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Abstract

It has been hypothesized that there is a connection between hasty de-
cision making and schizophrenia. Some claim that probabilistic rea-
soning tasks performed by both healthy controls, and schizophrenic
participants have proven this connection. Others suggest that the
previously performed tasks can not be used to draw the conclusion.

Professor Gerit Pfuhl has made an alternative task to the tasks
previously used to test the hasty decision making in schizophrenic
participants. This alternative task is called the dice task, and the
aim of this task is to identify a loaded die among four dice. In this
thesis we have data from 212 healthy controls and 41 people diagnosed
with schizophrenia who have participated in the dice task. This data
will be used to consider the participants decisions, and to investigate
whether there are any differences between the two groups.

The decisions are evaluated by deriving a probability model used
to calculate rewards for each decision. Next, the rewards are used to
fitting a stochastic model to each participant. The stochastic model
contains parameters which are estimated and studied in order to de-
termine whether it is possible to distinguish the two groups of par-
ticipants. The findings were that the parameter estimates are similar
for the two groups. Thus, from the particular model presented in
this thesis, used to evaluate the data, we can not conclude that the
schizophrenic participants tend to make different decisions compared
to the healthy controls.
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Sammendrag

Det er antatt å være en sammenheng mellom å ta forhastede av-
gjørelser og å være diagnostisert med schizofreni. Noen hevder at opp-
gaver som omhandler sannsynlighetsresonementer utført av b̊ade friske
og schizofrene deltakere, viser denne sammenhengen. Andre mener at
disse oppgavene som tidligere har vært utført, ikke danner et godt nok
grunnalg til å trekke den konklusjonen.

Professor Gerit Pfuhl har laget en alternativ oppgave til de opp-
gavene som tidligere har blitt brukt til å teste forhasted beslutnings-
takning hos schizofrene. Denne alternative oppgaven er kalt terning-
oppgaven og g̊ar ut p̊a at man skal identifisere en urettferdig terning
blandt fire terninger. I denne avhandlingen har vi data fra 212 fris-
ke og 41 schizofrene deltakere, som har gjennomført terningoppgaven.
Disse dataene vil bli brukt til å betrakte deltakerenes beslutninger, og
å undersøke om det er noen forskjell mellom de to gruppene.

Beslutningene evalueres ved å utlede en sannsynlighetsmodel som
brukes til å regne ut belønninger for hver beslutning. Belønningene
blir s̊a brukt til å tilpasse en stokastisk model til hver deltaker. Den
stokastiske modellen inneholder parametere som estimeres og evalueres
med hensyn p̊a hvorvidt det er mulig å se forskjell p̊a de to gruppene
av deltakere. Fra denne modellen, brukt til å evaluere dataene, kan
vi ikke konkludere med at de schizofrene deltakerene tar annerledes
beslutninger enn de friske deltakerene.
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1 Introduction

How we make decisions in our everyday life, and what reasoning lies behind
is complex and complicated to understand. Can our decisions say something
about our state of mind, and is it possible to determine based on the decisions
a persons makes whether he or she is healthy or is suffering from a psychiatric
disorder? This thesis aims to investigate if there exists a connection between
patients suffering from schizophrenia, and how they make decisions in a task.
This is done by constructing a probability model which gives rewards for each
decision, and use this to fit a stochastic model to each participant. Further,
the parameters in the stochastic model will be estimated for each participant,
and used to evaluate if there is any difference between the the two groups.

Schizophrenia is a mental illness that effects how you think, feel and
behave. Psychotic symptoms include hallucinations where you see, hear and
experience things that are not there, and delusions which is having strong
beliefs that are not true and may seem irrational to others (National Institute
of Mental Health 2022). Previously, research on this topic has looked at
the connection between schizophrenia and especially deluded patients and
whether they are prone to making hasty decision. Hasty decision making is
described as a jumping to conclusions (JTC) bias which is defined as hasty
decision making based on little evidence (Balzan et al. 2017).

To this date, the probabilistic reasoning task used to investigated the
JTC bias has mostly been the beads task (Moritz and Woodward 2004). In
the beads task participants are presented two jars each containing different
proportions of colored beads. Typically jar A contains 80% black beads and
20% white beads, whereas jar B contains the opposite amount, 20% black
beads and 80% white beads. The jars are then removed from the participants
view, and the participant is told that beads will be drawn from one jar at
a time with replacement, such that the proportions remain unchanged. The
task is for the participants to decide which of the two jars the beads are
drawn from. We can then compare the performance of the participants by
considering how many beads they ask to be drawn prior to concluding if the
beads are drawn from jar A or jar B. The results from the beads task is that
participants with schizophrenia tend to reach a conclusion after fewer draws
compared to healthy controls (Moritz and Woodward 2004).

Despite the consistent findings that schizophrenic participants reach their
conclusions after fewer draws than healthy test persons, it is argued that the
mechanism contributing to the JTC bias is not clear. Three alternative in-
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terpretations of the results are mentioned by Moritz and Woodward (2004).
They maintain the hypothesis that there is a JTC bias in schizophrenic par-
ticipants, but are critical to the interpretation that fewer drawn beads is the
driving mechanism. The first alternative interpretation is that a participant
with schizophrenia will have a “winner takes it all” mechanism such that
after drawing one black bead the participant will decide in favour of jar A.
The second interpretation is that schizophrenic participants rule out alterna-
tive hypothesis too quickly, so after seeing one black bead they will conclude
that it can not come from jar B. The third interpretation is that patients
might over-adjust while faced with contradicting evidence, so after drawing
three black beads, followed by one white bead, they might choose in favour
of jar B because they are unable to retrieve past experiences. In conclusion,
Moritz and Woodward (2004) enlighten aspects of the results of the beads
task apart from fewer draws than test persons, that might be used to argue
that the patients have a JTC bias.

In addition, the conclusion that the results from the beads task is evi-
dence for a JTC bias in schizophrenic participants have been questioned. In
Pfuhl and Tjelmeland (2019) they confirm the findings that the number of
beads drawn is lower in patients than in healthy controls, but in an asym-
metric sequence of beads, and with more even ratios, both groups evaluate
more beads. Thus, Pfuhl and Tjelmeland (2019) argue that both groups are
sensitive to the cognitive effort required to estimate the probabilities. This
contradicts that deluded patients have a JTC bias, because reduced cogni-
tive abilities have been linked to the JTC bias. The findings by Pfuhl and
Tjelmeland (2019) shows that the patients do not have reduced cognitive
abilities.

There is a need for an alternative task to consider if there actually is a
JTC bias in deluded patients, which is more credible than the beads task.
In the Master’s thesis Skogvang (2021) the box task was considered as an
alternative to the beads task. Here, the participants are shown grey boxes,
they choose which box to open, and the box shows either the color blue or
red. It is known to the participants that one of the two colors, blue or red,
are in majority, and the participants task is to determine which color that
is. The thesis derives a method for finding an ideal observer solution of the
box task and analyses how 76 participants make decisions using a softmax
model. The findings were that the model was a good fit for participants who
make good choices, but not as good of a fit for participants who made bad
choices.
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Professor Gerit Pfuhl has developed another alternative to the beads task,
which is the dice task. This task gives the participants four dice, and they are
told that one of the dice is loaded, meaning that it has a higher probability of
showing one of the sides. There are two versions of the dice task, a limited,
and an unlimited version. In the limited version the participants have to
make exactly a total of ten throws, and for each throw they are free to
choose any of the four dice. In the unlimited version, the participants can
throw one die at a time, and this die can be thrown as many times as they
want. When they decide that they are finished throwing one die, they can
choose a new die to throw as many times as they like. However, they can
not go back to a previous die and throw it again once they have decided that
they are finished with it.

The limited version of the dice task was studied in Tandberg (2021),
where an optimal strategy of identifying the loaded die was presented. How-
ever, there was no available data from schizophrenic participants for the
limited version. Thus this thesis will focus on the unlimited version of the
dice task where we have available data from both healthy and schizophrenic
participants.

With a focus on evaluating the decisions made by participants in the dice
task, we can construct a probabilistic model which assigns rewards for each
possible decision. The necessary theory for deriving the probability model
and a stochastic model, which will later be used to fit to the data, will be
given together with theory for parameter estimation.

The probability model should focus on maximizing the probability of iden-
tifying the loaded die. For each throw our model should give two expected
rewards, one expected reward if you throw the die one more time and an-
other expected reward if you stop throwing the die. Thus, the choices made
by both healthy controls, and schizophrenic patients can be compared to the
rewards from our model, and this can be used to evaluate their choices.

A stochastic model will be fitted to the data. The stochastic model
contains parameters from the probability model, and the goal is to fit a model
for each participant. Lastly, the parameter estimates from the stochastic
model will be used to investigate if there are any differences between the two
groups who have completed the dice task.
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2 The dice task

The dice task is designed as a computer game where each participant is
presented four dice of different colors. They are told that one of the four dice
is loaded, however they do not know which number of eyes the loaded die will
show more frequently. Neither do they know “how loaded” the loaded die
is, meaning that they do not know the probability of the loaded die showing
the number of eyes that is more probable than the others. The task is given
in two rounds, so after completing the first round a second round starts.
The second round is designed in the same way as the first round, but it is
independent of the first round. So in the second round the loaded die can
again be any of the four dice, and the loaded die does not necessarily have
the same probability of showing the loaded side as in round one.

The dice task is explained using pictures from a trial run of the task.
The participants choose a die to start throwing as shown in Figure 1, and as

Figure 1: Screenshot from the dice task. At the beginning of the task you
choose a die by clicking on any of the four dice displayed. In this example
the red die was chosen first.

they throw, a bar with the previous outcomes is displayed, this we can see
in Figure 2. They throw the die by clicking or swiping the die on the screen.
This triggers an animation of the die rolling, which takes roughly one second
to complete. After throwing at least once, they can decide if they want to
throw the same die again, or stop throwing this die and move on to one of
the remaining dice. After each throw they have the same choice where they
are asked if they want to continue, or to stop throwing the current die. In
the example given in Figures 1 and 2, the red die was chosen first, and it was
thrown five times. When they choose to stop throwing a die, they are asked
if they think this die is loaded, and if so which number of eyes is the loaded
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Figure 2: Screenshot from the dice task. Here we see that the red die has
been thrown five times, and the history of what has been thrown is displayed
underneath. At the top, we are asked if we want to continue throwing or to
stop throwing.

5



Figure 3: Screenshot from the dice task. The red die has been thrown, and
we can now choose between the three remaining dice to throw next.

Figure 4: Screenshot from the dice task. All four dice have been thrown, the
history is displayed to the right, and we are asked to choose one of the four
dice to the left as the die we think is the loaded die.

side. Then they will return to the screen showing the dice that have not yet
been thrown, displayed in Figure 3, and pick a new die to throw.

Each die must be thrown at least once. After all dice have been thrown
they will get to view the history of what has been thrown on all the dice
given in Figure 4. They are asked once again to decide which of the four
dice that is loaded and which number of eyes on the chosen die that is more
probable. After completing the two rounds, they are not told if they managed
to identify the loaded die.

In the design of the experiment it does not matter which color the chosen
die has. Independently of what color they choose, the first die will always
show the same number of eyes in the same sequence for all participants,
the same applies to the second, third and fourth die. This information is not
known to the participants, all they know is that one of the four dice is loaded.
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However, it will have some consequences that makes the implementation of
the model a bit easier. With this design, all participants are shown the same
sequences in the same order, so for all of them the third die they choose will
be the loaded one in the first round. In the second round, the second die is
loaded.

2.1 Data selection

The data that is considered in this thesis is data from 212 psychology students
who participated in the dice task in 2021, which are used as healthy controls.
There also exists student data collected in 2022, but these are not considered
in this thesis. In addition to the data from the 212 students, we consider
data from 41 participants who are diagnosed with schizophrenia.

Some of the available data will not be considered in this thesis. Due to
time limitations only the data from the first round of the dice task is evalu-
ated. Additionally, participants who have only thrown each die once, which
was the minimum requirement, are not considered. This applies to 5 healthy
participant, and 3 schizophrenic participants. Furthermore, some outlying
results were excluded from consideration, for computational reasons, see Sec-
tion 5.1. This applies to 22 healthy, and 2 schizophrenic participants. We
are then left with considering 185 healthy participant, and 36 schizophrenic
participants.

3 Theory for construction of models

The theory needed to construct a probabilistic model which is used to find
expected rewards for each decision in the dice task is presented here. The
stochastic model which will be fitted to the data from the dice task is also
presented in this section. Lastly, the maximum likelihood for parameter
estimation is stated.

When deriving a model for calculating rewards for each choice Bayes’
theorem, and the law of total probability is needed. The probabilistic model,
used to find rewards, is dependent on several parameters. Thus, Bayes’
theorem, and the law of total probability will be formulated such that we
can include three events. As the stochastic model we choose a generalized
linear model, GLM, with binary response, hence GLM with binary regression
will be presented here. Included in the GLM we have two parameters which
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are estimated, thus the theory of estimating parameters using log likelihood
will be presented.

3.1 Theorem of total probability

The theorem of total probability will be presented using the definition from
Härdle et al. (2015). Further, this definition will be used to expand the
theorem of total probability such that it is valid for three events. From Härdle
et al. (2015) the theorem of total probability is defined using a partition
A1, A2, ..., An, satisfying

• Ai 6= ∅ (i = 1, 2, ...n)

• Ai ∩ Ak = ∅ (i 6= k; i, k = 1, 2, ..., n)

• A1 ∪ A2 ∪ ... ∪ An = S.

Then, for any event B ⊂ S, we can use the multiplication rule P (Ai ∩B) =
P (B|Ai)P (Ai), to find the law of total probability which is

P (B) = P (B ∩ A1) + P (B ∩ A2) + ...+ P (B ∩ An)

= P (B|A1)P (A1) + P (B|A2)P (A2) + ...+ P (B|An)P (An)

=
n∑
i=1

P (B|Ai)P (Ai).

(1)

Now that we have an equation for the theorem of total probability from (1),
this can be used to include a third event. Let the event C ⊂ S, and we are
interested in P (B|C). Using the multiplication rule and (1) we have that

8



P (B|C) =
P (B ∩ C)

P (C)

=
1

P (C)
(P (B ∩ C ∩ A1) + P (B ∩ C ∩ A2) + ...+ P (B ∩ C ∩ An))

=
1

P (C)

n∑
i=1

P (B|C ∩ Ai)P (C ∩ Ai)

=
1

P (C)

n∑
i=1

P (B|C ∩ Ai)P (Ai|C)P (C)

=
n∑
i=1

P (B|C ∩ Ai)P (Ai|C).

3.2 Bayes’ theorem

Bayes’ rule is defined in Härdle et al. (2015) as follows, let A1, A2, ..., An be
a partition. Then for any event B ⊂ S with P (B) > 0 and given conditional
probabilities P (B|A1), P (B|A2), ..., P (B|An):

P (Aj|B) =
P (B|Aj)P (Aj)∑n
i=1 P (B|Ai)P (Ai)

∀j = 1, ..., n. (2)

By using the multiplication rule and (2) we can include a third event. Let-
ting the event C ⊂ S, with P (C) > 0, and given conditional probabilities
P (B|A1 ∩ C), P (B|A2 ∩ C), ..., P (B|An ∩ C) we have

P (Aj|B ∩ C) =
P (Aj ∩B ∩ C)

P (B ∩ C)

=
P (B|Aj ∩ C)P (Aj ∩ C)

P (B|C)P (C)

=
P (B|Aj ∩ C)P (Aj|C)P (C)

P (B|C)P (C)

=
P (B|Aj ∩ C)P (Aj|C)

P (B|C)
.
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3.3 Generalized Linear Models

Linear models are well suited for regression analysis when the response vari-
able is continuos and approximately normal. However, when the response
variable does not necessarily follow a normal distribution, generalized linear
models, GLM, can be used. GLMs still assume that the effect of covariates
can be modeled through a linear predictor (Fahrmeir et al. 2013). With the
aim of fitting a stochastic model to the data from the dice task, we consider
a response variable which is binary. This is because the participants of the
dice task have two choices, either to continue throwing the current die, or
to stop throwing the current die. Thus, GLMs which unify many regression
models, among them binary regression is a reasonable choice of stochastic
model for the dice task.

The definition of binary regression models is given in Section 5.1.1 in
Fahrmeir et al. (2013), and is given as follows. For the binary regression
models we assume data on n individuals are given on the form (yi, xi1, ..., xik),
i = 1, ..., n with binary response yi ∈ {0, 1} and corresponding covariates
denoted xi1, ..., xik. The goal of binary regression is to estimate the effects of
the covariates on the probability

πi = P (yi = 1) = E(yi),

for the outcome yi = 1 and given covariates xi1, ..., xik.
Assuming we have a binary response, then the linear probability model

πi = β0 + β1xi1 + ...+ βkxik,

has several disadvantages discussed in Section 2.3 in Fahrmeir et al. (2013).
Particularly, the linear predictor

ηi = β0 + β1xi1 + ...+ βkxik = x′iβ,

with β = (β0, β1, ..., βk)
′, and xi = (1, xi1, ..., xik)

′ must lie on the interval
[0, 1] for all vectors x. Thus, requiring restrictions on β that are difficult to
deal with in the estimation process. In order to avoid this, all popular binary
regression models combine πi with the linear predictor ηi through a relation
on the form

πi = h(ηi) = h(β0 + β1xi1 + ...+ βkxik),
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where h is a strictly monotonically increasing cumulative distribution func-
tion on the real line. Now, instead we have that h(η) ∈ [0, 1], which is ensured
by the definition of h.

Additionally we can write

ηi = g(πi),

with the inverse function g = h−1, we have that h is called the response
function, and g is the link function.

The two most widely used binary regression models are the logit and pro-
bit models. There are not any large advantages or disadvantages in choosing
one of the models over the other. The choice fell on the logit model for the
stochastic model to be fitted to the data from the dice task, but the probit
model could also have been used.

The logit model, which uses the logistic response function is defined in
Section 5.1 in Fahrmeir et al. (2013). It gives the probability

πi = h(ηi) =
eηi

1 + eηi

=
eβ0+β1xi1+...+βkxik

1 + eβ0+β1xi1+...+βkxik
.

(3)

Equivalently we have the logit link function

g(πi) = log

(
πi

1− πi

)
= ηi = β0 + β1xi1 + ...+ βkxik.

3.4 Maximum Likelihood Estimation

Maximum likelihood estimation, MLE, is used for parameter estimation. In
Fahrmeir et al. (2013) a definition of MLE is given in B.4.1. Let Yi, ..., Yn be
a random sample with y1, ..., yn observations. For discrete Yi, ..., Yn, we have
the joint probability

P (Y1 = yi, ..., Yn = yn|θ),

which is depending on an unknown vector θ = [θ1, ..., θp], which is what we
want to estimate. The likelihood L(θ) is a the joint probability as a function
of θ,

L(θ) = P (Y1 = yi, ..., Yn = yn|θ).

11



The MLE θ̂ of θ is the value of θ that maximizes the likelihood L(θ). For
technical reasons the logarithm of the likelihood is commonly considered for
maximization in stead of the likelihood. The logarithm is a strictly increasing
function, so the log likelihood l(θ) = logL(θ) attains its maximum at the
same value of θ = θ̂ as L(θ). Assuming that the random variables Yi, ..., Yn
are independent, the log likelihood of the random variables is the sum of
their joint probabilities,

l(θ) = logP (y1|θ) + ...+ logP (yn|θ)

=
n∑
i=1

logP (yi|θ).
(4)

The MLE θ̂ of θ is the θ-value that maximizes the probability in (4). The
θ-value can be found analytically by taking the first derivative of the log
likelihood, setting it to zero and solving for θ. It can be found numerically
by considering a set of θ-values, and finding which of the θ-values that max-
imizes the likelihood. It can also be found using profile likelihood where
we have more than one parameter. Then we first find the value of one pa-
rameter which maximize the likelihood, and then find the value of the other
parameter which maximize the likelihood already using the first parameter
estimate.

4 Evaluating decisions

With the aim of evaluating the decisions made by participants of the dice
task, a probability model for calculating rewards for each decision will be
presented. This probability model will be used to find expected rewards
for all choices made by each participant, using real data from both healthy
and schizophrenic participants of the dice task. When we have the expected
rewards for all choices made by the participants, this will be used to fit a
stochastic model, which in this case is a GLM with logistic response. While
fitting the stochastic model we need parameter estimates both for β as de-
scribed in Section 3.3, and for a cost parameter which is included in the
expression for the expected reward. The method for estimating parameters
is given at the end of this section.

12



4.1 Problem setup

The necessary variables for constructing the probability model for finding
the expected reward for each choice, and for fitting the stochastic model will
be presented.

Variables in the probability model

The goal of the dice task is to identify the loaded die. Hence, we introduce
the reward of identifying the loaded die which is equal to 1 if you manage
to do so. When performing the dice task the participants repeatedly have
two choices, either to continue throwing the current die, or to stop throwing
the current die. This gives two rewards, one rewards Rc if you continue to
throw, and the other Rs, for the reward when stopping to throw. Thus,
each of the two rewards, Rc ≤ 1 and Rs ≤ 1, describe how certain you are
of having identified the loaded die, both if you continue and stop throwing.
Additionally, the rewards aim to maximize the possible reward one can obtain
by considering future throws. So we do not consider rewards of choices that
have already been made in the past.

When constructing an expression for the reward when continuing to throw
a die Rc, it is necessary to include a cost parameter which is denoted by α.
The cost parameter is included because the design of the dice task is such
that it takes time to roll a die, so logically there is a limit for how patient
each participant is, and how many times they are willing to throw. The
cost parameter α, will have a negative sign such that it reduces the expected
reward of continuing to throw. Furthermore, α will be different for each
participant, meaning that Rc will be a function of α, and we will estimate α̂
using MLE for each participant.

To express Rc and Rs several variables are needed. The history of the
throws that have been made, is used to calculate the probability of having
identified the loaded die, thus we need notation for representing the history.
This introduces two vectors, the first vector ρ = [ρ1, ρ2, ...ρk] represents which
die that has been thrown up to k throws, so for a throw i ≤ k, ρi ∈ {1, 2, 3, 4}.
The second vector ω = [ω1, ω2, ..., ωk] represents what number of eyes each
die has shown up to k throws, so for a throw i ≤ k, ωi ∈ {1, 2, 3, 4, 5, 6}.
Combined, ρ and ω give k pairs that together say what die has been thrown,
and what this die has shown. The length of the two vectors are either the
same, or ρ can have length k + 1 when ω has length k. When ρ contains
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one more element than ω, this means that we know what die will be thrown
next, but the die has not yet been thrown, so ωk+1 is unknown.

Furthermore, we have the variable representing the true loaded die Z ∈
{1, 2, 3, 4}. We assume that when no information of what has been thrown is
provided, all dice have the same probability of being the loaded die P (Z =
z) = 1

4
for any z = {1, 2, 3, 4}.

From the design of the task it is known that only one of the sides on the
loaded die Z has a higher probability of facing up than the five other sides.
The loaded side on the loaded die Z we denote by γ ∈ {1, 2, 3, 4, 5, 6}, which
indicates how many eyes the loaded side is showing. We assume that without
any information of what throws have been made, each side has the same
probability of being the loaded side P (γ) = 1

6
, for any γ = {1, 2, 3, 4, 5, 6}.

The probability of the loaded side γ showing on the loaded die Z is
denoted by p, and it is larger than 1

6
, so this probability is a continuos

variable on the interval p ∈ 〈1
6
, 1〉. We assume that the probability p has a

uniform probability density function on the interval, denoted

f(p) =

{
1

1−1/6 for 1
6
< p < 1

0 for p ≤ 1
6

or p ≥ 1.

In the probability model we will have to calculate the probability of mak-
ing the exact combination of throws that has been observed. On the three
fair dice, the probability of a die showing any number of eyes is 1

6
. On the

loaded die the probability of throwing γ is equal to p, and the probability of
not throwing γ is 1−p

5
. Thus, we have three categories describing what type

of throws have been made, a throw on a fair die, a throw on the loaded die
Z showing γ, and a throw on the loaded die Z not showing γ. To calculate
the probability of having made a combination of throws, we need notation
for counting how many of the throws made which belong to each of the three
categories. Once this is known, we can use combinatorics to find the prob-
ability of having made any combination of throws. The number of throws
belonging to the first category are throws made on the three unloaded dice,
this is denoted by

nu(ρ) =
k∑
i=1

I(ρi 6= Z).

The second category are throws made on the loaded die Z with the loaded
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side γ showing. The number of throws belonging to this category is given by

nll(ρ,ω) =
k∑
i=1

I(ρi = Z, ωi = γ).

The third category are throws made of the loaded die Z with other sides than
the loaded side showing. The number of throws belonging to this category
is given by

nlu(ρ,ω) =
k∑
i=1

I(ρi = Z, ωi 6= γ).

Variables for the stochastic model

When fitting the stochastic model, which in this case is a GLM with binary
response, there are two components involved. We have the response vector
yi ∈ {0, 1}, and the vector of covariates xi = (xi1, ..., xik)

′ as described in
Section 3.3. The connection between the two components and what they
represent when adapted to the stochastic model for evaluating decisions, is
described here.

For the purpose of evaluating the participants choices, we consider the
decisions they are making. In the dice task you can either continue to throw
the current die, or stop throwing it. Hence, we have binary decisions which is
our response. When a participant chooses to continue throwing the current
die at the i’th throw, we have the response yi = 1. If the participant chooses
to stop throwing the current die, and moves on to the next one, the response
is yi = 0. If the current die is the fourth die, then yi = 0 indicates that the
participant chooses to finish the round.

The vector of covariates xi = (xi1, ..., xik)
′ belongs to a decision yi. The

covariates contain information that explains the response, and from our prob-
ability model we have rewards for each decision, which should have an effect
on the response. The rewards are dependent on what throws have been
observed, thus we condition on the history of throws when expressing our
covariate xi. Hence, we define one covariate xi, which is set to be the dif-
ference between the expected reward of continuing to throw the current die
E[Rc|ρ1, ...ρk+1, ω1, ..., ωk], and the expected reward of stopping to throw the
current die E[Rs|ρ1, ...ρk, ω1, ..., ωk]. Each expected reward is conditioning
on the history of throws up to throw number k. Note that the reward when
continuing conditions on what die will be thrown next, k+ 1, this is because
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continuing means that the next throw will be on the current die. So we have
xi = E[Rc|ρ1, ...ρk+1, ω1, ..., ωk]−E[Rs|ρ1, ...ρk, ω1, ..., ωk], which is found us-
ing the probability model. With this definition of xi, a positive value of xi
means that the best choice is to continue throwing the current die, and conse-
quently a negative value of xi means that the best choice is to stop throwing
this die. With this setup we only have one covariate, so our probability, using
notation from (3), is

πi = P (yi = 1) =
eβ0+β1xi

1 + eβ0+β1xi
.

As mentioned earlier, Rc is a function of the cost parameter α, which
means that xi also is a function of α. To remember this dependency we write

xi(α) = E[Rc|ρ1, ...ρk+1, ω1, ..., ωk]− E[Rs|ρ1, ...ρk, ω1, ..., ωk], (5)

such that it is easy to see that xi depends on the cost parameter α.

4.2 Probability model

The model for calculating the rewards, Rs and Rc, after having made any
combination of throws will be derived. Afterwards, the expectation of the
two rewards E[Rs|ρ1, ...ρk, ω1, ..., ωk], and E[Rc|ρ1, ...ρk+1, ω1, ..., ωk] will be
used to fit the stochastic model. The two models for finding Rs and Rc

involves a recursion. Firstly, the initial situation of the recursion will be
considered. That is when all throws have been made, so we are considering
Rs when throwing the fourth die. Further, this will be used to construct a
general equation for both Rs and Rc.

We start by considering Rs when throwing the fourth die. In this situation
we have the history of what has been thrown up to throw number k. So Rs

is a function of the history, denoted by Rs(ρ1, ..., ρk = 4, ω1, ..., ωk). The
reward indicates how certain you are of having identified the loaded die. In
this situation it is possible to calculate four probabilities of each die being the
true loaded die as a function of the history, P (Z = z|ρ1, ..., ρk = 4, ω1, ..., ωk)
for z ∈ {1, 2, 3, 4}. The highest one of the four probabilities is the die you
should guess is the true loaded die, and this probability also represents how
certain you are of having identified the loaded die. Hence, we have the
following expression for Rs when considering the fourth die,
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Rs(ρ1, ..., ρk = 4, ω1, ..., ωk)

= max
z∈{1,4}

{P (Z = z|ρ1, ..., ρk = 4, ω1, ..., ωk)}. (6)

When considering Rs when throwing die 1, 2 or 3, the expression for the
reward when stopping is slightly different from (6). This is due to the design
of the task, which is constructed such that each die must be thrown at least
one time. When stopping to throw die 1, 2 or 3, ρk = {1, 2, 3}, you must
move on and throw the next die at least once. The reward when stopping
is then equivalent to the reward of deciding to continue throwing the next
die, where ρk+1 = ρk + 1. The reward when continuing, Rc, also includes
the history of what has been thrown, so we have Rc(ρ1, ..., ρk+1, ω1, ..., ωk).
Additionally, Rc is dependent on ρk+1 because when you choose to continue
throwing, you know what die you are going to throw, but not what this die
will show. The equation for the reward when stopping to throw die 1, 2 or 3
is

Rs(ρ1, ..., ρk = {1, 2, 3}, ω1, ..., ωk)

= Rc(ρ1, ..., ρk+1 = ρk + 1, ω1, ..., ωk).
(7)

The general expression for the reward when stopping involves two equations.
We use (6) when ρk = 4 and (7) when ρk = {1, 2, 3}, thus we have

Rs(ρ1, ..., ρk, ω1, ..., ωk)

=

{
maxz∈{1,4} P (Z = z|ρ1, ..., ρk, ω1, ..., ωk) for ρk = 4

Rc(ρ1, ..., ρk+1 = ρk + 1, ω1, ..., ωk) for ρk = {1, 2, 3}.
(8)

Now, the reward when continuing to throw Rc, will be defined. The
reward when choosing to continue has to take into account that there is more
information to obtain for each future throw. When we choose to continue
throwing, the next die ρk+1 is known, but how many eyes this die will show,
ωk+1, is unknown. We know that the probability of not throwing γ is the
same for all the five unloaded sides, so we just have to consider two outcomes
of what the next throw can be. Even though we do not know the true value
for γ, this will later be adjusted for when using the law of total probability
to condition on each of the sides being γ. This means that when considering
the next throw, this can either be γ or not γ. Meaning that we have two
possible outcomes for throw number k + 1, ωk+1 = γ, or ωk+1 6= γ. For each
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possibility we have two more possibilities ωk+2 = γ or ωk+2 6= γ. Hence, the
expression for the reward of continuing to throw is a recursion, where you
for each possible outcome of future throws can choose to continue throwing
or to stop throwing.

In the probability model for finding rewards we assume that future de-
cisions are the best decisions, that is the decisions which maximizes the
reward. So, for each possible outcome of the next throw ωk+1 = γ or
ωk+1 6= γ we have two rewards. When ωk+1 = γ, we have the reward
for continuing Rc(ρ1, ..., ρk+2, ω1, ..., ωk+1 = γ), and the reward for stopping
Rs(ρ1, ..., ρk+1, ω1, ..., ωk+1 = γ). Consequently, we have two rewards when
ωk+1 6= γ, and our assumption is that future throws, meaning throws after
the k + 1’th throw, are the choices that give the highest reward. This is de-
noted by the variables φ1 and φ0, which for any future combination of throws
gives the maximum of the two rewards Rs and Rc in that situation. Where
φ1 is the maximum reward when the next throw is γ, and φ0 is the maximum
reward when the next throw is not γ, their equations are

φ1 = max{Rs(ρ1, ..., ρk+1, ω1, ..., ωk+1 = γ),

Rc(ρ1, ..., ρk+2, ω1, ..., ωk+1 = γ)}
φ0 = max{Rs(ρ1, ..., ρk+1, ω1, ..., ωk+1 6= γ),

Rc(ρ1, ..., ρk+2, ω1, ..., ωk+1 6= γ)}.

(9)

The reward of continuing, Rc, includes the probability of the next throw
being γ and the probability of the next throw not being γ. Both probabilities
are functions of the history, P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk), and P (ωk+1 6=
γ|ρ1, ..., ρk+1, ω1, ..., ωk). In each situation for the outcome of the next throw,
we can choose to continue or to stop throwing. Hence, the two probabilities
of the next throw being γ and not being γ, are multiplied with φ1 and φ0

respectively Additionally we include the cost parameter α which will have a
negative sign, reducing the reward if you choose to continue. This parameter
value is individual for each participant and is later estimated using MLE.
This results in the following expression for the reward when continuing to
throw,

Rc(ρ1, ..., ρk+1, ω1, ..., ωk) = −α
+ P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk)φ

1

+ P (ωk+1 6= γ|ρ1, ..., ρk+1, ω1, ..., ωk)φ
0.

(10)

Since we only consider two options for the next throw ωk+1 = γ and ωk+1 6= γ,
the two probabilities of the outcome of the next throw being either γ or not,
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must sum to 1. That means that there is only one probability expression we
need to derive in (10).

Considering the two equations (9) and (10), we see that they are depend-
ing on each other. The reward of continuing to throw the k + 1’th throw
from (10) includes φ1 and φ0, which both are expressions of the reward of
continuing for throw number k + 2. Hence, we have a recursion, where φ1

and φ0 are dependent on (10) where one more throw has been made.
With the aim of fitting a stochastic model to our data, we must express the

covariate xi(α). In order to do that we need the conditional expectations of
the rewards E[Rs|ρ1, ..., ρk, ω1, ..., ωk], and E[Rc|ρ1, ..., ρk+1, ω1, ..., ωk]. The
equations for the rewards, found by (8) and (10) involves two probability
expressions, which we need to find explicit exspressions for in order to find
the conditional expectations of the rewards. Next, the model for finding
these probabilities will be derived. Firstly, we will consider the probability
of having identified the loaded die P (Z = z|ρ1, ..., ρk, ω1, ..., ωk), which is the
reward when stopping when throwing the fourth die ρk = 4 included in (8).
The second probability expression that will be derived is the probability of
the next throw being γ, denoted by P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk) which
is included in (10).

The probability of having identified the loaded die

Now we have two general equations for the rewards given by (8), and (10).
Next, we will consider the components of the two equations. Starting with
the reward of stopping to throw Rs when ρk = 4, which includes the four
probabilities that each of the four dice is the true loaded die given what you
have observed,

P (Z = 1|ρ1, ..., ρk, ω1, ..., ωk)

P (Z = 2|ρ1, ..., ρk, ω1, ..., ωk)

P (Z = 3|ρ1, ..., ρk, ω1, ..., ωk)

P (Z = 4|ρ1, ..., ρk, ω1, ..., ωk).

(11)

It is easy to calculate the four equations in (11) if p and γ are known, because
then we can categorize the throws as described in Section 4.1, and count how
many throws which belong to each category, nu(ρ), nll(ρ,ω) and nlu(ρ,ω).
After that, we are left with a combinatorics problem which can be solved by
multiplying the probabilities of making the throws that have been observed
using nu(ρ), nll(ρ,ω) and nlu(ρ,ω).
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Since the two variables p and γ are unknown, we use the law of total
probability to condition on both p and γ, starting with p. As p is uniformly
distributed on the interval 〈1

6
, 1〉 using the law of total probability gives

an integral. Thus, for computational purposes p will be discretized on the
interval, choosing a resolution, with s steps evenly distributed on the interval.
Hence, the law of total probability conditioning on p can be approximated
to a sum using the s discrete values of p,

P (Z = z|ρ1, ..., ρk, ω1, ..., ωk)

=

∫ 1

1/6

P (Z = z|p, ρ1, ..., ρk, ω1, ..., ωk)f(p|ρ1, ..., ρk, ω1, ..., ωk)dp

≈
∑
p

P (Z = z|p, ρ1, ..., ρk, ω1, ..., ωk)f(p|ρ1, ..., ρk, ω1, ..., ωk)∆p.

(12)

Where we have that ∆p = 1−1/6
s

. The two first factors of the sum in this
expression are considered separately, beginning with the first factor. This
factor is found using the law of total probability again, this time conditioning
on γ. We know that γ ∈ {1, 2, 3, 4, 5, 6} is discrete, hence the law of total
probability includes a sum,

P (Z = z|p, ρ1, ..., ρk, ω1, ..., ωk)

=
6∑

γ=1

P (Z = z|p, γ, ρ1, ..., ρk, ω1, ..., ωk)P (γ|p, ρ1, ..., ρk, ω1, ..., ωk).
(13)

Just like for (12), the two factors in (13) will be considered separately starting
with the first factor.

The first factor of (13) is rewritten using Bayes’ theorem, which gives

P (Z = z|p, γ, ρ1, ..., ρk, ω1, ..., ωk)

=
P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ)

=
P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)

=
P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)

,

(14)
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where we have used the law of total probability to rewrite the denominator,
such that we condition on Z. Note that the probability of any die being the
true loaded die Z, is equal when we do no have any information about what
throws have been made. Therefore P (Z = z|p, γ) = 1

4
, and P (Z = z|p, γ)

cancel in(14).
In (14) both the numerator and denominator express the probability of

observing what we have observed when we know p, γ and Z. These prob-
abilities can be calculated by multiplying the probabilities of making each
throw that has been made. We know that a throw can belong to three cate-
gories, and we have notation for how many of the throws that belong to each
category. We have nll which is the number of throws made on the loaded
die showing the loaded side γ, we have nlu which is the number of throws
made on the loaded die showing an unloaded side, and we have nu which is
the number of throws made on any of the three unloaded dice. Thus, we can
find the probability of the particular combination of throws

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z) = pnll(ρ,ω)

(
1− p

5

)nlu(ρ,ω)
(

1

6

)nu(ρ)

. (15)

Next, the second factor of (13) is considered. When solving the second
factor of (13) Bayes’ theorem is used giving

P (γ|p, ρ1, ..., ρk, ω1, ..., ωk) =
P (ρ1, ..., ρk, ω1, ..., ωk|p, γ)P (γ|p)

P (ρ1, ..., ρk, ω1, ..., ωk|p)
. (16)

The numerator and denominator of (16) will be considered separately before
combining them to give a solution to (16). We know that P (γ|p) = 1

6
, because

we do not have any information of what throws have been made. We need to
consider the first factor of the numerator in (16). The law of total probability
is used to condition on Z

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ)

=
4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)

= P (Z = z|p, γ)
4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z),

(17)
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here P (Z = z|p, γ) is a constant and can be moved out of the summation.
The expression in the summation is equal to (15), so this probability we know
how to find. Further, we have the denominator of (16), and to solve this we
must use the law of total probability twice to condition on both Z and γ

P (ρ1, ..., ρk, ω1, ..., ωk|p)

=
6∑

γ=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ)P (γ|p)

= P (γ|p)
6∑

γ=1

4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)

= P (γ|p)P (Z = z|p, γ)
6∑

γ=1

4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z).

(18)

Here the same logic as above is applied, where the constants P (γ|p) and
P (Z = z|p, γ) are set outside of the summation. Inserting (17) and (18) into
(16), we see that the factors P (γ|p) and P (Z = z|p, γ) cancel, resulting in
the following expression for the second factor of the sum in (13)

P (γ|p, ρ1, ..., ρk, ω1, ..., ωk)

=

∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)∑6

γ=1

∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)

.
(19)

Now we have the necessary equations to find the probability in (13) which
is equal to the first factor of (12), the remaining problem is solving the second
factor of (12). This is done similarly to how we found (19) using both Bayes’
theorem and the law of total probability. Again we start by using Bayes’
theorem, and then the numerator and denominator are found separately.
Bayes’ theorem applied to the second factor of (12) gives

f(p|ρ1, ..., ρk, ω1, ..., ωk) =
f(ρ1, ..., ρk, ω1, ..., ωk|p)f(p)

f(ρ1, ..., ρk, ω1, ..., ωk)
(20)

Because we are considering discrete values of p, the first factor of the numer-
ator of (20) is f(ρ1, ..., ρk, ω1, ..., ωk|p) = P (ρ1, ..., ρk, ω1, ..., ωk|p), for a given
p. This is equal to (18), so this we know how to find. Since p is uniformly
distributed we know that f(p) = 6

5
, which is just a constant. So we need
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to consider the denominator of (20), which is solved using the law of total
probability to condition on p, γ and Z,

f(ρ1, ..., ρk, ω1, ..., ωk)

≈
∑
p

P (ρ1, ..., ρk, ω1, ..., ωk|p)f(p)∆p

= f(p)∆p
∑
p

6∑
γ=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ)P (γ|p)

= f(p)∆pP (γ|p)

·
∑
p

6∑
γ=1

4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)P (Z = z|p, γ)

= f(p)∆pP (γ|p)P (Z = z|p, γ)

·
∑
p

6∑
γ=1

4∑
z=1

P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z).

(21)

Inserting (18) and (21) into (20) we get

f(p|ρ1, ..., ρk, ω1, ..., ωk)

=

∑6
γ=1

∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)

∆p
∑

p

∑6
γ=1

∑4
z=1 P (ρ1, ..., ρk, ω1, ..., ωk|p, γ, Z = z)

,
(22)

where the probability in both the numerator and denominator is found using
(15). The second factor of (12) is solved using (22), thus we have all necessary
equations for solving (12) which is equal to the four probabilities of each die
being the true loaded die in (11). It is now possible to find the reward of
stopping to throw the fourth die Rs given by (8).

The probability of throwing γ

The second probability expression we need to derive is the probability of
throwing γ, P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk), which is included in (10).
As mentioned earlier, (10) also includes the probability of not throwing γ,
and the two probabilities must sum to one. So by finding the probability of
throwing γ we have all we need since

P (ωk+1 6= γ|ρ1, ..., ρk+1, ω1, ..., ωk) = 1− P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk).
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When deriving a model for solving P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk) we
use the law of total probability to condition on p, γ and Z. When p, γ and
Z are known, the probability of throwing γ can be found. Then we know if
the next throw is on the loaded die Z or not, and we know the probability
of the die showing γ. Meaning that the probability of throwing γ is 1

6
if we

throw a fair die, and the probability is p if we are throwing the loaded die.
Conditioning on p, γ and Z gives

P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk)

≈
∑
p

P (ωk+1 = γ|p, ρ1, ..., ρk+1, ω1, ..., ωk)

· f(p|ρ1, ..., ρk+1, ω1, ..., ωk)∆p

=
∑
p

6∑
γ=1

P (ωk+1 = γ|p, γ, ρ1, ..., ρk+1, ω1, ..., ωk)

· P (γ|p, ρ1, ..., ρk+1, ω1, ..., ωk)f(p|ρ1, ..., ρk+1, ω1, ..., ωk)∆p

=
∑
p

6∑
γ=1

4∑
z=1

P (ωk+1 = γ|p, γ, Z = z, ρ1, ..., ρk+1, ω1, ..., ωk)

· P (Z = z|p, γ, ρ1, ..., ρk+1, ω1, ..., ωk)

· P (γ|p, ρ1, ..., ρk+1, , ω1, ..., ωk)f(p|ρ1, ..., ρk+1, ω1, ..., ωk)∆p.

(23)

Observing that the second, third and fourth factors in the equation above are
equal to (14), (19) and (22) respectively, so the only equation left to consider
in order to solve (23) is the first factor. The first factor P (ωk+1 = γ|p, γ, Z =
z, ρ1, ..., ρk+1, ω1, ..., ωk), is the probability that the next throw, ωk+1, is on
the loaded side γ. Additionally, the probability is now conditioning on that
we know the true loaded die Z, the loaded side γ, the probability p, and
we know what die we are throwing ρk+1. This means that we have all the
information needed to find P (ωk+1 = γ|p, ρ1, ..., ρk+1, ω1, ..., ωk). We do not
need to consider the previous throws, because each throw is independent of
previous throws. When we know p, γ, and Z, there is no more information
to get from the previous throws made. Hence, the first factor can be written
as follows

P (ωk+1 = γ|p, γ, Z = z, ρ1, ..., ρk+1, ω1, ..., ωk)

= P (ρk+1, ωk+1|p, γ, Z = z),
(24)
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and with the notation given in this equation we can use (15) to evaluate the
necessary probabilities.

The expected rewards

Now that we have expressions for the probabilities used to express the rewards
Rs and Rc from (8) and (10) respectively, we can consider the expectations
of the conditional rewards. These will later be used in the stochastic model.
As before we start with considering E[Rs|ρ1, ..., ρk, ω1, ..., ωk]. We take the
expectation on both sides of equation (8) and get

E[Rs|ρ1, ..., ρk, ω1, ..., ωk]

=

{
E[maxz∈{1,2,3,4} P (Z = z|ρ1, ..., ρk, ω1, ..., ωk)] for ρk = 4

E[Rc|ρ1, ..., ρk+1 = ρk + 1, ω1, ..., ωk] for ρk = {1, 2, 3}.

=

{
maxz∈{1,2,3,4} P (Z = z|ρ1, ..., ρk, ω1, ..., ωk) for ρk = 4

E[Rc|ρ1, ..., ρk+1 = ρk + 1, ω1, ..., ωk] for ρk = {1, 2, 3}.

(25)

Observing that in the above equation maxz={1,...,4} P (Z = z|ρ1, ..., ρk =
4, ω1, ..., ωk) is just a number which we know how to find. The expecta-
tion is then simply equal to this value. We will consider the expected reward
when continuing to throw the fourth die. So the second part of the above
equation for ρk+1 = {1, 2, 3} will be evaluated afterwards.

Since the expressions for the rewards are recursions, we must define a
limit of maximum number of throws. If no limit exists we could in theory
continue to throw infinitely many times. A recursion requires that you have
an end point, so we must limit the maximum number of throws. We first
consider the expectation of the rewards by continuing to throw the fourth
die, and we must limit the number of throws that we are allowed to make in
order to find the expectation. Let n4 denote the maximum number of throws
allowed to make on die 4, and we have already made k = n4 − 1 throws on
the die, so we are only allowed one more throw. Considering the expected
reward by continuing to throw, we take the expectation on both sides of (10)
and move the constants outside of the expectation,
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E[Rc|ρ1, ..., ρk+1 = 4, ω1, ..., ωk]

= E[−α + P (ωk+1 = γ|ρ1, ..., ρk+1 = 4, ω1, ..., ωk)φ
1

+ P (ωk+1 6= γ|ρ1, ..., ρk+1 = 4, ω1, ..., ωk)φ
0]

= −α + P (ωk+1 = γ|ρ1, ..., ρk+1 = 4, ω1, ..., ωk)E[φ1]

+ P (ωk+1 6= γ|ρ1, ..., ρk+1 = 4, ω1, ..., ωk)E[φ0].

(26)

We are left with the two expectations E[φ1] and E[φ0]. The two equa-
tions φ1 and φ0 include the reward when continuing to throw the current
die again. However, in our example this would be the reward for throw num-
ber k + 2 = n4 + 1, which is above our set limit. Thus, we do not consider
E[Rc|ρ1, ..., ρn4+1, ω1, ..., ωn4 ] in this situation when finding the expectation
of φ1 and φ0. Taking the expectation on both sides of (9), we have in this
situation

E[φ1] = E[Rs|ρ1, ..., ρn4 = 4, ω1, ..., ωn4 = γ]

E[φ0] = E[Rs|ρ1, ..., ρn4 = 4, ω1, ..., ωn4 6= γ]
(27)

which are found using (25). This is the initial situation for the recursion
where we have reached our maximum limit for the number of throws we allow
to make on the fourth die. Next, the situation where we have made less than
n4− 1 throws on the fourth die, and situations where we are considering the
three first dies will be considered.

When we are throwing the fourth die, and we have made fewer than n4−1
throws, k < n4−1, the expected reward by stopping is unchanged. However,
the expected reward of continuing has to include all possible combinations
of future throws up to throw n4. Since we have not reached our maximum
limit of throws on the fourth die, the expectations of φ1 and φ0 include both
rewards. Only the method for finding E[φ1] will be discussed, as the only
difference between E[φ1] and E[φ0] is if the next throw is γ or not. So by
finding a way of solving E[φ1] we can easily adapt this method to find E[φ0].
Again, taking the expectation on both sides of (9), we get

E[φ1] = E[max{Rs(ρ1, ..., ρk+1 = 4, ω1, ..., ωk+1 = γ),

Rc(ρ1, ..., ρk+2 = 4, ω1, ..., ωk+1 = γ)}]
= max{E[Rs|ρ1, ..., ρk+1 = 4, ω1, ..., ωk+1 = γ],

E[Rc|ρ1, ..., ρk+2 = 4, ω1, ..., ωk+1 = γ]}.

(28)
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If k + 2 = n4 we are at the end of the recursion and E[Rc|ρ1, ..., ρk+2 =
4, ω1, ..., ωk+1 = γ] is found using (26) and (27). However, if k + 2 < n4

we have to repeat the procedure by considering (26) for E[Rc|ρ1, ..., ρk+2 =
4, ω1, ..., ωk+1 = γ], until the next throw is n4.

The expectation of the conditional rewards have been considered for the
fourth die, next we look at the general expression for the expected rewards
where we do not specify which die is considered. We have that the general
expression for the expected reward of continuing is given by

E[Rc|ρ1, ..., ρk+1, ω1, ..., ωk]

= E[−α + P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk)φ
1

+ P (ωk+1 6= γ|ρ1, ..., ρk+1, ω1, ..., ωk)φ
0]

= −α + P (ωk+1 = γ|ρ1, ..., ρk+1, ω1, ..., ωk)E[φ1]

+ P (ωk+1 6= γ|ρ1, ..., ρk+1, ω1, ..., ωk)E[φ0],

(29)

For ρk+1 = 4 this is equal to (26). However, when ρk+1 = {1, 2, 3} we must
define a limit for how many throws we are allowed to make on each die n1,
n2, and n3 for die 1, 2, and 3 respectively. If we have made fewer throws on
a die than the maximum number of throws that are allowed, we have that
the expectations of φ1 and φ0 include both rewards of stopping to throw the
current die, and to continue to throw the current die. Again we only consider
E[φ1] which for any die has the general equation

E[φ1] = E[max{Rs(ρ1, ..., ρk+1, ω1, ..., ωk+1 = γ),

Rc(ρ1, ..., ρk+2, ω1, ..., ωk+1 = γ)}]
= max{E[Rs|ρ1, ..., ρk+1, ω1, ..., ωk+1 = γ],

E[Rc|ρ1, ..., ρk+2, ω1, ..., ωk+1 = γ]}.

(30)

When considering the last throw allowed on a die so k+ 1 = {n1, n2, n3}, the
equations E[φ1] and E[φ0] only consider the reward of stopping to throw. As
long as we have made fewer throws on a die than what is allowed we use (29)
until we reach the limit of maximum throws allowed.

We have to set four limits n1, n2, n3, and n4 when finding the expectations
of the conditional rewards for die 1 in our setup. Because we only consider
future throws, when considering the second die, we need three limits n2, n3

and n4, and the same argument holds for the third and fourth die. However,
the limits n1, n2, n3 and n4 does not need to be the same when considering
the expected rewards for each die. For computational purposes the limit on
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the die considered will be set higher than the limit on the dice that have
not yet been thrown. Meaning that when considering the expected rewards
when throwing die 1, we set n1 > n2, n3, n4. When moving on to consider
the expected rewards for die number 2, we set n2 > n3, n4, and so on.

4.3 Stochastic model

The probability model describing how to find the rewards when stopping and
continuing to throw a die in the dice task, was defined in Section 4.2. In our
stochastic model this will be used to express the covariate xi for each decision,
yi, for a participant. Firstly, we define the particular stochastic model which
will be used. Afterwards, we will estimate α̂ for each participant using MLE,
but in order to do so we will fit the model, for different values of α. The setup
for the stochastic model for different values of α will be explained through an
example where we will focus on what data is used to fit each model. Lastly,
the implementation for finding MLE of α is given, and we describe what
programs were used to implement the entire model for finding probabilities
and fitting the stochastic model.

In our stochastic model we only have one covariate xi(α) defined by (5).
Further, this means that the logit model from (3) has two additional param-
eters, the intercept, β0, and β1. After having tested and fitted some of the
data, we discovered that the intercept, β0, was never significantly different
from zero. In addition, setting the intercept to zero caused a lower variance
for β1, hence we prefer to use the logit model with the intercept β0 = 0. The
stochastic model which will be used to fit the data for a given value of α is
then given by

P (yi = 1|α) =
eβxi(α)

1 + eβxi(α)
. (31)

Additionally, we assume that all choices are independent. Consequently,
we only consider the probability that the next decision is to throw the current
die again, without including past or future choices.

Parameter estimation

When considering parameter estimates for α and β, both are estimated using
maximum likelihood estimation, MLE. With the aim of estimating the two
parameters we need to fit the stochastic model using different values of α.
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Table 1: An example of decisions made in the dice task. Ten decisions are
made, and for each decision we have n covariates with different values of α.

i yi xi(α1) xi(α2) ... xi(αn)
1 1 x1(α1) x1(α2) ... x1(αn)
2 0 x2(α1) x2(α2) ... x2(αn)
3 1 x3(α1) x3(α2) ... x3(αn)
4 0 x4(α1) x4(α2) ... x4(αn)
5 1 x5(α1) x5(α2) ... x5(αn)
6 1 x6(α1) x6(α2) ... x6(αn)
7 0 x7(α1) x7(α2) ... x7(αn)
8 1 x8(α1) x8(α2) ... x8(αn)
9 1 x9(α1) x9(α2) ... x9(αn)
10 0 x10(α1) x10(α2) ... x10(αn)

The setup for which variables we will use to fit the model will be explained
through an example which shows how the stochastic models for different α-
values are fitted to one example participant. Afterwards, we will proceed to
estimate α using profile likelihood.

The setup of the stochastic model involves the participants decisions
which are the response yi, and the covariate xi(α). Since α is unknown,
we will fit n models for each participant with n different values of α. The
setup of the stochastic model is visualized in Table 1, for an example of
choices, yi. In Table 1 ten decisions have been made, so the response vector
yi is of length 10. Since you must roll each die at least one time, the first
throw is not considered as a decision. After the first throw has been made,
we can find n covariates, x1(α1), ..., x1(αn). The second choice made in the
example was to throw the first die again y1 = 1. After this throw has been
made, we can calculate n new covariates, x2(α1), ..., x2(αn).

This example of a combination of decisions corresponds to Figure 5.
Where we see that die 1 and 2 are thrown two times, and die 3 and 4 are
thrown three times. What number of eyes the dice in Figure 5 show is from
the first round of the dice task. So if you perform the dice task, the first
round will show the same as Figure 5 for the same number of throws on each
die.

When fitting a GLM to this example we first calculate all the different
values of the covariate xi(α), such that all components of Table 1 are known.
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1 2 3 4

Figure 5: A possible combination of throws belonging to the decisions made
in Table 1. Here we have first thrown a five on die one, and then a six, before
moving on to die two which showed two threes and so on.

After that, we fit n models to the response yi, such that a model consists of
the response column with the values yi and a column for the covariate xi(α)
for one α-value. When all n models are fitted, we can find the likelihood
such that the parameters β and α can be estimated for each participant.

The MLE of β is returned from an R-function, and α is found using profile
likelihood. Thus, we will focus on finding the MLE of α since this requires
construction and implementation of the likelihood function.

In order to maximize the likelihood with respect to α we use the profile
likelihood where we have

L(α) = max
β

L(α, β; y). (32)

Information about the profile likelihood was found using Sprott (2000). Thus,
we can use the β-estimate from R, and then consider which value of α that
maximizes the likelihood. The log likelihood of our random variable y is
found using (4). In the following, we first set up the expression for the log
likelihood, and then consider the probability P (yi|α, β) included in (4), before
deriving the method for finding the log likelihood and thus the estimate for
α.

In the expression for the log likelihood we have the probability P (yi|α, β),
and it is either P (yi = 1|α, β) or P (yi = 0|α, β). When summing over all yi
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decisions for this one participant, the log likelihood expression is

l(α) =
n∑
i=1

lnP (yi|α, β)

=
n∑
i=1

ln

(
P (yi = 1|α, β)yi(P (yi = 0|α, β))1−yi

)
=

n∑
i=1

yi lnP (yi = 1|α, β) + (yi − 1) ln(1− P (yi = 1|α, β)).

(33)

Replacing the probability P (yi = 1|α, β) in (33) with the expression for the
probability from (31), we obtain an expression for the log likelihood,

l(α) =
n∑
i=1

yi ln
eβxi(α)

1 + eβxi(α)
+ (1− yi) ln

(
1− eβxi(α)

1 + eβxi(α)

)
=

n∑
i=1

yi ln
eβxi(α)

1 + eβxi(α)
+ (1− yi) ln

1

1 + eβxi(α)

=
n∑
i=1

yi(βxi(α)− ln(1 + eβxi(α))) + (1− yi)(− ln(1 + eβxi(α)))

=
n∑
i=1

yiβxi(α)− ln(1 + eβxi(α)).

(34)

Now that we have an expression for the log likelihood, we can find the α-value
which maximizes our (34). The implementation of the method for finding
this α-estimate will be presented.

Algorithm for estimating α

The stochastic model will be fitted to each participant for different α-values.
Each of these models will have a MLE of β̂ such that we have an expression for
the profile likelihood, for each α as given in (34). We want to find the α-value
which maximizes (34), and thus we have the α-estimate for one participant.
Additionally, we assume that α only has one maximum.

The algorithm used to estimate α̂ considers n values of α evenly dis-
tributed on an interval, and for each α-value we calculate the log likelihood
from (34). The MLE α̂, was set to the value of α which maximized (34).
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The algorithm used to estimate α̂ is given in Algorithm 1, where we use a
for-loop to fit a GLM which returns an estimate for β̂. This β-estimate is
used to calculate (34) for each α, and store this value in a vector. The MLE
α̂, is found by considering the largest value in the vector of log likelihoods,
and return the corresponding α̂. A detailed description on how the intervals
were chosen is given in Section 5.2.

Algorithm 1 Implementation for estimating α for one participant.

loglikelihood = [ ]
for i in 1 to n do

Use yi and xi(αi) to fit a GLM, which returns β̂i.
Calculate l(αi) using (34) and β̂i, and add it to the loglikelihood vector.

end for
Which index k in the loglikelihood vector has the largets value l(αk)
return αk

Implementation of the probability and stochastic model

For implementation of the probabilistic model for finding expected rewards,
the model was first implemented using R. As we have a recursion, the possible
combinations of future throws increases rapidly so, the code for calculating
the expected rewards should be efficient. The implementation in R was not
very fast, so instead the model was implemented in Python using the package
“Numba”. This packages allows you to write Python code, and it translates
the code into fast machine code which approaches the runtime of traditional
compiled languages such as C or FORTRAN (Lam et al. 2015). The Python
code created files with all xi(α) for all participants.

The stochastic model was fitted using the programing language R. The
files containing the response and covariates for all participants were read and
used to fit the GLMs. When fitting a GLM, the R-function returns the MLE
β̂. The built in function ”glm” in R was used. It calls the “glm.fit”-function
which uses iteratively reweighed least squares (R Core Team 2022). Given a
response vector yi and a covariate vector xi(α), the glm-function returns the
estimate for β̂.

The algorithm described in Algorithm 1 was implemented in R, and used
to estimate α̂.
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5 Results

With the aim of fitting a stochastic model to the data we need to decide the
maximum number of throws allowed on each die n1, n2, n3 and n4, and the
number of steps, s, to consider on the interval for the probability p. The
choices of algorithmic parameters, and the reasons for choosing them will be
given. Next, we will define the approach for deciding on α-values to consider
such that we can estimate α̂ for all participants of the dice task. Finally, we
will analyze the data from the two groups who have performed the dice task
by comparing the estimated α-and β-estimates for each participant. We will
consider if there are any differences between the estimates and the group the
participants belong to.

5.1 Variable choices

When finding all the different values of xi(α), needed to fit stochastic models,
we need to define several algorithmic parameters. Which are the number of
throws we are allowed to make on each die, and how many values, s, of the
probability p we will consider.

When finding xi(α) when considering die 1, we have a maximum number
of throws allowed on the first, second, third and fourth die. When finding
xi(α) when considering die 2, we have a maximum number of throws allowed
on the second, third and fourth die, and so on. However, it requires a lot
of computational time if the maximum number of throws allowed are set
high. Therefore, when considering xi(α) for throws on the first die, we can
allow more throws on die 1 than on the following dice. Afterwards, when
considering the second die, we set the limit n2 higher than n3 and n4. The
actual values that were used in the analysis of the data are listed in Table 2.
How these were determined will be explained by comparing the log likelihood
for different values of α, found using (34). For testing we will use data from
the dice task from one healthy participant. We choose an interval for α where
we know that the log likelihood has its maximum for this participant. Within
this framework we can change the algorithmic parameters n1, n2, n3, n4 and
s, to see how they effect the log likelihood.

For a set of defined values like the ones in Table 2, we can fit models for
different values of α as described in Section 4.3. For each model we fit, we
estimate α̂ using (34), and the log likelihood can be plotted as a function of
the α-values. First we evaluate the n1, n2, n3 and n4. Second, we evaluate
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Table 2: Variables used when calculating xi(α) for each decision made by
each participants of the dice task. When calculating xi(α) for decisions made
when throwing die 1, we used the variables on the top row. When calculating
xi(α) for decisions made when throwing die 2, we used the variables on the
second top row.

Considered die n1 n2 n3 n4 s
die 1 31 5 2 2 15
die 2 - 20 2 2 15
die 3 - - 20 2 15
die 4 - - - 20 15

Table 3: Variables tested for calculating xi(α) for each decision made by each
participants of the dice task. When calculating xi(α) for decisions made when
throwing die 1, we used the variables on the top row. When calculating xi(α)
for decisions made when throwing die 2, we used the variables on the second
top row.

Considered die n1 n2 n3 n4 s
die 1 10 1 1 1 15
die 2 - 10 1 1 15
die 3 - - 10 1 15
die 4 - - - 10 15

the number of steps, s, we consider on the interval for p.
We fit two models both using ten steps of values for α evenly distributed

on the interval α ∈ [0, 0.01]. One model uses data from Table 2 and the other
has lower limits for the maximum number of throws allowed, stated in Table
3. In Figure 6, we see the log likelihood as a function of α for models using
values of n1, n2, n3, n4 and s given in Tables 2 and 3. Observing that the
difference in the log likelihood calculated using variables from Table 3 and
Table 2 is almost 0.2. Using data from Table 2 requires more computational
time, and increasing the values further would be too time consuming. Thus,
we do not consider higher values for n1, n2, n3 and n4, and we decide to use
the values for n1, n2, n3 and n4 as given in Table 2.

We use the same values for n1, n2, n3 and n4, and double the number of
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Figure 6: Plot of the log likelihood as a function of α for one participant,
using ten values of α on the interval α ∈ [0, 0.01]. The red plot is found using
variables from Table 2, and the blue plot is found using variables from from
Table 3. The difference is that Table 3 has a lower limit for n1, n2, n3 and
n4 compared to Table 2.
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Table 4: Variables tested for calculating xi(α) for each decision made by each
participants of the dice task. When calculating xi(α) for decisions made when
throwing die 1, we used the variables on the top row. When calculating xi(α)
for decisions made when throwing die 2, we used the variables on the second
top row.

Considered die n1 n2 n3 n4 s
die 1 31 5 2 2 30
die 2 - 20 2 2 30
die 3 - - 20 2 30
die 4 - - - 20 30

values we consider on the interval for p, s = 30, to see what effect that has on
the log likelihood. The variables that will be considered are given in Table
4. Using the variables in Tables 2 and 4 we can make the same type of plot
as in Figure 6 to investigate the choice of s. The plot of the log likelihood is
displayed in Figure 7. In Figure 7 we see that both plots have the same shape
and the difference between the log likelihood using variables from Tables 2
and 4 is 0.01. By considering half as many values of s which is the difference
between the variables in Table 2 and 4, we halved the computational time.
Meaning that using Table 2 runs on half the time compared to using Table
4. Inspecting the plots in Figure 7, the difference between the two choices of
s is not unreasonably large considering the time saved by choosing a lower
resolution for p, hence s was set to 15 for analysis of the data.

By comparing the differences in the log likelihood in Figures 6 and 7, it
seems that having higher values for n1, n2, n3 and n4 have a bigger effect
on the log likelihood than a higher value of s. Hence the variables given in
Table 2 were chosen for the analysis of all the participants.

The maximum number of throws for die 1 was set higher than for the three
other dice. Because of the design of the dice task is such that no matter which
color die you choose in what order, the first die will always show the same
sequence, the second die you chose will show the same sequence and so on.
Therefore all xi(α) are the same for all decisions made while throwing the
first die. To save time when calculating xi(α), we first find all values of xi(α)
for 31 throws on the first die, and store them in a file. When finding all
xi(α) for each participant, we can read xi(α) when considering die 1, from
the file. This can not be done as easily for the second, third and fourth die,
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Figure 7: Plot of the log likelihood as a function of α for one participant,
using ten values of α on the interval α ∈ [0, 0.01]. The red plot is found using
variables from Table 2, where s = 15. The blue plot is found using variables
from from Table 4, where s = 30.
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because the xi(α) is dependent on the history of throws made. The history
of throws made varies from participant to participant, because they do not
make the same number of throws on each die. Hence, we can afford to set the
algorithmic parameter values higher when calculating xi(α) when considering
die 1, since this only has to be done once for an interval of α-values. Due
to time limitations the maximum number of throws were set lower when
considering the three other dice. After having the file with xi(α) for die 1,
the runtime for calculating all xi(α) for all choices made by one participant
for one value of α using data from Table 2 was around 1 minute.

The algorithmic parameters n1, n2, n3 and n4 are defined as the maximum
number of throws allowed. Meaning that if n1 = 20, and you have made one
throw on die 1, you have 19 possible throws left. If you make a second throw,
you now have 18 possible more throws. As a consequence of the choices of
maximum number of throws, the participants who have made more throws
than our limit are excluded from the evaluation. Even though more throws
are allowed on the first die, we make it even by excluding all participants
who have made 20 throws or more on at least one die. The limit of maximum
throws allowed must be one larger than the throws made by the participants.
If we allow 20 throws when our limit is 20, we would calculate x20(α) which
would only allow us to stop, so this would not be correctly reflecting the
situation the participant is in, because they do not have to stop at any limit.
Excluding all participants who have made 20 throws or more on at least one
die, means that we are left with 185 healthy controls and 36 patients. Where
we have excluded 22 healthy participants and 2 patients.

5.2 Intervals considered for α

The cost parameter α is different for each participant, and we want to esti-
mate α for each participant in order to see if there is a connection between
the estimated values and the group the participant belongs to. Up until now,
α has been treated as a parameter which our model is dependent on. The
goal is to find the α-value which maximizes the log likelihood from (34). In
order to fit the stochastic model, we need to insert values for α. Thus, we
need to decide what values of α we will consider, such that the log likelihood
has its maximum. The method for deciding which α-intervals to consider
when fitting the models, is presented.

Firstly, some testing was performed for a few participants to identify for
which α-values the log likelihood had its maximum. The same type of plots
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0 0.0011 0.0022 0.0033 0.0044 0.0056 0.0067 0.0078 0.0089 0.01

Figure 8: The interval for α first considered to sort participants by their
α-value. The steps are rounded off, so the actual α-values used in the calcu-
lations were more precise.

as shown in Figures 6 and 7 were used for testing different intervals of α-
values. The result from the testing was that many of the participants had
their maximum on the interval α ∈ [0, 0.01].

Thus, the interval α ∈ [0, 0.01] is selected, and we consider ten evenly
spaced points on this interval as shown in Figure 8. We find that 79 healthy,
and 12 schizophrenic participants have their maximum value of the log like-
lihood in one of the α-values given in Figure 8, that were not on the edges,
0 or 0.01. We found that, 98 healthy, and 22 schizophrenic participants had
their maximum of the log likelihood at zero, meaning that the true values lies
between 0 and the first point 0.0011. Lastly, 8 healthy and 2 schizophrenic
participants had their maximum at α = 0.01, meaning that the true maxi-
mum most likely lies above 0.01.

In order to get more precise values for α̂, the participants were sorted
according to what interval of α they had their maximum log likelihood on.
The calculations of xi(α) were run again for new intervals with ten values
of α evenly distributed. For example if a participant had its maximum log
likelihood for α = 0.0022 the calculations of xi(α) were run again for α ∈
[0.0011, 0.0033]. This was done for all participants who had their maximum
log likelihood for α > 0 and α < 0.01.

For the 98 and 22 participants who had their maximum log likelihood for
α = 0, the new interval for α was set to α ∈ [0, 0.0011] with ten point evenly
distributed on the interval. The maximum log likelihood was then evaluated
for each participant, and for the participants who had their maximum for
α ∈ [0.00011, 0.0011], no further precision of α̂ was done. For participants
who still had their maximum for α = 0, we again considered a new interval
α ∈ [0, 0.00011] with ten point. This scheme was done down to the interval
α ∈ [0, 1.1 · 10−6], meaning that the participants having α-values α ∈ [0, 1.1 ·
10−7] were not considered for smaller intervals of α. The participants who
had α-values smaller than 1.1 ·10−7 were defined to have α = 1.1 ·10−7. This
applies to 87 healthy and 20 schizophrenic participants.
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Figure 9: To the left we have the histogram of the estimates for β̂, and to
the right we have the probability histogram for β̂ for all 185 healthy controls,
and 36 patients considered. The two groups in both plots overlay.

Lastly, the 8 participants who had α-values above 0.01, were considered
for ten values on the interval α ∈ [0.01, 0.1].

5.3 Analyzing α̂ and β̂

After all the data has been considered, we have maximum likelihood estimates
for both α̂ and β̂ for all participants. These estimates will be presented
by considering histograms for both parameters, probability histograms, and
scatterplots of β̂ and ln(α̂). The focus while evaluating the plots of the
estimates is to consider whether it is possible to see any differences between
the two groups. The values of the estimates will we discussed, and compared
to how many throws the participants made.

The histogram of the β-estimates are plotted in Figure 9, together with
the probability histogram of the β-estimates. Here, from the histogram to
the left, we see that the count for the healthy participants are higher, but
this is due to our data which considered a total of 185 healthy controls, and
36 patients. By considering the probability histogram, we adjust for the
difference in the sample size. From the probability histogram we see that
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Figure 10: To the left we have the histogram of the estimates for ln(α̂), and
to the right we have the probability histogram of ln(α̂) for all 185 healthy
controls, and 36 patients considered. The two groups in both plots overlay.

the shapes of the histograms are similar for the two groups. The proba-
bility histogram shows a higher spike for β-estimates close to zero for the
schizophrenic participants.This is however not entirely unexpected from the
normalization. When normalizing the results of a scarcer data-set, it is likely
to observe more amplified peaks and steeper curves. It is therefore difficult
to determine whether this spike would be higher had we considered a larger
sample of patients. Both the histograms have the same shape, and there are
not any obvious difference to be observed between the two groups.

When considering the estimates α̂, we have that most of the values lie
close to zero. Therefore, we consider the log-transformed estimates such
that is is easier to distinguish the different α-estimates. In Figure 10 the log-
transformed histogram of α̂ is plotted together with the probability histogram
of the log-transformed α-estimates. There is a high count to the left end of
the histogram. This is due to the 87 healthy participants, and 20 patients
who have their MLE α̂ between 0 and 1.1 · 10−7, and thus their α-estimate
was set to 1.1 ·10−7. The other estimates we see lie mostly around e−6, where
we see that both groups have higher counts. The estimates for the healthy
controls spread out more than the estimates for the patients, but this is
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Figure 11: Scatterplot of the estimated β-values and the log-transformed
estimated α-values, ln(α̂), for all 185 healthy controls, and 36 patients con-
sidered. The plotted points overlay, so a stronger color indicates that several
points have the same value.

likely due to the higher number of participants considered for the healthy
controls. From considering the probability histogram, we see that the plots
have the same shape for both groups. If we exclude the α-estimates that
were set to 1.1 · 10−7, we see that both groups are most likely to have their
α-estimates around e−6. From evaluating the histograms in Figure 10 there
are no obvious differences that separate the two groups.

Both the estimated values α̂, and β̂ are considered in the scatterplot
in Figure 11. Here we also consider the log-transformed α-estimates such
that it is easier to separate the estimated values. Again we see that many
participants have α-estimates at α̂ = e−16, which is expected as we saw this
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Table 5: Average number of throws made in the first round of the dice
task for different categories of α and β-estimates. The average number of
throws for healthy participants are given without parenthesis, and the average
number of throws for schizophrenic participants are given in parenthesis.

β̂ < 150 β̂ > 150
ln(α̂) < −16 22,7 (20,6) 65,4 (-)

−16 < ln(α̂) < −8 27,3 (44,0) -
−8 < ln(α̂) < −4 29,2 (26,9) 43,5 (39,0)
−4 < ln(α̂) 7,5 (7,0) -

in the histogram, and probability histogram in Figure 10. Along the left edge
we see that the healthy controls have β-estimates that spread out more and
are higher than for the patients. However, we can not determine if this is
happening because more healthy participants are considered, and therefore
we observe a larger variation in the estimated values. The estimates that
have α̂ > e−16, follow the same trend for both groups. Both groups have a
larger variation in β-estimates for α-estimates, e−8 < α̂ < e−4. We see that
the β and α-estimates for the healthy participants spread out more than for
the patients. This might be because of the fewer participants considered for
the patient group. Overall it is not possible to see any differences between
the two groups of participants from the plot in Figure 11.

We can compare the estimated parameters to the average number of
throws made by each participant. If we consider the scatterplot in Figure 10
a possible categorization could be to consider two categories of β-estimates
and four categories of α-estimates. We consider β-estimates above and be-
low 150, and four groups of α-estimates, ln(α̂) < −16, −16 < ln(α̂) < −8,
−8 < ln(α̂) < −4, and −4 < ln(α̂). Combined we have eight categories, but
the two categories with β̂ > 150 and −16 < ln(α̂) < −8, and −4 < ln(α̂)
do not have any participants. The average of the total number of throws
made by participants belonging to each of the six catagories, are presented
in Table 5. We have that the average for the healthy participants are given
first, and the schizophrenic participants are given in parenthesis.

From this we see that the β-estimate seems to have a great influence on
the number of throws made. The participants having β̂ > 150 make around
double the amount of throws as participants with β-estimates under 150.
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This is reasonable if we consider our stochastic model from (31) and rewrite
it as

P (yi = 1) =
1

e−βxi(α) + 1
,

we see that a larger β-estimate increases the probability of throwing the
current die again.

By considering the average number of throws made for the participants
belonging to the four categories for β̂ < 150, we see that the number of
throws made for participants having α-estimates −4 < ln(α̂), are lower than
for the three other categories. If we consider the plot in Figure 10, we see
that these participants also have low β-estimates, which might be the reason
that these participants make fewer throws. The number of throws made by
the schizophrenic participants in the category, −16 < ln(α̂) < −8, are higher
than the number of throws made by both the healthy participants in the same
group, and in the other categories with β̂ < 150. From the plot in Figure 10
we see that this is only one participant, and the β-estimate is closer to 150
than the other β-estimates for participants in the same category. So it is not
unreasonable that this participants high number of throws can be explained
by the β-estimate.

The average number of throws, for the three categories with β̂ < 150
and ln(α̂) < −4, are quite similar, so it does not seem like the α-estimate is
necessarily as connected to the number of throws as the β-estimate. We do
see a slight increase in the number of throws made for higher values of α̂. By
looking at the plot in Figure 10 this might be explained by the β-estimate.
Where we see that the participants with ln(α̂) < −16 and β̂ < 150, have β-
estimates closer to zero compared to the two groups with −8 < ln(α̂) < −4
and β̂ < 150. It is difficult to have a clear interpretation of the α-estimate as
it is involved in the stochastic model in a less explicit way than β̂. However,
it does look like the combination of a high β̂ and low α̂ estimate increases
the number of throws made. The results suggest that if you have a high
β-estimate and a low cost parameter α̂, it is likely that you will make many
throws. However, if you have a larger cost parameter α̂, while maintaining
the same high β̂, this seem to only result in a somewhat reduced expected
number of throws. Consequently, a possible interpretation of the results is
that the β-estimate is the most influential on the probability of throwing the
same die again.
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6 Closing Remarks

A probability model for finding expected rewards for each decision made by
participants in the dice task has been derived, and used to fit GLMs to each
participant. The two parameters in the GLM were estimated using maximum
likelihood estimation. The parameter estimates were plotted as histograms,
probability histograms, and as a scatterplot of the two parameters. From the
plots there was no clear difference between the two groups of participants.
We saw in all the plots that the parameter estimates overlap, and follow the
same trends. From this analysis of the data from the dice task, it is not
possible to distinguish the two groups of participants.

Furthermore, we compared the parameter estimates to the average num-
ber of throws made by each participant. This showed that a higher β-estimate
corresponded to an increased number of observed throws. The α-estimate
does not seem to have as large of an influence on the number of throws made
as the β-estimate, especially when the β-estimate is low. However, a low α-
estimate combined with a high β-estimate seems to result in a high number
of throws, wheres a high α-estimate seems to reduce the number of throws
when maintaining a high β-estimate.

A recursion limit and a resolution for the discretization of p were set
during calculations. These limitations were used when deriving the expecta-
tions of the reward when stopping and continuing to throw Rs, and Rc. The
rewards were then employed to express the covariate xi(α) in the stochas-
tic model. It would be possible to redo the analysis with more precision if
the maximum number of throws allowed on each die were set higher, and to
consider a higher resolution on the interval of p. This might contribute to
different parameter estimates. It would also be interesting to consider more
even limits of the maximum number of throws between the current and suc-
ceeding dice. In this thesis the maximum number of throws was set higher
on the die that was considered than the dice not yet thrown. We might have
obtained a different result if we allowed the same, or nearly the same number
of throws on both the die considered and future dice. Additionally, in this
analysis we have defined the maximum limit such that it does not change
when a new throw is added. Another approach could be to always allow n
more throws independently of how many throws have been made. By doing
that, we would remove the limitation that we can not consider participants
who have made more throws than our limit. This would also mean that you
could reduce the maximum number of throws allowed, and thus reducing the
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computational time. This allows a higher precision for the number of points
to consider on p, and the number of throws allowed on future dice. Based on
the results found in this thesis a higher number for the limits n1, n2, n3, and
n4, seem to be more important than considering a higher resolution for the
interval of p.

The minimum interval of α-values that were considerd, was set to α ∈
[0, 1.1 · 10−6]. There were 87 healthy participants and 20 patients who had
their α-estimate in this interval. It would be possible to apply the same
model as used in this thesis to consider even smaller values of α.

In conclusion, from the analysis done and the results presented in this
thesis, there is no observed difference between the two groups who have
performed the dice task. Thus, we can not conclude that the dice task
shows a difference in the decision making between healthy and schizophrenic
participants.
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