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Abstract

Current methods of realizing stochastic turbulence models rely on the in-
verse Fourier transform. This makes it impossible to generate turbulence
online. As an alternative this project proposes a method which realizes the
Liepmann[8] turbulence model through discrete filters. To do this the target
correlation function array is decomposed using the Cholesky decomposition
and equated to a set of basic filter correlation functions to approximate
it. The resulting filter array can then be excited using independent sources
of Gaussian white noise to generate the target auto-correlation and cross-
correlation.
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1 Introduction

In any industrial engineering application, accurate simulation is essential.
This is especially the case for structures under constant unpredictable load
like wind turbines. This project will focus on the aerodynamic part of this
simulation, in other words the unpredictable turbulence. It is essential that
this simulated turbulence is accurate enough such that the combined simu-
lation is indicative of physical implementation.
Known methods for generating turbulence rely on the frozen turbulence hy-
pothesis[13]. This allows any simulation to be represented as generating a
turbulence box, which is then projected onto the simulated sensors with the
mean wind speed. Previous methods rely on taking the inverse Fourier trans-
form of the spectral tensor[10], which was proposed as a slight improvement
to the power spectral density approach used by TurbSim[16]. This limits
the turbulence box to finite length, as the inverse Fourier transform can not
create infinite samples from a finite sampling of its source spectra[9].
This project proposes a method which generates signals using digitally fil-
tered white noise. This allows the turbulence box to be generated online
with infinite length, this can shorten the necessary memory drastically. In-
stead of having to allocate space for entire turbulence boxes that can reach
incredibly high file sizes. In our proposed scheme we can limit these files to
the filter itself and the continuous turbulence boxes stretching back only as
far as the filter order requires.
The precursor to this project[11] managed to generate turbulence in some
cases. It was often limited by instability caused by the system identification
scheme which was outsourced to a MatLab function [2].
In this project, we refine the approach by designing a dedicated method
of approximating linear discrete systems to target correlation functions. We
will first calculate the correlation functions of common linear filters in section
3. These functions will then be equated to the target correlation functions
found from the Cholesky decomposition for correlated noise 4.This allows us
to then extract the necessary parameters in the original filters to approxi-
mate the target correlation function 5. This filter can then be excited using
Gaussian white noise to generate an array of signals with accurate auto-
correlation and cross-correlation 6.
The main theoretical contributions of this project can be summarized as:

• Noted correlation functions for common discrete filters

• A method for realizing a Cholesky decomposition for correlated noise

• A method of approximating correlation functions to linear systems
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2 Theory

2.1 Stochastic turbulence models

Turbulence is often mentioned as one of the primary examples of chaotic
behaviour. Most of our physical models can predict the future with a good
amount of certainty. This is not the case for general turbulence, especially
wind turbulence. The established method of modelling turbulent behaviour
is solving the Navier-Stokes equations [12]. This method requires extreme
resolution, and subsequently, extreme computational power to simulate.
Consider now a single point placed in the turbulent wind that we measure.
The signal that results from this measurement has statistical traits which are
then noted. Thus instead of modelling the physical interaction as wind shears
and forms vortices, we generate a signal which replicates the statistical traits
we expect. Several stochastic models have been made in an attempt to most

Figure 1: Common stochastic models for intense wind

accurately mimic real turbulence [14]. As can be seen in figure 1 they are
mostly similar, but do have slight differences. We will only be working with
one stochasitc model in this project, not shown above. Because our method
loses some accuracy, the minor differences between stochastic models would
also be lost should we try to distinguish between them.
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2.1.1 Current methods of realization

The existing methods for realizing these models rely on the inverse Fourier-
transform to generate fixed horizon time-series. The specifics of this op-
eration have been noted in a previous related project[11] and shall not be
repeated here. However, for continued consistency, some comparison to the
main method from the previous project, TurbSim[16], will be made.

2.2 Signal generation

The objective of any simulation boils down to the resulting signal, whether
that be the heat of a house or the speed of a car. In our case we need a
method for generating a signal for every simulated point in turbulent wind.

2.2.1 Gaussian white noise

White noise is the source for all turbulence simulation in this project. It
is defined as zero-mean and temporally uncorrelated[15]. This means that
any two samples, regardless of how close they are, will be uncorrelated and
randomly distributed with unit variance. In mathematical terms for white
noise time series x.

E[x(n)x(n− τ)] = 0 ∀ τ ̸= 0 (1)

A white noise discrete signal will have equal power at every frequency, this
trait allows us to shape the signal to the desired correlation using the internal
correlation function of filters alone.

2.2.2 Correlation functions

The wind cannot change infinitely fast. As such any two samples of said
wind will be correlated proportionally to the time between them. Thus any
time series measured by a node placed in turbulence can be represented by
a correlation function[8]. A correlation function is defined as

R(τ) = E[x(n)x(n− τ)] (2)

Which can readily be compared to (1). The center term for any correlation
function, i.e when τ = 0, is the variance of the respective signal. The
correlation function for unit white noise would therefore be a single point of 1
at τ = 0 and zero for every other value. This is where correlated noise differs.
Since two samples are no longer completely uncorrelated the off center values
of the correlation function will be non-zero. Naturally, this correlation will
decay with time. Any delayed correlation can never exceed the center term,
as that term represents the maximum power, or variance for that signal[4].
For the purposes of this project, the correlation will scale with distance. This

4



distance is linked to time as the mean wind speed of said turbulence will
propagate it parallel to its direction. In addition to this temporal direction
we will also have spatial correlation between nodes in a plane. This makes it
such that every node will have its internal correlation function, often dubbed
auto-correlation, and every node will affect every other node scaling with
distance, dubbed cross-correlation.

2.2.3 Difference equations

From previous section we now have our source gaussian white noise, and the
correlation that we wish to shape it to. To shape it we will use the method
of discrete filtering. This method takes a source input, u, and calculates an
output, x, based on said input. Let us take a look at a simple example

xn = 0.5un + 0.5un−1 (3)

In this case the filter output yields a finite impulse response (FIR) which
takes the mean of the last two inputs. For this project we want the output
to be generated recursively in real time. As such it is important that our fil-
ters are all causal[5]. This implies that the output is generated from present
and past input only, as relaying on future input would be impossible for an
online approach.
The easy example of a FIR filter is insufficient in our case, as the neces-
sary sample horizon to cover our desired correlation function would make it
computationally unrealistic. That is where the existence of infinite impulse
response (IIR) filters prove useful.

xn = 0.5un + 0.5xn−1 (4)

In this case the output is a function of the present input and the previous
output. Thus any output sample will correlate proportionally to the sample
difference to past samples. This is exactly the trait we noted present in tur-
bulence in general. The equations above are considered difference equations,
and they each yield defined impulse responses.

2.3 The Z-transform

To represent digital filters in more compact form we introduce the Z-transform.
The Z-transform can be computed from impulse responses, x(n), not to be
confused with the difference equations in last section.

X(z) =

∞∑
n=−∞

x(n)z−n (5)

This definition is not used in this project, as we will refer to the following
table whenever transformation between impulse response and Z-transform
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Impulse Response z-transform
1 pnu(n) 1

1−pz−1

2 (pn cos(ωn))u(n) 1−pz−1 cos(ω)
1−2pz−1 cos(ω)+p2z−1

3 (pn sin(ωn))u(n) pz−1 sin(ω)
1−2pz−1 cos(ω)+p2z−1

is necessary. Only the relevant impulse responses are noted as opposed to
more common, more extensive Z-transform tables [6].

The variable p is what is referred to as the pole in all cases. The pole
represents the roots of the denominator and is the the most essential variable
in a filter for fitting correlation functions. The output can then be generated
as

x(z) = H(z)u(z) (6)

As this operation is the main source of computation in this project it should
be noted that the actual calculation involved is a difference equation. Let us
look at the example

H(z) =
K

1− c1z−1 + c2z−2
(7)

Which by inserting into (6) and cross multiplying gives

x(z)(1− c1z
−1 + c2z

−2) = Ku(z)

x(z) = Ku(z) + x(z)[c1z
−1 − c2z

−2]
(8)

Which we can then transform using the simplified rule that z−k is a sample
delay by k [6].

xn = Kun + c1xn−1 − c2xn−2 (9)

We see that the resulting difference equation generates an output using two
previous outputs. The order of a filter is the same as the largest sample
delay in the difference equation [5]. This is always equal to the largest
ordered term in the denominator of the Z-transform. There are two aspects
to the computational cost of a difference equation, one is the amount of
terms computed which scales with both the numerator and the denominator
order. But the largest impact quickly comes from the memory required for a
machine to recursively simulate the filter, the memory is only dependent on
the order in the denominator. In other words, how many previous outputs
does the filter need to remember to generate the current output. Keeping
this order low is therefore paramount to efficient simulation.
While the analysis in this project is mainly based on correlation functions,
it should be noted that the power spectra of a filter is found as:

S(z) = |H(z)H(z−1)| (10)
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2.3.1 Convolution

In future sections we will extend the table to include the respective corre-
lation functions. This operation relies on taking the impulse response x(n)
and convolving[4] it with its own delayed impulse response x(n − τ). This
operation can be noted as the following

R(τ) =

∞∑
n=−∞

x(n)x(n− τ) (11)

2.4 Sum of geometric series

A geometric series is a series where every subsequent term is equal to the
previous term multiplied by a common ratio p[7].

a+ ap+ ap2 + ap3 . . . apn =

∞∑
n=0

apn (12)

In discrete signal processing, the sum of this series often comes up. The sum
is only defined in the converging case when |p| < 1. To see why this is the
case we derive the expression for the closed form sum, S.

S = a+ ap+ ap2 + ap3 . . . apn

pS = ap+ ap2 + ap3 + ap4 . . . apn + apn+1

S − pS = a− apn+1

(13)

In line three we assign values to the sums and algebraically add them. In our
case these sums come from infinite series and they therefore must converge
to set values for this line to be mathematically proper. If this is the case we
can solve for our sum as:

S(1− p) = a− apn+1

S =
a− apn+1

1− p

(14)

Since our series are infinite we let n go to infinity and find.

∞∑
n=0

apn =
a

1− p
∀ |p| < 1 (15)

We can then extend this equation by letting the common ratio be complex
and we find

pnc = pneinω

pnc = pn (cos(nω) + i sin(nω))
(16)
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Where we have utilized Euler’s formula for complex numbers[3]. By insertion
we then find the very relevant equations.

∞∑
n=0

pn cos(ωn) = ℜ
(

1

1− pc

)
∞∑
n=0

pn sin(ωn) = ℑ
(

1

1− pc

) (17)

We then need only find the real and imaginary components respectively of
the RHS term.

1

1− pc
=

1

1− pe−iω

1

1− p(cos(ω)− i sin(ω))
=

1

1− p cos(ω)− ip sin(ω)

(18)

Following

1

1− p(cos(ω)− i sin(ω))
=

1

1− p cos(ω)− ip sin(ω)

1− p cos(ω) + ip sin(w)

1− p cos(ω) + ip sin(ω)

1− p cos(ω) + ip sin(ω)

1 + (p cos(ω))2 + (p sin(ω))2 − 2p cos(ω)
=

1− p cos(ω) + ip sin(ω)

1− 2p cos(ω) + p2

(19)
Where the complex terms in the final denominator cancel. We can then use
this result to find the final result for the complex case.

∞∑
n=0

pn cos(ωn) =
1− p cos(ω)

1− 2p cos(ω) + p2

∞∑
n=0

pn sin(ωn) =
p sin(ω)

1− 2p cos(ω) + p2

(20)

The constant term a is associative in any case, and can therefore be moved
outside the sum term and the results above will be multiplied by the constant.

2.5 The Cholesky Decomposition

Given a real and positive definite matrix A, the Cholesky decomposition
yields the following:

A = LLT (21)

L is then a lower triangular matrix[1]. The necessary requirement that A is
positive definite will always hold in context of this project, as the elements
in A will be signal variance and covariance.
The Cholesky decomposition is useful for generating covariant noise. Given
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that A is made up of N by N elements of desired covariance, then this can
be simulated as

x = Lu (22)

Where u is an N by 1 uncorrelated white noise signal source. This is the
general approach when every signal is temporally uncorrelated, in a later
section we explore how the cholesky decomposition can be altered to function
for correlated noise.
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3 Filter correlation functions

Any correlation function must be represented by a sum of exponentials since
the goal is to minimize memory. In this section we will deduce the exponen-
tial correlation functions of common discrete filters. These are our baseline
tools in fitting various target correlation function, and as such must be var-
ied enough to cover some base traits, while also not exceeding our limitation
on filter order.

3.1 Base correlation functions

3.1.1 1st order filter

At first let us consider the simplest and computationally cheapest filter.

H1(z) =
K

1− pz−1
(23)

The impulse response can be found from its inverse Z-transform.

h(n) = Z−1[H(z)] = Kpn (24)

We can then use convolution to find the correlation function resulting from
such a filter.

R(k) =

∞∑
n=0

h(n)h(n+ k) (25)

R(k) = K2
∞∑
n=0

pnpn+k (26)

R(k) = K2pk
∞∑
n=0

p2n (27)

Where using the theorem for geometric sums gives us

R(k) =
K2p|k|

1− p2
(28)

And the final |k| results from the correlation function being necessarily sym-
metric. The absolute value operator will be omitted in future results to yield
easier to read equations. This filter gives us a simple peak which decays ex-
ponentially.
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3.1.2 Cosine filter

For the case of a rotating turbulence box, it is necessary to represent oscil-
lation, proportional to the angular velocity w we wish to model. Consider
the following filter:

H(z) = K
1− p cos(ω)z−1

1− 2p cos(ω)z−1 + p2z−2
(29)

Which has the following impulse response.

h(n) = Kpn cos(ωn) (30)

Thus the correlation function is found from

R(k) =

∞∑
n=0

Kpn cos(ωn)Kpn+k cos(ω(n+ k)) (31)

R(k) = K2pk
∞∑
n=0

p2n cos(ωn)[cos(ωk) cos(ωn)− sin(ωk) sin(ωn)] (32)

Where we have applied the following trigonometric identity:

cos(ω(n+ k)) = cos(ωk) cos(ωn)− sin(ωk) sin(ωn) (33)

R(k) = K2pk
∞∑
n=0

p2n[cos(ωk) cos2(ωn)− sin(wk) sin(ωn) cos(ωn)] (34)

Now applying two further trigonometric identities.

cos2(ωn) =
1 + cos(2ωn)

2
(35)

sin(ωn) cos(ωn) =
sin(2ωn)

2
(36)

R(k) =
K2pk

2

[
cos(ωk)

∞∑
n=0

[p2n(1 + cos(2ωn))]− sin(ωk)
∞∑
n=0

[p2n sin(2ωn)]

]
(37)

And we find the correlation function as

R(k) =
K2pk

2
[cos(ωk)A− sin(ωk)B] (38)

Where

A =
1− p2 cos(2ω)

1− 2p2 cos(2ω) + p4
+

1

1− p2
(39)

B =
p2 sin(2ω)

1− 2p2 cos(2ω) + p4
(40)

Where A and B come from the geometric sum for complex numbers (20).
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3.1.3 Sine filter

Consider the following filter:

H(z) = K
p sin(ω)z−1

1− 2p cos(ω)z−1 + p2z−2
(41)

Which gives the following impulse response

h(n) = Kpn sin(ωn) (42)

Through largely the same arguments as for the cosine filter, we find the
following correlation function.

R(k) =
K2pk

2
[cos(ωk)A+ sin(ωk)B] (43)

A =
1

1− p2
− 1− p2 cos(2ω)

1− 2p2 cos(2ω) + p4
(44)

B =
p2 sin(2ω)

1− 2p2 cos(2ω) + p4
(45)

In both cases we can simplify further by noting that the oscillating term
is a linear combination of harmonic waveforms. Thus we can represent the
correlation as.

R(k) =
K2pk

2
[G cos(ωk + ϕ)] (46)

G = sgn(A)
√
A2 +B2

ϕ = tan−1

(
−B

A

) (47)

This goes for the cosine case as well of course. This step is helpful when we
wish to analyze where the resulting extremities would fall.

3.2 Filter combinations

If a signal is generated from two independent sources of correlated noise, then
the resulting correlation function is a direct sum. In our case the signal is
generated from a single source and as such the filter combinations will affect
one another, dubbed crossterms, this limiting factor is explored further in
this subsection.
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3.2.1 Second order filter

This filter does not include every kind of second order filter, but rather the
one which can be represented by two exponential functions added together,
as such our filter can be represented as:

H2(z) =
K1

1− p1z−1
+

K2

1− p2z−1
(48)

Thus the impulse response of this filter will be the sum of two exponentials.

h(n) = K1p
n
1 +K2p

n
2 (49)

And convuluting this impulse response yields

R(k) =
∞∑
n=0

pk1[K
2
1p

2n
1 +K1K2(p1p2)

n] + pk2[K
2
2p

2n
2 +K1K2(p1p2)

n] (50)

And applying the geometric sum theorem gives us.

R(k) = p
|k|
1

(
K2

1

1− p21
+

K1K2

1− p1p2

)
+ p

|k|
2

(
K2

2

1− p22
+

K1K2

1− p1p2

)
(51)

Thus the new form has two exponentials, but the gain associated with each
is dependent on the other, this becomes important as we wish to keep our
filters strictly real.

3.2.2 Cosine and first order

Consider the following filter:

H(z) = Ko
1− p1 cos(ω)z

−1

1− 2p1 cos(ω)z−1 + p21z
−2

+Kd
1

1− p2z−1
(52)

Which gives the following impulse response

h(n) = Kop
n
1 cos(ωn) +Kdp

n
2 (53)

And we can find the autocorrelation as:

R(k) =
∞∑
n=0

(Kop
n
1 cos(ωn) +Kdp

n
2 )(Kop

n+k
1 cos(ω(n+ k)) +Kdp

n+k
2 ) (54)

Which for simplicity we decompose into four seperate terms where:

R1(k) =
K2

op
k
1

2
[cos(ωk)A− sin(ωk)B] (55)

R4(k) =
K2

dp
k
2

1− p22
(56)
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and

R2(k) =

∞∑
n=0

Kop
n
1 cos(ωn)Kdp

n+k
2 (57)

R3(k) =

∞∑
n=0

Kdp
n
2Kop

n+k
1 cos(ω(n+ k)) (58)

R2 is a first order component found through inspection with the pole p2.

R2(k) = KoKdp
k
2C (59)

R3 can be found through similar arguments as R1 with the pole p1.

R3(k) = KoKdp
k
1 [cos(ωk)C − sin(ωk)D] (60)

C =
1− p1p2 cos(w)

1− 2p1p2 cos(ω) + (p1p2)2
(61)

D =
p1p2 sin(ω)

1− 2p1p2 cos(ω) + (p1p2)2
(62)

3.2.3 Sine and first order

H(z) = Ko
p1 sin(ω)z

−1

1− 2p1 cos(ω)z−1 + p21z
−2

+Kd
1

1− p2z−1
(63)

Where R1 and R4 is the same as found in last section.

R2(k) = KoKdp
k
2D (64)

R3(k) = KoKdp
k
1[cos(ωk)D + sin(ωk)C] (65)

3.2.4 Time delayed filter combinations

Consider now a filter with the impulse response

h(n) = h1(n) + h2(n− τ) (66)

Where τ symbolizes a delay of the impulse response. The correlation function
of this impulse response can then be found as

R(k) = R1(k) +R2(k) +
∞∑
n=0

h1(n)h2(n− τ + k) + h1(n+ k)h2(n− τ) (67)

Where R1 and R2 are the correlation functions of impulse response h1 and
h2 respectively. The remaining cross terms will be equal to the cross terms
found in the last section, with some alterations. The cross term that repre-
sents the delayed impulse response, in other words its respective pole, will
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be reflected around the exterior of the correlation function. The non-delayed
cross impulse response will be reflected within the interior. We define the
interior as the part of the function that is within the delay on both sides,
and the exterior as the outside. This concept is shown clearly in figure 7.
This description is done to avoid lengthy repetitive calculations, the sim-
plified method has been used to calculate the comparison shown in figure
8.

3.3 Function plots
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Figure 2: Function form for first order discrete filter
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Figure 3: Function form for filter with cosine impulse response

-200 -150 -100 -50 0 50 100 150 200

k(delay)

-0.5

0

0.5

1

R
(k

)

Sine correlation function

Figure 4: Function form for filter with sine impulse responser
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Figure 5: Function form for second order discrete filter
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4 The turbulence box

We first define the coordinate system that forms the base of our turbulence
box. We consider z our temporal axis and y as our spatial plane. As such
y is composed of y1 and y2. The stationary prospect of the spatial plane is
something that is expanded upon once we try to rotate our turbulence box.

4.1 Turbulence model

The stochastic turbulence model will be largely focused on Liepmann’s anal-
ysis [8]. The equations that govern this is shown below.

d =

zi − zj

yi1 − yj1
yi2 − yj2

 =

kvTs

ỹ1
ỹ2

 (68)

R(d) = µ

[
g(|d|) + f(|d|)− g(|d|)

|d|2
d(m)2

]
(69)

f(d) = e
− d

LI , g(d) =

(
1− d

2LI

)
e
− d

LI (70)

Where d represents the distance between nodes on the 3 dimensions. m
notes which dimensional component is being calculated. For the longitudi-
nal component it would be d(1) = kvTs. This neglects the cross interference
between dimensional components, this is not an uncommon practice in tur-
bulence simulation, but does lose some information. The main parameters
to consider for this model is the length integral scale LI and the mean wind
speed v. Together with the time step Ts they compute the necessary delay
horizon to be computed. For the remainder of this project, the mean wind
speed will be 20 meters per second and the length integral scale will be 40.
The time step has been chosen as Ts = 0.1 since that captures most, if not
all of the high frequency dynamics of turbulence, while keeping computation
to a minimum.
While most computation time is dominated by the filter identification speci-
fied in a later section, generating the correlation functions in (69) for N2

y node
combinations can be quite costly. The absolute distance d is the only factor
in the function, and for the spatially stationary case, this is non-unique for
many node combinations. As such you can severely reduce the computation
time by saving results for each unique distance calculated and inserting it
should a new distance fall within a rounding tolerance. Depending on the
resolution N of the frame the necessary computations Q are upper and lower
bound by

N
√
2 ≤ Q ≤ N2

2
+N (71)
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As the resolution becomes infinitely detailed, the distance between two neigh-
bour nodes becomes infinitesimally small. As such any distance found in the
frame will be infinitesimally close to any distance found along the diagonal.
The upper bound comes from the necessary symmetry of the frame, any
distance withing the frame can be found from the upper or lower triangle,
including the diagonal.
In the cumulative computation, this optimization has minimal effect, but
it is quite substantial on its own as the brute force computation has N4

correlation functions that are calculated.

4.2 The Cholesky decomposition for correlated noise

At first we will consider the simpler alternative where the turbulence box is
projected directly. The distance between all nodes will be constant and we
can therefore calculate ỹ to benefit computation time. Applying the equation
above for an N by N frame gives us an array with Ny = N2 correlation func-
tions. The necessary horizon for these correlation functions are proportional
to LI/v. This array will then be our desired auto-correlation or cross corre-
lation for each node combination in R. To generate such a target we will use
the Cholesky decomposition. Simply applying the Cholesky decomposition
directly does not work, we must consider each correlation function its own
entry and use them in a modified Cholesky-Banachiewicz algorithm[1]. The
entries of the resulting lower triangular matrix is found as:

Lj,j =
√
Rj,j −

∑j−1
k=1 L

2
j,k

Li,j =
1

Lj,j

(
Ri,j −

∑j−1
k=1 Li,kLj,k

)
, ∀ i > j

(72)

This specific scheme is designed for uncorrelated noise and as such only
operates in scalars. A clear example of this is the proposed division in
(72), as all of our correlation functions go to zero such division is not ideal.
The observation to make is that the rows, represented by i are the sums
which eventually add to our resulting target correlation, the elements in the
columns j, are scaling elements. Using this we can rewrite equation (72) as

Li,j =
1

Mj,j

(
Ri,j −

j−1∑
k=1

Li,kMj,k

)
, ∀ i > j (73)

’ Where M contains the center term for each component, in other words
the respective variance for each output. Furthermore, the elements resulting
from the above scheme are scaled as square root elements. The center term
of each should be it’s variance. We alter the scheme to the following

Lj,j = Rj,j −
j−1∑
k=1

Lj,kMj,k (74)
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Li,j =
Mi,j

Mj,j

(
Ri,j −

j−1∑
k=1

Li,kMj,k

)
, ∀ i > j (75)

’ The elements of M are found by taking the Cholesky decomposition of
R(0). We must now generate filters which realize each individual correlation
function contained in L.

4.2.1 Off center maxima

The elements of M were described to be the center term, and not the maxi-
mum above. This is an important distinction as not all of the elements in L
will have its maximum in the center. Take for example the example below.
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Figure 9: Special case where an element in L does not have its maximum
centered

In future sections we will attempt to realize all the elements in L using
discrete filters. The correlation function depicted above cannot be realized as
such, since any signal will always correlate more with its immediate term than
any other. However, should the function be considered as a cross correlation,
then the function is somewhat realizable using time delays. This is not an
exact analytic method by any means, but the cases where this occurs are
always relatively small as can be observed from the y-axis in 9.
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5 Filter Identification

We now have our target functions calculated from the cholesky decomposi-
tion of the Liepmann distribution. What remains is a method for realizing
these target functions with relatively good accuracy.

5.1 Form identification

The base function forms derived in 3 is the basis of every correlation function
we can estimate. The forms can differ quite a bit from one another and we
must first identify what form our target function takes. For this purpose we
introduce a function we define as the relative pole function.

Td(k) =
T (k + 1)

T (k)
(76)

This function will then give us the relative pole at every point in the target
function. We will use this information to distinguish between the forms
used in section 3. For non-oscillating functions, this will converge to the
dominating pole. This is effectively like taking the derivative of the target
function.

5.2 Parameter identification

Every form in 3 has several variables which subtly alter how well it will fit
with any target function. Once the form has been selected we need a scheme
to identify all the parameters in that form.

5.2.1 First order filter

It is quite rare for the elements within the cholesky decomposition to be best
estimated by a first order filter. When it is the case the relative pole in (76)
will be constant. Calculating the gain and pole from then is trivial. Should
there be a need to estimate a correlation function to first order when it does
not fit perfectly, then the residual calculations noted below should be of use.

5.2.2 Second order filter

For non-oscillating filters, every function will be represented by a dominating
pole and a secondary pole. In many cases this secondary pole is insufficient
to fully match the residue left by the dominating pole. As such we propose
a way to estimate a first order function which matches the variance and the
stationary gain of said filter. The residual is given by

Tr = T − G1p
k
1

1− p21
(77)
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Where T represents our target function. The equation that must now be
estimated is:

G2p
k
2

1− p22
= Tr (78)

Which for for variance and stationary gains form the following set of equa-
tions.

G2

1− p22
= Tr(0) (79)

G2

1− 2p2 + p22
= Sr (80)

Where Sr represents the sum of the full residual. To get this we have used the
relationship in (10) after finding the respective Z-transform of the residuals
correlation function. Equating and rearranging then yields the following
polynomial.

f(x) =
[
x2 x 1

] −Tr(0)− Sr

2Sr

Tr(0)− Sr

 (81)

This polynomial will always have a trivial solution at p2 = 1 which yields a
critically stable filter. Thus the solution we are after is the other root. We
then find the respective gain as

G2 = Tr(0)(1− p22) (82)

We now recall the form of the 2nd order correlation function in (51). Equat-
ing G1 and G2 to their respective terms we find.

K2
1

1− p21
+

K1K2

1− p1p2
=

G1

1− p21
(83)

K2
2

1− p22
+

K1K2

1− p1p2
=

G2

1− p22
(84)

Which can be transformed to the following set of equations:

c1x1 + c3x3 = r1

c2x2 + c3x3 = r2

x23 = x1x2

(85)

Where x1 = K2
1 , x2 = K2

2 and x3 = K1K2. Substituting and rearranging
gives us the following polynomial

f(x3) =
[
x23 x3 1

]  1− c23
c3(r1 + r2)

−r1r2

 (86)
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K1K2 is the variable x3 and it will have the same sign as G1G2. After finding
this variable we can now find K1 and K2.[

K1

K2

]
=

[
sgn(G1) 0

0 sgn(G2)

]√ r1−c3x3
c1√

r2−c3x3
c2

 (87)

What remains is our method of identifying this scheme as the proper one.
This is where the relative pole function comes in, as this will give us both
the ideal scheme and the dominating pole required to calculate the residual.
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Figure 10: Relative pole of 2nd order filter scheme

From the above figure one can see that there is at least 2 poles in play
as it is not in steady state initially. One can also read that the dominant
pole p1 = 0.95 and that the secondary pole settles after about 40 samples.
Additionally, the rate of change informs us whether or not the secondary
pole is directionally aligned or opposed to the dominating pole.

5.2.3 Oscillating filter

The most important difference in form selection is the difference between
oscillating filters and non-oscillating filters. Generally, we don’t expect oscil-
lating filters for stationary spatial coordinates, but the relative pole function
does give clear indication of oscillation if it is present.
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Figure 11: Relative pole function displaying oscillation

Particularly the zero crossing causes a tangential wave shape in the rela-
tive pole function which is a clear indication of oscillation. While there is no
easily readable dominating pole in this case, the frequency of the oscillation
is easily deciphered from the zero crossings. Preserving the variance yields.

K2

2

(
1

1− p2
± 1− p2 cos(2ω)

1− 2p2 cos(2ω) + p4

)
= Tr(0) (88)

The indeterminate sign depends on whether we are approximating a sine
filter or a cosine filter. Equating the preservation of stationary gain does not
yield a pretty result like for the first order filter. Our estimation will therefore
take a more numerical approach, similar to how we find the dominating pole
for the first order case. The sampled angular velocity w is given by the
zero crossings found in 11. Given that enough oscillation is present, we can
calculate the relative change in peak to peak over the delay difference to find
our pole. Once the pole and the sampled angular velocity have been found
we find the gain as:

K =

√
2Tr(0)

A
(89)

The method proposed here is rather lackluster, which as we will find in later
sections, also insufficient. The cholesky decomposition for the case of ro-
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tating spatial coordinates yields many complex, if not downright impossible
correlation functions. The method here is still documented as it does give
good results for the more approachable cases.

5.2.4 Combination filter

In many cases the oscillation does not cross zero, but rather decays while
oscillating as seen in 6. In such a case, the relative pole function will alter
its rate of change without showing the traits of a zero crossing. An example
of this can be seen below.
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Figure 12: Relative pole function when oscillating pole is dominating

As in 6, the idea is to separate this function into the oscillating one and
the strictly decaying one and identifying their parameters seperately through
the methods noted above. Every oscillating target correlation function has
a hidden imaginary component. If this was included in the relative pole
function then the output would be more readable. Because we don’t have this
component we must use the peaks like we did for the simple oscillating filter.
This is because the imaginary component is zero where the real component
is at a "peak" which can be seen in 13. Thus we find the oscillating pole as

p1 =
m

√
T (k +m)

T (k)
(90)
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Figure 13: Showing the hidden imaginary component in any oscillating cor-
relation function

Where m is the sample oscillation period, which can be read from the orig-
inal relative pole function. For this to give the desired detail the secondary
pole must decay in time for the oscillating pole to be isolated. This will be
the case when the relative pole function shows delayed zero crossing as it
does in 12.
If the oscillating pole is dominated, then the relative pole function will rarely
show zero crossing, but will oscillate around the dominating pole. And thus
the dominating pole can either be found from convergence, if the oscillating
pole is sufficiently small, or approximated by taking the mean of the relative
pole function.
In either case, the secondary pole can be found by analyzing the residual,
which is found by calculating the dominating pole and its respective gain
and subtracting it from the target function. When the oscillating pole is
dominated the strictly decaying function can be easily found by aligning it
with the part of the target function where the oscillation is gone.

In 3 we found that the strictly decaying term is

Rd(k) = Kdp
|k|
2

(
Kd

1− p22
+KoC

)
(91)
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Figure 14: Relative pole function when the oscillating pole is dominated

And the oscillating term can be found to be.

Ro(k) = Kop
k
1

[(
AKo

2
+KdD

)
cos(ωk) +

(
BKo

2
+KdC

)
sin(ωk)

]
(92)

Which simplifies to

Ro(k) = Kop
k
1 (G cos(ωk + ϕ)) (93)

Where

G = sgn

(
AKo

2
+KdD

)√(
AKo

2
+KdD

)2

+

(
BKo

2
+KdC

)2

(94)

and

ϕ = tan−1

(
−

AKo
2 +KdD

BKo
2 +KdC

)
(95)

Which then gives us relative maxima and minima at

ke = −ϕ

ω
+ nπ (96)
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We can then use these points of extremities beyond the decayed pole to align
our oscillating correlation function. Using equations (91), (94) and (95) we
actually have an over determined set of equations. What should be noted
here is that this set of equations don’t necessarily have a solution, even when
we disregard one of the equations, we might not be able to find a solution
for Ko and Kd.
The goals in starting this project was to minimize computation, and therefore
order of our filters have been limited. Even when extending the order to
allow filter combinations to an order of three the oscillation resulting from
the cholesky decomposition of the spatially rotating Liepmann distribution
yields too much variation to be fitted by the base functions listed in 3.

5.3 Scheme flaws

The scheme noted in this section is not perfect by any means. Some of the
common issues this method encounters are noted in this section. The roots
and resulting values found in (87) and similar equations will sometimes yield
complex results. This is a major issue as simulating complex filters takes far
more computation than the strictly real case. To avoid this a few extra rules
are applied.
If the secondary pole found from (81) is larger than the dominating pole, then
it will be considered non-existent and the dominating gain will be adjusted
such that the entire target function is estimated by a first order filter. This
gives substantial error for the individual case but in the compound output
this has hardly any effect. The filters would only end up with complex gains
when attempting to approximate zeros where there should be none. For the
real case in 5, the secondary pole is opposite to the dominating pole. The
resulting filter should then be of order two, and relative order two.

H(z) =
K

(1− p1z−1)(1− p2z−1)
(97)

Where K1 and K2 can be found, and relate to one another as

K1 =
K

1− p2
p1

K2 =
K

1− p1
p2

(98)

The automated scheme implemented in MatLab will know when the poles
are opposite to one another, but slight numerical errors will sometimes cause
it to miss the relation above through some slight error. This is when its
calculations yield complex zeros in the filter, when there should be none.
When this occurs the scheme will return to a backup computation which
simply forces the relation in (98).
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5.3.1 Oscillating case

To see why the identification scheme for the oscillating case does not function
we will follow its procedure on a common example. In 15 we see how the

-200 -150 -100 -50 0 50 100 150 200

k(delay)

0

1

2

3

4

5

6

R
(k

)

Target

Dominating pole component

Figure 15: First step in identifying an oscillating combination filter

target function is being fitted by a single dominating pole at the largest
delays. This is then subtracted from the original target function to give us
our oscillating residue.

The resulting residue can be seen in 16 and it is immediately evident
that this form has no representation in our list of base correlation forms in
section 3. Since the correlation function is entirely negative we must invert
the notion of maxima and minima. The minima is off center, which can not
be represented by a time delay since this is a partial autocorrelation and not
an individual cross correlation.
This residue will vary wildly, but it is very common for its form to be out
of reach for our base forms. The reason this is not the case for the non-
oscillating case is likely because there is less complexity in general. Since
every correlation function is centered and strictly decreasing the same vari-
ation does not appear.
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Figure 16: Residue resulting from fitting the dominating pole
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6 Simulation

Now that we have a method of generating our Ny by Ny discrete filter. We
will excite this filter with Ny unique sources of gaussian white noise. This will
realize the correlation functions shown in section 3 and add them together.
The calculation required for this simulation is oN2

y additions where o is the
highest filter order found in the combined filter.

6.1 Stationary spatial coordinates
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Figure 17: Longitudinal component comparison for close nodes (top) and
nodes with far lateral seperation (bottom)

It can be seen that the nodes closely overlap when they are close, and
overlap less so when they are further apart. This visual observation becomes
clearer when we calculate the cross correlation between nodes. In 18 are the
cross correlations for four randomly selected node combinations. The mea-
sured correlation is very close to the desired correlation, it should be noted
that the functions will match on the right hand side, as cross correlation is
not symmetric and has been calculated to match on that side. The slight
discrepancies can be attributed to the flaws noted in 5.3 to some degree. We
have neglected to mention the phase in any of the previous derivations. It is
actually not possible to realize the correlation functions in section 3 exactly
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Figure 18: Desired correlation functions in red and measured correlation
functions in blue

as varying degrees of phase shift will also shift the correlation lower. This is
most evident for nodes which are generated by fewer unique sources of white
noise.
In (72) we can see that the first column will be the sum of a single filter only.

In 19 we can see the clear effects phase shift has on the results. This
is the main source of the error one sees in 18. As mentioned the error is
reduced for nodes that have more contributing unique white noise sources,
because they are added together by many filters with only slight differences
in phase shift.
One method of realizing correlation without the phase shift would be to filter
the white noise both ways through the filter. This will effectively double the
order of the filter [17] and also make it impossible to generate online. Effec-
tively limiting computation time and removing the most desirable trait this
scheme has to reduce minimal error. This has been judged as unnecessary
in this project.
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6.2 Approximating rotation

Originally, the rotation was meant to be calculated in 69 and adapted in sub
filters after the cholesky decomposition. Because of the lackluster results
this is not realistic with low end order filters. Instead, we will attempt to
approximate the rotating behavior by first simulating nodes with stationary
spatial coordinates, and then sampling those nodes through a rotating point.
This rotation is reminiscent to how the blade of a windmill would sample
the turbulence in such a box.
This method causes some extra computation, and we face an issue with the
spatial resolution of our frame.

6.2.1 Spatially moving sensor

Our sensor node will be moving in the spatial plane following a preset func-
tion. In the case where we wish to mimic the movement of a wind turbine
blade, this can be represented as.[

y1
y2

]
=

[
r sin(ωTs + ϕ)
r cos(ωTs + ϕ)

]
(99)

Where r represents the absolute distance from the origin we wish to place
our node. The phase shift will be inconsequential for single node simulation,
but if one wishes to simulate more than one turbine blade, then this will be
set to the angle that the blades are distributed at.
This gives the position of the node in the y-plane at each sample point. One
issue we face at this stage is that these coordinates do not necessarily overlap
with the turbulence box we have generated and are sampling. In fact, as long
as Ts is not π divided by an integer then there is no node generation which
gives perfect axis overlap. With high spatial resolution this is a non-factor,
but it should be explored how this impacts the simulation in lower resolution
cases.

The angular velocity has been increased to 5 to show more detailed os-
cillation, for mean wind speed 20 we expect angular velocity close to 2. In
the high resolution case, rounding the coordinates to the closest node yields
acceptable results. We expect marginal error for reasons discussed above. As
the resolution lowers then an increased information is lost since the distance
increases. This error can be lowered by estimating an intermediary point
using weighted contributions by the closest nodes. To minimize necessary
computation, this will be simple interpolation. We did explore methods to
calculate intermediary nodes with expected co-variance in relation to the
closest nodes, but the additional information did not outweigh the cost of
computation. With said scheme we end up with similar detail to the high
resolution case without intermediary nodes.

One benefit of sampling our turbulence box this way is that it lets us move
our sensor arbitrarily withing the turbulence box. If we would generate it
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Figure 20: Rotational sampling for high spatial resolution (20 by 20)

directly from (69) then the angular velocity would have to be unchanging to
fulfill the requirement of a stationary process. While it is not immediately
relevant to the wind turbine simulation, an arbitrarily moving node could
also be simulated this way. Such a node could also move in the longitudinal
direction under the assumption of Taylor’s frozen turbulence hypothesis.

6.3 Computational complexity

The computation is a recursive sum as one would expect from a linear discrete
filter. The size of this single time step sum is upper bound by oN2

y where o
is the highest order filter in the combined filtler. Minimizing the order term
has been a large focus of this project and the result is a computation which
can simulate beyond real time for filter sizes as large as Ny = 4800. The
number 4800 comes from three 40 by 40 spatial frames simulating the three
disjoint velocity components. Should interconnections between the velocity
components be desirable then the necessary target correlation functions mul-
tiplies by three to create a three by three structure, which would then be
halved to create the lower triangular Cholesky decomposition.
As a point of comparison, we will be comparing the generation time for a
finite time horizon turbulence box with the existing method of using the in-
verse Fourier transform. Using the same computer for multiple generations
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Figure 21: Rotational sampling for low spatial resolution (6 by 6) with in-
termediary nodes

for both methods it was found that the method proposed in this project is
very close to the one used by TurbSim. Our method can create a turbulence
box three times faster than TurbSim, but this is without the cross correla-
tion between velocity components that TurbSim uses. Adjusting for this by
a factor of three causes the results to be about the same. This brings us to
the final cost benefit comparison.
The necessary computation time to generate the filter for this project is ex-
tremely high. The computation scales as N2

y which in terms of resolution is
N4. The 40 by 40 frame mentioned above took multiple days to compute for
a low end CPU. This computation cost is purely pre-generated, and does not
impact the real time computation in any way. The benefit one expects after
this has been generated is of course the possibility to generate turbulence
online. If one considers the benefit of online generation greater than the
cost of upfront computation time, then the method proposed here should be
considered.
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7 Future work

In the precursor to this project [11], we managed to do online simulation
if we managed to avoid instability in the filter identification step. In this
project we have managed to remove this instability entirely. While we can
now accurately and efficiently simulate turbulence online, we are severely
limited by the quite simple approach of fitting linear filter correlation func-
tions to Liepmann’s model(69).
Every system will be some recursive difference function, as the memory re-
quired for a purely FIR filter would leave the scheme cripplingly slow. How-
ever, there are possible extensions that can be made to the base functions 3
by possibly including non-linear difference equations.
It should also be noted that a lot of the identification scheme for the oscil-
lating case is numerical and therefore not as accurate as it could be. The
oscillating base functions are likely insufficient regardless, but improvements
to the proposed method could be made by possibly equating function traits
which we missed.
The upfront computational cost of generating the filter can be quite high,
especially as the resolution grows. In equation(71) we can reduce this cost by
several magnitudes, but only for the target correlation functions, not the ones
resulting from the Cholesky decomposition. The Cholesky decomposition is
effectively multiplication and addition of the target correlation function. In
an attempt to utilize the optimization in (71) we tried to identify poles and
respective gains in the target matrix R and then defining the base operations
as a function of said poles and gains. This showed good results for the first
elements in L, but as the recursive nature of the decomposition repeated the
operations many times over, the accuracy got lost. Should this be expanded
upon, or perhaps an alternative method which lets the filter identification
happen for the target correlation R instead of the lower triangular decom-
position L, upfront cost could be reduced drastically.

7.1 Kalman Filter

Another application of generating turbulence this way is Kalman filtering.
This method relies on known covariance of the states and a system model.
In this project we have found an approximate system model in the generated
filter. The recursive estimated state covariance in a Kalman filter is given
by the following equation.

Pk+1 = APkAT + Q (100)

A is the state space representation of the system model and Q is the covari-
ance of these states. It may seem obvious that we already have the elements
in Q from the Liepmann model. However the state space representation in-
cludes every internal state in our filter. For every filter with an order greater
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than one, there will be unseen internal states which are also included as el-
ements in Q. A method to either account for these internal states, or one
which circumvents them entirely could yield an efficient way to filter tur-
bulence. In this case the turbulence is not filtered down to the mean wind
speed component, but rather the measurement noise is filtered as to yield
the physical turbulence itself.
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8 Appendix

MATLAB Code

Filter identification

1 function [F] = polegain1x(T)
2 T = T(:);
3 z = tf(’z’ ,0.1);
4 J = floor(length(T)/2); %Horizon
5

6 [m,I] = max(T);
7 delay = 0;
8 if I ~= J+1 %Center target and save delay
9 delay = abs(I-J-1);

10 T(J+1-delay:J+delay) = [];
11 pad = zeros(1,delay);
12 T = [pad ’; T; pad ’];
13 end
14

15 T_1 = T/max(abs(T)); %Normalize
16

17 L = (find(abs(0.02-abs(T_1)) <0.005)); %Settling
horizon for secondary pole

18 L = max(abs(J+1-L));
19

20 p1 = T(J+2+L)/T(J+1+L); %Find dominant pole and gain
21 G1 = (1-p1^2)*T(J+1+L)/(p1^L);
22 k = -J:J;
23 T_2 = T’ - G1*p1.^abs(k) /(1-p1^2); %Calculate

residual
24

25 m = T_2(J+1);
26 S = sum(T_2);
27 poly = [-m-S 2*S m-S]; %characteristic polynomial
28

29 a = poly (1);
30 b = poly (2);
31 c = poly (3);
32 pc(1) = (-b+sqrt(b^2 - 4*a*c))/(2*a);
33 pc(2) = (-b-sqrt(b^2 - 4*a*c))/(2*a);
34

35 p2 = min(pc(pc >0)); %Find secondary pole
36
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37 G2 = m*(1-p2^2); %Find secondary gain
38 if abs(m)/max(T) < 0.01 || p2 >= p1 %Failsafe to

avoid instability
39 G1 = max(T)*(1-p1^2);
40 F = sqrt(G1) /(1-p1*z^-1); %Set filter first order
41 elseif abs(S) < 10e-3 %Tolerance
42 F = 0;
43 else
44 if G1 > 0 && S < 0 %If gains are opposite aligned
45 a = (1-p1^2)*(1-p2/p1)^2;
46 b = (1-p1*p2)*(1-p1/p2)*(1-p2/p1);
47 c = (1-p2^2)*(1-p1/p2)^2;
48 K = sqrt(max(T)/(1/a + 2/b + 1/c));
49 F = K/((1-p1*z^-1)*(1-p2*z^-1)); %Filter output
50 else %If gains are aligned
51 a = 1/(1-p1^2);
52 d = 1/(1-p2^2);
53 b = 1/(1-p1*p2);
54

55 rhs1 = G1/(1-p1^2);
56 rhs2 = G2/(1-p2^2);
57

58 ak = 1- b^2/(a*d);
59 bk = (rhs1+rhs2)*b/(a*d);
60 ck = -rhs1*rhs2/(a*d);
61 rr(1) = (-bk+sqrt(bk^2 - 4*ak*ck))/(2*ak);
62 rr(2) = (-bk-sqrt(bk^2 - 4*ak*ck))/(2*ak);
63

64 if abs(G1*G2) > 10e-6 %Tolerance to avoid complex
solutions

65 if G1*G2 >= 0
66 u3 = min(rr(rr >0));
67 else
68 u3 = max(rr(rr <0));
69 end
70 else
71 u3 = 0;
72 end
73 u1 = (rhs1 - b*u3)/a;
74 u2 = (rhs2 - b*u3)/d;
75

76 C1 = sqrt(u1)*sign(G1);
77 C2 = sqrt(u2)*sign(G2);
78
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79 F = C1/(1-p1*z^-1) + C2/(1-p2*z^-1);%Filter output
80 end
81 F = F*z^-(delay); %Add delay if any
82

83 end
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Target correlation generation

1 function [R] = fetchcovw(y_1 ,y_2 ,k,Ts,L,v,u_s ,w,comp)
2 ffunc = @(r) exp(-r/L); %Nested functions
3 gfunc = @(r) exp(-r/L)*(1 -(0.5*r/L));
4

5 y_2 = y_2*ones(1,length(y_2)); %Coordinate arrays
6 y_1 = ones(length(y_1) ,1)*y_1;
7

8

9 N = length(y_1); %Resolution
10 for m1 = 1:N
11 for m2 = 1:N
12 sub1 = (m1 -1)*N + m2; %First node index
13 for i = 1:N
14 for j = 1:N
15 sub2 = (i-1)*N + j; %Second node index
16 Ro = [1, 0, 0;
17 0, cos(k*w*Ts), -sin(k*w*Ts);
18 0, sin(k*w*Ts), cos(k*w*Ts)];
19

20 d = abs([Ts*v*k;y_1(m1,m2);y_2(m1,m2)] - Ro
*[0; y_1(i,j);y_2(i,j)]); %Distance

21 dd = norm(d);
22 if dd == 0
23 R(sub1 ,sub2) = u_s;
24 %Define function for |d| = 0
25 else
26

27 R(sub1 ,sub2) = u_s*(gfunc(dd) + (ffunc(dd)-
gfunc(dd))/(dd^2) * d(comp)^2); %
correlation at k

28 end
29 end
30 end
31 end
32 end
33 end
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Modified cholesky decomposition

1 function [coh2 ,filter] = chold(Coh)
2

3 [Ny ,~,Nx] = size(Coh); %Node amount and full horizon
length

4 coh2 = zeros(Ny,Ny,Nx);
5 J = floor(Nx/2); %symmetric horizon
6 g = chol(Coh(:,:,J+1))’; %Center term cholesky d
7 G = g.^2; %Square to adjust for filter ID root
8

9 gMax = Coh(:,:,J+1); %Max of target functions
10

11 for i = 1:Ny
12 for j = 1:i
13 summ = zeros (1,2*J+1); %set sum vector 0
14 if j == 1 %No cumulation for first column
15 coh2(i,j,:) = G(i,j)*Coh(i,j,:)/gMax(i,j)

;
16 else
17 for k = 1:j-1
18 m = coh2(i,k,:)/g(i,k);
19 mz = m(:) ’;
20 summ = summ + mz*g(j,k);
21 %cumulate along column for each row
22 if i == j
23 Targ = Coh(i,i,:); %Target
24 coh2(i,j,:) = Targ (:)’ - summ;
25 %Chol diagonal
26 else
27 Tx = Coh(i,j,:); %Target
28 coh2(i,j,:) = (Tx(:)’ - summ)/g(j,j);
29 %Chol
30 coh2(i,j,:) = coh2(i,j,:)*g(i,j);
31 %Square by scalar
32 end
33 end
34 end
35 [filter(i,j)] = polegain1x(coh2(i,j,:)); %

Filter ID
36 end
37 end
38 end
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