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Research Highlights

Leak Localization with the Dual Model on a Real-World Water
Distribution System

Erik Nordahl,
Primary supervisor: David B. Steffelbauer,
Second supervisor: Franz Tscheikner-Gratl

• The Dual Model can localise real leaks with different locations and
magnitudes.

• The Dual Model can localise leaks without a well-calibrated model,
which is a significant advantage for water utilities.

• The Dual Model shows better performance with three pressure sen-
sors than the more commonly used Correlation Model obtains with 11
pressure sensors.

• The Dual Model’s main limitations are that the model is sensitive to
the leak’s location in the water distribution network and that the nodal
elevations must be adjusted.
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Abstract

On average, 23 % of drinking water in Europe is lost before reaching the
consumer. To reduce these losses and the negative impacts they entail, wa-
ter utilities are transitioning from a passive approach where only reported
leaks are fixed to actively look for leaks in their distribution systems. The
model-based approach enables this transition by combining sensor data with
hydraulic models and has been thoroughly investigated for the past thirty
years, obtaining promising results in several different case studies. However,
most of these studies have been performed either in a virtual environment
or on small existing networks. This paper aims to display the possibility of
reducing the leak localization time using the recently developed Dual Model
on actual measurement data. The Dual Model is created by adding virtual
reservoirs to existing pressure measurement nodes, transforming the pressure
drop caused by leaks into virtual leak flows that amplify the leak signal. Re-
sults show that the Dual Model can localize most leaks, with 21 out of 27
leaks giving a false positive fraction below 2 %. Furthermore, the Dual Model
manages to handle uncertain input parameters, obtaining promising results
without a proper pipe roughness calibration and few pressure sensors. For
water utilities dealing with fragmented information about the system’s condi-
tion, this attribute is highly advantageous. Another model-based approach,
the Correlation Model, was compared with the Dual Model for validation
purposes and was generally outperformed. The main limitation of the Dual
Model is the need to correct the elevation of the nodes, which was decisive
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in localizing leaks smaller than 2 L
s
and that the model was sensitive to the

leak location. Future work should explore why the Dual Model is sensitive to
the leak’s location and test the Dual Model on other real systems with differ-
ent characteristics. In addition, an in depth-analysis comparing the different
input parameters is needed.

Keywords: Drinking water leakages, Hydraulic modelling, Model-based
leak localization, Pressure sensitivity, Water losses
PACS: 0000, 1111
2000 MSC: 0000, 1111
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Sammendrag

I gjennomsnitt forsvinner 23 % av drikkevannet i Europa før det kommer frem
til forbrukeren. For å redusere disse tapene og de negative konsekvensene
de medfører, omstiller mange kommuner sin lekkasjeh̊andteringsstrategi fra
å kun reparere rapporterte lekkasjer til å aktivt søke etter lekkasjer i dis-
tribusjonssystemet. Modellbaserte metoder tilrettelegger for denne omstill-
ingen ved å kombinere data fra sensorer med hydrauliske modeller, og har
de siste tretti årene blitt nøye undersøkt, samt oppn̊add lovende resultater
i flere forskjellige studier. Majoriteten av disse studiene har imidlertid blitt
gjennomført p̊a virtuelle nettverk, eller p̊a små eksisterende nettverk. Denne
masteroppgaven tar sikte p̊a å demonstrere mulighetene for å redusere lekkas-
jelokalisasjonstiden ved å benytte den nylig utviklede Dual Modell p̊a ekte
måledata. Dual Modell best̊ar av å legge til virtuelle reservoar til eksis-
terende trykkmålingsnoder, med det formål om å transformere trykktapet
for̊arsaket av lekkasjer til virtuelle vannstrømmer med tydeligere lekkasjesig-
nal. Resultater viser at Dual Modell er kapabel til å lokalisere majoriteten av
lekkasjene, med 21 av totalt 27 lekkasjer funnet med en falsk positiv fraksjon
under 2 %. Det viktigste funnet er imidlertid at Dual Modell kan h̊andtere
usikre input-parametere. Modellen oppn̊adde lovende resultater uten ruhet-
skalibrering, og med f̊a trykksensorer, som er svært fordelaktig for kommuner
med mangelfull informasjon om tilstanden p̊a sine vannsystemer. I tillegg ble
Dual Modell sammenlignet med en annen modellbasert metode, Korrelasjon-
smodellen, der det kom frem at Dual Modell oppn̊adde bedre og mer stabile
resultater. De viktigste begrensningene til modellen er behovet for å korrigere
høydene p̊a nodene, som var avgjørende for å lokalisere lekkasjer mindre enn
2 L

s
, og at modellens prestasjonsevne var avhengig av lekkasjens beliggen-

het. Fremtidig arbeid burde derfor undersøke hvorfor modellen er sensitiv til
hvor lekkasjen befinner seg, samt teste modellen p̊a andre vanndistribusjon-
ssystemer med ulike egenskaper. I tillegg er det nødvendig med en grundig
analyse av input-parameterne til modellen, for å bestemme og sammenligne
viktigheten av disse.

Nøkkelord : Drikkevannslekkasjer, Hydraulisk modellering, Modellbasert lekkas-
jelokalisasjon, Trykksensitivitet, Vanntap
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1. Introduction

European water utilities lose, on average, 23 % of valuable drinking water
through leaks (EurEau, 2017), which negatively impacts the economy of the
utilities. In addition, there are many environmental consequences, including
the energy needed for pumping (Colombo et al., 2002) and flooding of urban
areas (Hu et al., 2021). Moreover, leaks can lead to the intrusion of pollutants
through holes and cracks, which can be harmful to humans (Colombo et al.,
2002; Gibson et al., 2019). Nyg̊ard et al. (2007), for instance, found an in-
crease in gastrointestinal disease following water main breaks. Furthermore,
leakages might reduce the water utility’s reputation as clean water with suf-
ficient pressure often is taken for granted in developed countries (Bendz and
Boholm, 2020).

An abundance of leak detection and localization strategies have been
developed to reduce these negative impacts (Hu et al., 2021). The strategies
can be divided into passive and active approaches (Puust et al., 2010). In
a passive leakage control strategy, only reported leaks are fixed. On the
contrary, an active approach involves monitoring and examining the network
on a regular basis, or other proactive and predictive tools aimed at limiting
the impact of leaks. Generally, active strategies lead to lower water losses,
making them the preferred method in comparison with the passive approach
(Farley and Trow, 2003).

Active leak localization is currently based on either acoustic methods,
which utilize frequency or non-acoustic methods. The acoustic methods in-
clude listening rods, leak-noise correlators, and leak-noise loggers. The non-
acoustic methods include ground-penetrating radar, gas injection, thermal
infrared imaging, minimum night flow analysis, step testing, and radioac-
tive tracers (Puust et al., 2010; Boulos and Aboujaoude, 2011; Farah and
Shahrour, 2017). A common advantage of both methods is the high detec-
tion accuracy. However, these traditional techniques are considered time-
consuming and labour-intensive because of the need for human operators
(Adedeji et al., 2017). These methods are further limited by the weak per-
formance observed during daytime (Puust et al., 2010). In addition, the
acoustic methods are material dependent, demonstrating low efficiency in
plastic pipes (Steffelbauer, 2018).

Model-based approaches try to circumvent these shortcomings in find-
ing leaks by comparing measurement data with estimates obtained from hy-
draulic simulations. The approach was first introduced by Pudar and Liggett

1



(1992), who argued that it was possible to localize leaks using pressure mea-
surements and formulated leak localization as an inverse problem. Since then,
several different model-based leak localization methods have emerged (For a
review of the methods see Hu et al. (2021)). These include; i) Error-domain
model falsification (Moser et al., 2016, 2017) ii) Sensitivity matrix-based ap-
proaches (Pérez et al., 2011a; Pérez et al., 2014; Casillas et al., 2015) iii)
Optimization-calibration approaches (Righetti et al., 2019; Blocher et al.,
2020) and iv) Combinations of model-based and data-driven approaches
(Ferrandez-Gamot et al., 2015; Soldevila et al., 2016).

The model-based approach has been thoroughly investigated because it
is simple, cost-efficient, and performs well regardless of pipe material (Li
et al., 2015). Furthermore, sensor technology is rapidly becoming more af-
fordable, encouraging water utilities to install more pressure and flow sensors,
which are favourable for model-based approaches (Steffelbauer, 2018). In-
creased computational power and rapid digitization should further motivate
the transition to model-based and data-driven approaches. Another benefit
rarely mentioned is the lower need for human interaction to decide if some-
thing is a leak or a normal fluctuation. Despite all these possible benefits,
model-based approaches are rarely seen outside the academic environment
(Steffelbauer, 2018).

There are several weaknesses with the model-based approach. First, the
hydraulic model must be calibrated to ensure that the model represents the
behaviour of the existing system. Model calibration is a costly, data-hungry
process, (Pérez et al., 2011a), requiring expertise and knowledge (Hu et al.,
2021). Second, consideration of time dependencies can be challenging. With
time, roughness increases, internal pipe diameter decreases, and nodal de-
mands continuously change (Kang et al., 2018; Adedeji et al., 2017). There-
fore, hydraulic models must be updated regularly to give good results (Puust
et al., 2010). In addition, the model must be reconstructed and recalibrated
when the topological structure changes (Kang et al., 2018). Third, the mea-
surements received from flow and pressure sensors can be unreliable because
of outliers (Garcia et al., 2015) and noise (Steffelbauer et al., 2021).

Sensitivity-matrix-based approaches aim to overcome these obstacles by
utilizing pressure measurements and sensitivity and have obtained promising
results in several case studies (Pérez et al., 2011a; Pérez et al., 2014; Casillas
et al., 2015). Pérez et al. (2011a) binarized the pressure residuals between
leak and leak-free model simulations with measurements and leak-free model
simulations. The results showed that 31 out of 42 leaks were detected in the
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correct zone. However, the residuals’ transformation to binarized numbers
involves a loss of information. A comparative study by Pérez et al. (2011b)
showed that it was more convenient to use the pressure residuals directly. The
results were less affected by noise and boundary changes and were generally
more robust. The method was later on tested in a real-world case study using
measurement data from Barcelona, where the method proved to be effective
and robust in detecting and localizing a single leak (Perez et al., 2014).

Another more recently developed model-based method is the Dual Model
(Steffelbauer et al., 2020). The Dual Model introduces virtual reservoirs and
valves connected to actual pressure measurement nodes (Steffelbauer et al.,
2022). The pressure head in the reservoir equals the measured pressure, while
the pressure in all other nodes is given from EPANET-simulations (Rossman,
1994). The pressure difference between the reservoir head and the connected
nodes generates reservoir flows when the system is imbalanced to restore
equilibrium conditions. These flows serve as a first indication of the leak’s
location and size. The Dual Model has previously obtained promising re-
sults on virtual data, achieving first place against 18 teams from all over
the world at an international conference on leak detection and localization
in China (Vrachimis et al., 2020). The advantages of the Dual Model are
higher sensitivities to pressure changes than other models and that the leak
and the system imbalances have the same unit of flow (Steffelbauer et al.,
2022). However, it remains uncertain if the Dual Model can maintain these
properties in a real-world case study with increased uncertainty and variabil-
ity.

The majority of leak localization research has been performed either in a
virtual environment or on a smaller scale, which enables operating with a well
(or even perfectly) calibrated model (Zaman et al., 2020). Although this is
the first step towards actual leak localization, it is not directly transferable
to the real world. In addition, it has been mentioned that model-based
approaches require complex modelling procedures, which in combination with
offline calibrations, make them too cumbersome to be implemented in a real-
world water distribution system (Kafle et al., 2022). Therefore, this paper
aims to investigate the applicability and performance of the Dual Model
in localizing leaks in a real-world case study. In addition, the Dual Model
performance will be compared with the results obtained with the Correlation
Model developed by Pérez et al. (2011b). Given that the Correlation Model
previously has been tested in a real-world scenario, it can be used to validate
the Dual Model performance on actual measurement data. However, the
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Correlation Model was only tested with a single leak scenario with significant
leak outflow (5.6 L

s
). In this paper, the two models will be tested on leaks

with different magnitudes and locations. Furthermore, the two models will
be tested with respect to different accuracies of model calibration to see how
the models perform under increasing uncertainty. Finally, the models are
simulated with different sensor numbers to evaluate how the models behave
with less available information.

The following section (Section 2) contains the methodology and provides
a fundamental understanding of the two models. Section 3 starts with a
virtual leak outflow simulation with the Dual Model, before presenting the
results from the real-world case study for both models. Afterwards, the model
performance of the two models is compared under different circumstances.
The section is completed with a discussion of the limitations and possibilities
of the Dual Model. The final section (Section 4) presents the conclusions, as
well as future research topics that can contribute to the further development
of the Dual Model.

2. Methodology

This section starts with a mathematical derivation of the Correlation
Model and the Dual Model. The section continues with a brief introduction
about the case-study area before explaining the data collection process. After
that, the assumptions are identified, and the performance evaluation criteria
are given.

2.1. Mathematical derivation of the Correlation Model

The Correlation Model developed by Pérez et al. (2011b) compares pres-
sure residuals between simulated leak and leak-free scenarios with measure-
ments and leak-free scenarios. The residuals between the measured pressure,
p, and the modelled leak-free pressure, p̂, are stored in the fault indicator
vector (ϕ) (Equation 1):

ϕ(t) =

 p1(t)− p̂01(t)

..
.

pns(t)− p̂0ns(t)

 (1)

Next, leaks are simulated for every single pipe, by adding a new node
with an emitter coefficient to the centre of the pipe (see Subsection 2.8 for a
more detailed description of the leak generation), which results in a pressure
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response at the sensors. The leak matrix is obtained, containing modelled
pressures for all leak scenarios. The pressure difference between the columns
in the leak matrix and the modelled leak-free pressure is stored in the fault
signature matrix (FSM)(Equation 2), with nn representing the number of
nodes and ns the number of pressure sensors:

FSM(t) =

 p̂11(t)− p̂01(t) ... p̂nn1(t)− p̂01(t)

..
.

... ..
.

p̂1ns(t)− p̂0ns(t) ... p̂nnns(t)− p̂0ns(t)

 (2)

Each column of the FSM are correlated with the fault indicator vector
for each time-step using Pearson’s correlation coefficient formula (Equation
3). The mean correlation value for the whole simulation period is computed
for each leak location, creating a vector which contains scalar correlation
values related to each pipe. Notice that the words location and pipe is used
interchangeably, as only one location is assumed at the middle of the pipe
section, resulting in an equal amount of leak locations and pipes.

ρϕ,FSM =

∑t=start
t=end

cov(ϕ(t),FSMi(t))
σϕ(t)σFSMi(t)

t#timesteps

(3)

In Equation 3, i) i is the sensitivity vector of each node, ii) cov is the
covariance, and iii) σϕ(t) and σFSMi(t) is the standard deviation of the fault
signature and the fault indicator.

A simple conversion is performed on each scalar value stored in the afore-
mentioned vector to avoid negative correlation values (Equation 4) before
ranking the values in descending order. The highest value in this vector rep-
resents the leaking pipe with the highest correlation with the actual leak.
Hence, the vector is sorted from most probable to least probable leak loca-
tions.

ρpipe,id =
1− ρϕ,FSM

2
(4)

2.2. Mathematical derivation of the Dual Model

The Dual Model developed by Steffelbauer et al. (2022) is created by
adding virtual reservoirs and valves connected to existing pressure measure-
ment nodes (Figure 1). The head of the reservoir for each time step equals
the measured pressure plus the node elevation. This shifts the boundary con-
dition from the fixed-demand at the sensor nodes, to the fixed-head at the
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corresponding virtual reservoir. As a result, the previous boundary condition
node becomes a free variable available for modelled input.

When a new leak occurs in the system, the flow towards the leakage
increases, creating a pressure drop in the system; a pressure imbalance ap-
pears between the virtual reservoir head and the pressure measurement node,
which is based on the leak-free model. Consequently, water flows between
the reservoir and the leak-free system to restore stable conditions. This flow
will then act as an amplifier for the detection and localization of leaks.

|

Virtual  
Reservoir

Virtual  
Valve

Existing  
Pressure 
Node

Diameter
[m]

Elevation 
  [m]

Figure 1: Dual Model Principle illustrated on the Graz-Ragnitz water distribution system
(See subsection 2.3 for an overview of the network) including network characteristics for
pipe diameter and node elevation.

The Dual Model is simulated with leaks at all pipes separately, with
similar leak generation assumptions as for the Correlation Model. For each
pipe simulation, the reservoir flow is stored for all time steps at all reservoir
locations. Therefore, each pipe simulation results in a matrix containing
the reservoir flow against time (Equation 5). The matrix size depends on
the number of time steps (ts) and the number of virtual reservoirs (nr). The
absolute value of each flow value is computed to avoid negative values because
of bidirectional flow before adding it to the matrix. The number of matrices
is equal to the total pipe count, with the subscript p indexing the pipe id of
the current pipe.
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η(t)p =

q1,1 ... q1,nr

..
.

..
.

qts,1 ... qts,nr

 (5)

Afterwards, the average value for each column is computed, creating a
single row containing the average reservoir flow for each reservoir. This
procedure is conducted for each pipe, resulting in a flow matrix containing
all leak-pipe scenarios (Equation 6). The matrix size depends on the number
of pipes (l) and the number of pressure sensors or virtual reservoirs (nr),
respectively.

ζ(t) =

q1,1 ... q1,nr
..
.

..
.

ql,1 ... ql,nr

 (6)

The total flow for each leak location is the sum over the corresponding
row. Hence, a flow vector is obtained, Qt, which contains scalar flow values
for each leak location (denoted with an i) (Equation 7).

Qi(t) =
nr∑
j=1

ζi,j(t) (7)

The lowest value in Qt represents the location with the highest similarities
between the leak-pipe and the measurements. As a consequence, the most
probable leak locations in Qt are the pipe simulations generating the lowest
total flow values. By sorting Qt in ascending order, a list of the most likely
leak locations is obtained. Note that an important distinction between the
two methods is that the Correlation Model utilizes the pressure residuals
directly, while the Dual Model transforms the pressure differences to virtual
water flows.

2.3. Graz-Ragnitz WDN: a real-world case study

Graz-Ragnitz is a water distribution network (WDN) located in the rural
areas surrounding Graz, Austria. The network is supplied from an inlet tank
located south in the system. Two separate pipes are connected to this tank,
but only the left pipe is open during the measurement period. The network
mainly consists of plastic pipes, but some cast iron and steel pipes are present
in the system. Demand data has been retrieved from billing information
between 2012 and 2015 and the average consumer consumption during this
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time has been allocated to the system’s nodes. The water pressure varies
significantly in the network because of large elevation differences between
the south part (around 500 meters a.s.l) and the north part (around 400
meters a.s.l.). No pressure reduction valves have been installed in the case-
study zone. Outflows are generated from 35 hydrants spread around the
network (Figure 2) to simulate leak scenarios and facilitate calibration.

H3

H1

Inlet tank

H10

H9

H6

H4

H2

H5

H8*

H7

H12

H11

A

B

C

D

E F

Figure 2: Graz-Ragnitz water distribution network with hydrants (red diamonds), pressure
sensors (H1 to H12) and the inlet tank (red rectangle). Pressure sensor H8* malfunctioned
during the measurement period. Leak locations are displayed with capital letters (A to
F).

2.4. Flow and pressure monitoring system

The system inflow is measured at the tank with two devices, a Woltmann
water meter and an Ultrasonic flow meter with a measurement frequency of
one minute. The pressure is measured every second with twelve high precision
pressure sensors of the type SEWAD 30, which has an accuracy of ± 0.2 %
of the measurement value. The pressure sensor locations were determined
in Steffelbauer (2018), which used optimal sensor placement algorithms to
select the most appropriate locations. The tank level data is retrieved from
the SCADA system of the water utility. The hydrant outflow was measured
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with additional devices - Hydatlog 80mm with Storz B house coupling -
magnetic inductive flowmeters with an accuracy of ± 0.5% and a measuring
range from 1.5 L

s
to 60.3 L

s
.

2.5. Leak scenarios

Leaks were generated by opening hydrants during the night between the
11th. and the 12th. of April 2016. Six different hydrants were opened during
the night, marked with capital letters in Figure 2. Seventeen different leak
scenarios were created; 14 of them only lasted a couple of minutes but had
total leak outflows larger than 6 L

s
. The three remaining scenarios had leak

outflows slightly above 1 L
s
, and lasted between 10 and 15 minutes. Some of

the leak scenarios had two or three hydrants simultaneously opened. These
leaks provided the possibility to increase the number of leak scenarios by
dividing them into sub-scenarios, searching for each of these locations sepa-
rately. The approach for these leaks was to add the outflow as extra demand
for all leak locations except one, making them single leak scenarios with
higher complexity. A complete list for all leak scenarios is given in Table 1.
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Table 1: All leak scenarios simulated as single leak scenarios. The leak locations are shown
in Figure 2. The asterix * indicates that the leak is simulated as extra demand at this
location. To exemplify: leak S3a is located at leak location A with an outflow of 4.97 L

s ,
the other two leak outflows at leak location B and C are assumed to be known.

Leak start time Leak end time A B C
Leak scenario [H:M:S] [H:M:S] L

s
L
s

L
s

S1 01:37:45 01:40:30 15.03 – –
S2a 01:47:30 01:49:45 8.06 4.11* –
S2b 01:47:30 01:49:45 8.06* 4.11 –
S3a 01:58:00 01:59:30 4.97 1.14* 5.10*
S3b 01:58:00 01:59:30 4.97* 1.14 5.10*
S3c 01:58:00 01:59:30 4.97* 1.14* 5.10
S4 02:04:00 02:06:00 – 11.54 –
S5a 02:09:15 02:11:45 – 2.62 7.05*
S5b 02:09:15 02:11:45 – 2.62* 7.05
S6 02:15:45 02:18:15 – – 12.03
S7a 02:22:15 02:25:15 6.93 – 7.06*
S7b 02:22:15 02:25:15 6.93* – 7.06

Leak start time Leak end time D E F
Leak scenario [H:M:S] [H:M:S] L

s
L
s

L
s

S8 03:23:45 03:26:30 7.60 – –
S9a 03:31:30 03:33:30 1.81 6.06* –
S9b 03:31:30 03:33:30 1.81* 6.06 –
S10a 03:36:45 03:39:30 1.27 5.08* 5.05*
S10b 03:36:45 03:39:30 1.27* 5.08 5.05*
S10c 03:36:45 03:39:30 1.27* 5.08* 5.05
S11 03:44:00 03:45:45 – 15.97 –
S12a 03:51:45 03:54:45 – 6.00 6.00*
S12b 03:51:45 03:54:45 – 6.00* 6.00
S13a 03:58:30 04:01:00 2.20 – 6.02*
S13b 03:58:30 04:01:00 2.20* – 6.02
S14 04:04:30 04:07:45 – – 9.07

Leak scenario Leak start time Leak end time Leak position L
s

S15 02:30:00 02:45:00 A 1.18
S16 02:57:00 03:10:00 E 1.14
S17 04:12:00 04:23:00 F 1.34
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2.6. Measurement adjustments

The pressure sensors report a value every second. These measurements
are resampled to produce an average value with a given time step to reduce
the impact caused by noise and consumption variations. It was found that
resampling the measurements to produce one value every minute increased
stability while maintaining a sufficient number of measurements. The tank
level measurements report one value every minute, and was adjusted using
second-order splines. It was also discovered that the internal clock installed
in the sensors did not display the correct time. The sensors were therefore
corrected individually. The errors ranged from a few seconds to ± 1 minute.
Sensor H8 reported atypical values and was therefore neglected.

2.7. Creation and calibration of the water distribution system

The water distribution network model was created in EPANET (Ross-
man, 1994); it is partly skeletonised and consists of 650 nodes and 658 pipes.
In comparison, the real network has approximately 1300 pipes and nodes.
The total pipe length in the model is 10.2 kilometres, and the diameters of
the pipes range from 70 to 400 mm and is unchanged from the real network.
Hence, the model elements are pretty similar to the real network, but the
model input parameters (e.g. demand and roughness) must be adjusted.

Hydraulic model calibration has for decades been one of the most impor-
tant research topics in water distribution systems (Savic et al., 2009). The
purpose of the model calibration is to estimate model parameters and analyse
different types of uncertainty, providing the model with best-fit parameters
(Jun et al., 2022). Previous research has suggested that a well-calibrated
model is essential to localize leaks, as the results heavily rely on the model’s
ability to mirror the real-world system (Hutton et al., 2014). However, ob-
taining a well-calibrated model with low uncertainty can be difficult. First,
municipalities often lack information about their water distribution systems
(e.g. pipe age and pipe replacement history), increasing the complexity of the
model calibration (Scheidegger et al., 2013). Second, drinking water pipes
cannot be visually inspected, as is typical for wastewater systems (Kleidorfer
et al., 2013). Third, measured values for pressure and flow contain outliers
and noise, leading to a calibration bias (Walski, 1983). Therefore, a robust
model able to handle uncertain input parameters is desired. To test the
model’s ability to handle uncertainty, three different model calibrations were
created. All of these three model calibrations utilize the Darcy-Weisbach
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formula to determine head loss. The three network calibrations contain dif-
ferent levels of information regarding the pipe roughnesses and the nodal
elevations:

• C1 is the least calibrated model. The roughness coefficient was set
to 0.005 mm for all pipes, which is a common friction factor for plas-
tic pipes (Porto, 2006). The elevations were unchanged from the in-
formation provided by the utility. No other model adjustments were
conducted.

• C2 includes nodal elevation adjustments but is otherwise utterly similar
to C1. The nodal elevations for the 11 functioning pressure sensors were
adjusted to produce zero reservoir flow in a leak-free situation, with the
purpose of amplifying the leak signal.

• C3 has the same nodal elevations as C2 but contains, in addition, an
extensive pipe roughness calibration and estimation of a minor-loss co-
efficient caused by a partially closed valve. After the measurement
period, it was confirmed that the water utility had forgotten to fully
open a valve after maintenance work. This partially-closed valve would
influence leak localization performance. Steffelbauer (2018) used differ-
ential evolution algorithms to localize and approximate the minor loss
caused by this partially-closed valve. The minor-loss coefficient was
estimated to be 1384, a substantial minor-loss coefficient. Lippacher
(2018) found that it was convenient to group the pipes into five different
groups related to their position in the system. Each pipe group were
given a roughness value using optimization techniques (Appendix C.14
shows the roughness values found in Lippacher (2018)). Calibration C3
combines the findings from the two articles mentioned above, making
it one of the best calibrations currently developed for this network.

The demand was calibrated by comparing the measured inflow with the
simulated inflow between 1:22 and 1:31 a.m. on the 12th. of April 2016.
During this time, there were no leaks, making it possible to compare the
minimum night flow in the model and the actual system. It was found that
multiplying the demand retrieved from the billing information with 0.85 for
all nodes gave the closest agreement between the model and the measure-
ments, resulting in an error margin of 0.35 %. The demand calibration was
equal for all three model calibrations.
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In addition to calibration, another main challenge of model-based ap-
proaches is the difference between the number of pressure sensors installed
compared to the number of possible leak locations (Steffelbauer et al., 2022).
A simple solution to this problem would be to increase the number of sensors,
but this is not a feasible solution as pressure sensors are relatively expensive.
For water utilities with limited resources, this challenge can be an obstacle
which prevents transformation from classic to modern techniques. Therefore,
an essential task with model-based leak localization is to develop models that
manage to function with fewer sensors and hence less available information.
The Dual Model and the Correlation Model were first tested with information
gathered from all 11 sensors before testing with 5 and 3 sensors. The sen-
sor placements with 5 and 3 sensors did not involve reallocating the sensors,
making these sensor placements sub-optimal.

2.8. Model leak generation, model assumptions, and model performance eval-
uation parameters

The Dual Model and the Correlation Model were programmed in Python
(Van Rossum and Drake Jr, 1995). The python package WNTR (Water
Network Tool for Resilience) was used to simulate the leaks with an emitter
coefficient. The emitter coefficient was chosen because it gives a more real-
istic representation of the leak than modelling it as extra demand. With an
emitter coefficient, the size of the leak is directly dependent on the pressure
in the node, making it a variable instead of a constant size (Perez et al.,
2014). The leaks were simulated at the middle of the pipes’ total length by
splitting the pipe into two separate sections connected to a new node. Hence,
it was chosen to simulate the leak on the pipe section despite the actual leaks
occurring at hydrants. The previously mentioned decision is justified because
leaks usually occur at pipes or pipe fittings (Steffelbauer, 2018). The leak dis-
charge is assumed to be known, as this value can be easily found by analysing
the minimum night flow (Meseguer et al., 2014). Therefore, the new node
was given an emitter coefficient producing a similar outflow as the measured
leak. The leak scenarios are simulated as extended period simulations (a
series of steady-state simulations) in EPANET (Rossman, 1994).

To evaluate the leak localization performance, several different metrics
are used. The first is TD, the topological distance between the actual leak
and the pipe with the highest leak correlation measured, computed using
Dijkstra’s shortest path algorithm (Dijkstra, 1959). The second is FP, the

13



fraction of false positive pipes. Finally, MS is the maximum shortest path
distance between all FP-pipes.

3. Results and Discussion

3.1. Dual Model virtual leak outflow simulation

The Dual Model was first simulated without any leaks present (Figure
3 and 4). The pressure difference between the nodes in the leak-free model
and the measured pressure in the reservoirs leads to reservoir flows. The
Dual Model should obtain similar total reservoir flow as the system inflow
in a leak-free situation if the calibration is perfect. Hence, the reservoir flow
in the Dual Model can be used to improve model calibration by changing
the nodal elevations and consequently changing the reservoir head, which
in hand changes the flow pattern. Note that the Dual Model reservoir flow
and inflow differ in a leak-free scenario. The inflow stays relatively constant
at around 1.2 L

s
during the night (Figure 3a and 4), while the Dual Model

flow fluctuates around zero in a leak-free situation at first (Figure 3b). This
was done intentionally (in calibration C2 and C3) to amplify the leak signal,
as the Dual Model could not localize leaks with smaller outflow than the
minimum night flow consumption. However, Figure 4 shows that the Dual
Model later on in the night give the same minimum night flow pattern as the
inflow does. Hence, the Dual Model no longer give zero flow in a leak-free
situation. It is probable to believe that this change is caused by increasing
water demand in the early morning hours.

Note that some reservoirs give negative flow patterns to some of the leaks
(Figure 3c and 4c), meaning that water flows from the reservoir to the sys-
tem. It was found that these negative flows did not negatively affect model
performance but rather provided useful information contributing to the leak
localization. Figure 3a, Figure 3b, and Figure 3c, show similar behaviour
between the Dual Model and the system inflow. In addition, these patterns
illustrate how the Dual Model amplifies signals, as can be seen by comparing
the sharp spike seen in Figures 3b and 4b for each scenario with the slight
pressure drop seen in Figure 3d and 4d.
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Figure 3: Dual Model leak-free simulation for leak scenario 1 to 7. a) Inflow measured at
the system inlet b) Total reservoir flow for all virtual reservoirs simulated with the Dual
Model c) Dual Model flow for each virtual reservoir d) Measured pressure.
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Figure 4: Dual Model leak-free simulation for leak scenario 8 to 14. a) Inflow measured at
the system inlet b) Total virtual reservoir flow for all reservoirs simulated with the Dual
Model c) Dual Model flow for each virtual reservoir d) Measured pressure.
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3.2. Real-world case study results
Table 2 gives the leak localization performance for the real-world case

study. The results show that the Dual Model can locate most leaks with
decent accuracy, with 21 out of 27 leaks obtaining an FP-fraction below 2
%. The topological distance and the maximum span parameter give short
distances for almost all of these leaks, indicating that the Dual Model only
suggests leak locations close to the actual location. An exception is leak
scenario 10c, which is the only leak obtaining a low FP-fraction (0.9 %),
combined with a high topological distance (634 m) and maximum span (657
m). The search area is therefore not necessarily reduced for this leak scenario.

Four out of the six remaining leaks give FP-fractions between 4 % and 10
%, while the last two leaks give even higher FP-fractions. The topological
distance and the maximum span parameters further emphasize the weaker
performance observed in these scenarios. These six leaks are located at either
leak location B (scenario S2b, S3b, S4 and S5a) or leak location F (S12b and
S17). All leaks occurring at leak location B are difficult to localize with
the Dual Model. It is worth noting that the closest pressure measurement
node to leak location B was sensor H8. As previously mentioned, this sensor
gave unreliable results and was therefore not included in the simulation of
the models. In addition, position B is located at an unmeasured dead-end
branch. The six mentioned leaks do not share any other properties than the
location, as they range from small leaks (S2b = 1.14 L

s
) to pipe bursts (S4

= 11.54 L
s
), and from distinct leak locations to multiple simultaneous leak

locations. Therefore, these results indicate that the Dual Model is sensitive
to where the leak occurs in the system and where the sensors are placed with
respect to the leak.

On a general note, the Dual Model demonstrates an ability to perform
well for different leak types at several (but not all) different leak locations in a
real-world water distribution network. The model is not significantly affected
by the size of the leak, obtaining decent results for both small and large
leaks. Furthermore, the Dual Model can localize single leaks in a situation
with several leaks co-existing. The aforementioned can be an essential asset
of the model, as the high leak percentages observed in European countries
indicate that several leaks might be present simultaneously.

The Correlation Model shows varying performance for the different leak
scenarios. Approximately a third of the leaks are localized with an FP-
fraction below 2 %, while 16 out of 27 leaks obtain an FP-fraction lower than
10 %. Since hydraulic models are meant to reduce the search space before
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applying pinpointing techniques, these results are decent. However, many
of these leaks, for instance, leaks S3a, S7a, and S12b give high maximum
span values even though the FP-fraction is low. Hence, the model suggests
pipes distant from each other, indicating that the search area might be more
significant than expected. Furthermore, it struggles to localize leak scenarios
where several hydrants are opened simultaneously. The model performance
is particularly weak for leak scenario 10, where all three sub-scenarios are
poorly localized. The method is unable to localize leaks smaller than 3 L

s
,

managing to find only one of the six smallest leaks. Previous findings from
Meseguer et al. (2014) showed that the model was able to approximate the
leak location when the leak size was around 6 L

s
, and also showed promising

performance for leaks as small as 4 L
s
. However, smaller leaks were not

considered. In general, the Correlation Model performance is weaker than the
Dual Model performance, being slightly outperformed for the scenarios most
straightforward to locate and strongly outperformed for the more challenging
leak scenarios.
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Table 2: Leak localization results for all leak scenarios with the best calibrated model (C3)
using all 11 sensors.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 2 1 0.3 19 18 0.5
S2a 1 1 0.3 60 57 0.5
S2b 195 411 5.6 308 839 9.1
S3a 60 57 0.5 452 881 2.6
S3b 1050 2145 16.7 1295 1912 30.1
S3c 0 0 0 55 87 1.5
S4 308 427 5.8 241 928 17.3
S5a 964 2145 35.6 729 2352 29.6
S5b 35 54 0.9 15 34 0.8
S6 0 0 0 15 14 0.6
S7a 19 18 0.5 438 916 3.2
S7b 15 14 0.6 438 916 3.2
S8 39 90 1.2 99 194 2.4
S9a 90 26 0.6 177 462 7.3
S9b 68 118 0.5 88 312 0.8
S10a 14 0 0.2 553 765 17.8
S10b 64 151 1.8 611 1666 48.8
S10c 634 657 0.9 620 2282 69.5
S11 21 193 1.5 21 19 0.3
S12a 43 72 1.4 68 292 0.6
S12b 300 931 4.7 91 514 4.3
S13a 62 137 1.8 177 724 14.0
S13b 14 19 0.6 460 2282 32.5
S14 290 299 1.1 167 668 12.5
S15 19 17 0.3 19 18 0.5
S16 68 113 1.5 734 1554 29.5
S17 789 1531 8.2 1488 2352 76.3

3.3. Model performance with differently calibrated models

The Dual Model and the Correlation Model were simulated with three
different model calibrations to analyse their ability to handle uncertain input
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parameters. It was found that the Dual Model did not need a well-calibrated
model to give good results for large (> 7 L

s
) single leak scenarios, as the

FP-fraction was almost identical with the three different calibrations (Figure
5a). Furthermore, the Dual Model gave a lower average topological distance
for the least calibrated situation compared to the calibrated and the partly
calibrated network for the large single leak scenarios, which is illustrated in
Figure 5c. Given that large leaks are capable of causing significant damage,
this is a promising result for water utilities dealing with uncertainty, as it
reduces the need for model calibration. Model calibration requires knowl-
edge and expertise, which can be difficult (or expensive) for municipalities
to obtain.

The performance with the least calibrated and the partly calibrated hy-
draulic model worsens when all leak scenarios are included (Figure 5b and
5d). The reduction in performance is especially significant for the minor
leaks. Leak scenarios S15, S16, and S17, respectively, have an increase in
the FP-fraction of 2.7 %, 18.4 %, and 8.2 % from C3 to C2, and even larger
from C2 to C1. Hence, the Dual Model relies more on a well-calibrated
model for the minor leak scenarios. The leak scenarios with multiple hy-
drants opened simultaneously are not as affected by excluding the roughness
calibration as long as the nodal elevations are adjusted, maintaining almost
the same performance from C3 to C2 (see appendix Table B.6 for the results
with the model calibrated for elevations). However, when the elevations are
not corrected, the multi-leak scenarios are difficult to localize (See Appendix
Table B.7 for the results with the least calibrated model). To summarise,
the Dual Model can localize single large leaks without a proper calibration
but struggles with leak outflows around 1-1.5 L

s
and is reliant on adjusting

the elevations when the complexity of the leak scenario increases. The Dual
Model’s sensitivity to the node elevation is further discussed in Subsection
3.5, along with other limitations of the Dual Model.

The Correlation Model relies on a well-calibrated model to give good re-
sults for all types of leaks, even the large pipe bursts. In the best scenario
when the hydraulic model is well-calibrated, the results are decent but not as
good as the results obtained with the Dual Model. However, the performance
rapidly deteriorates when the model deviates more from the real network. In
contrast to the Dual Model, the Correlation Model is unaffected by elevation
adjustments, showing similar performance for both the least calibrated and
the partly calibrated network. However, a minority of the leaks are found
close to the actual leak location with these calibrations. In addition, the per-
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formance is equally poor for single and multi-leak scenarios (Appendix Table
B.7). Furthermore, the topological distance and maximum span values are
much higher compared to the well-calibrated model. Hence, the Correlation
Model cannot tolerate uncertain model input parameters. Similar behaviour
has been observed in the past; Meseguer et al. (2014) concluded that the
Correlation Model relies on an accurate hydraulic model both in the param-
eters (e.g. roughness) and in the topological structure to obtain good leak
localization results. Therefore, these results imply that the Dual Model’s
ability to amplify the leak signal makes the leak localization more robust,
which corresponds well with previous findings about the model (Steffelbauer
et al., 2022).
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Figure 5: Average model performance with different calibrations. C1 is the least calibrated
network, C2 is calibrated for elevation, and C3 is calibrated for roughness, minor-loss,
and elevation. a) Average false positive fraction for the large single leak scenarios, b)
Average false positive fraction for all leak scenarios, c) Average topological distance for
the large single leak scenarios, d) Average topological distance for all leak scenarios. CM
- Correlation Model, DM - Dual Model. 95 % confidence interval marked with a thin
teal-coloured line (common for all figures with a confidence interval).

3.4. Model performance with 11, 5 and 3 sensors

It was found that the Dual Model was able to maintain model performance
for most of the leaks with 5 and 3 sensors combined with a well-calibrated
model (Figure 6). The results for the large single leak scenarios were com-
pletely unaffected by reducing the number of sensors, (see Appendix Table
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B.8 for a full list of the results with 5 sensors and Appendix Table B.9 for
the results with 3 sensors.) maintaining or even obtaining even better results
than with 11 sensors. The multi-leak scenarios had a slight increase in the
FP-fraction for most of the leaks, but several leak scenarios also had better
results with 5 sensors than 11.

The main reason the average results are poorer with fewer sensors is
that some of the small multi-leak scenarios are significantly worse localized.
For instance, leak scenario S9a has an FP-fraction with 11 sensors of 0.6 %,
compared to 16.7 % for 5 sensors and 17.6 % for 3 sensors. Leak scenario S10a
shows almost a linear increase in the FP-fraction, obtaining an FP-fraction
of only 0.2 % with 11 sensors, which increases to 18.8 % with 5 sensors and
further increases to 33.1 % with 3 sensors. Common for these two leaks
is that they are very small, with respectively a leak outflow of 1.81 (S9a)
and 1.27 L

s
(S10a). In addition, both leak scenarios have several hydrants

opened simultaneously. On the bright side, the single leak scenarios with
small outflows do not share these problems. Surprisingly, with three sensors,
the results are better for leak scenario S15-S17 than with 11 sensors. Hence,
reducing the number of sensors makes the Dual Model performance weaker
only for the small leak scenarios with multiple hydrants opened. In summary,
the Dual Model show good performance with few sensors, but struggles with
the most challenging leak scenarios with 5 and 3 sensors.

The Correlation Model shows the same development as the Dual Model,
with a gradual decrease in the model performance with fewer sensors. How-
ever, the Correlation Model initially shows worse performance, as DM3 out-
performs CM11. The small leak outflows strongly influence the difference be-
tween the Correlation Model and the Dual Model, as the Correlation Model
is unable to localize leaks smaller than 3 L

s
no matter the number of sensors.

For instance, leak scenario S17 has an FP-fraction of 76.3 % with 11 sensors,
48.5 % with 5 sensors, and 60.2 % with 3 sensors. These numbers indicate
that increasing the number of sensors probably would not help this model
localize leaks with small magnitudes. The multi-leak scenarios also showed
a gradual decrease in model performance when reducing the number of sen-
sors. On the positive side, the localization of the large single leak scenarios
showed no apparent difference between 3, 5 and 11 sensors. These results
comply with previous findings in Perez et al. (2014), where it was concluded
that the Correlation Model performance showed no significant improvement
when increasing the number of sensors from 5 to 7 when a single leak with
size 6 L

s
were considered.
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Figure 6: Average model performance with 11, 5 and 3 sensors for the Correlation Model
(CM) and the Dual Model (DM) using network calibration C3.

3.5. Limitations and possibilities with the Dual Model

Eleven simulations were performed for each leak scenario with a random
parameter included in the elevation to test the Dual Model’s dependency of
node elevation. The random parameter was drawn from a normal distribution
with a standard deviation of 1. The average of these simulations is depicted
in Figure 7, showing that the model performance remarkably worsened for all
single leak scenarios. The small leak scenarios had the most noticeable dif-
ference between correct and random elevations, with FP-fractions increasing
on average between 40 and 50 % (detailed results can be found in Appendix
Table B.10).

The random elevation parameter affects the virtual reservoir flow, cre-
ating virtual reservoir flows in a leak-free situation. These flows serve as a
noise parameter in the model, which negatively influences the model per-
formance. The small leaks are often smaller than the flows caused by this
random elevation parameter, making the leaks near impossible to localize.
The model maintains acceptable performance for most large leak scenarios,
although these also show decreasing leak localization precision. In addition,
Figure 7 only includes the single leak scenarios. The model performance
would probably deteriorate even stronger for the leak scenarios with several
open hydrants. Therefore, the Dual Model’s main limitation is the need to
adjust the elevation coordinates for the reservoir nodes. The aforementioned
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Figure 7: Dual Model performance with a random error elevation parameter included in
the reservoir elevation. The random parameter is drawn from a normal distribution with
σ = 1.

adjustments should be made even if these differ from the actual elevation of
the nodes. The elevation must be changed to produce zero flow in a leak-free
situation to enable the localization of small leaks.

Other limitations of the Dual Model include the dependency of a well-
calibrated model if the leak is small (1-2 L

s
) and the reduced precision seen

at specific leak locations. Given the short measurement interval (< 5 min-
utes) used to localize the leaks, these results might improve with more ex-
tended measurement periods. Another possible solution would be to conduct
a simple calibration of the pipe roughnesses, which should not be too time-
consuming, considering that roughness intervals already exist for different
types of pipe materials. The Dual Model has, as mentioned, only been tested
for single-leak scenarios, even when several leaks co-existed. These leak sce-
narios obtained slightly poorer results than those containing only one leak.
However, it is probable to believe that the Dual Model performance would
improve in a multi-leak scenario if the leaks added as extra demand instead
were modelled with an emitter coefficient.

The Dual Model was not tested with a poorly calibrated model in combi-
nation with few sensors. Given that more sensors are needed with increased
uncertainty (Steffelbauer and Fuchs-Hanusch, 2016), this might be a limi-
tation of the model. However, the limitations of the Dual Model already
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show the significant possibilities of this model, as; i) elevation adjustments
is relatively straightforward and rapid to rectify, ii) simple calibrations are
likely to solve the issues with localizing small leaks in a multi-leak scenario,
and iii) leak location dependencies might be solved with increased knowledge
about optimal sensor placement.

The advantages of the Dual Model’s ability to perform under uncertain
conditions should not be underestimated. The Dual Model showed robust be-
haviour even with a deficient calibration, indicating that the model is able to
operate with erroneous data. In addition, it maintained model performance
with few sensors, which demonstrates that the model can function with small
amounts of available data. Many water utilities around the world struggle
with data scarcity and lack of knowledge (Scheidegger et al., 2015), empha-
sizing the importance of a model being able to operate with uncertainty.
Furthermore, the significant leak percentages seen in Europe indicate that
several leaks co-exist in water distribution systems. Many methods, includ-
ing the Correlation Model, cannot search for several leaks simultaneously. In
contrast, the Dual Model is formulated in a way that allows searching for
several distinct leaks occurring at the same time. Although this has not yet
been tested, it is, at the minimum, a possible advantage of this model.

Previous research on the Dual Model questioned how the model would
perform with limited demand information and few pressure sensors (Steffel-
bauer et al., 2022). The findings of this paper suggest that the Dual Model is
(almost) unaffected by detailed information about water consumption (Ap-
pendix: Figure B.11 and Table B.11). In addition, the model performance
is not significantly affected by reducing the sensor numbers for the large
leak scenarios. However, a negative influence is seen for the most complex
leak scenarios that combine small outflows with several simultaneous leak
locations.
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4. Conclusions and Recommendations

Localizing leaks is essential for water utilities struggling with significant
water losses. This paper aimed to test the Dual Model’s ability to localize
leaks in a real-world case study for the first time. It was found that the Dual
Model could localize actual leaks with different locations and magnitudes,
with 19 out of 27 leaks being located in close proximity (< 100 m) to the
actual leak location. In addition, the Dual Model was able to localize both
small leaks (1 L

s
) and single leaks in a situation with several leaks present at

the same time. The Correlation Model did not show the same performance
and struggled with localizing all leaks smaller than 3 L

s
.

The most important finding of the Dual Model is the model’s ability
to handle uncertain input parameters, maintaining acceptable performance
with a weaker calibrated model. The model managed to localize most leaks
without roughness calibration, even obtaining slightly better results for the
large single leak scenarios with all pipes given the same roughness coefficient.
However, the model struggled with localizing minor leaks without calibration.
The performance was especially poor without adjusting the nodal elevations.
In contrast to the Dual Model, the Correlation Model could not tolerate un-
certain input parameters, showing rapidly deteriorating model performance
without a well-calibrated model.

The Dual Model performance was almost unaffected by reducing the num-
ber of sensors for the large single leak scenarios. In addition, the small single
leak scenarios also maintained acceptable performance at most leak locations.
However, the most complex leak scenarios were difficult to localize with few
sensors, indicating that more sensors is needed when the complexity of the
leak increases. The Correlation Model was utterly unaffected by increasing
the number of sensors for the large single leak scenarios but very reliant on
the sensor count for the more complex leak scenarios. In general, the Dual
Model significantly outperformed the Correlation Model with few sensors,
obtaining better results with only 3 sensors than the Correlation Model did
with 11 sensors.

The Dual Model’s capabilities of handling uncertainty is a crucial asset
making it a promising tool for water utilities. Given the many uncertainties
water utilities struggle with (e.g. lack of pipe replacement history, incom-
plete register for pipe characteristics, and limited information about water
consumption), this benefit is highly needed. In addition, the model seems to
be cost-efficient, as calibration can be time-consuming and pressure sensors
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are relatively expensive.
The Dual Model’s main limitation is the need to change the elevation of

the pressure measurement nodes to produce zero virtual reservoir flow in a
leak-free situation. It was found that the model did not manage to locate
small leaks without these adjustments. The small leaks were also notably
more challenging to localize with an uncalibrated model, indicating that the
Dual Model might need a simple pipe roughness calibration to locate leaks
smaller than 1.5 L

s
. Finally, the model was sensitive to where the leak was

located in the system, obtaining poor performance for all leak scenarios at
one leak location (position B).

The future research needed to improve the Dual Model could centre
around understanding why the Dual Model is sensitive to the leak’s location
and elevation. If these challenges can be solved, the Dual Model provides a
robust and relatively straightforward tool for leak detection and localization.
Further work should also focus on optimal sensor placement and applying the
Dual Model to other real systems with different network characteristics. An
in-depth sensitivity analysis comparing the different input parameters (e.g.
elevation, roughness, demand, number of sensors) would also increase knowl-
edge and understanding of the Dual Model’s behaviour, which is necessary
if the Dual Model is to be implemented as a valuable tool for water utilities
in the future.
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E., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,

32



I., Quintero, E., Harris, C., Archibald, A., Ribeiro, A., Pedregosa, F., van
Mulbregt, P., SciPy 1.0 Contributors, 2020. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods 17, 261–272.
doi:10.1038/s41592-019-0686-2.

Vrachimis, S., Eliades, D., Taormina, R., Ostfeld, A., Kapelan, Z., Liu, S.,
Kyriakou, M., Pavlou, P., Qiu, M., Polycarpou, M., 2020. “Dataset of Bat-
tLeDIM: Battle of the leakage detection and isolationmethods.”InProc.,
2nd Int CCWI/WDSA Joint Conf. Kingston, ON,Canada: Queen’s Univ.

Walski, T., 1983. Technique for calibrating network models. Jour-
nal of Water Resources Planning and Management 109, 360–372.
doi:10.1061/(asce)0733-9496(1983)109:4(360).

Zaman, D., Tiwari, M., Gupta, A., Sen, D., 2020. A review of leakage
detection strategies for pressurised pipeline in steady-state. Engineering
Failure Analysis 109, 104264. doi:10.1016/j.engfailanal.2019.104264.

33



Appendix A. Leak scenarios

Table A.3: Leak scenario 1 to 14 (the large leak scenarios). A, B, C, D, E and F marks
the location of the leak according to Figure 2.

Leak start time Leak end time A B C
Leak scenario [H:M:S] [H:M:S] L

s
L
s

L
s

S1 01:37:45 01:40:30 15.03 – –
S2 01:47:30 01:49:45 8.06 4.11 –
S3 01:58:00 01:59:30 4.97 1.14 5.10
S4 02:04:00 02:06:00 – 11.54 –
S5 02:09:15 02:11:45 – 2.62 7.05
S6 02:15:45 02:18:15 – – 12.03
S7 02:22:15 02:25:15 6.93 – 7.06

Leak start time Leak end time D E F
Leak scenario [H:M:S] [H:M:S] L

s
L
s

L
s

S8 03:23:45 03:26:30 7.60 – –
S9 03:31:30 03:33:30 1.81 6.06 –
S10 03:36:45 03:39:30 1.27 5.08 5.05
S11 03:44:00 03:45:45 – 15.97 –
S12 03:51:45 03:54:45 – 6.00 6.00
S13 03:58:30 04:01:00 2.20 – 6.02
S14 04:04:30 04:07:45 – – 9.07

Table A.4: Information about leak scenario 15 to 17 (the small leak scenarios).

Leak scenario Leak time Leak position Leak size L
s

S15 02:30:00 - 02:45:00 A 1.18
S16 02:57:00 - 03:10:00 E 1.14
S17 04:12:00 - 04:23:00 F 1.34
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Table A.5: Leak scenarios with only one leak.

Leak start time Leak end time Leak position Leak size
Leak scenario [H:M:S] [H:M:S] see figure 2 [L

s
]

S1 01:37:45 01:40:30 A 15.03
S4 02:04:00 02:06:00 B 11.54
S6 02:15:45 02:18:15 C 12.03
S8 03:23:45 03:26:30 D 7.60
S11 03:44:00 03:45:45 E 15.97
S14 04:04:30 04:07:45 F 9.07
S15 02:30:00 02:45:00 A 1.18
S16 02:57:00 03:10:00 E 1.14
S17 04:12:00 04:23:00 F 1.34

Appendix B. Results
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Figure B.8: Dual Model fraction of false positive pipes for all leak scenarios with a well-
calibrated model (C3). These results are also depicted in Table 2 on page number 20 in
the paper.
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Figure B.9: Dual Model topological distance performance for all leak scenarios with a
well-calibrated model (C3). These results are also depicted in Table 2 on page number 20
in the paper.
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the paper.
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Table B.6: Leak localization results with demand from billing information, model calibra-
tion C2 (only elevation calibrated), and 11 sensors used.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 257 257 0.5 648 854 10.5
S2a 79 78 0.6 682 947 13.8
S2b 1291 1458 11.2 1458 2282 51.4
S3a 23 0 0.2 354 610 15.0
S3b 1003 2352 30.7 1122 2282 71.6
S3c 0 0 0 73 72 1.4
S4 136 353 4.3 551 1703 58.4
S5a 1287 2352 43.5 1298 2352 56.2
S5b 35 66 1.1 35 72 1.4
S6 15 7 0.3 35 54 0.9
S7a 19 18 0.5 354 634 13.4
S7b 15 34 0.8 73 72 1.4
S8 156 603 5.3 36 35 0.3
S9a 296 764 8.2 145 265 3.8
S9b 38 104 2.1 347 1984 6.1
S10a 379 830 7.0 516 651 16.9
S10b 662 973 7.6 761 1703 47.0
S10c 310 368 1.2 520 2282 72.3
S11 13 27 1.1 21 66 0.5
S12a 539 809 9.7 21 197 2.0
S12b 155 873 7.6 241 618 8.7
S13a 249 753 6.5 516 765 17.8
S13b 14 51 1.1 520 2282 59.0
S14 290 316 1.2 234 715 13.7
S15 244 221 3.0 682 879 11.4
S16 797 2131 19.9 797 1415 24.8
S17 1588 2119 16.4 1441 2352 79.6
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Table B.7: Leak localization results with demand from billing information, model calibra-
tion C1 (uncalibrated), and 11 sensors used.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 2 1 0.3 648 879 10.6
S2a 19 57 0.5 707 978 14.1
S2b 1158 1458 12.2 1459 2282 51.2
S3a 493 762 5.5 470 641 15.3
S3b 956 2272 29.6 1122 2282 71.6
S3c 8 7 0.3 73 72 1.4
S4 118 286 2.9 551 1771 59.0
S5a 353 2188 19.6 1459 2352 54.7
S5b 15 14 0.6 15 14 0.6
S6 0 0 0.0 15 34 0.8
S7a 426 634 3.2 372 662 14.9
S7b 8 0 0.2 73 72 1.4
S8 249 603 5.2 36 73 0.8
S9a 404 2145 14.6 246 254 2.3
S9b 761 1399 6.5 304 2009 11.4
S10a 1978 2101 20.5 533 647 16.4
S10b 761 1071 10.2 744 1703 46.5
S10c 126 1916 13.7 1613 2297 75.2
S11 38 53 1.4 68 66 0.5
S12a 142 1097 9.3 923 2297 8.8
S12b 113 1811 16.9 602 816 14.7
S13a 341 764 7.8 468 931 17.9
S13b 99 1996 12.6 1654 2297 72.2
S14 124 486 5.8 439 816 14.9
S15 1402 2297 75.7 925 1554 28.3
S16 1337 2207 37.5 902 1481 20.5
S17 439 2197 19.9 1654 2297 85.3
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Table B.8: Leak localization results using only 5 sensors, network calibration (C3), and
demand from billing information.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 19 17 0.3 57 57 0.5
S2a 1 0 0.2 60 1082 0.8
S2b 168 215 2.7 253 351 5.0
S3a 23 0 0.2 97 878 5.5
S3b 241 1567 11.9 178 1912 28.1
S3c 209 236 3.5 301 422 2.1
S4 308 384 4.0 578 832 16.1
S5a 485 1543 21.1 905 2145 52.6
S5b 209 264 1.4 238 230 4.3
S6 130 236 1.5 234 310 3.5
S7a 1 0 0.2 438 916 5.5
S7b 196 202 2.9 301 373 2.0
S8 1 0 0.2 258 931 10.3
S9a 591 724 16.7 591 651 15.3
S9b 244 243 1.2 108 895 4.0
S10a 643 943 18.8 516 1400 23.6
S10b 173 749 4.0 799 2282 62.5
S10c 460 606 2.4 406 2282 74.8
S11 21 189 1.4 180 116 1.2
S12a 180 318 3.8 561 1363 19.3
S12b 81 557 6.4 36 325 3.6
S13a 86 520 2.6 442 830 18.1
S13b 65 64 0.3 460 2282 33.0
S14 46 627 1.5 431 870 15.0
S15 0 0 0 60 95 0.6
S16 493 750 10.9 312 1559 33.9
S17 1138 1729 16.0 1461 2352 48.5
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Table B.9: Leak localization results using only 3 sensors, network calibration (C3), and
demand from billing information.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 19 57 0.5 60 57 0.5
S2a 23 22 0.3 97 1156 2.7
S2b 285 695 15.5 430 771 15.5
S3a 23 0 0.2 452 916 5.6
S3b 509 1668 22.2 857 1912 27.1
S3c 208 236 3.2 301 480 2.4
S4 87 384 2.6 875 1243 26.3
S5a 485 1397 17.8 327 2145 65.3
S5b 174 215 3.2 238 401 7.0
S6 15 7 0.3 408 480 6.2
S7a 23 22 0.3 438 916 5.5
S7b 208 236 3.2 301 480 2.4
S8 1 0 0.3 643 949 12.0
S9a 643 830 17.6 439 685 16.0
S9b 245 283 1.8 108 1274 15.7
S10a 643 1400 33.1 516 765 17.8
S10b 97 1350 5.5 761 2282 62.3
S10c 460 577 2.7 1461 2282 74.8
S11 172 189 1.4 204 665 1.7
S12a 172 466 4.7 589 1778 39.5
S12b 111 557 5.8 290 432 5.5
S13a 90 520 2.7 382 830 18.1
S13b 65 195 1.4 460 2282 42.9
S14 46 654 1.8 602 870 17.5
S15 0 0 0 60 95 0.6
S16 493 1486 5.0 600 1703 51.2
S17 237 240 3.5 1461 2352 60.2
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Table B.10: Leak localization results with random node elevation errors drawn from a nor-
mal distribution with standard deviation of 1. For each leak scenario, 11 simulations were
performed, and the average value computed. The average value and the 95 % confidence
interval is visualized. Only the leak scenarios containing only one leak were tested, as the
simulations were quite time consuming.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 248 599 3.5 35 51 0.5
S4 586 1491 22.2 526 970 22.8
S6 76 91 1.3 25 28 0.6
S8 948 1406 12.0 179 399 5.8
S11 355 823 5.4 307 463 6.6
S14 533 1536 17.1 455 884 11.4
S15 651 2223 44.9 1127 1974 47.4
S16 1148 2215 46.5 1227 2034 60.8
S17 1144 2091 42.1 1067 1913 47.9
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Table B.11: Leak localization results with demand distributed equally to all of the system’s
nodes, model calibration (C3) and 11 sensors used.

Dual Model Correlation Model

Leak scenario TD [m] MS [m] FP [%] TD [m] MS [m] FP [%]

S1 19 18 0.5 19 17 0.3
S2a 1 0 0.2 60 57 0.5
S2b 195 411 5.5 325 896 9.9
S3a 60 57 0.5 60 574 1.1
S3b 1050 2145 17.2 1050 1912 29.5
S3c 0 0 0 73 87 1.7
S4 308 419 5.8 241 928 19.6
S5a 964 2145 37.7 729 2352 31.0
S5b 35 54 0.9 15 34 0.8
S6 15 0 0.2 15 34 0.8
S7a 19 18 0.5 438 830 1.5
S7b 15 14 0.6 35 87 1.5
S8 55 98 1.4 112 207 2.7
S9a 99 13 0.5 90 187 2.4
S9b 68 268 0.6 88 312 0.8
S10a 39 47 0.6 553 765 17.8
S10b 64 123 1.7 611 1703 52.0
S10c 634 691 1.4 520 2282 70.7
S11 21 189 1.4 21 19 0.3
S12a 43 72 1.4 68 268 2.0
S12b 300 931 4.1 147 514 3.8
S13a 73 144 2.0 229 765 16.6
S13b 14 19 0.6 460 2282 37.1
S14 290 299 1.2 167 681 12.8
S15 0 0 0.0 19 17 0.3
S16 68 369 2.6 734 1536 28.4
S17 855 1806 9.1 1441 2352 80.4
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Table B.12: Dual Model leak localization results for five different calibrations of the Graz-
Ragnitz network. i) CAL1 is completely uncalibrated, ii) CAL2 includes calibration of
the partially-closed valve, iii) CAL3 includes valve calibration in addition to calibration
of the roughness parameter of the pipes using Scipy’s Differential Evolution Algorithm by
Virtanen et al. (2020), iv) CAL4 is the best calibration found in Steffelbauer (2018) and
v) CAL5 is CAL4 plus correction of the nodal elevations. Only leak scenarios containing
one leak location and scenarios with leak outflows larger than 2 L

s were considered. Note
that the Dual Model shows similar performance for all of these calibrations.

Dual Model Results: Topological Distance

Scenario CAL1 [m] CAL 2 [m] CAL3 [m] CAL4 [m] CAL5 [m]

S1 2 19 0 19 2
S4 118 128 286 286 308
S6 0 0 52 0 0
S8 249 73 73 112 39
S11 38 59 103 21 21
S14 124 124 216 124 290

Dual Model Results: Maximum Span

Scenario CAL1 [m] CAL2 [m] CAL3 [m] CAL4 [m] CAL5 [m]

S1 1 18 0 17 1
S4 286 342 307 353 427
S6 0 0 44 0 0
S8 603 98 98 176 90
S11 53 79 181 189 193
S14 486 1004 371 422 299

Dual Model Results: FP Fraction

Scenario CAL1 [%] CAL2 [%] CAL3 [%] CAL4 [%] CAL5 [%]

S1 0.3 0.5 0.0 0.3 0.3
S4 2.9 4.0 2.0 2.7 5.8
S6 0.0 0.0 0.5 0.0 0.0
S8 5.2 1.4 1.4 2.3 1.2
S11 1.4 1.8 1.5 1.4 1.5
S14 5.8 7.6 4.1 5.4 1.1
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Table B.13: Leak localization results for five different calibrations of the Graz-Ragnitz
network for the Correlation Model. See explanation in Table B.12. Note that the Corre-
lation Model is reliant on a well-calibrated network.

Correlation Model Results: Topological Distance

Scenario CAL1 [m] CAL2 [m] CAL3 [m] CAL4 [m] CAL5 [m]

S1 648 19 19 19 19
S4 551 419 336 336 241
S6 15 15 15 6 15
S8 36 276 216 55 99
S11 68 21 2 21 21
S14 439 439 431 439 167

Correlation Model Results: Maximum Span

Scenario CAL1 [m] CAL 2 [m] CAL3 [m] CAL4 [m] CAL5 [m]

S1 879 17 17 18 18
S4 1771 1673 1673 958 928
S6 34 14 7 4 14
S8 73 276 215 98 194
S11 66 66 0 66 19
S14 816 816 738 816 668

Correlation Model Results: FP Fraction

Scenario CAL1 [%] CAL 2 [%] CAL3 [%] CAL4 [%] CAL5 [%]

S1 10.6 0.3 0.3 0.5 0.5
S4 59.0 49.1 40.1 17.8 17.3
S6 0.8 0.6 0.3 0.5 0.6
S8 0.8 3.3 3.3 1.4 2.4
S11 0.5 0.5 0.2 0.5 0.3
S14 14.9 14.0 13.1 13.8 12.5
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Figure B.11: Average Dual Model performance with the demand equally distributed to
all of the system’s nodes, and the demand retrieved from the billing information.

Appendix C. Calibration

Pipe Group Roughness coefficient [mm]

G1 0.0148
G2 0.0061
G3 0.2594
G4 0.9101
G5 1.9980

Table C.14: Roughness coefficients found in Lippacher (2018) for each pipe group.

Appendix D. Project thesis

The project thesis was performed on a simple virtual water distribution
network. The purpose of the project thesis was to develop an understanding
of the two models. In addition, the project thesis was a tool to improve the
author’s programming skills. The thesis formed the idea of testing the Dual
Model on weaker calibrated models in a real-world scenario, as the results
were promising on the virtual network. However, the thesis is not directly
relevant to the master thesis and is only attached to avoid plagiarism because
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of a few sentences being quite similar in both theses. The project thesis can
be found attached together with the Python scripts in a zip-file in Inspera.

Appendix E. Python scripts

Attached as a zipped folder in Inspera.
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