data, H(ξ, η) = min

{
F (ξ), G(η)

}
, which implies

that Ek(ξ, η) = max
{
εxk(ξ), εyk(η)

}
, cf. Eq. (5.77), Section 5.5.1. It is observed that

the level of agreement between the estimated bivariate ACER and the optimized
asymmetric logistic and Gumbel logistic surfaces is equally significant. Thus, the
optimized logistic model, Gk, with asymptotically consistent marginals obtained
from the optimized univariate ACER can be used as the parametric representative
of the bivariate ACER surface estimated from the given data set.
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Figure 5.24: Contour plot of the empirically estimated Ê2(ξ, η) surface (• •); opti-
mized asymmetric logistic model, A2(ξ, η), ( ); optimized logistic model,
G2(ξ, η), (◦ ◦). Boxes indicate levels on a log10 scale.

5.7 Measured Wind Speed Data. Sula vs. Nordøyan.

Efficient calculation of the safety index for reliability analysis requires estimation
of the extreme quantiles of structural loads as e.g. wind, wave etc., data based
on the statistical information. In this section, application of the bivariate ACER
method for simultaneous wind speed measurements from two separate locations
will be demonstrated.

In the work by Naess and Karpa (2015a), the simultaneous wind speed data
measured along the Norwegian coast at the Sula and Nordøyan Fyr weather sta-
tions (station numbers are 65940 and 75410, respectively) were analysed to obtain
numerical estimates of bivariate extreme wind speeds. Figure (5.26) shows the ge-
ographical locations of the measurement sites. The hourly maximum of the three-
second wind gust (10 meters above the ground) were recorded during 13 years
(1999 - 2012).

Figure (5.27) presents the scatterplot of the observed data. This plot reveals a
rather strong dependence between the two time series.

The Pearson product-moment correlation coefficient is found to be ρ = 0.73.
The Kendall’s rank correlation coefficient (Kendall, 1938) is τ = 0.5, and Spear-
man’s ρ (Spearman, 1904) is equal to 0.68, which also indicates nonlinear agreement
between the Sula and Nordøyan wind speeds.
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Figure 5.25: Contour plot of the return period levels for Ê2(ξ, η) surface, (• •);
optimized asymmetric logistic model, A2(ξ, η), ( ); optimized logistic surface,
G2(ξ, η), (◦ ◦). Boxes indicate return period levels in years.

It was decided to divide the data series into 13 one-year records for the anal-
ysis. In this way, the standard deviation of the ACER function estimates can be
calculated fairly accurately.

The univariate ACER functions were estimated first using the Matlab-based
standalone downloadable application (Karpa, 2012). In Figures (5.28a) and (5.28b),
the cascades of ε̂1 . . . ε̂96 are plotted versus different wind speed levels.

Both figures reveal that there is significant temporal dependence between con-
secutive data. It is also observed that this dependence effect is largely accounted
for by k = 24 because there is a marked degree of convergence in the tail of ε̂k
for k ≥ 24 in both cases. Here, for k = 96, which corresponds to conditioning on
data recorded up to 4 days earlier, ε̂96 is considered to represent the final con-
verged results because ε̂96 ≈ ε̂k for k > 96 in the tail. Therefore, there is no need
to consider conditioning of an even higher order than 96. So, effectively, ke = 96
for our data. Also note that 4 days is a typical separation of wind speed data
adopted in the declustering process to achieve independence between the data used
in extreme value or peaks-over-threshold analyses. Figures (5.28a) and (5.28b) also
demonstrate that for extreme value estimation, ε̂1 can be used because the ACER
functions all coalesce in the far tail. This makes it possible to choose k = 1, which
makes considerably more data available for estimation, with a possible reduction
of uncertainty in the estimation as a result.
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Figure 5.26: Map of the part of Norway with marked weather stations: A – Sula
station, B – Nordøyan Fyr station.

Figure 5.27: Coupled observations of Wind speed data observed at the Sula station
(ξ axes) and at the Nordøyan Fyr station (η axes).

The cascade of estimated bivariate ACER surfaces Êk(ξ, η) is shown in Fig-
ure (5.29). Êk(ξ, η) with k = 1 is the upper most, then the following surfaces that
match in the tail for all k. The ACER surface for k = 96 is very close to the surface
obtained by taking the logarithm of the exact bivariate extreme value distribution.
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Figure 5.28: Comparison between univariate ACER estimates for different degrees
of conditioning: a) wind speed data from the Sula station; b) wind speed data from
the Nordøyan Fyr station.

Figure 5.29: Comparison between Bivariate ACER surface estimates for different
degrees of conditioning.

As shown in this figure, the cross-section of the surfaces at the high value of wind
level η provides the univariate ACER functions of the wind speed data from the
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5.7. Measured Wind Speed Data. Sula vs. Nordøyan.

Sula station, whereas the cross-section at a high level of ξ represents the univariate
ACER of the time series from the Nordøyan Fyr.

The parameters of the optimal asymmetric logistic and Gumbel logistic surfaces
are presented in Table 5.4.

k Ak Gk
1 mA = 2.44, θ = 0.86, φ = 0.92 mG = 2.01
96 mA = 4.53, θ = 0.97, φ = 0.97 mG = 3.87

Table 5.4: Optimal parameters of Ak and Gk fits.

Figures (5.30) and (5.31) show the contour plots of the optimized asymmetric
logistic Ak(ξ, η) and optimized logistic Ĝk(ξ, η) fits to the data for the Êk(ξ, η)
surface for k = 1 and k = 96, respectively. The contour lines of three surfaces are
plotted for those levels of ξ and η, where the bivariate ACER surface Êk(ξ, η) have
been empirically estimated.
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Figure 5.30: Contour plot of the empirically estimated Ê1 surface, (• •), and the
optimized asymmetric logistic A1, ( ), and optimized Gumbel logistic G1, (◦ ◦),
surfaces based on marginal univariate ACER. Boxes indicate levels on a logarithmic
scale.

These figures reveal that the empirical bivariate ACER surface Êk captures
high correlation between the data, as do the optimally fitted Gk and Ak surfaces.
It is also observed that the behaviour of the estimated ACER surface in the case
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Figure 5.31: Contour plot of the empirically estimated Ê96 surface, (• •), and the
optimized asymmetric logistic A96, ( ), and optimized Gumbel logistic G96, (◦ ◦),
surfaces based on marginal univariate ACER. Boxes indicate levels on a logarithmic
scale.

of k = 96 in Figure (5.31) affirms high uncertainty due to the deficiency of data.
However, the optimal surfaces G96 and A96 capture the statistical properties of the
bivariate observations.

It is easily seen that the level of agreement between the estimated bivari-
ate ACER and the optimized asymmetric logistic and Gumbel logistic surfaces
is equally significant. Yet it is also important to keep in mind that the empiri-
cal bivariate ACER Êk is the only discrete surface. The Matlab (2009) built-in
routine contourc that has been used to obtain the figures, calculates the contour
lines by producing a regularly spaced grid determined by the dimensions of a sur-
face. Therefore, it evidently generates a certain spacing inaccuracy of the bivariate
ACER surface Êk level lines plot. In addition, the figures ascertain that the opti-
mized asymmetric logistic and Gumbel logistic surfaces conform at a level sufficient
to affirm that they actually coincide. Thus, the optimized logistic model Gk with
asymptotically consistent marginals obtained from the optimized univariate ACER
functions can be used as the parametric representative of the bivariate ACER sur-
face estimated from the given data set.

Finally, a comparison of the contour lines of G1 and G96 that correspond to
the same return period levels shows fairly good agreement considering the high
uncertainty for the case k = 96. To highlight the results that would be obtained
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by adopting the common approach of assuming Gumbel marginal extreme value
distributions combined with a suitable copula model, in Figure (5.32) are plotted
the 50 and 100 year return period levels obtained by using the asymmetric logistic
model with asymptotically consistent marginals obtained from the optimized uni-
variate ACER marginals together with the corresponding return levels obtained by
using the Gumbel logistic model with Gumbel marginals fitted by the method of
moments, GMM . It is clear that the discrepancy is significant, which is primarily
caused by the use of asymptotic Gumbel marginals.
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Figure 5.32: Contour plot of the return period levels for the optimized asymmetric
logistic A1 surface, ( ), and the Gumbel logistic model with Gumbel marginals
GMM , ( ). Boxes indicate return period levels in years.
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Chapter 6

Conclusions

In this final chapter, the main research contributions and conclusions of this dis-
sertation will be reviewed. This chapter also lists possible directions for future
research.

6.1 Summary of Achievements

The following are the main research contributions of this dissertation. They are
listed here in the order they are presented in the thesis text. (Some minor contri-
butions are omitted.)

6.1.1 The univariate ACER

• A preliminary method for estimating the tail marker η1 is introduced,
see Section 3.4.1. This value corresponds to the beginning of regular tail
behaviour of the ACER function on a logarithmic scale. The method consists
in basic statistical analysis of sampled data, and in close scrutiny of the
estimated components âk(η) and b̂k(η) of the ACER function ε̂k(η). It is
emphasised that unlike the threshold level used in POT method, if the value
of the tali marker η1 has been chosen with some care, it does not affect the
predicted return value significantly.

• Robustness of the results of the optimization problem is improved
by implementation of the nonlinearly constrained optimization. In fact, sev-
eral algorithms are used, notably the interior-point algorithm for finding min-
imum of constrained nonlinear multivariable function; the trust-region ap-
proach for solving nonlinear least-squares constrained minimization problems;
the Levenberg-Marquardt algorithm for solving nonlinear least-squares un-
constrained optimization. Then the results of various estimation approaches
are compared and the optimal one defines the solution of the specific problem
at hand.

• Explicit expressions for the T -year return level by the ACER
method are presented by Eqs. (3.59) and (3.60) (see page 44). Although
it is not a significant discovery, availability of these formulas promote general
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clarification of the ACER method. In addition, expression in Eq. (3.58) is
useful as it provides a level, the optimally fitted ACER function should be
extrapolated to.

• A reasonable extended in-depth analysis of the ACER method by
application to synthetic data is performed, see Section 3.5.1. 200 indepen-
dent Monte Carlo-simulated wind data with known 100-year return period
extreme value were used. It is demonstrated that the results provided by the
ACER method are, on average, considerably more accurate as compared with
those obtained by the POT and Gumbel methods. Furthermore, this study
reveals that the extrapolation of confidence bands using the ACER scheme
can secure a reasonable estimation of the 95% confidence interval.

• Substantial analysis of real data, that is, measured wind speeds at five lo-
cations, and measured tether tension obtained from model tests of an offshore
platform for oil production, by the ACER method is performed in chapter 3.
An efficient sequence of operations for extreme value analysis by the ACER
method is described. In addition, it is demonstrated that the results of the
ACER analysis are not sensitive to the outliers that can often be present in
raw field measurements. Finally, the results of the analysis empirically prove
the fact that when the ACER functions all converge in the far tail, the first
ACER function (k = 1), which has been estimated with the least uncertainty,
can be used for most practical applications. Thus, based on the overall perfor-
mance, it is concluded that the ACER method may indeed be the preferred
choice over the other two methods tested.

• Development and introduction of the robust and straightforward
standalone application for the univariate ACER method (Karpa, 2012) is
also a notable contribution of this research. When a novel method is intro-
duced, it appears to be crucial to propagate it with easy-to-use tool available.
The Matlab-based standalone downloadable application is designed for this
purpose.

• Bootstrapping for ACER is presented in Section 3.5.3. It is an important
contribution to the ACER method in regard to estimating the 95% CI. Partic-
ularly, we discuss the non-parametric bootstrap on the basis of the observed
real environmental data. The results of the analysis reveal that estimation of
the 95% CI through the extrapolation of confidence bands using the ACER
scheme can generally provide a reasonable estimate. Although this method is
a first-stage estimation, and in some cases the right endpoint of the estimated
95% CI can be shifted to the left, it is not as time consuming as the bootstrap
method and provides 95% CI estimation for any degree of conditioning k.

The parametric bootstrap is also discussed in Section 3.5.3. This boot-
strapping procedure was carried out using two partially similar methods. It
is ascertained that the considered parametric bootstrap approaches provide
the 95% CI estimate, the consistency of which is, however, questionable. In
addition, the considered parametric bootstrap can be used only with the data
assumed to be independent, and as for any bootstrap approach, its execution
requires considerable time.
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The main conclusion of the study is that the adoption of the method of
extrapolating the confidence bands using the ACER fit can remain the main
approach for estimating the 95% CI of the T -year return level. The main
advantages of this approach are the prompt and straightforward implemen-
tation, applicability to any degree of data conditioning k, and credibility of
the confidence interval estimated by this method.

• Analysis of synthetic data governed by the heavy tail distribution is
presented in Section 3.5.4. It is the first effort in investigating the performance
of the general ACER approach (3.51). Based in 1000 independent 30-year
Monte Carlo simulations, it is established that, on average, the general ACER
method provides considerably more accurate predictions of the 100 - year
return level than the other methods.

• Analyses of narrow-banded time series by the ACER method is dis-
cussed in Section 3.5.6. Peak values of many response processes and oceano-
graphic time series have a tendency to occur in groups, which is a common
characteristic of a narrow-banded time series. It is demonstrated that the
ACER method solves this correlation problem efficiently and elegantly in a
statistical sense. In addition, the positional relationship of the ACER func-
tions of the densely sampled narrow-banded time series is discussed in detail.

6.1.2 The bivariate ACER

• The bivariate ACER surface Ek(ξ, η) is defined by Eq. (5.24). This defi-
nition differs from the one given by Naess (2011). Although this proposal is a
minor contribution, it has predetermined further development of the bivariate
ACER analysis.

• A crucial contribution is the concept of representing the bivariate ACER
as a function of two marginal univariate ACER functions. Particu-
larly, the following representation is introduced:

Ek(ξ, η) =
(
εxk(ξ) + εyk(η)

)
D
(

εxk(ξ)

εxk(ξ) + εyk(η)

)
, (6.1)

cf. Eq. (5.49) on page 121, where D is the Pickands dependence function. In
this way, the temporal dependence characteristic of the bivariate time series
is defined by the univariate marginal ACER functions, whereas the spatial
dependence structure is given by the function D.

• A two-leveled optimization approach is used to define optimal pa-
rameters of the functional representation of the bivariate ACER surface.
First, it is proposed to employ the dependence function of logistic and asym-
metric logistic extreme value copulas. Then the optimally fitted univariate
ACER function are used to define optimal parameters of the bivariate ACER
fit. The latter procedure recalls the best result from the interior-point algo-
rithm for finding minimum of constrained nonlinear multivariable function
and the trust-region approach for solving nonlinear least-squares constrained
minimization problems. The possibility of using the Hausdorff distance for
optimal surface matching is also discussed in Section 5.4.
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• A thorough analysis of the bivariate ACER based on synthetic
Monte Carlo-simulated data is addressed in Section 5.5. First, behaviour
of the empirically estimated bivariate ACER function subject to correlation
between components of the process is discussed in detail. Followed by this,
an extended analysis of the bivariate ACER method by application to three
types of synthetic data is performed. The main conclusions of the overall
performance of the bivariate ACER method are as follows: 1) The degree
of concordance between the empirical ACER surface Êk and the optimized
asymmetric logistic and logistic surfaces, Ak and Gk, respectively, is equally
high; 2) The level of agreement between the contour lines of Ak and Gk allows
to infer that these surfaces actually coincide entirely. Moreover, in some cases
the optimized one-parameter logistic model Gk appears to provide better fit
than the three-parameter asymmetric logistic model Ak; 3) The distinction
between contours of the empirical ACER surface Êk (or the contours of the
true bivariate EVD) and contours of estimated Gumbel logistic model with
Gumbel marginals is rather significant. Finally, the quantitative index for
measuring the level of agreement between contour lines of the considered
surfaces is introduced.

• Study of the bivariate ACER method by application to environ-
mental data is performed in Section 5.6 and Section 5.7. An efficient se-
quence of operations for bivariate extreme value analysis by the ACER
method is described. It is illustrated that the exact extreme value distribution
given by the data can be captured within the inherent statistical uncertainty
by using the ACER surfaces.

6.2 Further Work

There are several directions for future research. Some of them are listed here:

• As mentioned in Section 3.4.1, the used Levenberg-Marquardt algorithm was
implemented for unconstrained optimization problem. It is advisable, how-
ever, to consider the constrained optimization as the one that can provide
more reasonable values for the parameters. Hence, a natural direction for
future research involves employing the Levenberg-Marquardt algorithm for
constrained optimization.

• In the same way, a scientific interest is shown in using a sequential quadratic
programming (SQP) method incorporated in the NAG Numerical Library
(Numerical Algorithms Group, 2010). Research on the efficiency of this tool-
box for the optimization problem can be performed in the future.

• The analysis presented in Section 3.5.4 is the initial study of the ACER
method for general case when the data are not asymptotically Gumbel. More-
over, it appears that there is no robust method that would provide a reason-
able estimation of the 95% CI for the general ACER. Thus, a thorough study
of the general ACER is required, as well as its further practical application
to financial data, for example.
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• It is emphasised that adopted bivariate extreme value copula approach is only
the first effort in investigating the functional representation of the empirically
estimated bivariate ACER surface. In this way, the considered representation
given by Eq. (6.1) cannot be considered as final and absolutely certain. This is
particularly because the initial joint cumulative distribution function (5.45)
(see page 120), with the Pickands dependence function D, can be treated
as asymptotic, whereas the sub-asymptotic representation for the bivariate
ACER surface is required. Therefore, further in-depth study of the possible
sub-asymptotic functional form of the ACER surface is required. A natural
direction for future research is thorough analysis of possible sub-asymptotic
dependence function that interconnect two univariate ACER marginals.

• The Hausdorff distance if often used in applications to measure difference
between similar 3D objects. Thus, employing the Hausdorff distance for the
optimization purposes (see Section 5.4) is a possible course of investigation.

• In the present research the common approach of assuming Gumbel marginal
extreme value distributions combined with a logistic copula, that is, the Type
B bivariate EVD, is considered for comparison purposes. It appears to be
imperative to also consider other approaches together with the ACER method
in application to more bivariate time series of different kind.

• It is necessary to develop a standalone application for the bivariate ACER
method (or, in fact, to upgrade the existing Matlab routine to the level of
downloadable standalone application). This task is slightly beyond the re-
search activities, yet a crucial one.

• Last, but definitely not least, particularly interesting and necessary scientific
activity should include analysis of the conditional extreme value distribution
based on the bivariate ACER. For example, it is interesting to verify whether
the bivariate ACER is able to improve the predicted T -year return period
level for the process observed during shorter period of time than the other
one. In this case, the conditional extreme value distribution of the process
with less measurements given the coupled process is expressed as follows:

G1yr(η | ξ) =
H1yr(ξ, η)

F 1yr(ξ)

≈ exp

{
−
(
N1 − k + 1

ny1
Ek(ξ, η)− N2 − k + 1

ny2
εk(ξ)

)}
,

(6.2)

where N2 > N1 and ny2 ≥ ny1 , cf. Eq. (5.26) on page 116, Eq. (5.42) on
page 119 and Eq. (3.57) on page 43. The T -year return period level ηTyr|ξ0
is obtained as the solution of the equation

G1yr(ηTyr|ξ0) = 1− 1

T
. (6.3)
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