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Abstract

Applying finite element analysis in the design of steel structures has emerged as a faster, simpler,

and more accurate alternative than designing according to Eurocode 3. IDEA StatiCa is an

example of software dedicated to the design of steel members and joints. It employs finite

element analysis combined with design checks according to Eurocode 3 to analyze and verify

structures. To offer short computation time, the software has adopted some simplifications,

which might affect its accuracy. This thesis aims to explore IDEA StatiCa’s possibilities and

limitations for the design of steel joints.

Three different types of bolted beam-to-column joints with open I and H-sections are investi-

gated. Most of the thesis focus on major axis joints, where the beam is subjected to a combina-

tion of bending moment (about the major axis) and axial force. Additionally, minor axis joints

are explored, where either the beam or the column is subjected to bending moment about its

weak axis. Finite element models of the joints were assembled in Abaqus and validated against

experimental results before models in IDEA StatiCa were verified against the Abaqus models

and manual calculations based on Eurocode 3 and relevant literature. Parametric studies were

carried out to explore different geometric configurations and load conditions.

It was found that IDEA StatiCa predicts a lower moment resistance than Abaqus for all cases

considered. However, in general, it predicted a higher resistance than Eurocode 3. The cause for

the discrepancies can, to a large extent, be attributed to IDEA StatiCa’s neglect of geometric

imperfections and geometric nonlinearity. The calculated rotational stiffness also shows some

discrepancies, which can mainly be ascribed to the way IDEA StatiCa defines the initial stiffness

(the secant stiffness at 2/3 of the moment resistance). Despite these discrepancies, it was found

that IDEA StatiCa is a reliable and convenient design tool, that facilitates simple design of steel

joints.
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Sammendrag

Anvendelse av elementmetoden for dimensjonering av st̊alkonstruksjoner har vokst frem som et

raskere, enklere og mer nøyaktig alternativ enn å dimensjonere i henhold til Eurocode 3. IDEA

StatiCa er et eksempel p̊a programvare dedikert til dimensjonering av st̊alkonstruksjoner. Den

anvender elementmetoden for å analysere konstruksjonen, og kontrollerer resultatene opp mot

Eurocode 3. For å tilby raske beregninger har programvaren implementert forenklinger som kan

p̊avirke nøyaktigheten. Målet med denne oppgaven er å utforske IDEA StatiCas muligheter og

begrensninger for dimensjonering av knutepunkter i st̊al.

Tre forskjellige typer av boltede bjelke-søyle knutepunkter med åpne I- og H-tverrsnitt un-

dersøkes. Mesteparten av oppgaven fokuserer p̊a knutepunkt der bjelken utsettes for en kom-

binasjon av bøyemoment om bjelkens sterke akse og aksialkraft. Knutepunkt der enten bjelken

eller søylen utsettes for bøyemoment om sin svake akse blir ogs̊a undersøkt. Elementmodeller

av knutepunktene i Abaqus ble først validert mot eksperimentelle resultater, før modeller i

IDEA StatiCa ble verifisert mot Abaqus-modellene og h̊andberegninger basert p̊a Eurocode 3

og relevant litteratur. I tillegg til dette ble det utført parameterstudier for å utforske flere

geometrikonfigurasjoner og lastbetingelser.

Resultatene viser at IDEA StatiCa beregner en lavere momentkapasitet enn Abaqus for alle be-

traktede tilfeller, men generelt sett en høyere kapasitet enn Eurocode 3. Årsaken til avvikene kan

i stor grad tilskrives neglisjeringen av geometriske imperfeksjoner og geometrisk ikke-linearitet.

Beregnet rotasjonsstivhet viser ogs̊a avvik, men dette kan i hovedsak tilskrives m̊aten IDEA

StatiCa definerer rotasjonsstivheten p̊a (sekantstivheten ved 2/3 av momentkapasitet). Til tross

for avvikene, konkluderes det med at IDEA StatiCa er et p̊alitelig og praktisk dimensjoner-

ingsverktøy, som fasiliter ukomplisert dimensjonering av knutepunkt i st̊al.
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1 Introduction

Steel has been a popular building material for decades due to its high strength and stiffness,

low weight to strength ratio, high ductility, fair price, and easy assembly. Most steel structures

generally consist of beams and columns joined together with different types of connections, and

the main categories for steel joints are bolted and welded joints. Where welded joints offer

higher stiffness and strength due to the members being more rigidly connected, bolted joints are

easier to assemble and generally offer higher ductility and rotational capacity. The latter is an

important aspect when designing for earthquakes and the collapse of structures.

The design of steel structures is governed by Eurocode 3, which is divided into several parts

covering different topics. The most relevant for this thesis are NS-EN 1993-1-1 [1], which covers

the general rules for the design of steel structures in buildings; NS-EN 1993-1-5 [2], which

covers plated steel structures; and NS-EN 1993-1-8 [3], which covers the design of joints. As

Eurocode 3 is based on simplified analytical models, the standard is in many cases shown to

be highly conservative when designing joints [4, 5]. This can result in an underestimation of

the ultimate capacity of up to 45 % [4]. Applying Eurocode 3 as a basis for design can, in

many cases, result in uneconomical structures with relatively low utilization. Furthermore, the

process of designing joints based on Eurocode 3 can be quite cumbersome and time-consuming,

and more complex geometries are not covered by the standard. Using finite element analysis

(FEA) software has therefore become popular among structural engineers, as it in many cases

offers a better prediction of structural behavior and is significantly less time-consuming.

1.1 Problem description

IDEA StatiCa is an engineering software dedicated to the design of structural components,

including steel joints. The software allows for the calculation of stresses and strains for a user-

defined steel joint and checks stresses, strains, and forces according to Eurocode 3. It offers

a simple interface, relatively fast calculations, as well as documentation of the design process.

The developer of the software has conducted several numerical experiments, and the software

coincides well with calculations according to Eurocode 3 [6]. To enable fast calculations, some

simplifications are adopted, which might limit the software’s accuracy compared to more complex

finite element models and physical experiments.

This thesis aims to explore the limitations of the software IDEA StatiCa, and its ability to ac-

curately predict the behavior of steel joints subjected to external forces. The software is verified

numerically against a wide variety of benchmark tests, but it is uncertain how accurately it

predicts the behavior of more complex geometries and load situations. As the software is devel-

oped for design of structures, it is expected that the results will show discrepancies compared to

physical experiments. However, it is of high interest to determine if the results are on the safe

1



1 Introduction

side of Eurocode 3 - and if not, if it is on the safe side of real-world behavior and more complex

finite element models. Abaqus is an example of a more complex general-purpose FEA software,

which will be utilized in this thesis. It has very few limitations and is highly suitable to use in

the verification process of IDEA StatiCa.

1.1.1 Joint configurations

The thesis is delimited to explore how IDEA StatiCa predicts the behavior of three different

types of bolted beam-to-column joint configurations composed of open I and H-sections. These

three joint configurations are shown in Figure 1.1. The first joint (Figure 1.1a) is a typical

strong axis joint, where both the column and the beam are subjected to bending about its

strong/major axis. This joint configuration is typical in frame structures, where it may be

subjected to a combination of bending moment and axial force. Joints subjected to bending

moment and axial force is a topic that is only briefly covered by Eurocode 3, which makes it

a highly relevant problem to be analyzed by IDEA StatiCa. Major axis joints subjected to

combined bending and axial force will therefore be the main focus in this thesis. Other joint

configurations not covered by Eurocode 3 are minor axis bolted beam-to-column joints, where

either the beam or the column is subjected to bending about its weak axis, as shown in Figure

1.1b and 1.1c, respectively. These joint configurations are also relevant problems to be analyzed

in IDEA StatiCa, and will therefore be briefly investigated in this thesis. The nomenclature

Major axis joint, Beam minor axis joint, and Column minor axis joint, with reference to Figure

1.1a, 1.1b and 1.1c, respectively, will be adopted in this thesis.

(a) Major axis joint (b) Beam minor axis joint (c) Column minor axis joint

Figure 1.1: Different bolted beam-to-column joint configurations

1.1.2 Validation and verification

As the software is intended for design purposes, where the exact material data is unknown,

the software has adopted a simplified material model based on characteristic values of the ma-

terial. Hence, the results of the analysis conducted in IDEA StatiCa will possibly show large

2



1 Introduction

discrepancies compared to experimental data where the material behavior is more complex. For

this reason, it is of lesser interest to compare the results from IDEA StatiCa directly to exper-

imental data, as the results are not expected to be identical. Therefore, the thesis will include

both verification and validation to evaluate the software. Model verification is the process of

determining the degree to which a computerized model accurately represents a conceptual or

analytical model, while model validation is the process of determining the degree to which a

computerized model accurately represents real-world behavior, i.e. experimental results [7, 8].

Or stated simpler: verification determines if the model solves the equations correctly, while

validation determines if the model solves the correct equations [9].

In this thesis, more complex numerical models in the finite element software Abaqus will be

validated against physical experiments, to generate robust and accurate models of physical

problems. The models generated in Abaqus will be moderately simplified, before being used

to verify the models in IDEA StatiCa. This ensures that the results are comparable, and it is

possible to determine to what extent IDEA StatiCa’s simplifications affect its accuracy. The

main characteristics of a beam-to-column joint, and the characteristics that will be considered

in this thesis, are:

• Ultimate moment resistance, which is used to control the joint in the ultimate limit state.

This is probably the most important characteristic to determine in an analysis.

• Initial rotational stiffness, which is used to determine whether a joint is to be considered

rigid, semi-rigid, or pinned in a global analysis.

• Rotational capacity, which is relevant for collapse analysis, plastic analysis, and earthquake

exposed structures.

Considering that IDEA StatiCa is a design software intended to replace manual calculations

based on design codes, such as Eurocode 3, the results from IDEA StatiCa will also be compared

to Eurocode 3 calculations. In this way, it is possible to establish how the software compares to

governing design codes.

1.1.3 Organization

The remainder of the thesis is organized into four chapters. Chapter 2 includes relevant theory

and information about IDEA StatiCa and finite element analysis in Abaqus in general. Ad-

ditionally, relevant parts of Eurocode 3, and literature on topics not covered by Eurocode 3,

will be discussed. Chapter 3 covers major axis joints, and will be the main chapter of this

thesis. Chapter 4 covers beam and column minor axis joints and is a continuation of the previ-

ous chapter. Chapter 3 and 4 are organized similarly, and both include validation of numerical

models, verification of IDEA StatiCa against Abaqus and Eurocode 3/component method, and

a parametric study. Chapter 5 concludes the thesis and suggests topics for further work.

3



2 Theory

This chapter will cover the theoretical background of IDEA StatiCa, as well as selected topics

on finite element analysis with Abaqus, to better understand how the verification and valida-

tion are carried out. Furthermore, the relevant topics from NS-EN 1993-1-8 [3] will be briefly

discussed. However, since not all topics needed for the determination of capacity and stiffness

are covered by the standard, relevant theory from literature that compliments Eurocode 3 will

be addressed.

2.1 IDEA StatiCa

The concept of Component-based finite element method (CBFEM) was introduced by the de-

velopers of IDEA StatiCa [10, 11]. CBFEM is a method for design of steel joints and members

with incorporated design checks according to relevant design codes. It is intended to replace

component method calculations, which are manual calculations based on design codes and other

literature. An example of analysis in IDEA StatiCa is shown in Figure 2.1

(a) Geometric model (b) Contour plot of equivalent stresses
on the deformed shape

Figure 2.1: Design in IDEA StatiCa

2.1.1 Element type

The software employs the finite element method to analyze the structure. The finite element

model is discretized using four-node shell elements with six degrees of freedom per node. The

4



2 Theory

element’s membrane behavior is based on the work of Ibrahimbegovic et al. [12]. They proposed

a quadrilateral element with independent rotation and displacement fields interpolated linearly,

resulting in an element with drilling degrees of freedom. The out-of-plane flexural behavior is

based on the works of Dvorkin et al. [13], who proposed a shear flexible plate element based on

the Reissner-Mindlin plate theory [14].

2.1.2 Modeling of welds and bolts

The welds in the joint are modeled using special solid elements that take into consideration

weld dimensions and position relative to the plate. Instead of modeling the bolt with physical

elements, IDEA StatiCa has implemented springs to simulate the bearing and tensile behavior

of bolts. These springs are assumed to be coupled to the plates with multi-point constraints

(MPC), which constrains the degrees of freedom of a set of slave nodes to the motion of a

control point. In this case, the control points are the ends of the springs, and the slave nodes

are the nodes in the plate assumed to be in contact with the bolt. The springs exhibit a bilinear

force-displacement relationship, with an elastic part followed by an inelastic hardening part.

The tensile stiffness is based on the analytical derivation in the guideline VDI 2230 [15], and

the tensile capacity is in accordance with NS-EN 1993-1-8 [3]. The shear stiffness and resistance

are based on EN 1993-1-8, with deformation capacity determined by experiments conducted by

the developer [6]. The contact between plates is enforced with the penalty method, where the

contact is imposed by augmenting the potential energy of the system by a penalty term [16],

which can be interpreted as adding a spring stiffness on the contact surface [17].

2.1.3 Material model

As mentioned, IDEA StatiCa employs a simplified material model. The steel is assumed to be

elastic-plastic with a yielding plateau slope equal to E/1000, as seen in Figure 2.2 [15]. Similar

to other FEA softwares, IDEA StatiCa operates with true stresses and strains, which are related

to the engineering (or nominal) stress-strain-curve through the following equations:

σtrue = σeng(1 + εeng) (2.1)

εtrue = ln(1 + εeng) (2.2)

Figure 2.2: Material model in IDEA StatiCa

5



2 Theory

2.1.4 Determination of resistance

The capacity of the joint is limited by either the capacity of the bolts, the capacity of the welds,

or the plastic strain in the plates. The capacity of bolts and welds is calculated according to

NS-EN 1993-1-8 [3], while the limit of plastic strain in the plate can be chosen by the designer.

NS-EN 1993-1-5 [2] recommends that a limit of 5 % for tensile membrane strains is applied in

analyses. However, this is a highly conservative limit with little rationalization from experiments.

The limit of plastic strain has a modest effect on the ultimate moment resistance of a joint [6],

but has a considerable effect on the rotational capacity. The limit strain of the steel is therefore

an important parameter for certain analyses.

2.1.5 Solution method

IDEA StatiCa employs a geometrically linear analysis with a nonlinear material model. This

implies that the equilibrium equation is established for the undeformed system, and is not

updated when the geometry deforms. The stiffness matrix, K, and load vector, R, in the

equilibrium equation is therefore not a function of the deformations, as seen in the system

equation:

KD(t̄) = R (2.3)

where the t̄ is the pseudo-time of the system.

Geometrically nonlinear analysis is also available in the software, but only for joints with hol-

low section members. According to the theory manual [15], the behavior of such members will

not accurately be captured by geometrically linear analysis. IDEA StatiCa solves the nonlinear

system using Newton-Raphson iterations, with the option of applying the external load in in-

crements. This enables the possibility of producing load-displacement curves - or more relevant

for this thesis: moment-rotation curves. In this way, it is also possible to derive the initial

stiffness of a moment connection and use this to characterize the connection as pinned, rigid, or

semi-rigid according to NS-EN 1993-1-8 [3]. This characterization can subsequently be used in

an analysis of the global structure.

2.2 Abaqus

Abaqus is a powerful general-purpose FEA software suite applicable for analyzing a wide range

of structural problems. The software suite consists of five packages, where the ones relevant for

this thesis are: Abaqus/CAE (Complete Abaqus Environment), which allows for modeling and

visualization of components; and Abaqus/Standard and Abaqus/Explicit, which employ implicit

and explicit integration schemes, respectively, to solve the modeled problem. Abaqus has much

higher functionality than IDEA StatiCa, and will, if employed correctly, offer a more accurate

solution. For this reason, Abaqus will be used in the verification of IDEA StatiCa.

2.2.1 Element type

Structural problems can be discretized using different types of elements, depending on the re-

quirement of accuracy and type of analysis. For more complicated structures, such as beam-to-

column joints, 3D solid elements are preferred since they capture the physical geometry explicitly

6
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without substantial simplification. Therefore, a finite element analysis with solid elements al-

lows for the most accurate simulation, but with a cost of higher computation time. In the

simulations in this thesis, the eight-node brick element with reduced integration (C3D8R) will

mainly be employed. The six-node wedge element (C3D6) will be used for discretizing welds

and bolts. Reduced integration means that the strains are sampled with a quadrature rule of

one order lower than full integration when assembling the stiffness matrix, thus greatly reducing

the computational cost [18]. Abaqus automatically implements hourglass stiffness to prevent

the hourglass modes that otherwise might occur when using reduced integration [19].

2.2.2 Material model

When validating the finite element model in Abaqus to experimental results, it is necessary to

apply a material model that resembles the behavior of the actual material used in the experiment.

However, the complete stress-strain curves of materials used in an experiment are often not

available. Instead, only yield stress, ultimate stress, and occasionally fracture strain are reported.

To approximate the stress-strain curve of the material, the material model proposed in the

upcoming standard prEN 1993-1-14 [20] can be utilized. This is a piecewise linear material

model relevant for the simulation of hot rolled steel, where only the yield stress, fy, and the

ultimate stress, fu, must be known. This material model is the illustrated in Figure 2.3.

Figure 2.3: Material model for hot rolled steel from prEN 1993-1-14

f(ε) =



Eε for ε ≤ εy

fy for εy < ε ≤ εsh

fy + Esh(ε− εsh) for εsh < ε ≤ C1εu

fC1εu +
fu − fC1εu
εu − C1εu

for C1εu < ε ≤ εu

(2.4)

εy =
fy
E

(2.5)

εsh = 0.1
fy
fu

− 0.055, but 0.015 < εsh ≤ 0.03 (2.6)

εu = 0.6(1− fy
fu

), but 0.06 < εu ≤ elongation at fracture (2.7)
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C1 =
εsh + 0.25(εu − εsh)

εu
(2.8)

C2 =
εsh + 0.4(εu − εsh)

εu
(2.9)

Esh =
fu − fy

C2εu − εsh
(2.10)

The post-yield behavior of the material is modeled by defining data points with true stress and

corresponding true plastic strain. True stress and strain are related to nominal stress and strain

through equations 2.1 and 2.2, and the true plastic strain, εtrue,pl, is defined by:

εtrue,pl = εtrue − εtrue,elastic = εtrue,total −
σtrue
E

(2.11)

Material failure

prEN 1993-1-14 [20] proposes that the structural resistance of a joint should be determined

by evaluating the load-deformation path. The resistance should be set equal to the lesser of

the maximum load level of the computed load-deformation path and the force level where the

maximum tolerable deformation or strain occurs. For joints with a load-deformation curve with

a distinct extreme point, the first criterion is the most relevant. However, some joints exhibit

a curve with a constant increase in load level, and the second criterion is therefore governing

in analysis. prEN 1993-1-14 refers to NS-EN 1993-1-5 [2] for the limit of acceptable strain that

should be applied in analyses. Applying the recommended limit of 5 % strain in a finite element

analysis with solid elements will greatly underestimate both the moment resistance and the

rotational capacity compared to experimental results. This is because finite element analyses

with solid elements and an idealized geometry will generate local stress and strain concentrations.

In reality, the stresses will be redistributed, and strain concentrations with absolute values well

above 5 % will not result in failure of the joint.

To overcome this problem, and to obtain a numerical model true to real-world behavior, a

material model with progressive damage will be applied in Abaqus. This enables simulation of

joint failure, and a clear quantity for the moment resistance can thus be obtained. Progressive

damage implies that the stresses in the elements are reduced compared to elements without

damage, which is formulated mathematically as:

σ = (1−D)σ̄ (2.12)

where σ and σ̄ are the stresses in an element with and without damage, respectively, and D is

the damage parameter ranging from 0 to 1. The damage initiation is defined by a strain where

the stress reduction will initiate, and the damage parameter, D, is a function of the subsequent

plastic strain. After damage initiation, the stresses are instantly or gradually reduced as D

approaches 1, where the element exhibits zero capacity. This approach aims to capture the

physical behavior of steel and is applicable for simulating the failure of steel joints.

8
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2.2.3 Solution method

When analyzing structures in Abaqus, two main solution methods are available: Abaqus/Stan-

dard with a static, general procedure, and Abaqus/Explicit, with an explicit integration scheme.

The static solution method does not take into account inertia forces or other dynamic effects,

as the system is purely represented by the stiffness matrix. In Abaqus, it is possible to in-

clude geometric nonlinearity. This means that the stiffness matrix, K, and the load vector, R,

are a function of the deformation vector, D, and the stiffness matrix and the load vector are

updated throughout the load application. This is formulated mathematically in the following

equation:

K(D(t̄))D(t̄) = R(D(t̄)) (2.13)

By contrast, the explicit solution method includes dynamic effects. An explicit integration

scheme (central difference method) is implemented to solve the equation of motion, which is

formulated as:

K(D(t))D(t) +MD̈(t) = R(D(t)) (2.14)

where M is the mass matrix of the system, D̈ is the acceleration vector, and t is the real-time

of the system.

Many quasi-static structural problems can be analyzed using both of these methods, as the

dynamic effects will be insignificant. In general, a static procedure will be more accurate as

the solution at increment ’n+1’ is a function of the solution at increment ’n+1’. This requires

a nonlinear solution algorithm to solve the system. On the other hand, the explicit solution

method calculates the solution at time ’t+1’ explicitly from the solution at time ’t ’. The explicit

solution method therefore requires smaller time steps, or load increments, to converge to the

correct solution. However, for certain problems with a high degree of nonlinearity, the explicit

solution method is preferred, as it in general offers a higher degree of convergence. To reduce

the computation time, load scaling can be applied. This implies that the velocities are increased

in such a way that a specified deformation is achieved faster. The problem with load scaling is

that inertia forces become more prominent, and possibly influence the solution of the system. To

ensure that no significant dynamic effects occur, an energy balance check should be performed

to confirm that the kinetic energy is small compared to the internal strain energy. In this thesis,

both the static and the explicit solution methods will be applied.

2.3 Component method

The component method is a method for manually calculating the resistance and stiffness of

a joint based on the capacity and stiffness of the different joint components. This calculation

method is implemented in NS-EN 1993-1-8 [3] and is based on numerous research programs with

considerable amounts of experimental tests. Among these are the works of Zoetemeijer [21] and

Witteveen et al. [22], who proposed analytical models for the resistance of the T-stub in tension,

which is a key component in bolted beam-to-column joints. Other significant contributions are

the works of Chen and Newlin [23], who addressed the resistance of the column web. The current

stiffness model was proposed by Weynand et al. [24]. Their work has since been revised, and
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new key components added. The most important components in a bolted beam-to-column joint

are shown in Figure 2.4, with reference to their respective capacity and stiffness coefficient in

NS-EN 1993-1-8 listed in Table 2.1.

Figure 2.4: Components in NS-EN 1993-1-8

Table 2.1: Components in NS-EN 1993-1-8

Number Component
Capacity in
EN 1993-1-8 [3]

Stiffness coefficient

1 Column web in shear §6.2.6.1 k1

2 Column web in compression §6.2.6.2 k2

3 Column web in tension §6.2.6.3 k3

4 Column flange in bending §6.2.6.4 k4

5 End-plate in bending §6.2.6.5 k5

6 Beam flange in compression §6.2.6.7 -

7 Beam web in tension §6.2.6.8 -

8 Bolts in tension §6.2.6.4/§6.2.6.5 k10

10
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The moment resistance of the joint is controlled by the component(s) with the lowest capacity.

The resulting moment resistance can be calculated by the following expression:

Mj,rd =
∑
r

hr · Ftr,Rd (2.15)

whereMj,Rd is the ultimate resistance of the joint, Ftr,Rd is the capacity of bolt row r in tension,

and hr is the distance from the bolt row to the center of compression. However, the total force

in the bolts cannot exceed the capacity of other components in the joint.

The rotational stiffness of the joint can similarly be calculated using the individual stiffnesses

of the components in the joint:

Sj =
Ez2

µ
∑
i

1
ki

(2.16)

where ki is the stiffness coefficient of component i, and µ is the relationship between initial

stiffness and tangent stiffness; µ = Sj,ini/Sj . This parameter is defined by the following equa-

tion:

µ =

1 for Mj,Ed ≤ 2/3Mj,Rd(1.5Mj,Ed

Mj,Rd

)ψ
for 2/3Mj,Rd < Mj,Ed ≤Mj,Rd

(2.17)

where Mj,Ed is the design moment of the joint. The parameter ψ is given as 2.7 for welded and

bolted end-plate joints. This equation implies that the moment-rotation curve of a joint can be

considered linear up to 2/3 of the moment resistance.

2.3.1 Joints subjected to a combination of moment and axial force

As NS-EN 1993-1-8 only briefly covers joints subjected to a combination of moment and axial

force, calculation methods from relevant literature on the topic will be applied. In the follow-

ing sections, the relevant expressions for calculating the moment resistance, initial rotational

stiffness, and rotational capacity will be presented.

Ultimate moment resistance

NS-EN 1993-1-8 states that axial forces in the attached part of a joint can be neglected if the

force is lower than 5 % of the plastic capacity for axial force, Npl,Rd. If the axial force exceeds

this limit, the following equation should be used to verify the capacity of the joint:

Mj,Ed

Mj,Rd
+
Nj,Ed

Nj,Rd
≤ 1 (2.18)

where Mj,Ed and Nj,Ed are the design moment and axial force, respectively. Mj,Rd and Nj,Rd

are the design moment resistance and axial force resistance calculated without simultaneously

acting axial force and bending moment, respectively. These two criteria result in an interaction

diagram as shown in Figure 2.5. Another approach is to consider the resulting forces in the beam

flanges from axial force and moment, and compare these to the capacity of the components in

the joint. This method was described by Sokol et al. [25], and the method will result in a
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higher resistance for most combinations of bending moment and axial force. An example of an

interaction diagram applying this method is also shown in Figure 2.5.

Figure 2.5: Interaction between moment and axial force [25]

The method proposed by Sokol et al. [25] is derived for proportional loading, i.e. assuming

that the eccentricity, e =Mj,Ed/Nj,Ed, is kept constant during loading. Resistance formulas for

combined bending moment and axial force can be derived by considering the moment equilibrium

about the compressive and the tensile resultant while ensuring that the resulting forces does not

exceed the capacity, as illustrated in Figure 2.6. The bending moment is assumed to give tension

in the upper flange of the beam.

Figure 2.6: Combined axial force and moment

The moment equilibrium gives the following sets of equations:

Mj,Ed +Nj,Ed · zc ≤ Ft,Rd · z (2.19)

Mj,Ed −Nj,Ed · zt ≤ Fc,Rd · z (2.20)

12
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where Fc,Rd and Ft,Rd are the capacity of the compression and tension zone, respectively. With

more than one bolt row in tension, the capacity of the tensile zone can be calculated as the

resultant force of the bolts in tension, with the assumption of plastic distribution of forces. The

internal moment arm, z, can then be calculated:

z =

hr
∑
i
Ft,r,Rd∑

i
Ft,r,Rd

(2.21)

where Ft,r,Rd is the capacity of bolt row r with distance hr from the compressive resultant.

Rewriting equation 2.19 and 2.20 while assuming constant eccentricity, e, gives the following

expression for moment resistance:

Mj,Rd = min


Ft,Rd · z
1 +

zc
e

Fc,Rd · z
1− zt

e

(2.22)

In this equation, it is assumed that e > zt or e < −zc. For large magnitudes of axial force, there

will be tension or compression in both beam flanges, as illustrated in Figure 2.7, and the expres-

sions for resistance must be modified. The capacity of the components must be recalculated,

as they behave differently in compression and in tension. However, this is not relevant for the

cases considered in this thesis, as the eccentricity is within the assumed limits.

(a) Tension (b) Compression

Figure 2.7: Component method with high axial force-to-moment ratio

With non-proportional loading, i.e. moment or axial force applied independently, the resistance

of the joint remains unchanged. This presupposes that the joint does not fail from axial force

or moment acting alone.

Stiffness

The presence of axial force implies that certain joint components are activated more than when

the bending moment acts alone. As a consequence, the initial rotational stiffness of the joint

is altered. An expression for the modified stiffness was also described by Sokol et al. [25], and

the derivation will be presented briefly. Considering Figure 2.8, the deformation of the top and

bottom flange can be expressed as:
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δt =
M +N · zc
z · E · kt

(2.23)

δc =
M −N · zt
z · E · kc

(2.24)

Figure 2.8: Stiffness model

From this, the total rotation, θ, can be expressed as:

θ =
δt + δc
z

=
1

Ez2

(M +N · zc
kt

+
M −N · zt

kc

)
(2.25)

Finally, the initial stiffness, Sj,ini, can be expressed by the following equation:

Sj,ini =
M

θ
=

N · e · E · z2
N · e+N · zc

kt
+
N · e−N · zt

kc

=
e

e+ e0

E · z2∑ 1

k

(2.26)

where e0 is defined as:

e0 =
zc · kc − ztkt
kc + kt

(2.27)

With more than one bolt row in tension, the equivalent stiffness of the tensile zone, kt, is defined

in NS-EN 1993-1-8 [3] as:

keq =

∑
r

keff,r · hr

zeq
(2.28)
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where the stiffness coefficient for bolt row r is given by:

keff,r =
1∑

i

ki,r
(2.29)

and equivalent moment arm is given by the following equation:

zeq =

∑
r

keff,r · h2r∑
r

keff,r · hr
(2.30)

Contrary to the moment resistance, the initial stiffness of the joint is affected by whether the

axial force and bending moment are applied proportionally or not. Compressive axial force

applied before the bending moment increases the stiffness and vice versa. This is because the

components, in general, behave stiffer when loaded in compression than in tension.

Rotational capacity

Rotational capacity is the last main characteristic of a steel joint. NS-EN 1993-1-8 [3] states

that a joint has sufficient rotational capacity for plastic analysis if both of these criteria are

satisfied:

(a) Design moment resistance of the joint is governed by the resistance of either the column

flange in bending or the end-plate in bending.

(b) The thickness of either the column flange or the end-plate satisfies the following condition:

t ≤ 0, 36d
√
fub/fy, where d is the diameter of the bolt, fy is the yield strength of the

relevant basis component, and fub is the ultimate strength of the bolt.

If the joint’s moment resistance is limited by the shear capacity of the column web, the rotational

capacity can be assumed sufficient for plastic analysis if dwc/tw ≤ 69
√
235/fy, where dwc and

tw are the depth and thickness of the column web, respectively.

For most design purposes, it is sufficient to determine whether plastic analysis is applicable or

not. However, in case the above criteria are not satisfied, or if a progressive collapse analysis

is to be carried out, the actual rotational capacity of the joint might be of interest. Beg et al.

[26] developed a simplified calculation method for determining the rotational capacity of bolted

beam-to-column joints. The deformation capacities of the different components are derived from

a mix of simplified analytical considerations and empirical data. The derivation can be found in

[26], and the resulting deformation capacities for the relevant components are listed below:

1. Column web in compression:

δu1 =
εu
d

(2.31)

where d is the depth of the column web, and εu is determined from Figure 2.9a as a

function of axial force in column; n = N/Npl

2. Column web in tension:

δu2 = εud (2.32)

where εu = 0.1
(√

4− 3n2 − n
2

)2
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3. Column flange and end-plate in bending: Deformation capacity dependent on failure

mode (according to NS-EN 1993-1-8 [3]):

(i) Mode 1:

δu3 = 0.4m (2.33)

where m is the distance from center of bolt to weld (see Figure 6.2 in NS-EN 1993-1-8).

(ii) Mode 2:

δu3 = 0.1lb(1 + k
m

n
) (2.34)

where lb is the clamping length of the bolt, n is the distance from center of bolt to

edge of plate, and k is an empirical factor; k ∈ [1, 5].

(iii) Mode 3:

δu3 = 0.1lb (2.35)

4. Column web in shear: γu is a function of the depth-to-thickness ratio, and can be taken

from Figure 2.9b

(a) Column web in compression (b) Column web in shear

Figure 2.9: Deformation capacity [26]

The total rotational capacity is then given as:

θu =
δ1 + δ2 + δ3,ep + δ3,cf + γhf

hf
(2.36)

where δ3,ep and δ3,cf are the deformations from the end-plate and the column flange (including

bolts), respectively, and hf is the distance between the center of the flanges.

The component with the lowest strength contributes with its full deformation capacity. The

other components contribute with deformations corresponding to that force level. The behavior

of the components is assumed to be trilinear, with stiffness coefficient ki up til 2/3 of the

component’s resistance, before the stiffness is reduced to ki/7. This is similar to the nonlinear

part of the moment-rotation curve defined in NS-EN 1993-1-8 (equation 2.16 and 2.17), except

that the behavior is assumed linear after the force surpasses 2/3 of the resistance. Determination

of initial stiffness and resistance of the individual components is therefore necessary in order to

determine the rotational capacity of the joint. However, applying the design formulas from

NS-EN 1993-1-8 directly will be overly conservative, as the formulas reflect the strength at the

onset of plasticity and not the ultimate resistance [26]. A remedy for this problem is to use
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the ultimate strength, instead of the yield strength, in the design formulas for the end-plate

and the column flange in bending. An example of the determination of rotational capacity is

demonstrated in Figure 2.10.

Figure 2.10: Example of calculation of rotational capacity

2.3.2 Beam minor axis joint

A bolted beam-to-column joint designed to be a major axis joint will often also be subjected

to bending moment about the weak axis of the beam. In addition to carrying gravitational

loads, the joint can also contribute to the horizontal brazing of the structure, where bending

about the beam minor axis is expected to occur. Even though this load effect is considerably

less prominent than the major axis moment, it will still be an important factor to take into

consideration. Additionally, determining the minor axis stiffness of the joint might be necessary

prior to a global analysis if the joint is a part of the bracing system. However, Eurocode 3

does not cover this type of joint configuration. Yield line theory might be applied to estimate

the resistance, but this approach is very uncertain, and will therefore not be attempted in this

thesis. The lack of available design formulas for this joint configuration makes it a problem

highly relevant to be analyzed in IDEA StatiCa.

2.3.3 Column minor axis joint

The last joint configuration considered in this thesis is the column minor axis joint. This type

of joint is relevant where beams from two perpendicular directions are bolted to the same open

cross-section column. However, this type of joint is not covered by Eurocode 3, and analytical

expressions from literature must therefore be considered to predict the resistance and the stiffness

of the joint. With this type of configuration, a new component must be considered: out-of-plane

bending of the column web. Gomes et al. [27] and Neves et al. [28] established expressions for

the resistance and the stiffness, respectively, of this component. As these formulas are rather

cumbersome, they are presented in Appendix A.

17



3 Major axis bending of bolted

beam-to-column joints

In this chapter, major axis bolted beam-to-column joints will be analyzed, calculated, and

compared to the results of analyses in IDEA StatiCa. This chapter is divided and organized

into five sections. Section 3.1 presents the physical experiment used as basis for the validation.

Section 3.2 provides an explanation of how the numerical models in IDEA StatiCa and Abaqus

are assembled, and what assumptions are adopted in the manual calculations. Section 3.3

contains the results of the validation process, i.e. the comparison between the results obtained

from the finite element analysis in Abaqus, and the results obtained from the physical experiment

used for validation purposes. Section 3.4 compares the results from the analysis in IDEA StatiCa

to the manual calculations based on Eurocode 3, and to the results from analyses carried out in

Abaqus. Section 3.5 presents a parametric study where joints with different load conditions and

geometries are analyzed and calculated. Sections 3.3, 3.4, and 3.5 all conclude with a discussion

of the key findings.

3.1 Experiment

There have been conducted numerous experiments on bolted beam-to-column joints. In this

thesis, the works of Zhu et al. [29], who carried out a series of full-range experiments on bolted

joints, will be considered. This series of experiments is chosen as the test setup and the material

data of the experiment is thoroughly described in the article. The geometry and the method of

load application are illustrated in Figures 3.1a and 3.1b, respectively. The beam was welded to

an end-plate with a thickness of either 10 mm or 20 mm. In some experiments, a backing plate

was placed on the column flange on the opposite side of the end-plate, as shown in Figure 3.1a.

The beam and the column were hot rolled with a characteristic yield strength of 350 N/mm2,

and the bolts were M24 grade 8.8. However, tensile tests of the profiles were performed, and

measured values were adopted in the analyses. For bolts, tensile tests were not performed, and

the characteristic material properties were adopted in the analyses.
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3 Major axis bending of bolted beam-to-column joints

(a) Geometry (b) Load application

Figure 3.1: Major axis joint experimental setup [29]

3.2 Calculation models

In this section, the different assumptions and simplifications implemented in the finite element

analyses and manual calculations will be explained.

3.2.1 IDEA StatiCa

IDEA StatiCa does not allow the user to specify the length of members directly. The length

is instead specified as a factor multiplied by the height of the members and was therefore only

approximately the same as in the experiment. The boundary conditions of the experiment can

also not be replicated exactly. However, both the length of members and boundary conditions

have a negligible effect on the results of the calculation.

IDEA StatiCa is primarily a design software, and it is intended that load effects extracted from

a global analysis can be directly applied to joints. The loads are therefore applied to the end of

members in such a way that the resulting force in the intersection between the column and the

beam centerline are the loads specified by the user. In the experiment, the shear load was applied

at a distance of 1164-1174 mm from the centerline of the column. To imitate the experiment,

the loads in IDEA StatiCa were applied so that the ratio M/V is the same as in the experiment.

When performing stiffness analysis in IDEA StatiCa, the loads applied to the analyzed member

are scaled proportionally up til failure, thus reproducing the experimental load application. The

IDEA StatiCa model with assumed boundary conditions is shown in Figure 3.2.

As mentioned, IDEA StatiCa employs an elastic-plastic material model, with hardening inde-

pendent of the ultimate stress. Therefore, only the yield strength from tensile tests was relevant

for the analysis. The limit of plastic strain was varied, with the intent to explore how this

parameter influences the capacity of the joint.

IDEA StatiCa allows the user to specify the maximum size of elements in the finite element

model. A simplified mesh convergence study was carried out, and it was chosen to employ an

element size of 6 mm in the subsequent analyses, as this resulted in acceptable accuracy and

computation time. The result of the mesh convergence study can be found in Appendix B, and

the resulting mesh used in analyses can be seen in Figure 3.3.
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3 Major axis bending of bolted beam-to-column joints

Figure 3.2: IDEA StatiCa model

(a) Overview (b) Column
flange

(c) End-plate

Figure 3.3: Mesh in IDEA StatiCa

3.2.2 Abaqus model

Solution method

Simulation of a bolted beam-to-column joint loaded until failure involves a high degree of ge-

ometric and material nonlinearity, especially since a material failure model is implemented.

Preliminary analyses showed that static analyses encountered convergence issues, and it was

therefore required to analyze the problem using an explicit solution method. Instead of load

control, deformation control was applied, as this results in fewer convergence issues. The loading
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rate was increased, and the load velocity that resulted in the best balance of computation time

and accuracy was determined to be 600 mm/s. The velocity was ramped up linearly from zero

during the first 10 % of the simulation time. This was done to prevent artificial stress waves

that might else be introduced into the system due to abrupt changes in velocity. To verify that

no significant dynamic effects occurred, the kinetic energy was compared to the internal energy.

For all analyses, the kinetic energy was found to be ≤ 1 % of the internal energy. Dynamic

effects are therefore assumed to be negligible. To verify that the accuracy of the explicit solution

method was acceptable compared to the more accurate static solution method, static analyses

were performed on models without a progressive damage model

Geometry, interaction, and boundary conditions

When modeling the geometry, the different parts were modeled and meshed separately, before

the complete structure was assembled. The symmetry of the problem was utilized, and only

half the structure was modeled. The boundary condition on the symmetry plane prevented

deformations normal to the plane, as shown in Figure 3.4. For joint configurations where buckling

of the column web is the governing failure mode, it is not possible to utilize the symmetry. This

is because buckling of the web includes deformations normal to the symmetry plane, which is

restricted when utilizing the symmetry. In these cases, the whole joint had to be modeled, which

implied a higher computational cost. The in-plane boundary conditions were applied using a

rigid body constraint, where reference points in the center of the openings on the web were

specified as control points for the slave nodes on the web, as shown in Figure 3.5. This implies

that the nodes in the opening behave as a rigid body governed by the deformation of the control

points [19]. Boundary conditions were subsequently applied to the reference points, as shown in

Figure 3.6.

The welds were modeled as triangular prisms and connected to the end-plate and the beam with

tie constraints. The tie constraint joins separate surfaces and prohibits relative motion [19],

and is ideal for joining regions with different mesh densities. The surfaces on the end-plate and

the beam were chosen as slave surfaces, while the surfaces on the welds were chosen as master

surfaces, as shown in Figure 3.7. Contact between the parts was accounted for by including

a “general contact” interaction, with a “hard” normal behavior. The friction coefficient for

tangential behavior was chosen as 0.3. This corresponds to a “cleaned and wire-brushed surface”

[30], and is a commonly used friction factor.

To take into account the threaded part of the bolts, the bolt shanks were modeled with a constant

diameter consistent with the tensile area of the bolts (diameter=21.2 mm for M24 bolts). The

bolt shank, nut, head, and washer were modeled in one part. This simplification is acceptable

as the local behavior of the bolt is not of importance. The moment-rotation curve was obtained

similarly as in the experiment. The rotation of the joint was obtained as θ = tan−1(δ/L)−θelastic,
where δ and L are illustrated in Figures 3.6, and θelastic is the rotation due to elastic deformation

of the beam. The rotation due to elastic deformation of the column was found to be negligible.

The moment was determined using “integrated output sections” in Abaqus, which sums up the

nodal forces over a section and calculates the moment about a defined point in the section.
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Figure 3.4: Symmetry
boundary condition

Figure 3.5: Rigid body constraint

Figure 3.6: Boundary conditions and load
application in Abaqus

Figure 3.7: Tie constraint applied to welds

Material properties and progressive damage

The provided material properties of the steel in the experiment include yield stress, tensile

strength, ultimate strain, and measured Young’s modulus. The Poisson’s ratio, ν was set equal

to 0.3. However, to simulate the rotational capacity of the joint, preliminary analyses showed

that it was necessary to include a progressive damage material model. In Abaqus, “ductile

damage” and “damage evolution” can be included in the material model. This implies that for

a given strain, the material failure is activated, and the stresses in the elements are immediately

or gradually reduced. As the material data from the experiment is limited, an approach similar

22



3 Major axis bending of bolted beam-to-column joints

to the one proposed by Pavlovic et al. [31] was utilized in this thesis. It is important to

acknowledge that this is only an approximation, and the validity and accuracy of this approach

are uncertain. To obtain accurate predictions of material failure, material calibrations should

be carried out. However, to evaluate IDEA StatiCa’s ability to calculate rotational capacity,

and to obtain a clearly defined moment resistance, this method was deemed to be the most

convenient.

Previous research has shown that the fracture strain is a function of the stress triaxiality, which

is the ratio between hydrostatic stress and equivalent von Mises stress, as defined in the following

equation:

η =
σm
σeq

=

1

3
(σ1 + σ2 + σ3)√

1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]

(3.1)

For uniaxial tension, η = 1/3. The well-known research by Rice and Tracey [32] showed that

fracture strain could be defined by an exponential function of the stress triaxiality:

ε̄plf = α · e−βη (3.2)

where ε̄plf is the equivalent plastic strain at fracture, and α and β are material factors. β is often

assumed to be 1.5 for most steels [31, 32, 33], while α is calibrated from material testing. If the

fracture strain from a uniaxial tensile test (η = 1/3), εplf , is determined, the fracture strain as a

function of stress triaxiality can be expressed as:

ε̄plf = εplf · e−1.5(η−1/3) (3.3)

In the article by Pavlovic et al. [31], it was assumed that the ratio of equivalent and uniaxial

plastic strain at fracture and at the onset of material failure are the same. From this, the

equivalent plastic strain at the onset of damage, ε̄plu , can be expressed by the uniaxial plastic

strain at the onset of damage, εplu . In this thesis, it was further assumed that the uniaxial strain

at the onset of damage is the same εu as defined by prEN 1993-1-14 [20] (Equation 2.7). The

equivalent plastic strain at the onset of damage, ε̄plu , as a function of stress triaxiality, can then

be expressed as:

ε̄plu = εplu · e−1.5(η−1/3) (3.4)

The nominal/average strain at failure for the materials in the experiment is available in the

article by Zhu et al. [29]. However, a nominal strain measure does not take into account

the necking and the strain concentration in the necking zone. In reality, the local strain after

necking is much higher than the nominal strain. Pavlovic et al. [31] accounted for this in their

material model and found that the ratio between local strain and nominal strain at failure was

approximately 1.9 for S235 steel. This assumption was adopted in the simulations.
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After the onset of damage, the “damage evolution” must be specified in Abaqus. The state at

which an element is deleted from the mesh is defined by plastic displacement at failure, ūplf . This

is the product of characteristic element length, Lchar, and effective plastic strain, as defined by

[33]:

ūplf = Lchar · (ε̄plf − ε̄plu ) (3.5)

The element’s characteristic length for a solid element was taken as the cube root of the in-

tegration point volume [34] (which is the same as the element volume for reduced integrated

elements). Since the parts in the assembly might have a mesh with varying element size, the

characteristic element length was calculated based on the element volume in regions expected to

experience material failure. The material failure can be immediate, but this is not recommended,

as a sudden drop in stress can result in dynamic instabilities [19]. Tabulating the damage as

a function of plastic displacement is therefore more appropriate. The plastic displacement vs.

damage variable curve from Pavlovic was adopted for both the bolts and the plates but adjusted

for mesh size and relevant plastic strain at failure. An illustration of the stress-strain curve of

the material model where “ductile damage” is included, is shown in Figure 3.8.

Figure 3.8: Material model with material failure

Finite element mesh

Several factors need to be considered when establishing a finite element model. Primarily,

the finite element mesh needs to be able to accurately reproduce the exact solution. A mesh

convergence study was therefore carried out before the actual analyses. This consists of a series

of analyses where the mesh is gradually refined until a converged solution is obtained. For every

analysis, an energy balance check was carried out. This involves comparing the kinetic energy

and the artificial strain energy to the internal energy. Artificial strain energy is the energy used

to control hourglass deformation (hourglass stiffness is added to reduced integrated elements in

Abaqus) [19]. Large values of artificial strain energy indicate that the mesh is too coarse, and

changes might be necessary [34]. A rule of thumb is to confirm that the artificial strain energy

is ≤ 5 % of the internal energy [35]. If this criterion is satisfied, which it was for all analyses

carried out, the mesh can be assumed to be suitable.

Including a “ductile damage” material model has some implications on the choice of mesh. Since

the displacement at failure is proportional to characteristic element length, the material input
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must be chosen in accordance with element size. Considering that not all elements in a mesh

have the same size and aspect ratio, the model becomes slightly mesh sensitive. To reduce the

mesh dependency, it is recommended that the aspect ratio of the element is close to one [19].

Another factor to consider when executing an explicit analysis is the length of the time step. To

prevent the solution from diverging, Abaqus employs a time step smaller than the critical time

step, which is defined by the following equation:

∆t ≤ Le

√
ρ

λ̂+ 2µ̂
≈ Le

√
ρ

E
(3.6)

where λ̂ and µ̂ are the effective Lamé’s constants [19], and ρ is the density of the material. This

implies that the characteristic element length, Le, of the smallest element determines the time

step for the whole model throughout the analysis. It is therefore advantageous to avoid elements

that are smaller than necessary and to employ elements in regions of interest that are of similar

size. In this way, the required computation time of the analysis can be limited to an acceptable

level.

Based on the mesh convergence study, acceptable computation time, and common practice [36],

it was chosen to discretize the model with four elements over the thickness of all parts and

regions expected to be dominated by bending stresses. Two elements over the thickness were

applied in regions expected to mainly experience axial stresses. The mesh was created with

intent of achieving element aspect ratios close to one in regions expected to experience material

failure. The bolts were meshed with a combination of wedge and brick elements, as this allows

the elements in the bolt shank to be of similar volume. The mesh used in the analysis is

shown in Figure 3.9. Note that mesh density was reduced in areas where high density is not

required.

(a) Overview (b) Detail of weld, bolt and end-plate

Figure 3.9: Mesh in Abaqus
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3.2.3 Component method

The results from the analyses carried out in IDEA StatiCa and Abaqus will be compared to

the moment resistance and the initial stiffness calculated according to NS-EN 1993-1-8 [3], and

the rotational capacity calculated according to Beg et al. [26]. In the calculations, all material

factors for steel were set equal to 1.0, and partial factors for loads were neglected. Instead of

applying characteristic values of yield stress for the sections, measured values were employed.

For bolts, characteristic material properties were employed. According to Beg et al. [26], it is

overly conservative to calculate the capacity of the end-plate and the column flange in bending

directly according to NS-EN 1993-1-8 when calculating the rotational capacity. Therefore, it was

proposed to replace fy with 0.9fu in the capacity expressions for end-plate and column flange

in bending. This approach was adopted in the subsequent calculations.

3.3 Validation

Three different experimental setups, all conducted by Zhu et al. [29], were chosen as the basis

for validation. This includes an experiment with a joint subjected to pure bending and two

experiments with joints subjected to a combination of bending and axial force. The experimental

characteristics that differ between the setups are listed in Table 3.1.

Table 3.1: Experimental setups [29]

Name
End-plate
thickness [mm]

Backing plate
thickness [mm]

Loading condition

EP10 10 - Bending

EP10-T 10 - Bending and tension

EP20BP20-C 20 20 Bending and compression

3.3.1 Pure bending

The first joint configuration chosen as the basis for validation is the joint with a 10 mm end-plate

subjected to pure bending. Figure 3.10 shows the resulting moment-rotation curves from the ex-

periment and the numerical simulation. Additionally, the result from a numerical simulation of a

model where progressive damage was not applied is plotted in the same figure. When comparing

the numerical curves, it can be seen that the curve corresponding to the model with material

failure exhibits some fluctuations. This is caused by material failure and subsequent element

removal. In reality, bending-induced cracks form in the extreme fibers and gradually grow in

the thickness direction towards the center. In the simulation, the end-plate was discretized with

four elements over the thickness, which implies that the cracks will form and grow less gradually.

A finer mesh would reduce these fluctuations, as the impact of single elements on the global

solution would decrease. Another remedy would be a more accurately defined damage evolution

based on material calibrations, as this might reduce the abrupt change in element stresses. How-

ever, the overall solution shows good agreement with the physical experiment, and the chosen

mesh and damage evolution were therefore not altered in the subsequent analyses.
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Figure 3.10: Moment-rotation curves for validation of EP10

Figure 3.11 shows contour plots of the von-Mises stresses on the deformed shape of the joint for

three points on the moment-rotation curve.

(a) M=163 kNm (2/3MRd) (b) M=244 kNm (Maximum
moment)

(c) Post-failure

Figure 3.11: Contour plot of von-Mises stresses on the deformed shape of EP10 (with
progressive damage)

3.3.2 Combined bending and tension

The second joint configuration that was chosen is the joint with a 10 mm end-plate subjected

to a combination of axial tensile force and bending. In the physical experiment, applying a

combination of bending and axial force was done by tilting the column to an angle of θ1 = 34
◦, as shown in Figure 3.12a. In this way, the force applied to the beam consisted of a shear

component and an axial component. In an attempt to replicate this experimental setup, the

deformation was applied in an external reference point connected to the model using a spring

element, as illustrated in Figure 3.12b. This is analogous to applying the force through a rigid

bar, pinned and free to rotate on both ends. The length of the load arm was assumed to be 700

mm, based on figures in [29]. Determining the axial force in the beam in the analysis was not

straightforward, and the approach for the determination of axial force is explained in Appendix

C.
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(a) Physical experiment [29] (b) Abaqus

Figure 3.12: Combined tensile and bending application

The resulting moment-rotation curves can be seen in Figure 3.13a. Additionally, Figure 3.13b

shows the axial force-rotation curves from both the experiment and the simulation.

(a) Moment-rotation curve (b) Axial force-rotation curve

Figure 3.13: Validation of EP10-T

3.3.3 Combined bending and compression

The last joint configuration chosen as the basis for validation is the joint with a 20 mm thick

end-plate and backing plate, subjected to a combination of bending and compressive axial force.

As in the case of tensile axial force, the column was rotated to achieve axial force in the beam,

but this time to an angle of θ1 = −34◦. In the numerical simulation, the deformation was applied

through a spring element to reproduce the combination of axial compressive force and bending.

For this joint, the failure mode was buckling of the column web. In a physical experiment,

buckling of the column web is initiated by imperfections in the steel section. In Eurocode 3,

this is taken care of by introducing a reduction factor for buckling, ρ. However, in a numerical

simulation that discretizes the geometry without imperfections, the resistance of the column web

is unrealistically high. To overcome this problem, geometric imperfections must be introduced

in the numerical simulation. A common approach is to superimpose the buckling shapes as
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geometric imperfections on the perfect geometry. This is achieved by first performing a linearized

buckling analysis to determine the eigenmodes/buckling shapes, and then applying the buckling

shapes as geometric imperfections in the post-buckling analysis. This approach was adopted in

the analysis. The amplitude of the imperfection was chosen in accordance with NS-EN 1993-1-5

[2], which states that the amplitude of the imperfection for a plate should be assumed equal to

L/200, where L is the shortest span of the plate. For this joint, the amplitude was therefore

assumed to be 1.4 mm. With this approach, the resulting resistance will be closer to the

resistance achieved in the experiment. In Figure 3.14a the deformed joint from the experiment

is shown. The buckling shape from the buckling analysis that resembles this failure mode is

displayed in Figure 3.14b. After introducing this buckling shape as geometric imperfection in

the analysis, the deformed shape from the post-buckling analysis in Abaqus was obtained, and

is shown in Figure 3.14c.

(a) Physical experiment (b) Eigenmode from
Abaqus

(c) Contour plot of
out-of-plane

deformation at failue

Figure 3.14: Failure of EP20BP-C

The resulting moment-rotation curves and axial force-rotation curves can be seen in Figures

3.15a and 3.15a, respectively. The moment-rotation curve from a simulation of a model without

geometric imperfections is plotted in the same figure. This is done to highlight the effect of

geometric imperfections in a numerical analysis where buckling is the main failure mode.
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(a) Moment-rotation curve (b) Axial force-rotation curve

Figure 3.15: Validation of EP20BP-C

3.3.4 Discussion of validation

From the moment-rotation curves, it can be seen that the moment resistance from the simulation

agrees very well with the experimental results. The failure mode of joint EP10 and EP10-T

was bending of the end-plate, while buckling of the column web was the failure mode in joint

EP20BP20-C. The correct failure mode was captured in the numerical simulations. However,

there are some discrepancies that will be discussed in the remainder of this section.

Initial stiffness

In opposition to the moment resistance, the initial stiffness exhibits considerable discrepancy

between simulation and physical experiment. This can be caused by several factors, which are

listed below:

• Measurement error: The measure of displacement and force level in a physical experiment

will always contain some error.

• Residual stresses: Hot rolled sections will, due to the uneven cooling rates after rolling,

show residual stresses of up to 50 % of the yield stress of the section [37]. Additionally,

the welding of plates introduces local residual stresses as large as the section’s yield stress.

Residual stresses do not affect the capacity of the steel section, but the deformations will

be greater for the same force level, than if no residual stresses were present [38]. Due to

the residual stresses, parts of the section will yield at low levels of deformation, which

causes the effective stiffness of the section to be reduced.

• Experimental setup: The load application in the experiment was not replicated exactly.

When the load arm in the experiment pushed the beam, the angle of the load arm, and

therefore the load direction, changed. The length of the load arm is uncertain and might

influence the joint behavior. Another aspect is the boundary conditions in the experiment.

In the simulation, the pinned boundary condition allowed for zero movement, but in the

physical experiment, there was possibly some initial movement due to slack in the exper-

imental setup. It is therefore common to include an unloading phase early to accurately

capture the rotational stiffness of the joint. However, this was not done in this experiment.

Similar discrepancy in initial stiffness was also experienced in simulations of this experiment

carried out by other authors [39]. In Section 3.4, it can be seen that the prediction of initial

stiffness according to NS-EN 1993-1-8 and IDEA StatiCa is closer to the initial stiffness obtained
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from Abaqus, than to the initial stiffness in the physical experiment. Based on this, it can be

assumed that the discrepancy in initial stiffness stems from the nature of the physical experiment,

and not from modeling error in Abaqus.

Axial force

The moment resistance from the cases with combined axial force and bending shows good

agreement between experimental results and numerical simulations. However, also here the

initial stiffness shows some discrepancy between simulation and experiment, especially for the

case with compressive axial force. This can to a large extent be ascribed to the same factors as

discussed previously.

As seen in Figures 3.13b and 3.15b, the maximum axial force in the simulation of joint EP10-T

and EP20BP20-C, show an error of 3 % and 8 %, respectively, compared to their respective

physical experiment. This implies that the approach for applying combined bending and axial

force agree relatively well with the experiment. It is worth noting that the amplitude of the

geometric imperfection affects the resistance of joint EP20BP-C, where larger imperfection im-

plies lower resistance. This is also a source of error between the simulation and the physical

experiment.

Rotational capacity

The obtained rotational capacity can be considered adequate for an analysis conducted without

material calibration. The approach used in this thesis is uncertain, but for these experimental

configurations, it gives a good estimate of the rotational capacity of the joints. In Figure 3.16,

the fracture propagation from the physical experiment and the numerical simulation of joint

EP10 is shown. The cracks initiated at the toe of the welds close to the bolts, before the cracks

grew in the direction of the beam flange. It can be seen that the simulation is able to capture the

correct failure mode of the joint, and is in that regard an accurate representation of the physical

experiment. However, using this approach in other experiments with other failure modes might

not yield the same acceptable results.

(a) Crack growth in physical experiment [29] (b) Contour plot of elements exhibiting zero stresses (cracks)
in Abaqus at fracture initiation and failure of the joint.

Figure 3.16: Failure mode and crack growth of joint EP10
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3.4 Verification

In order to compare the results from numerical simulations in Abaqus to IDEA StatiCa, it was

chosen to adopt a similar material model in Abaqus as in IDEA StatiCa (shown in Figure 3.8).

The material model has the same yield plateau slope as in IDEA StatiCa, but with the added

“ductile damage” material model to simulate material failure. The onset of damage is assumed

to occur similarly as for the material model described in Section 3.2.2. It is important to ac-

knowledge that this approach is not meant to simulate the actual behavior of the material. The

intent is to establish a numerical model that is comparable to the model in IDEA StatiCa, while

also being somewhat true to real-world behavior. If a progressive damage material model is not

applied, the moment level would be constantly increasing, with no clearly defined moment resis-

tance. By applying a material model with “ductile damage”, it is possible to obtain quantities

that can be compared to IDEA StatiCa.

The manual calculations based on NS-EN 1993-1-8 [3], Sokol et al., [25] and Beg et al. [26]

were performed in Maple and are presented in Appendix D for the joint configuration EP10-T.

The capacity and stiffness of each component, and the resulting moment resistance and initial

stiffness, are listed in Table 3.2. The deformation capacity of each relevant component, and the

resulting total rotational capacity, are shown in Table 3.3.

Table 3.2: Calculations for joint EP10-T according to NS-EN 1993-1-8

Component
Capacity
row 1 [kN]

Capacity
row 2 [kN]

Capacity
group [kN]

Stiffness
coefficient1

[mm]

Shear Column web in shear - - 965.5 4.72 mm

Tension

Column web in tension 848.9 848.9 956.0 5.71
Column flange in bending 403.0 403.0 703.3 4.75

End-plate in bending 184.8 267.0 451.8 4.06/1.52

Beam web in tension - - 906.4 ∞
Bolts in tension - - 1017 14.1

Compression
Column web
in compression

- - 571.9 5.95

Beam flange
in compression

- - 1242 ∞

Joint
Moment resistance 118.8 kNm

Initial stiffness 24100 kNm/rad

1 Stiffness coefficient per row in tension. See Appendix D for full calculation.

Table 3.3: Deformation capacity of joint EP10 and EP10-T after [26]

Component Deformation capacity

Column web in shear 40.42 mm

Column web in tension 24.42 mm

Column flange T-stub 20.74 mm

End-plate T-stub 12.42 mm

Column web in compression 5.13 mm

Rotational capacity 51.3 mrad
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For joint EP10, the moment-rotation curves from numerical simulations in IDEA StatiCa and

Abaqus, and calculations according to Eurocode 3 are shown in Figure 3.17. The moment-

rotation curve from the Abaqus simulation with the “real” material model (described in Section

3.2.2) is also included in the figure, to emphasize the difference between the material models.

Based on the mesh convergence study, the maximum element size in IDEA StatiCa was chosen

to be 6 mm. Additionally, the result from a model with a maximum element size equal to 18

mm is plotted in the same figure. To investigate the effect of the plastic strain limit in IDEA

StatiCa, analyses with limit plastic strain of 5 %, 10 %, 20 %, and 30 % were carried out, and

the results are plotted in Figure 3.17 as well.

Figure 3.17: Moment-rotation curves for verification of EP10

“Abaqus real material” is described in Section 3.2.2, while “Abaqus bilinear material” is the idealized material
model resembling IDEA StatiCa’s material model. “IDEA StatiCa 6 mm” and “IDEA StatiCa 18 mm” are the
results from IDEA StatiCa with element sizes 6 mm and 18 mm, respectively. The ’X’ on the curves marks the
point where the plastic strain in the plates reaches 5, 10, 20, and 30 %, respectively. “CM-Eurocode 3” are the
results from calculations based on the component method, which is applied in Eurocode 3.

In the subsequent IDEA StatiCa analyses, a maximum element size of 6 mm, and a limit of

plastic strain equal to 20 % were adopted. The moment-rotation curves for the joint EP10-T

and EP20BP20-C are shown in Figures 3.18a and 3.18b, respectively. The analysis results from

Abaqus were obtained from a model where the bilinear material model was applied.

(a) EP10-T (b) EP20BP20-C

Figure 3.18: Moment-rotation curves for combined bending and axial force
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3.4.1 Discussion of verification

The moment-rotation curves from the verification demonstrate that the moment resistance deter-

mined from the analyses in IDEA StatiCa is lower than the resistance determined from Abaqus,

but higher than the resistance according to the component method and Eurocode 3. From an

engineering point of view, this is not problematic. While the design in IDEA StatiCa results

in structures with conservative predictions of resistance, it also allows for the possibility of less

material use than when designing according to Eurocode 3. The initial stiffness, on the other

hand, agrees quite well for the three methods. The rotational capacity is underestimated by

IDEA StatiCa for joint EP10 and EP10-T when applying a limit of plastic strain equal to 20

%. For joint EP20BP, however, the rotational capacity is overestimated by IDEA StatiCa. The

cause of the discrepancies, and other key takeaways from these results, are discussed in the

following paragraphs.

Material model

In an attempt to replicate the model in IDEA StatiCa, the Abaqus model adopted the same

bilinear material model as IDEA StatiCa. Preliminary analyses in Abaqus showed that limiting

the resistance to a defined plastic strain resulted in overly conservative predictions of resistance.

For example, limiting the moment resistance to a plastic strain of 20 % would, for the case of

the “real” material model in Figure 3.17, result in a moment resistance of 201 kNm, i.e. a 17

% underestimation. The “ductile damage” material model was therefore incorporated to obtain

a model that is somewhat true to real-world behavior, while simultaneously being comparable

to the model in IDEA StatiCa. While this material model makes it possible to obtain a clearly

defined moment resistance, it fails to accurately predict the rotational capacity when applying

the simplified bilinear material law. The damage evolution adopted from Pavlovic et al. [31]

yields relatively accurate results only when the complete piecewise linear material model from

prEN 1993-1-14 [20] is adopted. Nonetheless, applying this material model is advantageous as

it enables obtaining a clearly defined moment resistance.

Applying the simplified bilinear material model from IDEA StatiCa in Abaqus, as opposed to

the material model from prEN 1993-1-14, results in a significant decrease in moment resistance.

Applying a more realistic material model in IDEA StatiCa would therefore presumably yield

results closer to that obtained from physical experiments. However, in a design phase where

only the characteristic yield stress of the steel is known, conservative predictions of structural

resistance are generally more important than accurate predictions.

Additionally, the moment-rotation curves from Abaqus presented in Figure 3.17 demonstrate

that the simplified material model adopted in IDEA StatiCa is not the only source of discrepancy;

employing the bilinear material model in Abaqus, instead of the “real” material model (from

prEN 1993-1-14 [20]), reduces the discrepancy between IDEA StatiCa and Abaqus, but does not

eliminate it.

Limit of plastic strain

One of the main parameters that must be established prior to an analysis, is the limit of plastic

strain. As seen in Figure 3.17, this parameter has a significant influence on the rotational capac-

ity. Nonetheless, applying a limit of plastic strain equal to 20 % yields conservative predictions of

rotational capacity for the joints where bending of the end-plate was the governing failure mode

(joint EP10 and EP10-T). The influence of the limit of plastic strain on the moment resistance

is less significant. This is because the joint has started to yield, and increasing the deformation
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will not significantly increase the force level. Setting the limit of the plastic strain equal to 5 %,

which is in accordance with NS-EN 1993-1-5, will in this case yield highly conservative results,

as the joint has not fully entered the yielding plateau. If measured values of the ultimate strain

are available, it is possible to apply a higher limit in the analyses. For this reason, a limit of

20 % was applied in the subsequent analyses.

Mesh density

Another factor to consider when conducting analyses in IDEA StatiCa is the mesh density.

Figure 3.17 illustrates that the mesh size influences the resulting moment resistance. When

using an element size equal to 18 mm, the moment resistance was overestimated by 9-16 %

(depending on the applied limit of plastic strain) compared to a model with an element size of

6 mm. The mesh dependency will also be dependent on the governing failure mode, as some

failure modes exhibit a higher degree of mesh sensitivity. It is therefore wise to conduct a

simplified mesh convergence study, to examine whether the mesh size has a significant effect

on the resulting resistance, especially if the design moment is close to the calculated moment

resistance. The default element size of 20 mm should not be assumed to yield accurate and

conservative results for all structures and failure modes.

Buckling and geometric imperfections

The moment resistance of joint EP20BP20-C predicted by IDEA StatiCa is lower than that

obtained from Abaqus. However, IDEA StatiCa fails to capture the correct failure mode. Ac-

cording to IDEA StatiCa, the plastic strain in the web of the column due to compressive force is

the governing failure mode. Contrarily, in the physical experiment and the Abaqus simulation,

the governing failure mode is buckling of the column web. In Abaqus, the maximum plastic

strain when the moment resistance is reached (i.e. the extreme point on the moment-rotation

curve) is under 10 %, which implies that buckling occurs for strains well below the ultimate

strain. Since IDEA StatiCa fails to capture buckling of the column web, it also overestimates

the rotational capacity for joint EP20BP20-C. To explore the effect of geometric imperfections

on the joint, a simulation of the same joint, but without geometric imperfections applied, was

carried out in Abaqus. The resulting moment-rotation curve from this simulation is also shown

in Figure 3.15a. This demonstrates that excluding geometric imperfections will overestimate the

moment resistance by 23 %.

As mentioned in Section 2.1.5, IDEA StatiCa employs a geometrically linear analysis without

geometric imperfections. To consider the possibility of buckling, the software offers buckling

analysis. However, it is uncertain what buckling factor constitutes a joint not susceptible to

buckling. For a plastic analysis, NS-EN 1993-1-1 [1] states that geometrically linear analysis

(first-order) can be performed if the critical load is more than 15 times the design load. Other-

wise, the increase in load effects from the deformation of the joint must be taken into account

through a geometrically nonlinear analysis (second-order). This condition is applicable for a

global analysis, presumably with bar and beam elements. The theory manual for IDEA StatiCa

[15], on the other hand, states that plate buckling in joints does not need to be considered if

the buckling factor is higher than 3 when applying the design loads. For joints with a buck-

ling factor lower than 3, the theory manual refers to NS-EN 1993-1-5 [2], which proposes the

“reduced stress method” for determination of the resistance of plates susceptible to buckling.

This includes calculating the plate slenderness, λp, which is given by the following equation:

λp =

√
αult
αcr

(3.7)
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3 Major axis bending of bolted beam-to-column joints

where αult is the minimum load amplifier for the design loads to reach the characteristic value of

resistance of the most critical point of the plate, and αcr is the minimum load amplifier for the

design loads to reach the elastic critical load (i.e. the lowest buckling factor). The slenderness

is used to calculate the reduction factor, ρ, which reduces the resistance of the joint accordingly

(ρ is given in Annex B of NS-EN 1993-1-5). The buckling factor obtained in IDEA StatiCa

when applying the limit load is equal to 5.26. However, this buckling factor does not result in a

reduction in resistance, even though the failure mode of this joint is proven to be buckling of the

column web. The reduction factor for the component column web in compression according to

NS-EN 1993-1-8 [3] is for the joint EP20BP20-C equal to 0.84. This implies that the “reduced

stress method” in NS-EN 1993-1-5 does not capture the same reduction in resistance due to

buckling, as the expression in NS-EN 1993-1-8 does.

When conducting a buckling analysis in Abaqus with the limit load of the post-buckling analysis

(which includes geometric imperfections), a buckling factor of 4.9 is obtained. This further

illustrates that even joints with a buckling factor higher than 3 might have their resistance limited

by plate buckling. Figures 3.19a and 3.19b show the first buckling shape with the corresponding

buckling factor obtained from the analyses in Abaqus and IDEA StatiCa, respectively. The

discrepancy between the buckling factors is mainly due to different magnitudes of applied loads.

The buckling shapes, on the other hand, agree well.

(a) Abaqus: 4.9 (b) IDEA StatiCa: 5.26

Figure 3.19: Buckling shapes and respective buckling factors for joint EP20BP20-C when
applying the limit load

Geometric nonlinearity

For all the joints considered, IDEA StatiCa underestimates the moment resistance compared to

the analysis results obtained from Abaqus. Determining the cause of the underestimation is not

straightforward, as the theory manual for IDEA StatiCa is rather limited. IDEA Statica’s use

of plate elements and spring elements - as opposed to solid elements - is presumably not the

cause of the discrepancy, as other authors have proven that bolted beam-to-column joints can

accurately be simulated with models discretized with plate elements [40]. The underestimation

might be caused by the solution method implemented in the software. IDEA StatiCa employs a
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3 Major axis bending of bolted beam-to-column joints

geometrically linear analysis, meaning that the stiffness is not a function of the displacements.

While this implies shorter computation time, it also implies that the geometric stiffness is

neglected. To accurately analyze certain structures, such as cables, it is absolutely necessary to

include geometric nonlinearity as the stiffness is highly dependent on the deformation. Other

structures, such as bolted joints, are possible to analyze without including geometric nonlinearity.

As discussed in Section 3.4.1, neglecting geometric nonlinearity implies that buckling cannot

be reproduced, which might overestimate the resistance. However, when neglecting geometric

stiffness, the resistance might also be underestimated. When the joint is loaded, the bending

stresses in the end-plate will partly be replaced by membrane stresses as the opening between

the end-plate and the column give rise to membrane forces in the end-plate. When neglecting

geometric nonlinearity, the end-plate will only experience bending stresses, as the deformation

does not influence how the loads are carried. This is illustrated in Figure 3.20. Since the end-

plate section has lower resistance in pure bending than in tension, the resistance of the joint

will be reduced by not including geometric nonlinearity. Similar effects might occur for other

components as well, and the neglect of geometric nonlinearity might be a factor contributing to

the underestimation of the resistance.

(a) Geometrically nonlinear
analysis

(b) Geometrically linear
analysis

Figure 3.20: Load bearing in tension zone of end-plate

Component method

The manual calculations based on the component method from Eurocode 3 yield a lower moment

resistance than both IDEA StatiCa and Abaqus. However, the capacity formulas in Eurocode 3

are based on a series of simplifications and conservative assumptions, and will in general under-

estimate the resistance of most structures. For these joint configurations, the underestimation

is especially significant. The fact that IDEA StatiCa overestimates the resistance compared

to Eurocode 3 can therefore be assumed to be unproblematic. The expressions for rotational

capacity by Beg et al. [26] yield conservative predictions compared to the numerical results

obtained from Abaqus when bending of the end-plate is the governing failure mode (EP10 and
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3 Major axis bending of bolted beam-to-column joints

EP10-T). When buckling of the column web is the governing failure mode (EP20BP20-C), the

expressions yield relatively accurate predictions of rotational capacity.

3.5 Parametric study

To further explore how IDEA StatiCa captures the behavior of major axis bolted joints, a

parametric study is carried out. The parameters that are explored are level of axial force, end-

plate thickness, column flange thickness, bolt diameter, and weld throat size. The base model

for the parametric study is similar to the joint EP10, described in Section 3.1, but with certain

changes in geometry or load conditions. The geometrical parameters of the joint will be varied,

but if nothing else is specified in the following parametric study, the model has an end-plate

thickness of 15 mm, column flange thickness of 15.4 mm, M24 bolts, and flange weld throat

thickness equal to 8 mm. The analysis results obtained from IDEA StatiCa are compared to the

results obtained from Abaqus analyses and manual calculations based on Eurocode 3.

Since IDEA StatiCa is primarily a design tool, it is not intended to reproduce the behavior

of joints exactly. To ensure that the discrepancies between IDEA StatiCa and Abaqus are not

mainly due to different material models, it is chosen to carry out the analyses in Abaqus with the

same bilinear material model as described in Section 3.4. The purpose of this study is therefore

to uncover to what extent IDEA StatiCa captures the same failure mode as Eurocode 3 and

Abaqus, and whether IDEA StatiCa yields conservative predictions of resistance and stiffness.

The analyses carried out in Abaqus are therefore not meant to reproduce the physical behavior

of the joint. Instead, the model in Abaqus should be considered as a more accurate reproduction

of the same idealized model adopted in IDEA StatiCa.

Section 3.4 shows that the rotational capacity calculated in IDEA StatiCa is highly dependent on

the chosen limit of plastic strain. While the simplified material model applied in Abaqus makes it

possible to obtain a clearly defined moment resistance, it fails to accurately predict the rotational

capacity. The rotational capacity is the joint characteristic that is hardest to determine from

simulations and calculations, and it is usually also the least important quantity to determine in a

design process. It was therefore deemed less relevant to compare the rotational capacities, and it

is chosen to only compare moment resistance and initial stiffness in the parametric study.

In the parametric study, the absolute value of moment resistance and initial stiffness is com-

pared instead of the full moment-rotation curves. This permits easier comparison between the

calculation methods, and determining the absolute value of resistance and stiffness is in general

more important for an engineer than obtaining the whole moment-rotation curve. The initial

stiffness from the Abaqus simulations is defined as the ratio between the moment and rotation

at 2/3 of the moment resistance, i.e. the secant stiffness at 2/3 of the moment resistance. This

is illustrated in Figure 3.21, and is consistent with how IDEA StatiCa determines the initial

stiffness. Eurocode 3, on the other hand, assumes that the behavior of the joint is linear-elastic

up to 2/3 of the moment resistance.
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3 Major axis bending of bolted beam-to-column joints

Figure 3.21: Determination of initial stiffness in IDEA StatiCa and Abaqus

In Abaqus, the joints were in general modeled without the utilization of symmetry, i.e. the whole

joint was modeled. This was done as the failure mode was uncertain, and utilizing symmetry

prevents buckling of the column web from occurring. The exception was the joints with a 10 mm

end-plate loaded in tension, as the failure mode is proven to be bending of the end-plate. These

joints were in Abaqus modeled with the utilization of symmetry, as shown in Figure 3.4.

3.5.1 Axial force

The ratio between applied moment and normal force in the beam is the first parameter to be

explored. Seven different M/N -ratios applied to joints with two different end-plate thicknesses

(10 mm and 15 mm) were analyzed and calculated. The approach for applying axial force

was similar to the one explained in Section 3.3.2, but with a different angle for the load arm.

However, it proved difficult to maintain a constant eccentricity, e = M/N , during the load

application in Abaqus. As the simulation was deformation-controlled, and not load-controlled,

the stiffness of the joint and length of the load arm determines how the eccentricity changes

throughout the load application. It was therefore chosen to calculate the eccentricity acting at

failure in the Abaqus simulation, and apply this in IDEA StatiCa and the manual calculations.

Whether the bending moment and axial force are applied proportionally or not will affect the

initial stiffness to some degree, but not the moment resistance (assuming the joint does not fail

from axial force or moment acting alone).

The resulting moment resistance and initial stiffness of the joints with 10 mm and 15 mm end-

plate are shown in Figures 3.22 and 3.23, respectively. Two sets of analyses were carried out in

IDEA StatiCa: one with a limit of plastic strain equal to 5 %, and one with a limit of plastic

strain equal to 20 %. In the plot for the moment resistance, the governing failure mode from

simulations and calculations are illustrated as well. The failure mode “beam flange in tension”

is the exceedance of the tensile capacity of the beam flange. This implies that the resistance of

the joint is in fact limited by the beam’s cross-sectional capacity, and the joint is a “full strength

joint” (according to the terminology in NS-EN 1993-1-8). The failure occurs where the beam is

connected to the end-plate, as the moment is largest here.
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3 Major axis bending of bolted beam-to-column joints

(a) Moment resistance (b) Initial sitffness

Figure 3.22: Parametric study with varying axial force (10 mm end-plate)

“IDEA StatiCa 20 %” and “IDEA StatiCa 5 %” are the results from analyses carried out in IDEA StatiCa with
a limit of plastic strain equal to 20 % and 5 %, respectively. Eccentricity e = ∞ implies that no axial force acts

on the joint.

(a) Moment resistance (b) Initial sitffness

Figure 3.23: Parametric study with varying axial force (15 mm end-plate)

3.5.2 End-plate thickness

To further explore IDEA StatiCa, a parametric study with varying end-plate thickness is carried

out. A total of five analyses with end-plate thickness equal to 10 mm, 12.5 mm, 15 mm, 17.5 mm,

and 20 mm were carried out. The joint configuration is otherwise identical to joint EP10 (Table

3.1). For the remaining simulations and calculations, bending is the only load effect acting on

the joints, and the analyses in IDEA StatiCa are carried out with a limit of plastic strain equal

to 20 %. The resulting resistance and initial stiffness from simulations and calculations are

shown in Figures 3.24a and 3.24b, respectively.
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(a) Moment resistance (b) Initial sitffness

Figure 3.24: Parametric study with varying end-plate thickness

3.5.3 Column flange thickness

The next parameter to consider is the thickness of the column flange. A total of four analyses

with column flange thicknesses equal to 15.5 mm, 14.5 mm, 13.5 mm, and 12.5 mm were carried

out. The resulting moment resistance and initial stiffness from simulations and calculations are

shown in Figures 3.25a and 3.25b, respectively.

(a) Moment resistance (b) Initial sitffness

Figure 3.25: Parametric study with varying column flange thickness

The failure mode in Abaqus is a combination of column web buckling and yielding of column flange. This is why
the resistance is lower for smaller column flange thickness.

3.5.4 Bolt diameter

The next parameter of interest is the bolt dimension. Two additional analyses with bolt diame-

ters of 16 mm and 20 mm were carried out. The resulting moment resistance and initial stiffness

from simulations and calculations are shown in Figures 3.26a and 3.26b, respectively.
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(a) Moment resistance (b) Initial sitffness

Figure 3.26: Parametric study with varying bolt dimensions

“Column flange mode 2” is the failure mode involving bolt failure with yielding of the column flange [3]. “Bolt
in tension” is a pure fracture of the bolts, corresponding to mode 1 [3].

3.5.5 Weld throat thickness

The next and final joint parameter to explore in the parametric study of the major axis joint

is the throat thickness of the flange weld. Two more analyses with flange weld throat thickness

equal to 6 mm and 4 mm were carried out. The throat thickness of the web weld was kept

constant at 5 mm. The results are shown in Figures 3.27a and 3.27b for the moment resistance

and initial stiffness, respectively.

(a) Moment resistance (b) Initial sitffness

Figure 3.27: Parametric study with varying weld throat thickness

3.5.6 Discussion of parametric study

Moment resistance

The parametric study demonstrates that, when applying a limit of plastic strain equal to 20

%, IDEA StatiCa in most cases overestimates the moment resistance compared to Eurocode 3.

On the other hand, applying a limit of plastic strain equal to 5 % yields a moment resistance

much closer to, and in some cases smaller than, the moment resistance predicted by Eurocode

3. This is illustrated in Figures 3.22a and 3.23a. Nonetheless, the moment resistance obtained

from IDEA StatiCa is in all cases smaller than the resistance obtained from analyses in Abaqus,

and can therefore be considered safe compared to real-world behavior. This demonstrates that
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3 Major axis bending of bolted beam-to-column joints

applying a limit of plastic strain equal to 20 % is conservative, despite the moment resistance,

in general, being overestimated compared to Eurocode 3.

The observant reader will notice a curious relationship in Figure 3.24a. According to the simula-

tions carried out in Abaqus, a smaller resistance is obtained for a joint with end-plate thickness

equal to 17.5 mm and 20 mm, than for a joint with a 15 mm end-plate. The fact that Abaqus

predicts a reduction in resistance when buckling of the column web is the failure mode is likely

caused by how the geometric imperfections are included in the analysis. Increased end-plate

thickness implies that the compressive force from the beam flange is distributed over a larger

area of the web. The buckling shape used to introduce geometric imperfections, which is shown

in Figure 3.19a, will therefore extend over a larger area. The increase in the area affected by

geometric imperfections is presumably the source of the reduction in resistance. However, the

reduction is negligible, and this phenomenon will not be further considered.

Initial stiffness

When it comes to the prediction of initial stiffness, the situation is different. While IDEA

StatiCa yields higher estimates for initial stiffness than Abaqus, the initial stiffness determined

according to Eurocode 3 is in general significantly larger than that obtained from both Abaqus

and IDEA StatiCa. However, the initial stiffness from analyses, which is defined as the secant

stiffness at 2/3 of the moment resistance (Figure 3.21), is expected to show a large deviation

compared to the initial stiffness determined according to Eurocode 3. Eurocode 3 assumes linear

behavior up to 2/3 of the moment resistance, while in reality, the moment-rotation curve will

exhibit curvature before reaching this point. Eurocode 3 will therefore, in general, overestimate

the initial stiffness compared to that obtained from analyses. Furthermore, applying a limit of

plastic strain equal to 5 % in IDEA StatiCa yields higher initial stiffness than when applying

a limit equal to 20 % (Figures 3.22b and 3.23b). This demonstrates that the procedure for

defining initial stiffness can yield somewhat misleading results.

When considering the moment-rotation curves in Section 3.4, it seems as if the initial stiffness

determined from analyses and according to Eurocode 3 agree well. The deviation between

the numerical analyses and the manual calculations arises mainly from the definition of initial

stiffness in IDEA StatiCa. Part of the deviation between IDEA StatiCa and Abaqus can also

be ascribed to the method of defining the initial stiffness, as higher post-yielding resistance (i.e.

the increase in the moment after yielding has initiated) results in a lower prediction of initial

stiffness. This can be seen in Figure 3.26b, where the initial stiffness according to Abaqus and

IDEA StatiCa is higher for a joint with a bolt diameter equal to 16 mm, than for a joint with 20

mm bolts. A similar situation can be seen in Figure 3.27b, where smaller welds yield higher initial

stiffness. In both cases, the increase in initial stiffness is caused by a decrease in post-yielding

capacity. To avoid these somewhat misleading results, the initial stiffness could be defined as

the slope at the very beginning of the moment-rotation curve. This would presumably reduce

the deviation in initial stiffness, but this approach was not adopted as this is not in line with

how IDEA StatiCa determines initial stiffness. Furthermore, joints are normally subjected to a

combination of permanent and variable loads. The exhibited stiffness of a joint already subjected

to permanent loads is not equal to the initial slope of the moment-rotation curve. Defining the

rotational stiffness as the secant stiffness at 2/3 of the moment resistance is therefore arguably

more appropriate.
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Failure mode

Determining the governing failure mode of a joint is useful, as it can confirm that the finite

element model is an accurate representation of the physical problem. Additionally, determining

the correct failure mode can be important in a design process, as it makes it possible to determine

what part of a joint needs to be strengthened in order to increase the joint resistance. Figures

3.22a, 3.23a, 3.24a, 3.25, 3.26a, and 3.27a demonstrate that the three calculation methods

more often than not disagree on what the governing failure mode is. IDEA StatiCa frequently

disagrees with both Eurocode 3 and Abaqus on what the critical component is. In most cases,

this will be unproblematic, as IDEA StatiCa’s predictions of moment resistance are lower than

that obtained from Abaqus. Additionally, the difference in the components’ resistance is often

small, making it difficult to capture the correct failure mode. What is most problematic is

that IDEA StatiCa fails to capture buckling of the column web. This is because IDEA StatiCa

does not include geometric imperfections or nonlinearity in the analysis, as discussed in Section

3.4.1. This implies that IDEA StatiCa’s prediction of moment resistance for the joint with a

15 mm end-plate increases for larger levels of compressive axial force in the beam. However,

according to Eurocode 3 and Abaqus, buckling of the column web is the critical component, and

the moment resistance is therefore decreasing with increasing levels of compressive axial force.

This is shown in Figure 3.23a, and illustrates the implications of failing to capture the failure

mode buckling of the column web. Even though it is not the case in this parametric study, IDEA

StatiCa might overestimate the resistance for even higher levels of compressive axial force, or

for other joint configurations.

The fact that Eurocode 3 occasionally disagrees with the analyses in Abaqus on what the

governing failure mode is, can be expected. The capacity formulas provided in Eurocode 3

will in general yield conservative predictions of resistance, and sometimes predict the incorrect

critical component. In many cases, the formulas are so conservative that the joint resistance

is in fact limited by the cross-sectional capacity of the beam, and not by a component in the

joint. For other joint configurations, the failure is caused by a combination of a compressive

and a tensile failure mode. It should be noted that the geometric imperfections in the Abaqus

simulations are a source of error. The amplitude of the applied imperfection is chosen according

to NS-EN 1993-1-5 [2], but the procedure for introducing imperfection, and the geometric shape

of the imperfection, is not necessarily realistic. However, it is presumably unproblematic that

Eurocode 3 predicts the incorrect failure mode, since it in any case yields conservative predictions

of resistance, as discussed in Section 3.4.1.
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beam-to-column joints

The main focus of this thesis is bolted beam-to-column joints subjected to major axis bending,

as this is the most significant load effect and the most common joint configuration. However,

minor axis joints are often necessary for some structures, as discussed in Sections 2.3.2 and

2.3.3. To fully explore IDEA StatiCa’s possibilities and limitations when it comes to bolted

beam-to-column joints, two minor axis joint configurations - one beam minor axis joint and one

column minor axis joint - will be analyzed, validated, and verified similarly as in Chapter 3.

The two joint configurations will be addressed separately, but in parallel, as they share some

similarities. For the convenience of the reader, the illustrations of the two joint configurations

are presented again in Figure 4.1.

(a) Beam minor axis joint (b) Column minor axis joint

Figure 4.1: Different bolted minor axis beam-to-column joint configurations

This chapter is organized similarly as Chapter 3. The chapter’s five sections cover the physical

experiments used as basis for validation, explanation of calculation models, validation of nu-

merical models to physical model, verification of IDEA StatiCa, and a parametric study. The

procedure for establishing numerical models is similar to that explained in Chapter 3.
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4.1 Experiments

In addition to experiments on major axis bolted joints, Zhu et al. [29] also conducted experiments

where the beam was subjected to bending about its weak axis (beam minor axis joint). The

geometry and experimental setup were similar to the major axis experiments (Figure 3.1a),

except for the loading direction, which was perpendicular to the loading direction in the major

axis joint. The test setup for this joint configuration is shown in Figure 4.2a.

Costa et al. [41] conducted several experiments on bolted beam-to-column joints, including

experiments where the beam was bolted to the column web. The column was subsequently

subjected to bending about its minor axis (column minor axis joint). The experimental setup

for this joint configuration is shown in Figure 4.2b. The beam was welded to a 20 mm thick

end-plate, which was bolted to the column web using six M24 bolts of grade 8.8. However, the

diameter of the shank is secondary to the diameter of the nut and head. The governing failure

mode was a flexural mechanism on the column web, which is highly dependent on the nut and

head diameter. As this is not provided in the article, it was assumed to be equal to 36 mm,

which corresponds to the key width for M24 bolts according to [42]. The profiles were made

of S355 steel, but tensile tests of the profiles were performed, and the measured values were

adopted in the simulations. For bolts, the characteristic material properties were adopted in the

simulations. Further information about geometry and setup can be found in [41].

(a) Beam minor axis joint [29] (b) Column minor axis joint [41]

Figure 4.2: Minor axis joint experimental setups

4.2 Calculation models

The approach for establishing a finite element model, and the simplifications and assumptions

adopted in the manual calculations, are largely similar to Chapter 3. Only the differences will

therefore be briefly addressed in the following.
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IDEA StatiCa

The models in IDEA StatiCa were easily created, and the same choices for mesh size and plastic

limit strain as previously were applied in this chapter as well. Apart from load conditions and

geometry, the model in IDEA StatiCa is similar to the model described in Section 3.2.1.

Abaqus

When assembling a finite element model of a beam minor axis joint in Abaqus, it is necessary to

model the whole joint. The deformation is unsymmetrical, and a reduced model can therefore

not be utilized. The column was restrained against deformation out-of-plane at the two ends,

and the beam was restrained at the end against vertical deformation, as shown in Figure 4.3a.

For the case of the column minor axis joint, the deformation is symmetrical, which can be utilized

by modeling only half the joint. The assembled models of the beam minor axis joint modeled

completely, and the column minor axis joint modeled with symmetry boundary conditions, can

be seen in Figures 4.3a and 4.3b, respectively. Both analyses were conducted with deformation

control, and a prescribed deformation was applied to the end of the beam, as shown in Figure

4.3.

(a) Beam minor axis joint with boundary conditions (b) Column
minor axis joint
with symmetry

boundary
condition

Figure 4.3: Finite element model assemblies of minor axis joints in Abaqus

The mesh for the beam minor axis joint was the same as shown in Section 3.2.2. For the

column minor axis joint, the model was discretized similarly to the other models, i.e. four

elements over the thickness, refined mesh where stress concentrations are expected to occur,

and courser mesh elsewhere. The applied material model was the same as described in Section

3.2.2. The moment-rotation curves for both joints were obtained with the same approach as in

their respective physical experiment. For the beam minor axis joint, the approach is described

in Section 3.2.2, while for the column minor axis joint, the approach can be found in [41].
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Component method

The results from the simulation of the column minor axis joint will also be compared to manual

calculations according to Gomes et al. [27] and Neves et al. [28]. In the calculations, material

factors were set equal to 1.0, and measured values for the yield stress of the sections, and

characteristic material properties for bolts, were adopted. Manual calculations were not carried

out for the beam minor axis joints, as discussed in Section 2.3.2.

4.3 Validation

The resulting moment-rotation curves from the experiment and the simulations of the beam

minor axis joint and the column minor axis joint are presented in Figures 4.4a and 4.4b, respec-

tively. The deformed shape at the end of the analysis for the beam minor axis joint is shown in

Figure 4.5a, while the deformed shape after failure for the column minor axis joint is shown in

Figure 4.5b.

(a) Beam minor axis joint (b) Column minor axis joint

Figure 4.4: Moment-rotation curves for validation of minor axis joints

(a) Beam minor axis joint (end of analysis) (b) Column minor axis joint (post-failure)

Figure 4.5: Von-Mises stresses plotted on the deformed shape of the minor axis joints
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4.3.1 Discussion of validation

Beam minor axis joint

From the moment-rotation curves of the beam minor axis joint (Figure 4.4a), it can be seen that

the numerical solution agrees well with the experimental. For this joint and load configuration,

it is not possible to obtain a clearly defined moment resistance or rotational capacity, as the steel

will neither fracture nor buckle. Since the joint exhibits highly flexible behavior, the acceptable

level of deformation will be the limiting factor and not the moment resistance. Despite this, the

numerical model appears to be an accurate representation of the physical joint.

Column minor axis joint

For the column minor axis joint, the moment-rotation curve from the numerical solution shows

some deviation compared to the experimental results. Some errors can be ascribed to the same

factors discussed in Section 3.3.4. Additionally, the size of the head and the nut will greatly

influence the ultimate resistance, as the failure is caused by contact between the bolt head/nut

and the column web. This was also demonstrated in preliminary analyses. Since the geometry

of the bolt was unavailable, some assumptions and simplifications were made when modeling

the bolts. The bolts were modeled as one part, and it was assumed that the head and nut were

circular with a diameter of 36 mm. These simplifications will affect the ultimate resistance of

the whole joint. Despite this, the numerical solution captured the same failure mode as the

physical experiment [41], and the numerical model can be considered an adequate reproduction

of the physical joint.

4.4 Verification

To verify IDEA StatiCa numerically against Abaqus, IDEA StatiCa’s bilinear material model

was adopted in Abaqus. As no suitable expressions for resistance or initial stiffness exist for the

beam minor axis joint, the analysis results will not be compared to manual calculations. For the

case of the column minor axis joint, the analysis results are compared to the expression provided

by Gomes et al. [27] and Neves et al. [28]. The calculations were performed in Maple, and are

presented in Appendix E. The resulting moment-rotation curves for the beam and the column

minor axis joint are presented in Figures 4.6a and 4.6b, respectively.

(a) Beam minor axis joint (b) Column minor axis joint

Figure 4.6: Moment-rotation curves for verification of minor axis joints
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4.5 Parametric study

As in Chapter 3, a parametric study is carried out to investigate the versatility of IDEA StatiCa.

Four more joint configurations are analyzed for both the beam and column minor axis joint, and

the results from the parametric study are presented in the following.

4.5.1 Beam minor axis joint

For this joint configuration, the column is the parameter with the greatest impact on the joint

behavior. A total of five joints with different columns were analyzed. The moment-rotation

curves from IDEA StatiCa and Abaqus for all five joints are shown in Figure 4.7. For this

joint configuration, the deformation will in general be the limiting factor. The exceptions are

the two joints with the stiffest columns (310 UC 137 and 310 UC 158), which according to the

Abaqus analyses fail due to tearing of the beam flange. To obtain conservative and comparable

predictions of moment resistance and initial stiffness also for the joints which do not exhibit

failure, it is decided to limit the moment resistance to a rotation of 150 mrad (8.6 ◦). This

implies that the moment resistance is limited by either the moment corresponding to a rotation

of 150 mrad, or the actual ultimate moment if it occurs before reaching a rotation of 150 mrad.

The initial stiffness is still defined as the secant stiffness at 2/3 of the moment resistance. The

calculated moment resistance and initial stiffness of the beam minor axis joints are shown in

Figures 4.8a and 4.8b, respectively.

Figure 4.7: Moment-rotation curves from the parametric study of beam minor axis joint

HEA 280: tf = 13 mm, tw = 8 mm; 310 UC 96.8: tf = 15.4 mm, tw = 9.9 mm;
HEB 300: tf = 19 mm, tw=11 mm; 310 UC 137: tf = 21.7 mm, tw = 13.8 mm;

310 UC 158: tf = 25 mm, tw = 15.7 mm
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(a) Moment resistance (b) Initial stiffness

Figure 4.8: Parametric study of the beam minor axis joint (moment resistance defined as
moment corresponding to a rotation of 150 mrad)

4.5.2 Column minor axis joint

The parameter with the greatest influence on the joint behavior is the thickness of the column

web. A total of five analyses with different column web thicknesses were carried out, and the

resulting moment resistance and initial stiffness from simulations and calculations are shown in

Figures 4.9a and 4.9b, respectively.

(a) Moment resistance (b) Initial stiffness

Figure 4.9: Parametric study of column minor axis joint

4.5.3 Discussion of verification and parametric study

Beam minor axis joint

For the joints with columns HEA 280, 310 UC 96.8, and HEB 300, the resistance is according to

IDEA StatiCa limited by the plastic strain in the transition between column web and flange. For

the joints with columns 310 UC 137 and 310 UC 158, the resistance is limited by the strain in

the beam flanges. These failure modes are also captured in the corresponding Abaqus analyses.

However, the deformation will in general be the limiting factor, as rotations surpassing 300 mrad

is not realistic for most structures. Limiting the moment resistance to a rotation of 150 mrad,

which was done in the parametric study, makes it possible to obtain conservative predictions

of moment resistance and initial stiffness. For all the cases considered in the parametric study

(Figure 4.8), the moment resistance and initial stiffness are underestimated by IDEA StatiCa.
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4 Minor axis bending of bolted beam-to-column joints

However, considering Figure 4.7, it appears that the initial slope of the moment-rotation curves

from Abaqus and IDEA StatiCa agree well. The deviation in the absolute value of initial stiffness

is therefore largely caused by the difference in moment resistance, as the initial stiffness is defined

as the secant stiffness at 2/3 of the resistance.

Figure 4.6a demonstrates that the numerical solutions from Abaqus are almost identical for the

“real material model” and the “bilinear material model”. This implies that the response of the

beam minor axis joint is mainly controlled by elastic deformations. In the simulations, a yield

line forms in the transition between column flange and web. However, little plastic strain is

observed in the column flanges, and the elastic stresses in the flanges dominate the response of

the joint.

Column minor axis joint

Column minor axis joint is the only joint configuration where the moment resistance predicted

by IDEA StatiCa is lower than that predicted according to the component method. The moment

resistance obtained by the analyses in Abaqus, however, is significantly larger than that predicted

by both IDEA StatiCa and the component method. This implies that both IDEA StatiCa and

the component method expressions yield conservative results for this joint configuration. This

is seen in Figures 4.6b and 4.9a. The cause for IDEA StatiCa’s underestimation of moment

resistance is uncertain, but might also for this joint configuration be partially ascribed to the

geometrically linear solution method.

The absolute value of initial stiffness predicted by IDEA StatiCa is marginally larger than

the initial stiffness obtained from Abaqus, but the difference is insignificant. The component

method’s overestimation of initial stiffness, on the other hand, is more significant. This is similar

to the other joint configurations explored, but the overestimation is especially significant in this

case. The component method’s overestimation can to a large extent be ascribed to how the

initial stiffness is defined in the numerical analyses (the secant stiffness at 2/3 of the moment

resistance). When comparing the moment-rotation curves in Figure 4.6b, it appears that the

initial slope of the moment-rotation curves determined according to the component method and

from the Abaqus simulation agree well. The deviation in the absolute value of initial stiffness

is caused by the high post-yield capacity shown in the Abaqus simulations, which effectively

reduces the calculated initial stiffness. From Figure 4.6b, it can also be seen that the initial

slope of the moment-rotation curve from IDEA StatiCa shows some deviation compared to the

initial slope from Abaqus. However, the absolute values of the initial stiffness (Figure 4.9b) agree

relatively well. This is due to the low post-yield capacity in IDEA StatiCa, which effectively

increases the calculated initial stiffness. It is important to acknowledge that the expressions

for resistance and stiffness by Gomes et al. [27] and Neves et al. [28] are not incorporated in

Eurocode 3, and the validity of the expressions is therefore uncertain.
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5 Conclusion and suggestions for further work

5.1 Conclusion

IDEA StatiCa is a design tool that offers fast, simple, and versatile design of steel joints. The

software has adopted several simplifications to allow for quick analyses, such as plate elements

instead of solid elements, and a geometrically linear analysis instead of a nonlinear analysis.

Despite its simplifications, it was found that IDEA StatiCa’s prediction of moment resistance is

conservative compared to the resistance obtained in Abaqus. The cause for the underestimation

is assumed to mainly be the geometrically linear analysis adopted in IDEA StatiCa. Geomet-

rically nonlinear analysis allows the bending stresses in the end-plate (and possibly elsewhere)

to be partly replaced by membrane stresses when the end-plate deforms, and a higher joint

resistance can therefore be achieved. This phenomenon is neglected when applying a geometri-

cally linear analysis. Employing the recommended 5 % limit for plastic strain yields predictions

of moment resistance that are closer to the resistance predicted by Eurocode 3. However, as

Eurocode 3 in general yields overly conservative predictions, a higher limit of plastic strain can

in many cases be applied.

Extra caution should be taken when there is potential for plate buckling in the joint, as IDEA

StatiCa has included neither geometric imperfections nor geometric nonlinearity in the analysis.

IDEA StatiCa offers buckling analysis for joints, but it is uncertain what buckling factor is

required for a joint to not be susceptible to buckling. IDEA StatiCa’s theory manual states

that plate buckling does not need to be considered if the buckling factor is higher than 3 when

applying the design loads. However, joints with a buckling factor well above 3 are shown to have

their resistance limited by plate buckling. This recommendation is therefore uncertain. The

initial stiffness predicted by IDEA StatiCa is for all cases significantly lower than that predicted

by Eurocode 3. However, this discrepancy can to a large extent be ascribed to the way IDEA

StatiCa defines the initial stiffness, which is the secant stiffness at 2/3 of the resistance. It can

therefore be assumed that IDEA StatiCa’s prediction of initial stiffness is adequate.

It is important to keep in mind the intended purpose of IDEA StatiCa. Since it is primarily a

design tool, it should not be expected to produce exact predictions of structural behavior. In

the design phase, it is more important to deliver conservative, and preferably quick, predictions

of structural behavior. Considering the findings of this thesis, IDEA StatiCa can be considered

as a reliable design tool.
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5 Conclusion and suggestions for further work

5.2 Suggestions for further work

One of the consistent findings of this thesis is that IDEA StatiCa underestimates the joint’s

moment resistance compared to the resistance obtained in Abaqus analyses. It is assumed that

a large portion of this deviation can be ascribed to the geometrically linear solution method, but

this is not certain. Further exploring how a geometrically linear analysis differs from a nonlinear

analysis when it comes to the prediction of structural resistance, is therefore interesting.

Several joint geometries and load conditions have been investigated, but the conclusions of this

thesis are not necessarily valid for all types of joints. This thesis has explored mere drops in the

vast sea of steel structures and joint design, and it is therefore encouraged to continue applying

the software on other structural joints, such as beam-to-beam-splices, steel column to concrete

footings, hollow section joints, or joints with several connected members.
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Appendix

A Resistance and stiffness for column minor axis joint

Moment resistance

Gomes et al. [27] considered several failure mechanisms, which are listed below with their

respective capacity formula:

• Local failure:

(i) Flexural mechanisms:

Fpl =
4πmpl

1− b

L

(√
1− b

L
+

2c

πL

)
k (A.1)

where b, c and L are defined in figure A.1, mpl is the plastic moment capaicty of the

web, dm is the mean diameter of the bolt head or nut, and k is given by:

k =

0.7 + 0.6(b+ c)/L if (b+ c)/L ≤ 0.5

1 if (b+ c)/L > 0.5
(A.2)

(ii) Punching shear mechanisms:

Fpunch = nπdmνpl (A.3)

where νpl = twfy/sqrt(3)

(iii) Combined flexural and punching shear mechanisms

FQ2 = 4mpl

[
π
√
L(a+ x) + 2c

a+ x
+

1.5cx+ x2√
3tw(a+ x)

]
k (A.4)

where 
x = 0 if b ≤ bm

x = −a+
√
a2 − 1.5ac+

√
3tw
2 [π

√
L(a+ x0) + 4c] if b > bm

(A.5)

x0 = L

[( t
L

) 2
3 + 0.23

c

L

( t
L

) 1
3

]
b− bm
L− bm

(A.6)

bm = L

[
1− 0.82

t2w
c2

(
1 +

√
1 + 2.8

c2

twL

)2]
(A.7)

a = L− b (A.8)

• Global failure:

Fglobal =
FQ2

2
+mpl

(2b
h

+ π + 2ρ
)

(A.9)
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A Resistance and stiffness for column minor axis joint

where

ρ =


1 for h

L−b ≤ 1

h
L−b for 1 < h

L−b ≤ 10

10 for h
L−b ≥ 10

(A.10)

Figure A.1: Definition of parameters from [27]

From these expressions, the moment capacity of the column web is taken asMpl = h·min(Flocal, Fglobal),
where h is the distance between the centers of compression and tension zones. The dimension

of the compressive zone can be assumed to be equal to the dimensions of the tensile zone.

Rotational stiffness

Neves et al. [28] derived an expression for the stiffness of the column web in bending, which is

presented here. The bending stiffness of the column web in the case where the flanges are fixed

against rotation are given by:

Si =
Et3wc
L2 16

α+ (1− β)tanθ

(1− β)3 +
10.4(k1 − k2β)

µ2

(A.11)

where L = hc − 2tf − r, α = c/L, β = b/L, µ = L/twc, k1 = 1.5, k2 = 1.6 and θ is given by:

θ =

35− 10β if β < 0.7

49− 30β if β ≥ 0.7
(A.12)

This equation is valid for the case where the column flanges are restrained against rotations.

If no major-axis beams are present, this is not the case and the stiffness must be modified by

multiplying with the factor, k, given as:

kred =
(µ/β)1.25

230
(A.13)

If µ/β ≥ 70, then no reduction in stiffness is needed. When considering the total stiffness of the

joint, the deformation of the joint will be dominated by the column web. The total stiffness can

therefore be approximated by equation A.14.
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A Resistance and stiffness for column minor axis joint

Sj,ini = Sh1

(
h1 −

h1 + h2
S3
S

+ 2

)
+ Sh2

(
h2 −

h1 + h2
S3
S

+ 2

)
(A.14)

where S1 = S2 = S (equation A.14), S3 is the stiffness of the compression zone, and h1 and h2

are shown in figure A.2

Figure A.2: Parameters from [28]
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B Mesh convergence IDEA Statica

Figure B.1: Equivalent stresses with mesh size 18 mm

Figure B.2: Moment-rotation curve with different mesh sizes
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B Mesh convergence IDEA Statica

Figure B.3: Moment capacity with different mesh sizes

62



C Determination of axial force in Abaqus simulation

The angle of the beam is given by:

θt = tan−1(
δ2,1
L

) (C.1)

The angle between the load-arm and the horizontal plane is given by:

θl = tan−1(
b+ δ2,2 − δ1,2
a+ δ2,1 − δ1,1

) (C.2)

The axial force in the beam is then given as:

FA = sin(θlθt)F (C.3)

The moment in centerline of the column can be calculated as:

Mj =M
L

Li
(C.4)

where M is the moment calculated by the integrated section output.

Figure C.1: Axial force calculation
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D Manual calculations for major axis joint

Capacity and stiffness calculations for joint EP10-T according to Eurocode 3, Sokol et al., and Beg et al. 
Input

General

Beam

Column

Endplate

(1.1)
(1.2)

Bolt

Material factors

Weld

Geometry joint 
column

(1.3)

(1.4)
Geometry joint 
endplate

(1.5)

(1.6) (1.7)

Bolt positions

(1.8) (1.9)

(1.10)

Joint stiffness
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(2.19)(2.19)

Capacity calculations (all references to Eurocode 3 part 1-8)

Note: The shear force is assumed to be taken by the lower bolts, which is oversized for taking shear
Column flange in bending §6.2.6.4

Row considered individually Row considered as a part of group

Inner row
(2.1) (2.2) (2.3) (2.4)

Outer row

(2.5)
(2.6)

(2.7)
(2.8)

(2.9)
(2.10)

(2.11) (2.12)

Rows considered individually

(2.13) (2.14) (2.15)

Fracture mode With prying forces Without prying forces
Mode 1

(2.16)

Mode 2

(2.17)

Mode 3

(2.18)

D Manual calculations for major axis joint
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(2.27)(2.27)

(2.29)(2.29)

(2.30)(2.30)

(2.28)(2.28)

(2.26)(2.26)

Rows considered as part of a group

(2.20) (2.21) (2.22)

Fracture mode With prying forces Without prying forces
Mode 1

(2.23)

Mode 2

(2.24)

Mode 3

(2.25)

Endplate in bending §6.2.6.5 

Row outside beam flange (row 1)

(2.31) (2.32)

D Manual calculations for major axis joint
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(2.41)(2.41)

(2.42)(2.42)

(2.40)(2.40)

(2.43)(2.43)

(2.38)(2.38)

(2.39)(2.39)

(2.44)(2.44)

(2.37)(2.37)

Fracture 
mode

With prying forces Without prying forces

Mode 1

(2.33) (2.34)

Mode 2

(2.35)

Mode 3

(2.36)

Row inside beam flange (row 2)

D Manual calculations for major axis joint
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(2.58)(2.58)

(2.56)(2.56)

(2.51)(2.51)

(2.46)(2.46)

(2.59)(2.59)

(2.57)(2.57)

(2.55)(2.55)

(2.45)(2.45)

(2.54)(2.54)

(2.53)(2.53)

(2.52)(2.52)

Fracture 
mode

With prying forces Without prying forces

Mode 1

(2.47) (2.48)

Mode 2

282208.0903 (2.49)
Mode 3

(2.50)

Shear in column web §6.2.6.1

Column web in compression §6.2.6.2

D Manual calculations for major axis joint
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(2.72)(2.72)

(2.60)(2.60)

(2.67)(2.67)

(2.70)(2.70)

(2.71)(2.71)

(2.68)(2.68)

(2.69)(2.69)

Column web in tension §6.2.6.3

Row 1 and 2 individually

(2.61)

(2.62)

(2.63)

Row 1 and 2 as a group

(2.64)

(2.65)

(2.66)

Beam flange in compression §6.2.6.7

Beam web in tension §6.2.6.8

 Capacity of weld

D Manual calculations for major axis joint
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(3.29)(3.29)

(2.60)(2.60)

(3.28)(3.28)

(3.26)(3.26)

(3.30)(3.30)

(3.27)(3.27)

Total Capacity - summary

Row 1 in tension Row 2 in tension Row 1 and 2 as group Compression side Capacity of component
Column flange in 
bending

(3.1) (3.2) (3.3)
(3.4)

Endplate in 
bending

(3.5) (3.6) (3.7) (3.8)

Column web in 
tension

(3.9) (3.10) (3.11)
 (3.12)

Beam web in 
tension

(3.13) (3.14)
Weld

(3.15) (3.16)
Column web in 
shear

(3.17) (3.18)

Column web in 
compression

(3.19)
Beam flange in 
compression

(3.20)
Min

(3.21)
(3.22)

(3.23)

(3.24)

(3.25)

Note: The "capacity" of column web in shear is increased, since the force in flange is not equal to the shear force in the web.
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(3.32)(3.32)

(2.60)(2.60)

(3.36)(3.36)

(3.31)(3.31)

(3.38)(3.38)

(3.33)(3.33)

(3.37)(3.37)

(3.34)(3.34)

(3.35)(3.35)

Note: If the tension zone is critical, the moment arm must be changed as plastic distributiong of forces is assumed, and the bolts have a different moment arm than half 
the height. 

Capacity T-stub 0.9fu

(4.1) (4.2) 567 (4.3)

D Manual calculations for major axis joint

71



(4.22)(4.22)

(2.60)(2.60)

Column flange in bending §6.2.6.4

Row considered individually Row considered as a part of group

Inner row
(4.4) (4.5) (4.6) (4.7)

Outer row

(4.8)
(4.9)

(4.10)
(4.11)

(4.12)
(4.13)

(4.14) (4.15)

Rows considered individually

(4.16) (4.17) (4.18)

Fracture mode With prying forces Without prying forces
Mode 1

(4.19)

Mode 2

(4.20)

Mode 3

(4.21)

Rows considered as part of a group

(4.23) (4.24) (4.25)
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(4.29)(4.29)

(2.60)(2.60)

(4.28)(4.28)

(4.40)(4.40)

(4.27)(4.27)

(4.33)(4.33)

(4.30)(4.30)

(4.26)(4.26)

(4.32)(4.32)

(4.31)(4.31)

(4.41)(4.41)

Fracture mode With prying forces Without prying forces
Mode 1

Mode 2

Mode 3

Endplate in bending §6.2.6.5 

Row outside beam flange (row 1)

(4.34) (4.35)

Fracture 
mode

With prying forces Without prying forces

Mode 1

(4.36) (4.37)

Mode 2

(4.38)

Mode 3

(4.39)

Row inside beam flange (row 2)
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(4.43)(4.43)

(5.2)(5.2)

(2.60)(2.60)

(5.3)(5.3)

(4.42)(4.42)

(5.5)(5.5)

(4.44)(4.44)

(5.1)(5.1)

(5.4)(5.4)

(4.51)(4.51)

(4.45) (4.46)

Fracture 
mode

With prying forces Without prying forces

Mode 1

(4.47) (4.48)

Mode 2

300982.1011 (4.49)
Mode 3

(4.50)

Total Capacity

Row 1 in tension Row 2 in tension Row 1 and 2 as group Capacity of component
Column flange in 
bending

(4.52) (4.53) (4.54)
(4.55)

Endplate in bending

(4.56) (4.57) (4.58) (4.59)

Stiffness
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(5.11)(5.11)

(5.13)(5.13)

(5.14)(5.14)

(2.60)(2.60)

(5.16)(5.16)

(5.7)(5.7)

(5.17)(5.17)

(5.10)(5.10)

(5.6)(5.6)

(4.42)(4.42)

(5.8)(5.8)

(5.9)(5.9)

(5.15)(5.15)

(5.12)(5.12)

Equivalent stiffness after "Dimensjonering av stålkonstruksjoner" by Per Kr. Larsen
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(6.3)(6.3)

(5.26)(5.26)

(2.60)(2.60)

(5.22)(5.22)

(6.7)(6.7)

(5.23)(5.23)

(6.2)(6.2)

(6.1)(6.1)

(5.18)(5.18)

(6.4)(6.4)

(5.21)(5.21)

(4.42)(4.42)

(6.5)(6.5)

(5.19)(5.19)

(5.20)(5.20)

(5.24)(5.24)

(6.6)(6.6)

(5.25)(5.25)

Initial stiffness according to EC3:

Initial stiffness according to Sokol et al., which takes into account the eccentricity: 

Rotation Capacity after Beg. et al.

Column web in compression

31.44909956
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(6.14)(6.14)

(6.9)(6.9)

(6.17)(6.17)

(2.60)(2.60)

(6.10)(6.10)

(6.16)(6.16)

(6.18)(6.18)

(6.8)(6.8)

(5.18)(5.18)

(4.42)(4.42)

(6.11)(6.11)

(6.13)(6.13)

(6.12)(6.12)

(6.19)(6.19)

(6.15)(6.15)

Column web in tension

Column web in shear

End plate in bending

Column flange in bending

Note: the 'k' in the expression for deformation capacity of  og mode is 2[1,5], and k=1 is assumed as this is conservative.
Combined 

Note: Stiffnesses of end plate and column flange must be reevaluated in such a way that their equivalent spring is located in the beam flange. 
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(6.24)(6.24)

(2.60)(2.60)

(6.23)(6.23)

(6.30)(6.30)

(6.28)(6.28)

(6.27)(6.27)

(6.26)(6.26)

(6.20)(6.20)

(6.22)(6.22)

(5.18)(5.18)

(4.42)(4.42)

(6.25)(6.25)

(6.21)(6.21)

(6.29)(6.29)

(6.31)(6.31)

As seen, the stiffness of the joint is almost unchanged, but this allows for retrieving the stiffness of  end plate T-stub and column flange T-stub
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(5.18)(5.18)

(2.60)(2.60)

(4.42)(4.42)

Summary

(7.1) (7.2)

Capacity Stiffness coefficient incl E-modul Fracture deformation
Column web in compression

(7.3)
(7.4) 5.128200000 (7.5)

Column web in tension

(7.6)
(7.7) 24.42000000 (7.8)

Column web in shear

(7.9)
990519.5261 (7.10) 45.7870 (7.11)

End plate in bending

(7.12)
(7.13) 12.41961328 (7.14)

Column flange in bending

(7.15)
(7.16) 20.740 (7.17)
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E Manual calculations for column minor axis joint

(3)(3)

(8)(8)

(1)(1)

(5)(5)

(6)(6)

(2)(2)

(7)(7)

(9)(9)

(4)(4)

Resistance and stiffness calculations according to Gomes et al. and Neves et al.
Input

(1.1) (1.2)

Moment resistance

1.240632054

Flexural mechanism

Punching shear mechanism
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(16)(16)

(11)(11)

(17)(17)

(20)(20)

(10)(10)

(15)(15)

(21)(21)

(18)(18)

(12)(12)

(14)(14)

(19)(19)

(13)(13)

Combined mechanism

Global failure

Assume compression and tensile zone have same dimensions:
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(30)(30)

(34)(34)

(32)(32)

(25)(25)

(24)(24)

(36)(36)

(35)(35)

(22)(22)

(33)(33)

(31)(31)

(23)(23)

(27)(27)

(28)(28)

(26)(26)

(29)(29)

Stiffness

41.64781297
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(38)(38)

(39)(39)

(40)(40)

(37)(37)

(41)

(42)

(43)
(Unit: Nmm/rad)
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