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Abstract

In many cases, magnetic materials, such as ferromagnets and antiferromag-
nets, and conductors, such as normal metals and superconductors, repre-
sent quite well-understood systems that condensed matter physicists are
able to effectively model and describe. While e.g. the conducting properties
of normal metals can be predicted from their band-filling and the super-
conducting properties of conventional superconductors can be derived from
the interplay between electrons and phonons, the magnetic properties of
magnetic insulators can often be understood in terms of localized spins in-
teracting through exchange interactions. Rather than directly contributing
to the understanding of such materials, or their more complicated and more
mysterious relatives, this thesis is focused on the physics that arise when
magnets and conductors are joined together in heterostructures. However,
as such heterostructures involve itinerant electrons coupled to magnetism,
they might, in addition to being interesting or useful in themselves, also be
capable of shedding some light on the physics of interesting single-material
systems such as material featuring unconventional superconductivity.

The thesis itself consists of seven research papers, preceded by a pre-
sentation of background material, as well as a discussion of the included
articles. The first four papers consider the possibility of inducing supercon-
ductivity in a conductor through spatial proximity to magnetic insulators.
While the second paper is concerned with coupling of the conducting surface
states of a topological insulator to both ferromagnetic and antiferromagnetic
insulators, the three other articles focus on normal metals proximitized by
antiferromagnetic insulators.

The first paper reveals the importance of the magnetic structure at the
antiferromagnet/metal interface. If both the spin-up and spin-down sub-
lattices of the antiferromagnet are exposed at the interface, the effective
electron-magnon scattering can be suppressed compared to the case where
only one of the two antiferromagnetic sublattices couple to the itinerant
electrons in the normal metal. In the latter case of an uncompensated anti-
ferromagnetic interface, it is concluded that realization of magnon-mediated
superconductivity could be possible.

In the second paper, the ideas of the first paper are extended to the
case of magnon-mediated superconductivity on the surface of a topologi-
cal insulator. It is once again found that an asymmetric coupling to the
two antiferromagnetic sublattices could be beneficial for superconductivity.
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In this paper, we also introduce next-nearest neighbor frustration in the
antiferromagnet, enhancing the spin-fluctuations and potentially also the
superconductivity.

In the third paper, we return to the simpler antiferromagnet/normal
metal system in order to expand on the effect of adding frustration to the
antiferromagnet. Adjusting the next-nearest neighbor interaction, we tune
our way from a normal antiferromagnetic checkerboard phase to a stripe
phase, finding that approaching the transition point between the two phases
is generally favorable for superconductivity as long as magnetic order can
be preserved.

The fourth paper builds on paper 1 and 3, solidifying earlier obtained
results through investigating the system using Eliashberg theory rather
than BCS theory. This study also considers the impact of non-isotropic
Fermi surfaces and concludes that the frequency dependence of the effective
magnon-mediated interaction should be properly taken into account when
determining the energy scale for the superconducting critical temperature.

In the fifth paper, we study indirect magnetic exchange interaction be-
tween two ferromagnets mediated by an unconventional superconductor.
While such indirect interaction mediated by superconductors normally has
a preference for anti-alignment of the magnetization in the ferromagnets,
we find that the presence of zero-energy bound states on the surface of the
superconductor can lead to a preference for alignment of the ferromagnets.

The sixth paper is concerned with the maximum spin-splitting field that
spin-singlet superconductivity can survive. This spin-splitting field is typi-
cally restricted to a fraction of the superconducting gap at zero field. For a
system with a dispersive energy band crossing the Fermi level as well as a
completely flat band located slightly away from the Fermi level, we predict
that it could be possible for the superconductivity to survive spin-splitting
fields larger than the superconducting gap at zero field.

Finally, in the seventh paper, we return to our antiferromagnet/normal
metal system in order to investigate whether an electron charge current,
flowing parallel to the interface, in the normal metal can induce a magnon
spin-current in the antiferromagnet. For an uncompensated antiferromag-
netic interface, we find that inducing such a spin-polarized magnon current
could be possible even if the antiferromagnet hosts two degenerate and op-
positely spin-polarized magnon modes.
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1
Introduction

One of the great challenges of our time is to reduce climate gas emissions
while simultaneously meeting the energy needs of tomorrow. As scaling
up the production of clean electricity at a sufficient speed can prove to be
challenging, limiting the amount of wasted energy is likely to be an impor-
tant part of the solution. Entering a continuously more data-driven future,
reducing e.g. the energy spent running and cooling computers can be a sub-
stantial contribution [8, 9].

Superconductors, featuring zero electrical resistance, could hold the key
to reducing energy losses within many different areas of society. Super-
conducting wires can e.g. remove the energy loss associated with electrical
power transmission. They can also increase the efficiency of electrical de-
vices, including computers where much energy is lost as heat during the
transport of electrical signals. Moreover, currents carried by superconduc-
tors can be used to generate strong magnetic fields, or even to store energy
through currents that run in a loop without slowing down.

While this sounds very promising, there is, of course, a reason why we are
currently not completely surrounded by such applications of superconduc-
tors. Superconducting materials unfortunately lose their special properties
above a critical temperature which is normally considerably below room
temperature. Some of the materials we normally surround ourselves with,
such as aluminium, can in fact become superconducting, but only if they
are cooled down sufficiently. The advantages of using superconductors in
applications are therefore often out-weighted by the cost of cooling. An im-
portant exception is the use of superconductors as electromagnets in MRI
devices [10]. Similarly, superconductors are used to generate large magnetic
fields to guide the particle beams in particle accelerators [11]. Reversely, su-
perconductors can also be used in sensitive magnetometers, able to measure
the strength of very weak magnetic fields [12]. There are actually also e.g.
some existing superconducting cables in use for power transmission [13].
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Releasing the true potential of superconductivity clearly requires the
discovery or construction of a room-temperature (or at least close to room-
temperature) superconductor, which preferably also should be easy to pro-
duce and shape. The probability of reaching this goal can be increased if
the search is guided by a solid theoretical understanding of superconduc-
tors, including both why superconductivity arises and which properties that
determine the critical temperature of a superconducting material. A large
class of superconductors are currently well-understood as arising from elec-
trons in a metal interacting with spatial fluctuations in the ionic lattice.
Such superconductors are often referred to as conventional superconductors
and examples include many elemental superconductors such as aluminium
and lead. Their critical temperatures are typically of the order 0.1 − 10K.
There are, however, also superconductors with larger critical temperatures,
all the way up towards 140K [14]. The mechanism leading to supercon-
ductivity in these types of superconductors is less understood. As we will
return to later, it is generally believed that magnetic fluctuations play an
important role.

Building a better understanding of currently known high-temperature
superconductors could be a pathway towards further optimization leading
to realization of a room-temperature superconductor. Another, more re-
cent, potential pathway towards room-temperature superconductivity relies
on large pressures to stabilize new materials containing light elements such
as hydrogen. The presence of the light ions can lead to a very large energy
scale for the associated lattice vibrations, which can set a large energy scale
for the superconducting critical temperature [15]. In such systems, room-
temperature superconductivity, at least for a somewhat chilly room keeping
15°C, has recently been achieved [16]. Unfortunately, the somewhat chilly
room also needs to have a pressure six order of magnitude larger than atmo-
spheric pressure. Rather than trying to increase the critical temperature,
the new challenge is then to be able to lower the necessary pressure.

In addition to the potential applications listed above, superconductors
can also be useful within the field of spintronics. This field aims to use spin,
rather than charge, to store and transport information for computational
purposes [17]. Spins have actually already been used to store information
for quite a long time. In normal hard drives, information is encoded through
the direction of the magnetization in magnetic domains, determined by the
direction of the spins in the domain which align to create the magnetization.
Information can then be written to the hard-drive by driving a current, pro-
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ducing a magnetic field that can switch the direction of a magnetic domain.
Reading of the encoded information can be achieved through the use of a
material with large magnetoresistance, i.e. a material whose electrical resis-
tance is strongly influenced by the presence of a magnetic field. Placing such
a material close to a magnetic domain and attempting to drive a current
through the material, one can then obtain information about the magnetic
domain. Large magnetoresistance can be achieved in structures consisting
of metallic magnets separated by nonmagnetic metals. This effect is named
giant magnetoresistance (GMR) and was discovered by Fert and Grünberg,
leading to them being awarded the Nobel prize in physics in 2007 [18, 19].

GMR relies on electrons experiencing spin-dependent scattering when
moving through a magnetic metal. If e.g. electrons with spins aligned with
the background field in the magnetic material tend to scatter more, electrons
with spins anti-aligned with the background field will easier move through
the material and better contribute to the conductivity. In a structure con-
sisting of a single nonmagnetic metal sandwiched between two magnetic
metals that prefer to have anti-aligned magnetization, both spin-up and
spin-down electrons will scatter strongly on their way through the struc-
ture, leading to a large resistance. However, if an external field is used
to align the magnetization in the two materials, the structure will have a
lower resistance as electrons with a specific spin-direction are able to float
through the system without experiencing strong scattering. The resistance
of the structure can, in other words, be strongly affected by an applied
magnetic field. If we further fix the direction of one of the magnets, the re-
sistance becomes dependent on the direction of the applied field: The field
can either leave the magnetization of the second magnet unchanged, or it
can reverse it. Bringing such a structure close to a magnetic domain in a
hard drive, the resistance through the structure will then depend on the
direction of the magnetic domain and we are able to read out information
from the hard-drive.

The spin-property of electrons is clearly already of importance for infor-
mation storage. It is, however, also possible to use spin signals to transport
information through so-called spin currents. A spin current can simply be
a spin-polarized version of a normal electron current, meaning an electron
current consisting of e.g. more electrons with spin-up than spin-down. Such
a spin current is naturally realized in magnetic metals. Similarly, it is also
possible to realize an electronic pure spin current where electrons with op-
posite spins move in opposite directions. This can e.g. be realized in heavy
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metals where electrons can be viewed as following curved trajectories where
the direction of deviation from a straight line depends on the spin of the
electrons. A charge current will then lead to a transverse pure spin current,
which is known as the spin Hall effect [20, 21]. The reverse process, where
a spin current generates a transverse charge current is known as the inverse
spin Hall effect [21]. The inverse spin Hall effect is useful for indirectly de-
tecting spin currents through their associated transverse charge currents.

An alternative way of transporting spin signals is through spin currents
in magnetic insulators. There are then no moving electrons that can carry
spin through the system, only localized spins that can fluctuate around
their preferred direction. The spin signal then travels through the system
like the effect of a puff of wind travelling through a grain field. As the signal
is transported without any moving charge carriers, magnetic insulators can
allow for low-loss transfer of information [22]. Spin currents in magnetic in-
sulators can be generated by subjecting the magnet to an incoming electron
spin current from a neighboring heavy metal, or by applying a temperature
gradient to the system. In the latter case, more spin-fluctuations will be
present in the warmer part of the system which will then spread out to the
colder part of the system, giving rise to a spin current. Moreover, regard-
less of their origin, spin currents in magnetic insulators can be sent into a
neighboring heavy metal where they can be detected through the inverse
spin Hall effect.

Finally, another alternative for low-loss transportation of spin signals is
superconducting spin currents. Such spin currents are of interest within the
field of superconducting spintronics which aims to use the special properties
of superconductors to improve the efficiency of spintronics devices [23, 24].
Combining superconductivity and spintronics does, however, typically also
mean combining superconductivity and magnetism. As we will see later,
superconductivity and magnetism are, unfortunately, normally not the best
of friends. An important question within the field is therefore under what
circumstances superconductivity and magnetism can coexists, as well as
which interesting, and potentially useful, effects that can arise when such
coexistence is achieved.

In this thesis, we first attempt to better understand how spin fluctu-
ations can give rise to superconductivity. High-temperature superconduc-
tors, where spin fluctuations appear to be of importance, typically repre-
sent complex systems that it can be difficult to understand even when they
are in their “normal” state above the superconducting critical temperature.
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This motivates studying spin-fluctuation mediated superconductivity in sys-
tems that it might be easier to understand. We approach the problem of
spin-fluctuations mediated superconductivity from the perspective of het-
erostructures consisting of magnetic insulators and conductors. Although
the presence of an interface between two different materials in one way
complicates the system, this approach to the problem also introduces cer-
tain clear advantages. The conduction electrons and magnetic fluctuations
now have completely separate origin, in fact being hosted by two separate
materials. It is then possible, both theoretically and experimentally, to pick
the heterostructure apart to investigate the properties of the electrons and
magnetic fluctuations decoupled from each other. This can aid in under-
standing the, potentially complex, physics that arise when they are brought
together. Heterostructures also provide large possibilities for separately ad-
justing the properties of the metallic and magnetic materials, as well as
how they couple to each other. This can increase the chance of realizing a
parameter regime which is favorable for superconductivity, and also means
that such heterostructures might provide a potential playground for gaining
a better understanding of the relationship between superconductivity and
spin fluctuations.

Further, in this thesis, we also study interplay between magnetism and
different types of superconductors, as well as new ways of generating spin
currents in magnetic insulators. We start the thesis by providing an in-
troduction to magnetism and magnetic fluctuations in chapter 2. We then
dive into superconductivity in chapter 3, also introducing the effect of mag-
netic fields on superconductors and briefly commenting on spin-fluctuation
mediated superconductivity. In chapter 4, we move on to discussing in de-
tail spin-fluctuation mediated superconductivity in heterostructures, which
brings us to Papers [1–4]. Next, we introduce the concept of indirect ex-
change interaction in chapter 5 and make our way to Paper [5], discussing
magnetic exchange interaction between ferromagnets mediated by a super-
conductor. We then further consider flatband systems and flatband su-
perconductivity in chapter 6, leading up to the discussion of the critical
magnetic field of flatband superconductors in Paper [6]. In chapter 7, we
consider transport theory and coupling between flow of electrons and spin
fluctuations, bringing us to Paper [7]. We end with concluding and high-
lighting possible paths for future work in chapter 8.





2
Magnetism

When applying a magnetic field to a material, the response of the material
can differ. Considering a solid material consisting of periodically spaced
atom cores with associated electrons, the atom cores themselves can pro-
vide magnetic moments that can interact with a magnetic field. More im-
portantly, the electrons associated with the atoms carry a spin, which can
provide the atoms with a much larger nonzero magnetic moment if there
are one or more unpaired electrons, i.e. electrons in states that are not
doubly occupied by electrons with opposite spin directions. Similarly, the
orbital motion of electrons around the atom cores can also contribute to
the net magnetic moment if such contributions do not sum up to zero. In
a paramagnetic material, the dominant effect is that magnetic moments
in the system align with an external magnetic field, making the material
strengthen the applied field. The presence of a magnetic field can, however,
also influence the orbital motion of electrons around the atom cores, setting
up a magnetic field in the opposite direction of the applied field. This ef-
fect can be dominant if e.g. the electron contributions to the net magnetic
moments of the atoms vanish. The material then becomes a diamagnet,
which is a material that works against an applied magnetic field. Taking
into account that the material may feature itinerant electrons, these elec-
trons can also have their motion altered by an external field or align their
magnetic moments with the field. The paramagnetic contributions from
itinerant electrons are, however, limited by the fact that the magnetic field
is only able to spin-polarize electrons close to the Fermi level. Despite this,
such contributions can e.g. be important for the critical magnetic field of
superconductors, which we will see in Chap. 3. The diamagnetic contribu-
tions from itinerant electrons are, normally, also small [25].

Both paramagnetic and diamagnetic materials become magnetized when
exposed to a magnetic field. Another class of materials, ferromagnets, can
host a net magnetic moment in the absence of an external field. Ferro-
magnetic insulators consist of localized magnetic moments that interact
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with each other in a way that favors alignment of the magnetic moments.
Although magnetic moments can simply interact with each other through
dipole-dipole interactions, the dominant interactions in ferromagnetic insu-
lators are so-called exchange interactions [26].

Exchange interactions arise from the symmetry restrictions of identical
particles under exchange, allowing e.g. the spin state of a system to influence
the spatial state. Considering for instance some two-electron system where
the electrons repel each other through the Coulomb interaction, whether
the electrons are in a spin-singlet or spin-triplet state will dictate whether
their combined wave function is odd or even under exchange of their spa-
tial coordinates. Even if the Hamiltonian is not spin-dependent, the energy
of the two-particle system can depend on the affected spatial properties
of the wave function, giving rise to an energy difference between the sin-
glet and triplet states [25, 26]. The Hamiltonian describing the system can
then be expressed in terms of dot product between the two spin operators
H ∼ JS1 ⋅S2, where the exchange coupling J is determined by the difference
in energy between the singlet and triplet states.

In general, exchange couplings can favor both ferromagnetic and anti-
ferromagnetic alignment of neighboring spins. They can arise from direct
exchange as in the above example, but we can also have more complicated
indirect interactions, which we will return to in Chap. 5. If the interac-
tion between neighboring magnetic moments favors anti-alignment, rather
than alignment, the material can be an antiferromagnet where neighboring
spins are anti-aligned. The material does then not feature a net magnetic
moment, but there is still magnetic order in the system. Although antifer-
romagnets may seem like simply a combination of two oppositely aligned
ferromagnets, we will see in this chapter that this is far from the full story.
Similarly, other types of interaction or additional interaction between e.g.
next-nearest neighbors can give rise to different types of magnetic order.
One example is Dzyaloshinskii-Moriya interaction, normally arising due to
the presence of spin-orbit coupling in the system, which favors neighboring
spins to be orthogonal to each other.

Moreover, metallic systems can also feature magnetic order. The mag-
netic order can arise from localized magnetic moments as before, or from
the itinerant electrons themselves. Similarly to localized electrons, the spins
of itinerant electrons may interact in ways favoring e.g. alignment of spins,
which can make the electrons stay more away from each other and thereby
reduce the effect of Coulomb repulsion. Starting with a spin-degenerate sys-
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tem of itinerant electrons filling up the states below the Fermi level, spin-
polarizing the system requires emptying e.g. spin-down states below the
Fermi level and filling spin-up states above the Fermi level. This leads to a
kinetic energy cost which, in order for magnetization to take place, must be
compensated by the potential energy gain associated with the spin-polarized
state. While the potential energy gain will increase with the strength of the
spin-dependent interaction, the associated kinetic energy cost will be lower
for a larger density of states at the Fermi level, allowing more states to
be filled above the Fermi level at a lower energy cost. The combination of
sufficiently strong spin-dependent interaction and a sufficiently large den-
sity of states at the Fermi level can therefore lead to a magnetic state.
This gives rise to the Stoner criterion for itinerant ferromagnetism [27]. For
real materials, properly evaluating and satisfying this, seemingly simple,
criterion for itinerant ferromagnetism may necessitate taking into account
detailed band structures featuring more or less localized/itinerant electrons
[25]. When modelling metallic ferromagnets, one often considers a system
consisting of itinerant electrons coupled to fully localized spins displaying
magnetic order, or simply itinerant electrons coupled to a background field
of unspecified origin. As we will see in Chap. 5, the latter case is applied
in Paper [5] where we consider ferromagnetic metals coupled together by a
superconductor.

The focus of this chapter will be on magnetic insulators, which play an
integral part in most of the papers included in this thesis. We start by
discussing ferromagnetism in Sec. 2.1, where we introduce a spin-model for
ferromagnetic insulators and investigate the excitations of this model within
both a linear spin-wave and Schwinger boson framework. We then move on
to an analogous discussion of antiferromagnetism in Sec. 2.2.

2.1 Ferromagnetism

As described above, ferromagnetic materials contain magnetic moments that
can spontaneously align in the absence of a magnetic field. An example of
localized spins that align due to a ferromagnetic nearest-neighbor interac-
tion, forming a net magnetization, is shown in Fig. 2.1(a). Further, as
displayed in Fig. 2.1 (b), the magnetic order is stable below some criti-
cal temperature TC , which is called the Curie temperature of the material.
Above this temperature, thermal fluctuations become too strong and over-
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Figure 2.1: (a) Ferromagnet with localized spins that interact with nearest
neighbors through an exchange interaction J1. In (b), we show a sketch
of the magnetization M as a function of temperature T for a ferromagnet.
The magnetization decays with temperature, until it vanishes at the Curie
temperature TC .

power the tendency of ordering in the system.
Rather than all spin being aligned in the same direction, ferromagnets in

reality often break up into domains with different direction of magnetization.
We will in the following consider the physics of a single uniform domain.
Further, ferromagnetic insulators often include nonmagnetic atoms in ad-
dition to the atoms giving rise to the localized magnetic moments. When
modelling the system, we simply focus on the localized spins and the inter-
action between them.

To describe a ferromagnetic insulator of the type in Fig. 2.1(a), we will
start out from a spin Hamiltonian on the form

HFMI = −J1∑
⟨i,j⟩

Si ⋅Sj −K∑
i

S2
iz − h∑

i

Siz. (2.1)

Here, Si represents a localized quantum spin located at lattice site i which
interacts with its nearest neighbors Sj in all directions so that each nearest
neighbor bond is double-counted when we sum over the lattice sites. We will,
for simplicity, assume that the lattice is a simple d-dimensional cubic lattice.
We have also added the potential effect of an external magnetic field favoring
the spins to align in the z-direction, as well as an easy-axis anisotropy term
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proportional to K. This anisotropy term captures the possibility that some
specific ordering axis can be more favorable than others. Such spin-space
anisotropy can originate with e.g. spin-orbit coupling arising from the orbital
motion of electrons in the electric field of the crystal, whose effect will be
influenced by the crystal symmetry [28].

In order to analyze the above spin Hamiltonian, one often attempts to
simplify the problem through some approximate procedure. We start with
introducing the approach to the problem which is referred to as linear spin-
wave theory.

2.1.1 Linear spin wave theory

We start out from an assumption that the ferromagnetic system is close to a
fully ordered state where all spins point in the same direction, representing
the ground state of the system. It should then be possible to describe the
system as a fully ordered state combined with deviations away from the fully
ordered state. This is achieved through the linearized Holstein-Primakoff
transformation [29]

Si+ =
√

2S − a†
iai ai ≈

√
2S ai, (2.2a)

Si− = a†
i

√
2S − a†

iai ≈
√
2S a†

i, (2.2b)

Siz = S − a†
iai, (2.2c)

where a†
i is a bosonic creation operator, lowering the z-direction spin quan-

tum number at lattice site i. In the absence of of such bosons, the system
is simply in its fully ordered state with Siz = S. Assuming that deviations
away from this state are small, we have expanded the square roots to linear
order in the boson operators.

For a spin-12 system, a lowering of the z-direction spin quantum num-
ber leads to a complete flip of the localized spin. Although such localized
spin-flips (or partly flips for S > 1/2) may seem like natural excitations of
an ordered ferromagnet, such spin-flips are energetically costly due to the
ferromagnetic exchange interaction between nearest neighbors, and they are
not eigenexcitations of the system. In order to obtain the eigenexcitations,
we need to introduce Fourier-transformed bosonic operators
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aq =
1√
N
∑
i

aie
iq⋅ri , (2.3)

where N is the number of lattice sites in the system. These new excitations
represent delocalized spin-flips, which are collective excitations referred to
as magnons. While magnons carrying finite momentum q represent spin-
waves travelling through the system, the special case of a magnon with
q → 0 corresponds to a macroscopically small uniform deviation of the spin-
direction. The latter type of excitations have an energy cost of the order
K or h in the presence of easy-axis anisotropy or a magnetic field. Such
excitations can be much less costly than localized spin-flip excitations that
come with an energy cost of the order J1.

Inserting the linearized Holstein-Primakoff transformation, Fourier trans-
forming the original spin-flip operators, and disregarding constant terms,
our initial spin Hamiltonian can be expressed as

HFMI =∑
q

ωq a
†
qaq, (2.4)

where

ωq = 2KS + 2SJ1z1(1 − γq) + h, (2.5)

and γq = 1
z1
∑δδδ1 e

iq⋅δδδ1 . Here, we have denoted the number of nearest neigh-
bors by z1, while the sum over δ1 is a sum over nearest neighbor vectors.
The magnon excitation energies ωq are presented as a function of momen-
tum in Fig. 2.2 (a) and (b). Around the Brillouin zone center, we see that
the magnons follow a quadratic dispersion relation. In (b), we highlight
that taking K > 0 opens a gap in the magnon spectrum. The quantity a is
here the lattice constant.

The magnetization in the system can further be expressed as

M = 1

N
∑
i

⟨Si,z⟩ = S −
1

N
∑
q

b(ωq), (2.6)

where b(ωq) is a Bose-distribution. Assuming a gapless magnon spectrum,
one can then show that the correction term to the magnetization diverges at
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Figure 2.2: Dispersion relation for ferromagnetic magnons living in two
dimensions with qya = 0, S = 1, and h = 0. For the purple curves in (a) and
(b), we have set the easy-axis anisotropy to zero. In (b), we also show that
a nonzero easy-axis anisotropy opens a gap in the magnon spectrum.

finite temperature for dimensions smaller than 3, indicating that there is no
magnetic order in this case. This is consistent with the Hohenberg-Mermin-
Wagner theorem [30, 31], which states that continuous symmetries cannot
be spontaneously broken at finite temperatures if the system is one- or two-
dimensional and the involved interactions are sufficiently short-ranged. As
a gapless magnon spectrum corresponds to our spin Hamiltonian featuring
a continuous spin-rotational symmetry, this symmetry of the Hamiltonian
must be spontaneously broken for the spins of the system to order in a
specific direction. We then need a three-dimensional system to achieve
long-range order above zero temperature. The Hohenberg-Mermin-Wagner
theorem can, however, be circumvented by explicitly breaking the continu-
ous spin-rotational symmetry through e.g. introducing easy-axis anisotropy
in the system. Magnetic ordering at nonzero temperatures is then no longer
restricted to three-dimensional systems.

2.1.2 Schwinger bosons

The spin Hamiltonian in Eq. (2.1) can also be treated by rewriting the spin
operators in terms of Schwinger bosons operators. A potential advantage of
this approach is that we are not restricted to studying the system close to
a fully ordered state. Through this approach, one can, in fact, even study
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Figure 2.3: Spin state at a lattice site as a function of the occupation of
Schwinger bosons with spin ↑ and ↓. For a given spin quantum number S,
the state where the z-component of the spin is maximized is located along
the x-axis of the figure.

disordered magnetic phases. Schwinger bosons also allow for a straightfor-
ward generalization from spin-systems with SU(2) symmetries to systems
with SU(N ′) symmetry. In contrast to the spin wave approach, which relies
on a sufficiently large S, Schwinger bosons approaches are large N ′ approx-
imations [32].

In terms of Schwinger bosons, the spin operators take the form

Si+ = a†
i↑ai↓, (2.7a)

Si− = a†
i↓ai↑, (2.7b)

Siz =
1

2
(a†

i↑ai↑ − a
†
i↓ai↓), (2.7c)

where a†
iσ creates a Schwinger boson with spin σ. How the spin state at a

given lattice site depends on the occupation of Schwinger bosons is displayed
in Fig. 2.3. It further follows that

a†
i↑ai↑ + a

†
i↓ai↓ = 2S, (2.8)

on each lattice site. Notably, this restriction on the total boson number
associated with a lattice site is an equality, rather than the inequality 0 ≤
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a†
iai ≤ 2S that restricts the number of bosons per site within the spin-wave

framework.
In order to analyze the ferromagnet Hamiltonian, we next introduce the

ferromagnetic bond operators [33, 34]

Bij =
1

2
(ai↑a†

j↑ + ai↓a
†
j↓), (2.9)

allowing us to write

HFMI = Nz1J1S(S + 1) − 2J1∑
⟨i,j⟩

B†
ijBij −K∑

i

S2
iz − h∑

i

Siz. (2.10)

We then express the bond operators in terms of mean-field values and de-
viations

Bij = ⟨Bij⟩ + (Bij − ⟨Bij⟩) = ⟨Bij⟩ + δBij . (2.11)

Neglecting quadratic terms in the deviations, we can then write

B†
ijBij ≈ ⟨B†

ij⟩Bij + ⟨Bij⟩B†
ij − ⟨B

†
ij⟩⟨Bij⟩. (2.12)

Similarly, we can also introduce a similar mean-field decoupling for Si,z in
order to treat the easy-axis anisotropy term. Relaxing the constraint in (2.8)
to only hold for the average values of the Schwinger boson numbers, and
enforcing this constraint through the introduction of a Lagrange multiplier
λ, the Hamiltonian can now be expressed as

HFMI = λ∑
i

(a†
i↑ai↑ + a

†
i↓ai↓ − 2S) +Nz1J1S(S + 1)

− 2J1∑
⟨i,j⟩

[⟨B†
ij⟩Bij + ⟨Bij⟩B†

ij] + 2J1∑
⟨i,j⟩

⟨B†
ij⟩⟨Bij⟩

− 2K∑
i

⟨Siz⟩Siz +K∑
i

⟨Siz⟩2 − h∑
i

Siz.

(2.13)

We then take ⟨Bij⟩ = ⟨B†
ij⟩ = B, where B is constant and real. Similarly, we

also take ⟨Si,z⟩ =M . We can then insert the expression for Bij in terms of
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the Schwinger boson operators and introduce the Fourier transformation of
the operators. This leads us to the diagonalized Hamiltonian

HFMI = Nz1J1S(S + 1) + 2J1Nz1B2 − 2SλN +NKM2

+∑
qσ

ωqσa
†
qσaqσ,

(2.14)

where

ωqσ = λ − 2BJ1z1γq −
σ

2
(2KM + h). (2.15)

The Lagrange multiplier λ, and the mean-field parameters B and M should
be determined by minimizing the free energy. Several of the terms not
involving any operators are therefore still of relevance. We will go more into
the minimization of the free energy when we get to the antiferromagnetic
case. Here, we only quickly note that the magnetization can be expressed
as

M = 1

N
∑
i

⟨Siz⟩ =
1

2N
∑
q

(⟨a†
q↑aq↑⟩ − ⟨a

†
q↓aq↓⟩). (2.16)

Within this framework, ferromagnetic order is, in the thermodynamic
limit, signalled by Bose-Einstein condensation of Schwinger bosons with
q = 0. For ordering along the z-axis, we then have condensation of either
spin-↑ or spin-↓ Schwinger bosons. A macroscopic number of e.g. spin-↑
magnons with q = 0 and no spin-↓ magnons then corresponds to a uniform
state where all spins point in the positive z-direction.

2.2 Antiferromagnetism

After having introduced ferromagnetism and ferromagnetic excitations, we
are ready to move on to antiferromagnetism. In Fig. 2.4 (a), we show
an example of localized spins that interact with nearest and next-nearest
neighbors, forming an antiferromagnetic state. For a dominant antiferro-
magnetic nearest neighbor interaction, a ferromagnetic next-nearest neigh-
bor interaction will help stabilize the antiferromagnetic state, while an an-
tiferromagnetic next-nearest neighbor interaction acts as a frustration. The
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Figure 2.4: (a) Antiferromagnet with localized spins that interact with near-
est neighbors and next-nearest neighbors through exchange interactions J1
and J2. In (b), we show a sketch of the sublattice magnetization MA as a
function of temperature T for an antiferromagnet. Similar to the ferromag-
net, the magnetization decays with temperature. The critical temperature
where magnetic ordering is lost is called the Néel temperature TN.

checkerboard antiferromagnetic state shown in this figure is known as a Néel
state. Although the net magnetization vanishes, we can divide the lattice
up into two sublattices (A and B) which each features a nonzero sublattice
magnetization. As displayed in Fig. 2.4 (b), the sublattice magnetization
vanishes above a critical temperature referred to as the Néel temperature
TN.

In order to model an antiferromagnetic insulator, we start out from a
spin Hamiltonian similar to the one we used in the previous section

HAFMI =J1∑
⟨i,j⟩

Si ⋅Sj + J2 ∑
⟨⟨i,j⟩⟩

Si ⋅Sj −K∑
i

S2
iz − h∑

i

Si,z, (2.17)

where the spin are, again, taken to live on a d-dimensional simple cubic
lattice. We have now introduced an additional interaction between next-
nearest neighbors and reversed the sign in front of the first term in order
for J1 > 0 to correspond to an antiferromagnetic coupling between nearest
neighbors.

The fully ordered Néel state is, indeed, the classical ground state of the
system. However, in contrast to the situation we had for the ferromag-
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net, the classical ground state is in this case not the ground state, or even
an eigenstate, of the quantum Hamiltonian. This is easily seen by writing
Si ⋅ Sj = 1

2(Si+Sj− + Si−Sj+) + SizSjz and inspecting the nearest neighbor
term. For a ferromagnet state, combinations of ladder operators such as
Si+Sj− give vanishing contributions when acting on two neighboring spins
polarized in the same direction. However, for a Néel state, Si+Sj− may
change the state of the system when acting on two oppositely polarized
spins, making the Néel state not an eigenstate of the quantum Hamilto-
nian.

Despite the fact that the Néel state is not an eigenstate of the Hamil-
tonian, we must keep in mind that we are trying to describe an antiferro-
magnet featuring a net magnetization on each sublattice. In order for our
choice of Hamiltonian to be sensible, the ground state should also feature a
net magnetization associated with each sublattice and therefore not be too
different from a Néel state. When treating the Hamiltonian within the lin-
ear spin wave framework, we therefore consider a fully ordered checkerboard
state combined with small deviations away from this state.

2.2.1 Linear spin wave theory

For each sublattice, the linearized Holstein-Primakoff transformation now
takes the form

SA
i+ =
√

2S − a†
iai ai ≈

√
2S ai, SB

j+ = b
†
j

√
2S − b†jbj ≈

√
2S b†j , (2.18a)

SA
i− = a

†
i

√
2S − a†

iai ≈
√
2S a†

i, SB
j− =
√

2S − b†jbj bj ≈
√
2S bj , (2.18b)

SA
iz = S − a

†
iai, SB

jz = −S + b
†
jbj . (2.18c)

Using this transformation, we rewrite the spin operators in our Hamiltonian
in terms of bosonic operators before we, once again, introduce the Fourier
transformation of the localized bosonic operators

ai =
1√
NA
∑
q

aqe
−iq⋅ri , bi =

1√
NB
∑
q

bqe
−iq⋅ri , (2.19)

where NA = NB = N/2. As the localized bosonic operators, in this case, are
associated with the sublattices of the full lattice, the delocalized spin-flip
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Figure 2.5: (a) Unit cell for the full lattice and a sublattice, with corre-
sponding Brillouin zones in (b). The Brillouin zone corresponding to the
sublattices is rotated and shrunk by a factor

√
2.

magnons live in a reduced Brillouin zone, as displayed in Fig. 2.5.
Neglecting constant terms, we now have

HAFMI =∑
q

[Cq(a†
qaq + b†qbq) + h(a†

qaq − b†qbq)

+Dq(a†
qb

†
−q + aqb−q)],

(2.20)

where

Cq = 2SJ1z1 + 2SK − 2SJ2z2(1 − γ̃q), (2.21a)

Dq = 2SJ1z1γq. (2.21b)

Here, γ̃q = 1
z2
∑δδδ2 e

iq⋅δδδ2 where the sum covers next-nearest neighbor vectors.
As we now see, a Fourier transformation is not sufficient to diagonalize our
antiferromagnetic Hamiltonian. If we had taken J1 = 0 and relied on a fer-
romagnetic next-nearest neighbor interaction J2 < 0 as well as e.g. some
staggered magnetic field to produce a Néel phase, the story would have
ended here. Our system would simply consist of two decoupled ferromag-
nets. As we, instead, are studying two strongly coupled sublattices, we need
to introduce an additional Bogoliubov transformation
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Figure 2.6: Dispersion relation for antiferromagnetic magnons living in two
dimensions with qya = 0, S = 1, and h = 0. For the purple curves in (a)
and (b), we have set the easy-axis anisotropy to zero. In (b), we show that
a nonzero easy-axis anisotropy now not only opens a gap in the magnon
spectrum, but also leads to the dispersion relation being quadratic instead
of linear around the Brillouin zone center.

aq = uqαq + vqβ†
−q, (2.22a)

b†−q = uqβ
†
−q + vqαq, (2.22b)

where u2q − v2q = 1. Inverting these expressions, we obtain

αq = uqaq − vqb†−q (2.23a)

β†
−q = uqb

†
−q − vqaq, (2.23b)

showing that e.g. annihilating an α magnon is a combination of removing
a delocalized spin-flip from the A-sublattice and adding a delocalized spin-
flip to the B-sublattice. Both these processes increase the z-direction spin
quantum number, meaning that α magnons carry a spin polarized in the
negative z-direction. Similarly, we see that β magnons carry a spin polarized
in the positive z-direction.

Taking
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Figure 2.7: (a) Coherence factors uq and vq for antiferromagnetic magnons
living in two dimensions with qya = 0, S = 1, and K/J1 = 10−3. In (b),
we show how uq varies with the next-nearest neighbor interaction J2. For
J2 > 0, acting as a frustration, the curve becomes flatter.

uq =
1√
2

¿
ÁÁÀCq

ωq
+ 1, vq =

−1√
2

¿
ÁÁÀCq

ωq
− 1, (2.24)

the Hamiltonian is finally diagonalized and put on the form

HAFMI =∑
q

(ωqαα
†
qαq + ωqββ

†
qβq), (2.25)

where ωqα = ωq + h, ωqβ = ωq − h, and

ωq =
√
C2
q −D2

q. (2.26)

The excitation energies for the α and β magnons are presented as a
function of momentum in Fig. 2.6 (a) and (b). When gapless, the dis-
persion relation is now linear, rather than quadratic, around the Brillouin
zone center. When a gap in the spectrum is introduced through easy-axis
anisotropy, the spectrum becomes quadratic in a region of size qa ∼

√
K/J1

around the Brillouin zone center, before the linear behavior takes over.
Further, in Fig. 2.7 (a), we show how the Bogoliubov coefficients uq

and vq, also referred to as coherence factors, depend on momentum. As
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seen from this figure, ∣uq ∣ and ∣vq ∣ are both peaked at zero momentum, with
opposite sign for uq and vq. At the peak, their magnitudes are similar and
of the order (J1K )

1/4, diverging as K → 0. For larger q, they approach uq = 1
and vq = 0. Introducing J2 > 0, we further see in Fig. 2.7 (b) that the co-
herence factors decay more slowly as we move away from zero momentum.

As the coherence factors approach uq = 1 and vq = 0 for large q, we
then simply have that αq ≈ aq and βq ≈ bq. The eigenexcitations of the
antiferromagnet are then simply delocalized spin-flip excitations associated
with a single sublattice. However, for small q the coupling between the two
sublattices makes its mark on the physics of the system, and the antifer-
romagnetic eigenexcitations are associated with spin fluctuations on both
sublattices. The corresponding potential largeness of the magnitude of the
magnon coherence factors for small q can be of interest for the following
reason. When coupling the spins of an antiferromagnet to some external
system, the spin operators may be expressed in terms of sublattice spin-flip
magnons, which again should be expressed in terms of the antiferromagnetic
α and β magnons. This introduces magnon coherence factors in the cou-
pling to the external system, which may lead to a large coupling between
the external system and the long-wavelength magnons of the antiferromag-
net. As we will see when discussing the results of Paper [1], this effect
relies on avoiding destructive interference between contributions from the
two sublattices of the antiferromagnet. One way of avoiding such destruc-
tive interference is by coupling the external system to only one of the two
sublattices of the antiferromagnet. This can be achieved through so-called
uncompensated antiferromagnetic interfaces where only one of the two sub-
lattices is exposed.

A simple picture for why it can be favorable to couple asymmetrically
to the two sublattices of an antiferromagnet relies on expressing the vac-
uum state of antiferromagnetic eigenexcitations in terms of states produced
by adding delocalized sublattice spin-flip excitations to the Néel state [35].
The antiferromagnetic vacuum state, as well as e.g. a state hosting a sin-
gle antiferromagnetic magnon, can then be expressed as a superposition of
states with increasing number of sublattice spin-flip excitations of the type
that diagonalized the ferromagnetic Hamiltonian. Sketches of the general
structure of these superpositions are displayed in Fig. 2.8. As outlined in
Ref. [35], these antiferromagnetic states can be viewed as so-called squeezed
states. Importantly, large magnon coherence factors are associated with the
superpositions having significant contributions from states featuring a large
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Figure 2.8: (a) Simple sketch of the general structure of the antiferromag-
netic vacuum state expressed as a superposition of states arising from adding
delocalized sublattice spin-flip excitations to the Néel state. Blue arrows
here represent delocalized spin-flip excitations carrying spin polarized in
the positive z-direction, corresponding to spin-flips on the B sublattice. In
(b), we similarly sketch the structure of an antiferromagnetic eigenstate fea-
turing a single β magnon. The figure is adapted from Refs. [1] and [35].

number of sublattice spin-flip magnons. A simple picture is then that a state
with a single long-wavelength antiferromagnetic magnon may be associated
with a large number of oppositely acting spin-flip excitations living on the
two sublattices of the antiferromagnet, which can give rise to a strong in-
teraction when coupling to only one of the two sublattices.

Finally, we also note that the magnetization on sublattice A can be
expressed as

MA =
1

NA
∑
i∈A

⟨SA
i,z⟩ = S −

1

NA
∑
q

⟨a†
qaq⟩. (2.27)

We then need to insert the additional Bogoliubov transformation, leading
to

MA = S −
1

NA
∑
q

[u2q⟨α†
qαq⟩ + v2q⟨β†

qβq⟩ + v2q]. (2.28)

Unlike for the ferromagnet, we now have quantum fluctuations in the sys-
tem. For a spin-space isotropic and two-dimensional antiferromagnet with
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J2 = 0, the zero-temperature correction to the sublattice magnetization is
around 0.2 [36]. For the same system in one dimension, the zero-temperature
corrections diverge. Going to nonzero temperature, one can further, simi-
larly to the case of the ferromagnet, show that the correction terms diverge
for spin-space isotropic antiferromagnets in dimensions less than 3.

2.2.2 Schwinger bosons

As we did for the ferromagnet, we will also treat the antiferromagnetic
Hamiltonian in Eq. (2.17) within a Schwinger boson framework. We will
here follow the approach in Paper [3], neglecting the effect of a magnetic
field. In this paper, we considered the effect of coupling an external system,
symmetrically or asymmetrically, to the two sublattices of the AFMI. We
then found it useful to define different Schwinger bosons for the two sublat-
tices of the AFMI [37], simplifying the treatment of the separate scattering
terms arising from each sublattice. When describing an isolated antifer-
romagnetic system, one normally works with Schwinger bosons that are
defined equally on all lattice sites, elegantly describing different magnetic
phases within a unified framework [38–41].

In Paper [3], varying the definition of the two sublattices, we provided
two separate treatments of a Néel phase and a so-called stripe phase. The
latter phase arises from a dominant antiferromagnetic next-nearest neigh-
bor interaction, forcing next-nearest neighboring spins to be anti-aligned.
For J1 = 0, the system can then be divided up into two decoupled Néel
antiferromagnets where each Néel antiferromagnet lives on a set of lattice
sites that are connected by next-nearest neighbor vectors. Introducing near-
est neighbor interaction in the system, the two Néel antiferromagnets are
coupled together, giving rise to a stripe pattern [39]. An example of such
a pattern is shown in Fig. 2.9. In the following discussion we, however,
restrict ourselves to a Schwinger boson treatment of the Néel phase.

For the two sublattices of the antiferromagnet, we introduce

SA
i+ = a

†
i↑ai↓, SB

i+ = −b
†
i↓bi↑, (2.29a)

SA
i− = a

†
i↓ai↑, SB

i− = −b
†
i↑bi↓, (2.29b)

SA
iz =

1

2
(a†

i↑ai↑ − a
†
i↓ai↓), SB

iz = −
1

2
(b†i↑bi↑ − b

†
i↓bi↓). (2.29c)

On each site of the A-sublattice, we now have
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Figure 2.9: Example of a stripe phase where next-nearest neighbors are
anti-aligned due to a dominant antiferromagnetic next-nearest neighbor in-
teraction J2. In this section, we focus on the Néel phase.

2S =∑
α

a†
iαaiα, (2.30)

while we similarly, on each site of the B-sublattice, have

2S =∑
α

b†iαbiα. (2.31)

The Hamiltonian can be expressed in terms of a set of bond operators

A1,A
ij =

1

2
(ai↑bj↑ + ai↓bj↓), A2,A

ij =
1

2
(ai↑aj↓ − ai↓aj↑), (2.32a)

B1,A
ij =

1

2
(ai↓b†j↑ − ai↑b

†
j↓), B2,A

ij =
1

2
(ai↑a†

j↑ + ai↓a
†
j↓), (2.32b)

A1,B
ij =

1

2
(− bi↓aj↓ − bi↑aj↑), A2,B

ij =
1

2
(bi↑bj↓ − bi↓bj↑), (2.32c)

B1,B
ij =

1

2
(bi↑a†

j↓ − bi↓a
†
j↑), B2,B

ij =
1

2
(bi↑b†j↑ + bi↓b

†
j↓). (2.32d)

Here, the A operators describe antiferromagnetic bonds, while the B opera-
tors describe ferromagnetic bonds [39, 40]. The index 1, 2 refers to nearest
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neighbor and next-nearest neighbor bonds, while the index A, B refers to
whether the bond starts at the A or B sublattice. For instance, A1,A

ij repre-
sents an antiferromagnetic bond between nearest neighbors starting at the
A sublattice. For the Néel phase, the relevant bonds will be assumed to
be antiferromagnetic bonds between nearest neighbors and frustrating (for
J2 > 0) ferromagnetic bonds between next-nearest neighbors. Performing
the usual mean-field decoupling, we take the Ansatz

⟨B1,A
ij ⟩ = ⟨B

1,B
ij ⟩ = 0,

⟨A1,A
ij ⟩ = −⟨A

1,B
ij ⟩ = Aδ1 ,

⟨B2,A
ij ⟩ = ⟨B

2,B
ij ⟩ = Bδ2 ,

⟨A2,A
ij ⟩ = ⟨A

2,B
ij ⟩ = 0,

(2.33)

together with ⟨A†
ij⟩ = ⟨Aij⟩ and ⟨B†

ij⟩ = ⟨Bij⟩ in all cases. We have here
assumed that, for a given sublattice, expectation values of bond operators
only depend on δl = j − i, and not on the overall spatial position. From
the identity (B2,η

i,j )
† = B2,η

j,i , we now have that Bδ2 = B−δ2 . Similarly, for our

choice of Ansatz, the identity A1,A
ij = −A

1,B
ji implies that Aδ1 = A−δ1 . If we

had instead chosen e.g. ⟨A1,A
ij ⟩ = ⟨A

1,B
ij ⟩, we would have had to work with

Aδ1 = −A−δ1 .
In order to deal with the easy-axis anisotropy term, we perform a simi-

lar mean-field decoupling where we introduce ⟨SA
iz⟩ =MA and ⟨SB

iz⟩ =MB.
Rewriting the remaining bond operators in terms of the Schwinger boson
operators and further introducing Fourier transformed Schwinger boson op-
erators, we can then express the Hamiltonian as HAFMI = E0 + H↑ + H↓
where

E0 = 2NA[J1∑
δ1

(Aδ1)
2 − J2∑

δ2

(Bδ2)
2]

− 2NAλ(κ + 1) +KNA(M2
A +M2

B),
(2.34)

and

Hσ =∑
q

(λ + γB2
q − σKMA)a†

qσaqσ +∑
q

(λ + γB2
q + σKMB)bqσb†qσ

−∑
q

γA1
q (b†qσa

†
−qσ + aqσb−qσ).

(2.35)
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We have here, again, introduced a Lagrange multiplier λ = λA = λB to
enforce a constraint on the average number of Schwinger boson number per
lattice site. As is often done in the literature [41, 42], we have set the
average number of Schwinger bosons per site equal to a parameter κ. Like
we did for the ferromagnet, we will simply take κ = 2S, which fixes the
magnitude of the spins to the correct value. This choice does, however, not
produce the correct value for ⟨S2

i ⟩ [43], which may motivate other choices
of κ [41, 42] as well as remind us that one should careful about putting
too much emphasis on the quantitative results obtained from Schwinger
boson mean-field theory. We have further taken λ′ = λ− 1

4
(J1z1 + J2z2) and

renamed λ′ → λ, as well as neglected constant terms that do not contain
any of the mean-field parameters. We have also defined

γA1
q = J1∑

δ1

Aδ1 cos(q ⋅ δ1), (2.36a)

γB2
q = J2∑

δ2

Bδ2 cos(q ⋅ δ2). (2.36b)

In order to diagonalize the Hamiltonian, we need to perform a Bogoli-
ubov transformation. Following the notation in [41], which we did in Paper
[3], we here introduce

aqσ = uqσαqσ − vqσβ†
−qσ,

b†−qσ = vqσαqσ − uqσβ†
−qσ.

(2.37)

It should be noted that the sign of vqσ is here reversed to our linear spin
wave treatment of the problem. Simplifying the expressions by assuming
MB = −MA and choosing to work with Aδ1 positive, we can take

uqσ =
1√
2

¿
ÁÁÀλ + γB2

q − σKMA

ωqσ
+ 1, (2.38a)

vqσ =
1√
2

¿
ÁÁÀλ + γB2

q − σKMA

ωqσ
− 1, (2.38b)

leading to

HAFMI = E′0 +∑
qσ

ωqσ(α†
qσαqσ + β†

qσβqσ), (2.39)
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where

ωqσ =
√
(λ + γB2

q − σKMA)
2 − (γA1

q )
2
, (2.40)

and E′0 = E0 +∑kσ ωkσ.
As mentioned in the previous discussion of Schwinger boson treatment

of a ferromagnet, we now need to determine the parameters λ, Aδ1 , Bδ2 ,
and MA by minimizing the free energy. The free energy per lattice site can
be expressed as

f = E
′

0

N
+ 2

βN
∑
qσ

ln(1 − e−βωqσ), (2.41)

where β = 1/(kBT ), kB is the Boltzmann constant, and T is the system tem-
perature. Minimizing this free energy with respect to the above mentioned
parameters produces the set of equations

Aδ1 =
1

2N
∑
qσ

γA1
q

ωqσ
[1+2b(ωqσ)] cos(q ⋅ δ1), (2.42a)

Bδ2 =
1

2N
∑
qσ

(λ + γB2
q − σKMA)
ωqσ

[1+2b(ωqσ)] cos(q ⋅ δ2), (2.42b)

κ̄ = 1

2N
∑
qσ

(λ + γB2
q − σKMA)
ωqσ

[1+2b(ωqσ)], (2.42c)

MA =
1

2N
∑
qσ

σ(λ + γB2
q − σKMA)
ωqσ

[1+2b(ωqσ)], (2.42d)

where we have defined κ̄ = 1
2(κ + 1). Expecting no directional dependence,

we introduce A = Aδ1 and B = Bδ2 , before we go to zero temperature where
contributions from the Bose-distributions are limited to contributions from
condensation of Schwinger bosons. As we have defined the Schwinger bosons
differently on the two sublattices, magnetic ordering is again signalled by
Bose-Einstein condensation of magnons with zero momentum, correspond-
ing to a uniform magnetization on each sublattice. Assuming the magneti-
zation to be positive on the A-sublattice, we then need λ+γB2

0 −KmA = γA1
0

in order for condensation of ↑-bosons to take place. In order to deal with
the contributions from the condensate, we take the term corresponding to
q = 0 and σ =↑ out of the sums. As this special term takes the same form
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Figure 2.10: Sublattice magnetization MA as a function of the ratio of next-
nearest neighbor to nearest neighbor antiferromagnetic interaction J2/J1 for
the Néel and stripe phase. We have gone to zero temperature, taken an easy-
axis anisotropy K/J1 = 10−3 and set the spin quantum number to S = 1. We
obtain a first-order phase transition between the two phases slightly above
J2/J1 = 0.5.

for all of the four above equations, we can use Eq. (2.42c) to eliminate the
term from the coupled set of equations. That this term is missing from the
sums will be denoted by a prime. Defining ζkσ = γA1

0 −γ
B2
0 +γ

B2

k +2KmAδσ,↓,
we are left with a coupled set of self-consistent equations on the form

MA − κ̄ +
1

N
∑
q

′ ζq↓

ωq↓
= 0, (2.43a)

A − κ̄ − 1

2N
∑
qσ

′
γA1
q cos(kx) − ζqσ

ωqσ
= 0, (2.43b)

B − κ̄ − 1

2N
∑
qσ

′ ζqσ

ωqσ
[ cos(kx + ky) − 1] = 0. (2.43c)

This set of equations can be solved numerically for a given set of system
parameters.

A similar treatment of the stripe phase is performed in Paper [3]. Cal-
culating the sublattice magnetization MA as a function of J2/J1 for both
the Néel and stripe phase, as well as comparing the free energies of the
two phases, we obtain the diagram presented in Fig. 2.10. For S = 1 and
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J2/J1 = 0, the sublattice magnetization of the Néel phase is around S − 0.2.
Then, as we increase J2/J1, the sublattice magnetization decreases. How-
ever, before the sublattice magnetization vanishes, the systems performs
a transition to a stripe phase. For K → 0, we find the transition point
to be around the expected value of J2/J1 = 0.549 [44]. For S = 1/2, our
treatment of the system would indicate a direct transition between the two
phases around J2/J1 = 0.595. More refined approaches do, however, indicate
that the system in this cases loses magnetic order in an intermediate region
between the two ordered phases [45].



3
Superconductivity

As mentioned in the introduction chapter, superconducting materials fea-
ture a vanishing electrical resistance below some critical temperature. This
property was first discovered in 1911 in mercury cooled down to liquid He-
lium temperatures [46]. Superconductors do, however, also have another
defining property which was not discovered until 1933 [47]. If placed in a
magnetic field and cooled down, magnetic flux is expelled from the inte-
rior of a superconducting material at the transition temperature. This is
referred to as the Meissner effect. In Fig. 3.1, we show a sketch of how the
electrical resistance of a superconductor can depend on temperature, and
how magnetic field lines bend around a superconducting material.

Figure 3.1: (a) Sketch of the electrical resistance of a superconductor as a
function of temperature. The resistance vanishes at a critical temperature
Tc. (b) At the critical temperature, magnetic flux is expelled from a super-
conductor subjected to a magnetic field. Magnetic field lines are then no
longer able to penetrate the superconductor.
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Figure 3.2: (a) A negatively charged electron travelling through the system
will pull positively charged ions towards itself. (b) Another electron can be
attracted to the area with increased density of positive charge left behind by
the first electron, giving rise to an effective attractive interaction between
electrons. (c) This can give rise to formation of Cooper pairs consisting of
electrons from opposite sides of the Fermi surface.

In 1957, a microscopic theory of superconductivity was presented [48],
known as the BCS theory. In this theory, superconductivity arises from
attractive interaction between electrons mediated by phonons. This leads
to formation of a state where electrons pair up in so-called Cooper pairs,
each consisting of two electrons with opposite spins and momenta. These
Cooper pairs are responsible for carrying supercurrents that flow without
resistance. The BCS theory arose from existing ideas concerning e.g. the
existence of attractive interaction between electrons mediated by phonons
[49], and the formation of Cooper pairs in response to an attractive inter-
action [50]. A key for making the connection between ion fluctuations and
superconductivity was the observation that the critical temperature of ele-
mental superconductors varied with the isotope, decreasing with increased
ion mass [51, 52]. This is referred to as the isotope effect.

A simple picture for how spatial fluctuations of ions can give rise to
superconductivity is illustrated in Fig. 3.2 (a). A negatively charged elec-
tron moving through the system will attract positively charged ions. As
the electron motion is much faster than the ion motion, the electron will
leave behind an area with increased positive charge density that remains
long after the electron is gone. Another electron may then be attracted to
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this area, representing an attractive interaction between electrons [53]. This
effective interaction mediated by a phonon, can be depicted by a diagram
of the type in Fig. 3.2 (b). Here, two incoming electrons, assumed to have
opposite spins, are scattered by exchange of a phonon carrying a momentum
q from one side of the diagram to the other. Electrons on opposite sides of
the Fermi surface, as displayed in Fig. 3.2 (c), can through this interaction
form Cooper pairs.

Although BCS theory captures how superconductivity can arise from
electron-phonon interaction, it eventually became clear that the theory is
not able to quantitatively describe the properties of all phonon-driven su-
perconductors [54]. This especially applies to the case of superconductors
featuring strong electron-phonon coupling. It was therefore necessary with
a new theory better capturing the details of the electron-phonon interac-
tion. Such a theory, utilizing the many-body Green’s functions framework,
was eventually developed, typically referred to as Eliashberg theory [55] or
Migdal-Eliashberg theory [56]. This theory has, however, not been able to
successfully describe all superconductors that have been discovered. The
superconductivity in many unconventional superconductors, with at least
partly non-phononic origin, has proven to be challenging to understand
[57, 58].

The above theories introduce an order parameter representing pairing
of electrons, suitable for describing the superconducting transition in three-
dimensional systems. In two dimensions, such as in superconducting thin-
films, the phase transition is, however, in reality a topological phase transi-
tion, often referred to as a Berezinskii-Kosterlitz-Thouless (BKT) transition
[59–61]. The order parameter is then instead a non-local stiffness. The ex-
istence of such a transition relies on a sufficiently thin superconducting film
[57, 62], in which case one can have ordering across a thin-film of finite
in-plane size. The BKT transition temperature can further be expressed as
a system-dependent fraction of the mean-field critical temperature [62]. A
finite critical temperature obtained within e.g. BCS theory can therefore
serve as an indication of a superconducting instability also for supercon-
ducting thin-films.

We start the chapter by discussing the BCS theory of superconductivity,
performing a generalized treatment, before we focus on the case of phonon-
mediated superconductivity. We also comment on the effect of Coulomb
interaction on superconductivity. We then move on to discussing supercon-
ductors in magnetic fields, focusing on the critical magnetic field where su-
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perconductivity breaks down. Next, we turn to Eliashberg theory where we,
similarly to what we did for BCS theory, start with a generalized treatment
before specializing to phonon-mediated superconductivity and commenting
on the effect of Coulomb interaction. We also provide a brief discussion of
what is known as Migdal’s theorem. We end the chapter by commenting on
superconductivity mediated by spin fluctuations and its connection to e.g.
high-Tc superconductivity.

3.1 BCS theory

As stated above, the BCS theory introduced how attractive interaction be-
tween electrons, mediated by phonons, can give rise to superconductivity.
Rather than starting from a coupled system of electron and phonons, we
will instead start out from a more general Hamiltonian featuring electrons
that can interact attractively with each other. After outlining what is of-
ten referred to as generalized BCS theory [63], we will then return to the
coupled electron-phonon system and discuss phonon-mediated superconduc-
tivity. The generalized formalism will be useful when we discuss magnon-
mediated superconductivity in the next chapter.

Outlining the generalized formalism, we will more or less follow the
derivation in Ref. [63], which is also similarly presented in Ref. [64]. We
start out from a Hamiltonian

H =∑
kσ

ϵkσc
†
kσckσ +

1

2
∑
kk′

∑
σ1σ2σ3σ4

V σ1σ2σ3σ4

kk′ c†kσ1
c†
−kσ2

c−k′σ3ck′σ4 . (3.1)

where we have itinerant electrons with energy spectrum ϵkσ and scattering of
electrons with opposite momenta into new states with opposite momenta.
The spin is here denoted by σ, and we allow for all possible spin combi-
nations in the interaction. From fermionic anti-commutation relations, it
follows that

V σ1σ2σ3σ4

kk′ = −V σ2σ1σ3σ4

−kk′ = −V σ1σ2σ4σ3

k,−k′ = V σ2σ1σ4σ3

−k,−k′ . (3.2)

Further, assuming that the Hamiltonian is hermitian and that the potential
is real, we further have that V σ4σ3σ2σ1

k′k = V σ1σ2σ3σ4

kk′ .
We then perform a mean-field treatment of the Hamiltonian where we,

inspired by the idea of formation of Cooper pairs consisting of electrons
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with opposite momenta, introduce bk,σ′σ = ⟨c−kσckσ′⟩. Similarly to what we
did in the previous chapter, we then write

c−k′σ3ck′σ4 = bk′,σ4σ3 + (c−k′σ3ck′σ4 − bk′,σ4σ3
) = bk′,σ4σ3 + δbk′,σ4σ3 , (3.3)

and

c†kσ1
c†
−kσ2

= b†k,σ1σ2
+ (c†kσ1

c†
−kσ2

− b†k,σ1σ2
) = b†k,σ1σ2

+ δb†k,σ1σ2
. (3.4)

Neglecting quadratic terms in the deviations away from the mean-field val-
ues, we can then write

H =∑
kσ

ϵkσc
†
kσckσ +

1

2
∑
kk′

∑
σ1σ2σ3σ4

V σ1σ2σ3σ4

kk′

× [b†k,σ1σ2
c−k′σ3ck′σ4 + c

†
kσ1

c†
−kσ2

bk′,σ4σ3 − b
†
k,σ1σ2

bk′,σ4σ3].
(3.5)

We next introduce a gap function

∆k,σ1σ2 = − ∑
k′,σ3σ4

V σ1σ2σ3σ4

kk′ bk′,σ4σ3 . (3.6)

As seen from this equation, the gap function inherits its symmetries from
the interaction potential. As the interaction potential needs to be odd under
the combined operation of k → −k and σ1 ↔ σ2, the gap function will also
be odd under this combined operation. A gap function (or the part of a gap
function) which is even in momentum will therefore have to be odd in spin
(spin-singlet), and a gap equation which is odd in momentum will have to
be even in spin (spin-triplet). This reflects the fact that the particles that
pair up to give a nonzero gap function are fermions.

Writing explicitly out the matrix structure of the gap function, we have

∆̂k = (
∆k,↑↑ ∆k,↑↓

∆k,↓↑ ∆k,↓↓
) , (3.7)

where we have put a hat on ∆̂k in order to highlight that it is a matrix.
Assuming that the gap function is even in momentum, we can then write
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∆̂s
k = (

0 ∆k,↑↓

−∆k,↑↓ 0
) . (3.8)

We then see that ∆̂s
k(∆̂

s
k)

† = ∣∆k,↑↓∣2I is proportional to the identity matrix
I. Spin-singlet pairing is therefore an example of so-called unitary pairing.
If we instead consider consider that the gap function is odd in momentum,
the matrix can be expressed as [63]

∆̂t
k = (

∆k,↑↑ ∆k,↑↓

∆k,↑↓ ∆k,↓↓
) = (−dk,x + idk,y dk,z

dk,z dk,x + idk,y
) = i(dk ⋅σ)σy, (3.9)

where σ is the vector of Pauli matrices and d is referred to as the d-vector.
Using the identity (a ⋅ σ)(b ⋅ σ) = (a ⋅ b)I + i(a × b) ⋅ σ, where a and b are
vectors, we can compute ∆̂t

k(∆̂
t
k)

† = ∣dk∣2I + i(dk × d∗k) ⋅ σ. We then see
that spin-triplet pairing is not necessarily unitary. Non-unitary pairing is
associated with some spin-polarization of the pairing and requires broken
time-reversal symmetry [63]. In this thesis, we will mostly focus on different
types of unitary pairing.

We may further write

∆∗k′,σ4σ3
= − ∑

k,σ1σ2

V σ1σ2σ3σ4

kk′ b†k,σ1σ2
, (3.10)

which allows us to express the Hamiltonian as

H =∑
kσ

ϵkσc
†
kσckσ

− 1

2
∑
k

∑
σ1σ2

[∆∗k,σ2σ1
c−kσ1ckσ2 +∆k,σ1σ2c

†
kσ1

c†
−kσ2

− b†k,σ1σ2
∆k,σ1σ2].

(3.11)

Putting this on a more compact form, we obtain

H = H̃0 +
1

2
∑
k

ϕ†
kMkϕk, (3.12)

where H̃0 = 1
2 ∑k∑σ1σ2

b†k,σ1σ2
∆k,σ1σ2 + 1

2 ∑kσ ϵkσ,
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ϕ†
k = (c

†
k↑ c†k↓ c−k↑ c−k↓) , (3.13)

and

Mk =

⎛
⎜⎜⎜⎜
⎝

ϵk↑ 0 −∆k,↑↑ −∆k,↑↓

0 ϵk↓ −∆k,↓↑ −∆k,↓↓

−∆∗k,↑↑ −∆
∗

k,↓↑ −ϵk↑ 0

−∆∗k,↑↓ −∆
∗

k,↓↓ 0 −ϵk↓

⎞
⎟⎟⎟⎟
⎠

. (3.14)

We then need to diagonalize this Hamiltonian. For simplicity, we take ϵk↑ =
ϵk↓ = ϵk and assume that the pairing is unitary. We then introduce a unitary
matrix Uk to write

H = H̃0 +
1

2
∑
k

(ϕ†
kUk)(U †

kMkUk)(U †
kϕk)

= H̃0 +
1

2
∑
k

Ψ†
kWkΨk,

(3.15)

where the new quasiparticle operators contained in

Ψ†
k = (γ

†
k↑ γ†

k↓ γ−k↑ γ−k↓) , (3.16)

are related to the original electron operators through Ψk = U †
kϕk. As now

Mk = (
ϵkI −∆̂k

−∆̂†
k −ϵkI

) . (3.17)

taking

Uk = (
υk νk
−ν†

k υk
) , (3.18)

with
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υk =
Ek + ϵk√

(Ek + ϵk)2 + 1
2Tr[∆̂k(∆̂k)†]

I, (3.19)

νk =
∆̂k√

(Ek + ϵk)2 + 1
2Tr[∆̂k(∆̂k)†]

, (3.20)

and Ek =
√
ϵ2k +

1
2Tr[∆̂k(∆̂k)†], diagonalizes our matrix

Wk = U †
kMkUk =

⎛
⎜⎜⎜
⎝

Ek 0 0 0
0 Ek 0 0
0 0 −Ek 0
0 0 0 −Ek

⎞
⎟⎟⎟
⎠
. (3.21)

One can then check that the new quasiparticle operators satisfy the correct
anti-commutation relations. Writing out the diagonalized Hamiltonian, we
obtain

H =H ′0 +∑
kσ

Ekγ
†
kσγkσ, (3.22)

where H ′0 = H̃0 − ∑kEk. With our definitions, we are now working with
only positive quasiparticle energies. Importantly, the new operators are su-
perpositions of creation and annihilation operators. The new quasiparticles
are therefore combinations of electrons and holes. Further, for k on the

Fermi surface, we have that ϵk = 0, but Ek =
√

1
2Tr[∆̂k(∆̂k)†] may still

be nonzero. We then see that a nonzero gap function opens a gap in the
excitation spectrum around the Fermi level.

Writing explicitly out the expression for the electron annihilation oper-
ators in terms of the new quasiparticle operators, we obtain

ck′σ =
(Ek′ + ϵk′)γk′σ +∆k′,σ↑ γ

†
−k′↑ +∆k′,σ↓ γ

†
−k′↓√

(Ek′ + ϵk′)2 + 1
2Tr[∆̂k′(∆̂k′)†]

. (3.23)

Inserting this into the definition of the gap function in Eq. (3.6), we obtain
the self-consistent gap equation
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∆k,σ1σ2 = − ∑
k′,σ3σ4

V σ1σ2σ3σ4

kk′ ∆k′,σ4σ3χk′ , (3.24)

where [63]

χk′ =
1

2Ek′
tanh (βEk′

2
). (3.25)

As seen from the gap equation, a vanishing gap function is always a solution,
corresponding to the system being in its normal state. If we find a nontrivial
solution to the gap equation, the next question is then whether this solution
minimizes the free energy of the system.

3.1.1 Condensation energy

The free energy of the system takes the form

F = 1

2
∑
k

∑
σ1σ2

b†k,σ1σ2
∆k,σ1σ2 +∑

k

(ϵk −Ek) −
2

β
∑
k

ln(1 + e−βEk). (3.26)

We can here again express the original electron operators in terms of the new
quasiparticle operators and insert these expressions into b†k,σ1σ2

. Further,
we also go to zero temperature (β →∞), in which case the last term in the
free energy vanishes as Ek′ ≥ 0 for all k′. We then obtain

F0 =
1

2
∑
k

∑
σ1σ2

∆∗k,σ1σ2
∆k,σ1σ2χk +∑

k

(ϵk −Ek). (3.27)

As we want to compare the free energy of the superconducting state with
the free energy of the normal state, we further introduce

FN
0 = F0(∆ = 0) =∑

k

(ϵk − ∣ϵk∣). (3.28)

The energy gain, relative to the normal state, associated with forming a
superconducting state at zero temperature, referred to as the condensation
energy, is then
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EC = FN
0 − F0 =∑

k

(Ek − ∣ϵk∣) −∑
k

1

2
Tr[∆̂k(∆̂k)†]χk. (3.29)

In order to evaluate this expression, we will go to the thermodynamic limit
and split the momentum integration into integration along surfaces of con-
stant energy ϵk and integration normal to these surfaces. We will refer
to this as parallel and perpendicular momentum integration. While we
keep the parallel momentum-dependence of the gap function, we will make
a simplifying assumption about its perpendicular momentum-dependence.
We will take the gap function to not vary with perpendicular momentum in
a thin energy shell of width 2ωc around the Fermi surface. Outside of this
thin shell, the gap function will be taken to vanish. We will return to the
origin of this assumption in the next section.

We first write

EC =∑
k

g(k) = N

VBZ
∫ dk⊥∫

S⊥
dk∥ g(k⊥,k∥), (3.30)

where

g(k) = (Ek − ∣ϵk∣) −
1

2
Tr[∆̂k(∆̂k)†]χk. (3.31)

Performing a change of variable, we can further express the condensation
energy as

EC =
N

VBZ
∫ dϵk∫

S(ϵk)
dk∥ ∣

dϵk
dk⊥
∣
−1
g(ϵk,k∥). (3.32)

We then introduce A(ϵk) = ∫S(ϵk)dk∥, and further the anisotropic density
of states

D(ϵk,k∥) =
N

VBZ
A(ϵk) ∣

dϵk
dk⊥
∣
−1
. (3.33)

For the case of an isotropic constant energy surface with associated isotropic
energy gradient around the surface, we simply have that D(ϵk,k∥) is equal
to the normal density of states D(ϵk), while in general
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D(ϵk) =
1

A(ϵk) ∫S(ϵk)
dk∥D(ϵk,k∥). (3.34)

We can then express the condensation energy as

EC = ∫ dϵk
1

A(ϵk) ∫S(ϵk)
dk∥D(ϵk,k∥) g(ϵk,k∥). (3.35)

The dependence of g(ϵk,k∥) on k∥ is contained in the gap function which is
assumed to not vary with perpendicular momentum in the region where we
have nonzero contributions to the integral. As this region constitutes a thin
shell around the Fermi surface, we further approximate the surface S(ϵk)
with the Fermi surface and the derivative of ϵk with respect to perpendicular
momentum with the derivative taken at the Fermi surface. Denoting the
anisotropic density of states at the Fermi level by an index 0, and similarly
for A, the condensation energy can then be written on the form

EC =
1

A0
∫
FS
dk∥D0(k∥)∫ dϵk g(ϵk,k∥), (3.36)

which we express as

EC = ⟨D0(k∥)∫ dϵk g(ϵk,k∥)⟩k∥,FS = ⟨EC(k∥)⟩k∥,FS (3.37)

with

EC(k∥) =D0(k∥)∫
ωc

−ωc

dϵ
⎛
⎝

√
ϵ2 + 1

2
Tr[∆̂k∥(∆̂k∥)†] − ∣ϵ∣

⎞
⎠

−D0(k∥)∫
ωc

−ωc

dϵ

1
2Tr[∆̂k∥(∆̂k∥)

†]

2
√
ϵ2 + 1

2Tr[∆̂k∥(∆̂k∥)†]
.

(3.38)

The integral over momenta running over the Fermi surface divided by A0 is
here referred to as a Fermi surface average. It should be understood that
the perpendicular momentum dependence of the density of states and the
gap function, in the region with nonzero contributions, has been neglected.
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This has allowed us to separate the integration into an integral over ϵk and
an integral over k∥ running over the Fermi surface. As our expression still
contains an integration over ϵk, the momentum k is clearly not restricted
to the Fermi surface.

We then divide up the above expression for EC(k∥) = E
(1)
C (k∥)+E

(2)
C (k∥)

into two parts. Starting with performing the integral over ϵ in the first term
and assuming that ω2

c ≫ 1
2Tr[∆̂k(∆̂k)†], we obtain the approximate result

E
(1)
C (k∥) =

D0(k∥)Tr[∆̂k∥(∆̂k∥)
†]

4

⎡⎢⎢⎢⎢⎣
1 + 2 ln

⎛
⎝

2ωc√
1
2Tr[∆̂k∥(∆̂k∥)†]

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

(3.39)

Similarly, for E
(2)
C (k∥), we obtain

E
(2)
C (k∥) = −

D0(k∥)Tr[∆̂k∥(∆̂k∥)
†]

4

⎡⎢⎢⎢⎢⎣
2 ln
⎛
⎝

2ωc√
1
2Tr[∆̂k∥(∆̂k∥)†]

⎞
⎠

⎤⎥⎥⎥⎥⎦
. (3.40)

We then see that the final result for the condensation energy is [63]

EC =
1

4
⟨D0(k∥)Tr[∆̂k∥(∆̂k∥)

†]⟩
k∥,FS

. (3.41)

With our definition, a positive value for the condensation energy, as guar-
anteed by the above expression for nonzero gap function, implies that the
superconducting state is favored.

3.1.2 Critical temperature

Finally, returning to the gap equation, we finish our generalized treatment
by attempting to determine the critical temperature Tc where the gap func-
tion vanishes. We can in that case neglect the effect of the gap function on
Ek′ and write out the linearized gap equation

∆k,σ1σ2 = − ∑
k′,σ3σ4

V σ1σ2σ3σ4

kk′
∆k′,σ4σ3

2∣ϵk′ ∣
tanh (βc ∣ϵk

′ ∣
2
). (3.42)



3.1. BCS theory 43

Similarly to what we did above, we further assume that we only have con-
tributions from the right-hand-side of the equation in a thin energy shell
around the Fermi surface. Within this shell, we neglect the perpendicular
momentum dependence of the interaction potential and the gap function,
which are assumed to vanish outside of the thin shell. Performing the same
steps as above, we can then write

∆k∥,σ1σ2 = − ∑
σ3σ4

⟨D0(k′∥)V
σ1σ2σ3σ4

k∥k
′
∥

∆k′
∥
,σ4σ3
⟩k′
∥
,FS∫

ωc

0
dϵ

1

ϵ
tanh (βc ϵ

2
).

(3.43)

In order to perform the decoupled integral over ϵ, we introduce x = βcϵ/2,
do integration by parts, and assume kBTc ≪ ωc. We then obtain

∫
ωc

0
dϵ

1

ϵ
tanh (βcϵ

2
) = ln (βc ωc

2
) + I, (3.44)

where [53]

I = −∫
∞

0
dx

ln(x)
cosh2(x)

= − ln( π
4eγ
), (3.45)

and γ is the Euler–Mascheroni constant. If we then solve the eigenvalue
problem

λ∆k∥,σ1σ2 = − ∑
σ3σ4

⟨D0(k′∥)V
σ1σ2σ3σ4

k∥k
′
∥

∆k′
∥
,σ4σ3
⟩k′
∥
,FS, (3.46)

we have that

1

λ
= ln
⎛
⎝
βc ωce

I

2

⎞
⎠
. (3.47)

Solving for kBTc and rounding off, we then obtain

kBTc = 1.13ωc e
−

1
λ . (3.48)
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Figure 3.3: (a) Potential momentum-space symmetries of (a) spin-singlet
and (b) spin-triplet gap functions around an isotropic Fermi surface. The
differently colored regions correspond to the gap function taking different
signs. The width of the colored regions represents the magnitude of the gap
function.

In order for kBTc ≪ ωc to hold, we then need λ to be considerably smaller
than 1. According to this expression, the critical temperature depends
strongly on the parameter λ which, according to Eq. (3.46), increases with
the the density of states at the Fermi level and the strength of the interaction
potential at the Fermi level. Loosely speaking, the energy scale of the
critical temperature is, however, set by the thickness of the shell around
the Fermi surface where the interaction has been assumed to be active. We
also note that the above formula often instead is presented with a prefactor
rounded off to 1.14 rather than 1.13 [63]. Moreover, the eigenvalue problem
in Eq. (3.46) will typically have many eigenvalues corresponding to different
eigenvectors ∆. The solution preferred by the system is then normally
assumed to be the one that has the largest eigenvalue, producing the largest
critical temperature.

The symmetries of the gap function that produces the largest critical
temperature will be determined by the interaction potential, potentially
in collaboration with anisotropy in the density of states. Inspired by the
spherical harmonics, gap functions are often identified as s-wave, p-wave, d-
wave, or f -wave depending on their sign changes around the Fermi surface.
While the gap function in general could be a combination of both spin-
singlet and spin-triplet with contributions from different momentum-space
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symmetries, it is often assumed that a single symmetry channel dominates.
Examples of such symmetry channels for a two-dimensional isotropic Fermi
surface are displayed in Fig. 3.3

3.1.3 Phonon-mediated superconductivity

After having introduced the generalized BCS theory, we will now direct
our focus towards the electron-phonon system. We then start out from a
Hamiltonian describing a coupled system of electrons and phonons

H =∑
kσ

ϵkc
†
kσckσ +∑

q

ωq(a†
qaq +

1

2
) + ∑

kqσ

gk,k+qc
†
k+qσckσ(aq + a

†
−q), (3.49)

where the operator a†
q now is a phonon creation operator. We are interested

in investigating how the electron system is influenced by the coupling to
phonons, and specifically whether this coupling can give rise to attractive
interaction between electrons. We therefore take the two first terms in
the above Hamiltonian to be the unperturbed Hamiltonian H0, and treat
the last term as a perturbation ηH1, focusing on how this perturbation
influences the electrons. We then perform a Schrieffer-Wolff transformation
[29, 49, 65], which starts out with a canonical transformation followed by
an expansion in the smallness parameter η [66]

H ′ = e−ηS̃H eηS̃ =H + η[H, S̃] + η
2

2!
[[H, S̃], S̃] +O(η3)

=H0 + η(H1 + [H0, S̃]) + η2([H1, S̃] +
1

2
[[H0, S̃], S̃]) +O(η3).

(3.50)

We then choose S̃ so that

ηH1 + [H0, ηS̃] = 0, (3.51)

producing

H ′ =H0 +
1

2
[ηH1, ηS̃] +O(η3). (3.52)

In order to achieve this, we take S̃ to be on the form [66]



Chapter 3. Superconductivity 46

ηS̃ = ∑
kqσ

gk,k+qc
†
k+qσckσ(xk,qaq + yk,qa

†
−q). (3.53)

One can then explicitly work out the commutator in Eq. (3.51) in order to
determine xk,q and yk,q. Alternatively, one can sandwich Eq. (3.51) by two
eigenstates of the unperturbed Hamiltonian [29], producing

⟨n∣ ηS̃ ∣m⟩ = ⟨n∣ ηH1 ∣m⟩
Em −En

, (3.54)

where El is the energy of the unperturbed electron-phonon system in the
state l. Taking the two eigenstates of the unperturbed Hamiltonian to be
connected by either electron-phonon scattering involving creation or anni-
hilation of a phonon, one can then show that we must have

xk,q =
1

ϵk − ϵk+q + ωq
, yk,q =

1

ϵk − ϵk+q − ωq
. (3.55)

Working out the commutator in Eq. (3.52), we then obtain an effective
interaction between electrons

Heff = ∑
kqk′

σσ′

gk,k+qgk′,k′−q
ωq

(ϵk − ϵk′−q)2 − ω2
q

c†k+qσckσc
†
k′−qσ′ck′σ′ . (3.56)

In order to focus on the possibility of formation of Cooper pairs consisting
of electrons with opposite momenta, we restrict the summation to the case
of k′ = −k. We then use the property of the electron-phonon coupling
g−k,−k−q = g∗k,k+q [66], juggle around the names of the momenta we sum
over, and reorganize the order of the electron operators without keeping
generated terms that do not involve four electron operators. We can then
express the effective interaction Hamiltonian on the form

Hpair =
1

2
∑
kk′
∑
σσ′

Vkk′ c
†
kσc

†
−kσ′c−k′σ′ck′σ, (3.57)

with
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Vkk′ = ∣gk′,k∣2
2ωk′−k

(ϵk′ − ϵk)2 − ω2
k′−k

. (3.58)

In order to make use of the framework we established in the previous
section, we can further rewrite Hpair on the more general form

Hpair =
1

2
∑
kk′

∑
σ1σ2σ3σ4

V σ1σ2σ3σ4

kk′ c†kσ1
c†
−kσ2

c−k′σ3ck′σ4 , (3.59)

where

V σσ↑↓
kk′ = V

σσ↓↑
kk′ = V

↑↓σσ
kk′ = V

↓↑σσ
kk′ = V

↑↑↓↓

kk′ = V
↓↓↑↑

kk′ = 0, (3.60)

and

V σσσσ
kk′ = Vkk′ , V ↑↓↓↑kk′ = V

↓↑↑↓

kk′ =
1

2
Vkk′ , V ↑↓↑↓kk′ = V

↓↑↓↑

kk′ = −
1

2
V−kk′

(3.61)

covers all 16 terms. It will, in the following, be useful to express the in-
teraction potential Vkk′ in terms of its even an odd parts with respect to
k. As Vkk′ = V−k,−k′ , one can see that these even and odd parts with re-
spect to k will also be even and odd with respect to k′. We then write
Vkk′ = Vkk′,E(k) + Vkk′,O(k) where

Vkk′,E(k) =
1

2
(Vkk′ + V−kk′), Vkk′,O(k) =

1

2
(Vkk′ − V−kk′). (3.62)

We can then further express

−V−kk′ = Vkk′,O(k) − Vkk′,E(k). (3.63)

As we have written the interaction Hamiltonian on the same form as
in the previous section, we can now jump straight to the gap equation.
Starting with investigating ∆↑↓, we have



Chapter 3. Superconductivity 48

∆k,↑↓ = −∑
k′
χk′[V ↑↓↓↑kk′ ∆k′,↑↓ + V ↑↓↑↓kk′ ∆k′,↓↑]. (3.64)

Writing out the expressions for the components of the spin-dependent in-
teraction potential, we then obtain

∆k,↑↓ = −∑
k′
χk′[Vkk′,E(k)∆k′,↑↓,O(s) + Vkk′,O(k)∆k′,↑↓,E(s)]. (3.65)

We have here defined

∆k′,↑↓,O(s) =
1

2
(∆k′,↑↓ −∆k′,↓↑), ∆k′,↑↓,E(s) =

1

2
(∆k′,↑↓ +∆k′,↓↑), (3.66)

which are naturally even and odd in momentum, respectively. We then
see that the gap equation restricted to spin-singlet pairing with ∆k,↑↓ =
−∆k,↓↑ = ∆s

k only obtains contributions from the part of the interaction
potential which is even in momentum

∆s
k = −∑

k′
Vkk′,E(k)∆

s
k′χk′ . (3.67)

Similarly, the gap equation restricted to unpolarized spin-triplet pairing
with ∆k,↑↓ = ∆k,↓↑ = ∆t,u

k only obtains contributions from the part of the
interaction potential which is odd in momentum

∆t,u
k = −∑

k′
Vkk′,O(k)∆

t,u
k′ χk′ . (3.68)

This is simply an expression of the fact that e.g. the spin-singlet gap function
is odd in momentum so that, when multiplied by a potential and summed
over momentum, only the part of the potential that is odd in momentum
will contribute. We can also consider the gap equation for ∆k,σσ, which
naturally only can obtain contributions from Vkk′,O(k)

∆k,σσ = −∑
k′
Vkk′,O(k)∆k′,σσχk′ . (3.69)
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Now that we have the relevant gap equations, the next step is to judge
whether there can be non-trivial solutions to any of these gap equations.
This depends on the interaction potential Vkk′ . Investigating the phonon-
mediated interaction potential we derived earlier

Vkk′ = ∣gk′,k∣2
2ωk′−k

(ϵk′ − ϵk)2 − ω2
k′−k

,

we consider the case of k situated at the Fermi surface which is the relevant
case for determining the gap function at the Fermi surface. We denote the
largest available phonon energy by ωc, which e.g. corresponds to the Debye
energy in the Debye model for acoustic phonons or the Einstein energy in
the Einstein model for optical phonons. As the energy scale for electrons
is normally much larger than the energy scale for phonons, the scattering
processes where ϵk′ is smaller than or similar to ωc constitutes a thin shell
around the Fermi surface. When k′ is moved outside of this thin shell, the
interaction potential is quickly suppressed by the largeness of the electron
energy scale through the term ϵ2k′ in the denominator. This motivates an
assumption that the interaction potential will only be providing contribu-
tions to the pairing in a thin shell around the Fermi surface.

Inside this thin shell, the above interaction potential can in general vary
significantly with k′. On the right-hand-side of the gap equation, there is,
however, a factor χk′ which is peaked for k′ at the Fermi surface. One
would then expect that the most important contributions from the right-
hand-side of the gap equation will arise from k′ located at the Fermi surface.
If one further assumes that the behavior of the potential when integrated
over constant energy surfaces inside the thin shell will not vary too quickly
also when moving slightly away from the Fermi surface, one might then
be able to motivate neglecting the perpendicular momentum dependence
of the interaction potential inside the thin shell and simply focus on the
behavior at the Fermi surface. We are here simplifying the perpendicular
behavior of the interaction potential and treating the eventual decay of the
interaction strength when moving from the Fermi surface to some point far
away from the Fermi surface as a sudden drop-off. As seen from the gap
equation, neglecting all perpendicular momentum dependence of the inter-
action potential inside the thin shell also leads to a gap function which is
constant with respect to perpendicular momentum inside the thin shell. We
have then reached the approximation scheme applied when discussing the
condensation energy and critical temperature within the generalized BCS
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theory outlined in the previous section.
If we then consider the interaction potential with both k and k′ located

at the Fermi surface, we see that Vkk′,E(k) consists of two terms that both
carry a negative sign. This fits nicely with the gap equation for spin-singlet
pairing where a negative (attractive) interaction potential then can make
both sides of the equation naturally take the same sign. The essence of
this possibility can be captured by further neglecting the parallel momen-
tum dependence of the interaction potential. We are then working with an
interaction potential that is constant inside a thin shell around the Fermi
level [65]

Vkk′ =
⎧⎪⎪⎨⎪⎪⎩

−V /N, ∣ϵk∣, ∣ϵk′ ∣ ≤ ωc,

0, otherwise.
(3.70)

For k inside the thin shell around the Fermi surface, the gap equation then
takes the form

∆s
k =

V

N
∑
k′

′

∆s
k′χk′ , (3.71)

where now Ek′ =
√
ϵ2k′ + (∆

s
k′)2 and the prime on sum over k′ indicates

that the sum is restricted to a thin shell around the Fermi surface. As the
right-hand-side does not depend on k, the gap function will also simply be
a constant ∆s inside the thin shell, corresponding to s-wave pairing. Going
over to integration over energy, approximating the density of states by the
density of states at the Fermi level D0, and defining D′0 = D0/N , the gap
equation takes the form

1

D′0V
= 2∫

ωc

0
dϵχ(ϵ), (3.72)

where the remaining dependence on ∆s is now contained in χ(ϵ).
Using the critical temperature formula from the previous section, we

now obtain right away that

kBTc = 1.13ωc e
−1/(D′0V ). (3.73)
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Figure 3.4: The factor χ(ϵ) appearing in the gap equation evaluated at the
Fermi level as a function of the gap magnitude ∆s and the temperature T .
The quantity κ is an arbitrary energy scale. Increasing the temperature, we
see that the important Fermi surface contributions to the right-hand-side
of the gap equation are reduced. In order to obtain a solution to the gap
equation, a smaller gap is then necessary.

Moreover, for ∆s
k = ∆

s inside the thin shell, the condensation energy now
becomes EC =D0(∆s

0)2/2. Here, we have taken ∆s(T = 0) ≡∆s
0. Finally, we

attempt to calculate the gap function at zero temperature. As then Ek′ > 0
for all k′, we can then take tanh(βEk′/2) = 1 when β →∞, producing

1

D′0V
= ∫

ωc

0
dϵ

1√
ϵ2 + (∆s

0)2
. (3.74)

Introducing x = ϵ/∆s
0, performing the integral over x, and assuming ∆s ≪

ωc, we are left with

∆s
0 = 2ωc e

−1/(D′0V ). (3.75)

Evaluating the ratio between the gap at zero temperature and the critical
temperature, without rounding off before reaching the final answer, we then
obtain a number

∆s
0

kBTc
= 1.76, (3.76)



Chapter 3. Superconductivity 52

which is independent on properties of the system such as ωc and V . Be-
tween zero temperature and the critical temperature, the magnitude of the
gap function displays a decaying behavior with respect to temperature which
can be obtained by solving the gap equation in Eq. (3.72) at arbitrary tem-
perature. As shown in Fig. 3.4, the important Fermi surface contributions
to the right-hand-side of this equation decrease with increasing tempera-
ture. If the temperature is not too high, one can, however, still obtain a
solution to the gap equation by decreasing the gap magnitude.

We finally comment that, with a interaction potential that is even in
momentum, there is of course no solution to the gap equations for triplet
pairing. If the parallel momentum dependence of the interaction poten-
tial is kept, it could in principle be possible to also have triplet solutions
depending on the details of the electron-phonon coupling and the phonon
dispersion. In order for a triplet state to form, it would, however, have to
be more energetically favorable than the typical spin-singlet s-wave state.

3.1.4 Effect of Coulomb interaction

We have discussed attractive interaction between electrons giving rise to for-
mation of Cooper pairs. As electrons repel each other through the Coulomb
interaction, a natural question is how Coulomb fits into this picture. Start-
ing from a spatially dependent Coulomb interaction ∼ 1/r, and Fourier
transforming, we obtain a momentum-dependent Coulomb interaction on
the form ∼ 1/q2. In good metals, the Coulomb interaction is, however,
strongly screened. The momentum-dependence is then typically consider-
ably weaker [54]. We will therefore treat the Coulomb interaction as a
momentum-independent potential.

For the total interaction potential, we now take Vkk′ = V p
kk′+V

C
kk′ , where

V p
kk′ is equal to a constant −V /N in a thin shell of width 2ωc around the

Fermi surface, as introduced in the previous section. The Coulomb potential
V C
kk′ is taken to simply be on the form

V C
kk′ =

⎧⎪⎪⎨⎪⎪⎩

U/N, 0 ≤ ∣ϵk∣, ∣ϵk′ ∣ ≤W,
0, otherwise,

(3.77)

where 2W is the bandwidth of the relevant electron energy band and we
have, for simplicity, assumed that the band is half-filled. This model is often
referred to as the Anderson-Morel model [67].

The gap equation
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∆s
k = −∑

k′
Vkk′∆

s
k′χk′ , (3.78)

can further be split up into one equation for k inside the thin shell and one
equation for k outside the thin shell. For each of these separate cases, the
right-hand-side of the equation will not depend on k. We then introduce
∆1 as the constant gap inside the thin shell and ∆2 as the constant gap
outside the thin shell. Going over to an integration over ϵ, we note that,
as we have contributions from the whole electron band instead of just a
thin shell around the Fermi surface, the density of states can in general
vary considerably in the relevant energy region. For simplicity, we still
approximate the density of states by the density of states at the Fermi
level. The coupled set of self-consistent equations for ∆1 and ∆2 can then
be expressed as

∆1 = −2D′0∫
ωc

0
dϵ (U − V )∆1 χ(ϵ,∆1) − 2D′0∫

W

ωc

dϵU∆2χ(ϵ,∆2), (3.79a)

∆2 = −2D′0∫
ωc

0
dϵU∆1 χ(ϵ,∆1) − 2D′0∫

W

ωc

dϵU∆2χ(ϵ,∆2). (3.79b)

Performing the integral over energies outside of the thin shell, one can show
that the coupled set of equations has a solution where ∆1 is, as before,
determined by

1

λ
= 2∫

ωc

0
dϵχ(ϵ,∆1).

with now λ =D′0V → λ′ = λ − µ∗ and [64]

µ∗ = D′0U

1 +D′0U ln(W /ωc)
. (3.80)

Assuming that λ′ ≥ 0, one can then obtain an expression for e.g. the critical
temperature

kBTc = 1.13ωc e
−1/(λ−µ∗). (3.81)

It is then apparent that the effect of Coulomb interaction on the supercon-
ductivity depends on how large µ∗ is compared to λ. If µ∗ is small compared
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Figure 3.5: The Coulomb pseudo-potential µ∗ as a function of D′0U and
W /ωc.

to λ, the effect of Coulomb interaction will, in fact, be quite limited.
If the Coulomb interaction had also been restricted to a thin shell of

width 2ωc around the Fermi level, the correction to the dimensionless cou-
pling constant λ arising from Coulomb interaction would simply have been
λ → λ − D′0U . As the Coulomb interaction has been taken to be active
across the whole electron band, we have instead ended up with the correction
λ→ λ−µ∗. Inspecting the expression for µ∗, we see that if we take D′0U ≪ 1,
we will also have µ∗ ≪ 1 regardless of how large W /ωc is. If we instead con-
sider D′0U = 1, we obtain µ∗ = 1/(1 + ln(W /ωc)). For e.g. W /ωc = 100, we
then have µ∗ ≈ 0.18, which is significantly better than λ→ λ− 1. Moreover,
if we consider D′0U ≫ 1, we obtain that µ∗ = 1/ ln(W /ωc) regardless of how
large D′0U is. For e.g. W /ωc = 100, we then have µ∗ ≈ 0.22, which may
still allow for superconductivity to survive. In Fig. 3.5, we further show
how µ∗ depends more generally on D′0U and W /ωc. The picture is then
that the effect of Coulomb interaction on the pairing may take the form of
an easily incorporated correction to λ, which in many cases is much less
dramatic than one might have expected. Although the effect on the critical
temperature of including λ → λ − µ∗ may not be negligible, this motivates
why considering superconductivity without taking Coulomb interaction into
account is not necessarily an unreasonable approach to the problem.

The origin of the relatively weak effect of Coulomb interaction becomes
clearer if one further derives the expression for ∆2. From Eq. (3.79b), one
can obtain
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∆2 = −
µ∗

λ − µ∗
∆1. (3.82)

We then see that the sign of ∆2 is the opposite of ∆1. If we consider
the gap equation for k inside the thin shell around the Fermi surface, the
Coulomb potential clearly works against the attractive phonon-mediated
interaction as long as k′ also is inside the thin shell. However, as soon as k′

is taken outside the thin shell, the gap equation changes its sign in order to
take advantage of the repulsive Coulomb interaction, dramatically reducing
Coulomb’s destructive effect on superconductivity.

For simplicity, and relevance for phonon-mediated superconductivity,
we considered a constant attractive interaction giving rise to spin-singlet
s-wave pairing. If one instead considers a gap function that changes sign
when moving around the Fermi surface, the effect of Coulomb interaction
can be further reduced. Keeping the Coulomb interaction as a momentum-
independent constant, its contributions to the gap equation inside the the
thin shell can cancel out, leaving the superconductivity untouched.

3.2 Spin-split superconductors

In the beginning of the chapter, we introduced that magnetic fields are not
able to penetrate superconductors. As we will see in this section, this is
not the full story about superconductors in magnetic fields. It is true that
the typical response of a superconductor to a magnetic field is to set up
screening currents that counteract the applied field. The magnetic field
then decays exponentially inside the superconductor over a length scale re-
ferred to as the penetration depth [68]. Considering a bulk superconductor,
there is then no magnetic flux penetrating the interior of the superconduc-
tor. This picture is, however, only valid up to a certain field strength. If
the magnetic field becomes too strong, one out of two things can happen.
The first scenario is that the system transitions directly to its normal state
as staying in the superconducting state and fighting the magnetic field no
longer becomes energetically favorable. These types of superconductors are
called type-I superconductors. The alternative is that the system enters an
intermediate phase featuring non-superconducting regions circulated by su-
percurrents, called vortices, where magnetic flux can penetrate the system.
Superconductors of this type are called type-II superconductors.
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What we will focus on in this section are so-called spin-split supercon-
ductors. They can e.g. arise from subjecting thin-film superconductors to
magnetic fields. If the magnetic field is applied in-plane, induced orbital
motion of electrons can be limited by making the film sufficiently thin. The
dominant effect of the magnetic field on the superconductor will then be a
spin-splitting effect arising from the interaction of the external field with
the spins of the electrons giving rise to the superconducting state [69]. A
similar spin-splitting effect can also be achieved by proximity-coupling a
thin-film superconductor to a ferromagnetic material. We will, in the fol-
lowing, assume that this spin-splitting is uniform across the thin-film and
not be too concerned with its origin.

We include spin-splitting in our model for a superconductor through a
spin-splitting field h, so that the electron energies are expressed as ϵkσ =
ϵk − σh, where σ =↑, ↓= +,−. We can then return to Eq. (3.12), where we
now restrict our analysis to the case of spin-singlet pairing. We then take
∆k,↑↓ = −∆k,↓↑ =∆k so that the matrix Mk can be expressed as

Mk =
⎛
⎜⎜⎜
⎝

ϵk↑ 0 0 −∆k

0 ϵk↓ ∆k 0
0 ∆∗k −ϵk↑ 0
−∆∗k 0 0 −ϵk↓

⎞
⎟⎟⎟
⎠
. (3.83)

This matrix can be diagonalized by the transformation we introduced ear-
lier, where the matrix ∆̂k appearing in Uk is now restricted to the case of
spin-singlet pairing. We then end up with

Wk = U †
kMkUk =

⎛
⎜⎜⎜
⎝

Ek − h 0 0 0
0 Ek + h 0 0
0 0 −Ek + h 0
0 0 0 −Ek − h

⎞
⎟⎟⎟
⎠
, (3.84)

producing

H =H ′0 +∑
kσ

Ekσγ
†
kσγkσ. (3.85)

Here, we have defined Ekσ = Ek −σh where still Ek ≥ 0. Further, as before,
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H ′0 =
1

2
∑
k

∑
σ1σ2

b†k,σ1σ2
∆k,σ1σ2 +∑

k

(ϵk −Ek).

with the first term now taking the form

1

2
∑
k

∑
σ1σ2

∆∗k,σ1σ2
∆k,σ1σ2

4Ek
[ tanh (βEkσ1

2
) + tanh (βEkσ2

2
)],

where the only difference from last time is that the quasiparticle energies
now are spin dependent, and the gap function should be restricted to spin-
singlet pairing. We then obtain the following expression for the free energy

F = 1

2
∑
kσ

∣∆k∣2

2Ek
tanh (βEkσ

2
) +∑

k

(ϵk −Ek) −
1

β
∑
kσ

ln(1 + e−βEkσ). (3.86)

Similarly, introducing spin-dependent quasiparticle energies and restricting
the gap function to spin-singlet pairing, we obtain for the gap equation

∆k = −∑
k′σ

Vkk′,E(k)
∆k′

4Ek′
tanh (βEk′σ

2
). (3.87)

Now that we have the relevant expression for the free energy, as well
as the gap equation, we make the following observation. If we take the
interaction potential to be a constant −V /N inside a thin shell around the
Fermi surface, leading to the gap function being a constant ∆ inside the
thin shell, the gap equation at zero temperature will be unaffected by a
spin-splitting field h <∆0 as none of the quasiparticle energies will become
negative. The solution to the gap equation for h <∆0 will therefore still be
∆0. Similarly, with an unaffected gap, the zero-temperature free energy for
h <∆0 will also be unaffected by the spin-splitting field. One could therefore
imagine that the critical spin-splitting field at zero temperature would have
to be larger than or equal to ∆0. However, we also have to take into account
that the free energy of the normal state of the system can be affected by
h through the logarithmic term. Since the energy spectrum, in this case,
is not gapped, the energies Ek↑ can now, in fact, become negative. The
zero-temperature free energy of the normal state will therefore be lowered
by an amount



Chapter 3. Superconductivity 58

Figure 3.6: Normal state: (a) Density of states, assumed constant, for spin-↑
and spin-↓ energy bands where states below the Fermi level are filled. (b)
The introduction of a spin-splitting field h splits the energy bands, pushing
spin-↓ electrons above the Fermi level. (c) In order to lower its energy,
the system converts spin-↓ electrons situated above the Fermi level to spin-
↑ electrons with lower energy, leading to the spin-polarized state in (d).
Importantly, the sum over the energies of all colored states is the same in
(a) and (b), making the energy of the system in (d) is lower than the energy
in (a).

FN
0 (h = 0) − FN

0 (h > 0) =
∣ϵk∣<h

∑
k

(h − ∣ϵk∣) =D0h
2, (3.88)

where we have gone over to an integration over energy and approximated
the density of states by the density of states at the Fermi level.

As shown earlier, starting out from h = 0, the superconducting state is
favored by an amount EC = D0∆

2
0/2. Increasing h, but not above ∆0, the

energy of the superconducting state is unaffected, while the normal state
energy is reduced by an amount D0h

2. We then see that the normal state
will be favored by the system at a critical spin-splitting field

hc =
∆0√
2
≈ 0.7∆0. (3.89)

This result is called the Chandrasekhar-Clogston limit [70, 71] and limits
the maximum spin-splitting field that the superconductor can coexist with
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Figure 3.7: Spin-singlet superconductor: (a) Density of states, taken con-
stant with a gap, for energy bands labelled by spin-↑ and spin-↓. States
below the Fermi level are filled. We have also included the position along
the energy axis of two electrons at the Fermi surface forming a Cooper pair.
(b) The introduction of a spin-splitting field h splits the energy bands. In
this case, no states are shifted above the Fermi level and the energy of the
system is not altered.

to a fraction of the superconducting gap at zero temperature.
The energy gain of the normal state in the presence of a spin-splitting

field can be understood from Fig. 3.6. From this figure, we see that the nor-
mal state of the system, in the presence of a spin-splitting field, can lower
its energy by becoming spin-polarized. We note that connecting this picture
with our calculations requires e.g. transforming the hole-like quasiparticles
with ϵk < 0 into electron-like quasiparticles with opposite spin and sending
the gap to zero. In the figure, we have further considered the simplest possi-
ble case of a constant density of states for both spin-bands, which will then
naturally also be equal to the density of states at the Fermi level D0. The
area of the purple rectangle in Fig. 3.6 (c) is then D0h. Since the yellow
rectangle is shifted by an amount h relative to the purple rectangle, we then
immediately see that the energy gain of the spin-polarized state is D0h

2.
Importantly, this energy gain relies on having states around the Fermi level.

If we instead consider the effect of a spin-splitting field on the super-
conducting state, there are no states around the Fermi level due to the gap
in the excitations spectrum. This is the reason why the energy of the su-
perconducting state is not affected by a spin-splitting field smaller than the
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Figure 3.8: Polarized spin-triplet superconductor: (a) Density of states,
assumed constant with a gap, for electron-like energy bands labelled by
spin-↑ and spin-↓. States below the Fermi level are filled. We have also
included the position along the energy axis of two sets of electrons at the
Fermi surface forming Cooper pairs. (b) The introduction of a spin-splitting
field shifts the bottom and top of the energy bands without affecting the gap
around the Fermi surface. Some spin-↓ quasiparticles are therefore converted
into spin-↑ quasiparticles. Although the particular electrons going into the
Cooper pairs in (a) will be shifted by the field, it is now still possible for
electrons at the Fermi surface to form Cooper pairs, as illustrated here. (c)
The result is that the system becomes spin-polarized and lowers its energy.

gap. This situations is sketched in Fig. 3.7, where the picture e.g. can be
connected to the calculations in the same way as above, but now with a
nonzero gap. We have here neglected energy dependence of the density of
states, and, for clarity, taken the gap in the spectrum to be enormous. We
also show how the electrons going into the Cooper pairs are being separated
from each other in energy.

One way of having superconductivity beyond the Chandrasekhar-
Clogston limit can be to consider spin-triplet pairing instead of spin-singlet
pairing. If we consider what we will refer to as polarized spin-triplet pairing
with ∆k,↑↑ = ∆k,↓↓ and ∆k,↑↓ = ∆k,↓↑ = 0, the quasiparticle energies instead
take the form [72]

Ekσ =
√
ϵ2kσ + ∣∆σσ ∣2. (3.90)
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We then see that there will be a gap ∣∆k,σσ ∣ above Ekσ = 0 that does
not move in energy with h. This is in contrast to the case of the spin-
singlet pairing that we considered above where the energy of the lowest
state above the Fermi level took the form ∣∆∣ − h. Describing the system
through electron-like quasiparticles labeled by whether they are shifted up
or down in energy under h > 0, we can then again draw a cartoon picture of
the situation, as displayed in Fig. 3.8. We have here introduced a simplified
gap rather than the partly gap that arises from a gap-function that change
sign around the Fermi surface. From the figure, we see that this simple
case captures that a spin-splitting field is able to spin-polarize the system,
lowering its energy. Polarized spin-triplet pairing is therefore not restricted
by the Chandrasekhar-Clogston limit.

Another way of going above the Chandrasekhar-Clogston limit is so-
called FFLO pairing [73, 74]. In this case, electrons with opposite spin and
momentum k + q and −k form finite-momentum Cooper pairs with q ≠ 0
so that the energies of the electrons going into the Cooper pairs can be
the same in the presence of spin-splitting. Spin-singlet superconductivity
beyond the Chandrasekhar-Clogston limit may also be possible e.g. in the
presence of spin-orbit coupling [75] or an applied voltage [76]. Further, in
Chap. 6, we will discuss how the presence of a flat energy band in the band
structure can influence the critical magnetic field of a superconductor.

3.3 Eliashberg theory

After having provided a thorough introduction to BCS theory and the BCS
description of spin-split superconductors, we are now ready to move on to
the somewhat more involved Eliashberg theory of superconductivity. We
will be following the derivation in Ref. [77], considering a quite general
case of electron-boson coupling as well as the specialization to phonon-
mediated superconductivity. The general framework will be useful when we,
in the next chapter, consider the Eliashberg treatment of magnon-mediated
superconductivity presented in Paper [4].

The system is assumed to be described by a Hamiltonian

H =∑
kσ

ϵkc
†
kσckσ +∑

qη

ωqηa
†
qηaqη +∑

kq

∑
σσ′γ

fσσ
′,γ

k,k+qBqγ c
†
k+qσ′ckσ, (3.91)

where Bqγ is a linear combination of boson operators. This equation repre-
sents a similar, but more general form, of the Hamiltonian we introduced for
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the case of electron-phonon coupling. Similarly to earlier, we will treat the
the two first terms as the unperturbed Hamiltonian H0 and the electron-
boson coupling as a perturbation H1. The difference from our earlier ap-
proach is that we will now treat this perturbation in a many-body Green’s
function framework. We will be using the Matsubara Green’s function for-
malism and a so-called S-matrix expansion to deal with the perturbation
term H1.

3.3.1 Matsubara formalism and S-matrix expansion

In the Matsubara, or imaginary-time, formalism, we can define a single-
particle Green’s function [78, 79]

Gσσ′(k,k′, τ) = −⟨Tτ [ckσ(τ) c†k′σ′(0)]⟩, (3.92)

where ⟨ . . . ⟩ denotes a thermodynamic average. Although we normally use
the operators ckσ to represent electrons, we, in the following, also comment
on the bosonic case. The operators are in the Heisenberg picture and their
time dependence is determined by

ckσ(τ) = eHτ ckσe
−Hτ , (3.93a)

c†kσ(τ) = e
Hτ c†kσe

−Hτ , (3.93b)

where τ is a real quantity. Further, the time-ordering operator Tτ puts the
operators in order with earliest times furthest to the right

Tτ [ckσ(τ) c†k′σ′(0)] =
⎧⎪⎪⎨⎪⎪⎩

ckσ(τ) c†k′σ′(0), τ > 0,
ξc†k′σ′(0) ckσ(τ), τ < 0,

(3.94)

where ξ = −1 for fermions and ξ = +1 for bosons. Bosonic/fermionic Matsub-
ara Green’s functions are further periodic/anti-periodic in imaginary time
with period β, and their Fourier transformation can be expressed as

Gσσ′(k,k′, iωn) = ∫
β

0
dτ eiωnτGσσ′(k,k′, τ), (3.95)

Gσσ′(k,k′, τ) =
1

β
∑
ωn

e−iωnτGσσ′(k,k′, iωn), (3.96)
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where ωn are Matsubara frequencies. For fermions and bosons, they take
the form

ωn =
⎧⎪⎪⎨⎪⎪⎩

(2n + 1)π/β, for fermions,

2nπ/β, for bosons,
(3.97)

where n can take on the value of any integer, both positive and negative.
We will, in the following, denote bosonic Matsubara frequencies by νm.

For simplicity, we first consider the case of non-interacting fermions,
corresponding to the first term of the Hamiltonian in Eq. (3.91). We express
the diagonal Green’s function as Gσσ(k,k, τ) = Gσ(k, τ). One can then show
that the diagonal, frequency dependent, non-interacting Green’s function
takes the form

G(0)σ (k, iωn) =
1

iωn − ϵk
. (3.98)

Defining a Green’s function specifically for the boson appearing in the sec-
ond term of Eq. (3.91)

Bηη′(q,q′, τ) = −⟨Tτ [aqη(τ)a†
q′η′(0)]⟩, (3.99)

the diagonal, frequency dependent, non-interacting Green’s function can
similarly be expressed as

B(0)η (q, iνm) =
1

iνm − ωqη
. (3.100)

In order to deal with the interacting case, we perform an S-matrix ex-
pansion. We then rewrite the Green’s function

Gσ(k, τ) = −⟨Tτ [ckσ(τ) c†kσ(0)]⟩, (3.101)

where the operators are in the Heisenberg picture, as

Gσ(k, τ) = −
⟨Tτ [S(β) ĉkσ(τ) ĉ†kσ(0)]⟩0

⟨S(β)⟩
0

, (3.102)
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where the operators are now in the interaction picture, denoted by hats,
meaning that they are time-evolved by the unperturbed Hamiltonian H0.
The average is now also evaluated using the unperturbed Hamiltonian. The
S matrix itself takes the form

S(τ) =
∞

∑
n=0

(−1)n

n!
∫

τ

0
dτ1 . . .∫

τ

0
dτn Tτ [Ĥ1(τ1) . . . Ĥ1(τn)]. (3.103)

Using Wicks theorem to transform average values of many operators into
combinations of average values of pairs of operators, one can express the
contributions to the interacting Green’s function as a series of diagrams.
Using the denominator of Eq. (3.102) to cancel contributions from the nom-
inator taking the form of so-called disconnected diagrams, we are further
left with only contributions from connected diagrams. Finally, taking into
account that many of the diagrams represent identical contributions, the
expression for the interacting Green’s function is simplified to

Gσ(k, τ) = −
∞

∑
n=0

(−1)n∫
β

0
dτ1 . . .∫

β

0
dτn ⟨Tτ [ĉkσ(τ) Ĥ1(τ1) . . . Ĥ1(τn) ĉ†kσ(0)]⟩

′

0
,

(3.104)

where only contributions from ”different”, connected diagrams are included
[79].

3.3.2 S-matrix expansion in Eliashberg theory

Setting ourselves up for investigating the possibility of superconductivity
arising from the Hamiltonian in Eq. (3.91), we define [77]

ψ†
k = (c

†
k↑ c†k↓ c−k↑ c−k↓) , (3.105)

on the same form as when we did BCS theory. We can then introduce a
Green’s function matrix

Ĝ(k, τ) = −⟨Tτ [ψk(τ)⊗ψ†
k(0)]⟩, (3.106)

which takes the Fourier transformed form



3.3. Eliashberg theory 65

Ĝ(k, iωn) = (
G(k, iωn) F (k, iωn)
F̄ (k, iωn) Ḡ(k, iωn)

) , (3.107)

where

G(k, iωn) = (
G↑↑(k, iωn) G↑↓(k, iωn)
G↓↑(k, iωn) G↓↓(k, iωn)

) , (3.108)

and Ḡ(k, iωn) similarly is a matrix of Fourier transformed Green’s functions

Ḡσσ′(k, τ) = −⟨Tτ [c†−kσ(τ) c−kσ′(0)]⟩. (3.109)

The additional anomalous Green’s function matrices F (k, iωn) and F̄ (k, iωn)
are further matrices of the Fourier transformed anomalous Green’s functions

Fσσ′(k, τ) = −⟨Tτ [ckσ(τ) c−kσ′(0)]⟩, (3.110)

and

F̄σσ′(k, τ) = −⟨Tτ [c†−kσ(τ) c
†
kσ′(0)]⟩. (3.111)

The anomalous Green’s functions are included in order to capture the pos-
sibility of superconductivity associated with pairing of electrons. From the
definition of F (k, τ) in combination with electrons being fermions, it follows
that

F (k, iωn) = −F (−k,−iωn)T , (3.112)

representing that the pairing correlations are odd under the combined oper-
ation of exchange of spin, position/momentum, and time/frequency. Com-
pared to the spin and momentum dependent pairing correlations bk,s′s =
⟨c−kscks′⟩ we defined earlier, we now have an additional frequency-dependence.
This opens up the possibility for odd-frequency pairing [80], allowing for e.g.
pairing with spin-triplet s-wave symmetry.

In the same spirit as above, we can also collect the relevant combinations
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of boson operators B†
q = ({B†

qγ}) and define a matrix of bosonic Green’s
functions

D̂(q, τ) = −⟨Tτ [Bq(τ)⊗B†
q(0)]⟩. (3.113)

As discussed in Ref. [77], one can further introduce a symmetrized form of
the interaction Hamiltonian

H1 =
1

2
∑
kq

∑
δϵγ

f δϵ,γk,k+qBqγ ψ
†
k+qδψkϵ. (3.114)

with new coefficients g depending on the indices δ, ϵ instead of spin-indices.
Using the symmetrized expression for H1 in the expansions for the in-

teracting Green’s functions, the expansions can be expressed on the form

Ĝ(k) = Ĝ0(k) + Ĝ0(k)Σ(k) Ĝ(k), (3.115a)

D̂(q) = D̂0(q) + D̂0(q)Π(q) D̂(q), (3.115b)

with the associated Dyson equations

Ĝ−1(k) = Ĝ−10 (k) −Σ(k), (3.116a)

D̂−1(q) = D̂−10 (q) −Π(q). (3.116b)

Here, Ĝ0 and D̂0 are matrices of non-interacting Green’s functions and we
have introduced the compact notation k = (k, iωn), q = (q, iνm). Further,
the expressions for the self-energies take the form

Σδϵ(k) = −
1

β
∑
q
∑
γγ′
∑
δ′ϵ′

D̂γγ′(q) f δδ
′,γ

k,k−q Ĝδ′ϵ′(k − q)Λϵ′ϵ,γ′

k−q,k , (3.117a)

Πγγ′(q) =
1

4β
∑
k

∑
δδ′
∑
ϵϵ′
f δδ

′,γ
k,k+qĜδ′ϵ′(k + q)Λϵ′ϵ,γ′

k+q,kĜϵδ(k). (3.117b)

A diagrammatic representation of the expansions can be found in Paper [4],
slightly specialized to the magnon case studied there, while the more gen-
eral version is presented in Ref. [77]. The expansion for e.g. the elements of
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Ĝ now takes the form of series of self-energy diagrams contained in Σ con-
nected by fermionic Green’s functions. Each connection is associated with
a factor f and involves two fermionic Green’s functions and one bosonic
Green’s function, corresponding to the structure of the electron-boson in-
teraction in the Hamiltonian. In the absence of so-called vertex corrections,
Λ→ f , and the structure of the self-energy diagrams in terms of interacting
Green’s functions becomes simple. In the presence of vertex corrections,
the self-energy diagrams keep their simple form, but vertices where electron
and boson Green’s functions meet may be renormalized, capturing contri-
butions from more complicated diagrams. We discuss vertex corrections in
more detail later in this chapter.

We then have the foundation that we need in order to investigate super-
conductivity arising in systems that can be described by a Hamiltonian on
the form of Eq. (3.91). In this chapter, we will focus on phonon-mediated
superconductivity.

3.3.3 Phonon-mediated superconductivity

We earlier introduced a Hamiltonian for a coupled system of electrons and
phonons in Eq. (3.49). Writing the coupling term in this Hamiltonian on
the symmetrized form of Eq. (3.114), using the normal symmetry relations
for the electron-phonon coupling strength gk,k+q, we obtain [77]

f δϵ,γk,k+q = f
δϵ
k,k+q = gk,k+q

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
δϵ

= gk,k+q(τ3 ⊗ σ0)δϵ, (3.118)

where τ3 and σ0 are Pauli matrices acting on the particle/hole and spin
degree of freedom, respectively. Moreover, Bqγ = Bq = aq + a†

−q, leading to

D̂γγ′(q) = D(q), (3.119)

which in the non-interacting case takes the form

D(0)(q) = −
2ωq

ν2m + ω2
q

. (3.120)
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We further neglect the effect of vertex corrections, which we return to in
Sec. 3.3.5. We then have, on matrix form,

Σ(k) = − 1
β
∑
q

∣gk,k−q ∣2D(q) (τ3σ0) Ĝ(k − q) (τ3σ0), (3.121a)

Π(q) = 1

4β
∑
k

∣gk,k+q ∣2Tr[(τ3σ0) Ĝ(k + q) (τ3σ0)Ĝ(k)]. (3.121b)

Although these are less complicated than the more general equations for the
self-energies, we still see that we cannot simply calculate the self-energies
Σ(k) and Π(q) as the right-hand sides of the equations involve interacting
Green’s functions.

From our experience with BCS theory, we expect the pairing to have
spin-singlet symmetry, motivating an Ansatz for the electron self-energy
matrix

Σ(k) = [1 −Z(k)]iωnτ0σ0 + χ(k) τ3σ0 + ϕs(k) τ2σ2. (3.122)

The quantity Z here represents a quasiparticle renormalization, while χ is
a shift of the quasiparticle energies, and ϕs is a pairing amplitude for spin-
singlet pairing as σ2 makes the pairing odd in spin. Using this Ansatz for the
electron self-energy matrix, the Dyson equation for the interacting electron
Green’s function becomes

Ĝ−1(k) = iωnZ(k) τ0σ0 − ξ̃k τ3σ0 − ϕs(k) τ2σ2, (3.123)

where we have used that Ĝ−10 = iωnτ0σ0 − ϵkτ3σ0 and defined ξ̃k = ϵk +χ(k).
By inverting this matrix, we can then obtain an expression for the interact-
ing electron Green’s function matrix in terms of the different contributions
to the electron self-energy matrix. We can then plug this expression for Ĝ
into the expression for the electron self-energy matrix in Eq. (3.121a). The
result is then a set of self-consistent equations for the quantities Z, χ, and
ϕs [77]
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[1 −Z(k)]iωn = −
1

β
∑
k′
∣gk,k′ ∣2D(k − k′)

iωn′Z(k′)
Θ(k′)

, (3.124)

χ(k) = − 1
β
∑
k′
∣gk,k′ ∣2D(k − k′)

ξ̃k′

Θ(k′)
, (3.125)

ϕs(k) = +
1

β
∑
k′
∣gk,k′ ∣2D(k − k′)

ϕs(k′)
Θ(k′)

, (3.126)

which are referred to as the Eliashberg equations. We have here introduced

Θ(k) = [iωnZ(k)]2 − ξ̃2k − ∣ϕs(k)∣
2. (3.127)

In order to start solving these equations, we see that we also need an explicit
expression for the interacting phonon propagator D(q). As this is now a
scalar quantity, we simply have from the phonon Dyson equation that

D(q) = D(0)(q)
1 −Π(q)D(0)(q)

. (3.128)

In principle, we should now solve the coupled self-consistent equations
for Z, χ, ϕs and Π. A common simplification is, however, to neglect the
effect of the quasiparticle renormalization χ and the phonon renormaliza-
tion Π(q). In that case, we are left with a coupled set of two self-consistent
equations. The first one determines renormalization of the electrons that
are being paired, which is an effect of the electron-phonon coupling that we
did not capture earlier. The second equation determines the pairing am-
plitude ϕs, and has a structure somewhat similar to the gap equation we
encountered within BCS theory. The similarities include the fact that the
pairing amplitude for momentum k is determined by a sum over the pairing
amplitudes at other momenta, multiplied by a factor ∣gk,k′ ∣2D(0)(k − k′)
reminiscent of a interaction potential, and where, simply stated, contribu-
tions from momenta far away from the Fermi surface are suppressed by
some additional function here taking the form 1/Θ(k) ∼ 1/ϵ2k. There are,
however, also some considerable differences between the BCS gap equation
and the pairing amplitude equation we have now encountered. The main
difference is that we are now summing the right-hand-side also over fre-
quency as both e.g. the pairing amplitude and the phonon propagator has a



Chapter 3. Superconductivity 70

frequency dependence. Importantly, this additional frequency dependence
does not represent a small correction to the equation, but instead plays an
essential part. This can be seen right away by inspecting the expression for
the non-interacting phonon propagator

D(0)(q) = −
2ωq

ν2m + ω2
q

,

where we see that rather than coming in as an additional correction, the fre-
quency νm appears to have replaced the fermion energies that were present
in the effective interaction potential

Vkk′ = −∣gk′,k∣2
2ωk′−k

−(ϵk′ − ϵk)2 + ω2
k′−k

.

In order to simplify the equations for Z and ϕs, we start by working on
the momentum dependence. Our strategy will, like earlier, be to go over to
an integral over momentum and to divide the integral up into integration
along and normal to surfaces of constant energy ϵ. As commented above,
we see that the right-hand-side of the equations will be suppressed by the
factor 1/Θ(k′) when k′ is moved far away from the Fermi surface. The
phonon-propagator, on the other hand, is not suppressed by the fermionic
energy scale when k′ is moved away from the Fermi surface. We therefore
fully neglect the dependence of the phonon propagator on perpendicular
momentum k′

⊥
, in contrast to the BCS case where the behavior of the inter-

action potential as a function of perpendicular momentum away from the
Fermi surface was assumed to take the form of a constant with a cutoff.
We also neglect the perpendicular momentum dependence of the electron-
phonon coupling strength g, the pairing amplitude ϕ, and the quasiparticle
renormalization Z. Going over to an integral over ϵ, we assume the Fermi
surface to be isotropic and approximate the density of states by its value
at the Fermi surface. Finally, we also average both sides of the equations
over k on the Fermi surface and introduce an s-wave Ansatz for the pair-
ing amplitude and the quasiparticle renormalization. The two remaining
Eliashberg equations then take the form
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[1 −Z(iωn)]iωn = +
1

β
∑
iωn′

λ(iωn − iωn′) iωn′Z(iωn′)∫
dϵ

Θ(ϵ, iωn′)
, (3.129)

ϕs(iωn) = −
1

β
∑
iωn′

λ(iωn − iωn′)ϕs(iωn′)∫
dϵ

Θ(ϵ, iωn′)
, (3.130)

where we now have

Θ(ϵ, iωn′) = [iωn′Z(iωn′)]2 − ϵ2 − ∣ϕs(iωn′)∣2, (3.131)

as well as

λ(iωn − iωn′) = −D0⟨ ∣gk,k′ ∣2D(0)(k − k′) ⟩k,k′,FS. (3.132)

Here, D0 is the density of states at the Fermi surface. We then take the
integration limits for ϵ to ±∞ and perform the integral, producing

Z(ωn) = 1 +
π

βωn
∑
ωn′

λ(ωn − ωn′)√
[ωn′Z(ωn′)]2 + ∣ϕs(ωn′)∣2

ωn′Z(ωn′), (3.133)

ϕs(ωn) =
π

β
∑
ωn′

λ(ωn − ωn′)√
[ωn′Z(ωn′)]2 + ∣ϕs(ωn′)∣2

ϕs(ωn′). (3.134)

We then have two frequency-dependent, coupled, self-consistent equations
which should be solved. As λ(νm) has been defined to carry a positive sign,
it appears that a nontrivial solution for ϕs could be possible.

In order to calculate the critical temperature, one can approach this
temperature from below, in which case ϕs can be neglected in the square
roots in the denominator of the right-hand-side of the equations. In that
case, the equation for Z no longer depends on ϕs, and we can simply calcu-
late Z directly. The problem is then reduced to a single eigenvalue problem.
Considering a finite set of Matsubara frequencies, one can then, for a given
temperature, find the largest eigenvalue with associated eigenvector through
either matrix diagonalization or through iteration. The largest temperature
where there is a solution to the equation for ϕs with eigenvalue 1 is then
the critical temperature.

We will not go more into the details of numerical solutions of these
equations. In order to help interpret what is going on, we will instead make
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some comments about approximate formulas for the critical temperature.
Similarly to what we did for BCS theory, one could, now as a function of
frequency, approximate the phonon propagator by a constant with a cutoff
at ∣νm∣ = ωc. One can then arrive at an expression [81]

TR
c = 1.13ωc exp(−

[1 + λ(0)]
λ(0)

) . (3.135)

A more refined approximate expression takes the form [82]

TAD
c =

ωlog

1.2
exp(−1.04[1 + λ(0)]

λ(0)
) , (3.136)

where λ(0) should not be too large for the formula to be accurate. The
quantity ωlog is here an effective cutoff obtained from

ωlog = ωa exp(
2D0

λ(0)
⟨ln(ωk−k′/ωa) ∣gk,k′ ∣2/ωk−k′ ⟩k,k′,FS) , (3.137)

where ωa is an arbitrary energy scale. As the expression for λ(0) takes the
form

λ(0) = 2D0⟨ ∣gk,k′ ∣2/ωk−k′ ⟩k,k′,FS, (3.138)

we may interpret ln(ωlog) as an average over ln(ωq) weighted by how much
the different phonon energies contribute to the zero-frequency electron-
phonon interaction. Assuming an Einstein spectrum of phonon with only
a single phonon frequency ωE naturally produces ωlog = ωE , leading to a
prefactor in the Tc formula of the order ωE . The above formulas can also
be extended to include Coulomb interaction, which is a topic we are saving
for the next section.

Going back to our Schrieffer-Wolff/BCS treatment and assuming s-wave
pairing as well as a phonon-mediated interaction without neglecting the mo-
mentum dependence of the interaction around the Fermi surface, one can
put the dimensionless coupling constant λ on exactly the same form as the
expression for λ(0) in Eq. (3.138). This arises from the fact that the magnon
propagator and the fraction in the effective interaction potential we obtained
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for phonons are equivalent for the special case of zero frequency/electrons
on the Fermi surface. As the additional term λ(0) in the numerator of the
exponential in the above Tc formulas can be taken to introduce a rescaling
of the factor in front of the exponential, we see that the BCS expression

TBCS
c = 1.13ωc exp (−1/λ) ,

captures the exponential dependence of Tc on λ(0).
We also see that the prefactor in the Tc formula in Eq. (3.136), for

the case of the Einstein phonons, turns out to not differ that dramatically
between BCS theory and Eliashberg theory. Moreover, we see more gen-
erally from Eq. (3.135) that if, simply stated, the behavior of λ(νm) with
increasing ∣νm∣ is somewhat reasonably approximated by a constant with a
cutoff determined by the cutoff on the phonon spectrum, Eliashberg the-
ory and the Schrieffer-Wolff/BCS approach we have outlined seem to not
disagree strongly on the behavior of the critical temperature. In the BCS
framework, this then loosely corresponds to our assumption about contri-
butions to the gap equation from the interaction potential when we move
electrons away from the Fermi surface being reasonably approximated by
taking the perpendicular momentum dependence of the derived interaction
potential on the form of a constant with a cutoff ωc. If the derived interac-
tion potential somehow differs substantially from this behavior, the outlined
BCS approach might not capture the relevant energy scale for the critical
temperature. However, as the effective potential still reproduces λ(0), the
approach is seemingly still capturing an important part of what is going on
in the system. Within BCS theory, sticking to our simple Ansatz for the
dependence of the interaction potential on perpendicular momentum, even
if it does not appear that reasonable, might therefore not necessarily be an
inferior approach compared to attempting to use the detailed perpendicular
momentum dependence of the effective interaction potential to account for
the detailed frequency dependence of λ(νm). One could, in addition, also
attempt to argue for a different cutoff on the interaction potential than the
cutoff on the phonon spectrum. The best option would, of course, be to
simply identify that it might be necessary to go to Eliashberg theory.

Above, we have tried to explain why the BCS theory we have outlined
sometimes captures more of what is going on in the system, at least for
sufficiently small λ, than one might expect based on the roughness of the
theory. In order to balance the story, we should also highlight some of the
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shortcomings of the theory. In general, it is not necessarily so easy to know,
while working within the BCS framework, what parts of the physics of the
system the theory is actually accurately capturing without relying on input
from more refined approaches. One should therefore clearly be very care-
ful with putting too much faith in the theory’s predictive abilities. We are
further not able to easily include the effect of e.g. electron and phonon renor-
malization. In addition to introducing inaccuracies this also contributes to
making it more difficult to keep track of whether the theory can be justified
or not. For a more accurate, controlled, and thorough description of the
properties of superconductors for comparison with experiments, Eliashberg
theory is obviously a better option.

3.3.4 Coulomb interaction

As the Eliashberg theory outlined in the previous section neglected Coulomb
interaction, there is naturally a question about how the effect of Coulomb
interaction enters in Eliashberg theory. In the BCS framework, we saw that
the effect of Coulomb interaction turned out to be less destructive than one
might have naively expected. The picture for why this happens will become
clearer in this section.

The effect of Coulomb interaction on the system is, in general, hard to
take into account [81]. One therefore typically assumes that renormalization
due to Coulomb is already included in the starting model and consider the
effect of the presence of a repulsive and frequency-independent interaction
in the pairing amplitude equations. For simplicity, we further neglect the
momentum dependence of the Coulomb interaction. The equation for the
pairing amplitude in Eq. (3.130) is then modified to

ϕs(iωn) = −
1

β
∑
iωn′

[λ(iωn − iωn′) − λC]ϕs(iωn′)∫
dϵ

Θ(ϵ, iωn′)
, (3.139)

where λC = D′0U , or more generally a Fermi surface average if the mo-
mentum dependence of the Coulomb interaction around the Fermi surface
is kept. As λ and λC are both positive quantities, we see that Coulomb
repulsion will tend to weaken the pairing. Linearizing the equation and
performing the energy integral without taking the integration limits to in-
finity, we obtain for the case of particle-hole symmetry
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ϕs(iωn) =
1

β
∑
ωn′

[λ(iωn − iωn′) − λC]ϕs(iωn′)

× 1

ωn′Z(iωn′)

⎡⎢⎢⎢⎢⎣
tan−1

⎛
⎝

ϵ

ωn′Z(iωn′)
⎞
⎠

⎤⎥⎥⎥⎥⎦

W

−W

.

(3.140)

Normally, we have that λ dies off above some frequency ωp ≪W representing
the phonon energy scale. In that case we can take ±W → ±∞. In the
present case, the quantity λC does not exhibit such a decay with respect
to frequency. We then need to keep the integration limits. We next split
the pairing amplitude up into two parts ϕs(iωn) = ϕ1(iωn) + ϕ2 [83]. The
first part is assumed to only be nonzero for ∣ωn∣ < ωp, while the other part
is assumed to not depend on frequency. Above the cutoff frequency, we
further expect that Z ≈ 1. We then split the pairing amplitude equation up
into two parts

ϕ1(iωn) =
π

β
∑

∣ωn′ ∣<ωp

λ(iωn − iωn′)
ϕ(iωn′)

∣ωn′ ∣∣Z(iωn′)∣
, (3.141)

and

ϕ2 = −
λC
β

⎡⎢⎢⎢⎢⎣
π ∑
∣ωn′ ∣<ωp

ϕ(iωn′)
∣ωn′ ∣∣Z(iωn′)∣

+ ∑
∣ωn′ ∣>ωp

ϕ2
ωn′
[ tan−1 ( ϵ

ωn′
)]

W

−W

⎤⎥⎥⎥⎥⎦
. (3.142)

Solving this equation for ϕ2, we obtain

ϕ2 = −
π

β
∑

∣ωn′ ∣<ωp

µ∗
ϕ(iωn′)

∣ωn′ ∣∣Z(iωn′)∣
, (3.143)

where

µ∗ = λC

1 + λC

β ∑∣ωn′ ∣>ωp

1
ωn′
[ tan−1 ( ϵ

ωn′
)]

W

−W

. (3.144)

Combining back together the two parts of the pairing amplitude equation,
we are then left with
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ϕ(iωn) =
π

β
∑

∣ωn′ ∣<ωp

[λ(iωn − iωn′) − µ∗]
ϕ(iωn′)

∣ωn′ ∣∣Z(iωn′)∣
. (3.145)

Doing some further work on the expression for µ∗ [83], one can then obtain
that

µ∗ = λC

1 + λC ln (Wωp
)
, (3.146)

which is simply the expression we obtained within BCS theory for ωp =
ωc. We then see that the effect of Coulomb interaction, once again, is
suppressed. This time, the suppression arises from the fact that the electron-
phonon interaction is only active at low frequencies, determined by the
energy scale of the phonons, in contrast to the Coulomb interaction. As
small frequencies correspond to large times, a useful picture is then that
the electron-phonon interaction acts over much longer time-scales than the
Coulomb interaction. Electrons are therefore able to interact with each
other attractively through coupling to phonons without having to be close
to each other, thereby avoiding the Coulomb repulsion.

3.3.5 Vertex corrections

Vertex corrections are usually neglected on the basis of Migdal’s theorem
[56], stating that higher-order diagrams are smaller by a factor determined
by the phonon energy scale divided by the electron energy scale. In order to
see an indication of this, we consider a quick estimate of the type presented
in Ref. [78]. Neglecting, for simplicity, the momentum dependence of the
unrenormalized vertex gk−q,k, the renormalized vertex can be expressed as
g[1 + Γ(k − q, k)]. The lowest-order diagram renormalizing the vertex gives
a contribution

Γ1(k − q, k) =
1

β
∑
q′
∣g∣2G(k − q′)G(k − q′ − q)D(q′), (3.147)

and is presented in Fig. 3.9, where we approximate the electron and phonon
Green’s functions by their non-interacting forms. For the non-interacting
phonon Green’s function we take ∣D(0)(q)∣ ∼ 1/ωp for ∣νm∣ < ωp. Above
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Figure 3.9: Lowest-order diagram correcting the interaction vertices. Dot-
ted lines represent phonon propagators, while solid lines represent electron
propagators.

ωp, the phonon Green’s function is assumed to vanish. We will then have
contributions from around ∼ βωp terms in the frequency sum. For the N
terms in the momentum sum, the electrons will typically be away from the
Fermi level. We therefore approximate the electron Green’s functions by
1/EF , where the Fermi energy is taken as a measure of the electron energy
scale. We then obtain the estimate

∣Γ1(k − q, k)∣ ∼
N ∣g∣2

E2
F

. (3.148)

This estimate would indicate that vertex corrections can be neglected if the
energy scale of the electron-phonon coupling is considerably smaller than
the electron energy scale. One can further put this estimate on the more
famous form [78]

∣Γ1(k − q, k)∣ ∼ λ(0)
ωp

EF
, (3.149)

indicating that vertex corrections can typically be neglected due to the sep-
aration of energy scales between phonons and electrons.

In the above estimate, it was assumed that the typical contributions
involve the electrons with momentum k −q′ and k −q −q′ being away from
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the Fermi surface. One can also attempt to perform an estimate focusing on
the specific contributions where q′ is restricted to keep either k−q′ or both
k−q′ and k−q′−q close to the Fermi surface [81]. In that case, one typically
finds that the increase provided by the fermion Green’s functions is com-
pensated by the reduction of terms in the momentum sum that contribute
to the expression. An exception is the special case of small q, in which case
simply restricting k − q′ to be close to the Fermi surface can ensure that
also k − q′ − q is kept close to the Fermi surface. Migdal’s theorem can
therefore break down for the case of long-wavelength phonons. Luckily, the
importance of such phonons is reduced due to the electron-phonon coupling
vanishing for zero-momentum phonons. Migdal’s theorem may also break
down for the case of nested Fermi surfaces [78]. In this case there can be
a substantial number of momenta q where again restricting the momentum
sum to keep one additional electron close to the Fermi surface instead leads
to two additional electrons ending up close to the Fermi surface. More-
over, Migdal originally considered the case of a three-dimensional system,
and vertex corrections can, in general, be of larger importance in lower-
dimensional systems [84, 85].

3.4 Superconductivity from spin fluctuations

Although we have kept parts of the discussion quite general, we have in this
chapter mainly focused on phonon-mediated superconductivity. The simple
picture we presented was that negatively charged electrons can interact at-
tractively with each other with help from the positively charged ionic lattice.
The ionic lattice then acts as a polarizable medium that allows electrons to
interact with each other indirectly. As electrons not only have charge, but
also spin, one could imagine that a collection of spins also could act as a
polarizable medium, giving rise to indirect interaction between electrons.

The collection of spins could, for instance, be ordered localized spins.
In that case, one could imagine that an itinerant electrons can flip a local-
ized spins, creating a disturbance in the magnetic order that can couple to
another itinerant electron. An illustration of this for the case of ferromag-
netic ordering of the localized spins is shown in Fig. 3.10 (a). The potential
for resulting magnon-mediated superconductivity has e.g. been discussed in
Refs. [86–88]. Indirect interaction between electrons mediated by magnons
could be thought to be of relevance for the observed superconductivity in
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Figure 3.10: An itinerant electron interacting with a collection of (a) lo-
calized and ferromagnetically ordered spins, and (b) localized and nearly
ferromagnetically ordered spins which can easily be polarized by the itiner-
ant electron.

heavy fermion systems, named for their ability to host electrons with large
effective mass. In these materials, itinerant electrons can mediate indirect
interaction between localized spins, potentially giving rise to antiferromag-
netic order [89, 90]. One could then further imagine that fluctuations in the
magnetic order could give rise to attractive interaction between itinerant
electrons. The picture is, however, not quite as simple as described above
as the itinerant electrons themselves are important for establishing magnetic
order in the first place. Heavy fermion superconductivity is also typically
found to takes place at the brink of magnetic ordering, rather than well in-
side a magnetic phase [89]. Moreover, the strongly correlated nature of the
systems further complicates the problem. Although most likely too simple
of a picture to properly describe the origin of superconductivity in typical
heavy fermion systems, the magnon-mediated interaction described above
could still be a potential mechanism, or at least a useful starting point for
describing mechanisms, for superconductivity in systems featuring itinerant
electrons and localized magnetic order.

Nearly ordered collections of spins, consisting of localized or delocalized
spins, could also provide an indirect interaction between electrons. In this
case, one can imagine an itinerant electron polarizing the surrounding spin-
system, creating a locally ordered region that can attract another itinerant
electron [64]. An illustration of this is presented in Fig. 3.10 (b) for the case
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of nearly ferromagnetically ordered localized spins. The interaction is in
this case mediated by paramagnons, representing short-ranged spin-waves.
Paramagnon exchange was first identified as the pairing mechanism for p-
wave superfluidity in 3He [91, 92], and has later been proposed as a potential
mechanism for superconductivity in both heavy fermion systems [93–95], as
well as in high-Tc cuprates [96, 97]. Similarly to many heavy fermion super-
conductors, the superconducting phase of cuprates take place in proximity
to an antiferromagnetic phase [98]. The antiferromagnetic phase of cuprates
can be considered to arise from Coulomb repulsion giving rise to antiferro-
magnetic Mott insulating behavior, as captured in the Hubbard model close
to half-filling. Going away from half-filling in the Hubbard model, param-
agnon exchange has, as highlighted in Paper [4], been proposed to give rise
to p-wave pairing for small Fermi surfaces and d-wave pairing closer to half-
filling [94]. The electrons going into the Cooper pairs are then thought to
interact with each other through coupling to their own own collective spin
excitations.

The topic of the next chapter will be magnon-mediated superconductiv-
ity in heterostructures of magnetic materials and conductors. As discussed
earlier, such heterostructures represent customizable systems where itiner-
ant electrons can interact indirectly by coupling to a collection of ordered
localized spins. In addition to, compared to single-material systems, more
adjustability and potentially clearer separation of the itinerant electrons
from the origin of the magnetic order, such heterostructures can also allow
for e.g. realization of coupling between itinerant electrons and dominantly
only one of the two sublattices of an antiferromagnetic insulator.



4
Magnon-mediated
superconductivity

As mentioned in the introduction, one potential pathway to a better under-
standing of the relationship between spin fluctuations and superconductivity
is to study superconductivity in heterostructures of magnets and conduc-
tors. This will be the topic of this chapter. We will consider ordered fer-
romagnetic and antiferromagnetic insulators coupled to normal metals and
topological insulator edge states. The coupling between the materials will
be considered through an interfacial exchange interaction between the lo-
calized spins of the magnet and the spins of the itinerant electrons in the
conductor. All details of the interfacial interaction is then baked into an
interfacial interaction strength, which in general should be expected to vary
substantially depending on the combination of materials as well as the de-
tails of the interface. As we will see in this chapter, the interfacial exchange
interaction is responsible for both giving rise to electron-magnon coupling,
as well as potential spin-splitting of the itinerant electrons in the conductor.
In our simple model, the strength of these two effects are then strictly tied
together. The electron-magnon coupling will, in the following, be the main
star, while the spin-splitting of the electrons, which is typically harmful for
superconductivity and can e.g. be cancelled out in trilayer structures, will
receive less attention.

The effective electron-magnon coupling experienced by electrons and
magnons, as well as the effective spin-splitting experienced by electrons,
should further be expected to depend on the thickness of the respective
materials. The physical systems we attempt to model in this chapter will
indeed in reality typically consists of thin-films of some thickness. In order
to ensure magnetic ordering, having a magnet of a certain thickness might be
favorable, while the desirable effects of the magnet on the conductor would
be expected to be strongest for a thin normal metal layer. Each thin-film
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will, however, in the following be modelled as strictly two-dimensional and
the effect of finite thickness will be discussed qualitatively. Rather than
trying to accurately determine critical temperatures for comparison with
experiments, the focus will be on attempting to understand the key physics
of the systems and outlining potential mechanisms for superconductivity.

We start the chapter by introducing the physics taking place at inter-
faces between ferromagnetic insulators and normal metals. For simplicity
we, here and in the following, consider square lattices. Similarly to what we
did for the case of electron-phonon coupling, we perform a Schrieffer-Wolff
transformation in order to obtain an effective interaction between electron
mediated by ferromagnetic magnons and comment on the possibility of a
superconducting instability. We then move on to the case of interfaces be-
tween antiferromagnetic insulators and normal metals, including both the
possibility of compensated and uncompensated antiferromagnetic interfaces.
We also here derive an effective interaction between electrons, this time me-
diated by antiferromagnetic magnons. With this background, we are then
ready to discuss Paper [1–4], considering the possibility of inducing super-
conductivity in different types of conductors through proximity coupling to
magnetic insulators.

4.1 Ferromagnet-metal interface

An interface between a ferromagnetic insulator and a normal metal is dis-
played in Fig. 4.1. We stress that the interface itself will be taken to be
two-dimensional and that we in our modelling neglect any finite thickness of
the two materials, considering square lattice models. We further introduce
an interfacial exchange interaction

Hint = −2J̄∑
i

c†iσci ⋅Si, (4.1)

where c†i = (c
†
i↑, c

†
i↓). The ferromagnetic subsystem will be described by a

spin Hamiltonian treated through linear spin wave theory, as outlined in
Chap. 2. For the normal metal, we take a simple tight-binding model

HNM = −t ∑
⟨i,j⟩σ

c†iσcjσ − µ∑
iσ

c†iσciσ, (4.2)
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Figure 4.1: Interface between a ferromagnetic insulator (FMI) and a normal
metal (NM). Itinerant electrons in the metal interact with the localized spins
in the ferromagnet through an interfacial exchange interaction.

which after a Fourier transformation takes the form

HNM =∑
kσ

ϵkc
†
kσckσ, (4.3)

with ϵk = −tz1γk−µ. The sum over momentum here covers a two-dimensional
Brillouin zone. The details of the electron dispersion relation will not be
focused on in this section, and the choice of tight-binding model is therefore
not of significance. Introducing the Holstein-Primakoff transformation in
Eq. (4.1), and Fourier transforming both electron and magnon operators,
we end up with

Hint = Ṽ ∑
kq

(aqc†k+q,↓ck↑ + a
†
−qc

†
k+q↑ck↓) − 2J̄S∑

kσ

σc†kσckσ, (4.4)

where Ṽ = −2J̄
√
2S/
√
N . We have neglected terms of higher order in the

magnon operators. The first term in the above equation represents electron-
magnon scattering where an incoming electron is scattered off a magnon
in a spin-flip process. The second term introduces a spin-splitting of the
electrons in the metal. This term will, in the following, be neglected. This
can be justified either if the effect of spin-splitting is small, or if one e.g.
considers a trilayer structure where a normal metal is sandwiched between
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two oppositely magnetized ferromagnets [99].
In order to obtain an effective interaction between electrons mediated by

magnons, we perform a Schrieffer-Wolff transformation. The transformation
takes the same form as the one introduced for phonons, described in Chap.
3, except that we now take

ηS̃ = Ṽ ∑
kq

(xk,qaqc†k+q↓ck↑ + yk,qa
†
−qc

†
k+q↑ck↓), (4.5)

with

xk,q =
1

ϵk − ϵk+q + ωq
, yk,q =

1

ϵk − ϵk+q − ωq
. (4.6)

The effective interaction Hamiltonian then becomes

Heff = −
Ṽ 2

2
∑
kqk′

⎛
⎝

1

ϵk′ − ϵk′−q − ωq
− 1

ϵk − ϵk+q + ωq

⎞
⎠
c†k+q↓c

†
k′−q↑ck↑ck′↓.

(4.7)

Investigating pairing between electrons with opposite momenta, we further
have [99]

Hpair = ∑
kk′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (4.8)

with

Vkk′ = −Ṽ 2 ωk′+k

(ϵk′ − ϵk)2 − ω2
k′+k

. (4.9)

Here, we have not defined Hpair with a factor 1/2 in front of the momentum
sums, unlike what we did for the phonon-case, due to a more restricted spin
structure.

If we compare our new magnon-mediated potential with the phonon-
mediated potential from Chap. 3

V phonon
kk′ = ∣gk′,k∣2

2ωk′−k

(ϵk′ − ϵk)2 − ω2
k′−k

,
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Figure 4.2: Depiction of effective interaction between electrons mediated by
(a) a phonon and (b) a magnon. Notably, the interaction vertices in (b)
introduce a flip of the electron spin.

we see that there are a few differences. One difference, which we will return
more to later, is that the coupling constant appearing as a prefactor in the
magnon-mediated potential is momentum independent for the considered
electron-magnon coupling, while the prefactor of the phonon-mediated po-
tential has a momentum dependence. Another difference is that the boson
energy ω comes with the momentum combination k′ + k for the magnon-
mediated case, rather than k′ − k. The most striking difference is that
the two potentials have an overall opposite sign. We highlight that such a
comparison of interaction potentials, of course, only makes sense if one is
careful to place the electron operators following the interaction potential on
the same form. An interaction potential, without a specified ordering of the
electron operators, is not a basis for discussing the possibility of a super-
conducting instability. The two latter differences commented on above can,
in fact, be traced back to the spin-flip structure of the magnon scattering
producing the need for an additional (or one less) commutation of electron
operators in order to obtain the ordering in Eq. (4.8). This commutation
leads to a minus sign, as well as an associated redefinition of one of the
momenta that we sum over. In Fig. 4.2 (a) and (b), we show illustrative
diagrams representing phonon-mediated and magnon-mediated interaction
between electrons, highlighting the differences in spin structure.

Based on the above discussion, as well as our experience with phonon-
mediated superconductivity from the previous chapter, we can already now
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suspect that trying to realize spin-singlet superconductivity with the above
magnon-mediated potential is going to be an uphill battle as the prefactor
carries the opposite sign of last time. However, before making any further
claims about potential superconducting instabilities, we will write our new
interaction potential on a more general form and derive the relevant gap
equations.

As before, we have that Vkk′ = Vk′k and Vkk′ = V−k,−k′ . We further
express the interaction potential into its even and odd parts with respect
to momentum. Dividing our pairing Hamiltonian up into several parts,
shuffling around operators, and redefining momenta, we then end up with

Hpair =
1

2
∑
kk′

∑
σ1σ2σ3σ4

V σ1σ2σ3σ4

kk′ c†kσ1
c†
−kσ2

c−k′σ3ck′σ4 . (4.10)

Here, like last time,

V ↑↓↓↑kk′ = V
↓↑↑↓

kk′ =
1

2
[Vkk′,O(k) + Vkk′,E(k)], (4.11a)

V ↑↓↑↓kk′ = V
↓↑↓↑

kk′ =
1

2
[Vkk′,O(k) − Vkk′,E(k)], (4.11b)

while the rest of the spin combinations are now associated with a vanishing
potential.

The general form of the gap equation takes the form of Eq. (3.24).
Polarized spin-triplet pairing is not an option this time, but spin-singlet
and unpolarized spin-triplet pairing could in principle both be possible.
The gap equations for spin-singlet and unpolarized spin-triplet pairing now,
once again, take the form

∆s
k = −∑

k′
Vkk′,E(k)∆

s
k′χk′ , (4.12)

and

∆t,u
k = −∑

k′
Vkk′,O(k)∆

t,u
k′ χk′ . (4.13)

If we take both k and k′ to be on the Fermi surface, we see that the
potential in the equation for spin-singlet pairing takes the form



4.1. Ferromagnet-metal interface 87

Vkk′,E(k) = Ṽ 2 ⎛
⎝

1

ωk+k′
+ 1

ωk−k′

⎞
⎠
.

The two sides of the gap equation then have opposite signs unless the gap
function changes sign as a function of momentum. By introducing sign
changes in the gap function around the Fermi surface, it can in certain
cases be possible to obtain superconductivity from a purely ”repulsive” po-
tential like the one we have here. A key element is then that the interaction
potential should make sure that the largest contributions from the right-
hand-side of the gap equation are not associated with the case of k and k′

pointing in the same direction, where gap functions on opposite sides of the
equations naturally have to carry the same sign. We will see an example of
this later. In the present case, one would, quite oppositely, expect k′ = k
to represent a peak in the interaction potential for a magnon dispersion
relation that has a minimum at zero momentum. Spin-singlet pairing does
therefore not seem promising.

Considering instead the possibility of unpolarized spin-triplet pairing,
we again analyze the case of k and k′ on the Fermi surface. The relevant
interaction potential then takes the form

Vkk′,O(k) = Ṽ 2 ⎛
⎝

1

ωk+k′
− 1

ωk−k′

⎞
⎠
.

We then see that this potential can have a negative sign, as well as be
peaked, when k′ = k. The possibility of spin-triplet pairing therefore seems
promising. The potential will also be peaked for k′ = −k, in which case it
carries a positive sign. This is, of course, just a consequence of the potential
being odd in momentum. It is also not a problem for the gap equation since
the gap functions also has to change sign in this case. In line with this
discussion, Ref. [99] concluded that spin-triplet p-wave superconductivity,
dominated by contributions from long-wavelength magnons, could be pos-
sible in a FMI/NM/FMI trilayer.
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4.2 Antiferromagnet-metal interface

We next consider the case of an antiferromagnetic insulator coupled to a
normal metal. The case of a compensated antiferromagnetic interface is
displayed in Fig. 4.3 (a), while the case of an uncompensated antiferro-
magnetic interface is shown in Fig. 4.3 (b). Similarly to what we did in
the previous section, we capture the coupling between the two materials
through an interfacial exchange coupling

Hint = −2J̄∑
Υ

∑
i∈Υ

ΩΥ c
†
iσci ⋅Si. (4.14)

The normal metal is assumed to be lattice matched with the full lattice of
the antiferromagnet as displayed in Fig. 4.3 (a). We have, however, allowed
for the possibility that the coupling of the normal metal electrons to the
two sublattices of the antiferromagnet can differ, parameterized through
the sublattice dependent parameter ΩΥ = ΩA, ΩB. Taking ΩA = ΩB cor-
responds to a compensated antiferromagnetic interface where the normal
metal electrons are coupled equally to both sublattices of the AFMI. Fur-
ther, by reducing e.g. ΩB, we can investigate the effect of asymmetry in the
coupling to the antiferromagnetic sublattices. The special case of ΩB = 0
corresponds to a system like in Fig. 4.3 (a), but where the itinerant elec-
trons are only coupled to one of the two sublattices of the antiferromagnet,
imitating the uncompensated interface in Fig. 4.3 (b) where the electrons
dominantly couple to one of the two sublattices. We are thus able to tune
our way from a model for a compensated to an uncompensated interface.

The normal metal is modelled in the same way as in the previous section
and the antiferromagnet is treated in a linear spin-wave framework, starting
from a spin Hamiltonian, as outlined in Chap. 2. Working on the interaction
term, we start by performing a Holstein-Primakoff transformation, as well
as Fourier transforming both the electron and magnon operators. As the
normal metal is lattice matched with the full lattice of the antiferromagnet,
the magnons will live in a reduced Brillouin zone compared to the electrons.
The reduced Brillouin zone of the magnons was displayed earlier in Fig. 2.5.

The magnons living in a reduced Brillouin zone means that there will
exist two types of scattering processes. One type will be referred to as reg-
ular processes and involves the momentum difference between the incoming
and outgoing electrons being carried by an incoming or outgoing magnon
living in the reduced Brillouin zone. There will also be additional Umklapp
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Figure 4.3: (a) Compensated and (b) uncompensated interface between an
antiferromagnetic insulator (AFMI) and a normal metal (NM). Our model
considers a case like in (a), but allows for the coupling between the itinerant
electrons and the antiferromagnet to be sublattice dependent. While ΩA =
ΩB corresponds to a fully compensated interface, ΩB = 0 corresponds to
the itinerant electrons only coupling to one of the two sublattices of the
antiferromagnet, similar to an uncompensated interface displayed in (b).

processes where the difference is that the momentum of the outgoing elec-
tron is shifted by a reciprocal lattice vector Q = π(x̂+ ŷ)/a in addition to the
momentum difference carried by a magnon living in the reduced Brillouin
zone. Through regular and Umklapp processes, it is possible for magnons
to scatter the electrons around in their full Brillouin zone.

One way of keeping track of the different types of processes is to rewrite
the Fourier transformation of the electron operators as

ciσ =
1√
N
∑
k∈♢

(ckσe−ik⋅ri + ck+Q,σe
−i(k+Q)⋅ri), (4.15)

so that the momentum k is considered to be restricted to the reduced Bril-
louin zone ♢. When performing sums over only the A sublattice such as

1

NA
∑
i∈A

ei(k
′
−k−q−Q)⋅ri = δk′,k+q,

the additional momentum Q does not make any difference. However, as
the the lattice sites associated with the B sublattice are shifted e.g. ax̂
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compared to the A sublattice, the presence of Q leads to a sign change

1

NB
∑
i∈B

ei(k
′
−k−q−Q)⋅ri = 1

NA
∑
i∈A

ei(k
′
−k−q−Q)⋅(ri+ax̂) = −δk′,k+q,

arising from iQ ⋅ ax̂ = iπ. Performing the full calculations, we end up with
Hint =HV

int +Hh
int with [1, 4]

HV
int = V ∑

k∈□
q∈♢

[MR
q c

†
k+q,↓ck,↑ +M

U
q c

†
k+q+Q,↓ck,↑

+(MR
−q)†c

†
k+q,↑ck,↓ + (M

U
−q)†c

†
k+q+Q,↑ck,↓], (4.16)

where we have defined the magnon operators

Mκ
q = ΩAaq + κΩBb

†
−q, (4.17)

as well as V = −2J̄
√
S/N . Here, regular and Umklapp processes are dis-

tinguished by κ = R,U = +1,−1. We see that Mκ
q for Umklapp scattering

processes associated with the B-sublattice of the antiferromagnet carry an
opposite sign compared to the regular scattering processes, as discussed
above. We have now also combined together terms so that the electron mo-
mentum k is no longer restricted to the reduced Brillouin zone. Moreover,
the additional terms arising from the interaction Hamiltonian take the form
Hh

int =H
h,A
int +H

h,B
int where [1, 4]

Hh,A
int = −J̄ ΩAS ∑

k∈□,σ

σ(c†kσckσ + c
†
k+Q,σckσ), (4.18a)

Hh,B
int = +J̄ ΩBS ∑

k∈□,σ

σ(c†kσckσ − c
†
k+Q,σckσ). (4.18b)

We see that for ΩA ≠ ΩB, the electrons will experience a net spin-splitting.
We will next perform some simplifying assumptions. As we did for the

ferromagnet, we will assume that the spin-splitting of the electrons is either
small or cancelled out in e.g. a trilayer structure. We will further, for the
time being, restrict ourselves to small isotropic Fermi surfaces. In that case,
Umklapp scattering processes will take electrons close to the Fermi surface
away from the Fermi surface, as illustrated in Fig. 4.4. For a sufficiently



4.2. Antiferromagnet-metal interface 91

Figure 4.4: An electron situated at the Fermi surface (white circle) can be
scattered to the red regions of the Brillouin zone through regular processes
and to the blue regions through Umklapp processes. For a small Fermi
surface, Umklapp processes always take electrons at the Fermi surface away
from the Fermi surface.

small Fermi surface, we therefore neglect the effect of Umklapp scatter-
ing processes. We also note that the Umklapp processes in Hh

int may be
cancelled out in a trilayer structure. Moreover, an experimentally realized
uncompensated interface might typically involve lattice matching between
the normal metal and the sublattice of the antiferromagnet which is exposed
at the interface. In that case, the Umklapp processes are not present in the
first place.

From the interaction Hamiltonian, we are now left with the regu-
lar electron-magnon scattering terms. Expressing the delocalized spin-flip
magnons in terms of the antiferromagnetic magnons, we now obtain

HV
int = V ∑

k∈□
q∈♢

[Mqc
†
k+q,↓ck,↑ + (M−q)

†c†k+q,↑ck,↓], (4.19)

with

Mq = (ΩAuq +ΩBvq)αq + (ΩAvq +ΩBuq)β†
−q. (4.20)

As uq and vq carry opposite signs, we see here that the regular electron-
magnon scattering strength can be enhanced by introducing an asymmetry
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ΩA ≠ ΩB. This effect is strongest for long-wavelength magnons associated
with coherence factors that grow large in magnitude leading to ∣uq ∣ ≈ ∣vq ∣.

In order to obtain an effective interaction mediated by magnons, we next
perform a Schrieffer-Wolff transformation with

ηS̃ = V ∑
k∈□
q∈♢

[Xq c
†
k+q,↓ck,↑ + Yq c

†
k+q,↑ck,↓], (4.21)

where

Xq = xk,q(ΩAuq +ΩBvq)αq + yk,q(ΩAvq +ΩBuq)β†
−q, (4.22a)

Yq = yk,q(ΩAuq +ΩBvq)α†
−q + xk,q(ΩAvq +ΩBuq)βq. (4.22b)

Here, xk,q and yk,q are defined in the same way as in the ferromagnetic
case. For scattering between pairs of electrons with opposite momenta, we
then obtain [1]

Hpair = ∑
kk′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (4.23)

where

Vkk′ = −V 2 2ωk+k′

(ϵk′ − ϵk)2 − ω2
k+k′

A(k + k′,ΩA,ΩB), (4.24)

and

A(q,ΩA,ΩB) =
1

2
(Ω2

A +Ω2
B)(u2q + v2q) + 2ΩAΩB uqvq. (4.25)

The difference between k and k′ is here, naturally, restricted to the reduced
Brillouin zone of the antiferromagnetic sublattices as we have only consid-
ered regular scattering processes. We now see that we have obtained an
interaction potential which is similar to what we obtained for interaction
mediated by ferromagnetic magnons in the previous section. The only im-
portant difference is the presence of an additional factor A(k +k′,ΩA,ΩB).
The effect of this factor on the possibility of superconductivity in the system
is the topic of Paper [1].
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4.3 Enhancement of superconductivity mediated
by antiferromagnetic squeezed magnons

As introduced in the previous section, Paper [1] considers the possibility of
superconductivity in a heterostructure of a normal metal and and antiferro-
magnetic insulator. Specifically, the focus is on how the superconductivity,
for a small and isotropic Fermi surface, depends on whether the electrons in
the normal metal are coupled symmetrically or asymmetrically to the two
sublattices of the antiferromagnet. The study was motivated by previous
work on superconductivity in heterostructures of normal metals and ferro-
magnetic insulators [99], and related [100], as well as superconductivity in
heterostructures of ferromagnetic or antiferromagnetic insulators and topo-
logical insulators featuring conducting edge states [101, 102]. The study
actually grew out of initial investigations of the system of an antiferromag-
netic insulator coupled to a topological insulator, combined with the ideas
about the difference between coupling to compensated and uncompensated
antiferromagnetic interfaces which culminated in Ref. [35]. As it became
clear that the effect of asymmetry in the coupling to the two sublattices of
the antiferromagnet was quite general, we decided to focus on this effect in
a simpler system before we returned to the topological insulator in Paper
[2].

The main finding of the article is that coupling a normal metal asym-
metrically to the two sublattices of an antiferromagnetic insulator may lead
to spin-triplet p-wave superconductivity. The critical temperature is found
to increase with the degree of asymmetry, favoring an uncompensated anti-
ferromagnetic interface.

The considered system has already been introduced in the previous sec-
tion, where we ended up with the effective magnon-mediated interaction
potential in Eq. (4.24). As we have already analyzed the interaction me-
diated by ferromagnetic magnons, the question is now how the additional
factor A(k + k′,ΩA,ΩB) changes the picture. Importantly, this factor con-
tains all dependence on ΩA and ΩB. Aligning with the notation in the
article, we set ΩB = 1 and ΩA = Ω. For the case of Ω = 1, corresponding to
a compensated antiferromagnetic interface, we then have

A(q,Ω = 1) = (uq + vq)2. (4.26)
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For large q, this is expression is simply equal to 1. For small q, on the
other hand, rewriting the expression on the form (uq + ∣vq ∣)−2, we see that
it is typically much smaller than 1. For large q we then have an interac-
tion potential similar to what we had for the ferromagnet, while for the
important small q contributions, the interaction strength is suppressed. Al-
though the coherence factors themselves grow large, contributions from the
two separate antiferromagnetic sublattices interfere destructively, limiting
the interaction strength.

Considering instead the case of Ω = 0, corresponding to an uncompen-
sated antiferromagnetic interface, we obtain

A(q,Ω = 0) = 1

2
(u2q + v2q). (4.27)

For large q, this expression is simply equal to 1/2. However, for small q,
the so-called boosting factor A becomes large as the coherence factors are
now squared separately. From the discussion of the interaction potential
mediated by ferromagnetic magnons, one can now see right away that the
potential for interaction mediated by antiferromagnetic magnons, for Ω =
0, also should be able to produce spin-triplet p-wave pairing, where the
long-wavelength contributions now obtain an additional boosting from the
magnon coherence factors.

In order to calculate the critical temperature as a function of Ω, we can
return to the expression

kBTc = 1.13ωc e
−

1
λ ,

from Chap. 3, where we had

λ∆k∥,σ1σ2 = − ∑
σ3σ4

⟨D0(k′∥)V
σ1σ2σ3σ4

k∥k
′
∥

∆k′
∥
,σ4σ3
⟩k′
∥
,FS.

Restricting to unpolarized spin-triplet pairing, we then have to numerically
solve the eigenvalue problem

λ∆t,u
k∥
= −⟨D0(k′∥)Vk∥k′∥,O(k)∆

t,u
k′
∥

⟩k′
∥
,FS, (4.28)
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Figure 4.5: (a) Critical temperature Tc and (b) dimensionless coupling con-
stant λ as a function of the asymmetry in the coupling between the normal
metal and the two sublattices of the antiferromagnet. Maximum asymmetry
is here represented by Ω = 0. The different curves correspond to different
values of the interfacial coupling strength J̄ .

in order to determine the largest eigenvalue λ and its associated eigenvector.
The results for the critical temperature Tc and the dimensionless coupling
constant λ presented in the article, are here included in Fig. 4.5. The gap
function that maximized the critical temperature was found to have a p-
wave symmetry, as expected. From Fig. 4.5, we further see that both λ and
Tc increase with increased asymmetry in the coupling between the normal
metal and the two sublattices of the antiferromagnet.

The above results are only valid if the effect of the spin-splitting of
the electrons can be neglected. As highlighted in the article, the effect of
spin-splitting is expected to be small if the critical temperature in the ab-
sence of spin-splitting is large compared to the spin-splitting. For a given
experimental realization of the system, the problem is then relatively sim-
ple. If kBTc in the absence of spin-splitting is large enough compared to
the spin-splitting field, the mechanism is likely to work in a simple bilayer
structure. In the opposite case, one has to cancel out the spin-splitting,
which e.g. can be done in a trilayer structure. While making the normal
metal thick also is a way of reducing the effective spin-splitting experienced
by the electrons, one should also expect the effective electron-magnon inter-
action strength experienced by the electrons to be reduced in this case. As
the critical temperature decays quickly with reduced interaction strength,
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it is therefore likely that a quite thin normal metal still is favorable. In
the article, it was argued that the predicted critical temperatures might be
large enough for, if realized in a real system, superconductivity to survive
the spin-splitting field arising from the uncompensated antiferromagnetic
interface. The highly parameter-dependent critical temperatures resulting
from our simple calculation should, however, be viewed as very loose esti-
mates. Based on our results from the Eliashberg treatment of the system
in paper [4], we concluded that cancelling out the spin-splitting is likely to
be necessary in order for superconductivity to survive.

We also note that, our model of antiferromagnetically ordered, localized
spins interacting with itinerant electrons through an exchange interaction
does, in fact, take the form of a Hamiltonian that one might write down
to describe a single material hosting antiferromagnetically ordered spins in-
teracting with itinerant electrons. For the natural case of ΩA = ΩB, Ref.
[88] encountered the destructive interference discussed above, leading to the
dominant processes contributing to superconductivity for sufficiently small
Fermi surfaces being higher-order processes where the momentum transfer
in the effective electron-electron interaction is carried by a pair of magnons
rather than a single magnon. Such scattering processes arise from the z-
component of the localized spins, e.g. on the form S − a†

iai.
From our above comparisons between the interaction potential mediated

by ferromagnetic and antiferromagnetic magnons, it seems quite obvious
that the antiferromagnetic potential for Ω = 0 should be better for super-
conductivity as there is an additional prefactor boosting the interaction. In
order to do a more thorough inspection of how the two cases match up, we
can consider the situation where the momenta k and k′ are both on the
Fermi surface, and write

V FM
kk′ = Ṽ

2 1

ωFM
k′+k

, V AFM
kk′ = V

2 1

ωAFM
k+k′
(u2k+k′ + v

2
k+k′). (4.29)

If we then inspect the combination of coherence factors, considering J2 = 0,
we have

u2k+k′ + v
2
k+k′ =

2SJ1z1 + 2SK
ωAFM
k+k′

. (4.30)

Further, taking the momentum k + k′ to zero, we have
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ωFM
0 = 2KS, ωAFM

0 = 2S
√
K(K + 2z1J1). (4.31)

which, for the case of J/K ≫ 1, allows us to write

V FM
kk′ ∼ Ṽ

2 1

K
, V AFM

kk′ ∼ V
2 1

K
. (4.32)

We then see that the ferromagnet actually can compensate for the missing
boosting factor in the potential by having a smaller gap in the magnon spec-
trum, making the maxima of the two potentials take on similar values for
similar easy-axis anisotropy strength K. We will return to this comparison
in the discussion of Paper [4], where we will see that the boosting factor of
the antiferromagnet, in fact, does provide the antiferromagnet with a po-
tential advantage.

An important reason why the above comparison between the two interac-
tion potentials does not represent the full story is related to our simplified
treatment of the magnon-mediated superconductivity. When calculating
the superconducting critical temperature, we simply followed the normal
approach of assuming that the behavior of the interaction potential and
gap function when moving away from the Fermi surface can be treated as
constants with a cutoff equal to the cutoff on the boson spectrum. We
will return to an evaluation of this approximation later in this chapter, but
before we get that far, we will first provide a discussion of Paper [2].

4.4 Magnon-mediated superconductivity on the sur-
face of a topological insulator

In Paper [2], we studied superconductivity on the surface of a topological
insulator proximity-coupled to a magnetic insulator. We considered both
the case of a ferromagnetic insulator, as well as both compensated and un-
compensated antiferromagnetic interfaces. The project was motivated by
earlier studies of superconductivity in heterostructures of topological insu-
lators and magnetic insulators [101, 102]. Working in a Green’s function
framework, Ref. [101] found that superconductivity where the Cooper pairs
carry a large finite momentum 2kF , so-called Amperean pairing, could be
possible on the surface of a topological insulator coupled to a ferromag-
netic insulator. Building on this result, Ref. [102] considered both the
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Figure 4.6: Heterostructure of topological insulator coupled to (a) a ferro-
magnetic insulator (FMI) and (b) an antiferromagnetic insulator (AFMI).

case of coupling to a ferromagnetic and antiferromagnetic insulator. Work-
ing within the path integral formalism, they concluded that the resulting
effective interaction between helical fermions mediated by both ferromag-
netic and antiferromagnetic spin fluctuations had potential for giving rise
to superconductivity. The goal of our article was to further investigate the
differences between coupling the topological insulator to a ferromagnetic or
different types of antiferromagnetic interfaces when the magnets are treated
in a quantum mechanical fashion.

The main finding of the article is that the effective interaction po-
tential arising from an uncompensated antiferromagnetic interface is quite
similar to the potential mediated by ferromagnetic magnons, except that
the presence of additional antiferromagnetic coherence factors works to aid
in the formation of a superconducting stability. For both the ferromagnetic
and the uncompensated antiferromagnetic interface, it was found that the
momentum structure of the interaction potential is suitable for Amperean
pairing with p-wave symmetry. Similarly to before, a compensated antifer-
romagnetic interface leads to destructive interference of the contributions
from the two sublattices. Moreover, the study also introduced that adding
frustration to the antiferromagnet, generating stronger spin fluctuations,
may enhance magnon-mediated superconductivity.

The considered systems are presented in Fig. 4.6. The magnetic insu-
lators are treated in the same way as earlier in this chapter with a specific
assumption about out-of-plane ordering in this case. The conducting sur-
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Figure 4.7: (a) Band structure for the surface states of a topological insula-
tor subjected to a an out-of-plane exchange field. We have set kya = 0. (b)
The spins of the surface state fermions lie in-plane with direction perpen-
dicular to the momentum. The direction of the cross product between the
spin direction and the momentum direction defines the handedness of the
fermions, here referred to as helicity α.

face states of the topological insulator are described through a square lattice
model giving rise to a Dirac cone around the center of the Brillouin zone.
Interfacial coupling is introduced through an exchange coupling between
localized spins in the magnetic insulator and the spins of the electrons go-
ing into the lattice model for the surface states of the topological insulator.
Similarly to Paper [1], the interfacial exchange coupling to the antiferro-
magnet is allowed to be sublattice dependent, capturing both the case of a
compensated and uncompensated antiferromagnetic interface. The interfa-
cial coupling gives rise to interaction between magnons and helical fermions
living on the surface of the topological insulator, as well as a potential spin-
splitting of the electrons on the surface of the topological insulator. Taking
this spin-splitting into account, the band structure for the helical surface
states of the topological insulator takes the form in Fig. 4.7 (a) where a gap
has been opened between the bands of opposite helicity [103]. We have here
assumed that the Fermi level crosses the upper Dirac cone with positive
helicity. The spin-momentum locking of the surfaces states is illustrated in
Fig. 4.7 (b).

Working with a small Fermi surface, we neglect Umklapp scattering pro-
cesses so that the interaction term in the ferromagnetic case takes the form
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HFMI,V
int = Ṽ ∑

kq

∑
αα′
[Q†
↓α(k + q)Q↑α′(k)aq ψ

†
k+q,αψkα′ + h.c.]. (4.33)

The difference from the case of a ferromagnetic insulator coupled to a nor-
mal metal is here that the electron operators have been expressed in terms of
the operators ψkα corresponding to spin-momentum locked fermions with
helicity α, introducing some additional prefactors Q. For the antiferro-
magnetic insulator, the situation is similar. We focus on the expressions
for the ferromagnetic case as these are more compact. We next perform
a Schrieffer-Wolff transformation in order to obtain an effective magnon-
mediated fermion-fermion interaction. We focus on the interaction between
fermions with helicity α = +, which are the ones living at the Fermi sur-
face. Motivated by the smallness of the Fermi surface, we further approxi-
mate the Q-coefficients by their long-wavelength limit expressions. For pair-
ing between fermions with vanishing center-of-mass momentum (BCS-type
pairing) and Amperean pairing between fermions with large center-of-mass
momentum compared to their relative momentum, we obtain the pairing
Hamiltonians

H
(BCS)
pair,FMI =

1

2
∑
kk′

V
(BCS)
kk′,FMIψ

†
k,+ψ

†
−k,+ψ−k′,+ψk′,+, (4.34)

with

V
(BCS)
kk′,FMI = −

V 2

2

vF (kx − iky)√
(2J̄S)2 + v2Fk2

×
vF (k′x + ik′y)√
(2J̄S)2 + v2Fk′

2

2ωk−k′

(Ek′,+ −Ek,+)2 − ω2
k−k′

,

(4.35)

and

H
(Amp)
pair,FMI =

1

2
∑

Kpp′
V
(Amp)
pp′,FMI(K)ψ

†
K+p,+ψ

†
K−p,+ψK−p′,+ψK+p′,+, (4.36)

with
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Figure 4.8: For Amperean pairing, the most relevant region for contributions
to the gap equation is found to take the form of an hourglass around K.

V
(Amp)
pp′,FMI(K) =

V 2

2

v2FK
2

(2J̄s)2 + v2FK2

×
⎛
⎝

1

EK−p′,+ −EK−p,+ − ωp−p′
− 1

EK+p′,+ −EK+p,+ + ωp−p′

⎞
⎠
.

(4.37)

Here, vF is the Fermi velocity and 2K is center-of-mass momentum of the
Amperean Cooper pairs. As we only have fermions with helicity + around
the Fermi surface, we see immediately that any pairing will have to be
even in helicity, and correspondingly odd in momentum. For Amperean
pairs, odd in momentum here means odd in relative momentum for a given
center of mass momentum. This can easily be seen from the above pairing
Hamiltonian by commuting operators and inverting p or p′, showing that it
is only the part of the interaction potential that is odd in relative momentum
that does not vanish.

Performing a mean-field theory as outlined in the article, one can
then obtain gap equations for both BCS-type and Amperean pairing in
order to analyze whether the interaction potentials may support nontrivial
solutions to these gap equations. For BCS-type pairing it was found that the
interaction potential had an overall wrong for supporting superconductivity.
An indication of this can be seen by taking k and k′ on the Fermi surface
and inspecting the real part of the part of the potential which is odd in
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momentum. Investigation of the gap equation reveals that this part of the
potential, whose sign is determined by

∼ k ⋅ k′
⎛
⎝

1

ωk−k′
+ 1

ωk+k′

⎞
⎠
,

should have been negative for k = k′ in order to help produce a nontrivial
solution to the gap equation.

We therefore instead consider the possibility of Amperean pairing. Sim-
ilarly to BCS-type pairing, the gap equation for Amperean pairing contains
a factor which ensures that the most important contributions to the gap
equation arise from processes where the fermions are kept close to the Fermi
surface. For the case of K = kF x̂, Fig. 4.8 shows the most relevant region,
which takes the shape of an hourglass around K. Sufficiently close to the
center of this hourglass, the differences between fermion energies appearing
in the interaction potential are small compared to the magnon energies as
the magnons have a gap in their excitation spectrum. In this region, the
relevant part of the potential that should be negative when p = p′ has a
simplified dependence

∼ 1

ωp+p′
− 1

ωp−p′
. (4.38)

When the fermion energies can be neglected, we see that the potential looks
quite promising. In the article, we therefore concluded that, in accordance
with earlier findings, the interaction has a suitable momentum structure
for p-wave superconductivity to arise. Dividing the area where the fermion
energies could be neglected up into a grid of momentum points and attempt-
ing to solve the linearized gap equation as a matrix eigenvalue problem, it
was found that this area was too small to produce a solution to the gap
equation for reasonable parameters. Moving momenta outside of this small
region, the sign-changes arising from the fermion energies appearing in the
potential make the behavior of the potential quite chaotic and unfavorable
for a nontrivial solution to the gap equation. This behavior was interpreted
as a result of our effective interaction potential attempting to account for
the frequency dependence of the interaction through momentum dependent
fermion energies. We did not have much faith in our approach reasonably
accounting for the frequency dependence of the interaction, and we were
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Figure 4.9: Critical temperature as a function of (a) asymmetry in the cou-
pling of the topological insulator to the two sublattices of the antiferromag-
net, Ω, and (b) next-nearest neighbor interaction J2 in the antiferromagnet.
Maximum asymmetry is here represented by Ω = 0, and for J2/J1 > 0 the
next-nearest neighbor interaction acts as a frustration.

therefore not able to draw any independent conclusions about whether su-
perconductivity could be realized in this system.

For the antiferromagnet, there are additional scattering processes and
additional coherence factors appearing in the effective interaction potential.
Apart from this, the situation is very similar to the ferromagnetic case.
The interaction is still repulsive for BCS-type pairing. For Amperean pair-
ing, the part of the potential that should be negative for p = p′ now has a
simplified dependence

∼ 1

ωp+p′
A(p + p′,Ω) − 1

ωp−p′
A(p − p′,Ω). (4.39)

This momentum structure still looks promising for a solution to the gap
equation, now with some potential additional boosting of the potential for
the case of Ω = 0. Due to this boosting factor we were, in this case, actually
able to obtain a solution to the gap equation from the region where the ef-
fect of the fermion energies on the interaction potential could be neglected.
This should, however, merely be taken as an indication that the momentum
structure of the interaction is suitable for realizing superconductivity. The
gap function was found to have a p-wave character, and the critical temper-
ature was found to increase with decreasing Ω and increasing next-nearest
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neighbor frustration J2 in the antiferromagnet, as shown in Fig. 4.9.
Based on our results, we concluded that an uncompensated antiferro-

magnetic interface might be a better candidate than a ferromagnetic inter-
face for realizing superconductivity on the surface of a topological insula-
tor. Looking back at our discussion of the difference between interaction
mediated by ferromagnetic and antiferromagnetic magnons in the previous
section, it should now be clear that the maximum of the antiferromagnetic
potential is not necessarily increased by the presence of the boosting factor
A, although it can be viewed in that way for a fixed gap in the magnon spec-
trum. Another point of view is, however, that the difference introduced by
this boosting factor is that the same maximum of the potential obtained for
the ferromagnet can be obtained with a larger gap in the magnon spectrum.
In Paper [2], for a given maximum of the interaction potential, a larger gap
in the magnon spectrum allowed for the fermions to be moved further away
from the Fermi surface without the fermion energies dominating over the
magnon energies in the interaction potential. The increased region of fa-
vorable contributions to the gap equation allowed for a solution to the gap
equation in the antiferromagnetic case. Also when the frequency depen-
dence of the interaction is accurately captured, having the same interaction
strength with larger magnon energies should be expected to be an advan-
tage as this will allow the interaction strength to be suppressed more slowly
with increasing frequency. In order to corroborate these findings, one should
properly consider both the momentum and frequency dependence of the in-
teraction between helical fermions mediated by antiferromagnetic magnons,
as well as associated fermion and magnon renormalization effects, which is
yet to be done.

While the effect of fermion renormalization, in the ferromagnetic case,
was found to be important for the superconductivity discussed in Ref. [101],
fermion renormalization for the case of an uncompensated antiferromagnetic
interface has been discussed in detail in Ref. [104]. Some of the ground work
has therefore been laid for a future Eliashberg study of superconductivity
arising from a topological insulator coupled to an uncompensated antifer-
romagnetic interface. For the ferromagnetic case, the effect of tilting the
magnetization in-plane has also been considered in Ref. [105]. This study,
considering a frequency dependent interaction, but neglecting fermion renor-
malization, also found that the pairing could be odd in frequency. Restrict-
ing to the static case of zero frequency, the gap equation obtained in Ref.
[105] displayed very similar behavior to the gap equation in Paper [2], ex-
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cept that contributions from a larger momentum region actually allowed for
formation of an Amperean p-wave solution.

In retrospect, performing a BCS-type study to investigate Amperean
pairing on the surface of a topological insulator mediated by magnons ap-
pears somewhat naive. We did, of course, not capture the effect of fermion
renormalization and we were further not able to reasonably capture the
frequency dependence of the interaction. Similarly to what we saw in the
previous chapter, we were, however, when all fermions were kept sufficiently
close to the Fermi surface, able to capture the momentum dependence of
the interaction. We could therefore obtain some useful information about
the difference between coupling the topological insulator to ferromagnetic
and antiferromagnetic interfaces. In particular, we identified that introduc-
ing asymmetry in the coupling to the two sublattices of an antiferromagnet
can be favorable also for the case of superconductivity on the surface of
a topological insulator. Our study also identified that introducing next-
nearest neighbor interaction in the antiferromagnet might be favorable. We
explored this further in Paper [3].

4.5 Schwinger boson study of superconductivity
mediated by antiferromagnetic spin fluctua-
tions

In Paper [3], we returned to the coupling between a normal metal and an an-
tiferromagnet. The goal was to better understand the effect of next-nearest
neighbor frustration in the antiferromagnet on the superconductivity medi-
ated by antiferromagnetic spin fluctuations. As the superconductivity arises
from magnetic fluctuations, one would expect that amplification of these
fluctuations would be favorable for the superconductivity. For relatively
weak frustration, this was what we found in Paper [2]. In this project we
wanted to extend these results to the case of larger frustration, investigating
how far this effect could be exploited. We therefore performed a Schwinger
boson study, allowing us to consider the full range from vanishing next-
nearest neighbor interaction to the case where the next-nearest neighbor
interaction dominates, giving rise to a stripe phase as introduced in Chap.
2. As the stripe phases, starting from J1 = 0, arises from two decoupled
Néel antiferromagnets, we had a suspicion that coupling asymmetrically to
the spin-↑ and spin-↓ sites of both of these two Néel antiferromagnets could
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give rise to a similar effect as obtained when coupling asymmetrically to
the spin-↑ and spin-↓ sites of a normal Néel antiferromagnet. Moreover,
although we, in this study, wanted to focus on the case of ordered magnetic
phases, we also had hope that the study could provide some pointers for
potential future investigation of superconductivity induced by coupling to
disordered magnets.

The main finding of the article was that approaching the transition be-
tween the Néel and stripe phase from either side generally was favorable for
the superconductivity as long as the magnetic order in the magnet was not
suppressed too quickly. For the stripe phase, just like the Néel phase, asym-
metry in the coupling to the two antiferromagnetic sublattices was found to
be necessary in order to avoid destructive interference of contributions to
the effective interaction potential.

The considered system, as well as the model for the normal metal, is the
same as in Paper [1]. The main difference is that we include a next-nearest
neighbor interaction in the antiferromagnet and rewrite the localized spins
in terms of Schwinger bosons instead of performing a Holstein-Primakoff
transformation. The interfacial coupling is on the same form as before, al-
lowing for an asymmetric coupling to spin-↑ and spin-↓ sites of the antifer-
romagnet. For the antiferromagnet, we consider the spin quantum number
S = 1, in which case, depending on the strength of the next-nearest neighbor
interaction, our antiferromagnet will be in an ordered Néel or stripe phase.
The treatment of the Néel phase is outlined in Chap. 2.

The coupling to e.g. the A-sublattice of the antiferromagnet now takes
the form

H
(A)
int = −2J̄ ΩA ∑

i∈A

(a†
i↑ai↓ c

†
i↓ci↑ + a

†
i↓ai↑ c

†
i↑ci↓)

− J̄ ΩA∑
i∈A
σ

σc†iσciσ(a
†
i↑ai↑ − a

†
i↓ai↓).

(4.40)

The last term may give rise to a spin-splitting of the electron states, which
similarly to earlier will be neglected. Introducing Fourier transformations,
again neglecting Umklapp processes, and introducing a Bogoliubov transfor-
mation for the Schwinger boson operators, we end up with regular electron
scattering terms involving two Schwinger boson operators.

In order to obtain an effective interaction between electrons mediated
by antiferromagnetic spin fluctuations, we next perform a Schrieffer-Wolff
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transformation, as detailed in the article. As the original fermion-boson
coupling now contains two bosonic operators, we will in this case end up
with an ”effective interaction” that still involves two bosonic operators. This
additional combination of boson operators is replaced by its ground state
expectation value in order to obtain an effective interaction only involving
electrons. Setting ΩB = 1 and ΩA = Ω as before and investigating inter-
action between electrons with opposite momentum, the resulting pairing
Hamiltonian takes the form

Hpair = ∑
kk′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (4.41)

with

Vkk′ = −V 2 Q̃0

S

2ωk+k′↓

(ϵk′ − ϵk)2 − ω2
k+k′↓

A(k + k′,Ω)

− V 2

NS
∑
h

′

B(k + k′ +h,h,Ω)
2(ωk+k′+h↑ + ωh↓)

(ϵk′ − ϵk)
2 − (ωk+k′+h↑ + ωh↓)

2
.

(4.42)

The prime on the sum over h denotes that the term with h = −k − k′ has
been taken out of the sum. This interaction potential describes both the
case of a Néel phase and a stripe phase, with e.g. boson dispersion and
coherence factors depending on the phase. We have also defined

A(q,Ω) = 1

2
(Ω2 + 1)(u2q↓ + v2q↓) − 2Ωuq↓vq↓, (4.43)

as well as

B(q,h,Ω) = 1

2
(Ω2 + 1)(u2q↑v2h↓ + v

2
q↑u

2
h↓) − 2Ωuq↑vh↓vq↑uh↓. (4.44)

For the here undefined factor Q̃0, we simply note that it is closely related
to the sublattice magnetization of the antiferromagnet. A reduced sublat-
tice magnetization can therefore now lead to a weaker interaction strength.
Apart from this, the first part of the interaction potential Vkk′ corresponds
quite closely to the interaction potential obtained in Paper [1]. We highlight
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Figure 4.10: Dimensionless coupling constant λ, for interaction mediated by
antiferromagnetic spin fluctuations, as a function of next-nearest neighbor
interaction J2. We have considered the case where the electrons in the metal
are only coupled to one of the two antiferromagnetic sublattices. Approach-
ing the phase transition between the Néel phase and the stripe phase from
either side gives rise to an increase in λ, leading to a higher superconducting
critical temperature.

that the coherence factors, as mentioned in the Schwinger boson discussion
in Chap. 2, have been taken to carry the same sign. For Ω = 1, contribu-
tions arising from the two sublattices then interfere destructively in both
the case of a Néel phase and a stripe phase. Compared to the case of Paper
[1], we now also have an additional type of contributions to the interaction
potential which we come back to shortly.

Performing the usual mean-field theory, we can further derive gap equa-
tions for spin-singlet and spin-triplet pairing. In the same way as in Paper
[1], we can then solve linearized gap equations in order to determine the di-
mensionless coupling constant λ, as well as the resulting critical temperature
and pairing symmetry. For Ω = 0, the first part of the interaction potential
naturally prefers p-wave pairing as before. Inspection of the second part
of the interaction potential can further reveal that these contributions also
contribute favorably to a p-wave solution. Compared to the first part of the
potential, these additional contributions, simply summarized, come with an
extra factor 1/N , an extra sum over momentum, and some additional coher-
ence factors. Despite the presence of additional coherence factors, as only a
small part of the extra momentum sum contributes significantly to the gap
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equation, it was found that the second part of the interaction potential had
little effect on the results.

The results obtained in the article for the dimensionless coupling con-
stant as a function of next-nearest interaction are presented in Fig. 4.10.
We have here set Ω = 0. From this figure, we see that, for both the Néel
and stripe phase, moving in the direction of the phase transition leads to a
larger λ, associated with a larger critical temperature. This behavior arises
from a flattening of the bosonic dispersion relation, associated with gener-
ally larger coherence factors. As shown in Chap. 2, approaching the phase
transition also leads to a reduction of the sublattice magnetization, which
enters the interaction potential through a reduction of the prefactor Q̃0.
The dominant effect is still that enhancing the magnetic fluctuations leads
to an increase in the dimensionless coupling constant. For the Néel phase,
we can, however, see that the increase in λ as a function of J2 flattens out
a bit close to the transition point as the sublattice magnetization decays
quite quickly. For the stripe phase, featuring a weaker decay in the sublat-
tice magnetization close to the transition point, we instead see that λ has a
stronger increase close to the transition point.

While the first part of the interaction potential vanishes in the case of
loss of magnetic order, the second part of the interaction potential does not.
As the Schwinger boson formalism can also be used to describe disordered
phases, the second part of the interaction potential might therefore be able
to shed some light on electron-electron interaction induced by coupling to
a disordered antiferromagnet. In the present study, we found that keeping
the magnetic order was essential for the superconductivity, as the contri-
butions from the second part of the potential were small compared to the
contributions from the first part.

Through the work with Paper [1–3], we had started building an under-
standing of how magnetic fluctuations in an antiferromagnet may induce
superconductivity in a neighboring conductor, focusing on the role played
by sublattice interference and frustration. The conclusions obtained so far
where, however, associated with some uncertainty as we could not be con-
fident in how well the superconducting instability was described by our
BCS-like approach. A natural next step was therefore to go to Eliashberg
theory for answers.
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4.6 Eliashberg study of superconductivity induced
by interfacial coupling to antiferromagnets

In Paper [4], we studied our normal metal-antiferromagnet system using
Eliashberg theory. We, this time, considered a trilayer structure and in-
vestigated the effect of asymmetry in the coupling to the antiferromag-
netic sublattices for both small and larger Fermi surfaces. The extension to
larger Fermi surfaces was partly motivated by an earlier BCS study showing
that Umklapp scattering processes, for compensated antiferromagnetic in-
terfaces, could give rise to spin-singlet d-wave pairing when the normal metal
conduction band is close to half-filled [106]. The Fermi surface can then be
approximately square, matching the reduced Brillouin zone of the magnons
and allowing long-wavelength Umklapp processes to efficiently scatter elec-
trons between different points on the Fermi surface.

The motivation for investigating the system within Eliashberg theory
consisted of several parts. One of them was the following. During the
work with the preceding articles, we had started to realize that the case
of magnon-mediated superconductivity with dominant contributions from
long-wavelength magnons is quite different from the case of phonon-mediated
superconductivity, even for the case of acoustic phonons. In the latter
case, the potential large contributions from phonons with small energy are
suppressed by the electron-phonon coupling vanishing for zero-momentum
phonons. Keeping in mind that the magnon case involves large contribu-
tions from long-wavelength magnons, one could clearly start questioning the
approximation of treating the perpendicular momentum dependence of the
interaction potential as a constant with a cutoff equal to the cutoff on the
magnon spectrum. As large contributions from long-wavelength magnons
rely on small magnon energies in the denominator of the interaction poten-
tial, these contributions will start being suppressed as soon as the outgoing
electrons are moved a distance away from the Fermi surface larger than the
gap in the magnon spectrum. In particular, we expected that the cutoff
on the magnon spectrum may then no longer be determining the relevant
energy scale for the critical temperature. Taking a quick look at the formula
for the effective cutoff ωlog presented in the previous chapter, we now see
clearly that strong electron-boson interaction for long-wavelength bosons
should be expected to lead to a smaller effective cutoff in the approximate
expression for the critical temperature.

Due to the differences between coupling electrons to magnons and phonons,
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we also wanted to consider electron renormalization, magnon renormaliza-
tion, and vertex corrections in order to attempt to evaluate the importance
of these effects. Moreover, based on the prediction that odd-frequency pair-
ing could be possible in the ferromagnetic insulator-topological insulator
system [105], we also wanted to look into the possibility of odd-frequency
pairing.

The main finding of the study was that we still obtained a spin-triplet p-
wave phase for the case of uncompensated antiferromagnetic interfaces and
a small Fermi surface, as well as a d-wave phase for the case of compensated
antiferromagnetic interfaces and larger Fermi surfaces close to half-filling.
Moreover, especially for the p-wave phase, we found, as expected, that the
effective cutoff setting the energy scale for the critical temperature was con-
siderably smaller than the cutoff on the magnon spectrum.

The considered system is modelled in the same way as in Paper [1], ex-
cept that we this time consider a normal metal layer sandwiched between
two oppositely ordered antiferromagnets, cancelling out all net and stag-
gered exchange fields. This simplifies the treatment and avoids potential
negative effects of such fields on the possibility of superconductivity. In-
troducing Fourier and Holstein-Primakoff transformations, the interaction
term in the Hamiltonian again takes the form of Eq. (4.16)

Hint = V ∑
k∈□
q∈♢

[MR
q c

†
k+q,↓ck,↑ +M

U
q c

†
k+q+Q,↓ck,↑

+(MR
−q)†c

†
k+q,↑ck,↓ + (M

U
−q)†c

†
k+q+Q,↑ck,↓],

but now with

Mκ
q = (ΩAuq + κΩBvq)(αqH + α†

−qL)

+(ΩAvq + κ ΩBuq)(β†
−qH ,+βqL),

(4.45)

where H and L refer to the two antiferromagnets with opposite ordering.
As we are, this time, also interested in larger Fermi surfaces, we do not
throw out the Umklapp processes.

Due to the presence of Umklapp processes, we extend the electron basis
that we used when we introduced Eliashberg theory in the previous chapter
to
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ψ†
k = (c

†
k↑ c†k↓ c−k↑ c−k↓ c†k+Q↑ c†k+Q↓ c−k−Q↑ c−k−Q↓ ) , (4.46)

while now

B†
q = ((MR

q )† MR
−q (MU

q )† MU
−q). (4.47)

We can then express the interaction Hamiltonian on the symmetrized form

Hint =
V

4
∑
k∈□
q∈♢

∑
αβγ

gαβγ Bγ
qψ

†
k+qαψkβ , (4.48)

where the expressions for the matrices gγ are provided in the article. Intro-

ducing matrices of Green’s functions Ĝ(k, τ) = −⟨Tτ [ψk(τ) ⊗ ψ†
k(0)]⟩ and

D̂(q, τ) = −⟨Tτ [Bq(τ)⊗B†
q(0)]⟩, we can, as before, derive Dyson equations,

now with self-energies

Σ(k) = −V
2

2β
∑
k′
∑
γγ′
θk−k′D̂γγ′(k − k′)gγĜ(k′)gγ′ , (4.49a)

Πγγ′(q) =
V 2

4β
∑
k

Tr [gγĜ(k + q)gγ′Ĝ(k)] . (4.49b)

Here, we have neglected the effect of vertex corrections, which we return to
later. Further, the factor θq is equal to 1 if q is located inside the reduced
Brillouin zone of the sublattices, and zero otherwise. This restriction on
the sum arises from the magnons living in the reduced Brillouin zone. As
magnons living in the reduced Brillouin zone can scatter electrons through
regular or Umklapp processes, the presence of θq does not put any restric-
tions on the scattering of electrons around in the full Brillouin zone. Further,
the magnon Green’s function matrix takes the form

D̂(q) =
⎛
⎜⎜⎜
⎝

0 DRR(q) 0 DRU(q)
DRR(−q) 0 DUR(−q) 0

0 DUR(q) 0 DUU(q)
DRU(−q) 0 DUU(−q) 0

⎞
⎟⎟⎟
⎠
, (4.50)

where in the non-interacting case
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Dκκ′

0 (q, iνm) = − 2Aκκ′

e (q)
2ωq

ν2m + ω2
q

. (4.51)

Here, the boosting factors are given by

ARR
e (q) =

1

2
[(ΩAuq+ΩBvq)2 + (ΩAvq +ΩBuq)2], (4.52a)

AUU
e (q) =

1

2
[(ΩAuq −ΩBvq)2+(ΩAvq −ΩBuq)2], (4.52b)

ARU
e (q) = AUR

e (q) =
1

2
(Ω2

A −Ω2
B)(u2q + v2q). (4.52c)

Starting with the case of only regular scattering processes, we see that
DRR

0 (q, iνm) is similar to the corresponding part of the effective interaction
potential that we derived earlier

Vkk′ = V 2 2ωk+k′

−(ϵk′ − ϵk)2 + ω2
k+k′

A(k + k′,ΩA,ΩB),

except for, again, the fermion energies being substituted by a frequency de-
pendence. The boosting factors are identical. Inspecting the case of only
Umklapp scattering processes, we see that the boosting factor AUU

e (q) is
actually maximized for ΩA = ΩB. This arises from the earlier discussed
sign-change for Umklapp scattering associated with the B-sublattice, which
was exploited in Ref. [106].

Due to the structure of ψ†
k, the matrix Ĝ does not only contain corre-

lations between electrons with the same or opposite momentum, starting
with momentum k or k+Q. It also contains correlations between electrons
with e.g. momenta k and k +Q, potentially giving rise to a commensurate
spin-density wave. As discussed in more detail in the article, away from
half-filling, both k and k +Q will not be close to the Fermi surface simul-
taneously and such correlations may be neglected.

Including the possibility of either spin-singlet or spin-triplet pairing, we
can then take an Ansatz for Σ(k) similar to what we did in the previous
chapter and derive Eliashberg equations
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[1 −Z(k)]iωn = −V 2 1

β
∑
k′
D(k − k′) iωn′Z(k′)

Θ(k′)
, (4.53a)

χ(k) = −V 2 1

β
∑
k′
D(k − k′)ξk

′ + χ(k′)
Θ(k′)

, (4.53b)

ϕs(k) = −V 2 1

β
∑
k′
D(k − k′)ϕs(k

′)
Θ(k′)

, (4.53c)

ϕt(k) = +V 2 1

β
∑
k′
D(k − k′)ϕt(k

′)
Θ(k′)

, (4.53d)

valid for one of ϕs and ϕt nonzero, corresponding to spin-singlet or spin-
triplet pairing. We then have

Θ(k) = [iωnZ(k)]2 − ξ̃2k − ∣ϕs,t(k)∣
2, (4.54)

where we have also introduced the magnon propagator

D(q) = θqDRR(q, iνm) + θq+QDUU(q +Q, iνm). (4.55)

The momenta k and k′ in the Eliashberg equations are allowed to take on
values in the full Brillouin zone and depending on whether their difference
is located in the reduced Brillouin zone or not, the relevant magnon propa-
gator will be a regular or Umklapp propagator.

Investigating the equations for the pairing amplitudes, we start with the
case of a small Fermi surface where regular scattering processes dominate.
We first note that the equation for spin-singlet pairing now comes with an
opposite sign compared to the phonon-case we considered in the previous
chapter. This sign-change arises from the spin-flip structure of the electron-
magnon interaction in combination with the oddness of spin-singlet pairing
under spin-exchange. Just like we found when working in the BCS frame-
work, spin-singlet pairing does therefore not look so promising for the case
of a small Fermi surface. Considering instead the possibility of spin-triplet
pairing, Θ(k′) comes in with a negative sign and D has a negative prefac-
tor. At least for the case of uncompensated antiferromagnetic interfaces,
we would further, similarly to in the BCS case, expect DRR(k − k′) to be
larger in magnitude when k and k′ are parallel than antiparallel. The part
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Figure 4.11: Sketch of the phase diagram as a function the sublattice asym-
metry of the interfacial coupling, Ω, and chemical potential µ in units of
the hopping amplitude t. The regions are colored according to which phase
maximizes the critical temperature.

of the propagator which is odd in momentum should then be favorable for
spin-triplet p-wave pairing.

If we instead go to the case of a Fermi surface close to half-filling, Umk-
lapp processes start becoming important. This does not rule out the possi-
bility of spin-triplet pairing. It does, however, also introduce the possibility
of a spin-singlet d-wave solution where electrons can be Umklapp scattered
by long-wavelength magnons from one corner of the almost square Fermi
surface to another, introducing a sign-change in the d-wave pairing ampli-
tude. A spin-singlet solution could therefore be possible [106], despite the
”interaction potential” seemingly having the wrong sign. Regular scatter-
ing processes between points on the Fermi surface where the pairing ampli-
tude has the same sign will, however, still not favor a spin-singlet solution.
The importance of sublattice coupling asymmetry then enters the picture
through the fact that the regular processes are suppressed for a compen-
sated interface, while the Umklapp processes are not.

In order to simplify the equations, we neglect the effect of χ, renormal-
ization of the magnons, and the momentum dependence of Z. Linearizing
the equations close to Tc, we further neglect the perpendicular momentum
dependence of the magnon propagator, the pairing amplitudes, and the den-
sity of states, allowing us to derive Fermi surface averaged equations. One
way of solving these Fermi surface averaged equations is then to assume a
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specific Ansatz for the parallel momentum dependence of the pairing am-
plitude, allowing for explicit evaluation of the Fermi surface averages. The
remaining frequency dependent equations can then be dealt with in the same
way as described in the previous chapter, allowing for determination of the
critical temperature for a given assumption about the spin and momentum
symmetries of the pairing amplitude. In order to help interpret the results
obtained by solving the Eliashberg equations, the approximate Tc formula
introduced in the previous chapter can also be useful, although developed
with phonon-mediated superconductivity in mind.

Solving the Fermi surface averaged equations for different pairing sym-
metries and determining which phase features the largest critical tempera-
ture, we obtain the phase diagram in Fig. 4.11. We have here defined ΩA = 1
and ΩB = Ω, in contrast to our earlier choice. This is not of importance.
As expected, we obtain a spin-triplet p-wave phase for small Fermi surfaces
and small Ω and a spin-singlet d-wave phase close to half-filling and Ω = 1.
We also find an additional spin-triplet f -wave phase which is similar to the
p-wave phase, but better takes advantage of the Umklapp processes. As
mentioned earlier, realistic uncompensated interfaces might, however, typi-
cally not give rise to Umklapp processes. Taking out the Umklapp processes
from our model by hand for the case of Ω = 0, there is no longer any reason
for the f -wave phase to be favored over the p-wave phase.

Another expected finding was that the importance of long-wavelength
magnons substantially reduced the effective cutoff setting the energy scale
for the critical temperature, especially for the p-wave phase. For the p-wave
case, the results presented in the article would indicate that the gap in the
magnon spectrum might be a more relevant energy scale than the maximum
of the spectrum. The cutoff was found to be somewhat larger for the d-wave
phase, allowing for the possibility of higher critical temperatures.

We also tested the BCS theory prediction that next-nearest neighbor
frustration can be favorable for superconductivity, finding that this held
true also within our Eliashberg approach. Similarly to what we found in
BCS theory, the dimensionless coupling constant λ(0) was found to increase
with frustration. Further, the effect on the effective cutoff was found to be
relatively weak, leading to an increased critical temperature for both the
p-wave and d-wave phase.

We further considered the effect of magnon renormalization, conclud-
ing that the dominant effect on the possibility of superconductivity was a
renormalization of the gap in the magnon spectrum. This renormalization
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Figure 4.12: Lowest-order diagram correcting the interaction vertices. Dot-
ted lines represent magnon propagators, while solid lines represent electron
propagators.

may lead to loss of magnetic ordering if the easy-axis anisotropy in the anti-
ferromagnet is too small. By increasing the easy-axis anisotropy, this effect
can however be cancelled out, leaving the possibilities for superconductivity
relatively unchanged by magnon renormalization. If the renormalization of
the gap is relatively large, this may, on the other hand, pose an experimen-
tal challenge of finding a material combination with the fine-tuned property
of both avoiding ending up with a too large gap in the magnon spectrum
and avoiding ending up with loss of magnetic order.

Finally, we also considered the effect of vertex corrections, motivated
by the fact that Migdal’s theorem may break down for coupling to long-
wavelength phonons or in systems with nested Fermi surfaces. We first
considered the case of a circular Fermi surface where regular scattering
processes dominate. The lowest-order diagrams correcting the interaction
vertices were, due to the spin-structure of the electron-magnon scattering,
found to take the form displayed in Fig. 4.12. Vertex corrections should
then be expected to be less important than what would have been the case
if the simpler diagram of the type considered for the phonons did not vanish
in this case. Not taking into account that q could be small, we obtained a
simple estimate for the lowest-order corrections to the interaction vertex
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∣Γ1(k, q)∣ ∼
⎛
⎝
V 2NARR

e (0)
E2

F

⎞
⎠

2

∼
⎛
⎝

1

100

⎞
⎠

2

, (4.56)

indicating that vertex corrections are typically negligible due to the energy
scale of the electron-magnon coupling being small compared to the electron
energy scale.

Considering the possibility that q may be small, we instead obtained a
rough estimate

∣Γ1(k, q)∣ ∼
⎛
⎝
NFV

2ARR
e (0)

EF

⎞
⎠

2
⎛
⎝

EF√
v2F q

2 + q2m

⎞
⎠
, (4.57)

for bosonic Matsubara frequency ∣qm∣ > 0. This expression was found to
be of relevant magnitude for q = 0, but, due to the largeness of the Fermi
velocity, also found to decay fast with increasing q in the momentum region
most relevant for contributions to the pairing amplitude equation. More-
over, while vertex corrections should further be expected to be important
exactly at half-filling, we estimated their effect to be considerably reduced
when moving away from half-filling.

Throughout the article, a general trend is that our treatment is not valid
too close to half-filling. In particular, it is possible that the superconduct-
ing instability could be dominated by a spin density wave instability in this
region. This represents a potential drawback for the d-wave phase, which
otherwise, compared to the p-wave phase, has the advantage of the possi-
bility of larger critical temperatures while being less reliant on realizing a
small, but nonzero, renormalized gap in the magnon spectrum. Based on
our previous discussion of the comparison of the p-wave phase arising from
ferromagnetic and uncompensated antiferromagnetic interfaces, we can now
also note the following. The ferromagnetic case would be expected to pro-
duce lower critical temperatures as it needs to compensate for the missing
boosting factor by relying on contributions from smaller magnon energies,
leading to a smaller energy scale for the critical temperature. This ad-
vantage of the antiferromagnet over the ferromagnet is similar to what we
earlier discussed for the topological insulator system in Paper [2].

As part of the motivation for wanting to extend the study of the p-wave
phase to Eliashberg theory was that important contributions to the interac-
tion potential appeared to be quickly suppressed when moving away from
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the Fermi surface, one might ask the following question. Is it also impor-
tant to take into account the behavior of the electron-magnon interaction
when moving away from the Fermi surface in Eliashberg theory? In the
BCS treatment of the p-wave phase for small Fermi surfaces, the dominant
suppression of the interaction potential when moving away from the Fermi
surface was that the electron energies in the denominator grew large. When
moving away from the Fermi surface in Eliashberg theory, the situations
is quite different. Considering the pairing amplitude at the Fermi surface,
there will still be a suppression of the contributions from the right-hand-
side of the equation when moving electrons away from the Fermi surface as
important magnons carrying near-vanishing momentum cannot bring elec-
trons from the Fermi surface to some point away from the Fermi surface.
The suppression of the interaction is in this case determined by the magnon
energy scale, rather than the electron energy scale. Taking into account the
variations in the interaction strength when moving electrons away from the
Fermi surface could, however, still lead to a reduction in the obtained critical
temperatures. As contributions away from the Fermi surface to the pair-
ing amplitude equation are already suppressed by the electron energy scale,
this reduction does not necessarily have to be that large. For the d-wave
phase, on the other hand, considering the dependence of the interaction on
perpendicular momentum may have a different effect. Slightly away from
half-filling, Umklapp scattering off zero-momentum magnons does not con-
nect points on the Fermi surface. Evaluating the interaction also for the
case of electrons away from the Fermi surface will then open up the pos-
sibility of zero-momentum magnon scattering, which can lead to increased
contributions to the pairing amplitude equation. Taking such effects into
account represents a substantial complication of the problem, but it should
be feasible.

We also note that our magnon propagators ended up even in frequency,
meaning that we did not see any opportunities for odd-frequency pairing.
This was, at least, the case when all exchange fields were cancelled out. As
briefly mentioned in the article, considering e.g. a single antiferromagnetic
layer with Ω ≠ 1, producing a net exchange field experienced by the nor-
mal metal electrons, would produce an odd-frequency term in the magnon
propagators. For the case of Ω = 0, we would, however, expect the re-
sulting exchange field to create serious problems for the superconductivity.
The topological insulator system [105], where the superconductivity is less
strongly affected by spin-splitting, might therefore be a better candidate for
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further investigation of magnon-mediated odd-frequency pairing.
Finally, we highlight that an overarching goal of the series of papers

discussed in this chapter has been to attempt to identify, as well as com-
pare, types of heterostructures of magnets and conductors that can give
rise to magnon-mediated superconductivity. While the first three articles
focus largely on the advantage of uncompensated antiferromagnetic inter-
faces, the last of the articles brought us somewhat closer to the physics of
single-material systems through the d-wave superconductivity possible for
sublattice symmetric electron-magnon coupling. While additional theoreti-
cal investigation can be performed, possibly taking more advantage of the
extensive existing literature discussing superconductivity arising from spin
fluctuations, collaboration with experiments is likely to be a key for further
development.



5
Indirect exchange interaction

Direct exchange interaction was briefly introduced in Chap. 2, taking the
form of a spin-spin interaction that in many cases can be stronger than
the associated dipole-dipole interaction. We there put forward that the en-
ergy of a two-electron system may depend on the symmetry of the total
wave function of the system under exchange of the spatial coordinates of
the electrons, leading to an effective interaction between the spins of the
electrons. However, if the electrons in this example are localized far away
from each other, without any overlap of their individual wave functions, the
spin configuration of the system will no longer have any real effect on the
total spatial wave function. In simple words, forcing the electrons to stay
away from each other by putting them in a spin-triplet state does not have
any effect if the electrons are never near each other to begin with. While
unpaired electrons, giving rise to net magnetic moments, situated at neigh-
boring atoms may have enough wave function overlap to interact directly,
exchange interaction over longer distances requires some additional help.

In many magnetic materials, not all atoms are associated with a net
magnetic moment. In that case, the interaction between magnetic moments
can e.g. be transferred through the help of intermediate non-magnetic atoms
[26]. An unpaired electron associated with a given atom can then influence
the spatial distribution of spin-↑ and spin-↓ electrons bound to a neighboring
non-magnetic atom, which again can influence the spin of an unpaired elec-
tron associated with a different magnetic atom. Interaction over even larger
distances can also be possible by having itinerant electrons mediate the in-
teraction. This is referred to as Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction [107–109], and will be discussed further in this chapter.

We start the chapter by providing a brief introduction to RKKY interac-
tion, before we move on to indirect interaction mediated by superconductors.
We introduce both RKKY interaction between magnetic impurities medi-
ated by the quasiparticles in a superconductor, as well as indirect interaction
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Figure 5.1: (a) Itinerant electrons scattered by a localized spin form an
oscillatory pattern of regions with higher density of spin-↑ and spin-↓ elec-
trons. The preferred direction of a second localized spin will then be an
oscillating function of the separation distance r between the localized spins.
(b) Sketch of the RKKY interaction J between two localized spins, medi-
ated by itinerant electrons, as a function of r.

between ferromagnets connected by a superconductor. In the latter case,
the indirect interaction, determining the preferred magnetic configuration
of the system, consists of both normal RKKY contributions as well as the
effect of the ferromagnets on the energy of the superconductor. We end the
chapter by discussing Paper [5], where the considered effect is indirect in-
teraction between two ferromagnets mediated by a d-wave superconductor.

5.1 RKKY interaction

As mentioned above, RKKY interaction is an indirect exchange interaction
mediated by itinerant electrons. If we consider a localized spin surrounded
by a cloud of electrons, the itinerant electrons will be scattered by the local-
ized spin, giving rise to an oscillatory pattern of regions with higher density
of spin-↑ and spin-↓ [26], as shown in Fig. 5.1 (a). A second localized spin
located nearby will then feel this generated spin density wave. This gives
rise to an effective interaction J S1 ⋅S2 between the localized spins, where J
exhibits a damped oscillatory behavior with increasing separation distance
between the localized spins. A sketch of the interaction strength as a func-
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tion of the separation distance r is shown in Fig. 5.1 (b).
RKKY interaction can be of relevance for metallic materials featuring

localized magnetic moments as well as itinerant electrons. We can, how-
ever, also have RKKY interaction between magnetic materials separated by
a nonmagnetic material featuring itinerant electrons [26]. In that case, one
can similarly have a situation where the preferred relative magnetization
direction of the magnetic materials can vary with the separation distance
between them. RKKY interaction therefore plays an important role in re-
alizing giant magnetoresistance (GMR) [110, 111], which we introduced in
Chap. 1. In order for us to be able to change the resistance of a GMR struc-
ture by applying a magnetic field, it is essential that the magnetization of
the magnetic layers are not aligned in the absence of the field. Through the
RKKY interaction between the layers, one can then ensure that the magne-
tizations are anti-aligned by adjusting the separation distance between the
magnetic layers.

5.2 Indirect interaction mediated by superconduc-
tors

Rather than the interaction between localized spins surrounded by the itin-
erant electrons in a metal, one could also consider the interaction between
localized spins surrounded by the quasiparticles in a conventional supercon-
ductor. Then, comparing the RKKY interaction below the superconduct-
ing critical temperature with the interaction above the critical temperature,
the following simplified picture emerges. For short separation distances, the
RKKY interaction is similar, while for larger separation distances the inter-
action below Tc is suppressed and has a tendency of favoring anti-alignment
of the spins [112, 113]. The length scale governing the additional suppres-
sion is the superconducting coherence length, which can be thought of as the
typical separation between the electrons forming the Cooper pairs. This ad-
ditional damping for separation distances larger than the coherence length
can be understood as arising from the fact that the presence of a gap in
the excitation spectrum leads to less particles around the Fermi level that
can mediate the interaction. For interaction between localized spins medi-
ated by the quasiparticles of a d-wave superconductor, the picture is similar
[114].

Similarly to what we introduced in the previous section, one could also
consider interaction between magnetic materials mediated by supercon-
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ductors. This interaction could, in itself, present an interesting opportu-
nity to control magnetic configurations through superconductors [115, 116].
Moreover, as heterostructures of superconductors and magnets are essen-
tial building blocks within superconducting spintronics, a thorough under-
standing of how the materials in such heterostructures influence each other
is desirable. Before discussing interaction between magnetic materials me-
diated by superconductors, we first introduce some of the effects that can
take place at interfaces between superconductors and magnetic materials.

As introduced in Chap. 3, proximity to a ferromagnetic insulator can
induce spin-splitting in a superconductor. Further, an interface between a
ferromagnetic metal and a superconductor allows for both itinerant elec-
trons from the ferromagnet to tunnel into the superconductor and for su-
perconducting correlations to leak into the magnet. This can lead to a
magnetization being induced at the surface of the superconductor, either
directed in the same or opposite direction as the magnetization in the mag-
net [117, 118]. The leakage of superconducting correlations into the magnet
is typically also associated with a reduction in the superconducting gap close
to the interface. Further, while itinerant electrons from a metallic ferromag-
net with energy within the energy gap of the superconductor normally are
not allowed inside the superconductor, when approaching the interface, such
electrons can instead experience Andreev reflection [119]. The incoming
electron is then reflected back as a hole, leading to generation of a Cooper
pair in the superconductor. The reverse process leads to destruction of a
Cooper pair in the superconductor.

A typical situation might be that a conventional superconductor sand-
wiched between two ferromagnetic insulators simply prefers anti-alignment
of the ferromagnets [115, 120]. In general, one could, however, have a situa-
tion where contributions from RKKY interaction mediated by the itinerant
quasiparticles gives rise to sign changes in the effective interaction strength
as a function of the separation of the ferromagnets. Considering metallic
ferromagnets, instead of ferromagnetic insulators, can also introduce addi-
tional effects [121]. The overall picture still seems to be that such systems
generally has a preference for anti-alignment of the ferromagnets. For the
case of a d-wave superconductor sandwiched between ferromagnetic insula-
tors, it has similarly been observed a preference for anti-alignment of the
magnetizations for sufficiently large separation distances [116].

In the upcoming section, we will also be discussing the indirect interac-
tion between ferromagnets mediated by a d-wave superconductor. Instead
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of ferromagnetic insulators sandwiching the superconductor, we will con-
sider metallic ferromagnets attached to the same edge of the superconduc-
tor. Importantly, we will consider an edge of the superconductor featuring
zero-energy surface states, referred to as midgap states. To understand the
origin of such surface states, one can consider either a d-wave superconduc-
tor/normal metal/insulator trilayer, or e.g. simply a d-wave superconductor
next to vacuum where the superconducting gap is suppressed close to the
edge producing, simply stated, a “normal region” with both an insulator
and a superconductor interface. One may then consider electrons that ex-
perience alternating normal and Andreev reflections at the insulator and
superconductor interfaces. If the d-wave superconducting order parameter
is oriented such that particles involved in subsequent Andreev reflections
experience opposite signs of the superconducting gap function, formation of
zero-energy bound states may take place [122–124]. The formation of such
midgap states has been used as a signature for identifying the cuprates as
d-wave superconductors [123, 125].

5.3 Effect of midgap states on the magnetic ex-
change interaction mediated by a d-wave su-
perconductor

With some background on the physics taking place in systems where ferro-
magnets are connected by a superconductor, we now move on to discussing
Paper [5]. In this article, we considered the indirect interaction between two
metallic ferromagnets mediated by a d-wave superconductor. Specifically,
we considered the case where the ferromagnets are connected to an edge
of the superconductor featuring midgap states. The motivation behind the
study was the following. The ability of superconductors to mediate indirect
interaction is, as discussed above, influenced by their gapped band struc-
ture. How is the indirect interaction altered if one introduces midgap states
in the spectrum?

The main finding of the article is that the presence of midgap states can
qualitatively change the indirect interaction between the ferromagnets. The
interaction is in this case found to vary little with the separation distance
between the ferromagnets and to favor alignment of the magnetization of
the ferromagnets, rather than anti-alignment.

The considered system is presented in Fig. 5.2. The structure was de-
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Figure 5.2: System setup consisting of two metallic ferromagnets connected
to an edge of a d-wave superconductor featuring midgap states.

signed in order to allow for placement of magnets on different types of edges.
The article also considered the case where the interaction in this structure
is mediated by a normal metal, as well as an s-wave superconductor. In
this discussion, we will focus on the case of ferromagnets connected to the
diagonal edge of a d-wave superconductor.

The d-wave superconductor is taken to be described by a model

HSC = − ∑
⟨i,j⟩,α

tijc
†
iσcjσ −∑

i,σ

µiniσ + ∑
⟨i,j⟩,σ≠σ′

Vij niσnjσ′ , (5.1)

where niσ = c†iσciσ is a number operator and Vij is taken to be a negative
constant V for i and j inside the superconductor. The lattice is taken
to be a square lattice. This is a simple model which can give rise to a
superconducting state with the desired symmetry properties. Further, the
metallic ferromagnets are described through an effective model describing
itinerant electrons subjected to a spin-splitting

HFM = − ∑
⟨i,j⟩,σ

tijc
†
iσcjσ −∑

i,σ

µiniσ − ∑
i,σσ′

hi (σz)σσ′ c†iσciσ′ . (5.2)

The spin-spitting field is assumed to take on a uniform value inside each fer-
romagnet. By taking the same/opposite sign of the spin-splitting fields in
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the two ferromagnets, we can then model a configuration with aligned/anti-
aligned magnetization in the ferromagnets. Further, the coupling between
the materials is introduced through a nonzero hopping amplitude across the
interfaces, while the vacuum region outside of the superconductor and fer-
romagnets is simply decoupled from the rest of the system by a vanishing
hopping amplitude.

The superconductor is treated in the real-space Bogoliubov-de Gennes
framework [126], which involves introducing real-space pairing amplitudes
on the form F σσ′

ij = ⟨ciσcjσ′⟩. The methodology is outlined in Ref. [124].
The full Hamiltonian of the system can then be expressed in terms of a
constant part, as well as a sum over terms quadratic in electron operators.
Collecting this together, we can write H =H0 +B†MB, where M is a large
matrix connecting pairs of electron operators. This matrix can be diagonal-
ized numerically for a given set of system parameters and an initial set of
values for the pairing amplitudes, leading to the original electron operators
being expressed in terms of new quasiparticle operators. Using the rela-
tionship between the original electron operators and the new quasiparticle
operators, one can then calculate new values of the pairing amplitudes and
again diagonalize the Hamiltonian. This procedure is repeated until the
values for the pairing amplitudes converge.

Performing the above steps for both the configuration with aligned and
anti-aligned ferromagnet magnetization, one can then define an effective
interaction between the ferromagnets

J = F ↑↑ − F ↑↓, (5.3)

where F ↑↑ is the free energy of the system for the case of aligned ferro-
magnets, and F ↑↓ represents the case of anti-aligned ferromagnets. If J is
positive, the system then prefers anti-alignment of the ferromagnets, while
a negative J corresponds to a preference for alignment of the ferromagnets.

Calculating J for ferromagnets placed with varying separation distance
on the diagonal edge of the superconductor in Fig. 5.2, the obtained result
is that the system always prefers alignment of the magnetization of the fer-
romagnets. This result was interpreted in the following way. Although the
presence of the ferromagnets would normally suppress the superconducting
gap close to the edge, the dominant effect turns out to be suppression of
the midgap states, actually allowing for an increase in the superconducting
gap along the edge. The aligned magnet configuration produces a more
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uniform suppression of the midgap states along the diagonal edge, while the
anti-aligned configuration allows for the midgap states to better survive in
a region between the two ferromagnets where their respective effects on the
system cancel out. The aligned magnet configuration therefore produces
the overall largest superconducting gap, leading to this configuration being
favored by the system.

As the midgap states provide the superconductor with substantial den-
sity of states around the Fermi level, one might imagine that the above
discussed preference of alignment of the ferromagnets also could have con-
tributions from a paramagnetic effect. Although we observed an induced
magnetization along the diagonal edge, it was hard to find support in the
data for this magnetization being directly associated with an energy gain
for the system. It was, however, evident that the suppression of the midgap
states, which appeared to be the dominant effect of the presence of the fer-
romagnets, produced an increased superconducting gap.

In general, the study could have benefited from being able to investigate
larger system sizes. This could, in general, have made it somewhat easier
to interpret the results and, for instance, allowed us to study the decay of
the interaction between the magnets as a function of their separation dis-
tance. It is also possible that there would be less complications associated
with a more symmetric structure than the one considered in this work. A
triangular structure could be one option, but the simplest choice might be
a structure without different types of edges. When we e.g., for comparison,
studied the case where the ferromagnets were connected to a horizontal edge
of a d-wave superconductor, avoiding disturbance from interaction with the
midgap states located at the diagonal edge was an issue. Moreover, when
studying the case of interaction mediated by a normal metal and an s-wave
superconductor, the corners of the structure were often a source of difficulty.
Luckily, the main result of the paper, the preference of alignment of the fer-
romagnets when attached to a diagonal edge of a d-wave superconductor,
turned out to be a robust result that e.g. was not sensitive to how close to
the corners of the structure the ferromagnets were placed.



6
Critical magnetic field of
flatband superconductors

In Chap. 3, we showed that the spin-splitting field that a spin-singlet s-wave
superconductor can survive is limited to a fraction of the superconducting
gap at zero field and temperature. This result can further be generalized
to spin-singlet superconductors with other gap symmetries [64]. Supercon-
ductivity beyond this limit is therefore often taken as an indication of spin-
triplet pairing. In our calculation for the singlet case, we saw that both the
condensation energy of the superconducting state and the so-called param-
agnetic energy gain of the normal state in the presence of a spin-splitting
field had one thing in common: They both increased with the density of
states at the Fermi level, which was taken to represent the density of states
in the thin shell around the Fermi level that constituted the relevant energy
region. In this chapter, we investigate how the critical spin-splitting field of
a spin-singlet superconductor may be affected if the density of states varies
significantly within the relevant energy region.

Large variations in the density of states can be achieved if the disper-
siveness of the relevant energy bands feature large variations. Energy bands
that feature flat portions can be an example of this. It is, however, also
possible to have energy bands that are completely, or almost completely,
flat in the entire, or large parts of, the Brillouin zone. We will here loosely
refer to such bands as flatbands. A band structure consisting of e.g. one
completely flat band and one more dispersive band can be an example of a
system featuring very large variations in the density of states over a small
energy range.

We start the chapter by providing a brief introduction to flatband sys-
tems, highlighting their recent realization in twisted van der Waals multi-
layers. We then proceed to discuss superconductivity in flatband systems,
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which has been gathering much attention after the observation of super-
conductivity in twisted bilayer graphene. We end the chapter by discussing
Paper [6], where we consider the critical spin-splitting field of a simple model
for a superconductor with both one dispersive band and one flatband near
the Fermi level.

6.1 Flatband systems

Completely flat energy bands can result from specific tight-binding mod-
els [127–134], which may be realized in different types of artificial systems
[135–140]. Such energy bands rely on either protection by lattice symmetry
or very specific values of the parameters of the system. They have often
been studied in the context of Stoner magnetism due to the large density of
states that they provide [127].

Recently, it has also been found that energy bands with very weak mo-
mentum dependence can be realized in twisted bilayer graphene [141, 142],
consisting of two layers of graphene grown on top of each other with a rel-
ative twist-angle. This system represents an example of so-called van der
Waals heterostructures [143, 144], consisting of two-dimensional materials
which are bound to each other by weak van der Waals forces. In contrast to
the typical case, the weak coupling between the layers in these heterostruc-
tures allows for the different layers to keep their structure while not being
lattice matched with each other. One can then create a large number of
combinations of different materials, or combine layers of the same material
with a relative twist-angle between them.

Combining two layers that are not lattice matched breaks the normal
periodicity of the two-layer structure. A new periodicity over larger length
scales can, however, arise, associated with a periodic potential experienced
by electrons [145]. This is an example of a Moiré pattern, which is formed
when two mismatched patterns interfere with each other. A long-distance
superlattice in real space gives rise to a mini Brillouin zone in momentum
space with an associated band structure. Both the band structure and the
size of the Brillouin zone can be altered by varying the mismatch between
the layers. In particular, by varying a relative twist-angle between the lay-
ers, one can continuously modify the properties of the system.

For specific twist-angles of bilayer graphene, referred to as magic an-
gles, the band structure has, as mentioned above, been found to feature
flatbands. Electrons associated with the flatbands in this case give rise
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to a local density of states which is peaked at high-symmetry points with
considerable distance and weak tunnelling between each other. One can
then realize strongly correlated Hubbard physics. Indications of this was
reported through the Mott insulating-like phase observed in magic angle
twisted bilayer graphene around half-filling [142]. Interest in twisted bilayer
graphene is partly generated by the possibility of studying such strongly
correlated physics in a highly tunable system [146]. Moreover, the realiza-
tion of flatbands and strongly correlated physics could, in general, also be
possible in other twisted van der Waals heterostructures [147].

6.2 Flatband superconductivity

As we saw in Chap. 3, the critical temperature of superconductors is nor-
mally expected to increase with the density of states at the Fermi level,
meaning that there are more available electrons around the Fermi surface
that can interact attractively with each other. In the extreme limit of a
flatband with a diverging density of states, it has been predicted that the
critical temperature may depend linearly on the attractive interaction [148–
150], in contrast to the normal exponential behavior that we found in Chap.
3. In general, a flatband could be used to boost the superconductivity in
a dispersive band [148, 151], or to be the sole source of superconductivity
[152–154].

Flatband superconductivity has especially received much attention af-
ter the discovery of a superconducting phase in twisted bilayer graphene
[155]. The superconductivity in this case arises in the vicinity of the above
mentioned correlated insulating phase, reminiscent of the cuprates. The
superconducting state, whose origin and symmetries are still under debate,
has been proposed to arise from both strong electron-electron interactions
[156–158] or electron-phonon interaction [159–161]. See e.g. Ref. [162] for a
long list of additional references.

Superconductivity could in general also be possible in other twisted van
der Waals heterostructures [147]. An example is twisted trilayer graphene
[163], consisting of three layers of graphene where the middle layer is twisted
relative to the other two. The superconductivity has in this case been
found to survive considerably larger in-plane magnetic fields than what is
expected for a spin-singlet superconductor [164], representing a violation of
the Chandrasekhar-Clogston limit. This has been interpreted as an indica-
tion of spin-triplet pairing. Such a Chandrasekhar-Clogston limit violation
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has not been observed for twisted bilayer graphene [165]. A potential expla-
nation of this finding could be that the pairing is similar in both systems, but
that additional symmetries of the trilayer structure allows for the electrons
going into the Cooper pairs to not be split apart by an in-plane magnetic
field [162].

6.3 Going beyond the Chandrasekhar-Clogston limit
in a flatband superconductor

After having provided a brief introduction to flatbands and flatband super-
conductivity, we are now ready to discuss Paper [6]. We there investigated
the effect of a spin-splitting field on a spin-singlet superconductor where a
flatband boosts the superconductivity in a dispersive band. The system can
e.g. be a thin-film superconductor, with the relevant properties, exposed to
an in-plane magnetic field or proximitized to a magnetic material. The focus
is on the critical spin-splitting field that the superconductivity can coexist
with, motivated by the discussion in the beginning of the chapter about the
relationship between the Chandrasekhar-Clogston limit and the density of
states around the Fermi level.

Here, we refer to the Chandrasekhar-Clogston limit as the specific re-
striction h ≤ ∆0/

√
2. As this limit arises from the paramagnetic energy

gain of the normal state compensating the condensation energy of the su-
perconductor, it is often also referred to as the Pauli paramagnetic limit.
As long as the transition to the normal state takes place as a result of the
paramagnetic energy gain of the normal state becoming too large, one can
in principle always define some similar paramagnetic limit. By making the
definition general enough, one eventually ends up with the statement that
it is not possible to have superconductivity if the normal state minimizes
the free energy of the system. A limit of this type will then obviously be
impossible to surpass. In the following, we discuss the possibility of going
beyond the Chandrasekhar-Clogston limit, as defined above, by shifting the
normal power balance between the condensation energy and the paramag-
netic energy gain of the normal state so that a larger spin-splitting field per
gap is necessary before the paramagnetic energy gain of the normal state
becomes larger than the condensation energy.

The main finding of the article is that the presence of a flatband located
close to the Fermi level can, in fact, shift the power balance between the con-
densation energy and the paramagnetic energy gain of the normal state. The
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superconductivity can then potentially survive beyond the Chandrasekhar-
Clogston limit.

The system is modelled by a Hamiltonian [148]

H = ∑
i,k,σ

ϵi,k,σc
†
i,k,σci,k,σ −

1

N
∑

i,j,k,k′
Vij(k,k′) c†i,k,↑ c

†
i,−k,↓ cj,−k′,↓ cj,k′,↑, (6.1)

where the index i separates the dispersive band with i = 1 from the flatband
with i = 2. The dispersion relations take the form ϵ1,k,σ = −2t[cos(kxa) +
cos(kya)] − µ − σh and ϵ2,k,σ = −µ0 − σh. The flatband is here placed µ0
below the Fermi level, while the dispersive band crosses the Fermi level,
generating a Fermi surface depending on the choice of µ. The interaction
potential is further taken on the form

Vij(k,k′) =
⎧⎪⎪⎨⎪⎪⎩

Vij > 0, ∣ϵi,k∣, ∣ϵj,k′ ∣ ≤ ωc,

0, otherwise,
(6.2)

allowing for both intraband and interband scattering in a thin shell around
the Fermi surface [166]. The model we consider is a minimal model captur-
ing the possibility of superconductivity in a dispersive band boosted by a
flatband. The band structure is not derived from some underlying lattice
model, and we do not consider any hybridization between the two bands.
The details of the dispersive band are not very important. The essential
part is that the density of states slightly away from the Fermi level should
be sufficiently large compared to the density of states at the Fermi level.
Our assumed band structure is probably closest to representing a real sys-
tem when the Fermi level is located towards the bottom of the dispersive
band, in which case the flatband is located below the dispersive band in-
stead of crossing through it.

Neglecting any changes to the normal state of the system due to the
interaction, one can perform a derivation similar to what we outlined for a
spin-split superconductor in Chap. 3. We, this time, end up with a coupled
set of gap equations for the gap functions associated with the two bands

∆i(k) =
1

N
∑

j,k′,σ

Vij(k,k′)
∆j(k′)
4Ej,k′

tanh(β
2
Ej,k′,σ). (6.3)

Due to the nature of the interaction potential, the gap functions will, once
again, be constant in a thin shell around the Fermi surface. We can also
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write out the free energy, which is simply a generalization of the expression
we obtained in Chap. 3 to the two-band case

F = ∑
i,k,σ

∆2
i (k)

4Ei,k
tanh(β

2
Ei,k,σ)

+∑
i,k

(ϵi,k −Ei,k) −
1

β
∑
i,k,σ

ln(1 + e−βEi,k,σ).
(6.4)

The coupled gap equations can be solved numerically for a given set of pa-
rameters, and the free energy can be calculated in order to establish whether
a superconducting solution to the gap equations actually minimizes the free
energy.

Here, we focus on the case of zero temperature and Vij = V . A more gen-
eral discussion can be found in the article. The coupled set of gap equations
then reduce to a single gap equation for ∆i =∆, featuring a right-hand-side
that obtains contributions from both the dispersive band and the flatband.
When the dominant contributions to the gap equation and free energy arise
from the flatband due to its large density of states, it is found that the
curve for ∆ as a function of h can take the form displayed in Fig. 6.1. This
behavior can be understood through the following argument.

For h < ∣µ0∣, the spin-splitting field is not able to change the sign of the
quasiparticle energies associated with the flatband, even for ∆ = 0. The
flatband does then not contribute to the zero-temperature paramagnetic
energy gain of the normal state, despite contributing to the condensation
energy. This shifts the normal power balance between the condensation
energy and the paramagnetic energy gain of the normal state, allowing for
superconductivity beyond the Chandrasekhar-Clogston limit. Moreover, as
long as h <

√
µ20 +∆2, the quasiparticle energies in the gap equation asso-

ciated with the flatband stay positive. The flatband contributions to the
gap equation at zero temperature are then unaffected by the spin-splitting
field. The contributions from the dispersive band to the gap equation will
be reduced for h > ∆0, as shown in Fig. 6.1. However, relying more and
more on the flatband, it is still possible to obtain nontrivial solutions to the
gap equation if the flatband is placed sufficiently close to the Fermi level for
a given strength of the interaction potential. We can then be in a situation
where the superconductivity is not limited by the Chandrasekhar-Clogston
limit, but instead survives until h > ∣µ0∣, when the flatband starts contribut-
ing to the paramagnetic energy gain of the normal state and the normal
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Figure 6.1: Sketch of the gap function ∆ as a function of spin-splitting field
h for the state of the system that is energetically favored. For h < ∆0, the
gap equation is unaffected by the spin-splitting field. For ∆0 < h < ∣µ0∣,
the gap equation loses some contributions originating with the dispersive
band. Finally, for h > ∣µ0∣, the gap function vanishes when the normal state
becomes the preferred state of the system.

state eventually becomes favored by the system. If this situation is realized
for sufficiently large ∣µ0∣, it can then be possible to have superconductivity
considerably beyond the Chandrasekhar-Clogston limit.

As emphasized earlier, the model and treatment applied in Paper [6]
is highly simplified. Although the proposed mechanism for going beyond
the Chandrasekhar-Clogston limit is quite general in nature, predicting its
realization in a particular real system would require a more detailed study.
Potential candidates for real systems could be twisted van der Waals multi-
layers, or highly tunable artificial systems where appropriate lattice models
may be realized. One specific option could be twisted trilayer graphene,
which can host a promising combination of flat and dispersive bands in
close proximity to each other [163]. Whether and how far it is possible to
go beyond the Chandrasekhar-Clogston limit by tuning ∣µ0∣ (through the
chemical potential) should be expected to depend on e.g. the dispersiveness
of the dispersive band, the flatness of the flatband, and the details of the
interactions. More realistic studies should therefore be careful to accurately
capture these properties. Further guidelines for future studies can be found
in the article.

We also highlight that the focus of this study was on whether it is pos-
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sible to go beyond the Chandrasekhar-Clogston limit by introducing large
variations in the density of states around the Fermi level. The focus was
not, in itself, on how to increase the magnitude of the spin-splitting field
that spin-singlet superconductivity can coexist with. The Chandrasekhar-
Clogston limit does not place any absolute restrictions on the latter quan-
tity, as the magnitude of the critical spin-splitting field can be increased
by increasing ∆0. In that context, one might wonder if the magnitude of
the critical spin-splitting field would be larger if one placed the flatband at
the Fermi level, leading to a larger superconducting gap, instead of plac-
ing it away from the Fermi level in order to increase hc/∆0. In order to
shed some light on this question, one can start out from the flatband placed
some energy ∣µ′0∣ away from the Fermi level, giving rise to a gap equation
dominated by contributions from the flatband and featuring a solution with
substantial hc/∆0 ≈ ∣µ′0∣/∆0. If one then instead takes µ0 = 0, placing the
flatband at the Fermi level, one will obtain a solution to the gap equation
at zero field with ∆0 ≈ ∣µ′0∣, making the quasiparticle energies associated
with the flatband take on a similar magnitude as before. If we analyze the
part of the free energy associated with the flatband, we then see that the
critical magnetic field for µ0 = 0 will be ∆0/2. This result is lower than the
Chandrasekhar-Clogston limit as the considered band is completely flat and
all associated quasiparticles with the right spin therefore change their sign
as soon as h > 0. We then obtain that hc ≈ ∣µ′0∣/2. Numerical results confirm
this to be good estimate. Placing the flatband closer to the Fermi level will
then not produce a larger critical spin-splitting field, although the critical
temperature naturally will increase.



7
Transport

We have so far been concerned with systems in equilibrium. In this chapter,
we will consider transport, focusing on interplay between electron currents
and magnon currents. As discussed in the introduction chapter, magnon
spin currents in magnetic insulators can e.g. be induced through the spin
Seebeck effect or through injection from a heavy metal exhibiting the spin
Hall effect. The resulting magnon currents are then flowing through an in-
sulator without interacting with itinerant electrons. In contrast, interaction
with itinerant electrons is naturally present in magnetic metals featuring
both conduction electrons and localized spins. As we have seen so far in
this thesis, coupling between localized spins and itinerant electrons can,
however, also be realized in heterostructures.

We start with introducing the Boltzmann equation in Sec. 7.1, allow-
ing us to describe a nonequilibrium state of electrons or magnons within a
semiclassical framework. We also provide a simple calculation of conduc-
tivity, serving as an example of how the formalism works. We then move
on to discussing Paper [7] in Sec. 7.2, where we consider the interplay be-
tween electron and magnon currents in a bilayer structure consisting of an
antiferromagnetic insulator and a metal.

7.1 Boltzmann equation

Within the semiclassical Boltzmann formalism, the nonequilibrium distribu-
tion of electrons with spin σ at time t is described by a distribution function
fσ(r,k, t) [167]. If the electrons simply move through the system without
experiencing any collisions, their distribution function has to satisfy the
continuity equation

∂f

∂t
+∇ ⋅ (uf) = 0, (7.1)
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where

u = (ẋ, ẏ, ż, k̇x, k̇y, k̇z), (7.2)

and

∇ =
⎛
⎝
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂kx
,
∂

∂ky
,
∂

∂kz

⎞
⎠
. (7.3)

Considering the electron motion to follow the semiclassical equations of
motion

ṙ = vk =
1

ℏ
∂ξk
∂k

, (7.4)

k̇ = − e
ℏ
[E(r, t) + vk ×B(r, t)], (7.5)

and taking e.g. ξk = ℏ2k2/(2m), corresponding to vk = ℏk/m, we see imme-
diately that ∇⋅u = 0 as the electron energy ξk is considered to be independent
of spatial coordinates, and e.g. the z-component of k̇ is independent of kz.
As long as ∇ ⋅ u = 0, stating that phase space flow is incompressible, the
continuity equation can be rewritten as

∂f

∂t
+ ṙ ⋅ ∂f

∂r
+ k̇ ⋅ ∂f

∂k
= 0. (7.6)

As soon as we introduce collisions in the system, the above equation no
longer holds as the state of an electron can be changed abruptly through a
collision. In the presence of collisions we instead have to work with

∂f

∂t
+ ṙ ⋅ ∂f

∂r
+ k̇ ⋅ ∂f

∂k
=
⎡⎢⎢⎢⎢⎣

∂f

∂t

⎤⎥⎥⎥⎥⎦coll
, (7.7)

where the right-hand-side of the equation takes into account sudden scat-
tering into and out of the region surrounding a phase-space point (r,k). In
general, the collision term considerably complicates the Boltzmann equation
as it couples together f(r,k) for different point r and k as all possible scat-
tering processes affecting the electron distribution around a specific point in
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phase-space needs to be taken into account. The collision term is, however,
often treated in the relaxation time approximation, where it e.g. can be
written on the simple form [167]

⎡⎢⎢⎢⎢⎣

∂f

∂t

⎤⎥⎥⎥⎥⎦coll
= −fσ(r,k, t) − f

0
σ(r,k)

τk,σ
, (7.8)

where the details of the scattering processes are baked into the relaxation
time τk,σ. For a normal metal, relevant scattering processes contributing
to the relaxation time can be e.g. of the types electron-electron, electron-
phonon, and electron-impurity. Further,

f0σ(r,k) =
1

eβ(r)[ξk,σ−µ(r)] + 1
, (7.9)

is the equilibrium distribution function. Taking the distribution of electrons
to be independent of position and removing the effect of any external forces,
the Boltzmann equation then simply turns into

∂fσ(k, t)
∂t

= −fσ(k, t) − f
0
σ(k)

τk,σ
, (7.10)

which has the solution

fσ(k, t) = f0σ(k) + δfσ(k) e−t/τk,σ . (7.11)

Assuming δfσ(k) nonzero, the distribution function at t = 0, fσ(k,0) =
f0σ(k) + δfσ(k), is perturbed away from the equilibrium distribution. If we
then go to t ≫ τk,σ, scattering processes bring the electrons back to the
equilibrium distribution.

A very simple way of incorporating collision in the description of elec-
tron transport is to work in the relaxation time approximation and treat
the relaxation time as a phenomenological parameter. A more detailed ap-
proach to the problem is to consider the relevant scattering processes and
calculating transition rates using Fermi’s golden rule. We will see an ex-
ample of this in Sec. 7.2. Starting from such a microscopic description of
the scattering processes, one can then also attempt to write the collision
terms on the approximate form in Eq. (7.8), leading to an expression for
the relaxation time in terms of the parameters of the system.
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7.1.1 Linearized Boltzmann equation for electrons

In the presence of external forces, one approach is to consider their effects
to be sufficiently weak for the distribution functions to be expressed on the
form

fσ(r,k, t) = f0σ(r,k) + δfσ(r,k, t), (7.12)

where δfσ(r,k, t) is a small deviation from the equilibrium distribution
[167]. As there are now external forces acting, the system will not simply
relax to the equilibrium state. Searching for a stationary solution where
∂f/∂t = 0, we start out from the Boltzmann equation in (7.7) and insert the
semiclassical equations of motion

vk ⋅
∂f

∂r
− e
ℏ
(E + vk ×B) ⋅

∂f

∂k
=
⎡⎢⎢⎢⎢⎣

∂f

∂t

⎤⎥⎥⎥⎥⎦coll
. (7.13)

Further, inserting the expression for the distribution function in (7.12) and
differentiating the equilibrium distribution with respect to r, the Boltzmann
equation can be written out as

vk ⋅
∂δf

∂r
+ vk ⋅

⎡⎢⎢⎢⎢⎣
e
⎛
⎝
E + ∇µ

e

⎞
⎠
+ ξk − µ

T
∇T
⎤⎥⎥⎥⎥⎦

⎛
⎝
− ∂f

0

∂ξk

⎞
⎠

− e
ℏ
(E + vk ×B) ⋅

∂δf

∂k
=
⎡⎢⎢⎢⎢⎣

∂f

∂t

⎤⎥⎥⎥⎥⎦coll
.

(7.14)

If we here try to set δf = 0, this cannot be a solution to the equation due to
the driving terms proportional to E,∇µ, and ∇T acting to create deviations
away from the equilibrium distribution. Using the assumption that δf is
small, meaning that the driving terms then also need to be small, we only
keep linear terms in δf , E, ∇µ, and ∇T . This leads us to the linearized
Boltzmann equation



7.1. Boltzmann equation 141

vk ⋅
∂δf

∂r
+ vk ⋅

⎡⎢⎢⎢⎢⎣
e
⎛
⎝
E + ∇µ

e

⎞
⎠
+ ξk − µ

T
∇T
⎤⎥⎥⎥⎥⎦

⎛
⎝
− ∂f

0

∂ξk

⎞
⎠

− e
ℏ
(vk ×B) ⋅

∂δf

∂k
=
⎡⎢⎢⎢⎢⎣

∂f

∂t

⎤⎥⎥⎥⎥⎦coll
.

(7.15)

7.1.2 DC conductivity

In this section, we consider a simple calculation of conductivity. Starting
from the linearized Boltzmann equation, we take the electron distribution to
be independent of position and assume vanishing B, ∇µ, and ∇T . Treating
the collision term in the relaxation time approximation, we write

e(vk ⋅E)
⎛
⎝
− ∂f

0(k)
∂ξk

⎞
⎠
= −f(k) − f

0(k)
τk

. (7.16)

We then see right away that the solution to the Boltzmann equation is

f(k) = f0(k) − e τk(vk ⋅E)
⎛
⎝
− ∂f

0(k)
∂ξk

⎞
⎠
, (7.17)

which is a Fermi distribution where the energies are shifted due to the pres-
ence of the electric field by an amount depending on the electron relaxation
time. We then define the charge current density

j = − e

Nad
∑
k,σ

vk f(k) =
2e2

Nad
∑
k

vkτk(vk ⋅E)
⎛
⎝
− ∂f

0(k)
∂ξk

⎞
⎠
, (7.18)

where f0(k) = f0(ξk) = f0(ξ−k) and d is the dimensionality of the system.
This equation an be expressed as j = σ̂E, where σ̂ is the conductivity tensor.
For simplicity, we consider the isotropic case of ξk = ℏ2k2/(2m) and τk = τk.
The conductivity tensor now takes a diagonal form with σ = σxx = ⋅ ⋅ ⋅ = σzz =
Tr(σ̂)/d. We can then write

σ = 2e2

dNad
∑
k

v2kτk
⎛
⎝
− ∂f

0(ξk)
∂ξk

⎞
⎠
. (7.19)
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We then go to zero temperature, where the magnitude of the derivative of
the Fermi distribution becomes a δ-function, producing

σe =
2e2v2kF τkFD0

dNad
. (7.20)

We then have that the conductivity depends on the electron relaxation time,
group velocity, and density of states, all evaluated at the Fermi level. If
we have many electrons around the Fermi level, a large Fermi velocity, as
well as little scattering, we see that we end up with a large conductivity.
Alternatively, one can also rewrite the expression for the conductivity on
the form of the Drude formula [167].

7.1.3 Boltzmann equation for magnons

Similarly to the electron distribution function, we can also write down a
Boltzmann equation for magnon distribution function bγ(r,q, t)

∂b

∂t
+ ṙ ⋅ ∂b

∂r
=
⎡⎢⎢⎢⎢⎣

∂ b

∂t

⎤⎥⎥⎥⎥⎦coll
. (7.21)

In this case we have not included a term proportional to q̇ as electric and
magnetic fields do not couple to the motion of chargeless magnons. The
time-derivative ṙ is simply the magnon group velocity vm

q = 1
ℏ
∂ωq

∂q . The col-
lision term can be treated in the relaxation time approximation, producing
e.g.

⎡⎢⎢⎢⎢⎣

∂ b

∂t

⎤⎥⎥⎥⎥⎦coll
= −

bγ(r,q, t) − b0γ(r,q, t)
τM,γ(q)

. (7.22)

In a magnetic insulator, the relaxation time should capture the dominant
contributions from scattering of e.g. the types magnon-magnon, magnon-
phonon, and magnon-impurity [168, 169].

7.2 Magnon drag in a metal-insulating antiferro-
magnet bilayer

As we have introduced Boltzmann equations for both electrons and magnons,
we are ready to face the problem of a coupled system of electrons and
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magnons, which is the topic of Paper [7]. As we did earlier when investi-
gating superconductivity, we consider a bilayer structure consisting of an
antiferromagnetic insulator and a normal metal. A charge current is driven
in the normal metal with direction parallel to the interface between the two
layers. The antiferromagnetic interface can, again, be either compensated
or uncompensated, tuned by the parameter Ω = ΩB as defined in Paper [4].
The question we wanted to answer was if it is possible to induce a magnon
spin current in the antiferromagnet in this system setup.

The study was motivated by earlier studies of drag effects in magnetic
metals, such as the study in Ref. [170] where the magnon spin current
induced by an electron current was calculated for the case of a ferromag-
netic metal. One might then expect that similar effects are possible in het-
erostructures involving magnetic insulators. A recent study of a spin-triplet
superconductor coupled to a ferromagnetic insulator showed this to be the
case [171], finding that an in-plane supercurrent could induce a magnon
spin current in the ferromagnet. It could be of interest to realize a magnon
spin current in an antiferromagnetic insulator in a similar way. One then,
however, has to avoid that the two oppositely polarized α and β magnon
modes are dragged along identically, leading to a finite magnon current,
but a vanishing magnon spin current. In Paper [7], we attempted to solve
this problem by tuning the asymmetry in the coupling between the normal
metal and the two sublattices of the antiferromagnet.

Our main finding was that a magnon spin current can be induced in
the antiferromagnet if the antiferromagnetic interface is uncompensated.
Spin-splitting the magnon modes or increasing the spin fluctuations in the
system by e.g. increasing the temperature can further enhance the magnon-
spin current.

We start out from our usual description of electrons, magnons, and the
coupling between them, introduced in Chap. 4. In order to simplify the cal-
culations, we in this case go to the long-wavelength limit to obtain isotropic
expressions for dispersion relations and magnon coherence factors. In line
with this approximation, the Fermi surface for the electrons should be small
and isotropic. Umklapp scattering processes can then be neglected. The dis-
persion relations take the form ϵkσ = t(ka)2 − µ − σhe, and ωqα = ωq + hm,

ωqβ = ωq − hm with ωq =
√

∆2
g + κ2(qa)2. Here, we have included the possi-

bility of spin-splitting of both electrons and magnons. We then introduce
the normal interaction Hamiltonian,
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Hint =
V̄√
N
∑
kq

(Mq c
†
k+q,↓ck,↑ +M

†
−q c

†
k+q,↑ck,↓), (7.23)

where we have now defined V̄ = V
√
N .

The Boltzmann equations are taken on the form

−eE vekx
∂f0(ϵk,σ)
∂ϵk,σ

= −fσ(k) − fσ(k)
τσ

− fσ(k) − f−σ(k)
τ↑↓

+
⎡⎢⎢⎢⎢⎣

∂fσ(k)
∂t

⎤⎥⎥⎥⎥⎦int
,

(7.24)

and

⎡⎢⎢⎢⎢⎣

∂ bγ(q)
∂t

⎤⎥⎥⎥⎥⎦int
=
bγ(q) − b0γ(q)
τM,γ(q)

, (7.25)

where we have assumed no spatial dependence, considering a stationary so-
lution where a uniform electron current, arising from a uniform electric field,
potentially gives rise to uniform magnon current. The effect of the electron-
magnon scattering is included in the interaction terms in the Boltzmann
equations and will be treated using Fermi’s golden rule. The rest of the
relevant scattering processes are treated in the relaxation time approxima-
tion and included in the different relaxation times. For the magnons, the
remaining scattering processes are assumed to be taken into account by a
single momentum dependent relaxation time. For the electrons, the domi-
nant scattering processes are assumed to take place around the Fermi level,
and the momentum dependence of the relaxation times is assumed to be of
less importance. Further, for the electrons, we have also included a separate
relaxation time for spin-flip scattering. As electron-magnon contributions
to spin-flip scattering is captured in the interaction term, the remaining
spin-flip scattering, arising from e.g. interaction with magnetic impurities,
is expected to not be very strong. Further, the overline on the electron dis-
tributions denotes an angular average. If there are no even-in-momentum
corrections to the electron distribution function, the overline simply pro-
duces the equilibrium distribution as we express
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fσ(k) = f0(ϵk,σ) −
∂f0(ϵk,σ)
∂ϵk,σ

[δµeσ + geσ(k)], (7.26)

bγ(q) = b0(ωq,γ) −
∂b0(ωq,γ)
∂ωq,γ

[δµmγ + gmγ (q)]. (7.27)

The part of the functions g which is odd in momentum may give rise to elec-
tron and magnon currents. Moreover, the interaction terms in the Boltz-
mann equations take the form

⎡⎢⎢⎢⎢⎣

∂f↑(k)
∂t

⎤⎥⎥⎥⎥⎦int
= 2πV̄ 2

ℏN ∑
q

[Qα(k,q) −QR
β (k,q)], (7.28)

⎡⎢⎢⎢⎢⎣

∂f↓(k)
∂t

⎤⎥⎥⎥⎥⎦int
= 2πV̄ 2

ℏN ∑
q

[Qβ(k,q) −QR
α(k,q)], (7.29)

and

⎡⎢⎢⎢⎢⎣

∂bγ(q)
∂t

⎤⎥⎥⎥⎥⎦int
= 2πV̄ 2

ℏN ∑
k

Qγ(k,q), (7.30)

with

Qα(k,q) =(ΩAuq +ΩBvq)
2
δ[ϵk,↑ + ωq,α − ϵk+q,↓]

× ([bα(q) + 1][1 − f↑(k)]f↓(k + q) (7.31)

− bα(q)[1 − f↓(k + q)]f↑(k)),

Qβ(k,q) =(ΩAvq +ΩBuq)
2
δ[ϵk,↓ + ωq,β − ϵk+q,↑]

× ([bβ(q) + 1][1 − f↓(k)]f↑(k + q) (7.32)

− bβ(q)[1 − f↑(k + q)]f↓(k)).

Here, we have introduced QR
γ (k,q), related to Qγ(k,q) by first sending

q → −q and then sending k → k+q. We are here summing over all processes
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that scatter particles in and out, weighted by the interaction strength, the
relevant distribution factors, and with conservation of energy enforced.

We then introduce current densities for electron spin-current, electron
current, magnon spin current, and magnon current

js =
1

(2π)2 ∫
dk vekx[f↑(k) − f↓(k)], (7.33)

je =
1

(2π)2 ∫
dk vekx[f↑(k) + f↓(k)], (7.34)

jsm =
1

(2π)2 ∫
dq vmqx[bβ(q) − bα(q)], (7.35)

jm =
1

(2π)2 ∫
dq vmqx[bβ(q) + bα(q)]. (7.36)

By starting from the Boltzmann equations and multiplying them by an
electron or magnon velocity, as well as integrating over momentum, we can
then obtain an approximate set of coupled equations relating the different
currents [170]. We can further solve the set of equations to derive expressions
for js, jsm, jm in terms of je

⎛
⎜
⎝

js
jm
jsm

⎞
⎟
⎠
=
⎛
⎜
⎝

Ps

Pm

Psm

⎞
⎟
⎠
je. (7.37)

The main result of the article, considering the case without spin-splitting
of the magnons and where spin-splitting of the electrons has been neglected,
is presented in Fig. 7.1 (a). For Ω = 1, there is no magnon spin current. Al-
though the imbalanced population of left-moving and right-moving electrons
in the normal metal leads to an imbalance of left-moving and right-moving
magnons, the contributions from α and β magnons to Psm cancel. For Ω < 1,
we find that there is an asymmetry in the coupling between the electrons
and the two magnon modes. A magnon spin current is therefore possible, in
particular for the case of Ω = 0 corresponding to an uncompensated inter-
face. The sign of the induced magnon spin current is in this case negative
due to a stronger coupling to α magnons carrying a negative spin.

As discussed in detail in the article, the dependence of the drag coeffi-
cient Psm on the relative importance of long-wavelength magnons further
leads to the possibility that Ω > 0 can maximize the induced magnon spin
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Figure 7.1: The ratio of magnon spin current to electron current as a func-
tion of (a) the sublattice coupling asymmetry parameter Ω and (b) the
interfacial coupling strength J̄ . Further, τ−1M0

is here the inverse magnon
relaxation time for the case of zero momentum and T is temperature.

current by reducing the relative importance of magnons with very small,
but nonzero, momenta. The potential benefit of suppressing contribution
from magnons with very small momenta arises from the asymmetry in the
coupling between the electrons and the two magnon modes relying on a dif-
ference in magnitude between uq and vq. As introduced in Chap. 2, uq and
vq are most similar in magnitude for q → 0. Intermediate-strength sublat-
tice asymmetry in the interfacial interaction may be possible experimentally
if the two antiferromagnetic sublattices consist of different atoms.

We also find that the magnon spin current increases with temperature,
as shown in Fig. 7.1 (b). Further, spin-splitting the magnon modes, in-
creasing the asymmetry in the contributions from α and β magnons to the
magnon spin current, may also enhance the magnon spin-current. While
the induced magnon spin-current increases with temperature, there is, nat-
urally, a limit to how far this effect can be exploited. In general, enhancing
Psm by amplifying the spin-fluctuations in the antiferromagnet only works
up until the point where magnetic order is lost.

As highlighted in the article, the estimates for the magnitude of the
induced magnon spin current are highly parameter dependent and should
further also be expected to depend on the thicknesses of the materials.
Keeping the normal metal thin might in this case be of less importance
than in the case of magnon-mediated superconductivity discussed in Chap.
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4 as a voltage applied to a thicker normal metal may generate a similar
surface current affecting the antiferromagnet. Finite thickness of the an-
tiferromagnet can help ensure magnetic order at convenient temperatures,
but could also make it harder for the normal metal to induce magnon cur-
rents and should be expected to reduce the density of the magnon currents.
Our simple modelling of the system, allowing for a treatment relying heavily
on analytical calculations, can be well-suited for understanding under what
general circumstances a magnon spin-current can be generated and how it
may be enhanced. Our treatment is, however, not well-suited for reliably
predicting the possible magnitude of the induced magnon spin current in
specific system setups realizable in experiments. Further theoretical studies
closer related to specific experimental setups would therefore clearly be of
interest. A specific case to look into could also be biaxial antiferromagnets
featuring non-degenerate magnons modes able to carry spin currents.



8
Conclusion and outlook

In this thesis, we first provided an introduction to magnetism and super-
conductivity, leading up to a discussion of Paper [1–4]. In these articles,
we considered whether superconductivity can be induced in a conductor
due to proximity to magnetic materials. We mainly focused on the case
of indirect interaction between itinerant electrons in a normal metal me-
diated by magnons in antiferromagnetic insulators. The superconducting
instability was found to depend intimately on the interplay between filling
fraction in the metal and asymmetry in the coupling between the metal and
the two sublattices of the antiferromagnets. In particular, for small Fermi
surfaces, we found that a sublattice asymmetric interfacial coupling may be
necessary to realize superconductivity, leading to spin-triplet p-wave pair-
ing. Closer to half-filling, both spin-singlet d-wave pairing and spin-triplet
pairing could be possible depending on the degree of sublattice asymmetry
in the coupling between the materials. Our Eliashberg treatment of the
system also revealed that the importance of long-wavelength magnons for
the pairing can lead to the cutoff on the magnon spectrum not setting the
relevant energy scale for the calculated critical temperature.

We next discussed indirect interaction between spins mediated by itiner-
ant electrons, as well as the case of indirect interaction between ferromagnets
mediated by superconductors. This brought us to Paper [5], where we found
that the presence of zero-energy states on the surface of a d-wave supercon-
ductor could give rise to a preference for alignment of the magnetization of
two metallic ferromagnets connected by the superconductor.

We then moved on to investigating the maximum spin-splitting field
that a flatband superconductor can coexist with. For the model system
with one dispersive band in addition to a flatband considered in Paper [6],
we concluded that spin-singlet superconductivity might be able to survive
spin-splitting fields larger than the superconducting gap at zero field and
temperature.
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Finally, we briefly discussed description of electron and magnon trans-
port in the Boltzmann formalism. This lead us to a discussion of Paper
[7], where it was found that an electron charge current in a normal metal
layer, with direction parallel to an uncompensated antiferromagnetic inter-
face, may give rise to a magnon spin current in the antiferromagnet.

All of the above summarized studies included in this thesis have one
thing in common. They involve investigations of the physics that can arise
in simple model systems, leading to prediction of, more or less interesting
or useful, effects that could take place. These model systems are meant, to
some approximation, to represent classes of realistic systems. Many of these
realistic systems may be found to be in an unfavorable parameter regime or
to be missing important components for our predicted effects to take place.
Many of the systems may also introduce new physics not captured by our
treatment. The goal is, however, that our simple modelling should capture
something general that can show up in certain realistic systems, or inspire
future studies predicting interesting effects realizable in experiments.

The next step for these studies is naturally either to go to experiments,
or to perform further theoretical investigations in order to guide future ex-
periments. The ideal scenario would likely be an iterative approach where
both theory and experiments guide each other. For the magnon-mediated
superconductivity in heterostructures, it is clear that further theoretical
improvements can be done. This could include taking into account the full
momentum-dependence of the electron-magnon interaction within Eliash-
berg theory, including lowest-order vertex corrections, and e.g. trying to
take into account finite thickness of the materials. Before digging too deep
into this, it would be great with some feedback from experiments. Although
simply growing a seemingly appropriate heterostructure and cooling it down
may not be sufficient to realize magnon-mediated superconductivity, a bet-
ter understanding of the system resulting from targeted experimental in-
vestigation could be helpful for guiding further work. It is also possible
that there could be more, already existing, experimental studies of relevant
systems that it might be useful to take input from.

For the proposal in Paper [6], further theoretical work seems like a nat-
ural path ahead. Calculations for realistic systems featuring both a flat
and dispersive band around the Fermi level could be performed. Twisted-
trilayer graphene here seems like a good candidate.

For the magnon drag effect in Paper [7], it could be possible to try to
connect the system closer to realistic systems, potentially relying more on
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numerics and less on analytical calculations. Directly attempting to real-
ize the effect in experiments, followed by optimization of the effect through
theory-experiment collaboration could also be an option.
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We theoretically investigate magnon-mediated superconductivity in a heterostructure consisting of a normal
metal and a two-sublattice antiferromagnetic insulator. The attractive electron-electron pairing interaction is
caused by an interfacial exchange coupling with magnons residing in the antiferromagnet, resulting in p-wave,
spin-triplet superconductivity in the normal metal. Our main finding is that one may significantly enhance the
superconducting critical temperature by coupling the normal metal to only one of the two antiferromagnetic
sublattices employing, for example, an uncompensated interface. Employing realistic material parameters, the
critical temperature increases from vanishingly small values to significantly larger values than 1 K as the
interfacial coupling becomes strongly sublattice asymmetric. We provide a general physical picture of this
enhancement mechanism based on the notion of squeezed bosonic eigenmodes.

DOI: 10.1103/PhysRevB.100.100503

Introduction. Hybrids consisting of a magnetic insulator
coupled to a conducting layer allow for interconversion be-
tween magnonic and electronic spin currents [1–11]. The spin
Hall effect [12,13] in the conductor has further been exploited
to electrically control and detect magnonic spin currents [14],
thereby enabling their integration with conventional electron-
ics. The ensuing newly gained control over spin currents has
instigated a wide range of magnon transport-based concepts
and devices [5,8,9,15–18]. Conversely, magnons in the mag-
net can mediate the electron-electron attraction in the conduct-
ing layer. The resulting magnon-mediated superconductivity
has been investigated theoretically in normal metals [19,20]
as well as topological insulators [21,22], and experimentally
[23]. Magnon-mediated indirect exciton condensation has also
been predicted recently [24].

Interest in antiferromagnets (AFMs) has recently been
invigorated [25–27] due to their distinct advantages over
ferromagnets (FMs), such as minimization of stray fields, sen-
sitivity to external magnetic noise, and low-energy magnons.
The demonstration of electrically accessible memory cells
based on AFMs [28,29] and spin transport across micrometers
[18] corroborates their high application potential. Further-
more, their two-sublattice nature allows for unique phenom-
ena [30,31], such as topological spintronics [32] and strong
quantum fluctuations, not accommodated by FMs. AFMs with
uncompensated interfaces, proven instrumental in exchange
biasing [33–39] FMs for contemporary memory technology,
have been predicted to amplify spin transfer to an adjacent
conductor [40]. Recently, a theoretical proposal for proximity-
inducing spin splitting in a superconductor using an uncom-
pensated AFM, along with an experimental feasibility study
based on existing literature, has also been put forward [41].

Within the standard theory of boson-mediated supercon-
ductivity [42,43], the superconducting critical temperature Tc
is determined by an energy scale set by some high-frequency

*Corresponding author: asle.sudbo@ntnu.no

cutoff ωc on the boson spectrum, coupling of electrons with
these bosons, and the single-particle electronic density of
states on the Fermi surface. The latter two combine into
an effective dimensionless coupling constant λ. In the sim-
plest case, Tc ∼ ωc exp(−1/λ). An enhancement of electron-
phonon coupling, and thus λ, possibly due to a feedback
loop involving strong correlation effects, typically results in
a larger Tc [44]. An increase of λ caused by nonequilib-
rium squeezing [45] of phonons has been suggested [46,47]
as a mechanism underlying experimentally observed, light-
induced transient enhancement of Tc in some superconductors
[48–50].

In this Rapid Communication, we theoretically demon-
strate a drastically increased, attractive, magnon-mediated
electron-electron (e-e) interaction, exploiting the two-
sublattice nature of, and equilibrium squeezing-mediated
strong quantum fluctuations (Fig. 1) in, an AFM [51,52].
We study a bilayer structure in which a normal metal (NM)
exchange couples equally or differently to the two sublattices
of an AFM insulator (AFMI), as depicted in Fig. 2, and find
a significant enhancement of the attractive e-e interaction in
the latter case. This is attributed to an amplification of the
electron-magnon coupling that appears through magnon co-
herence factors acting constructively, instead of destructively
as they do in the case of equal coupling to both sublattices.
The resulting increase in λ produces a significant enhance-
ment in Tc with sublattice symmetry breaking of the interfacial
exchange coupling between the NM and AFMI (Fig. 3). We
also comment on the experimental feasibility and optimal
materials for realization of the predicted p-wave, spin-triplet
superconducting state in these engineered bilayers.

A physical picture of this electron-magnon coupling en-
hancement, detailed elsewhere [51], is provided by the in-
trinsically squeezed nature of the antiferromagnetic magnons
[51–53] (Fig. 1). Referring to a spin-flip residing on sublattice
A (B) as a spin-up (spin-down) magnon, the antiferromagnetic
eigenmodes are formed by two-mode squeezing [45] be-
tween these spin-up and spin-down magnons [52,53]. Thus, a

2469-9950/2019/100(10)/100503(6) 100503-1 ©2019 American Physical Society
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FIG. 1. Representation of a spin-up antiferromagnetic squeezed
magnon [51]. The squeezed excitation is a coherent superposition
of states with N + 1 spin-up and N spin-down magnons. Each of
the constituent states possesses a unit net spin, but varies in its
spin content on each sublattice, thereby resulting in strong quantum
fluctuations.

spin-up AFM squeezed magnon consists of a coherent su-
perposition of states with N + 1 spin-up and N spin-down
magnons, as depicted in Fig. 1, where N runs from zero to
infinity [54,55]. The average spin on each sublattice associ-
ated with one squeezed magnon is thus much larger than its
unit net spin. Any excitations, such as itinerant electrons, that
exchange couple to only one of the sublattices thus experience
a much stronger interaction proportional to the average spin
residing on the particular sublattice. The exposure of itinerant
electrons to a fully uncompensated antiferromagnetic inter-
face accomplishes this effect.

We note that the mechanism proposed herein appears to
be mathematically analogous [51,56,57] to the one based on
nonequilibrium squeezing of phonons [46,47] proposed to ex-
plain the light-induced transient enhancement in Tc observed
experimentally [48–50]. Our mechanism, however, exploits
the intrinsic, equilibrium squeezed nature of the antiferro-
magnetic magnons [51] in contrast with the driven, transient
squeezing achieved with phonons [46]. Moreover, our mech-
anism attributes the increase in λ to an enhanced electron-
magnon coupling [51,56] while Knap and co-workers find
a renormalized, reduced electron hopping which alters the
density of states, to underpin a similar enhancement [46].

Model. We consider a bilayer consisting of a NM interfaced
with an AFMI. The magnetic ground state is assumed to be an
ordered staggered state where the staggered magnetization is
taken to be along the z direction. The essential physics does
not depend on whether the z direction is taken to be in or out
of the interfacial plane. We take h̄ = a = 1, where a is the

AFMI NM AFMI NMAFMI NM

Ω ≡ J̄A/J̄B = 1 Ω = 0Ω < 1

(a) (b) (c)

FIG. 2. Schematic depiction of the antiferromagnetic insula-
tor (AFMI)/normal metal (NM) bilayer including its sublattice-
asymmetric interfacial exchange coupling. (a) and (c), respectively,
illustrate compensated and uncompensated interfaces that are real-
ized in experiments, for example, via AFMI layer growth in a specific
crystal orientation. (b) shows the model employed in our analysis,
which conveniently allows capturing the full range of interfacial
asymmetry via the parameter �.

FIG. 3. (a) Dimensionless coupling constant λ and (b) supercon-
ducting critical temperature Tc vs coupling asymmetry parameter
� ≡ J̄A/J̄B, with J̄ ≡ J̄B. � = 1 and 0, respectively, correspond
to compensated and uncompensated antiferromagnetic interfaces
(Fig. 2). An increase in both λ and Tc in the latter case constitutes
our main result.

lattice constant. The system is modeled by a HamiltonianH =
HAFMI + HNM + Hint, with

HAFMI = J
∑
〈i, j〉

Si · Sj − K
∑
i

S2iz, (1)

HNM = −t
∑
〈i, j〉σ

c†iσ c jσ − μ
∑
iσ

c†iσ ciσ , (2)

Hint = −2J̄A
∑
i∈A

c†i τci · Si − 2J̄B
∑
i∈B

c†i τci · Si, (3)

consisting of a term describing the AFMI, a tight-binding
Hamiltonian describing the NM, and a term accounting for ex-
change coupling between the two materials [5,7,19,31,53,58].
Here, J (>0) and K (>0) respectively parametrize the an-
tiferromagnetic exchange and easy-axis anisotropy, and the
sum over 〈i, j〉 includes all nearest neighbors for each i.
Further, t is the tight-binding hopping parameter, the chemical
potential is denoted by μ, and c†i ≡ (c†i↑, c†i↓), where c†iσ is a
creation operator, creating an electron with spin σ on lattice
site i. The Pauli matrices τ act on the electron spin degree
of freedom. Without loss of generality, the lattices on both
sides of the interface are assumed to be square. The local
exchange coupling between the NM electrons and AFMI spins
across the interface is parametrized by sublattice-dependent
strengths J̄A and J̄B [40,41].
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Employing a Holstein-Primakoff transformation for the
spin operators and switching to Fourier space, we obtain the
magnetic Hamiltonian in terms of the sublattice magnons
[59,60], which are not the eigenmodes. Executing a Bo-
goliubov transformation brings the AFMI Hamiltonian to its
diagonal form [59,60], HAFMI = ∑

k ωk(α
†
kαk + β

†
kβk), where

ωk = 2s
√
(zJ + K )2 − z2J2γ 2

k , γk = 2
∑

b cos(kb)/z, and the
sum over k covers the reduced Brillouin zone of the sublat-
tices. Here, z is the number of nearest neighbors, s is the spin
quantum number associated with the lattice site spins, and the
sum over b covers the directions parallel to the interface. The
magnon operators αk and βk are coherent superpositions of
the individual sublattice magnons αk = ukak − vkb

†
−k, βk =

ukbk − vka
†
−k, where uk = cosh(θk), vk = sinh(θk), and θk =

1
2 tanh

−1 (− Jzγk
zJ+K ). Performing a Fourier transformation, the

NM Hamiltonian becomes HNM = ∑
kσ εkc

†
kσ ckσ , where εk =

−tzγk − μ. The sum over k here covers the full Brillouin
zone.

As detailed in the Supplemental Material [59] (see also
Refs. [61–66] therein), the interaction Hamiltonian [Eq. (3)]
couples the NM electrons with the A and B sublattices of the
AFMI,

H (A)
int = �V

∑
kq

[(uqαq + vqβ†
−q)c

†
k+q,↓ck↑ + H.c.],

H (B)
int = V

∑
kq

[(uqβq + vqα†
−q)c

†
k+q,↑ck↓ + H.c.],

where V ≡ − 2J̄
√
s√

N
, N is the number of lattice sites in the

interfacial plane, and J̄ = J̄B.
Effective pairing interaction. The full Hamiltonian now

takes the form H = HAFMI + HNM + H (A)
int + H (B)

int . In order to
obtain an effective interacting theory for electrons in NM, we
integrate out the magnons, using a canonical transformation
[60]. We then obtain an effective electronic HamiltonianH ′ =
HNM + Hpair [59]. The term Hpair contains the pairing inter-
action between electrons mediated by the antiferromagnetic
magnons. Considering opposite momenta pairing [43], we
obtain [59]

Hpair =
∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑, (4)

where

Vkk′ = −V 2 2ωk+k′

(εk′ − εk)2 − ω2
k+k′

A(k + k′,�), (5)

and

A(q,�) = 1
2 (�

2 + 1)
(
u2q + v2q

) + 2�uqvq. (6)

The interaction potential in Eq. (5) consists of two factors, in
addition to a prefactor. The first is the standard expression that
enters pairing mediated by bosons with a dispersion relation
ωk, familiar from phonon-mediated superconductivity [43].
The second factor A(q,�) [Eq. (6)] contains the effect of the
constructive or destructive interference of squeezed magnons.
For long-wavelength magnons, the coherence factors uq and
vq grow large, but take on opposite signs. For the case of
equal coupling to both sublattices, � = 1, we have A(q,�) =

(uq + vq)2, and a near cancellation of the coherence factors.
On the other hand, for the case of a fully uncompensated
AFMI interface, � = 0, the coherence factors combine to
A(q,�) = (u2q + v2q )/2, where uq and vq are squared sepa-
rately. This represents a dramatic amplification of the pairing
interaction in the latter case.

Mean-field theory and Tc. We now formulate the
weak-coupling mean-field theory for the magnon-mediated
superconductivity in the NM employing the standard
methodology for unconventional superconductors [67].
Comparing our effective interaction potential [Eqs. (4) and
(5)] with that for conventional s-wave superconductors [43],
we note the additional multiplicative minus sign. This implies
that the conventional spin-singlet pairing channel is repulsive
and does not support condensation. We therefore consider
Sz = 0 spin-triplet pairing which is the typical condensation
channel for magnon-mediated superconductivity [19,68–
70]. The corresponding gap function is defined as �k =
−∑

k′ Vkk′,O(k)〈c−k′↑ck′↓ + c−k′↓ck′↑〉/2, where Vkk′,O(k) =
1
2 (Vkk′ −V−k,k′ ) is the odd part of the pairing potential
[Eq. (5)]. The ensuing gap equation takes the
form [67]

�k = −
∑
k′

Vkk′,O(k)
�k′

2Ek′
tanh

(
Ek′

2kBT

)
, (7)

where Ek =
√

ε2k + |�k|2 . Close to the critical temperature,
we linearize the gap equation and compute an average over
the Fermi surface λ�k = −D0〈Vkk′,O(k)�k′ 〉k′,FS, in order to
determine the critical temperature [59,67],

kBTc = 1.14ωce
−1/λ. (8)

Here, D0 is the density of states on the Fermi surface and
ωc is the high-frequency cutoff on the magnon spectrum.
As detailed in the Supplemental Material [59], the numerical
solution of the eigenvalue problem for the dimensionless
coupling constant λ yields a p-wave gap function. Employing
experimentally obtained material parameters [59], the critical
temperature Tc and dimensionless coupling constant λ are
evaluated and presented as a function of the asymmetry pa-
rameter � ≡ J̄A/J̄B in Fig. 3. We now pause to comment on
the results thus obtained.

Both λ and Tc are found to increase with the sublattice
asymmetry of the interfacial exchange coupling, i.e., as �

decreases (Fig. 3). Furthermore, a Tc of few tens of degrees
Kelvin is obtained for a perfectly uncompensated interface,
corresponding to � = 0, employing realistic parameters [59].
However, Tc evaluations are notoriously unreliable on account
of their sensitivity to the λ (exponential dependence on 1/λ)
evaluation method and related details. Within our model,
altering the parameters by a few tens of percent leads to
significantly smaller, or even larger, critical temperatures. The
key lesson of our analysis is that uncompensated interfaces
drastically enhance Tc to values potentially significantly larger
than 1 K considering realistic materials.

Theoretical model assessment. Uncompensated AFM in-
terfaces induce spin splitting in the adjacent conductor [41]
that has not been included here. In conventional BCS su-
perconductors this effect has been investigated in detail and
is known to result in rich physics [71,72] including gapless
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superconductivity [73], a Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [74,75], and finally, destruction of the super-
conducting phase when spin splitting becomes significantly
larger than Tc [76]. In the present case, the magnon-squeezing
effect amplifies the electron-magnon coupling, and thus Tc,
while leaving the spin splitting unchanged. Thus, the latter
is expected to bear no significant effects on the predicted
superconducting state [70] with Tc considerably larger than
the typically induced spin splitting ∼1 K [41,77]. Spin split-
ting may also be suppressed by applying an external com-
pensating magnetic field [78]. The system considered in this
Rapid Communication is far less susceptible to nontrivial
feedback effects of the itinerant electrons on the antiferro-
magnet than the case studied in Ref. [79], particularly since
the magnetic surface we consider is the surface of a bulk
magnet and an Ising easy-axis anisotropy is included in the
description. A strong spin-orbit interaction, also disregarded
here, may reduce Tc [72]. Finally, all non-s-wave supercon-
ducting phases are suppressed by disorder. Therefore, we
expect the inclusion of interfacial disorder to reduce Tc for
our p-wave state [70]. A rigorous analysis of the effects
mentioned above constitutes a promising avenue for future
studies.

Experimental feasibility. The fabrication of proposed bi-
layers with uncompensated and low disorder interfaces, albeit
challenging, is within the reach of contemporary state-of-the-
art techniques [23,36]. The choice of materials is likely to
be dictated by the growth, rather than theoretical, consider-
ations. Nevertheless, we now outline the optimal materials
requirements from a theory standpoint. Broadly speaking, a

reasonably large Néel temperature for the AFM is beneficial.
A metal with a high density of states at the Fermi level and
a low spin-orbit interaction is desirable. The possibility of
a strong exchange coupling across the interface seems to be
supported by spin mixing conductance experiments for a wide
range of bilayers [2,4,80]. Without an extensive comparison
between many materials, hematite [18] or chromia [29,38]
as AFM and copper or aluminum as the metal seem to be
reasonable choices.

Summary. We have shown that magnons in an anti-
ferromagnetic insulator mediate attractive electron-electron
interactions in an adjacent normal metal. Exploiting the in-
trinsic squeezing of antiferromagnetic magnons, the electron-
electron pairing potential is amplified by exchange coupling
the normal metal asymmetrically to the two sublattices of
the antiferromagnet. This, in turn, is found to result in a
dramatic increase in the superconducting critical temperature,
which is estimated to be significantly larger than 1 K em-
ploying experimentally obtained material parameters, when
the normal metal is exposed to an uncompensated antiferro-
magnetic interface. Our results demonstrate the possibility of
engineering heterostructures exhibiting superconductivity at
potentially large temperatures.

Acknowledgments. We thank Jagadeesh Moodera, Rudolf
Gross, Stephan Geprägs, Matthias Althammer, Niklas
Rohling, and Michael Knap for valuable discussions. We
acknowledge financial support from the Research Council of
Norway Grant No. 262633 “Center of Excellence on Quantum
Spintronics,” and Grant No. 250985, “Fundamentals of Low-
Dissipative Topological Matter.”

[1] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Enhanced
Gilbert Damping in Thin Ferromagnetic Films, Phys. Rev. Lett.
88, 117601 (2002).

[2] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M.
Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi,
S. Maekawa, and E. Saitoh, Transmission of electrical signals
by spin-wave interconversion in a magnetic insulator, Nature
(London) 464, 262 (2010).

[3] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Magnon spintronics, Nat. Phys. 11, 453 (2015).

[4] M. Weiler, M. Althammer, M. Schreier, J. Lotze, M.
Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J.
Xiao, Y.-T. Chen, H. J. Jiao, G. E. W. Bauer, and S. T. B.
Goennenwein, Experimental Test of the Spin Mixing Interface
Conductivity Concept, Phys. Rev. Lett. 111, 176601 (2013).

[5] S. S.-L. Zhang and S. Zhang, Spin convertance at magnetic
interfaces, Phys. Rev. B 86, 214424 (2012).

[6] H. Adachi, K. ichi Uchida, E. Saitoh, and S. Maekawa, Theory
of the spin Seebeck effect, Rep. Prog. Phys. 76, 036501 (2013).

[7] S. Takahashi, E. Saitoh, and S. Maekawa, Spin current through
a normal-metal/insulating-ferromagnet junction, J. Phys.: Conf.
Ser. 200, 062030 (2010).

[8] L. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef, and B. J.
van Wees, Long-distance transport of magnon spin information
in a magnetic insulator at room temperature, Nat. Phys. 11,
1022 (2015).

[9] S. T. B. Goennenwein, R. Schlitz, M. Pernpeintner, K.
Ganzhorn, M. Althammer, R. Gross, and H. Huebl, Non-local
magnetoresistance in YIG/Pt nanostructures, Appl. Phys. Lett.
107, 172405 (2015).

[10] S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura, Spin
Current, Series on Semiconductor Science and Technology
(Oxford University Press, Oxford, UK, 2012).

[11] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Spin caloritron-
ics, Nat. Mater. 11, 391 (2012).

[12] J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999).
[13] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.

Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).
[14] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion

of spin current into charge current at room temperature: Inverse
spin-Hall effect, Appl. Phys. Lett. 88, 182509 (2006).

[15] A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnon
transistor for all-magnon data processing, Nat. Commun. 5,
4700 (2014).

[16] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics,
J. Phys. D 43, 264001 (2010).

[17] K. Ganzhorn, S. Klingler, T. Wimmer, S. Geprägs, R. Gross,
H. Huebl, and S. T. B. Goennenwein, Magnon-based logic in
a multi-terminal YIG/Pt nanostructure, Appl. Phys. Lett. 109,
022405 (2016).

[18] R. Lebrun, A. Ross, S. A. Bender, A. Qaiumzadeh, L.
Baldrati, J. Cramer, A. Brataas, R. A. Duine, and M.

100503-4



ENHANCEMENT OF SUPERCONDUCTIVITY MEDIATED BY … PHYSICAL REVIEW B 100, 100503(R) (2019)

Kläui, Tunable long-distance spin transport in a crystalline
antiferromagnetic iron oxide, Nature (London) 561, 222
(2018).

[19] N. Rohling, E. L. Fjærbu, and A. Brataas, Superconductivity
induced by interfacial coupling to magnons, Phys. Rev. B 97,
115401 (2018).

[20] E. L. Fjærbu, N. Rohling, and A. Brataas, Superconductivity at
metal-antiferromagnetic insulator interfaces, arXiv:1904.00233
[Phys. Rev. B (to be published)].

[21] M. Kargarian, D. K. Efimkin, and V. Galitski, Amperean Pairing
at the Surface of Topological Insulators, Phys. Rev. Lett. 117,
076806 (2016).

[22] H. G. Hugdal, S. Rex, F. S. Nogueira, and A. Sudbø, Magnon-
induced superconductivity in a topological insulator coupled to
ferromagnetic and antiferromagnetic insulators, Phys. Rev. B
97, 195438 (2018).

[23] X. Gong, M. Kargarian, A. Stern, Di Yue, H. Zhou, X. Jin, V. M.
Galitski, V. M. Yakovenko, and J. Xia, Time-reversal symmetry-
breaking superconductivity in epitaxial bismuth/nickel bilayers,
Sci. Adv. 3, e1602579 (2017).

[24] Ø. Johansen, A. Kamra, C. Ulloa, A. Brataas, and R. A. Duine,
Magnon-mediated indirect exciton condensation through anti-
ferromagnetic insulators, arXiv:1904.12699.

[25] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich,
Antiferromagnetic spintronics, Nat. Nanotechnol. 11, 231
(2016).

[26] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y.
Tserkovnyak, Antiferromagnetic spintronics, Rev. Mod. Phys.
90, 015005 (2018).

[27] O. Gomonay, V. Baltz, A. Brataas, and Y. Tserkovnyak, Anti-
ferromagnetic spin textures and dynamics, Nat. Phys. 14, 213
(2018).

[28] P. Wadley, B. Howells, J. Zelezný, C. Andrews, V. Hills,
R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S.
Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y.
Mokrousov, J. Kunes, J. S. Chauhan, M. J. Grzybowski, A. W.
Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth,
Electrical switching of an antiferromagnet, Science 351, 587
(2016).

[29] T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P.
Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G.
Schmidt, and D. Makarov, Purely antiferromagnetic magne-
toelectric random access memory, Nat. Commun. 8, 13985
(2017).

[30] A. Kamra, R. E. Troncoso, W. Belzig, and A. Brataas, Gilbert
damping phenomenology for two-sublattice magnets, Phys.
Rev. B 98, 184402 (2018).

[31] Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, Spin See-
beck effect in antiferromagnets and compensated ferrimagnets,
Phys. Rev. B 87, 014423 (2013).

[32] L. Smejkal, Y. Mokrousov, B. Yan, and A. H. MacDonald,
Topological antiferromagnetic spintronics, Nat. Phys. 14, 242
(2018).

[33] J. Nogués and I. K. Schuller, Exchange bias, J. Magn. Magn.
Mater. 192, 203 (1999).

[34] J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S.
Muñoz, and M. D. Baró, Exchange bias in nanostructures, Phys.
Rep. 422, 65 (2005).

[35] R. L. Stamps, Mechanisms for exchange bias, J. Phys. D 33,
R247 (2000).

[36] W. Zhang and K. M. Krishnan, Epitaxial exchange-bias sys-
tems: From fundamentals to future spin-orbitronics, Mater. Sci.
Eng., R 105, 1 (2016).

[37] P. K. Manna and S. M. Yusuf, Two interface effects: Exchange
bias and magnetic proximity, Phys. Rep. 535, 61 (2014).

[38] X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D.
Belashchenko, P. A. Dowben, and C. Binek, Robust isothermal
electric control of exchange bias at room temperature, Nat.
Mater. 9, 579 (2010).

[39] K. D. Belashchenko, Equilibrium Magnetization at the Bound-
ary of a Magnetoelectric Antiferromagnet, Phys. Rev. Lett. 105,
147204 (2010).

[40] A. Kamra and W. Belzig, Spin Pumping and Shot Noise in Fer-
rimagnets: Bridging Ferro- and Antiferromagnets, Phys. Rev.
Lett. 119, 197201 (2017).

[41] A. Kamra, A. Rezaei, andW. Belzig, Spin Splitting Induced in a
Superconductor by an Antiferromagnetic Insulator, Phys. Rev.
Lett. 121, 247702 (2018).

[42] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of
superconductivity, Phys. Rev. 108, 1175 (1957).

[43] J. R. Schrieffer, Theory of Superconductivity, 4th ed., Frontiers
in Physics (Addison-Wesley, Boston, 1988).

[44] Y. He, M. Hashimoto, D. Song, S.-D. Chen, J. He, I. M. Vishik,
B. Moritz, D.-H. Lee, N. Nagaosa, J. Zaanen, T. P. Devereaux,
Y. Yoshida, H. Eisaki, D. H. Lu, and Z.-X. Shen, Rapid change
of superconductivity and electron-phonon coupling through
critical doping in Bi-2212, Science 362, 62 (2018).

[45] C. Gerry and P. Knight, Introductory Quantum Optics (Cam-
bridge University Press, Cambridge, UK, 2004).

[46] M. Knap, M. Babadi, G. Refael, I. Martin, and E. Demler,
Dynamical Cooper pairing in nonequilibrium electron-phonon
systems, Phys. Rev. B 94, 214504 (2016).

[47] M. Babadi, M. Knap, I. Martin, G. Refael, and E. Demler,
Theory of parametrically amplified electron-phonon supercon-
ductivity, Phys. Rev. B 96, 014512 (2017).

[48] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C.
Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri,
Light-induced superconductivity in a stripe-ordered cuprate,
Science 331, 189 (2011).

[49] R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M.
Chollet, H. T. Lemke, J. S. Robinson, J. M. Glownia, M. P.
Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B.
Keimer, A. Georges, and A. Cavalleri, Nonlinear lattice dynam-
ics as a basis for enhanced superconductivity in YBa2Cu3O6.5,
Nature (London) 516, 71 (2014).

[50] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi,
S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccó, S. R. Clark, D.
Jaksch, and A. Cavalleri, Possible light-induced superconduc-
tivity in K3C60 at high temperature, Nature (London) 530, 461
(2016).

[51] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A. Brataas,
W. Belzig, and A. Sudbø, Antiferromagnetic magnons as
highly squeezed Fock states underlying quantum correlations,
arXiv:1904.04553.

[52] A. Kamra, U. Agrawal, and W. Belzig, Noninteger-spin
magnonic excitations in untextured magnets, Phys. Rev. B 96,
020411(R) (2017).

[53] A. Kamra and W. Belzig, Super-Poissonian Shot Noise of
Squeezed-Magnon Mediated Spin Transport, Phys. Rev. Lett.
116, 146601 (2016).

100503-5



ERLANDSEN, KAMRA, BRATAAS, AND SUDBØ PHYSICAL REVIEW B 100, 100503(R) (2019)

[54] P. Král, Displaced and squeezed Fock states, J. Mod. Opt. 37,
889 (1990).

[55] M. M. Nieto, Displaced and squeezed number states, Phys. Lett.
A 229, 135 (1997).

[56] C. Leroux, L. C. G. Govia, and A. A. Clerk, Enhancing
Cavity Quantum Electrodynamics via Antisqueezing: Syn-
thetic Ultrastrong Coupling, Phys. Rev. Lett. 120, 093602
(2018).

[57] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Lü, J. Q. You, and
F. Nori, Exponentially Enhanced Light-Matter Interaction, Co-
operativities, and Steady-State Entanglement using Parametric
Amplification, Phys. Rev. Lett. 120, 093601 (2018).

[58] S. A. Bender and Y. Tserkovnyak, Interfacial spin and heat
transfer between metals and magnetic insulators, Phys. Rev. B
91, 140402(R) (2015).

[59] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.100503 for (i) a detailed derivation
of the diagonalized Hamiltonian contributions describing the
antiferromagnet, normal metal, and their mutual interaction,
(ii) derivation of the effective electron-electron interaction,
(iii) mean-field theory detailing the superconducting order pa-
rameter, (iv) formulation of the gap equation, (v) evaluation
of Tc by solving the linearized gap equation, and (vi) the
material parameters employed in obtaining the Tc and λ plots
(Fig. 3).

[60] C. Kittel, Quantum Theory of Solids (Wiley, New York,
1963).

[61] E. L. Fjærbu, N. Rohling, and A. Brataas, Electrically driven
Bose-Einstein condensation of magnons in antiferromagnets,
Phys. Rev. B 95, 144408 (2017).

[62] G. A. Burdick, Energy band structure of copper, Phys. Rev. 129,
138 (1963).

[63] Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling
and electron heat capacity of metals under conditions of strong
electron-phonon nonequilibrium, Phys. Rev. B 77, 075133
(2008).

[64] M. G. Ramchandani, Energy band structure of gold, J. Phys. C
3, S1 (1970).

[65] E. J. Samuelsen, M. T. Hutchings, and G. Shirane, Inelastic
neutron scattering investigation of spin waves and magnetic
interactions in Cr2O3, Physica 48, 13 (1970).

[66] U. Köbler, A. Hoser, and J.-U. Hoffmann, Crystal field effects
in the 3d transition metal compounds, Physica B: Condens.
Matter 382, 98 (2006).

[67] M. Sigrist and K. Ueda, Phenomenological theory of unconven-
tional superconductivity, Rev. Mod. Phys. 63, 239 (1991).

[68] N. Karchev, Magnon exchange mechanism of ferromagnetic
superconductivity, Phys. Rev. B 67, 054416 (2003).

[69] C. Pfleiderer, Superconducting phases of f -electron com-
pounds, Rev. Mod. Phys. 81, 1551 (2009).

[70] A. P. Mackenzie and Y. Maeno, The superconductivity of
Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod.
Phys. 75, 657 (2003).

[71] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd triplet
superconductivity and related phenomena in superconductor-
ferromagnet structures, Rev. Mod. Phys. 77, 1321 (2005).

[72] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä,
Colloquium: Nonequilibrium effects in superconductors with a
spin-splitting field, Rev. Mod. Phys. 90, 041001 (2018).

[73] K. Maki, Gapless superconductivity, in Superconductivity:
Vol. 2, edited by R. D. Parks (Taylor & Francis, London, 1969).

[74] P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-
exchange field, Phys. Rev. 135, A550 (1964).

[75] A. I. Larkin and Y. N. Ovchinnikov, Inhomogeneous state of
superconductors, Sov. Phys. JETP 20, 762 (1965).

[76] K. Maki and T. Tsuneto, Pauli paramagnetism and supercon-
ducting state, Prog. Theor. Phys. 31, 945 (1964).

[77] B. Li, N. Roschewsky, B. A. Assaf, M. Eich, M. Epstein-Martin,
D. Heiman, M. Münzenberg, and J. S. Moodera, Superconduct-
ing Spin Switch with Infinite Magnetoresistance Induced by an
Internal Exchange Field, Phys. Rev. Lett. 110, 097001 (2013).

[78] M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V.
Moshchalkov, Nanoengineered Magnetic-Field-Induced Super-
conductivity, Phys. Rev. Lett. 90, 197006 (2003).

[79] A. M. Tsvelik and O. M. Yevtushenko, Chiral Spin Order
in Kondo-Heisenberg Systems, Phys. Rev. Lett. 119, 247203
(2017).

[80] F. D. Czeschka, L. Dreher, M. S. Brandt, M. Weiler, M.
Althammer, I.-M. Imort, G. Reiss, A. Thomas, W. Schoch,
W. Limmer, H. Huebl, R. Gross, and S. T. B. Goennenwein,
Scaling Behavior of the Spin Pumping Effect in Ferromagnet-
Platinum Bilayers, Phys. Rev. Lett. 107, 046601 (2011).

100503-6



Supplementary material

Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons

Eirik Erlandsen, Akashdeep Kamra, Arne Brataas, and Asle Sudbø
Center for Quantum Spintronics, Department of Physics,

Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

(Dated: September 12, 2019)

In this supplement, we provide more details for the derivations of the results presented in the main paper. In the
following we will take ~ = a = 1.

MODEL

We consider a bilayer heterostructure consisting of a normal metal (NM) and an antiferromagnetic insulator (AFMI),
as shown in Fig. 1. The staggered magnetization of the AFMI is assumed to be aligned with the z-direction, which
could be either in-plane or out-of-plane.

FIG. 1. The system consists of an antiferromagnetic insulator (AFMI) placed on top of a normal metal (NM).

The system is modeled by the Hamiltonian H = HAFMI +HNM +Hint [1, 2], where

HAFMI = J
∑

〈i,j〉
Si · Sj −K

∑

i

S2
iz, (1)

HNM = −t
∑

〈i,j〉σ
c†iσcjσ − µ

∑

iσ

c†iσciσ, (2)

Hint = −2J̄A
∑

i∈A
c†iτ ci · Si − 2J̄B

∑

i∈B
c†iτ ci · Si. (3)

Here, we have c†i = (c†i↑, c
†
i↓), where c

†
iσ is a creation operator, creating an electron with spin σ on lattice site i in

the NM. The chemical potential is denoted by µ. The exchange coe�cients J is assumed to be positive and therefore
favors anti-alignment of neighboring lattice site spins Si. The easy-axis anisotropy coe�cient K is also positive.
The Pauli matrices τ act on the fermionic spin degree of freedom, the lattices are taken to be square and we have
periodic boundary conditions in the directions parallel to the interfacial plane. The sum over 〈i, j〉 includes all nearest
neighbors for each i, and the lattice site sums in the interaction Hamiltonian cover the interfacial plane between the
two materials. The strength of the coupling between the electrons and the lattice site spins of sublattice A, B is
determined by the parameters J̄A, J̄B . In the following, we will take J̄B = J̄ and J̄A = ΩJ̄ , where Ω determines
which AFMI sublattice couples strongest to the electrons on the surface of the NM. In this way of parametrizing the
exchange-interaction across the AFMI-NM interface, we may without loss of generality set 0 ≤ Ω ≤ 1.

We introduce Holstein-Primako� transformations for both sublattices in the AFMI
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SAi+ =

√
2s− a†iai ai ≈

√
2s ai, (4)

SAi− = a†i

√
2s− a†iai ≈

√
2s a†i , (5)

SAiz = s− a†iai, (6)

SBj+ = b†j

√
2s− b†jbj ≈

√
2s b†j , (7)

SBj− =
√

2s− b†jbj bj ≈
√

2s bj , (8)

SBjz = −s+ b†jbj , (9)

and Fourier transformations for the magnon and electron operators

ai =
1√
NA

∑

k∈♦
ake
−ik·ri , bi =

1√
NB

∑

k∈♦
bke
−ik·ri , (10)

ciσ =
1√
N

∑

k∈♦

(
ckσe

−ik·ri + ck+G,σe
−i(k+G)·ri

)
, (11)

where ♦ indicates that the sum over momenta covers the reduced Brillouin zone of the sublattices and G ≡ π(x̂+ŷ)
a is

a reciprocal lattice vector for the sublattices. After performing a Bogoliubov transformation, the AFMI Hamiltonian
becomes

HAFMI =
∑

k∈♦
ωk

(
α†kαk + β†kβk

)
, (12)

with

ωk = 2s
√

(zJ +K)2 − z2J2γ2k, (13)

γk =
2

z

∑

b

cos(kb), (14)

αk = ukak − vkb†−k, βk = ukbk − vka†−k, (15)

uk = cosh(θk), vk = sinh(θk), (16)

θk =
1

2
tanh−1

(
− Jzγk
zJ +K

)
. (17)

The number of nearest neighbors is here denoted by z, and the sum over b in Eq. (14) goes over the directions parallel
to the interface. For small k, compared to the size of the Brillouin zone, the parameters uk and vk grow large with
similar magnitude, but opposite signs.
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The NM Hamiltonian reduces to

HNM =
∑

k∈�
σ

εkc
†
kσckσ, (18)

with

εk = −tzγk − µ. (19)

From the interaction Hamiltonian we obtain, for coupling to sublattice A and B respectively [2, 3],

H
(A)
int = ΩV

∑

k∈�
q∈♦

(
aqc
†
k+q,↓ck↑ + aqc

†
k+q+G,↓ck↑ + h.c.

)
− ΩJ̄s

∑

k∈�
σ

σ̂

(
c†kσckσ + c†k+G,σckσ

)
, (20)

H
(B)
int = V

∑

k∈�
q∈♦

(
bqc
†
k+q,↑ck↓ − bqc

†
k+q+G,↑ck↓ + h.c.

)
+ J̄s

∑

k∈�
σ

σ̂

(
c†kσckσ − c

†
k+G,σckσ

)
, (21)

where σ̂ = ±1 depending on the spin being up or down. We have also de�ned

V ≡ −2J̄
√
s√

N
, (22)

where N is the number of lattice sites in the interfacial plane and used � to mark the sums that cover the Brillouin
zone of the full lattice. Quadratic or higher order terms in the magnon operators have been neglected. The relative

minus signs between the two terms in each of the parentheses in the expression for H
(B)
int arise due to sublattice B

being shifted in space one lattice constant away from sublattice A.

For our tight binding NM model, the di�erent sides of the Fermi surface are connected by a reciprocal lattice vector
G, in the case of half-�lling. The above Umklapp processes involving G are then important for the physics at the
Fermi surface [2]. In the following, we focus on the case away from half-�lling and neglect such processes. Moreover,
based on experimental results, the e�ect of the potential Zeeman splitting is expected to be small and a rigorous
treatment of the corrections to the superconducting state stemming from this e�ect is outside the scope of this letter.
See the discussion in the main paper. We therefore neglect these terms as well and obtain

Hint = V
∑

k∈�
q∈♦

(
Ω aqc

†
k+q,↓ck↑ + bqc

†
k+q,↑ck↓ + h.c.

)
. (23)

Rewriting the magnon operators in terms of the quasiparticles that diagonalized the AFMI Hamiltonian, we then
have

Hint = V
∑

kq

[
Ω
(
uqαq + vqβ

†
−q
)
c†k+q,↓ck↑ +

(
uqβq + vqα

†
−q
)
c†k+q,↑ck↓ + h.c.

]
. (24)

Collecting the results, the total Hamiltonian takes the form H = HAFMI +HNM +H
(A)
int +H

(B)
int ,
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HAFMI =
∑

k

ωk

(
α†kαk + β†kβk

)
, (25)

HNM =
∑

kσ

εkc
†
kσckσ, (26)

H
(A)
int = ΩV

∑

kq

[(
uqαq + vqβ

†
−q
)
c†k+q,↓ck↑ + h.c.

]
, (27)

H
(B)
int = V

∑

kq

[(
uqβq + vqα

†
−q
)
c†k+q,↑ck↓ + h.c.

]
. (28)

EFFECTIVE INTERACTION

We now perform a canonical transformation in order to eliminate the magnon operators from the problem and obtain
an e�ective interacting theory for the electrons, with the electron-electron interaction mediated by virtual magnons.
We de�ne

H0 ≡
∑

k

ωk

(
α†kαk + β†kβk

)
+
∑

kσ

εkσc
†
kσckσ (29)

ηH1 = ηH
(A)
1 + ηH

(B)
1 ≡ H(A)

int +H
(B)
int , (30)

and write

H ′′ = e−ηSH eηS = H + η[H,S] +
η2

2!
[[H,S], S] +O(η3)

= H0 + η
(
H1 + [H0, S]

)
+ η2

(
[H1, S] +

1

2
[[H0, S], S]

)
+O(η3).

(31)

We then choose ηS = ηS(A) + ηS(B) such that we have

ηH
(L)
1 +

[
H0, ηS

(L)
]

= 0, (32)

producing

H ′ = H0 +
1

2

∑

LL′

[
ηH

(L)
1 , ηS(L′)

]
+O(η3), (33)

where L ∈ {A,B}. Choosing

ηS(A) = ΩV
∑

kq

[(
xk,quqαq + yk,qvqβ

†
−q
)
c†k+q,↓ck↑ +

(
zk,quqα

†
−q + wk,qvqβq

)
c†k+q,↑ck↓

]
, (34)

ηS(B) = V
∑

kq

[(
wk,quqβq + zk,qvqα

†
−q
)
c†k+q,↑ck↓ +

(
yk,quqβ

†
−q + xk,qvqαq

)
c†k+q,↓ck↑

]
, (35)

where
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xk,q = wk,q =
1

εk − εk+q + ωq
, yk,q = zk,q =

1

εk − εk+q − ωq
, (36)

and working out the commutators, one obtains

H
(A,A)
pair =

1

2
Ω2V 2

∑

kqk′

c†k+q↓ck↑c
†
k′−q↑ck′↓

[
u2q

(
1

(εk′ − εk′−q)− ωq
− 1

(εk − εk+q) + ωq

)

+ v2q

(
1

(εk − εk+q)− ωq
− 1

(εk′ − εk′−q) + ωq

)]
,

(37)

H
(B,B)
pair =

1

2
V 2
∑

kqk′

c†k+q↓ck↑c
†
k′−q↑ck′↓

[
v2q

(
1

(εk′ − εk′−q)− ωq
− 1

(εk − εk+q) + ωq

)

+ u2q

(
1

(εk − εk+q)− ωq
− 1

(εk′ − εk′−q) + ωq

)]
,

(38)

H
(A,B)
pair +H

(B,A)
pair = ΩV 2

∑

kqk′

c†k+q↓ck↑c
†
k′−q↑ck′↓ uqvq

(
1

(εk′ − εk′−q)− ωq

+
1

(εk − εk+q)− ωq
− 1

(εk′ − εk′−q) + ωq
− 1

(εk − εk+q) + ωq

)
.

(39)

Here, we have de�ned H
(L,L′)
pair as the contribution from 1

2

[
ηH

(L)
1 , ηS(L′)

]
that takes the form of an electron-electron

interaction. Collecting together the di�erent contributions and focusing on BCS-type pairing between electrons on
opposite sides of the Fermi surface, the result can be written on the following form

Hpair =
∑

kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑, (40)

where

Vkk′ = −V 2 2ωk+k′

(εk′ − εk)2 − ω2
k+k′

A(k + k′,Ω), (41)

and

A(k + k′,Ω) =
1

2
(Ω2 + 1)(u2k+k′ + v2k+k′) + 2 Ωuk+k′vk+k′ . (42)

The fraction in Eq. (41) is of the standard form for electron-electron interactions mediated by a boson. The A-factor
quanti�es the e�ect of the interference between squeezed magnon states [4, 5] on sublattices A and B. Assuming q
signi�cantly smaller than the size of the Brillouin zone, the term involving u2q + v2q grows large and positive, while
the next term involving uqvq grows large and negative, due to the opposite signs of the parameters uq and vq. The
destructive interference between squeezed magnon states is in general maximal when Ω = 1. Then, the factor within
the square brackets simplify to (uq + vq)2, which for general �lling fractions is small due to a near cancellation of uq
and vq. Setting instead Ω = 0 eliminates the destructive interference between squeezed magnon states on sublattices
A and B entirely.
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GAP EQUATION

The potential can be divided into even and odd parts in k

Vkk′ = Vkk′,O(k) + Vkk′,E(k), (43)

where

Vkk′,O(k) =
1

2
(Vkk′ − V−k,k′), (44)

Vkk′,E(k) =
1

2
(Vkk′ + V−k,k′). (45)

Following the procedure of Ref. [6], we write the pairing Hamiltonian as

H
(BCS)
pair =

1

2

∑

kk′

∑

s1s2s3s4

V s1s2s3s4kk′ c†ks1c
†
−ks2c−k′s3ck′s4 , (46)

where

V ↑↓↓↑kk′ = V ↓↑↑↓kk′ =
1

2

[
Vkk′,O(k) + Vkk′,E(k)

]
(47)

V ↓↑↓↑kk′ = V ↑↓↑↓kk′ =
1

2

[
Vkk′,O(k) − Vkk′,E(k)

]
, (48)

following from the fermionic anti-commutation relations of the electron operators. The potential vanishes for all other
spin-combinations. We de�ne a gap function

∆k,s1s2 = −
∑

k′,s3s4

V s1s2s3s4kk′ bk′,s3s4 , (49)

where bk,ss′ = 〈c−kscks′〉. Following the usual mean-�eld approach, the gap equation then becomes

∆k,s1s2 = −
∑

k′,s3s4

V s1s2s3s4kk′ ∆k′,s4s3χk′ , (50)

where

χk′ =
1

2Ek′
tanh

(
Ek′

2kBT

)
, (51)

and Ek =
√
ε2k + |∆k|2. Restricting to the spin singlet channel, we obtain

∆k,↑↓,O(s) = −
∑

k′

Vkk′,E(k)∆k′,↑↓,O(s)χk′ . (52)

with

Vkk′,E(k) = −V 2

[
ωk+k′

(εk′ − εk)2 − ω2
k+k′

A(k + k′,Ω) +
ωk−k′

(εk′ − εk)2 − ω2
k−k′

A(k − k′,Ω)

]
, (53)
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where O(s) indicates that the gap function is odd in spin, and therefore even in momentum. Comparing with
standard phonon-mediated s-wave BCS pairing, this potential has an additional minus sign in front. We therefore
instead consider the spin triplet channel, where we �nd

∆k,↑↓,E(s) = −
∑

k′

Vkk′,O(k)∆k′,↑↓,E(s)χk′ , (54)

with

Vkk′,O(k) = −V 2

[
ωk+k′

(εk′ − εk)2 − ω2
k+k′

A(k + k′,Ω)− ωk−k′

(εk′ − εk)2 − ω2
k−k′

A(k − k′,Ω)

]
. (55)

Considering scattering exactly at the Fermi surface (εk′ = εk = εF ), the potential simpli�es to

Vkk′,O(k) = V 2

[
1

ωk+k′
A(k + k′,Ω)− 1

ωk−k′
A(k − k′,Ω)

]
. (56)

When k − k′ is small, i.e. when k and k′ are almost parallel and ∆k′,↑↓,E(s) has the same sign as ∆k,↑↓,E(s), the
second term in the potential dominates and the potential is attractive. When k + k′ is small, i.e. when k and k′ are
almost anti-parallel and ∆k′,↑↓,E(s) has the opposite sign as ∆k,↑↓,E(s), the �rst term in the potential dominates and
the potential is repulsive. In both cases the signs in Eq. (54) work out in order to provide a non-trivial solution of
the gap equation. The A-factor clearly strengthens the interaction, which increases the critical temperature of the
superconducting instability.

In order to determine the critical temperature, we linearize the gap equation

dk = −
∑

k′

Vkk′,O(k) dk′
1

2|εk′ | tanh

( |εk′ |
2kBTc

)
, (57)

where we have de�ned dk = ∆k,↑↓,E(s) = ∆k,↓↑,E(s). Following Ref. [6], we write

dk = −D0〈Vkk′,O(k) dk′〉k′,FS

∫ ωc

−ωc

dε
1

2|ε| tanh

( |ε|
2kBTc

)
, (58)

where D0 is the single-particle density of states at the Fermi level, ωc is a cuto� energy for the boson spectrum and
〈 〉k′,FS is an angular average over the Fermi surface. Assuming ωc/(kBTc) >> 1, we can take

1

λ
=

∫ ωc

−ωc

dε
1

2|ε| tanh

( |ε|
2kBTc

)
≈ ln

(
1.14ωc

kBTc

)
, (59)

implying

kBTc = 1.14ωc e
−1/λ, (60)

where the dimensionless coupling constant λ is the largest eigenvalue of the eigenvalue equation

λ dk = −D0〈Vkk′,O(k) dk′〉k′,FS. (61)

By picking discrete points on the Fermi surface for k and k′, this equation can be expressed as a matrix eigenvalue
problem
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λd = Md, (62)

which can be solved numerically for a given set of model parameters in order to determine λ as well as the corre-
sponding eigenvector, which contains information about the structure of the gap function.

MATERIAL PARAMETERS

In the long-wavelength limit the density of states D(ε) =
∑

k δ(ε− εk) of the tight binding model is

D(ε) =
N

4πt
. (63)

Taking t = 0.8 eV, produces

D0

N
= 1.4

1

atom Ry
, (64)

which is a typical magnitude for the long-wavelength density of states of metals such as Cu, Al and Au [7�9]. For the
Fermi momentum, we take a small value of kF a = 0.07π, which provides us with an approximately circular Fermi
surface and makes the results less dependent on the lattice geometry. For the AFMI, we take J = 5 meV, J/K = 2000
and s = 1 [10, 11]. The cuto� ωc is set to the value at the Brillouine zone boundary ωc = 2szJ . Finally, the strength
of the interfacial coupling is typically reported to be on the order of magnitude of 10 meV [2, 12].
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We study superconductivity on the surface of a topological insulator, mediated by magnetic fluctuations in
an adjacent ferromagnetic or antiferromagnetic insulator. Superconductivity can arise from effective interac-
tions between helical fermions induced by interfacial fermion-magnon interactions. For both ferromagnetic
and antiferromagnetic insulators, these fermion-fermion interactions have the correct structure to facilitate
pairing between particles located on the same side of the Fermi surface, also known as Amperean pairing.
In antiferromagnets, the strength of the induced interactions can be enhanced by coupling the topological
insulator asymmetrically to the two sublattices of the antiferromagnet. This effect is further amplified by next-
nearest-neighbor frustration in the antiferromagnetic insulator. The enhancement makes the induced interactions
significantly stronger in the antiferromagnetic case compared to the ferromagnetic case. These results indicate
that an uncompensated antiferromagnetic interface might be a better candidate than a ferromagnetic interface for
proximity-induced magnon-mediated superconductivity on the surface of a topological insulator.

DOI: 10.1103/PhysRevB.101.094503

I. INTRODUCTION

Heterostructures of ferro- and antiferromagnetic insulators,
on the one hand, and superconductors, metals, and topo-
logical insulators, on the other hand, have received much
interest both theoretically and experimentally over the last few
decades [1–10]. They continue to be fruitful model systems
for development of novel ideas in condensed-matter physics.
Recently, the idea that magnons in a magnetic material can
induce superconductivity across an interface when proximized
with either a normal metal (NM) or a topological insulator
(TI) was considered in some detail [11–16]. In NMs, the
magnons mediate attractive interactions between electrons.
On the surface of TIs the Cooper pairs are formed by he-
lical fermions where the spin and momentum are locked
together [17,18]. As a consequence, while the pairing in NMs
is of the normal BCS type where Cooper pairs are formed by
electrons on opposite sides of the Fermi surface, Kargarian
et al. [11] predicted pairing between fermions with momenta
in the same direction, named Amperean pairing [19], in a
TI coupled to a ferromagnetic insulator (FMI). Amperean
pairing, with finite-momentum Cooper pairs, should be ex-
perimentally distinguishable from normal BCS-type pairing
through its nonuniform ground state [11]. In a subsequent
related study, the cases of a TI coupled to a FMI and a
TI coupled to an antiferromagnetic insulator (AFMI) were
considered in Ref. [14]. Possible attractive interactions for
both Amperean and BCS-type pairing were found.

Similar to Kargarian et al., we study a TI coupled to a FMI.
Instead of a continuum action model, we utilize a lattice model
Hamiltonian to describe the system. Furthermore, Kargarian
et al. applied a self-consistent strong-coupling approach, es-
tablishing that the fermionic states on the surface of the TI

*Corresponding author: asle.sudbo@ntnu.no

can be strongly renormalized by the presence of the magnetic
fluctuations through the fermion self-energy. Our objective
is, however, not to perform an optimal analysis of the super-
conducting instability. Instead, we seek to reveal the quali-
tative difference between the effective fermionic interactions
induced by ferromagnetic and antiferromagnetic fluctuations,
arising from the magnon coherence factors not present in the
ferromagnet. To illustrate this important aspect, we therefore
find it sufficient to apply a simpler weak-coupling approach,
neglecting the renormalization of the fermionic normal state.

Treating the magnetic subsystem in a quantum-mechanical
fashion, we investigate the effect of coupling the TI symmet-
rically or asymmetrically to the two sublattices of the AFMI.
An asymmetric coupling can be achieved through a fully
uncompensated antiferromagnetic interface where only one of
the two sublattices is exposed [20,21]. Such an asymmetric
coupling has been predicted to significantly enhance the crit-
ical temperature for magnon-mediated superconductivity in
a NM/AFMI heterostructure [16]. This enhancement can be
understood from the picture of antiferromagnetic magnons as
squeezed states, revealing that an antiferromagnetic magnon
is associated with a large spin located at each sublattice [22].
Coupling to only one of the two sublattices of an AFMI
thereby involves coupling to a large spin, leading to a strong
enhancement of the coupling interaction [16,23].

For both FMIs and AFMIs, we find that the effective
fermion-fermion interactions mediated by magnetic fluctua-
tions cannot facilitate BCS-type chiral p-wave pairing. For
Amperean pairing, on the other hand, we find that the effective
potential has the correct form to produce a nontrivial solution
to the gap equation in both the FMI and AFMI cases. For the
FMI, the phase space is, within our weak-coupling approach,
too small to produce a superconducting instability for real-
istic parameters, in contrast to the strong-coupling result of
Kargarian et al. For the AFMI, when coupling asymmetrically
to the two sublattices, we obtain a nontrivial solution to the

2469-9950/2020/101(9)/094503(11) 094503-1 ©2020 American Physical Society
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FIG. 1. The system consists of a ferromagnetic insulator (FMI)
on top of a topological insulator (TI).

gap equation. However, this solution arises from a strong
interaction potential and small phase space. Combined with
the strong renormalization of the fermionic states predicted by
Kargarian et al., this suggests that a strong-coupling approach,
not performed here, is needed in order to provide stronger
evidence for the existence of a superconducting instability and
realistic estimates for the critical temperature.

The main result of this paper, which is expected to be
robust, is that the strength of the fermion-fermion interac-
tion mediated by antiferromagnetic magnons, analogously to
the NM/AFMI case of Ref. [16], is enhanced by coupling
asymmetrically to the two sublattices of the AFMI. The
interaction strength is therefore significantly larger than for an
FMI. Moreover, including an antiferromagnetic next-nearest-
neighbor interaction term, frustrating the AFMI, is found to
strengthen the enhancement effect. The result of this next-
nearest-neighbor frustration is not limited to the case of a TI.

This paper is organized as follows. In Sec. II we consider
the case of a TI coupled to a FMI, and in Sec. III we
consider the case of a TI coupled to an AFMI. The results
are summarized in Sec. IV. Additional details concerning the
derivation of the self-consistent equation for the Amperean
gap function are presented in the Appendix.

II. FERROMAGNETIC CASE

We consider a three-dimensional TI with a single Dirac
cone such as Bi2Se3 or Bi2Te3 [24,25] proximity coupled to
a FMI such as YIG, EuO, or EuS [6,26,27], as displayed in
Fig. 1. The interface is placed in the xy plane. For the FMI we
assume an ordered magnetic state with magnetization along
the z axis. In the following, we take h̄ = a = 1, where a is the
lattice constant.

A. Model

The system is modeled by the Hamiltonian [28,29] H =
HFMI + HTI + Hint,

HFMI = −J
∑
〈i, j〉

Si · Sj − K
∑
i

S2
iz, (1a)

HTI = vF

2

∑
i,b

[c†
i (iτyδb,x̂ − iτxδb,ŷ)ci+b + H.c.]

+
∑
i

c†
i [2W τz − μ]ci

− W

2

∑
i,b

[c†
i τzci+b + H.c.], (1b)

Hint = −2J̄
∑
i

c†
i τci · Si. (1c)

Here, the ferromagnetic exchange interaction between lat-
tice site spins Si is parametrized by the exchange constant J >

0, and the strength of the easy-axis anisotropy is determined
by K > 0. Moreover, c†

i = (c†
i↑, c†

i↓), where c†
iσ is a creation

operator for an electron with spin σ on lattice site i on the
surface of the TI. The Pauli matrices τ act on the spin degree
of freedom of the electrons, and μ is the chemical potential.
The first term in the TI Hamiltonian in Eq. (1b) describes
the spin-momentum locking experienced by electrons on the
surface of the TI, the strength of which is determined by the
Fermi velocity vF . The following Wilson terms W ensure that
there is not more than one Dirac cone in the first Brillouin
zone, avoiding the fermion-doubling problem which arises in
the discretization of the continuum model H (k) = vF(τ × k) ·
ẑ [28–30]. The Wilson terms are phenomenologically added
to the Hamiltonian in order to produce a lattice model that
describes the correct physics. Their effect vanishes in the
long-wavelength limit where the effective two-dimensional
lattice model is expected to faithfully describe the surface
states of the TI [28]. The electrons on the surface of the TI
are exchange coupled to the lattice site spins on the surface
of the FMI [13], with a strength determined by J̄ . The lattices
are quadratic, and we assume periodic boundary conditions
in the x and y directions in order to capture the physics at
the interface between the two materials. The sum over 〈i, j〉
includes all nearest neighbors in both positive and negative
directions, while b ∈ {x̂, ŷ} includes only nearest neighbors in
the positive directions.

B. Diagonalization of subsystems

We introduce a Holstein-Primakoff transformation [31]
for the spin operators Si+ = √

2s ai, Si− = √
2s a†

i , Siz = s −
a†
i ai. Including quadratic terms in the magnon operators and

performing a Fourier transformation ai = 1√
N

∑
k ake

−ik·ri , the
FMI Hamiltonian takes the form [32]

HFMI =
∑
k

ωka
†
kak, (2)

where ωk = 2sJz1(1 − γk) + 2Ks and γk = 2
z1

∑
b cos(kb).

The number of nearest neighbors has here been denoted by
z1, the sum over b covers the spatial dimensions of the FMI
lattice, and the number of lattice sites in the interfacial plane
is denoted by N .

From the interaction Hamiltonian (1c), we obtain

Hint = − 2J̄
√

2s
∑
i

(ai c
†
i↓ci↑ + H.c.)

− 2J̄
∑
iσ

σc†
iσ ciσ (s − a†

i ai ), (3)

where the first line originates with the x, y components of the
coupling scalar product and the second line originates with the
z component. The quantity σ in front of the electron operators
in the second line is +1 for spin up and −1 for spin down.
Fourier transforming the magnon and electron operators ciσ =

1√
N

∑
k ckσ e

−ik·ri then produces [13]

Hint = V
∑
kq

(aqc
†
k+q,↓ck↑ + H.c.) − 2J̄s

∑
kσ

σc†
kσ ckσ , (4)
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with V = −2J̄
√

2s√
N

. The first terms represent electron-magnon
interactions involving a single magnon, and the second term
originates with the exchange field that the electrons on the
surface of the TI are exposed to due to the proximity to the
FMI. Electron-magnon interactions involving more than one
magnon have been neglected. Fourier transforming the elec-
tron operators in the TI Hamiltonian, as well as moving the
exchange field contribution from the interaction Hamiltonian
to the TI Hamiltonian, produces

HTI = W
∑
kσ

σc†
kσ ckσ

[
2 −

∑
b

cos(kb)

]

− vF
∑
k

{c†
k↑ck↓[sin(ky) + i sin(kx )] + H.c.}

− 2J̄s
∑
kσ

σc†
kσ ckσ − μ

∑
kσ

c†
kσ ckσ . (5)

As we are interested in pairing between long-lived excitations
on the surface of the TI, mediated by magnetic fluctuations
on the surface of the FMI, we diagonalize HTI, where the
presence of the exchange field now has been taken into
account. The TI Hamiltonian then takes the form

HTI =
∑
kα

Ekαψ
†
kαψkα, (6)

where α = ± is the helicity index of the quasiparticles ψkα .
Defining A = −μ, Bk = W [2 − ∑

b cos(kb)] − 2J̄s, Ck =
−vF sin(ky), Dk = −vF sin(kx ), Nk = 2Fk(Fk + Bk), and Fk =√
B2
k +C2

k + D2
k, the excitation energies can be expressed as

Ekα = −μ + αFk, and the original electron operators can be
related to the new quasiparticle operators

ck↑ = Q↑+(k) ψk+ + Q↑−(k) ψk−, (7a)

ck↓ = Q↓+(k) ψk+ + Q↓−(k) ψk−, (7b)

where we have defined

Q↑+ = −Q↓− = (Bk + Fk)/
√
Nk, (8a)

Q↑− = Q∗
↓+ = (Ck + iDk)/

√
Nk. (8b)

The band structure of the TI surface states is presented in
Fig. 2, displaying the two bands of opposite helicity. The
exchange field from the FMI breaks time-reversal symmetry
and introduces a gap in the dispersion relation [6,27,33],
similar to the mass gap in the dispersion relation for massive
Dirac fermions [34].

Expressing the interaction Hamiltonian in terms of the TI
eigenexcitations, the full Hamiltonian becomes H = HFMI +
HTI + Hint, with

Hint = V
∑
kq

∑
αα′

Q†
↓α (k + q)Q↑α′ (k)

× aq ψ
†
k+q,αψkα′ + H.c. (9)

In the following, we derive the effective fermion-fermion
interaction arising from this magnon-fermion coupling.

FIG. 2. The band structure of the topological insulator surface
states in the presence of the exchange field from the adjacent ferro-
magnetic insulator for ky = 0, Fermi velocity vF = 5 × 105 m/s, lat-
tice constant a = 0.6 nm, Wilson term coefficient W = 0.3h̄vF [28],
interfacial exchange coupling strength J̄ = 15 meV, spin quantum
number of the lattice site spins s = 1, and chemical potential μ =
200 meV. In the long-wavelength limit, the dispersion relation is
linear, in agreement with the continuum model. The Wilson terms
open a gap at the Brillouin zone boundaries, removing the extra Dirac
cones originating with the discretization of the continuum model.

C. Effective interaction

We proceed by integrating out the magnons in order to
obtain an effective theory of interacting helical fermions. Ex-
amining the nature of the interaction between particles close
to the Fermi surface, we can then determine whether a su-
perconducting instability is possible. We take H = H0 + ηH1,
where H0 = HFMI + HTI, ηH1 = Hint , and η is a smallness
parameter. We then perform a canonical transformation [32]

H ′ = e−ηSH eηS (10)

and a second-order expansion

H ′ = H0 + η(H1 + [H0S]) + η2([H1S] + 1
2 [[H0S]S]

)
. (11)

Choosing

ηS ≡ V
∑
kq

∑
αα′

[
xαα′
k,qQ

†
↓α (k + q)Q↑α′ (k) aq

+ yαα′
k,qQ

†
↑α (k + q)Q↓α′ (k) a†

−q

]
ψ

†
k+q,αψkα′ (12)

and

xαα′
k,q = 1

Ekα′ − Ek+q,α + ωq
, (13a)

yαα′
k,q = 1

Ekα′ − Ek+q,α − ωq
, (13b)

we have [35]

ηH1 + [H0ηS] = 0 (14)

and

H ′ = H0 + 1
2 [ηH1ηS]. (15)
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FIG. 3. Amperean pairing with k′ ≈ k. In order for all momenta
to stay close to the Fermi surface, the momentum transfer q needs to
be small relative to the Fermi momentum kF .

Computing the commutator and picking out the terms that
involve four fermionic operators, we then obtain

Hpair = V 2
∑
kqk′

∑
αα′

∑
ββ ′

Q†
↑β (k′ − q)Q↓β ′ (k′)

× Q†
↓α (k + q)Q↑α′ (k)ψ†

k+q,αψ
†
k′−q,β

ψk′β ′ψkα′

×
(

1

Ek′β ′ − Ek′−q,β − ωq
− 1

Ekα′ − Ek+q,α + ωq

)
.

(16)

In the formation of Cooper pairs, the fermions all have
momenta close to the Fermi momentum kF . In the case of
Amperean pairing [11,19,36,37], Cooper pairs are formed by
particles on the same side of the Fermi surface. In order for
all particles to stay close to the Fermi surface, the momentum
transfer in the processes, q, then needs to be small relative to
kF [14]. This is seen in Fig. 3. In the case of BCS-type pairing
between particles on opposite sides of the Fermi surface [38],
q is not necessarily small relative to kF . If k + q is close to the
Fermi surface, then k′ − q is also close to the Fermi surface
when k′ = −k.

Consider next Eq. (16) in the long-wavelength limit. As-
suming μ > 0, we project down on the helicity band with
index +, as this is the band that crosses the Fermi level.
We then obtain for BCS-type pairing and Amperean pairing,
respectively,

H (BCS)
pair = −V 2

4

∑
kk′

vF (kx − iky)√
(2J̄s)2 + vF 2k2

vF (k′
x + ik′

y)√
(2J̄s)2 + v2

Fk
′2

× 2ωk−k′

(Ek′,+ − Ek,+)2 − ω2
k−k′

ψ
†
k,+ψ

†
−k,+ψ−k′,+ψk′,+,

(17)

H (Amp)
pair = V 2

4

∑
kk′q

vF (kx − iky)√
(2J̄s)2 + v2

Fk
2

vF (k′
x + ik′

y)√
(2J̄s)2 + v2

Fk
′2

×
(

1

Ek′,+ − Ek′−q,+ − ωq
− 1

Ek,+ − Ek+q,+ + ωq

)

× ψ
†
k+q,+ψ

†
k′−q,+ψk′+ψk+. (18)

Here, we have taken q � kF for the Amperean case. Both of
the pairing Hamiltonians include the factors (kx − iky)(k′

x +
ik′

y), originating with the spin-momentum locking of the
surface states. The denominator of these factors leads to the
interaction strength being largest when the Fermi level is far
away from the exchange-field-induced gap in the dispersion
relation, 2J̄s � vFkF , in agreement with Ref. [14]. In the BCS
case, the factor involving the bosonic and fermionic dispersion
relations takes the same form as in phonon-mediated super-
conductivity [39].

D. BCS-type pairing

For BCS-type pairing, we define

V (BCS)
kk′ = −V 2

2

vF (kx − iky)√
(2J̄s)2 + vF 2k2

× vF (k′
x + ik′

y)√
(2J̄s)2 + v2

Fk
′2

2ωk−k′

(Ek′,+ − Ek,+)2 − ω2
k−k′

.

(19)

The potential of Eq. (19) can be split into even and odd parts
with respect to momentum V (BCS)

kk′ = V (BCS)
kk′,E (k)

+V (BCS)
kk′,O(k)

,

where V (BCS)
kk′,E (k)

= (V (BCS)
kk′ +V (BCS)

−k,k′ )/2 and V (BCS)
kk′,O(k)

=
(V (BCS)

kk′ −V (BCS)
−k,k′ )/2. By anticommuting the first two

fermionic operators and transforming k → −k, it is seen
directly from Eq. (17) that the even part of the potential
vanishes. Only the odd part can then contribute to pairing.
Defining bk = 〈ψ−k,+ψk,+〉 and the superconducting gap
�k = −∑

k′ V (BCS)
kk′,O(k)

bk′ , we observe that the superconducting
gap function is even in pseudospin (helicity) and odd in
momentum, analogous to a spin-polarized spin-triplet gap
function. The symmetry of the gap function follows directly
from the fact that there is only a single band crossing the
Fermi level. Performing a standard mean-field procedure [40],
we obtain a self-consistent equation for the superconducting
gap function

�k = −
∑
k′

V (BCS)
kk′,O(k)

�k′

2Ẽk′
tanh

(βẼk′

2

)
, (20)

where Ẽk =
√
E2
k+ + |�k

2| and 1/β = kBT , where kB is the
Boltzmann constant and T is the temperature. While the
structure of the interaction potential clearly points to the
possibility of a chiral p-wave solution, linearizing the gap
equation and performing an average of V (BCS)

kk′,O(k)
�k′ over the

Fermi surface [40] reveal that the sign of the real part of
the potential should have been opposite in order to facilitate
this opportunity. An indication of this can be seen directly
by inspecting the interaction potential for |k| = |k′| = kF ,
producing Re(V (BCS)

kk′,O(k)
) ∼ k · k′, which is repulsive when k′ ‖

k and attractive when k′ ‖ −k. From Eq. (20), it is clear that
the signs of the two sides of the equation will be opposite in
these cases. We conclude that BCS pairing is not possible.
In accordance with [11], the interaction potential in the Am-
perean case appears to have a sign opposite the BCS case,
arising from the Q factors generated by the spin-momentum
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locking of the surface states. We therefore move on to the
Amperean case.

E. Amperean pairing

Taking k = K + p′ and k′ = K − p′, where p′ � K and
p = p′ + q [11,19,37], we obtain

H (Amp)
pair = 1

2

∑
Kpp′

V (Amp)
pp′ (K )

× ψ
†
K+p,+ψ

†
K−p,+ψK−p′,+ψK+p′,+, (21)

where

V (Amp)
pp′ (K ) = V 2

2

v2
FK

2

(2J̄s)2 + v2
FK

2

×
(

1

EK−p′,+ − EK−p,+ − ωp−p′

− 1

EK+p′,+ − EK+p,+ + ωp−p′

)
. (22)

The momentum K should here be located at, or close to, the
Fermi surface, restricting the interactions to act between par-
ticles located close to the Fermi surface. This potentially leads
to the formation of Cooper pairs with center-of-mass mo-
mentum 2K ≈ 2kF . By anticommuting operators and trans-
forming p → −p and p′ → −p′, we find that the part of the
potential that does not vanish is V̄pp′ (K ) ≡ V (Amp)

pp′,O(p,p′ )(K ) =
[V (Amp)

pp′,O(p)(K ) −V (Amp)
p,−p′,O(p)(K )]/2, which is odd in both p

and p′. Defining bp(K ) = 〈ψK−p,+ψK+p,+〉 and �p(K ) =
−∑

p′ V̄pp′ (K ) bp′ (K ), we now have a superconducting gap
function that is even in pseudospin (helicity) and odd in the
relative momentum p.

Following the mean-field procedure outlined in the
Appendix, the self-consistent equation for the gap function
takes the form

�p(K ) = −
∑
p′

V̄pp′ (K )�p′ (K )χp′ (K ). (23)

Here,

χp′ (K ) = 1

4ξp′ (K )

[
tanh

(
β
[
ξp′ (K ) + εop′ (K )

]
2

)

+ tanh

(
β
[
ξp′ (K ) − εop′ (K )

]
2

)]
, (24)

with the quantities εop′ (K ) = (EK+p′,+ − EK−p′,+)/2,
εep′ (K ) = (EK+p′,+ + EK−p′,+)/2, and ξp′ (K ) =√

[εep′ (K )]2 + |�p′ (K )2|.
For K = kF x̂, which we will focus on in the following, the

χ factor is presented in Fig. 4, showing that only processes in a
small region around K give significant contributions to the gap
equation. As the Fermi surface is approximately circular and
K = kF x̂, it is clear that processes where one of the particles
ends up on the inside of the Fermi surface are suppressed as
temperature is lowered. In order to single out the region of
importance for temperatures of the order of a kelvin, we apply

FIG. 4. The factor χp(K ) plotted on a logarithmic scale as a
function of p for K = kF x̂ for Fermi velocity vF = 5 × 105 m/s,
lattice constant a = 0.6 nm, Fermi momentum kFa = π/8, inter-
facial exchange coupling strength J̄ = 10 meV, and spin quantum
number of the lattice site spins s = 1. In (a), the temperature is set to
T = 40 K, while in (b) it is set to T = 5 K.

the same ansatz as Kargarian et al., |px| < p2
y/kF , originating

in Ref. [19], which is found to be a good approximation.
For processes where the fermionic quasiparticle energy

differences can be neglected, the potential takes the simplified
form

V̄pp′ (K ) ∼ 1

ωp+p′
− 1

ωp−p′
. (25)

This potential is attractive for p′ ‖ p and repulsive for p′ ‖
−p, which are the signs that are needed in order to obtain
a p-wave solution for the gap equation. Note that this is p
wave in the relative momentum. For reasonable parameters,
the potential can, however, be approximated by this form
in only a very limited region around K. Outside of this
region, the potential changes back and forth between being
attractive and repulsive, making it harder to analyze and less
favorable for superconductivity. Restricting the calculation
of the gap function to the region where |px| < p2

y/kF and
the potential behaves similarly to Eq. (25), assuming that
the gap function dies off sufficiently quickly outside of this
region, a numerical solution of the linearized gap equation
was attempted by picking points in k space within the relevant
region and solving the matrix eigenvalue problem using the
full potential. The phase space was found to be too small, and
the potential was not strong enough to produce a solution,
at least not for realistic parameters and reasonable temper-
atures. The conclusion is therefore that a superconducting
instability is not possible within this weak-coupling mean-
field theory. According to Kargarian et al., a superconducting
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FIG. 5. The system consists of an antiferromagnetic insulator
(AFMI) on top of a topological insulator (TI).

instability is, on the other hand, possible within a strong-
coupling framework. Rather than performing a more advanced
analysis of the TI/FMI case, our objective is to compare the
results obtained in this section with those of the TI/AFMI case
considered in the following section.

III. ANTIFERROMAGNETIC CASE

In this section, we consider the case of a TI coupled to an
AFMI on a bipartite lattice, such as Cr2O3 or Fe2O3, as shown
in Fig. 5. The interface is once again placed in the xy plane,
and the staggered magnetization of the AFMI is assumed to
be aligned with the z direction.

A. Model

The system is modeled by the Hamiltonian [28,29] H =
HAFMI + HTI + Hint,

HAFMI = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj − K
∑
i

S2
iz, (26a)

HTI = vF

2

∑
i,b

[c†
i (iτyδb,x̂ − iτxδb,ŷ)ci+b + H.c.]

+
∑
i

c†
i [2W τz − μ]ci − W

2

∑
i,b

[c†
i τzci+b + H.c.],

(26b)

Hint = −2J̄A
∑
i∈A

c†
i τci · Si − 2J̄B

∑
i∈B

c†
i τci · Si. (26c)

Here, J1 > 0 and J2 are nearest-neighbor and next-nearest-
neighbor exchange constants, and K > 0 parametrizes the
easy-axis anisotropy of the AFMI. For J2 < 0, the next-
nearest-neighbor interaction stabilizes the staggered state,
while for J2 > 0 this term acts as a frustration. As long as
J2 > 0 is small compared to J1, the magnetic ground state is
assumed to be an ordered staggered state, while the magnons
are influenced by the frustration [41,42]. The TI Hamiltonian
is identical to the one in the previous section, and we still
consider square lattices. The two subsystems are once again
coupled through an exchange interaction, where we now allow
for the interaction strength to differ for the A and B sublat-
tices of the AFMI. Such a sublattice-asymmetric interfacial
coupling can, e.g., be achieved using an experimentally real-
izable uncompensated antiferromagnetic interface [20,21], as
depicted in Fig. 6.

AFMI TI AFMI TI

(a)

Ω ≡ J̄A/J̄B = 1

(b)

Ω = 0

FIG. 6. Exchange coupling across the interface between an anti-
ferromagnetic insulator (AFMI) and a topological insulator (TI). In
(a) the antiferromagnetic interface is fully compensated, and the TI
is coupled symmetrically to the two sublattices of the AFMI with
exchange coupling strength J̄A = J̄B. In (b) the antiferromagnetic
interface is fully uncompensated, resulting in the TI coupling to only
one of the two sublattices of the AFMI.

B. Diagonalization of subsystems

We introduce Holstein-Primakoff transformations for
the spin operators on the two sublattices of the AFMI
SAi+ = √

2s ai, SAi− = √
2s a†

i , SAiz = s − a†
i ai, SBj+ = √

2s b†
j ,

SBj− = √
2s b j , and SBjz = −s + b†

jb j and Fourier transfor-

mations of the magnon operators ai = 1√
NA

∑
k∈♦ ake−ik·ri

and bi = 1√
NB

∑
k∈♦ bke−ik·ri . Here, k ∈ ♦ indicates that

the sum covers the reduced Brillouin zone of the sub-
lattices, and the number of lattice sites in the interfa-
cial plane is given by N = NA + NB. The AFMI Hamil-
tonian is then diagonalized by a Bogoliubov transfor-
mation, expressing the antiferromagnetic eigenexcitations
in terms of the original sublattice magnons αk = ukak −
vkb

†
−k and βk = ukbk − vka

†
−k. Here, uk = cosh(θk), vk =

sinh(θk), tanh(2θk) = −γ̃k/λk, γ̃k = 4J1s
∑

b cos(kb), λk =
2s[J1z1 + K + J2z2(γk,2 − 1)], and γk,2 = 2

z2

∑
σbb′
b < b′

cos(kb +
σkb′ ). The number of next-nearest neighbors is denoted by
z2, and in two dimensions we have

∑
σbb′
b < b′

cos(kb + σkb′ ) =
cos(kx + ky) + cos(kx − ky). The AFMI Hamiltonian then
takes the form

HAFMI =
∑
k

ωk(α†
kαk + β

†
kβk), (27)

where ωk = λk

√
1 − γ̃ 2

k /λ2
k.

For the electron operators, we express the Fourier trans-
formation as ciσ = 1√

N

∑
k∈♦ (ckσ e−ik·ri + ck+G,σ e−i(k+G)·ri ),

where G ≡ π (x̂ + ŷ)/a is a reciprocal lattice vector for the
sublattices. From the interaction Hamiltonian of Eq. (26c), we
obtain for the two sublattices

H (A)
int = U �

∑
k ∈ �
q ∈ ♦

(aqc
†
k+q,↓ck↑ + aqc

†
k+q+G,↓ck↑ + H.c.)

− J̄s�
∑
k ∈ �

σ

σ (c†
kσ ckσ + c†

k+G,σ
ckσ ), (28)
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H (B)
int = U

∑
k ∈ �
q ∈ ♦

(bqc
†
k+q,↑ck↓ − bqc

†
k+q+G,↑ck↓ + H.c.)

+ J̄s
∑
k ∈ �

σ

σ (c†
kσ ckσ − c†

k+G,σ
ckσ ), (29)

respectively, where k ∈ � indicates that the sum covers the
full Brillouin zone. There are additional contributions from
two-magnon processes, which we once again neglect. We have
here defined U = −2J̄

√
s/

√
N , � ≡ J̄A/J̄B, and J̄ ≡ J̄B. The

parameter �, which is taken to be 0 � � � 1, then determines
the degree of asymmetry in the coupling to the two sublattices
of the AFMI. The processes where the momentum of the
outgoing electron is shifted by a reciprocal lattice vector G
are umklapp processes. These processes are expected to be
important for inducing superconductivity mediated by anti-
ferromagnetic magnons in normal metals at half-filling [15].

For a tight-binding model on a square lattice at half-filling, G
connects different points on the Fermi surface. For the case of
a TI with a Fermi surface close to the center of the Brillouin
zone [24,25], on the other hand, the Fermi momentum is
typically small compared to |G|, and these umklapp processes
are expected to be less important as they scatter fermions
far away from the Fermi surface. The umklapp processes are
therefore neglected in the following.

We once again move the exchange field terms, which
cancel only for � = 1, over to the TI Hamiltonian and express
the sublattice magnon operators in the interaction Hamilto-
nian in terms of the magnons that diagonalized the AFMI
Hamiltonian. We then obtain

Hint = U
∑
kq

[�(uqαq + vqβ
†
−q)c†

k+q,↓ck↑

+ (uqβq + vqα
†
−q)c†

k+q,↑ck↓ + H.c.]. (30)

For the TI Hamiltonian, we now have

HTI = W
∑
kσ

σc†
kσ ckσ

[
2 −

∑
b

cos(kb)

]
− vF

∑
k

{c†
k↑ck↓[sin(ky) + i sin(kx )] + H.c.}

− J̄s(� − 1)
∑
kσ

σc†
kσ ckσ − μ

∑
kσ

c†
kσ ckσ . (31)

Building on the results from the FMI case, we take Bk ≡ W [2 − ∑
b cos(kb)] − J̄s(� − 1) and obtain

HTI =
∑
kα

Ekαψ
†
kαψkα, (32)

with the rest of the definitions as in the previous section.
Expressing the electron operators in the interaction Hamiltonian in terms of the eigenexcitations of the TI Hamiltonian, we

obtain

H (A)
int = U �

∑
kq

∑
αα′

[(uqαq + vqβ
†
−q)Q†

↓α (k + q)Q↑α′ (k) ψ
†
k+q,αψkα′ + H.c.], (33)

H (B)
int = U

∑
kq

∑
αα′

[(uqβq + vqα
†
−q)Q†

↑α (k + q)Q↓α′ (k) ψ
†
k+q,αψkα′ + H.c.]. (34)

We will, in the following section, derive the effective fermion-fermion interaction arising from this magnon-fermion coupling.

C. Effective interaction

We once again perform a canonical transformation in order to obtain a theory of fermions with interactions mediated by
magnons. Taking, this time, ηH1 = H (A)

int + H (B)
int , we choose ηS = ηS(A) + ηS(B), with

ηS(A) = U �
∑
kq

∑
αα′

[(
xαα′
k,q uqαq + yαα′

k,q vqβ
†
−q

)
Q†

↓α (k + q)Q↑α′ (k) + (
yαα′
k,q uqα

†
−q + xαα′

k,q vqβq
)
Q†

↑α (k + q)Q↓α′ (k)
]
ψ

†
k+q,αψkα′ ,

(35)

ηS(B) = U
∑
kq

∑
αα′

[(
xαα′
k,q uqβq + yαα′

k,q vqα
†
−q

)
Q†

↑α (k + q)Q↓α′ (k) + (
yαα′
k,q uqβ

†
−q + xαα′

k,q vqαq
)
Q†

↓α (k + q)Q↑α′ (k)
]
ψ

†
k+q,αψkα′ ,

(36)

where xαα′
k,q and yαα′

k,q are defined as in the FMI case.
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Computing the commutator in Eq. (15), projecting down on the helicity band with index +, and taking the long-wavelength
limit, we obtain for BCS-type pairing and Amperean pairing, respectively,

H (BCS)
pair = −U 2

4

∑
kk′

vF (kx − iky)√
[J̄s(� − 1)]2 + vF 2k2

vF (k′
x + ik′

y)√
[J̄s(� − 1)]2 + v2

Fk
′2

2ωk−k′

(Ek′,+ − Ek,+)2 − ω2
k−k′

× A(k − k′,�) ψ
†
k,+ψ

†
−k,+ψ−k′,+ψk′+, (37)

A(q,�) = 1
2 (�2 + 1)

(
u2
q + v2

q

) + 2 � uqvq, (38)

H (AMP)
pair = U 2

4

∑
kk′q

vF (kx − iky)√
[J̄s(� − 1)]2 + v2

Fk
2

vF (k′
x + ik′

y)√
[J̄s(� − 1)]2 + v2

Fk
′2

[
1

2

(
�2u2

q + v2
q + 2 � uqvq

)

×
(

1

Ek′+ − Ek′−q,+ − ωq
− 1

Ek+ − Ek+q,+ + ωq

)

+ 1

2

(
�2v2

q + u2
q + 2 � uqvq

)( 1

Ek+ − Ek+q,+ − ωq
− 1

Ek′+ − Ek′−q,+ + ωq

)]
ψ

†
k+q,+ψ

†
k′−q,+ψk′,+ψk+, (39)

where we once again have taken q � kF for the Amperean case.

The factor A(q,�) is the same as the one arising for asym-
metric coupling of a normal metal to the two sublattices of
a bipartite AFMI, providing a significant enhancement of the
strength of the effective interactions and the superconducting
critical temperature in that case [16]. For long-wavelength
magnons, the magnon coherence factors uq and vq grow large
with opposite signs, and A(q,� = 1) = (uq + vq)2 (equal
coupling to both AFMI sublattices) is therefore a small quan-
tity, while A(q,� = 0) = (u2

q + v2
q )/2 (coupling to only one

AFMI sublattice) is a large quantity [16]. This enhancement
of the interaction for � = 0 and suppression for � = 1 are a
quantum effect not captured by the model in Ref. [14]. In the
Amperean case, the magnon coherence factors do not combine
directly to the same factor A(q,�), but as uq and vq grow
large with opposite signs, the behavior is similar. For � = 1,
the negative terms 2 � uqvq and positive terms of the form
�2u2

q + v2
q work in opposite directions exactly as in A(q,�),

while for � = 0, the negative terms once again vanish, leading
to stronger interaction.

The effect of the magnon coherence factors is influenced
by the next-nearest-neighbor interaction term in the AFMI
Hamiltonian. In Fig. 7, the magnon coherence factors uq and
vq are presented as a function of q for different values of the
next-nearest-neighbor interaction strength J2. Figure 7 shows
that frustrating the system, J2 > 0, increases the magnon
coherence factors and thereby also, e.g., A(q,� = 0) = (u2

q +
v2
q )/2. On the other hand, taking J2 < 0, stabilizing the stag-

gered magnetic state, decreases the magnon coherence factors.
This effect would be the same in the normal-metal case
of Ref. [16], meaning that next-nearest-neighbor frustration
could aid in the enhancement of the critical temperature also
in this case.

D. Pairing

For the AFMI case, the gap equation for BCS-type pairing
is exactly the same as in the FMI case. The only difference be-
tween the interaction potentials is the presence of the A(q,�)
factor in the AFMI case. This factor does not change the sign

of the potential, and the conclusion is therefore, as for the
FMI, that we do not get a chiral p-wave solution to the gap
equation.

For Amperean pairing, the AFMI case is also very similar
to the FMI case, apart from the presence of the magnon

FIG. 7. The magnon coherence factors uq and vq are here pre-
sented as a function of the momentum q for different values of
J2/J1, where J1 and J2 are the nearest-neighbor and next-nearest-
neighbor interaction strengths between the lattice site spins of the
antiferromagnetic insulator. We have here set qy = 0, spin quantum
number of the lattice site spins s = 1, and easy-axis anisotropy
K = J1/104 and taken fairly large values for |J2/J1| in order to clearly
display the effect of the frustration.
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FIG. 8. Form of the gap function obtained as a solution to
the linearized gap equation, obtained with Fermi velocity vF =
3.6 × 105 m/s, lattice constant a = 0.7 nm, Fermi momentum kFa =
π/6, K = kF x̂, interfacial exchange coupling strength J̄ = 18 meV,
nearest-neighbor exchange constant J1 = 7 meV, next-nearest-
neighbor exchange constant J2 = 0.05J1, easy-axis anisotropy K =
J1/105, spin quantum number of the lattice site spins s = 1, and
asymmetry parameter � = 0. In the x direction, the points lie within
|px| < p2

y/kF , meaning that the px value associated with each point
depends on the value of py.

coherence factors. As for the FMI, we obtain a gap equation

�p(K ) = −
∑
p′

Ūpp′ (K )�p′ (K )χp′ (K ), (40)

where the potential Ūpp′ (K ) is, once again, odd in both relative
momenta. The gap function is, as before, defined as �p(K ) =
−∑

p′ Ūpp′ (K ) bp′ (K ), and the χ factor is defined in Eq. (24).
In a region close to K, the potential now behaves as

Ūpp′ (K ) ∼ 1

ωp+p′
A(�, p+ p′) − 1

ωp−p′
A(�, p− p′). (41)

We then still have the required signs in order to obtain a
nontrivial solution to the gap equation and obtain a boosting
from the A factor for � < 1 in exactly the same way as was
obtained in the NM/AFMI case of Ref. [16]. For � = 0,
the interaction potential is therefore much stronger than the
potential we had in the FMI case.

Focusing on K = kF x̂ and restricting the calculation of
the gap function to the region where |px| < p2

y/kF and the
potential behaves similarly to Eq. (41), a numerical solution of
the linearized gap equation was attempted by picking points
in k space within the relevant region and solving the matrix
eigenvalue problem using the full potential. The relevant
phase space is now typically larger than the corresponding
region for the FMI case, as the antiferromagnetic magnons
have a linear, instead of quadratic, dispersion relation for
small momenta. As the phase space is still small, a strong
potential is needed in order to produce a nontrivial solution of
the gap equation. Taking � = 0 and sufficiently small easy-
axis anisotropy, fully exploiting the boosting effect [22], the
potential is found to be strong enough to provide a solution.
As expected, the solution has a p-wave character, as displayed
in Fig. 8. Since small phase space is compensated by large in-
teraction strength, a strong-coupling approach would provide
more solid evidence of the existence of a superconducting
instability and realistic estimates for the critical temperature.

FIG. 9. Critical temperature as a function of (a) asymmetry
parameter � and (b) next-nearest-neighbor exchange constant J2,
obtained with Fermi velocity vF = 8 × 104 m/s, lattice constant
a = 0.7 nm, Fermi momentum kFa = π/6, K = kF x̂, interfacial ex-
change coupling strength J̄ = 18 meV, nearest-neighbor-exchange
constant J1 = 7 meV, easy-axis anisotropy K = J1/105, and spin
quantum number of the lattice site spins s = 1.

In order to display the effect of the asymmetry parameter
� on the ability of inducing a superconducting instability, we
reduce the Fermi velocity to about 20% of typical values [25]
in order to obtain solutions for � > 0. The dependence of
the critical temperature on � is presented in Fig. 9(a), clearly
showing that the interaction strength, and thereby the critical
temperature, is significantly enhanced by coupling the TI
asymmetrically to the two sublattices of the AFMI. Similarly,
the effect of the next-nearest-neighbor frustration on the criti-
cal temperature is displayed in Fig. 9(b).

IV. SUMMARY

We have investigated effective fermion-fermion interac-
tions on the surface of a topological insulator, induced by
magnetic fluctuations in a proximity-coupled ferromagnetic or
antiferromagnetic insulator. Our main finding is that effective
interactions induced by an uncompensated antiferromagnetic
interface are significantly stronger than the interactions in-
duced by a fully compensated antiferromagnetic interface or a
ferromagnetic interface. This indicates that an uncompensated
interface might be the optimal choice for proximity-induced
magnon-mediated superconductivity on the surface of a topo-
logical insulator. Moreover, we find that the interaction am-
plification obtained by coupling asymmetrically to the two
sublattices of the antiferromagnet can be further strengthened
by next-nearest-neighbor frustration in the antiferromagnet. In
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both the ferromagnetic and antiferromagnetic cases, we find
that the interaction potential has the correct form to give rise
to Amperean pairing formed between particles on the same
side of the Fermi surface, but in our weak-coupling approach
we find only a nontrivial solution of the gap equation in the
antiferromagnetic case.
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APPENDIX: DERIVATION OF
AMPEREAN GAP EQUATION

We start from the effective Hamiltonian

Heff =
∑
kα

Ekαψ
†
kαψkα

+
∑
Kpp′

V̄pp′ (K )

2
ψ

†
K+p,+ψ

†
K−p,+ψK−p′,+ψK+p′,+, (A1)

where V̄pp′ (K ) is real and odd in p and p′ and V̄pp′ (K ) =
V̄p′p(K ). Defining bp(K ) = 〈ψK−p,+ψK+p,+〉, we obtain the
mean-field Hamiltonian

H ′
eff =

∑
kα

Ekαψ
†
kαψkα +

∑
Kpp′

V̄pp′ (K )

2
[b†

p(K ) ψK−p′,+ψK+p′,+

+ bp′ (K ) ψ
†
K+p,+ψ

†
K−p,+], (A2)

where terms not affecting the gap equation have been ne-
glected. Taking

�p(K ) = −
∑
p′

V̄pp′ (K ) bp′ (K ) (A3)

produces

H ′
eff =

∑
kα

Ekαψ
†
kαψkα − 1

2

∑
Kp

[�†
p(K ) ψK−p,+ψK+p,+

+ �p(K ) ψ
†
K+p,+ψ

†
K−p,+]. (A4)

As Cooper pairs with different K have different center-of-
mass momenta, it is expected that they will, mainly, behave
independently of each other. Focusing on a single K, we can
then write

H ′
eff (K ) =

∑
k

Ek−ψ
†
k−ψk− + 1

2

∑
p

(ψ†
K+p,+ ψK−p,+)

×
(
EK+p,+ −�p(K )
−�†

p(K ) −EK−p,+

)(
ψK+p,+
ψ

†
K−p,+

)
. (A5)

The second part of this equation, which is the one relevant for
determining the gap equation, can be expressed as

H ′′(K ) = 1

2

∑
p

φ†
p(K )Mp(K ) φp(K ). (A6)

The matrix Mp(K ) can be transformed into diagonal form by
a unitary transformation Pp(K )Mp(K )P−1

p (K ), where

Pp(K ) = 1

Lp(K )

(
εep(K ) + ξp(K ) −�p(K )

−�†
p(K ) −εep(K ) − ξp(K )

)
,

(A7)

P−1
p (K ) = Pp(K ), εop(K ) = (EK+p,+ − EK−p,+)/2, εep(K ) =

(EK+p,+ + EK−p,+)/2, ξp(K ) =
√

[εep(K )]2 + |�p(K )2|, and
L2
p(K ) = 2ξp(K )[ξp(K ) + εep(K )]. We then have

H ′′(K ) =
∑
p

[
ξp(K ) + εop(K )

]
γ

†
K+pγK+p, (A8)

where the relationship between the original fermionic opera-
tors and the γ operators is

ψK+p,+ = εep(K ) + ξp(K )

Lp(K )
γK+p + �p(K )

Lp(K )
γ

†
K−p. (A9)

Plugging Eq. (A9) into the definition of the gap function in
Eq. (A3), we obtain Eq. (23). This derivation is similar to the
one performed in the Supplemental Material of Ref. [37].
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We study superconductivity in a normal metal, arising from effective electron-electron interactions mediated
by spin fluctuations in a neighboring antiferromagnetic insulator. Introducing a frustrating next-nearest neighbor
interaction in a Néel antiferromagnet with an uncompensated interface, the superconducting critical temperature
is found to be enhanced as the frustration is increased. Further, for sufficiently large next-nearest neighbor
interaction, the antiferromagnet is driven into a stripe phase, which can also give rise to attractive electron-
electron interactions. For the stripe phase, as previously reported for the Néel phase, the superconducting
critical temperature is found to be amplified for an uncompensated interface where the normal metal conduction
electrons are coupled to only one of the two sublattices of the magnet. The superconducting critical temperature
arising from fluctuations in the stripe phase antiferromagnet can be further enhanced by approaching the
transition back to the Néel phase.

DOI: 10.1103/PhysRevB.102.214502

I. INTRODUCTION

Recent studies have investigated whether spin fluctua-
tions in a magnetic material can induce attractive interactions
between electrons in an adjacent conductor, leading to a su-
perconducting instability [1–8]. Both ferromagnetic (FMIs)
and antiferromagnetic insulators (AFMIs) have been consid-
ered as potential sources for the magnetic fluctuations. In
order to ensure magnetic ordering, these materials typically
ought to be of a three-dimensional nature [9,10]. Since a
three-dimensional crystal has more than one crystal plane,
the issue arises whether it makes a difference which crystal
plane is exposed at the interface. For the simplest type of
ferromagnet, all lattice sites can be considered to be iden-
tical, and the choice of crystal plane does not affect the
coupling to an external system. For the simplest case of an
antiferromagnet on a bipartite lattice, there are two differ-
ent types of lattice sites. Depending on the chosen crystal
plane, it is possible that either both sublattices (compen-
sated interface) are exposed at the interface, or only one of
the sublattices (uncompensated interface) is exposed at the
interface [11–13].

As outlined in Ref. [14], the presence of an antiferromag-
netic eigenexcitation with spin unity is associated with a large,
and oppositely directed, spin located on each of the two sub-
lattices. An external system that is only coupled to one of the
two sublattices is then essentially interacting with a large spin,
potentially leading to a strong coupling interaction. In ac-
cordance with this picture, uncompensated antiferromagnetic
interfaces have been predicted to enhance the spin transfer to
a neighboring conductor [15], and produce magnon-mediated
indirect exciton condensation [16]. Moreover, importantly for
our purposes, coupling a conductor to an uncompensated,

*Corresponding author: asle.sudbo@ntnu.no

instead of compensated, antiferromagnetic interface might
produce a stronger induced electron-electron interaction and
higher superconducting critical temperature [6,7].

In view of the fact that the superconductivity arises from
magnetic fluctuations, it is natural to ask whether amplifying
the fluctuations can be favorable. One way of achieving such
an amplification is to include next-nearest neighbor frustration
in the AFMI. This type of frustration is common in anti-
ferromagnets, and has been predicted to increase the critical
temperature of superconductivity induced on the surface of
a topological insulator [7]. Using the picture from Ref. [14],
this increase in critical temperature can be understood from
the amplified fluctuations increasing the average spin on each
sublattice associated with an antiferromagnetic magnon. The
effect of coupling to only one of the two sublattices then
becomes stronger.

The previous study of the effect of frustration, however,
employed a Holstein-Primakoff treatment of the AFMI, start-
ing from a staggered Néel state [7]. This framework is
expected to accurately describe the system when the anti-
ferromagnetic next-nearest neighbor exchange coupling J2 is
relatively small compared to the nearest neighbor coupling J1.
The previous study therefore limited itself to this parameter
region [7]. Hence, it is of interest to investigate the rest of the
phase diagram of the J1-J2 Heisenberg model. On a square
or cubic lattice, this model contains two distinct magnetically
ordered phases, a Néel phase for J2/J1 � 1 and a stripe phase
for J2/J1 � 1 [17,18]. In the stripe phase, the spins in, e.g.,
one column could be aligned with each other and antialigned
with the spins in the neighboring columns, creating alternating
stripes of spins. This state arises from two decoupled, in-
terpenetrating, Néel ordered antiferromagnets (J2/J1 → ∞),
which align themselves and create a stripe pattern for finite
J1 [19,20]. Given the origin of the stripe phase, it could be
possible that coupling to only the up/down spins of both Néel
ordered antiferromagnets could give a similar effect as only

2469-9950/2020/102(21)/214502(16) 214502-1 ©2020 American Physical Society
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coupling to one of the sublattices of a single Néel ordered
antiferromagnet.

The transition between the Néel and stripe phases takes
place in the vicinity of J2/J1 = 0.5, with variations de-
pending on the spin quantum number and lattice structure
[17,18,21,22]. For the spin-1/2 system on a square lattice,
it is predicted that there is an intermediate region where the
magnetic long-range order is destroyed by quantum fluctua-
tions [17,23–25]. A similar intermediate region might also be
present for the spin-1/2 system on a simple cubic lattice, in
contrast to the case of a body-centered cubic lattice [18,26].
We will, however, focus on the properties of the ordered
phases. While the Néel phase is more commonly encountered,
the stripe configuration has attracted attention as the magnetic
ground state of the iron oxypnictide LaOFeAs, which is the
original undoped parent compound of the high-Tc iron pnic-
tides [27]. This layered material has been found to be well
described by the square lattice J1-J2 Heisenberg model with
spin S > 1/2 and J2/J1 > 1/2 [28,29].

In this paper, we consider an AFMI, with both nearest-
neighbor and next-nearest neighbor antiferromagnetic ex-
change interaction, which is proximity coupled to a normal
metal (NM). The AFMI can be in either a Néel or stripe state,
and the interface can be either compensated or uncompen-
sated. In order to accurately describe the physics of the AFMI
when the system is strongly frustrated, focusing on the case
where the two magnetically ordered phases are separated by a
direct phase transition, we perform a Schwinger boson study,
rather than the usual Holstein-Primakoff treatment which has
been employed for these systems in the past. Conventional
spin-wave theory would in this case, e.g., incorrectly predict a
vanishing magnetization close to J2/J1 = 0.5 instead of a di-
rect phase transition between two magnetically ordered phases
[21,30]. Moreover, the two subsystems are coupled through
an interfacial exchange coupling, which produces effective
electron-electron interactions in the NM. We explore the effect
of the induced interactions through a BCS-type mean-field
treatment, and numerically solve the gap equation in order
to determine how the critical temperature depends on the
properties of the AFMI.

For a Néel AFMI with small next-nearest neighbor frus-
tration, the results for the superconductivity are similar to
the results obtained through a Holstein-Primakoff treatment
of the AFMI [6]. As before, the strength of the effective
interactions is enhanced for an uncompensated interface,
leading to an amplified critical temperature. Increasing the
frustration, the effect of coupling to only one of the two
sublattices of the AFMI becomes stronger, as expected [7].
Further, the increased frustration also lowers the cutoff on
the boson spectrum, and reduces the sublattice magnetiza-
tion in the AFMI, which is found to reduce the strength
of the induced electron-electron interactions. The overall
effect is, however, still typically a rise in the critical tem-
perature when the frustration is increased. For the stripe
phase, coupling to an uncompensated AFMI interface is
found to enhance the critical temperature, like in the Néel
case. Moreover, approaching the transition point between the
two magnetic phases from the stripe side does, like from
the Néel side, leads to a further increase in the critical
temperature.

FIG. 1. The system consists of a normal metal (NM), which is
proximity coupled to an antiferromagnetic insulator (AFMI). The
AFMI can be either in a Néel phase (a) or a stripe phase (b).

The paper is organized as follows. In Sec. II we introduce
the modeling of the system. In Sec. III the Schwinger boson
treatment of the antiferromagnet is covered for both the Néel
phase and the stripe phase. Next, the NM and the coupling
between the two subsystems is treated in Sec. IV. In Sec. V,
we derive an effective theory of interacting electrons, and in
Sec. VI we investigate the possibility of a superconducting
instability through a weak-coupling mean-field theory. The
results from the numerical treatment of the gap equation are
presented in Sec. VII. Finally, in Sec. VIII, we summarize
our results. Additional details concerning the derivation of the
interaction potential are included in the Appendix.

II. MODEL

The system, consisting of a NM proximity coupled to an
AFMI, is displayed in Fig. 1. The real system we have in mind
would consist of a three-dimensional AFMI grown on top of
a thin NM layer. However, in order to capture the physics at
the interface, we apply two-dimensional lattice models, with
continuous boundary conditions, for the two subsystems. The
AFMI is described by a Heisenberg Hamiltonian with nearest
neighbor and next-nearest neighbor exchange interaction, as
well as easy-axis anisotropy (K). By tuning the next-nearest
neighbor interaction, the ground state of the AFMI can then
be changed from a Néel phase to a stripe phase. The NM is
described by a tight-binding hopping model. The two sub-
systems are coupled together through an interfacial exchange
coupling (J̄) where the spins of the NM conduction electrons
are coupled to the AFMI lattice site spins [3,5,31–33].

For each of the magnetic phases we define two sublat-
tices. In Fig. 1, the lattice sites with blue spins constitute
one sublattice, and the lattice sites with oppositely aligned
red spins constitute the other sublattice. The sublattices are
therefore defined differently for the Néel phase and the stripe
phase. As mentioned earlier, depending on which crystal plane
of the three-dimensional AFMI that constitutes the interface,
it is possible that either both sublattices or only one of the
sublattices is exposed at the interface. In order to describe this,
we apply a model where the NM electrons are coupled to both
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sublattices of the AFMI, but where the coupling strength is al-
lowed to differ for the two sublattices (J̄A/J̄B) [6]. This model
allows us to tune between the two cases of a compensated or
uncompensated interface.

The system is modeled by a Hamiltonian H = HAFMI +
HNM + Hint where

HAFMI = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj − K
∑
i

S2
iz, (1a)

HNM = −t
∑
〈i, j〉σ

c†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ , (1b)

Hint = −2J̄A
∑
i∈A

c†
i τci · Si − 2J̄B

∑
i∈B

c†
i τci · Si. (1c)

Here, c†
i = (c†

i↑, c†
i↓) and c†

iσ creates an electron with spin
σ on lattice site i. The electron hopping amplitude is denoted
by t , and μ is the chemical potential. The easy-axis anisotropy
constant K is taken to be positive, favoring ordering of spins
in the z direction in spin space, which could be either parallel
with or normal to the interface. In the interaction part of the
Hamiltonian, τ is the vector of Pauli matrices, representing
the NM electron spin which is coupled to the lattice site spin
Si in the AFMI. Further, it should be noted that the lattices are
assumed to be square, the sums over nearest and next-nearest
neighbors include the neighbors in both positive and negative
spatial directions, and we have set h̄ = a = 1, where a is the
lattice constant.

III. ANTIFERROMAGNET

In order to treat the AFMI, we will represent the lattice site
spins in terms of Schwinger bosons [34–36]. For our purposes,
where we will couple an external system to the two sublattices
of the AFMI, it will be useful to define different Schwinger
bosons for the two sublattices A and B [37]:

SAi+ = a†
i↑ai↓, (2a)

SAi− = a†
i↓ai↑, (2b)

SAiz = 1

2
(a†

i↑ai↑ − a†
i↓ai↓), (2c)

SBi+ = −b†
i↓bi↑, (3a)

SBi− = −b†
i↑bi↓, (3b)

SBiz = −1

2
(b†

i↑bi↑ − b†
i↓bi↓). (3c)

An ordered Néel or stripe state can then be described through
a condensation [35,36,38] of ↑-bosons with momentum k = 0
on both the A and B sublattice, producing a spatially uniform
state with opposite magnetization on the two sublattices. In
order to fix the length of the spins, we have the condition [35],

ni,A =
∑

α

a†
iαaiα = 2S,

n j,B =
∑

α

b†
jαb jα = 2S, (4)

on each lattice site. In the following mean-field treatment,
this condition on the number of Schwinger bosons will be

enforced on the average. In order to rewrite the AFMI Hamil-
tonian in terms of Schwinger boson operators, we introduce
bond operators quadratic in the boson operators. We follow
the recipe of Ref. [39], as outlined in Refs. [38,40]. When the
Schwinger boson operators have been defined equally on all
lattice sites, the bond operators then take the form,

Ai j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (5a)

Bi j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
. (5b)

Here, Ai j corresponds to an antiferromagnetic bond and Bi j

corresponds to a ferromagnetic bond [19,38]. This choice of
bond operators captures the cost of frustrating bonds, which is
essential for frustrated antiferromagnets, and has been shown
to preserve the time-inversion properties of the spins [19]. As
we have defined different Schwinger boson operators on the
two sublattices, we should perform the following transforma-
tion on the operators living on the B sublattice in the above
definitions of the bond operators,

ai↑ → −bi↓,

ai↓ → bi↑.

A. Néel phase

For the Néel phase, the AFMI Hamiltonian can be ex-
pressed on the form,

HNéel
AFMI = J1

∑
i∈A
jnni

SAi · SBj + J1

∑
i∈B
jnni

SBi · SAj

+ J2

∑
i∈A
jnnni

SAi · SAj + J2

∑
i∈B
jnnni

SBi · SBj

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz. (6)

We then introduce the bond operators,

A1,A
i j = 1

2

(
ai↑b j↑ + ai↓b j↓

)
, (7a)

B1,A
i j = 1

2

(
ai↓b†

j↑ − ai↑b†
j↓

)
, (7b)

A1,B
i j = 1

2

( − bi↓a j↓ − bi↑a j↑
)
, (7c)

B1,B
i j = 1

2

(
bi↑a†

j↓ − bi↓a†
j↑

)
, (7d)

A2,A
i j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (7e)

B2,A
i j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
, (7f)

A2,B
i j = 1

2

(
bi↑b j↓ − bi↓b j↑

)
, (7g)

B2,B
i j = 1

2

(
bi↑b†

j↑ + bi↓b†
j↓

)
, (7h)
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and write out the Hamiltonian as

HNéel
AFMI = J1

∑
i∈A
jnni

[(
B1,A
i j

)†
B1,A
i j − (

A1,A
i j

)†
A1,A
i j − 1

4
ni,A

]

+ J1

∑
i∈B
jnni

[(
B1,B
i j

)†
B1,B
i j − (

A1,B
i j

)†
A1,B
i j − 1

4
ni,B

]

+ J2

∑
i∈A
jnnni

[(
B2,A
i j

)†
B2,A
i j − (

A2,A
i j

)†
A2,A
i j − 1

4
ni,A

]

+ J2

∑
i∈B
jnnni

[(
B2,B
i j

)†
B2,B
i j − (

A2,B
i j

)†
A2,B
i j − 1

4
ni,B

]

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz + λA

∑
i∈A

(
ni,A − κ

)

+ λB

∑
i∈B

(
ni,B − κ

)
.

(8)

Here κ = 2S and λA, λB are Lagrange multipliers that have
been included in order to enforce the constraint on the number
of Schwinger bosons per site. The choice of κ = 2S seems
sensible based on Eq. (4), and fixes the magnitude of the spins
to the correct value. For this value of κ , the spin fluctuations
are, however, somewhat overestimated [35]. Another possibil-
ity is therefore to adjust κ in order to obtain the correct result
for the fluctuations, at the expense of the spin length [41]. We
will mostly be interested in how the results vary depending
on J2 for typical values of the rest of the parameters, and the
specific choice of κ therefore is not of great importance.

We next perform a mean-field decoupling of a bond vari-
able Ci j as follows:

Ci j = 〈Ci j〉 +
(
Ci j − 〈Ci j〉

)
≡ 〈Ci j〉 + δ(Ci j ),

(
Ci j

)†
Ci j ≈ 〈Ci j〉†Ci j + 〈Ci j〉

(
Ci j

)† − |〈Ci j〉|2. (9)

Here, we have neglected quadratic terms in the deviations
from the mean-field values. Moreover, we choose an Ansatz
for the expectation values of the bond operators that will
produce a Néel-type state,

〈
B1,A
i j

〉 = 〈
B1,B
i j

〉 = 0,〈
A1,A
i j

〉 = − 〈
A1,B
i j

〉 ≡ Aδ1 ,〈
B2,A
i j

〉 = 〈
B2,B
i j

〉 ≡ Bδ2 ,〈
A2,A
i j

〉 = 〈
A2,B
i j

〉 = 0, (10)

where all quantities are assumed to be real [40,41]. We also
take λA = λB ≡ λ. For the easy-axis terms we do the same
mean-field treatment as above and take 〈SCiz〉 ≡ mC .

We introduce Fourier transformations for the Schwinger
boson operators,

aiσ = 1√
NA

∑
k∈♦

eik·riakσ , (11a)

FIG. 2. Unit cell and Brillouin zone for the full lattice and the
sublattices.

biσ = 1√
NB

∑
k∈♦

eik·ribkσ , (11b)

where NA and NB are the number of lattice sites in the A and
B sublattices, respectively. The momenta live in the reduced
Brillouin zone of the sublattices ♦, as displayed in Fig. 2.

The AFMI Hamiltonian then takes the following form:

HNéel
AFMI = 2NA

[
J1

∑
δ1

(
Aδ1

)2 − J2

∑
δ2

(
Bδ2

)2
]

+
[
λ − 1

4

(
J1z1 + J2z2

)] ∑
k∈♦
σ

(
a†
kσakσ + b†

kσbkσ
)

− KmA

∑
k∈♦
σ

σa†
kσakσ + KmB

∑
k∈♦
σ

σb†
kσbkσ

+
∑
k∈♦
σ

γ
B2
k

(
a†
kσakσ + bkσb

†
kσ

) + KNA
(
m2

A + m2
B

)

−
∑
k∈♦
σ

γ
A1
k

(
b†
kσa

†
−kσ + akσb−kσ

) − 2NAκλ, (12)

where z1 and z2 are the number of nearest neighbors and
next-nearest neighbors, respectively. Throughout this paper,
the quantity σ = ±1 takes on a positive sign for spin-up, and
a negative sign for spin-down. We have also introduced the
form factors,

γ
A1
k ≡ J1

∑
δ1

Aδ1 cos(k · δ1), (13a)

γ
B2
k ≡ J2

∑
δ2

Bδ2 cos(k · δ2), (13b)

where the sums over nearest neighbors (δ1) and next-nearest
neighbors (δ2) cover both positive and negative directions. We
then define λ′ ≡ λ − 1

4 (J1z1 + J2z2), rename λ′ → λ, and ne-
glect constant terms that do not contain any of the mean-field
parameters.
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In order to make progress, we split the Hamiltonian up into
three parts HNéel

AFMI = E0 + H↑ + H↓ where

E0 = 2NA

[
J1

∑
δ1

(
Aδ1

)2 − J2

∑
δ2

(
Bδ2

)2
]

− 2NAλ(κ + 1) + KNA
(
m2

A + m2
B

)
, (14)

and

Hσ =
∑
k∈♦

(
λ + γ

B2
k − σKmA

)
a†
kσakσ

+
∑
k∈♦

(
λ + γ

B2
k + σKmB

)
bkσb

†
kσ

−
∑
k∈♦

γ
A1
k

(
b†
kσa

†
−kσ + akσb−kσ

)
. (15)

We can then perform a Bogoliubov transformation,

akσ = ukσαkσ − vkσ β
†
−kσ ,

b†
−kσ = vkσαkσ − ukσ β

†
−kσ .

(16)

where ukσ and vkσ are taken to be real and are parametrized
by ukσ = cosh(θkσ ), vkσ = sinh(θkσ ). The value of θkσ that
diagonalizes the Hamiltonian is given by

tanh(2θkσ ) = γ
A1
k

λ + γ
B2
k + σ K

2

(
mB − mA

) . (17)

In order to simplify the expressions, we take mB = −mA,
which is consistent with a Néel phase. The diagonalized
Hamiltonian now takes the form,

HNéel
AFMI = E ′

0 +
∑
k∈♦
σ

ωkσ
(
α

†
kσαkσ + β

†
kσβkσ

)
,

(18)

where

ωkσ =
√(

λ + γ
B2
k − σKmA

)2 − (
γ
A1
k

)2
, (19)

and E ′
0 = E0 + ∑

kσ ωkσ .
The mean-field parameters should be determined self-

consistently from minimization of the free energy. The free
energy per lattice site is given by

f = E ′
0

N
+ 2

βN

∑
k∈♦
σ

ln(1 − e−βωkσ ).
(20)

Minimizing the free energy with respect to Aδ1 , Bδ2 , λ, and
mA, we then obtain the following self-consistent equations for
the mean-field parameters,

Aδ1 = 1

2N

∑
k∈♦
σ

γ
A1
k

ωkσ

(
1+2nkσ

)
cos(k · δ1), (21a)

Bδ2 = 1

2N

∑
k∈♦
σ

(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
cos(k · δ2),

(21b)

κ̄ = 1

2N

∑
k∈♦
σ

(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
, (21c)

mA = 1

2N

∑
k∈♦
σ

σ
(
λ + γ

B2
k − σKmA

)
ωkσ

(
1+2nkσ

)
. (21d)

The Bose-Einstein occupation factor is here denoted by
nkσ , and we have defined κ̄ = 1

2 (κ + 1). As mentioned ear-
lier, in our description of the system, a Néel-type state with
mA > 0 arises from condensation of ↑-bosons with k = 0. It
should be noted that the condensation only takes place in the
thermodynamic limit and that the bosonic energy cannot be
taken to zero without also taking the system size to infinity.
For condensation to take place, we need |λ + γ

B2
0 − KmA| =

|γ A1
0 |. In the following, we will take Aδ1 to be positive. For

the interaction potential that will enter into the Hamiltonian
describing the effective theory of interacting electrons, we
need the ground-state properties of the antiferromagnet. From
the Bose-Einstein occupation factors, at zero temperature, we
then only get a contribution from the condensate n0↑. Defining
ζkσ ≡ γ

A1
0 − γ

B2
0 + γ

B2
k + 2KmAδσ,↓, we now have

κ̄ = 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ
+ 1

N
Q0, (22a)

mA = 1

2N

∑
k∈♦
σ

′ σ ζkσ

ωkσ
+ 1

N
Q0, (22b)

Aδ1 = 1

2N

∑
k∈♦
σ

′ γ
A1
k

ωkσ
cos(k · δ1) + 1

N
Q0, (22c)

Bδ2 = 1

2N

∑
k∈♦
σ

′ ζkσ

ωkσ
cos(k · δ2) + 1

N
Q0, (22d)

where

Q0 = γ
A1
0

ω0↑

(
n0↑ + 1

2

)
. (23)

Note that the sums no longer include k = 0, σ =↑. We can
then eliminate

Q̃0 ≡ 1

N
Q0 = κ̄ − 1

2N

∑
k∈♦
σ

′ ζkσ
ωkσ

,
(24)

and obtain

mA − κ̄ + 1

N

∑
k∈♦

′ ζk↓
ωk↓

= 0, (25a)

A − κ̄ − 1

2N

∑
k∈♦
σ

′ γ
A1
k cos(kx ) − ζkσ

ωkσ
= 0, (25b)

B − κ̄ − 1

2N

∑
k∈♦
σ

′ ζkσ
ωkσ

[
cos(kx + ky) − 1

]
= 0, (25c)
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FIG. 3. Schwinger boson dispersion relations ωkσ for K =
0.001J1, S = 1, and σ =↓. The value for J2 varies between the two
subfigures.

where we have taken A ≡ Aδ1 and B ≡ Bδ2 . In the thermo-
dynamic limit, we can convert the sums to integrals and solve
the coupled set of equations numerically using a multidimen-
sional root finder [42].

Solving the self-consistent equations for the mean-field
parameters, the properties of the antiferromagnet can be deter-
mined, e.g., for different values of J2. In Fig. 3, the Schwinger
boson dispersion relation ωkσ is presented both deep into the
Néel regime and close to the transition to the stripe phase.
Note how local minima have developed close to the zone
edges of the Brillouin zone for J2/J1 = 0.5, which are nearly
degenerate with the dispersion minimum at the zone center.
This indicates the vicinity of an instability of the Néel state
into a new spin-ordered state. For the same parameters, the
Schwinger boson coherence factor ukσ is presented in Fig. 4.
All quantities are displayed for σ =↓, because, as we will see
in the following, ωk↓ and uk↓, vk↓ are the quantities, arising
in the effective electron-electron interaction potential, that
correspond to the magnon energies and coherence factors en-
countered in the Holstein-Primakoff treatment of the AFMI.

B. Stripe phase

For the stripe phase we write out the AFMI Hamiltonian as

HStripe
AFMI = J1

∑
i∈A

j = i ± x̂

SAi · SBj + J1

∑
i∈A

j = i ± ŷ

SAi · SAj

+ J1

∑
i∈B

j = i ± x̂

SBi · SAj + J1

∑
i∈B

j = i ± ŷ

SBi · SBj

FIG. 4. Schwinger boson coherence factors ukσ for K = 0.001J1,
S = 1, and σ =↓.

+ J2

∑
i∈A
jnnni

SAi · SBj + J2

∑
i∈B
jnnni

SBi · SAj

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz, (26)

where we have assumed that the stripes are oriented in the
y direction. The results for the superconductivity are not ex-
pected to depend on the spatial direction of the stripes. The
bond operators, this time, take the form,

AAx
i j = 1

2

(
ai↑b j↑ + ai↓b j↓

) = A2,A
i j , (27a)

BAx
i j = 1

2

(
ai↓b†

j↑ − ai↑b†
j↓

) = B2,A
i j , (27b)

A
Ay

i j = 1

2

(
ai↑a j↓ − ai↓a j↑

)
, (27c)

B
Ay

i j = 1

2

(
ai↑a†

j↑ + ai↓a†
j↓

)
, (27d)

ABx
i j = 1

2

( − bi↓a j↓ − bi↑a j↑
) = A2,B

i j , (27e)

BBx
i j = 1

2

(
bi↑a†

j↓ − bi↓a†
j↑

) = B2,B
i j , (27f)

A
By

i j = 1

2

(
bi↑b j↓ − bi↓b j↑

)
, (27g)

B
By

i j = 1

2

(
bi↓b†

j↓ + bi↑b†
j↑

)
. (27h)

Including the Lagrange multiplier terms, the AFMI Hamil-
tonian can then be written out as

HStripe
AFMI = J1

∑
i∈A

j = i ± x̂

[(
BAx
i j

)†
BAx
i j − (

AAx
i j

)†
AAx
i j − 1

4
ni,A

]

+ J1

∑
i∈A

j = i ± ŷ

[(
B
Ay

i j

)†
B
Ay

i j − (
A
Ay

i j

)†
A
Ay

i j − 1

4
ni,A

]

+ J1

∑
i∈B

j = i ± x̂

[(
BBx
i j

)†
BBx
i j − (

ABx
i j

)†
ABx
i j − 1

4
ni,B

]

+ J1

∑
i∈B

j = i ± ŷ

[(
B
By

i j

)†
B
By

i j − (
A
By

i j

)†
A
By

i j − 1

4
ni,B

]

+ J2

∑
i∈A
jnnni

[(
B2,A
i j

)†
B2,A
i j − (

A2,A
i j

)†
A2,A
i j − 1

4
ni,A

]

+ J2

∑
i∈B
jnnni

[(
B2,B
i j

)†
B2,B
i j − (

A2,B
i j

)†
A2,B
i j − 1

4
ni,B

]

− K
∑
i∈A

S2
iz − K

∑
i∈B

S2
iz + λA

∑
i∈A

(
ni,A − κ

)

+ λB

∑
i∈B

(
ni,B − κ

)
.

(28)
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FIG. 5. Unit cell and Brillouin zone for the full lattice and the
sublattices.

In order to make progress, we introduce the mean-field decou-
pling from Eq. (9), and choose an Ansatz for the mean-field
parameters that will produce a stripe phase,

〈
AAx
i j

〉 = −〈
ABx
i j

〉 ≡ Aδx , (29a)〈
BAx
i j

〉 = 〈
BBx
i j

〉 = 0, (29b)
〈
A
Ay

i j

〉 = 〈
A
By

i j

〉 = 0, (29c)
〈
B
Ay

i j

〉 = 〈
B
By

i j

〉 ≡ Bδy , (29d)〈
B2,A
i j

〉 = 〈
B2,B
i j

〉 = 0, (29e)〈
A2,A
i j

〉 = −〈
A2,B
i j

〉 ≡ Aδ2 . (29f)

As before, we take λA = λB ≡ λ and treat the easy-axis
anisotropy terms in the same mean-field fashion as for the
Néel state. Next, we introduce Fourier transformations for the
boson operators,

aiσ = 1√
NA

∑
k∈�

eik·riakσ , (30a)

biσ = 1√
NB

∑
k∈�

eik·ribkσ , (30b)

where the sum over momentum covers the reduced Brillouin
zone of the sublattices , as displayed in Fig. 5. The Hamilto-
nian then takes the form,

HStripe
AFMI = 2NA

[
J1

∑
δx

(
Aδx

)2 − J1

∑
δy

(
Bδy

)2

+ J2

∑
δ2

(
Aδ2

)2
]

− 2NAκλ + KNA
(
m2

A + m2
B

)

+
[
λ − 1

4
(J1z1 + J2z2)

] ∑
k∈

σ

(
a†
kσakσ + b†

kσbkσ
)

− KmA

∑
k∈

σ

σ a†
kσakσ + KmB

∑
k∈

σ

σ b†
kσbkσ

+
∑
k∈

σ

γ
By

k

(
a†
kσakσ + bkσb

†
kσ

)

−
∑
k∈

σ

(
γ
Ax
k + γ

A2
k

)(
b†
kσa

†
−kσ + akσb−kσ

)
, (31)

where we have defined

γ
Ax
k = J1

∑
δx

Aδx cos(k · δx), (32a)

γ
By

k = J1

∑
δy

Bδy cos(k · δy), (32b)

γ
A2
k = J2

∑
δ2

Aδ2 cos(k · δ2). (32c)

The sums over nearest neighbors still cover both positive and
negative directions. We then redefine λ as we did for the
Néel phase and exclude constant terms not involving mean-
field parameters. Splitting up the Hamiltonian in three parts
HStripe

AFMI = E0 + H↑ + H↓, we write

E0 = 2NA

[
J1

∑
δx

(
Aδx

)2 − J1

∑
δy

(
Bδy

)2 + J2

∑
δ2

(
Aδ2

)2
]

− 2NAλ(κ + 1) + KNA
(
m2

A + m2
B

)
, (33)

Hσ =
∑
k∈

(
λ + γ

By

k − σKmA
)
a†
kσakσ

+
∑
k∈

(
λ + γ

By

k + σKmB
)
bkσb

†
kσ

−
∑
k∈

(
γ
Ax
k + γ

A2
k

)(
b†
kσa

†
−kσ + akσb−kσ

)
. (34)

As in the Néel case, the Bogoliubov transformation of Eq. (16)
diagonalizes the Hamiltonian, where θkσ this time is given by

tanh(2θkσ ) = γ
Ax
k + γ

A2
k

λ + γ
By

k + σ K
2

(
mB − mA

) . (35)

Taking mB = −mA, we obtain the following expression for the
diagonalized Hamiltonian:

HStripe
AFMI = E ′

0 +
∑
k∈

σ

ωkσ
(
α

†
kσαkσ + β

†
kσβkσ

)
,

(36)

where

ωkσ =
√(

λ + γ
By

k − σKmA
)2 − (

γ
Ax
k + γ

A2
k

)2
, (37)

and E ′
0 = E0 + ∑

kσ ωkσ . Minimizing the free energy with
respect to Aδx , Aδ2 , Bδy , λ, and mA, we obtain

Aδx = 1

2N

∑
k∈

σ

(
γ
Ax
k + γ

A2
k

)
ωkσ

(
1 + 2nkσ

)
cos(k · δx ), (38a)
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Aδ2 = 1

2N

∑
k∈

σ

(
γ
Ax
k + γ

A2
k

)
ωkσ

(
1 + 2nkσ

)
cos(k · δ2), (38b)

Bδy = 1

2N

∑
k∈

σ

(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
cos(k · δy),

(38c)

κ̄ = 1

2N

∑
k∈

σ

(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
, (38d)

mA = 1

2N

∑
k∈

σ

σ
(
λ + γ

By

k − σKmA
)

ωkσ

(
1 + 2nkσ

)
. (38e)

Here, we have once again defined κ̄ = 1
2 (κ + 1). For a

stripe-type state with mA > 0, we will have condensation of
↑-bosons with k = 0, and we then need |λ + γ

By

0 − KmA| =
|γ Ax

0 + γ
A2
0 |. The mean-field parameters Aδx and Aδ2 will be

assumed to be positive. At zero temperature, we once again
only get contributions from nkσ from the condensate. We then
define ζkσ = γ

Ax
0 + γ

A2
0 − γ

By

0 + γ
By

k + 2KmAδσ,↓, and write

κ̄ = 1

2N

∑
k∈

σ

′ ζkσ
ωkσ

+ 1

N
Q0, (39a)

mA = 1

2N

∑
k∈

σ

′ σ ζkσ

ωkσ
+ 1

N
Q0, (39b)

Ax = 1

2N

∑
k∈

σ

′
(
γ
Ax
k + γ

A2
k

)
ωkσ

cos(kx ) + 1

N
Q0, (39c)

A2 = 1

2N

∑
k∈

σ

′
(
γ
Ax
k + γ

A2
k

)
ωkσ

cos(kx + ky) + 1

N
Q0, (39d)

By = 1

2N

∑
k∈

σ

′ ζkσ
ωkσ

cos(ky) + 1

N
Q0, (39e)

where

Q0 =
(
γ
Ax
0 + γ

A2
0

)
ω0↑

(
n0↑ + 1

2

)
, (40)

and we have taken Ax ≡ Aδx , A2 ≡ Aδ2 , and By ≡ Bδy . We
can then once again eliminate Q0,

Q̃0 ≡ 1

N
Q0 = κ̄ − 1

2N

∑
kσ

′ ζkσ
ωkσ

, (41)

FIG. 6. Schwinger boson dispersion relations ωkσ for K =
0.001J1, S = 1, and σ =↓. The value for J2 varies between the two
subfigures.

and obtain the equations,

mA = κ̄ − 1

N

∑
k∈

′ ζk↓
ωk↓

, (42a)

Ax = κ̄ + 1

2N

∑
k∈

σ

′
(
γ
Ax
k + γ

A2
k

)
cos(kx ) − ζkσ

ωkσ
, (42b)

A2 = κ̄ + 1

2N

∑
k∈

σ

′
(
γ
Ax
k + γ

A2
k

)
cos(kx + ky) − ζkσ

ωkσ
,

(42c)

By = κ̄ + 1

2N

∑
k∈

σ

′ ζkσ
ωkσ

[
cos(ky) − 1

]
. (42d)

In the thermodynamic limit, we can then convert the sums
into integrals and solve the coupled set of equations numeri-
cally.

As for the Néel phase, we present dispersion relations and
coherence factors for values of J2/J1 deep into the stripe phase
and close to the transition to the other magnetic phase. These
results are displayed in Figs. 6 and 7. In addition, we also ex-
plore in Fig. 8 how the mean-field parameters depend on J2/J1

for the two phases. Notably, the factor Q̃0, which is closely
related to the sublattice magnetization, decreases towards the
phase transition and is reduced more on the Néel side of the
transition than on the stripe side. This factor will show up later
in the effective electron-electron interaction potential.

FIG. 7. Schwinger boson coherence factors ukσ for K = 0.001J1,
S = 1, and σ =↓.
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FIG. 8. Mean-field parameters for the Néel and stripe phase for
K/J1 = 0.001 and S = 1. The transition between the two phases is
found to take place around J2/J1 = 0.549.

IV. COUPLING TO THE NM

When considering the coupling to the normal metal (NM),
we will treat both the Néel phase and stripe phase simultane-
ously as the calculation is identical for both phases. It should
then be understood that the expressions for the factor Q̃0,
the Schwinger boson energies ωkσ , and the Schwinger boson
coherence factors ukσ , vkσ , depend on the magnetic phase.

Through a Fourier transformation, the NM Hamiltonian is
brought on diagonal form,

HNM =
∑
k∈�

σ

εkc
†
kσ ckσ , (43)

with

εk = −tz1γk − μ. (44)

Here, the sum over momentum covers the Brillouin zone of
the full lattice � and the number of nearest neighbors z1 is
the same as in the AFMI. In addition, the NM is exchange
coupled to the two sublattices of the antiferromagnet, Hint =
H (A)

int + H (B)
int ,

H (A)
int = −2J̄ 

∑
i∈A

(a†
i↑ai↓ c

†
i↓ci↑ + a†

i↓ai↑ c
†
i↑ci↓)

− J̄ 
∑
i∈Aσ

σc†
iσ ciσ (a†

i↑ai↑ − a†
i↓ai↓), (45)

H (B)
int = 2J̄

∑
i∈B

(b†
i↓bi↑ c

†
i↓ci↑ + b†

i↑bi↓ c
†
i↑ci↓)

+ J̄
∑
i∈B
σ

σc†
iσ ciσ (b†

i↑bi↑ − b†
i↓bi↓). (46)

Here, we have defined  ≡ J̄A/J̄B, as visualized in Fig. 9,
and J̄ ≡ J̄B. For magnetic ordering in the z direction in spin
space, the z component of the coupling gives rise to a stag-
gered magnetic exchange field. For asymmetric coupling to

AFMI NMAFMI NM

(a) (b)

Ω ≡ J̄A/J̄B < 1 Ω = 0

FIG. 9. (a) Illustration of our model where the coupling to the
two sublattices is allowed to differ. The coupling asymmetry is
parametrized by . (b) Shown is an uncompensated interface, where
only one of the two sublattices is present, producing a coupling
corresponding to  = 0.

the two sublattices, the NM electrons are then exposed to a
net magnetic field, which will influence the superconductivity.
For an in-plane magnetic field, the dominant effect is the Pauli
pair-breaking mechanism, rather than the orbital effect [43].
As described in Ref. [6], this paramagnetic effect, arising from
the z component of the coupling, is not expected to destroy
the superconductivity in the considered system, and can be
counteracted by, e.g., applying an oppositely directed external
magnetic field [44]. The effect of the z component of the
coupling will therefore be neglected in the following.

We then perform Fourier transformations, where the elec-
tron operators are transformed as

ciσ = 1√
N

∑
k∈RBZ

(ckσ e
ik·ri + ck+G,σ e

i(k+G)·ri ), (47)

where G ≡ π (x̂+ŷ)
a for the Néel phase and G ≡ π x̂

a for the
stripe phase. The sum over momentum covers the reduced
Brillouin zone (RBZ) of the sublattices. Umklapp processes
where the momentum of the outgoing electron is shifted by a
reciprocal lattice vector of the sublattices, will arise due to the
electrons and Schwinger bosons living in different Brillouin
zones [6,7]. These processes are expected to be important for
induced superconductivity in the case of an AFMI coupled
to a NM close to half-filling [5]. Away from half-filling, the
Umklapp processes are, however, of less importance. In addi-
tion, for a real uncompensated interface, the NM will be lattice
matched with the AFMI sublattice it is coupled to, removing
the Umklapp processes from the coupling. The Umklapp pro-
cesses will therefore not be included in our treatment of the
system.

We are now left with the coupling terms,

H (A)
int = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

(a†
k↑ak′↓c

†
q↓ck+q−k′↑ + H.c.),

(48)
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H (B)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(b†
k↓bk′↑c

†
q↓ck+q−k′↑ + H.c.).

(49)

Expressing the the sublattice Schwinger boson operators in
terms of the boson operators that diagonalized the AFMI
Hamiltonian, we have the final expression for the electron-
boson coupling,

H (A)
int = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

[(uk↑α
†
k↑ − vk↑β−k↑)

× (uk′↓αk′↓ − vk′↓β
†
−k′↓)c†

q↓ck+q−k′↑ + H.c.], (50)

H (B)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

[(
vk↓α−k↓ − uk↓β

†
k↓

)

× (
vk′↑α

†
−k′↑ − uk′↑βk′↑

)
c†
q↓ck+q−k′↑ + H.c.

]
. (51)

In the next section, we will derive effective electron-electron
interactions, mediated by Schwinger bosons, arising from this
electron-boson coupling.

V. EFFECTIVE INTERACTION

We now perform a Schrieffer-Wolff transformation [45]
in order to integrate out the boson operators and obtain an
effective theory of interacting electrons. As we have two bo-
son operators in the initial electron-boson coupling, we will
end up with electron-electron scattering processes where there
are still two boson operators present. The remaining pair of
boson operators will be replaced by its ground-state expecta-
tion value in order to obtain an effective theory of interacting
electrons. We define H = H0 + ηH1 with

H0 ≡ E ′
0 +

∑
k∈RBZ

σ

ωkσ (α†
kσαkσ + β

†
kσβkσ )

+
∑
k∈�

σ

εkc
†
kσ ckσ ,

(52)

and

ηH1 = ηH (A)
1 + ηH (B)

1 ≡ H (A)
int + H (B)

int . (53)

We then perform a canonical transformation,

H ′ = e−ηSH eηS = H + η[H, S] + η2

2!
[[H, S], S] + O(η3)

= H0 + η(H1 + [H0, S]) + η2
(

[H1, S] + 1

2
[[H0, S], S]

)

+ O(η3),
(54)

where we choose ηS = ηS(A) + ηS(B) such that we have

ηH (L)
1 + [H0, ηS

(L)] = 0. (55)

The result is then

H ′ = H0 + 1

2

∑
LL′

[ηH (L)
1 , ηS(L′ )] + O(η3), (56)

where L ∈ {A,B}. We then make appropriate choices for ηSA

and ηSB [46], compute the commutators, consider that we
have condensation of ↑-bosons, and restrict ourselves to BCS-
type scattering processes where the two incoming, as well as
outgoing, electrons have opposite momenta. See Appendix for
details. The pairing Hamiltonian then takes the form,

Hpair =
∑
kk′

Vkk′c†
k↑c

†
−k↓c−k′↓ck′↑, (57)

where

Vkk′ = −V 2Q̃0
2ωk+k′↓

(εk′ − εk)2 − ω2
k+k′↓

A(k + k′,)

− V 2

N

∑
h∈RBZ

′ B(k + k′ + h,h,)

× 2(ωk+k′+h↑ + ωh↓)

(εk′ − εk)2 − (ωk+k′+h↑ + ωh↓)2
,

(58)

and we have defined

A(q,) = 1

2
(2 + 1)

(
u2
q↓ + v2

q↓
) − 2  uq↓vq↓, (59)

as well as

B(q,h,) = 1

2
(2 + 1)

(
u2
q↑v

2
h↓ + v2

q↑u
2
h↓

)
− 2  uq↑vh↓vq↑uh↓.

(60)

Here, we have introduced V ≡ 2J̄/
√
N . The two momenta

in the sum in Eq. (57) are restricted such that the separation
between them is limited to a momentum living in the reduced
Brillouin zone of the sublattices. The A factor is the same
function as in Ref. [6], but due to different choices for the
sign of the coherence factors, the sign in front of the uq↓vq↓
term is negative instead of positive in this case. Both coher-
ence factors are, in this case, positive for small momenta for
both the Néel and stripe phase. For  = 0, the A factor then
grows large, while for  = 1, there is a near cancellation
between the positive and negative contributions to the A factor.
The interaction strength is therefore enhanced in the case
of asymmetric coupling to the two sublattices, just like in
Ref. [6]. The second part of the interaction potential includes
a sum over momenta that covers the reduced Brillouin zone of
the sublattices, apart from the point h = −k − k′. This term
displays similar behavior as the first term in the interaction
potential when  is varied. Importantly, the above expressions
are valid for both the Néel and stripe phase, meaning that the
previously reported enhancement of the critical temperature
when coupling asymmetrically to the two sublattices of the
AFMI should be expected also for the stripe phase.

Examining the first part of the interaction potential, where
the ↑-bosons carry zero momentum, we see that the proper-
ties of the ↑-bosons that condense have been absorbed into
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the prefactor Q̃0. Comparing with the earlier obtained spin-
wave result, it is then clear that the magnon energies and
coherence factors from Ref. [6] have been replaced by the
energies and coherence factors of Schwinger bosons with spin
σ =↓. These ↓-bosons have been gapped by the easy-axis
anisotropy, ensuring ordering in the z direction. Taking the
limit of K → 0, the coherence factors in A(q,) diverge,
producing a divergent interaction potential. This is consis-
tent with the Holstein-Primakoff result in the limit of zero
easy-axis anisotropy [6]. In order to treat the possibility of
superconductivity, at least within a weak-coupling framework,
one should then take finite easy-axis anisotropy. If both the
↑- and ↓-bosons had been gapped, as in a gapped spin liquid
state, there would be no condensate and the remaining con-
tributions to the interaction potential would be expected to
take on a form similar to the current second term involving
B(q,h,). In that case, there could, however, also be extra
contributions arising from the z component of the interfacial
exchange coupling.

Making further comparisons with Ref. [6], the prefactor
V 2Q̃0 is the same as Eq. (5) in Ref. [6] except that the AFMI
spin quantum number S (representing the sublattice magneti-
zation) has been replaced by Q̃0 which is closely related to the
sublattice magnetization mA. As the sublattice magnetization,
and therefore Q̃0, is reduced by frustration, this replacement
represents a correction that can strongly influence how the su-
perconductivity depends on the introduction of frustration. In
addition, the Schwinger boson energies and coherence factors
also depend on mA (instead of S), which will depend on the
value of J2 in this treatment of the system.

VI. GAP EQUATION

Performing a standard weak-coupling treatment of the su-
perconducting instability [47], both terms in the interaction
potential are found to be attractive for Sz = 0 spin-triplet
pairing [6], with gap function,

�k = −
∑
k′

Vkk′,O(k)〈c−k′↑ck′↓ + c−k′↓ck′↑〉/2. (61)

Here Vkk′,O(k) = 1
2 (Vkk′ −V−k,k′ ) is the part of the effective

interaction potential that is odd in momentum. The ori-
gin of the spin-triplet pairing is the spin-flip nature of the
electron-boson scattering processes. When combining two
electron-boson scattering processes to an effective pairing
potential, the spin flips produce an operator ordering of the
type c†

↑c↓c†
↓c↑, instead of c†

↑c↑c†
↓c↓ which is the case for

conventional phonon-mediated singlet pairing. The exchange
of the spin indices of the destruction operators, combined with
the anticommutation relations of the electrons, introduce a rel-
ative minus sign compared with the case of phonon-mediated
singlet pairing, meaning that the spin-singlet channel is there-
fore no longer attractive.

The resulting gap equation takes the form [47],

�k = −
∑
k′

Vkk′,O(k)
�k′

2Ek′
tanh

(
Ek′

2kBT

)
, (62)

FIG. 10. Superconducting critical temperature Tc presented as a
function of the coupling asymmetry parameter  for J1 = 5 meV,
K = J1/4000, S = 1, t = 0.8 eV, μ = −3.5t , and J̄ = 13 meV. The
critical temperature has been normalized by its value for  = 0
for the Néel phase (J2 = 0.5J1) and the stripe phase (J2 = 0.6J1),
respectively.

where Ek =
√

ε2
k + |�k|2, kB is the Boltzmann constant, and

T is the temperature. In order to determine the critical temper-
ature, we consider the linearized gap equation and compute a
Fermi surface average,

λ�k = −D0〈Vkk′,O(k)�k′ 〉k′,FS. (63)

The critical temperature is then given by [47]

kBTc = 1.14 ωc e
−1/λ, (64)

where D0 is the density of states at the Fermi level, ωc is
the boson spectrum cutoff, and the dimensionless coupling
constant λ is the largest eigenvalue of the eigenvalue problem
in Eq. (63).

The eigenvalue problem can be treated numerically by
picking discrete points on the Fermi surface and solving the
resulting matrix eigenvalue problem using a linear algebra
library [48,49]. The density of states at the Fermi level is
obtained from numerical evaluation of the elliptical integral
derived in Ref. [50]. The second part of the interaction poten-
tial, involving the B factor, is found to have little influence on
the dimensionless coupling constant and the critical tempera-
ture. Calculating this part of the potential is computationally
costly as an integral over the Brillouin zone then needs to
be computed for each independent set of momenta k, k′ in
Eq. (63). In order to increase the momentum-space resolution,
the following results are therefore obtained without the second
part of the interaction potential.

VII. RESULTS

The critical temperature as a function of the asymmetry
parameter  is presented in Fig. 10 for both the Néel and
stripe phase. As expected, based on the discussion in Sec. V,
the critical temperature rises up when  → 0 (uncompensated
interface), as the A factor grows larger. The displayed values
for each magnetic phase have been normalized by the critical
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temperature corresponding to the same magnetic phase and
 = 0.

The chemical potential is here tuned to produce a small
Fermi surface where the scattering processes close to the
Fermi surface involve small momentum transfers, taking ad-
vantage of the Schwinger boson coherence factors that grow
large for these processes. Increasing the chemical potential,
the typical scattering processes become more short wave-
length, and the effect of, e.g., the A factor in the interaction
potential becomes smaller. Although a larger chemical poten-
tial leads to a larger electronic density of states, the result
is still a decrease in the critical temperature. On the other
hand, while lowering the chemical potential could produce
a larger critical temperature, taking the chemical potential
too low would challenge the validity of the theory, which,
e.g., relies on the Fermi energy being significantly larger than
the cutoff on the boson spectrum. Based on the result that
an uncompensated interface provides an enhancement of the
critical temperature for both magnetic phases, we focus on the
case of  = 0 in the following.

Next, we investigate how the dimensionless coupling con-
stant and the critical temperature depend on the next-nearest
neighbor interaction J2 in the AFMI. These results are dis-
played in Fig. 11. For both magnetic phases, we find that
approaching the phase transition leads to a larger dimension-
less coupling constant and critical temperature. For the Néel
phase, the introduction of frustration gives rise to a smaller
cutoff on the boson spectrum (Fig. 3), and a smaller sublattice
magnetization which leads to a reduction of the prefactor Q̃0

(Fig. 8) in the interaction potential. On the other hand, the
frustration produces larger coherence factors (Fig. 4) and a
flatter boson dispersion relation, which enters in the denom-
inator of the interaction potential. The overall effect is that
the dimensionless coupling constant increases, which leads
to a rise in the critical temperature despite the reduction in
the boson spectrum cutoff. In the vicinity of the transition to
the stripe phase, the Tc curve becomes flatter as the factor Q̃0

drops more quickly. For smaller (larger) AFMI spin quantum
number S, Q̃0 will be reduced more (less) dramatically as one
approaches the transition point. For the spin S = 1/2 case,
where the long-range order can vanish for sufficiently strong
frustration, the critical temperature resulting from the above
calculation will dive down. However, for a three-dimensional
system, with stronger tendency of ordering, the magnetization
will generally be reduced less than for the two-dimensional
model system considered here. The typical result for an actual
three-dimensional AFMI with an uncompensated interface
(potentially excluding the case of spin-1/2 on a simple cubic
lattice [18]), is then expected to be similar to the above result
(Fig. 11) where the dimensionless coupling constant increases
as one approaches the stripe phase, leading to a higher critical
temperature.

For the stripe phase, approaching the transition to the Néel
phase, the cutoff on the boson spectrum (Fig. 6) and the factor
Q̃0 (Fig. 8) are once again reduced. In addition, the maximum
value of the coherence factors also decreases (Fig. 7), in
contrast to the Néel case. This could indicate that the induced
electron-electron interactions are becoming weaker, poten-
tially leading to a smaller λ and Tc. It is, however, the case
that the region in k space where the coherence factors take

FIG. 11. Dimensionless coupling constant λ (a) and supercon-
ducting critical temperature Tc (b) presented as a function of the
next-nearest neighbor exchange coupling J2 in the antiferromagnet
for J1 = 5 meV, K = J1/4000, S = 1, t = 0.8 eV, μ = −3.5t , J̄ =
13 meV, and  = 0.

on large values is stretched out in the direction of the stripes
(the ky direction), followed by a flattening of the dispersion
relation in this direction. In order to take advantage of favor-
able scattering processes in the ky direction, while keeping
the involved electrons on the Fermi surface, the magnitude
of the gap function is shifted towards the kx axis compared
to the standard p-wave gap function of the unfrustrated Néel
state [6]. More scattering processes with large and moderately
large contributions compensate for the reduction, instead of
increase, in the maximum value of the coherence factors. The
dimensionless coupling constant therefore still grows as one
approaches the phase transition. As the sublattice magnetiza-
tion is more robust for the stripe phase than the Néel phase
(Fig. 8), the maximum value of λ actually ends up being
slightly higher for the stripe phase due to a larger value for
Q̃0. As the critical temperature is very sensitive to λ, the
critical temperature rises up quite dramatically on the stripe
side of the transition in our calculation. The main conclusion
from the stripe phase is that increasing the fluctuations by
approaching the transition to the Néel phase can be favorable
for the superconductivity and that the more stable sublattice
magnetization of the stripe phase can be an advantage.
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VIII. SUMMARY

We have investigated superconductivity in a normal metal,
induced by an interfacial coupling to an antiferromagnetic
insulator. We have shown that next-nearest neighbor frus-
tration in a Néel antiferromagnet with an uncompensated
interface can lead to an enhancement of the superconducting
critical temperature. Moreover, coupling to an uncompensated
antiferromagnetic interface is found to be favorable for the
superconductivity regardless of whether the antiferromagnet
is in a Néel phase or a stripe phase. For the stripe phase,
arising from large next-nearest neighbor interaction in the
antiferromagnet, we find that amplifying the magnetic fluc-
tuations by approaching the transition to the Néel phase, once
again, can lead to a rise in the critical temperature.
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APPENDIX: DERIVATION OF THE EFFECTIVE
INTERACTION

In order to obtain an effective theory of interacting elec-
trons, we choose

ηS(A) = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

[(
xα,↑↓
k,k′quk↑uk′↓α

†
k↑αk′↓

+ yβ,↓↑
k,k′qvk↑vk′↓β

†
−k′↓β−k↑ − z−,↑↓

k,k′q uk↑vk′↓α
†
k↑β

†
−k′↓

−  
+,↓↑
k,k′q vk↑uk′↓αk′↓β−k↑

)
c†
q↓ck+q−k′↑

+ (
xα,↓↑
k,k′quk↓uk′↑α

†
k↓αk′↑ + yβ,↑↓

k,k′qvk↓vk′↑β
†
−k′↑β−k↓

− z−,↓↑
k,k′q uk↓vk′↑α

†
k↓β

†
−k′↑

−  
+,↑↓
k,k′q vk↓uk′↑αk′↑β−k↓

)
c†
q↑ck+q−k′↓

]
,

(A1)

and

ηS(B) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

[(
yα,↑↓
k,k′qvk↓vk′↑α

†
−k′↑α−k↓

+ xβ,↓↑
k,k′quk↓uk′↑β

†
k↓βk′↑ − z+,↓↑

k,k′q vk↓uk′↑α−k↓βk′↑

−  
−,↑↓
k,k′q uk↓vk′↑α

†
−k′↑β

†
k↓

)
c†
q↓ck+q−k′↑

+ (
yα,↓↑
k,k′qvk↑vk′↓α

†
−k′↓α−k↑ + xβ,↑↓

k,k′quk↑uk′↓β
†
k↑βk′↓

− z+,↑↓
k,k′q vk↑uk′↓α−k↑βk′↓

−  
−,↓↑
k,k′q uk↑vk′↓α

†
−k′↓β

†
k↑

)
c†
q↑ck+q−k′↓

]
,

(A2)

where

xα,↑↓
k,k′q = 1

εk+q−k′ − εq + ωk′↓α − ωk↑α

, (A3a)

yβ,↓↑
k,k′q = 1

εk+q−k′ − εq + ωk↑β − ωk′↓β

, (A3b)

z−,↑↓
k,k′q = 1

εk+q−k′ − εq − ωk↑α − ωk′↓β

, (A3c)

 
+,↓↑
k,k′q = 1

εk+q−k′ − εq + ωk′↓α + ωk↑β

, (A3d)

and, e.g.,

z+,↑↓
k,k′q = 1

εk+q−k′ − εq + ωk↑α + ωk′↓β

, (A4a)

 
−,↓↑
k,k′q = 1

εk+q−k′ − εq − ωk′↓α − ωk↑β

. (A4b)

Prior to commencing a calculation of the commutators, it
turns out to be advantageous to further split up the terms in
the interaction Hamiltonian,

H (L)
int = H (L,+)

int + H (L,−)
int , (A5)

where

H (A,+)
int = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

(
uk↑uk′↓α

†
k↑αk′↓

+ vk↑vk′↓β−k↑β
†
−k′↓ − uk↑vk′↓α

†
k↑β

†
−k′↓

− vk↑uk′↓β−k↑αk′↓
)
c†
q↓ck+q−k′↑,

(A6)

H (A,−)
int = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

(
uk↓uk′↑α

†
k↓αk′↑

+ vk↓vk′↑β−k↓β
†
−k′↑ − uk↓vk′↑α

†
k↓β

†
−k′↑

− vk↓uk′↑β−k↓αk′↑
)
c†
q↑ck+q−k′↓,

(A7)

H (B,+)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
vk↓vk′↑α−k↓α

†
−k′↑

+ uk↓uk′↑β
†
k↓βk′↑ − vk↓uk′↑α−k↓βk′↑

− uk↓vk′↑β
†
k↓α

†
−k′↑

)
c†
q↓ck+q−k′↑,

(A8)

H (B,−)
int = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
vk↑vk′↓α−k↑α

†
−k′↓

+ uk↑uk′↓β
†
k↑βk′↓ − vk↑uk′↓α−k↑βk′↓

− uk↑vk′↓β
†
k↑α

†
−k′↓

)
c†
q↑ck+q−k′↓.

(A9)

When calculating the boson commutators, leaving us with
four electron operators and two boson operators, and exchang-
ing the pair of remaining boson operators with its ground-state
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expectation value, we find that only processes where the two
incoming electrons have opposite spins give nonzero contri-
butions. These processes then conserve the electron spin and
are of the same type as the processes one obtains from a
Holstein-Primakoff treatment of the magnetic system [3,5,6].
The pairing Hamiltonian can then be written as

Hpair = 1

2

∑
LL′σ

[
H (L,σ )

int , ηS(L′,−σ )
]
, (A10)

where

ηS(A,+) = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

(
xα,↑↓
k,k′quk↑uk′↓α

†
k↑αk′↓

+ yβ,↓↑
k,k′qvk↑vk′↓β

†
−k′↓β−k↑ − z−,↑↓

k,k′q uk↑vk′↓α
†
k↑β

†
−k′↓

−  
+,↓↑
k,k′q vk↑uk′↓αk′↓β−k↑

)
c†
q↓ck+q−k′↑,

(A11)

ηS(A,−) = −2J̄ 

N

∑
q∈�

∑
kk′

∈ RBZ

(
xα,↓↑
k,k′quk↓uk′↑α

†
k↓αk′↑

+ yβ,↑↓
k,k′qvk↓vk′↑β

†
−k′↑β−k↓ − z−,↓↑

k,k′q uk↓vk′↑α
†
k↓β

†
−k′↑

− +,↑↓
k,k′q vk↓uk′↑αk′↑β−k↓

)
c†
q↑ck+q−k′↓, (A12)

ηS(B,+) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
yα,↑↓
k,k′qvk↓vk′↑α

†
−k′↑α−k↓

+ xβ,↓↑
k,k′quk↓uk′↑β

†
k↓βk′↑ − z+,↓↑

k,k′q vk↓uk′↑α−k↓βk′↑

−  −,↑↓
k,k′q uk↓vk′↑α

†
−k′↑β

†
k↓

)
c†
q↓ck+q−k′↑,

(A13)

ηS(B,−) = 2J̄

N

∑
q∈�

∑
kk′

∈ RBZ

(
yα,↓↑
k,k′qvk↑vk′↓α

†
−k′↓α−k↑

+ xβ,↑↓
k,k′quk↑uk′↓β

†
k↑βk′↓ − z+,↑↓

k,k′q vk↑uk′↓α−k↑βk′↓

−  −,↓↑
k,k′q uk↑vk′↓α

†
−k′↓β

†
k↑

)
c†
q↑ck+q−k′↓.

(A14)
Computing the commutators, grouping together terms, and

exchanging the boson operator pairs by their ground-state
expectation value, we obtain

Hpair = HAA + HBB + HAB + HBA, (A15)

where

HAA = 2 V
2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
xα,↓↑
k′,k,l − xα,↑↓

k,k′,q

)
u2
k↑u

2
k′↓

×
(
〈α†

k↑αk↑〉−〈α†
k′↓αk′↓〉

)
+

(
yβ,↓↑
k,k′,q − yβ,↑↓

k′,k,l

)
v2
k↑v

2
k′↓

×
(
〈β†

−k↑β−k↑〉−〈β†
−k′↓β−k′↓〉

)
+

(
z−,↑↓
k,k′,q −  

+,↑↓
k′,k,l

)

× u2
k↑v

2
k′↓

(
〈α†

k↑αk↑〉 + 〈β†
−k′↓β−k′↓〉 + 1

)

+
(
z−,↓↑
k′,k,l −  +,↓↑

k,k′,q

)
v2
k↑u

2
k′↓

(
〈β†

−k↑β−k↑〉

+ 〈α†
k′↓αk′↓〉 + 1

)}
c†
q↓ck+q−k′↑c

†
l↑ck′+l−k↓, (A16)

HBB = V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
yα,↓↑
k′,k,l − yα,↑↓

k,k′,q

)
v2
k↓v

2
k′↑

×
(
〈α†

−k′↑α−k′↑〉 − 〈α†
−k↓α−k↓〉

)
+

(
xβ,↓↑
k,k′,q − xβ,↑↓

k′,k,l

)

× u2
k↓u

2
k′↑

(
〈β†

k′↑βk′↑〉 − 〈β†
k↓βk↓〉

)
+

(
 

−,↓↑
k′,k,l − z+,↓↑

k,k′,q

)

× v2
k↓u

2
k′↑

(
〈β†

k′↑βk′↑〉 + 〈α†
−k↓α−k↓〉 + 1

)

+
(
 

−,↑↓
k,k′,q − z+,↑↓

k′,k,l

)
u2
k↓v

2
k′↑

(
〈α†

−k′↑α−k′↑〉

+ 〈β†
k↓βk↓〉 + 1

)}
c†
q↓ck+q−k′↑c

†
l↑ck′+l−k↓, (A17)

HAB = − 
V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
yα,↓↑
−k,−k′,l − yα,↑↓

−k′,−k,q

)
uk↑uk′↓

× vk↑vk′↓
(
〈α†

k↑αk↑〉−〈α†
k′↓αk′↓〉

)
+

(
xβ,↓↑
−k′,−k,q

− xβ,↑↓
−k,−k′,l

)
vk↑vk′↓uk↑uk′↓

(
〈β†

−k↑β−k↑〉−〈β†
−k′↓β−k′↓〉

)

+
(
 

−,↑↓
−k′,−k,q

− z+,↑↓
−k,−k′,l

)
uk↑vk′↓vk↑uk′↓

(
〈α†

k↑αk↑〉

+ 〈β†
−k′↓β−k′↓〉 + 1

)
+

(
 

−,↓↑
−k,−k′,l − z+,↓↑

−k′,−k,q

)
vk↑uk′↓

× uk↑vk′↓
(
〈β†

−k↑β−k↑〉 + 〈α†
k′↓αk′↓〉 + 1

)}

× c†
q↓ck+q−k′↑c

†
l↑ck′+l−k↓, (A18)

HBA = − 
V 2

2N

∑
ql

∈ �

∑
kk′

∈ RBZ

{(
xα,↓↑
−k,−k′,l − xα,↑↓

−k′,−k,q

)
vk↓vk′↑

× uk↓uk′↑
(
〈α†

−k′↑α−k′↑〉 − 〈α†
−k↓α−k↓〉

)
+

(
yβ,↓↑
−k′,−k,q

− yβ,↑↓
−k,−k′,l

)
uk↓uk′↑vk↓vk′↑

(
〈β†

k′↑βk′↑〉 − 〈β†
k↓βk↓〉

)

+
(
z−,↓↑
−k,−k′,l −  +,↓↑

−k′,−k,q

)
vk↓uk′↑uk↓vk′↑

(
〈β†

k′↑βk′↑〉

+ 〈α†
−k↓α−k↓〉 + 1

)
+

(
z−,↑↓
−k′,−k,q

−  +,↑↓
−k,−k′,l

)
uk↓vk′↑

× vk↓uk′↑
(
〈α†

−k′↑α−k′↑〉 + 〈β†
k↓βk↓〉 + 1

)}

× c†
q↓ck+q−k′↑c

†
l↑ck′+l−k↓. (A19)

Here, we have defined, V ≡ 2J̄/
√
N .

When considering the ground-state expectation value of the
boson operator pairs, we only get contributions from ↑-bosons
with momentum k = 0, as the ground state is a condensate of
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↑-bosons. Further, restricting to the BCS case of incoming, as
well as outgoing, particles with opposite momenta, the result
for the effective interaction is Hpair = H (1)

pair + H (2)
pair where

H (1)
pair = V 2

N

(
u2

0↑ + v2
0↑

)
n0↑

∑
q∈�

∑
k∈

RBZ

A(k,)

× 2ωk↓
(εq+k − εq)2 − ω2

k↓
c†
q↓cq+k↑c†

−q↑c−q−k↓, (A20)

and

H (2)
pair = V 2

N

∑
q

∈ �

∑
kk′

∈ RBZ

B(k, k′,)

× 2(ωk↑ + ωk′↓)

(εq+k−k′ − εq)2 − (ωk↑ + ωk′↓)2

× c†
q↓cq+k−k′↑c

†
−q↑c−q+k′−k↓. (A21)

The functions A and B are defined in the main text. The
contributions to H (1)

pair come from the expectation value of the
↑-bosons with momentum k = 0, n0↑, while the contributions
to H (2)

pair originate with the terms without boson operators.

Moving the contributions from H (2)
pair where k = 0 over to H (1)

pair ,

and using u2
0↑, v2

0↑ � 1, we can rewrite H (1)
pair as

H (1)
pair =V 2Q̃0

∑
q∈�

∑
k∈

RBZ

A(k,)

× 2ωk↓
(εq+k − εq)2 − ω2

k↓
c†
q↓cq+k↑c†

−q↑c−q−k↓, (A22)

where Q̃0 is a quantity of order unity, closely related to the
sublattice magnetization.
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We perform Eliashberg calculations for magnon-mediated superconductivity in a normal metal, where the
electron-magnon interaction arises from interfacial coupling to antiferromagnetic insulators. In agreement
with previous studies, we find p-wave pairing for large doping when the antiferromagnetic interfaces are
uncompensated and d-wave pairing close to half filling when the antiferromagnetic interfaces are compensated.
However, for the p-wave phase, we find a considerable reduction in the critical temperature compared to previous
weak-coupling results, as the effective frequency cutoff on the magnon propagator in this case is found to be
much smaller than the cutoff on the magnon spectrum. The d-wave phase, on the other hand, relies less on
long-wavelength magnons, leading to a larger effective cutoff on the magnon propagator. Combined with a large
density of states close to half filling, this might allow the d-wave phase to survive up to higher critical tem-
peratures. Based on our findings, we provide insight into how to realize interfacially induced magnon-mediated
superconductivity in experiments.

DOI: 10.1103/PhysRevB.104.014508

I. INTRODUCTION

For conventional superconductors, the fluctuations respon-
sible for Cooper pairing of electrons are provided by phonons
[1]. As the role of the phonons is simply to introduce attrac-
tive interaction between electrons, superconductivity can in
principle arise from exchange of any bosonic quasiparticle
that is able to provide a similar attractive interaction [2–5].
One alternative that has received much attention is exchange
of paramagnetic spin fluctuations [6,7]. The idea is that the
spins in a paramagnet, close to magnetic ordering, can act like
a medium that can be polarized by the spin of an electron.
Another electron can then interact with the polarized medium,
giving rise to an effective interaction between the electrons.
The quasiparticle mediating the interaction, the paramagnon,
represents a damped spin-wave propagating in an ordered
patch of the paramagnet [8,9].

The paramagnon exchange mechanism has been proposed
to be closely related to the superconductivity of heavy fermion
materials [10–12] and high-Tc cuprates [13,14]. In the context
of the Hubbard model, paramagnon exchange has been found
to give rise to p-wave superconductivity for small isotropic
Fermi surfaces and d-wave superconductivity closer to half
filling [11]. This d-wave superconductivity arises from anti-
ferromagnetic fluctuations, so that the interaction is peaked at
finite momentum. Although the spin-singlet s-wave channel is
repulsive, the d-wave channel is then able to become attractive
by taking advantage of sign changes in the gap function [6].

In these systems, superconductivity arises from interac-
tions between fermions due to their own collective spin
excitations [13–15]. Spin-fluctuation mediated superconduc-
tivity may also occur in heterostructures with itinerant

*These authors contributed equally to this work.
†Corresponding author: asle.sudbo@ntnu.no

fermions proximity coupled to the spins of insulating materi-
als [16–24]. Since the spins and the itinerant fermions are then
separate degrees of freedom, this provides a simpler context to
study superconductivity mediated by spin fluctuations.

Magnon-mediated superconductivity induced in a normal
metal (NM) due to proximity coupling to a magnetic insulator
has so far been investigated within a weak-coupling BCS
framework [18,20–22]. The first case to be considered was a
NM coupled to ferromagnetic insulators, which was found to
give rise to p-wave pairing [18]. Similarly, for a NM coupled
to an antiferromagnetic insulator (AFMI), p-wave solutions
were obtained for large dopings by exploiting the inherent
squeezing of antiferromagnetic magnons [25] by coupling
the conduction electrons in the NM asymmetrically to the
two sublattices of the AFMI [21]. This sublattice coupling
asymmetry suppresses sublattice interferences in the pairing
potential, which are very unfavorable for the p-wave phase.
A general asymmetry of this type can be realized by em-
ploying an antiferromagnetic interface where both sublattices
are exposed (compensated interface), but further breaking the
sublattice symmetry by using an antiferromagnetic material
with two different atoms on the two sublattices. The par-
ticularly relevant case of coupling to only one of the two
sublattices is, however, achieved through an uncompensated
antiferromagnetic interface where only one of the two sublat-
tices is exposed [26–28].

For the case of a compensated antiferromagnetic inter-
face, the magnons live in a Brillouin zone which is reduced
compared to the electron Brillouin zone. This introduces
electron-magnon scattering processes of two types: regular
and Umklapp [29,30]. In the regular processes, the elec-
trons are scattered with a momentum within the first magnon
Brillouin zone. In the Umklapp processes, on the other
hand, the outgoing electron receives an additional momentum
corresponding to a magnon reciprocal space lattice vector.
The Umklapp processes are of little relevance for the small
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Fermi surfaces considered in Ref. [21], but closer to half
filling they have been predicted to give rise to d-wave su-
perconductivity in a normal metal sandwiched between two
compensated antiferromagnetic interfaces [20]. Analogously
to the case of paramagnon exchange in the Hubbard model,
the d-wave pairing arises from a repulsive s-wave channel and
an interaction that is peaked at finite momentum.

We also note that a normal metal coupled to a compensated
antiferromagnetic interface is similar to a single material with
antiferromagnetically ordered localized spins and itinerant
electrons treated as separate degrees of freedom, considered,
e.g., in Refs. [31–33]. While Ref. [31] simply found the spin
singlet s-wave channel to be repulsive for magnon-mediated
pairing, Ref. [32] also considered the spin triplet channel
and found p-wave superconductivity due to their treatment
not probing the interference effects discussed in Ref. [21].
Reference [33], on the other hand, found that two-magnon
scattering processes were dominant for small Fermi surfaces
due to the strong destructive interference for one-magnon
processes, while spin singlet d-wave pairing driven by one-
magnon processes could be possible for larger Fermi surfaces.

A notable difference between the electron-phonon cou-
pling in common weak-coupling superconductors and the
electron-magnon coupling considered in the present study is
the behavior of the coupling matrix element in the limit of
small momentum transfers. Since the electron-phonon cou-
pling represents a coupling between electrons and spatial
fluctuations of ion densities, it vanishes at zero momentum.
In contrast, the coupling between the spins of itinerant elec-
trons and the localized spins of the magnetic insulator is local
and therefore constant in momentum space. For the magnon-
mediated superconductivity discussed in the above references,
this allows processes with small scattering momentum and
small magnon frequencies to dominate the superconducting
pairing. In turn, these small momentum processes can com-
pensate for the relatively small interfacial coupling strength
of order 10 meV [18,34], which is typically smaller than the
energy scale for the electron-phonon coupling giving rise to
phonon-mediated superconductivity [35,36].

When the dominant contributions to the pairing arise from
long-wavelength magnons, one should expect that it may no
longer be reasonable to use the cutoff on the boson spectrum
as the characteristic boson energy setting the energy scale for
the critical temperature. This is not captured in simple BCS
theory, which does not consider the frequency dependence
of the bosonic fluctuation spectrum responsible for pairing.
Furthermore, renormalization of both electrons and bosons is
neglected in BCS theory, and these effects could turn out to
play a more essential role here. Although BCS theory explains
phonon-mediated superconductivity in weak-coupling super-
conductors reasonably well, a more detailed analysis may be
required when other pairing mechanisms are involved.

In this paper, we therefore investigate superconductivity
induced in a NM by interfacial coupling to antiferromagnetic
insulators using an Eliashberg theory framework. In addition
to exploring how the existing results change when the electron
renormalization and the proper frequency dependence of the
electron-magnon interaction are taken into account, we also
study the effect of magnon renormalization and discuss the
importance of vertex corrections. Instead of focusing only on

regular [21] or Umklapp processes [20], we simultaneously
take both types of processes into account and examine how
the superconductivity varies with both chemical potential and
asymmetry in the coupling to the two sublattices of the anti-
ferromagnet.

In agreement with earlier results, we find a p-wave phase
for large sublattice coupling asymmetry and large doping, and
a d-wave phase for small sublattice coupling asymmetry and
small doping. For the p-wave phase, the critical temperature
is considerably reduced compared to previous weak-coupling
studies due to the reduction of the effective magnon frequency
cutoff. However, the d-wave phase is found to be less reliant
on exchange of long-wavelength magnons. This leads to a
larger effective cutoff. Near half filling, the reduction in the
contributions from long-wavelength magnons for the d-wave
phase can be compensated by a larger density of states, open-
ing up for the possibility of larger critical temperatures. For
a strongly nested Fermi surface, however, one needs to con-
sider, e.g., the possibility of a competing spin-density wave
instability. Moreover, while a sufficiently large gap in the
magnon spectrum may be necessary to protect the ordering of
the magnet upon inclusion of magnon renormalization, the net
effect on possible critical temperatures is found to be small.

In Sec. II, we present the model of our system. In Sec. III,
we outline the Eliashberg theory for magnon-mediated super-
conductivity. We further derive the Fermi surface averaged
Eliashberg equations in Sec. IV and present results for these
equations in Sec. V. In Sec. VI we move on to the effect
of renormalization of the magnons. Finally, we discuss the
validity of the results as well as additional neglected effects in
Sec. VII, and experimental considerations in Sec. VIII, before
we summarize in Sec. IX. Additional details, as well as a
discussion of the role of vertex corrections, can be found in
the Appendices.

II. MODEL

We consider a trilayer heterostructure consisting of a
normal metal sandwiched between two antiferromagnets, as
shown in Fig. 1. The experimental realization of the sys-
tem would consist of a thin NM layer between two thicker
AFMI layers. For simplicity, we model the system using
two-dimensional lattice models for the three distinct layers.
We assume that the antiferromagnets have staggered magnetic
order along the z direction in spin space and that this order
is opposite in the two antiferromagnets. In general, the spin
space z direction can be either in-plane or out-of-plane in real
space for our model.

We model the system with the Hamiltonian H = HNM +
HAFMI + Hint, where

HNM = −
∑
i j,σ

ti jc
†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ , (1a)

HAFMI =
∑
i j,η

Ji jSiη · S jη − K
∑
i,η

(
Sziη

)2
, (1b)

Hint = −2J̄
∑
η,ϒ

∑
i∈ϒ

�
η

ϒc
†
i σci · Siη, (1c)

and the terms describe the normal metal, the antiferromagnetic
insulators, and the interfacial coupling between the materials.
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FIG. 1. A trilayer consisting of a normal metal (NM) layer sand-
wiched between two antiferromagnetic insulator (AFMI) layers. The
A and B sublattices of the AFMIs consist of the blue and red lattice
sites, respectively. The two AFMIs are oppositely ordered so that
the spins associated with a specific sublattice are oppositely oriented
for the highest (H) and lowest (L) AFMI. The coupling to the A
sublattices of both AFMIs is taken to be of equal strength (J̄�A),
and similarly for the B sublattices, so that the itinerant electrons in
the NM experience no net magnetic field. The coupling to the A
sublattices is, however, allowed to differ from the coupling to the
B sublattices.

The sums over i, j denote sums over lattice sites, the sum over
η ∈ {H,L} denotes a sum over the the two antiferromagnetic
insulators, and the sum over ϒ ∈ {A,B} denotes a sum over
the sublattices. All three layers are modelled by square lat-
tices with periodic boundary conditions. In the normal metal,
our model describes spinful electrons with annihilation and
creation operators ciσ and c†

iσ for an electron on site i with
spin σ . The electron chemical potential is expressed as μ,
and ti j is the hopping amplitude, which we set to t for near-
est neighbors and zero otherwise. The AFMIs in our model
consist of localized lattice site spins, where Siη denotes the
spin on site i in antiferromagnet η. The exchange coupling
between the spins on lattice sites i and j is Ji j , which we
assume to take the value J1 > 0 for nearest neighbor and
J2 for next-nearest neighbor sites. Moreover, K > 0 denotes
the easy axis anisotropy. The interfacial coupling between
the materials is included as an effective exchange interaction
J̄ between the lattice site spins in the antiferromagnets and
the spins of the conduction band electrons that are confined
to the normal metal [18,20,34,37,38]. We use the notation
ci = (ci↑, ci↓)T and have taken σ to denote the Pauli ma-
trix vector in spin space. In order to be able to introduce
asymmetry in the coupling between the normal metal and the
two sublattices of the antiferromagnets, we have included a
dimensionless, sublattice- and layer-dependent, parameter �

η

ϒ

in the interaction Hamiltonian [21–23]. In order to eliminate
any magnetic fields, we will be focusing on equal coupling
to the two antiferromagnets [20] and therefore let �

η

ϒ ≡ �ϒ .
In the following, we set h̄ = a = 1, with a being the lattice
constant.

The normal metal Hamiltonian can be diagonalized to ob-
tain

HNM =
∑

k∈�,σ

ξk c
†
kσ ckσ , (2)

R
U

(a) (b)

FIG. 2. (a) Electron (gray) and magnon (orange) Brillouin zones
with labeling of high symmetry points. We refer to the magnon
Brillouin zone as the reduced Brillouin zone (RBZ). The antifer-
romagnetic ordering vector Q is also indicated. (b) Fermi surface
(green) at moderate doping. Electrons can be scattered from k (black)
to points k + q inside the shaded red part of the Brillouin zone
through regular processes and to points k + q + Q in the shaded blue
part of the Brillouin zone through Umklapp processes.

where the quasimomentum sum runs over the full Brillouin
zone, we have defined ξk = εk − μ, and the single particle
electron dispersion relation is given by εk = −2t (cos kx +
cos ky). To determine the eigenexcitations of the antifer-
romagnetic insulator, we introduce the linearized Holstein-
Primakoff transformation to represent the spins in terms of
bosons aiη and biη on the two sublattices of the system.
Further, introducing the Fourier transformed operators aqη
and bqη, one may diagonalize the AFMI Hamiltonian using
a Bogoliubov transformation

aqη = uqαqη + vqβ
†
−qη, (3a)

b†
−qη = uqβ

†
−qη + vqαqη, (3b)

as detailed in Appendix A. By suitable choice of coherence
factors uq and vq, the AFMI Hamiltonian takes the form

HAFMI =
∑
q∈♦,η

ωq(α†
qηαqη + β†

qηβqη ), (4)

with eigenmagnon operators αqη and βqη, magnon dispersion
ωq, and where the quasimomentum q runs over the reduced
Brillouin zone, as illustrated in Fig. 2(a).

As shown in Refs. [21,23], the electron-magnon coupling
in this system in general consists of staggered and net mag-
netic fields, as well as electron scattering processes of both
regular and Umklapp type. In our case, all net and staggered
magnetic fields from the two opposing antiferromagnetic lay-
ers cancel.

The interaction Hamiltonian then takes the form

Hint = V
∑
k ∈ �
q ∈ ♦

[
MR

q c
†
k+q,↓ck,↑ + MU

q c
†
k+q+Q,↓ck,↑

+ (
MR

−q

)†
c†
k+q,↑ck,↓ + (

MU
−q

)†
c†
k+q+Q,↑ck,↓

]
, (5)

where we have defined the magnon operators Mκ
q = Mκ

qH +
Mκ

qL with

Mκ
qH = �AaqH + κ �Bb

†
−qH , (6a)

Mκ
qL = �Aa

†
−qL + κ �BbqL. (6b)
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Here, κ ∈ {R,U } is an index characterizing whether the corre-
sponding electron scattering process is of regular or Umklapp
type, which we associate with the values R → +1 and U →
−1 in the definition of Mκ

q . Examples of regular and Umklapp
scattering processes are shown in Fig. 2(b). We have also
defined the momentum shift vector Q = π (x̂ + ŷ) occurring in
the Umklapp scattering processes, and the interaction strength
parameterV ≡ −2J̄

√
S/N , where S is the spin quantum num-

ber of the AFMI lattice site spins and N the number of lattice
sites. In terms of the eigenmagnon operators αqη, βqη, we may
also express the magnon operators Mκ

q as

Mκ
q = (�Auq + κ �Bvq)(αqH + α

†
−qL )

+ (�Avq + κ �Buq)(β†
−qH + βqL ), (7)

so that we may think of the magnon operators Mκ
q as linear

combinations of antiferromagnetic eigenmagnon operators
with a given spin and momentum.

III. ELIASHBERG THEORY

A. Magnon propagators

Since the magnon operators in the electron-magnon inter-
action only occur in the particular linear combinations Mκ

q , the
propagators of Mκ

q will be key building blocks in our Eliash-
berg theory. In the imaginary time formalism, we therefore
define the magnon propagator

Dκκ ′
(q, τ ) = −〈

TτM
κ
q (τ )

(
Mκ ′

q

)†
(0)

〉
, (8)

where Tτ is the time-ordering operator and the expectation
value is computed with the full Hamiltonian. In the noninter-
acting theory, one may utilize the eigenmagnon propagators
to show that

Dκκ ′
0 (q, iνm) = − 2Aκκ ′

e (q)
2ωq

ν2
m + ω2

q
, (9)

where νm = 2mπ/β is a bosonic Matsubara frequency and
β the inverse temperature. The boosting factors Aκκ ′

e (q) are
given by

ARR
e (q) = 1

2 [(�Auq+�Bvq)2 + (�Avq + �Buq)2], (10a)

AUU
e (q) = 1

2 [(�Auq − �Bvq)2+(�Avq − �Buq)2], (10b)

ARU
e (q) = AUR

e (q) = 1
2

(
�2

A − �2
B

)(
u2
q + v2

q

)
. (10c)

Here, uq and vq are the magnon coherence factors, aris-
ing from the Bogoliubov transformation, discussed in Ap-
pendix A. Inspecting the boosting factor corresponding to
regular scattering processes, we see that it coincides with the
boosting factor occurring from the canonical transformation
used to obtain the effective interaction potential in Ref. [21].

From the expressions for the regular and Umklapp boost-
ing factors ARR

e (q) and AUU
e (q), it is clear that in addition

to contributions from only the A and B sublattices propor-
tional to factors of �2

A and �2
B, there are in general also

interferences between contributions from the two sublattices.
Since uq is typically positive and vq is typically negative,
as discussed in Appendix A, we typically expect destructive
interference in the regular process boosting factor ARR

e (q) [21]
and constructive interference in the Umklapp process boosting

factor AUU
e (q). The significance of these interference effects

is controlled by the asymmetry in the coupling to the two
sublattices, where we find the strongest sublattice interfer-
ences when we couple equally to both sublattices, and that
all interference effects are removed when we couple to only
one sublattice. The mixed propagator boosting factors ARU

e
and AUR

e do not experience similar interferences.

B. Spinor representations

To study magnon-mediated superconductivity, we now
construct the Eliashberg theory for the system. To do this, we
first introduce the Nambu spinor

ψk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck↑
ck↓
c†
−k↑
c†
−k↓

ck+Q↑
ck+Q↓
c†
−k−Q↑
c†
−k−Q↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The corresponding Green’s function can then in general be
written as the 8 × 8 matrix

G(k, k′, τ ) = −〈Tτψk(τ )ψ†
k′ (0)〉, (12)

where we will also be using the notation G(k, k, τ ) = G(k, τ ).
After a Fourier transform, the imaginary time propagators
can be expressed through the Fourier coefficients G(k, iωn),
with fermionic Matsubara frequencies ωn = (2n + 1)π/β.
The 8 × 8 matrix can in general be spanned by the Pauli
matrix outer products

ρα ⊗ τβ ⊗ σγ , (13)

where α, β, γ ∈ {0, 1, 2, 3} and the Pauli matrix ρα acts
on the momentum sector degree of freedom, τβ on the
particle/hole degree of freedom, and σγ on the spin degree
of freedom.

We also introduce the magnon spinor

Bq = (
MR

q

(
MR

−q

)†
MU

q

(
MU

−q

)†)T
, (14)

where each magnon operator in the spinor corresponds to the
destruction of an excitation with momentum q and spin −1,
or the creation of an excitation with momentum −q and spin
+1. The magnon operator propagators can now be collected
in the magnon propagator matrix

Dγ γ ′ (q, τ ) = −〈
TτB

γ
q (τ )Bγ ′

−q(0)
〉
. (15)

After a Fourier transform, the propagator matrix takes the
form

D(q) =

⎛
⎜⎜⎜⎝

0 DRR(q) 0 DRU (q)

DRR(−q) 0 DUR(−q) 0

0 DUR(q) 0 DUU (q)

DRU (−q) 0 DUU (−q) 0

⎞
⎟⎟⎟⎠,

(16)
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FIG. 3. Feynman diagram expansion for interacting electron and
magnon propagators. Each vertex is associated with a factor Vgγ /4,
and electron and magnon propagators G and D are represented by
solid and dashed lines.

in terms of the previously introduced propagators Dκκ ′
. Here,

q = (q, iνm) is a three-vector containing both momentum
and the Matsubara frequency. As the magnon propaga-
tors respect time-reversal and inversion symmetry, we have
Dκκ ′

(−q) = Dκκ ′
(q). Further, the magnon propagators also

satisfy DRU (q) = DUR(q).
In spinor notation for the magnon and electron operators,

the interaction Hamiltonian can be written on the form

Hint = V

4

∑
k ∈ �
q ∈ ♦

∑
αβγ

gαβ
γ Bγ

q ψ
†
k+qαψkβ, (17)

where the sum over k runs over the full Brillouin zone, the sum
over q runs over the reduced Brillouin zone, and the index γ

corresponds to the various operators in the magnon spinor Bγ
q .

The matrices gγ are given by

g1 = f1 ⊗ ρ0, g2 = f2 ⊗ ρ0, (18a)

g3 = f1 ⊗ ρ1, g4 = f2 ⊗ ρ1, (18b)

where we have introduced the 4 × 4 matrices

f1 = 1
2 (σ1τ0 − iσ2τ3), (19a)

f2 = 1
2 (σ1τ0 + iσ2τ3), (19b)

acting on the spin and particle/hole degrees of freedom to
simplify the notation.

C. S-matrix expansion

Starting from the noninteracting electron Hamiltonian and
the spinor form of the interaction, we may now apply the
S-matrix expansion and use Wicks theorem to obtain a Feyn-
man diagram expansion for the electron Green’s function
G(k, iωn), as shown in Fig. 3. The resulting equation can be
solved for the electron Green’s function to obtain the Dyson
equation

G−1(k) = G−1
0 (k) − �(k), (20)

where �(k) is the self-energy, and G0(k) is the noninteracting
electron Green’s function given by

G−1
0 (k, iωn) = iωnρ0τ0σ0 − εkρ3τ3σ0 + μρ0τ3σ0. (21)

In the following, we neglect vertex corrections, which are
discussed more in Appendix D. We may then consider only
sunset type diagrams in the self-energy. Performing the S-
matrix expansion, we extract the self-energy

�(k) = −V 2

2β

∑
k′

∑
γ γ ′

θk−k′Dγ γ ′ (k − k′)gγG(k′)gγ ′ , (22)

as evident from the diagrammatic representation in Fig. 3 up
to signs and prefactors. Here, θq is defined by

θq =
{

1, q ∈ RBZ
0, q ∈ QBZ

}
(23)

and ensures that the magnon propagator momentum q = k −
k′ is restricted to the reduced Brillouin zone (RBZ) [39]. Here,
QBZ refers to the conjugate Brillouin zone which, together
with the RBZ, comprises the full electron Brillouin zone.

In the discussion so far, we have been using a Nambu
spinor ψk containing electrons at both k and k + Q. Thus,
the 8 × 8 matrix Green’s function G(k) may in general have
correlations between electrons at momenta k and k + Q. In
the following, we assume that the processes close to the Fermi
surface dominate the self-energy. Away from half filling, we
may then neglect the correlations which are off-diagonal in
the momentum sector, as they are suppressed by the large
electronic energy at momentum k + Q when k is close to the
Fermi surface. This is discussed in more detail in Appendix C.
The Green’s function G(k) and the self-energy �(k) then re-
duce to two uncoupled blocks of size 4 × 4 which are related
by k → k + Q. In the following, we therefore consider only
one of the two blocks.

D. Eliashberg equations

To derive the Eliashberg equations, we decompose the self-
energy matrix into contributions corresponding to the various
basis matrices σα ⊗ τβ for Hermitian 4 × 4 matrices. We set

� = (1 − Z )iωnσ0τ0 + χσ0τ3 + φsσ2τ2 + φtσ1τ1, (24)

where Z is the electron renormalization, χ is the quasiparticle
energy shift, φs is the spin singlet pairing amplitude, and φt

the amplitude for unpolarized spin triplet pairing.
Among the 16 possible terms on the form σα ⊗ τβ , we

have kept only four. Of the remaining 12 combinations, the
eight which do not conserve spin cannot occur because they
are incompatible with the spin structure of the self energy
diagram. The combinations τ3σ3 and τ0σ3 are disregarded
because they introduce spin-dependent quasiparticle renor-
malization, which is not expected to be present due to the
spin symmetry of the fermions in the system. Finally, we
could have introduced terms φ̃sτ1σ2 and φ̃tσ1τ2. However, the
associated fields φ̃s and φ̃t would play exactly the same roles
as φs and φt , and we therefore set them to zero.
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Due to symmetry relations between the electron correla-
tions in the Nambu spinor Green’s function matrix G(k) [40],
the normal Green’s function fields satisfy

Z (−k) = Z (k), Z (k, iωn) = Z (k,−iωn)∗, (25)

χ (−k) = χ (k), χ (k, iωn) = χ (k,−iωn)∗, (26)

and the anomalous correlations satisfy

φs(−k) = +φs(k), φs(k, iωn) = φs(k,−iωn)∗, (27)

φt (−k) = −φt (k), φt (k, iωn) = φt (k,−iωn)∗. (28)

We may now derive equations for the fields Z, χ, φs, φt by
inserting the form for � into the Dyson equation, inverting
the inverse G−1(k) and inserting G(k) into the self-energy
in Eq. (22). Comparing term by term, we then obtain the
equations

[1 − Z (k)]iωn = −V 2 1

β

∑
k′

D(k − k′)
iωn′Z (k′)

�(k′)
, (29a)

χ (k) = −V 2 1

β

∑
k′

D(k − k′)
ξk′ + χ (k′)

�(k′)
, (29b)

φs(k) = −V 2 1

β

∑
k′

D(k − k′)
φs(k′)
�(k′)

, (29c)

φt (k) = +V 2 1

β

∑
k′

D(k − k′)
φt (k′)
�(k′)

, (29d)

under the assumption that a single symmetry channel dom-
inates, so that either φs = 0 or φt = 0 [41]. We have also
introduced the combined magnon propagator

D(q) = θqDRR(q, iνm) + θq+QDUU (q + Q, iνm), (30)

where the argument q can now take on values in the full
electron Brillouin zone. The submatrix determinant �(k) is
given by

�(k) = [iωnZ (k)]2 − ξ̃ 2
k − |φs,t (k)|2, (31)

with anomalous correlation φs,t depending on whether we
consider a singlet or triplet instability, and where have in-
troduced ξ̃k = ξk + χ (k). In the following, we will assume
that the quasiparticle energy shift χ is small compared to
the electron bandwidth and that it can be neglected. Note the
opposite signs on the right hand side of the equations for φs

and φt . This occurs because the spin flips in the vertices of
the self-energy diagrams introduce a sign change for the spin
singlet amplitude but not for the spin triplet amplitude.

IV. FERMI SURFACE AVERAGED EQUATIONS

When the electron energy scale is large compared to the
magnon energy scale, the regions close to the Fermi surface
dominate the momentum sums in the Eliashberg equations.
We assume that the quasiparticle renormalization field close
to the Fermi surface is weakly dependent on momentum, so
that we may write Z (k, iωn) = Z (iωn). Furthermore, for a
single dominant pairing symmetry channel, we assume that
the anomalous correlations can be written in the product form

φs,t (k, iωn) = ψ (k)φs,t (iωn), where we assume some simple
functional form ψ (k) for the momentum dependence of the
relevant anomalous correlation.

Since we expect regions close to the Fermi surface to dom-
inate the momentum sum, we may split it into a perpendicular
and a parallel part, and neglect the perpendicular momentum
dependence of the magnon propagator. Close to the critical
temperature, one may furthermore linearize the Eliashberg
equations in the anomalous correlations. Converting the per-
pendicular momentum integration into an energy integral, one
then obtains

(1 − Z )iωn = 1

βNF

∑
ωn′

λ1(iωn − iωn′ )iωn′Z ′
∫
dξ

N (ξ )

�(ξ, iωn′ )
,

(32a)

φs,t = − 1

βNF

∑
ωn′

λs,t
2 (iωn − iωn′ ) φ′

s,t

×
∫
dξ

N (ξ )

�(ξ, iωn′ )
. (32b)

We have here introduced the dimensionless electron-
magnon coupling strength λ1(iωn − iωn′ ) occurring in the
quasiparticle renormalization equations and the modified cou-
pling strength λs,t

2 (iωn − iωn′ ) occurring in the anomalous
correlation equations. We have further denoted Z (k) by Z and
Z (k′) by Z ′, with similar notation also for the remaining fields,
and denoted the electron density of states by N (ξ ), which
takes on the value NF at the Fermi level. The dimensionless
coupling strengths are given by

λ1(iωn − iωn′ ) = −V 2

NF

∑
kk′

δ(ξk)δ(ξk′ )D(k − k′), (33)

λs,t
2 (iωn − iωn′ ) = −ζs,t

1

〈ψ2(k)〉FS

V 2

NF

∑
kk′

δ(ξk)δ(ξk′ )

× ψ (k)D(k − k′)ψ (k′), (34)

where ζs = −1 for spin singlet and ζt = +1 for spin triplet is
the sign associated with a spin flip in the anomalous pairing.
The brackets 〈 〉FS denote a Fermi surface average.

In the following, we assume that the density of states can
be approximated by a constant in the dominant region close to
the Fermi surface. We may then perform the energy integral
analytically to obtain

(1 − Z )iωn = − iπ

β

∑
ωn′

λ1(iωn − iωn′ ) sgn(ωn′ ), (35)

φs,t = +π

β

∑
ωn′

λs,t
2 (iωn − iωn′ )

φ′
s,t

|ωn′Z ′| . (36)

We next assume that the magnon propagator D can be re-
placed by the noninteracting propagator D0. Solving the
Eliashberg equations is then reduced to calculating di-
mensionless coupling strengths λ1,2 and solving eigenvalue
problems in the Matsubara frequencies. In Sec. VI, we inves-
tigate the effect of including the magnon self-energy.

In addition to introducing the dimensionless coupling
strengths λ1,2, we may follow the conventional routine and
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also introduce frequency dependent functions α2
1,2F (ω) de-

fined such that

λ1,2(iωn − iωn′ ) =
∫
dω α2

1,2F (ω)
2ω

(ωn − ωn′ )2 + ω2
. (37)

Comparing with the definition of λ1,2, this gives

α2
1F (ω) = V 2

NF

∑
kk′

δ(ξk)δ(ξk′ )δ(ω − ωk−k′ )Ae(k − k′),

(38)

α2
2F (ω) = ζs,t

1

〈ψ2(k)〉FS

V 2

NF

∑
kk′

δ(ξk)δ(ξk′ )δ(ω − ωk−k′ )

× ψ (k)Ae(k − k′)ψ (k′), (39)

where the boosting factor

Ae(q) = θqA
RR
e (q) + θq+QA

UU
e (q + Q), (40)

has been defined analogously to D(q).
The Eliashberg functions α2

1,2F (ω) and the electron-
magnon coupling strengths λ1,2(iνm) are central quantities in
the Fermi surface averaged Eliashberg equations. Through the
approximate formula

T AD
c = ωlog

1.2
exp

(
−1.04[1 + λ1(0)]

λ2(0)

)
, (41)

they can therefore be used to qualitatively understand the
critical temperatures resulting from actually solving the
Eliashberg equations. The above formula was suggested by
Allen and Dynes [42] for weak and intermediate electron-
boson coupling. We have set the Coulomb pseudopotential to
zero and use the logarithmic average

ωlog = ωa exp

[
2

λ2(0)

∫
dω ln

(
ω

ωa

)
α2

2F (ω)

ω

]
(42)

as the effective cutoff frequency, where ωa is an arbitrary
frequency scale.

V. SOLVING THE ELIASHBERG EQUATIONS

We now solve the Fermi surface averaged equations using
realistic material parameters, as detailed in Appendix E. We
set �A = 1 and use �B ≡ � ∈ [0, 1] to tune the sublattice
coupling asymmetry.

In order to compute the dimensionless coupling strengths
λ1,2, the momentum sums are transformed into integrals over
momenta on the Fermi surface. The quasiparticle renormal-
ization field Z (iωn) can then be calculated using Eq. (35).
Subsequently, we use Eq. (36) to determine the critical tem-
perature for the superconducting instability by finding the
temperature for which the largest eigenvalue of the eigenvalue
problem becomes 1 [43,44]. This gives the critical temper-
ature Tc of the superconducting instability. We consider three
different ansätze for the superconducting pairing, namely even
frequency spin triplet p-wave pairing, even frequency spin
triplet f -wave pairing, and even frequency spin singlet d-
wave pairing. These pairings dominate in different parts of
the parameter space of our model. Other pairing symme-
tries like even frequency spin singlet s-wave and different
odd frequency variants were not found to give rise to super-
conductivity. Figure 4(a) presents the phase diagram for our
model in the �-μ plane, where critical temperature normal-
ized to the maximum value within each phase is indicated
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FIG. 4. (a) Phase diagram in terms of sublattice coupling asym-
metry � = �B/�A and chemical potential μ below half filling. We
find spin triplet p-wave, spin triplet f -wave, and spin singlet d-
wave phases. The phase diagram is colored according to the critical
temperature normalized to the largest value in the phase diagram
within the same phase. Parameter regimes supporting multiple super-
conducting instabilities are colored according to the phase with the
largest critical temperature. The insets show the spin structure and
momentum structure on the Fermi surface for the various phases.
The various subfigures in (b) show the critical temperature Tc as a
function of � (left) and μ (right) along different lines in the phase
diagram.

by color intensity. The type of pairing is indicated by choice
of color (green/blue/red), where regimes supporting multiple
solutions are colored according to the phase with the largest
critical temperature. In the following, we discuss the different
superconducting phases in the phase diagram in more detail.

A. Spin triplet p-wave and f -wave pairing

For the even frequency spin triplet p-wave and f -wave
pairings, we consider anomalous pairing momentum depen-
dence on the form

ψp(k) = cos φk, (43a)

ψ f (k) = cos 3φk, (43b)
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where φk is the polar angle between the quasimomentum k on
the Fermi surface and the x axis. These momentum dependen-
cies are shown in the insets of the phase diagram.

As expected, and in agreement with the results of Ref. [21],
we find even frequency spin triplet p-wave superconductiv-
ity for small Fermi surfaces and large sublattice coupling
asymmetry, corresponding to small μ and �. For small Fermi
surfaces, all processes between points on the Fermi surface
are of the regular type. Since the magnon energy is small-
est for small q, minimizing the denominator of the magnon
propagator, the dominant contribution to the momentum sums
in the Eliashberg equations originate from small q. Without
sublattice coupling asymmetry (i.e., � = 1), coherence fac-
tor interference effects suppress the boosting factor ARR

e (q),
whereas � = 0 removes these interference effects completely
and makes p-wave superconductivity possible.

Setting � = 0, we also find an even frequency spin triplet
f -wave solution in the entire chemical potential range we have
considered. As shown in Fig. 4(b), the critical temperature
of the p-wave solution is larger than the critical temperature
of the f -wave solution for small Fermi surfaces. For Fermi
surfaces approaching half filling, however, the situation is
reversed due to emergence of subleading Umklapp processes.
The interaction providing spin triplet pairing is attractive for
scattering processes between k and k′ only when φ(k, iωn) and
φ(k′, iωn) have the same sign. Consider now the scattering
processes between points on the Fermi surface where the
momentum transfer is closest to Q, bringing the electron from
one side of the Fermi surface to the opposing side. From the
f -wave and p-wave momentum structure of the anomalous
correlations shown in the insets of Fig. 4(a), it is clear that
these processes are always repulsive in the p-wave phase and
typically attractive in the f -wave phase. This explains why
the f -wave phase has a higher critical temperature than the
p-wave phase upon approaching half filling. As discussed in
more detail in Sec. VIII, the combination of � = 0 and the
presence of Umklapp processes may, however, be challenging
to access experimentally.

Compared with the results of Ref. [21], we find signifi-
cantly lower critical temperatures for the p-wave phase. We
attribute this difference to the magnon energy cutoff. As long-
wavelength processes dominate, the characteristic magnon
frequency in the pairing interaction is much smaller than the
upper cutoff on the magnon spectrum. Since the characteristic
frequency serves as the energy scale for the critical temper-
ature, the critical temperature is then significantly reduced,
which is captured in the Eliashberg theory analysis.

More quantitatively, this argument can be understood in
terms of the Allen-Dynes formula of Eq. (41). Since the
boosting factor ARR

e (q) is peaked for small momenta q, and
the electron-magnon coupling strength V is momentum in-
dependent, the electron-magnon coupling function α2

2F (ω) is
peaked at small frequencies. This is shown in Fig. 5(a), where
the logarithmic average ωlog is indicated with a dashed line.
The effective magnon frequency for the superconducting pair-
ing is therefore significantly reduced compared to the largest
magnon frequency in the system. Further, the lower panel
of Fig. 5(c) shows λ1,2(iνm), which decays quickly beyond
the effective cutoff. Solving the Eliashberg equations gives
the solutions for the anomalous correlation φ(iωn), which
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FIG. 5. Eliashberg functions and Eliashberg equation solutions
for the p-wave regime (μ/t = −3.5 and � = 0) to the left and
d-wave regime (μ/t = −0.2 and � = 1) to the right. Subfigures
(a) and (b) show the Eliashberg function α2

2F (ω). Subfigures (c) and
(d) show the dimensionless electron-magnon coupling strengths
λ1,2(iνm ) as well as the Matsubara frequency dependence of the
quasiparticle renormalization Z (iωn) and the anomalous correlation
φ(iωn) at the critical temperatures for the respective superconducting
instabilities. The logarithmic average ωlog is shown with vertical
dashed lines.

also decays quickly beyond the cutoff, and the quasiparticle
renormalization Z (iωn), which decays to 1.

B. Spin singlet d-wave pairing

In the Eliashberg equations, the difference between the spin
triplet case in Eq. (29d) and the singlet case in Eq. (29c) is the
sign. Thus, the small momentum process pairing potential that
was attractive for spin triplet pairing becomes repulsive for
spin singlet pairing. To obtain singlet pairing attraction, we
therefore need to rely on dominant processes with a relative
sign between the anomalous pairing φs(k) on the left-hand
side and right-hand side of the equation. Since small momen-
tum processes cannot provide this sign change, we need to rely
on Umklapp processes. As an s-wave ansatz does not change
sign around the Fermi surface, we instead choose the d-wave
ansatz

ψd (k) = 1

2π
(cos kx − cos ky), (44)

shown in the inset of the phase diagram in Fig. 4(a). Since
the d-wave phase relies on Umklapp processes, it occurs
for chemical potentials μ approaching half filling in the
phase diagram. Furthermore, the Umklapp processes benefit
from the coherence factor interference in the boosting fac-
tor AUU

e (q), which is maximized for � = 1. Crucially, these
interferences also suppress the competing regular processes
with small momentum q, which would otherwise prevent
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spin singlet superconductivity. The d-wave phase therefore
occurs only for large � in the phase diagram. This picture
is also verified in Fig. 4(b), which shows the critical tem-
perature for the spin singlet d-wave phase as a function of
coupling asymmetry and as a function of chemical potential
at � = 1.

The electron-magnon coupling strength function α2
2F (ω)

is shown in Fig. 5(b). With � = 1, the regular small mo-
mentum processes are suppressed, and away from half filling,
the Umklapp processes between points on the Fermi surface
require the magnons to carry momentum which differs from
Q by a finite amount. Therefore, α2

2F (ω) takes on signifi-
cant values only beyond a relatively large lower frequency
cutoff. This cutoff corresponds to the magnon energy asso-
ciated with the smallest momentum necessary to bring an
Umklapp scattered electron with incoming momentum k from
k + Q and back to the Fermi surface. Moreover, it should be
noted that this smallest momentum depends on where on the
Fermi surface the electron was situated to begin with. At the
lowest relevant frequencies in α2

2F (ω), only a few momenta
k bring k + Q to a position where the momentum transfer
necessary to get back to the Fermi surface is associated with
a magnon energy that is small enough to match the frequency
ω. The function α2

2F (ω) then only obtains contributions from
a few points k that bring k + Q close enough to the Fermi
surface. As the frequency ω increases, α2

2F (ω) obtains con-
tributions from more points k as the restriction on how close
k + Q needs to be to the Fermi surface is relaxed. Therefore,
α2

2F (ω) is not peaked at small frequencies. The situation
should be contrasted with the p-wave case, where regular
scattering on the Fermi surface with vanishing momentum
is possible regardless of where on the Fermi surface the ini-
tial electron is situated. Denoting the magnon spectrum gap
by ω0, α2

2F (ω → ω0) therefore receives large contributions
from k − k′ ≈ 0 regardless of where on the Fermi surface k
is situated.

The reduced reliance of the d-wave pairing on processes
with small magnon energy gives rise to a larger effective
magnon frequency ωlog. This larger characteristic magnon
frequency suppresses the magnon propagator occurring in
λ1,2(iνm) for small Matsubara frequencies but also increases
the frequency scale over which the magnon propagator decays
compared to the p-wave regime. Together with a large density
of states close to half filling, this causes the significant criti-
cal temperatures that are observed for the d-wave regime in
Fig. 4(b). As shown in Fig. 5(d), the dimensionless electron-
magnon coupling strength λ1,2(iνm) decays to zero beyond
the effective cutoff frequency, whereas φ(iωn) has a crossover
from behavior 1/ωn to 1/ω3

n.

C. Effect of frustration

Since the superconductivity in our system relies on spin
fluctuations, we expect interactions in the AFMI spin model
that enhance fluctuations to also enhance the critical tem-
perature. Earlier weak-coupling studies have investigated the
effect of a frustrating next-nearest neighbor exchange cou-
pling J2 > 0 in the antiferromagnet on superconductivity
dominated by regular fermion-magnon scattering processes
[22,23]. In Fig. 6(a),we show how the critical temperature
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FIG. 6. Effect of frustrating the antiferromagnet with an next-to-
nearest neighbor exchange coupling J2. (a) Critical temperature for
the p-wave (at μ = −3.5t and � = 0) and d-wave (at μ = −0.2t
and � = 1) instabilities as a function of J2 frustrating the anti-
ferromagnet. (b) Magnon spectrum for different values of J2, as
indicated by the vertical dashed lines in (a), between Brillouin zone
high symmetry points as shown in Fig. 2(a). (c) Electron-magnon
coupling function α2

2F (ω) in the p-wave regime. (d) α2
2F (ω) in the

d-wave regime. Frustration reduces the magnon excitation energies
and enhance the spin fluctuations in the system. Thus, weight is
shifted from high magnon energies to low magnon energies in the
electron-magnon coupling function α2

2F (ω), and this increases the
critical temperature.

increases with J2 for both the p-wave and d-wave instabilities.
The effect of J2 on the superconductivity can be understood in
terms of the magnon excitation energies in Fig. 6(b), showing
that the magnon bands are flattened as J2 increases. As dis-
played in Figs. 6(c) and 6(d), this shifts weight from large to
the more significant small frequencies in the electron-magnon
coupling function α2

2F (ω), leading to a higher critical tem-
perature. Notably, increasing J2 does not affect the gap in the
magnon spectrum, meaning that the effective cutoff for the
p-wave phase is not much affected. For the d-wave phase, the
effective cutoff is somewhat reduced for larger J2, but trading
some cutoff for a larger dimensionless coupling strength λ2(0)
is nevertheless found to be beneficial. As the d-wave phase
has a smaller dimensionless coupling strength than the p-wave
phase, the increase of the dimensionless coupling strength
arising from J2 leads to a more dramatic increase in critical
temperature for the d-wave curve in Fig. 6(a).

VI. MAGNON RENORMALIZATION

To consider the effect of magnon renormalization, we con-
sider the electron bubble diagram shown in Fig. 3 and once
again neglect vertex corrections. Performing the S-matrix ex-
pansion, one may show that magnon propagators Dγ γ ′ satisfy
the Dyson equation

D−1(q) = D−1
0 (q) − �(q), (45)

where the polarization matrix is given by

�γγ ′ (q) = V 2

4β

∑
k

Tr [gγG(k + q)gγ ′G(k)]. (46)
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From the matrix structure of the matrices gγ , it follows that
�γγ ′ takes the form

�(q) =

⎛
⎜⎜⎜⎝

0 �RR(q) 0 �RU (q)

�RR(−q) 0 �UR(−q) 0

0 �UR(q) 0 �UU (q)

�RU (−q) 0 �UU (−q) 0

⎞
⎟⎟⎟⎠.

(47)

In principle, we should now solve the coupled equations for
the electron and magnon propagators. However, to estimate
the effect of magnon renormalization, we use the noninteract-
ing electron Green’s functions to calculate the polarizations.
Using the previous assumption of neglecting terms in the
electron Green’s function which are off-diagonal in momen-
tum sector, we may furthermore neglect the mixed process
polarizations �UR and �RU . This leaves the the regular and
Umklapp polarizations �RR and �UU , which reduce to

�RR
0 (q) = V 2

β

∑
k

G11
0 (k + q)G22

0 (k), (48)

�UU
0 (q) = V 2

β

∑
k

G11
0 (k + q + Q)G22

0 (k), (49)

where G11
0 and G22

0 are matrix elements in the noninteracting
electron Green’s function G0 corresponding to different spins.

Solving the Dyson equation for the magnon propagator,
one may show that the regular and Umklapp propagators
become

DRR(q) =
[(

1 − DUU
0 �UU

0

1 − rDUU
0 �UU

0

)
− DRR

0 �RR
0

]−1

DRR
0 (q), (50)

DUU (q) =
[(

1 − DRR
0 �RR

0

1 − rDRR
0 �RR

0

)
− DUU

0 �UU
0

]−1

DUU
0 (q),

(51)

where we have introduced the quantity

r(q) = 1 − AUR
e (q)ARU

e (q)

ARR
e (q)AUU

e (q)
. (52)

Here, the Umklapp polarization occurs in the regular propa-
gator and vice versa due to the presence of mixed magnon
propagators.

We note that in the special case � = 0 where we found
spin triplet pairing, we have r = 0 since all the boosting
factors are equal. In the opposite limit of � = 1 where we
found spin singlet d-wave pairing approaching half filling,
the mixed propagators vanish, so that r = 1 and each of the
two magnon propagators Dκκ (q) are just renormalized by the
corresponding polarization �κκ (q).

We may now calculate the regular and the Umklapp po-
larizations. Performing the Matsubara frequency sums in
Eqs. (48) and (49), we obtain the standard result

�RR
0 (q, iνm) = V 2

∑
p

(
nF(ξp) − nF(ξp+q)

iνm + ξp − ξp+q

)
, (53)

�UU
0 (q, iνm) = V 2

∑
p

(
nF(ξp) − nF(ξp+q+Q)

iνm + ξp − ξp+q+Q

)
, (54)
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FIG. 7. Polarization renormalizing the magnon propagator for
magnon scattering momenta q between points k and k′ on the Fermi
surface, corresponding to angles 0 and θ , as shown in the inset of
(a). The relative contributions λkk′ from the various points on the
Fermi surface to λ2(iνm = 0) is shown in purple. (a) shows the com-
bined polarization �R+U

0 (q, iνm ) and the contributions to λ2(0) for
μ/t = −3.5 and � = 0, where we expect p-wave superconductivity.
The dominant contributions to λ2(0) come from small momentum
processes close to θ = 0. (b) shows the polarization �̄(q, iνm ), corre-
sponding to �RR when k − k′ = q is inside, and �UU when k − k′ =
q is outside the reduced Brillouin zone. Dominant contributions to
λ2(0) come from Umklapp processes in vicinity to k − k′ = Q. The
temperature has been set to T = 1K in both subfigures.

where the momentum sums are evaluated in the thermody-
namic limit through numerical integration [45]. Using that
ξp = ξ−p, one may show that the imaginary part of the po-
larization vanishes, so that only the real part remains.

For � = 0 and a small Fermi surface, the relevant
processes are regular processes. The renormalization of
the regular propagator then depends on �R+U

0 (q, iνm) ≡
�RR

0 (q, iνm) + �UU
0 (q, iνm), where the Umklapp polariza-

tion �UU
0 is small. In Fig. 7(a) we present the polariza-

tion �R+U
0 (k − k′, iνm) together with the contributions to

λ2(iνm = 0) from the various momenta k′ on the Fermi sur-
face given incoming electron momentum k as shown in the
inset. The dominant contributions to λ2(iνm = 0) arise from
θ ≈ 0, which corresponds to scattering processes with small
momentum q = k − k′. In this region, the zero frequency po-
larization is more or less constant. Consistent with what we
expect from Eq. (53), the finite frequency polarizations ap-
proach zero as q → 0. The region where the finite frequency
polarizations deviate significantly from the zero frequency
polarization is, however, small compared to the region over
which we expect the dominant contributions to λ2 [46]. Hence
we may approximate the polarization for � = 0 and small
Fermi surface by a constant value �C ≈ �RR

0 (q → 0, iνm =
0) = −NFV 2.
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For � = 1, the regular and Umklapp propagators are sim-
ply renormalized by the regular and Umklapp polarizations,
respectively. Figure 7(b) therefore presents the polarization
�̄0(q, iνm) ≡ θq�

RR
0 (q, iνm) + θq+Q�UU

0 (q + Q, iνm), which
is relevant for the d-wave phase. Also shown are the con-
tributions to λ2(iνm = 0) as in Fig. 7(a). The polarization is
now weakly dependent on frequency, but it varies somewhat
with momentum in the relevant region. Qualitatively, it should
also in this case be possible to extract the effect of magnon
renormalization by setting the polarization to a constant value.

In the following, we consider the same two special cases as
above. For � = 0 and large doping, where we found p-wave
superconductivity, the relevant magnon propagator is DRR(q),
which can be written

DRR(q) = − 4ωqARR
e (q)

ν2
m + ω2

q + 4ωqARR
e (q)�C

. (55)

Thus, the magnon frequency in the denominator has been
replaced by an effective magnon frequency ωeff

q , given by
(
ωeff
q

)2 = ω2
q + 4ωqA

RR
e (q)�C . (56)

Since the polarization is negative, the effective magnon fre-
quency may turn imaginary, indicating that it is no longer
reasonable to start out from a Néel ordered state. At q = 0,
where the magnon energy is the smallest, it happens for

|�C | � 2KS

(
1 + K/2z1J1

1 + K/z1J1

)
, (57)

where z1 is the number of nearest neighbors.
For � = 1 and large Fermi surface, where we found d-

wave superconductivity, the two relevant propagators DRR and
DUU are given by

Dκκ (q) = − 4ωqAκκ
e (q)

ν2
m + ω2

q + 4ωqAκκ
e (q)�κκ

0

, (58)

with κ ∈ {R,U }. Similar to the previous special case, we
may now introduce an effective magnon frequency. Since the
unrenormalized magnon frequency is the smallest for q = 0
and the regular boosting factor ARR

e (q = 0) is suppressed due
to coherence factor interference, we expect that the effective
magnon frequency may primarily turn imaginary for Umklapp
processes close to q = 0. One may show that this happens for∣∣�UU

0

∣∣ � 1
2KS. (59)

Although the coupling to the electrons may therefore in
principle destroy the magnetic order in the antiferromag-
net, unsurprisingly, this does not happen as long as the
easy axis anisotropy is sufficiently large compared to the
polarization. A picture now emerges where the easy-axis
anisotropy and the magnon renormalization play opposite
roles stabilizing and destabilizing the magnetic order in the
antiferromagnet, respectively. Retaining magnetic order upon
inclusion of magnon renormalization requires a larger easy
axis anisotropy. The larger easy axis anisotropy has little ef-
fect on the numerator of the magnon propagator but shifts the
square of the magnon energies in the denominator upwards
by an almost constant value with respect to momentum when
J2/J1 is small. By choice of the easy-axis anisotropy, the
effect of the magnon renormalization on the effective magnon

frequencies can then be compensated. Superconductivity may
therefore still occur at critical temperatures similar to those
obtained by disregarding magnon renormalization.

VII. DISCUSSION

The Eliashberg equation solutions in this paper are
obtained using Fermi surface averaged equations, thus ne-
glecting the dependence of the magnon propagator and the
fields appearing in the Eliashberg equations on momentum
perpendicular to the Fermi surface. The justification for this
is as follows: Although the magnon propagator is momen-
tum dependent, the behavior of the right-hand side of the
Eliashberg equations when moving k′ away from the Fermi
surface is still dominated by the suppression arising from the
fermion energies in the denominator due to the large energy
scale of the electrons. In this case there are additional varia-
tions arising from the momentum dependence of the magnon
propagator. Thus, a possible avenue for further work could
be to take the full momentum dependence in the Eliashberg
equations into account in order to test the accuracy of our
approximation.

The results also rely on vertex corrections being small,
so that the series of vertex diagrams can be cut off after the
zeroth-order contribution. For phonon-mediated superconduc-
tivity, the smallness of the higher-order vertex diagrams is
ensured by Migdal’s theorem [47], which states that higher-
order diagrams are smaller by a factor ωE/EF , where ωE

is a characteristic phonon frequency. Migdal’s theorem is,
however, known to break down for long-wavelength phonons
[47,48] and in systems with strong Fermi surface nesting
[49–51]. Moreover, for reduced spatial dimensionality, the
reduction of the higher-order diagrams should be expected to
be less dramatic [51,52]. As the superconductivity studied in
this work relies on long-wavelength magnons and/or a two-
dimensional Fermi surface close to half filling, it then seems
plausible that vertex corrections could be of importance. A
discussion of the effect of vertex corrections in the present
system is presented in Appendix D. For large doping, we find
that vertex corrections can become of relevant magnitude but
that the region in momentum space where the corrections are
large might be small enough to limit their effect. Exactly at
half filling, the vertex corrections are expected to be quite
large, but their effect can be reduced by moving away from
half filling.

Upon approaching half filling, we would also at some point
expect onset of spin density wave correlations. Exactly at half
filling, one may straightforwardly generalize the above Eliash-
berg theory to accommodate the expected commensurate spin
density wave instability. Previously, this has been done for the
phonon-induced instability [53]. Below half filling, the com-
mensurate wave vector Q does not connect points on the Fermi
surface. We therefore expect the commensurate spin density
wave to be suppressed relative to superconductivity due to the
large electronic energy for processes between states which
are not on the Fermi surface. However, we may still have
incommensurate spin density waves, which are far more chal-
lenging to investigate theoretically. In this paper, we have been
investigating the properties of the superconducting phases,
and the highly nontrivial interplay between superconducting
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and spin density wave orders that we could potentially obtain
is beyond the scope of the present study.

Another effect that could be included is the effect of the
quasiparticle energy shift χ . For the present system, χ was
found to be small compared to the Fermi energy for chem-
ical potentials ranging from half filling and down towards
the vicinity of the bottom of the band. Apart from the limit
where the Fermi level approaches the bottom of the band,
inclusion of χ would typically amount to a small, weakly
frequency-dependent shift of the effective chemical potential
in the Eliashberg equations, and it was therefore neglected in
the presented calculations.

The effect of Coulomb interactions on the electron self-
energy is in general challenging to calculate [48]. Their effect
on the Fermi surface averaged Eliashberg equations for the
anomalous pairing amplitudes is typically included by ne-
glecting vertex corrections and including an extra repulsive
and frequency-independent potential in the equations. The
Coulomb repulsion will then have a limited effect on the crit-
ical temperatures as long as λ2(iνm = 0) is somewhat larger
than the Coulomb pseudopotential μ∗ [48]. Moreover, taking
the Coulomb interaction to be momentum independent, its
contributions to the gap equation will cancel for unconven-
tional pairing symmetries like the ones considered in this
work. For a momentum dependent Coulomb potential, the
Coulomb contributions to the gap equation no longer cancel
identically for unconventional pairing symmetries, but μ∗ will
still be reduced compared to the s-wave case.

In the system setup we have considered, the antiferromag-
netic order and interfacial coupling to the two antiferromag-
nets has been chosen such that any magnetic fields cancel.
If we instead consider a single antiferromagnetic layer and
� �= 1, there would be a net magnetic field, as shown in
Eqs. (B1c) and (B1d). In addition, there would also be a
term in the magnon propagator that is odd in frequency, as
shown in Eq. (B4). The odd part of the propagator would
renormalize and reduce the magnetic field h and produce an
effective magnetic field h̃. Together with the odd part of the
propagator, this effective magnetic field could in principle
give rise to an exotic coexistence of odd and even frequency
superconductivity [54]. For the experimentally most relevant
parameters, we would, however, expect the magnetic field to
be too strong to give significant critical temperatures.

We also note that a previously studied system consisting
of a normal metal sandwiched between two ferromagnetic
insulators [18] gives rise to a p-wave phase that bears many
similarities with the p-wave phase considered in the present
study. The main difference between the two systems is the
absence of the magnon coherence factors in the ferromagnetic
case. The numerator of the magnon propagator (or effective
potential in a weak-coupling framework) for the ferromagnet
therefore scales as ωFM

q ∼ K for long-wavelength magnons,
while the numerator of the magnon propagator for the anti-
ferromagnet scales as ARR

e (q) ωq ∼ J1. For superconductivity
dominated by long-wavelength magnons, with K/J1 � 1, the
dimensionless electron-magnon coupling λ2(iνm = 0) may,
however, still be of the same magnitude in both cases, cor-
responding to similar dimensionless coupling constants in a
weak-coupling framework. This is because the ferromagnet
propagator can simply rely on having a smaller gap in the

magnon spectrum, making the denominator of the propagator
smaller for the long-wavelength processes. As the critical tem-
perature in a simple weak-coupling framework only depends
on the dimensionless coupling constant and the cutoff on the
boson spectrum, sizable critical temperatures can then be ob-
tained for both ferromagnets and antiferromagnets. Within an
Eliashberg framework, on the other hand, the effective cutoff
frequency is determined by the characteristic magnon energies
in the pairing interaction. Since, with ferromagnets, the large
values for λ2(iνm = 0) were obtained by relying on smaller
magnon energies in the denominator of the propagator, the
effective frequency cutoff will be smaller, and the critical
temperatures obtainable with ferromagnets should be smaller
than with antiferromagnets.

In the current antiferromagnetic case, magnon renormal-
ization was found to have little effect on the available critical
temperatures. This is because the larger easy axis anisotropy
K , required to protect magnetic order in the AFMIs, is
compensated by the magnon energy renormalization in the de-
nominator of the propagator. The larger easy-axis anisotropy
has little effect on the numerator of the propagator. For the
case of the ferromagnet, on the other hand, increasing K so
that it compensates the renormalization would also lead to a
larger numerator in the propagator. Magnon renormalization
could then open the way for slightly higher critical tempera-
tures.

VIII. EXPERIMENTAL CONSIDERATIONS

The model employed in this study allows us to tune the
interfacial coupling between the normal metal and the two
different sublattices of the antiferromagnet independently.
In principle, such a general asymmetric coupling could be
engineered, as discussed in the introduction. However, the
experimentally most promising route to realizing supercon-
ductivity in systems well described by our model appears
to be through fully compensated and uncompensated inter-
faces, where the conduction band electrons in the normal
metal are coupled to only one AFMI sublattice (� = 0) or
equally to both AFMI sublattices (� = 1). There is, how-
ever, a significant difference between our model and the
intended realization with an uncompensated interface for the
case � = 0. In the intended realization, the square lattice
of the normal metal matches the exposed sublattice of the
antiferromagnet and not the square lattice of the antiferro-
magnet itself, as in our model. Thus, the electron Brillouin
zone coincides with the Brillouin zone of the antiferromagnet.
Although it is possible to imagine a compensated interface
where the magnons at the interface live in a smaller Bril-
louin zone than the electrons, this would not be the typical
case.

Within our model, Umklapp processes are included for
both � = 0 and � = 1. In the intended realization for � = 0,
however, Umklapp processes are absent. For a small Fermi
surface, the effect of Umklapp processes in our model is small,
since all processes between points on the Fermi surface are of
the regular type. The p-wave phase we expect for uncompen-
sated interfaces and large doping is therefore well represented
by our model. For small doping, however, the f -wave
phase of our model takes precedence over the p-wave phase
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precisely because of the Umklapp processes. The f -wave
phase is therefore of less experimental relevance, and we
expect that the p-wave phase would dominate regardless of
doping for a normal metal sandwiched between two uncom-
pensated interfaces.

For the p-wave phase with � = 0, having a trilayer het-
erostructure in order to cancel all magnetic fields seems
necessary, as the critical temperature is significantly reduced
compared to previous predictions [21]. For the d-wave phase
with � = 1, the result of coupling to a single antiferromagnet
would lead to the presence of a staggered field. As a staggered
field might be less detrimental to superconductivity than a
uniform spin splitting [55], a bilayer heterostructure might be
a viable option in this case.

When it comes to choice of parameters, it is clear that a
strategy of simply taking a very small gap in the magnon spec-
trum in order to increase the dimensionless coupling strength
λ2(0) has its limitations, as this leads to a very small effective
cutoff frequency and slow increase in critical temperature with
dimensionless coupling strength. In order to realize supercon-
ductivity in this system it is then essential that the constant
prefactor that appears in the gap equation is sufficiently large.
A sizable interfacial exchange coupling and electron density
of states is then preferable. Moreover, as the effective induced
interaction experienced by the electrons in the normal metal
might be reduced with the thickness of the normal metal [18],
the metallic layer should be kept quite thin.

The easy-axis anisotropy governs the size of the gap in
the magnon spectrum and appears to play a crucial role in
realizing superconductivity. A sufficiently large gap in the
magnon spectrum could be important for both the p-wave and
d-wave phases in order to stabilize the antiferromagnet. The
p-wave phase does, however, rely more heavily on fine tuning
of the easy-axis anisotropy in order to produce a nonzero,
but sufficiently small, effective magnon gap producing a siz-
able critical temperature. This could make the p-wave phase
more difficult to realize experimentally. The d-wave pairing
receives contributions from a wider range of magnon ener-
gies, and the critical temperature is therefore more robust to
a shift of the magnon energies. For larger Fermi surfaces, a
larger easy-axis anisotropy is, however, needed to preserve
magnetic order in the antiferromagnet, which could in itself
be an experimental complication. However, using a magnet-
ically more stable three-dimensional antiferromagnet instead
of the two-dimensional magnet considered in our model could
potentially lead to a reduction in the easy-axis anisotropy
required to stabilize the magnets.

In contrast to earlier results, the present study indicates
that the d-wave phase may be able to produce higher critical
temperatures than the p-wave phase. However, the d-wave
phase is, in our model, dependent on proximity to half filling,
where it, e.g., needs to compete with spin-density wave order.
This competition may push the superconducting phase down
towards lower filling fractions associated with lower critical
temperatures. It should also be noted that since the d-wave
phase relies on Umklapp processes, it is more sensitive to the
detailed structure of the Fermi surface. In comparison with the
p-wave phase, the d-wave phase may therefore place stricter
requirements on the electron band structure of the normal
metal in the experimental realization. Compared with the third

option of coupling to ferromagnetic insulators, however, both
phases considered in the present study seem more promising.

IX. SUMMARY

We use Eliashberg theory to study interfacially induced
magnon-mediated superconductivity in a normal metal-
antiferromagnet heterostructure. For large doping and un-
compensated antiferromagnetic interfaces, we find p-wave
superconductivity, while for small doping and compensated
antiferromagnetic interfaces, we find d-wave superconductiv-
ity. This can be understood in terms of sublattice interferences
suppressing and enhancing scattering processes in the system.
Although the qualitative results are in accordance with earlier
weak-coupling studies, the critical temperature achievable for
the p-wave phase is found to be significantly reduced as the
characteristic magnon frequency in the pairing interaction is
much smaller than the cutoff on the magnon spectrum. The
d-wave phase, on the other hand, is found to rely less on long-
wavelength magnons and can therefore potentially produce
larger critical temperatures when approaching half filling.
Close to half filling the d-wave instability may however have
to compete with a spin-density wave instability, potentially re-
ducing the available critical temperatures. A sufficiently large
gap in the magnon spectrum might be necessary to stabilize
the magnetic order in the antiferromagnets due to feedback
from the electrons, but this is found to have limited effect on
the critical temperatures.
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APPENDIX A: ANTIFERROMAGNETIC MAGNONS

Starting from the AFMI Hamiltonian, we introduce the
linearized Holstein-Primakoff transformation [56]

S+
i∈A,H =

√
2SaiH S+

i∈A,L =
√

2Sa†
iL (A1a)

S+
j∈B,H =

√
2Sb†

jH S+
j∈B,L =

√
2Sb jL (A1b)

S−
i∈A,H =

√
2Sa†

iH S−
i∈A,L =

√
2SaiL (A1c)

S−
j∈B,H =

√
2Sb jH S−

j∈B,L =
√

2Sb†
jL (A1d)

Szi∈A,H = S − a†
iHaiH Szi∈A,L = −S + a†

iLaiL (A1e)

Szj∈B,H = −S + b†
jHb jH Szj∈B,L = S − b†

jLb jL, (A1f)

where we have assumed oppositely aligned antiferromagnetic
order in the spin space z direction for the two antiferromag-
nets. Inserting this into the AFMI Hamiltonian and expressing
it in terms of sublattice magnon Fourier modes aqη and bqη, the
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AFMI Hamiltonian takes the form

HAFMI =
∑
q,η

Cq(a†
qηaqη + b†

qηbqη ) + Dq(aqηb−qη + a†
qηb

†
−qη ),

(A2)

where Cq and Dq are given by

Cq = 2z1J1S − 2z2J2S(1 − γ̃q) + 2KS, (A3a)

Dq = 2z1J1Sγq, (A3b)

and we have defined

γq = 1

z1

∑
δ1

eiq·δ1 , γ̃q = 1

z2

∑
δ2

eiq·δ2 . (A4)

Here, z1 and z2 are the number of nearest and next-nearest
neighbor vectors, which are summed over and denoted by δ1

and δ2. The Hamiltonian is diagonalized through the Bogoli-
ubov transform

aqη = uqαqη + vqβ
†
−qη, (A5a)

b†
−qη = uqβ

†
−qη + vqαqη, (A5b)

where the coherence factors uq and vq can be written as

uq = cosh θ̃q, vq = sinh θ̃q, (A6)

in terms of the hyperbolic angle

θ̃q = −1

2
tanh−1

(
Dq

Cq

)
. (A7)

The resulting magnon spectrum is

ωq =
√
C2
q − D2

q. (A8)

By expressing the inverse hyperbolic tangent in terms of a
logarithm, one may show the relations

u2
q + v2

q = +Cq/ωq, (A9a)

2uqvq = −Dq/ωq, (A9b)

for the coherence factor combinations which appear in the
magnon propagator.

Whereas uq is positive, vq is typically negative. Further-
more, we notice that when K and J2 are small compared to J1,
|θ̃q| becomes large when q → 0, as Dq approaches Cq. This
causes uq to grow large and positive and vq to grow large and
negative in this limit.

APPENDIX B: INTERFACIAL COUPLING HAMILTONIAN

In the main text, we presented expressions for the in-
terfacial coupling and the magnon propagators under the
assumption that the two antiferromagnets couple to the normal
metal with equal strength. In this Appendix, we generalize the
results beyond this assumption.

The interfacial coupling Hamiltonian describing the cou-
pling to a single antiferromagnetic insulator labeled by η can
be written Hη

int = Hh,η
int + HV,η

int , where the magnetic exchange

field contributions Hh,η
int = Hh,A,η

int + Hh,B,η

int from the two sub-
lattices are

Hh,A,H
int = −J̄ �H

A S
∑

k∈�,σ

σ(c†
kσ ckσ + c†

k+Q,σ
ckσ ), (B1a)

Hh,B,H
int = +J̄ �H

B S
∑

k∈�,σ

σ(c†
kσ ckσ − c†

k+Q,σ
ckσ ), (B1b)

Hh,A,L
int = +J̄ �L

AS
∑

k∈�,σ

σ(c†
kσ ckσ + c†

k+Q,σ
ckσ ), (B1c)

Hh,B,L
int = −J̄ �L

BS
∑

k∈�,σ

σ(c†
kσ ckσ − c†

k+Q,σ
ckσ ), (B1d)

and where the exchange coupling strengths J̄�η

ϒ are in gen-
eral different for the two antiferromagnets. Coupling to only
one antiferromagnet can be realized by, e.g., setting �L

ϒ = 0.
Assuming �H

ϒ = �L
ϒ , however, all magnetic fields cancel.

The electron-magnon interaction is given by

HV,η

int = V
∑
k ∈ �
q ∈ ♦

[
MR

qηc
†
k+q,↓ck,↑ + MU

qηc
†
k+q+Q,↓ck,↑

+ (
MR

−qη

)†
c†
k+q,↑ck,↓ + (

MU
−qη

)†
c†
k+q+Q,↑ck,↓

]
, (B2)

where we have defined magnon operators Mκ
qη associated with

the antiferromagnet η as

Mκ
qH = �H

A aqH + κ �H
B b

†
−qH , (B3a)

Mκ
qL = �L

Aa
†
−qL + κ �L

BbqL, (B3b)

so that the operator Mκ
q introduced in the main text is given by

Mκ
q = Mκ

qH + Mκ
qL. Expressing the magnon operators in terms

of the eigenmagnon operators resulting from the Bogoliubov
transformation, the corresponding magnon propagators are

Dκκ ′
0,η (q, iωn) = − Aκκ ′

e,η (q)
2ωq

ω2
n + ω2

q
− Aκκ ′

o,η

2iωn

ω2
n + ω2

q
. (B4)

Here, the first term is even under the three-vector transforma-
tion q → −q, and the second term is odd. The expressions for
Aκκ ′
e,η (q) can be obtained from Eq. (10) in the main text by the

simple generalization Aκκ ′
e (q) → Aκκ ′

e,η (q) and �ϒ → �
η

ϒ . The
odd part prefactor Aκκ ′

o,η is q independent and given by

Aκκ ′
o,η = 1

2η
[(

�
η
A

)2 − κκ ′(�η
B

)2]
, (B5)

where we associate the index η with the values H → 1 and
L → −1. We notice that the odd part of the propagator has
different signs for the two antiferromagnets, so that their
contributions cancel out when we couple equally to the two
antiferromagnets.

APPENDIX C: SUPPRESSION OF ELECTRON
CORRELATIONS WHICH ARE OFF-DIAGONAL

IN MOMENTUM

In this Appendix, we argue that terms in the electron
Green’s function which are off-diagonal in momentum are
suppressed as long as the electron propagator renormalization
is small compared to the difference in electron energies at the
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momenta k and k + Q. The self-energy is in general an 8 × 8
matrix in the momentum, particle/hole, and spin degrees of
freedom. The self-energy can then be written

� =
(

�11 �12

�21 �22

)
, (C1)

where �i j is now a 4 × 4 submatrix in the particle/hole and
spin degrees of freedom corresponding to momentum sec-
tor (i, j). The self-energy is related to the Green’s function
through the Dyson equation, so that

G−1(k) =
(
G−1

0 (k) − �11(k) −�12(k)

−�21(k) G−1
0 (k + Q) − �22(k)

)
.

(C2)
Away from half filling, both k and k + Q cannot both

be on the Fermi surface, so one of the submatrices on the
diagonal will have a term proportional to the identity matrix
and prefactor of the same order as the electron energy scale.
We now assume that k is close to the Fermi surface, so that
this applies to G−1

0 (k + Q). To obtain the Green’s function
G(k), we then make use of the following matrix inversion
identity [57]: Given a matrix G−1 which can be partitioned
into submatrices and written on the form

G−1 =
(
N11 N12

N21 N22

)
, (C3)

where N11 and N22 are invertible matrices [58], the inverse can
similarly be expressed

G =
(
M11 M12

M21 M22

)
, (C4)

with submatrices

M11 = (
N11 − N12N

−1
22 N21

)−1
, (C5a)

M12 = −(
N11 − N12N

−1
22 N21

)−1
N12N

−1
22 , (C5b)

M21 = −N−1
22 N21

(
N11 − N12N

−1
22 N21

)−1
, (C5c)

M22 = (
N22 − N21N

−1
11 N12

)−1
. (C5d)

In our case, N22 can now be thought of as an electronic
energy that is much larger than the other submatrices, which
have contributions from the self-energy and the noninteracting
Green’s function close to the Fermi surface. As long as the
renormalization is small compared to the electron energy scale
in the problem, N−1

22 N21 is then small, and M21 and M12 are
suppressed relative to M11. By similar reasoning, M22 is also
small, and M11 can be approximated by N−1

11 .
When k + Q is close to the Fermi surface, we may sim-

ilarly neglect M11 and the off-diagonal terms but not M22 ≈
N−1

22 . For a general k, we may therefore neglect the off-
diagonal terms, which is exactly what we use in the main text.

APPENDIX D: VERTEX CORRECTIONS

In order to obtain some insight into the importance of
vertex corrections, we will attempt to estimate the magnitude
of the lowest-order vertex corrections. Focusing on regular
processes for the time being, a magnon equivalent of the

FIG. 8. (a) Typical lowest-order vertex correction, which van-
ishes in this case due to conservation of spin. (b) Lowest-order vertex
correction for our model.

lowest-order vertex correction for phonon-mediated super-
conductivity is presented in Fig. 8(a). Due to conservation
of spin, this diagram vanishes for our system. Starting with
the upper vertex of the vertical magnon line, we see that
the electron spin is flipped from ↑ to ↓, meaning that the
outgoing magnon carries a spin +1. In the lower vertex of
the vertical magnon line, this spin needs to be returned to
the electrons, but the incoming electron already has spin ↑
instead of spin ↓, and spin can therefore not be conserved
in this vertex. Including Umklapp processes, the momentum
structure of Fig. 8(a) will differ, but the spin structure stays the
same. The lowest-order vertex corrections are therefore of the
type represented by the diagram in Fig. 8(b). As the diagram
in (b) is of higher order, the effect of vertex corrections should
then be expected to be smaller than what would have been the
case if the diagram in (a) had not vanished.

The diagram in Fig. 8(b) represents a correction to the
electron-magnon vertex V

4 gγ → V
4 gγ (1 + �), where

�(k, q) ∼ V 4

β2

∑
q′,q′′

DRR
0 (q′)DRR

0 (q′′)G11
0 (k + q′′ − q)

× G22
0 (k − q′ + q′′ − q)G11

0

× (k − q′ + q′′)G22
0 (k − q′). (D1)

A quick estimate for � can be obtained in the following way
[36]. We approximate the magnon propagators as

DRR
0 (q) ∼ −ARR

e (0)

ωc
, (D2)

for Matsubara frequency qm less than some cutoff frequency
ωc∼ω0, where ω0 is the magnon gap. For qm > ωc, we take
the magnon propagator to be zero. The number of terms that
should be included in each of the Matsubara sums is then
roughly βωc. When performing the sums over momentum,
the fermions will typically be away from the Fermi surface.
We then approximate the momentum sums with the num-
ber of lattice sites N , and the electron Green’s functions by
Gaa

0 ∼ 1/EF , where EF is the Fermi energy, which is taken as
a measure of the electron energy scale ∼1 eV. We then obtain

� ∼
(
V 2NARR

e (0)

E2
F

)2

∼
(

1

100

)2

, (D3)
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FIG. 9. The momentum scattering processes in the simplest non-
vanishing vertex correction of Fig. 8(b) can be represented as a
hexagon. Opposing sides in the hexagon are parallel and equally long
due to conservation of momentum. The Fermi surface (assuming
large doping) is shown as a circle.

where we have inserted typical values for the relevant en-
ergy scales, and taken � = 0 which is suitable for the case
of a relatively small Fermi surface where regular processes
dominate. This estimate would indicate that vertex corrections
are typically small. It does, however, not take into account
that there can be large contributions arising from fermions
being close to the Fermi surface when q → 0. In order to pick
up such contributions, we need to perform a more detailed
estimate.

Starting from Eq. (D1), we can perform the Matsubara
sums. Following Ref. [59], we focus on the term that arises
from the poles of the boson propagators, limiting the number
of factors with fermion energies in the denominator. At zero
temperature, this term becomes

�1(k, q)

= −4V 4
∑
q′,q′′

ARR
e (q′)ARR

e (q′′)

×
(

1

ωq′ + ikn − ξk−q′

)(
1

ωq′′ + ξk+q′′−q − i(kn − qm)

)

×
(

1

ωq′ + i(kn − qm) − ωq′′ − ξk−q′+q′′−q

)

×
(

1

ωq′ + ikn − ωq′′ − ξk−q′+q′′

)
. (D4)

To estimate this term in the limit of small q, we need to
analyze which regions of the Brillouin zone that dominate
the momentum sums. The momentum scattering processes
in the vertex correction diagram can be represented by a
hexagon where opposing sides are parallel and equally long
due to conservation of momentum, as shown in Fig. 9. Each
vertex in the hexagon represents the momentum of an electron
propagator in the Feynman diagram. We consider processes
where k and k − q are close to the Fermi surface. Consider the
variables q′ and q′ − q′′ ≡ π to be the integration variables of
our momentum sums. For small q, the vertices 2 and 3 in Fig. 9
are reasonably close to each other. The dominant contributions
to the diagram should therefore arise when k − q′ + q′′ is
close to the Fermi surface. With q′ − q′′ fixed, the position

of the remaining two vertices 1 and 4 is fixed by choosing
q′. Taking vertex 1 to be close to the Fermi surface, vertex
4 will now typically end up away from the Fermi surface.
The number of terms in the sum over q′ where vertex 1 is
close to the Fermi surface is of order NFωc. The Green’s
functions corresponding to points 1 and 4 in the hexagon can
then be approximated by 1/ωc and 1/EF , respectively. By also
approximating the boosting factors by their maximum values
ARR
e (0) and the remaining magnon energies by ωc, we may

then approximate the vertex correction by

�1(k, q) = −4NF
[
V 2ARR

e (0)
]2

EF

∑
π

(
1

ikn − ξk−π

)

×
(

1

i(kn − qm) − ξk−π−q

)
. (D5)

Alternatively, one can attempt to further restrict the sum over
q′ in order to keep all the fermions close to the Fermi surface,
producing a similar result as in Eq. (D5).

Introducing p = k − π, the diagram can now be calculated
by Taylor expanding in small q, using

ξp−q ≈ ξp − (∇ξp) · q = ξp − vFq cos(θq(p)), (D6)

where vF is the Fermi velocity and θq(p) is the angle between
∇ξp and q. Writing the momentum integral in terms of polar
coordinates and integrating out the radial momentum, we then
obtain

�1(k, q) ≈ −i
4
[
NFV 2ARR

e (0)
]2

EF
[�(kn) − �(kn − qm)]

×
∫ 2π

0
dθ

(
1

iqm − vFq cos(θ )

)
. (D7)

Performing also the angular integration, one may show
that the vertex correction contribution for nonzero bosonic
Matsubara frequency is of order

�1(k, q) ∼
(
NFV 2ARR

e (0)

EF

)2(
EF√

v2
Fq

2 + q2
m

)
. (D8)

In short, this result can be interpreted as follows: Dominant
contributions to Eq. (D4) arise from NFωc terms in each of
the momentum sums where two of the electron propagators
then are of order 1/ωc as these electrons are close to the Fermi
surface. One of the electron propagators is replaced by a factor
1/EF , as the electron in this case is not close to the Fermi
surface. The last propagator momentum is reasonably close
to the Fermi surface due to the small momentum scattering
q. This propagator is found to be of order 1/

√
(vFq)2 + q2

m,
where the square root can be interpreted as an interpolation
between the frequency and the momentum energy scales for
the scattering process with three-momentum (q, qm).

For q → 0, qm ∼ 1 K, and typical values for the remain-
ing energy scales, the expression in Eq. (D8) is found to be
of order 1, indicating that vertex corrections could become
important for long-wavelength magnons. As vFq in the de-
nominator grows quickly with q, the momentum region where
our estimate for the vertex corrections is of importance is
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quite limited. Whereas the above expression is quickly re-
duced when q surpasses qm/vF , the corresponding momentum
cutoff for the magnon propagator depends on the magnon
group velocity close to the bottom of the band, meaning that
the momentum region where the estimated vertex corrections
are of importance is typically significantly smaller than the
momentum region where we obtain large contributions to
the Eliashberg equations. A more rigorous treatment of the
vertex corrections would treat both momentum sums in detail
and could potentially give rise to contributions that are larger
and/or less quickly reduced with increasing q.

As the diagram in Fig. 8(a) vanishes for our model, one
might imagine that it could be possible to obtain signifi-
cant vertex corrections by going to higher order in magnon
operators in the electron-magnon interaction, giving rise to
electron-magnon scattering processes without spin flips. In-
cluding higher-order terms in the interaction Hamiltonian
arising from the z component of the antiferromagnetic spins,
one may construct a diagram like the one in Fig. 8(a) where
the vertical magnon line has been replaced with a magnon
loop and the vertices of the magnon loop do not involve an
electron spin flip, conserving the electron spin in the diagram.
Performing estimates like those presented above, such dia-
grams are found to be of similar magnitude and displaying
a similar suppression with increasing momentum q as the
diagram in Fig. 8(b).

For larger Fermi surfaces and � = 1, the regular processes
are of little importance and the physics is dominated by Umk-
lapp processes. Modifying the diagram of Fig. 8(b) to only
include Umklapp processes, all spin-↓ electron propagators
therefore attain an additional momentum shift Q. Below half
filling, for k on the Fermi surface, placing k − q + Q on the
Fermi surface now requires a finite momentum q. Contrary

TABLE I. Parameter values used in the numerical results. We
refer to the main text for an explanation of their meanings.

Quantity Value

J1 2 meV
J2 0.2 J1

K 1 × 10−4 J1

J̄ 15 meV
S 1
t 1eV

to the case with regular processes and q → 0, choosing the
hexagon vertex 2 reasonably close to the Fermi surface does
therefore not necessarily mean that the hexagon vertex 3 is
also reasonably close.

Exactly at half filling, the Fermi surface is perfectly nested,
and the electron momenta can all be chosen reasonably close
to the Fermi surface for a wide range of integration momenta
and relevant values of q. Thus, we would get large vertex
corrections [49,50,60]. Moving away from half filling, the
nesting of the Fermi surface is no longer perfect. Our simplest
estimate in Eq. (D3) will then eventually be restored, where
ARR
e (0) needs to be replaced with the maximum value of

AUU
e (q) for scattering processes on the Fermi surface. Thus,

we would expect vertex corrections to become unimportant
sufficiently far away from half filling.

APPENDIX E: MATERIAL PARAMETERS

Typical parameter values are shown in Table I. The electron
density of states is calculated by numerical evaluation of the
elliptical integral in Ref. [61].
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[53] R. Szczȩśniak, Phys. Lett. A 336, 402 (2005).
[54] M. Matsumoto, M. Koga, and H. Kusunose, J. Phys. Soc. Jpn.

81, 033702 (2012).
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We theoretically study the indirect interaction between two ferromagnetic contacts located on the surface of
a d-wave superconductor. When the magnets are connected to a {010} edge of the superconductor we find an
oscillating RKKY interaction that varies in sign as the distance between the magnetic contacts is varied. However,
when coupling the magnets to an {110} edge of the superconductor, we find that the presence of midgap states
qualitatively changes the results. The ground state of the system is then found to always favor alignment of
the magnets as this configuration most strongly suppresses the midgap states, leading to a larger condensation
energy, which dominates over the intrinsic RKKY interaction.

DOI: 10.1103/PhysRevB.104.054502

I. INTRODUCTION

Superconductors with d-wave symmetry have an
anisotropic order parameter, which drops to zero along
some nodal directions [1–3]. A {110} edge of a dx2−y2

superconductor has been shown to feature dispersionless
surface states with zero energy, called midgap states [4]. The
appearance of midgap states for such an edge is related to
the fact that the order parameter in a 45◦ rotated coordinate
system takes the form dxy, introducing opposite signs for the
pair potential experienced by particles undergoing specular
and Andreev reflections at the surface. The {110} edge
also gives rise to a zero bias conductance peak [5], which
is a result of the presence of the midgap states [6]. Such a
zero-bias conductance peak has been experimentally observed
in the high-Tc cuprate superconductors [7–10] and has been
important in determining the pairing symmetry of these
superconductors.

The indirect exchange interaction between two localized
spins, mediated by the itinerant electrons of a host mate-
rial, was first introduced by Ruderman, Kittel, Kasuya, and
Yosida, and is known as the RKKY interaction [11–13].
In this indirect exchange interaction, itinerant electrons of
the host material scatter off a localized spin, and the wave
functions of the scattered electrons interfere with each other
giving rise to alternating regions with high density of spin
up/down. This leads to the well-known RKKY oscillations
in the spin-spin interaction strength, which decrease with the
distance R between the two localized spins as R−D, where D
is the dimensionality of the system. RKKY interaction has
been investigated in various materials ranging from normal
metals [11,13], to one- and two-dimensional electron gases
[14,15], two-dimensional structures like graphene [16–20],
and topological insulators [21–23].

For a system consisting of magnetic impurities embedded
in a superconductor, the influence of superconductivity on the
indirect impurity-impurity interaction has also been studied
[24,25]. For a conventional s-wave superconductor, when the

distance between the impurities is larger than the supercon-
ducting coherence length, the interaction between them is
found to be antiferromagnetic in character and suppressed
compared to the normal metal case. The suppression is caused
by the superconducting gap reducing the number of states
close to the Fermi level that can mediate the interaction.
Below the coherence length, the behavior is similar to the
normal metal case with an oscillatory RKKY interaction that
changes sign with distance. However, nonperturbative treat-
ments have shown that Yu-Shiba-Rusinov (YSR) bound states
can give rise to mainly antiferromagnetic behavior even at
distances shorter than the coherence length [26]. Further, for
impurities on the surface of a three-dimensional topological
insulator with proximity-induced s-wave superconductivity,
the RKKY interaction favors the impurity spins to be in-plane
and antiparallel [27]. For a spin-valve structure consisting of
two ferromagnetic insulators connected by an s-wave super-
conductor, experiments have shown that anti-alignment of the
magnets is still favored [28].

Conventional s-wave superconductors do however typi-
cally have coherence lengths far exceeding the decay length
of the RKKY interaction. On the other hand, d-wave su-
perconductors can feature very short coherence lengths of
the order of nanometers [29], offering an intriguing plat-
form for studying the interplay between superconductivity
and RKKY interaction, as the characteristic length scales of
both phenomena are comparable. RKKY interaction between
magnetic impurities mediated by a d-wave superconductor
with an anisotropic order parameter of the type dx2−y2 has
lead to similar behavior as in the s-wave case [30]. Further,
for a spin-valve structure involving a dx2−y2 superconductor,
nodal quasiparticles close to the Fermi surface have been
observed to mediate interaction that favors anti-alignment of
the magnetic insulators for a sufficiently large superconductor
thickness [31].

As the gapped band structure of a superconductor sup-
presses the RKKY interaction, it is of interest to investigate
the effect the presence of midgap states have on the
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FIG. 1. Schematic illustration of a d-wave superconductor with
midgap surface states mediating the indirect exchange interaction
between two ferromagnetic contacts. We will consider configurations
where the magnetization of the two magnets is either parallel (P) or
antiparallel (AP). For comparison, the ferromagnetic contacts will
also be attached to the lower, nondiagonal edge of the supercon-
ductor. The lengths indicated on the figure will in the main text be
specified by the number of atomic distances.

interaction. We therefore consider a dx2−y2 superconductor and
calculate the exchange interaction between two ferromagnetic
contacts located on a diagonal {110} edge, as illustrated in
Fig. 1. The superconductor is modelled by an extended BCS
tight-binding Hamiltonian on a square lattice and connected
to the metallic magnets through a hopping term across the
interface. The results are obtained through a self-consistent
solution of the Bogoliubov-de Gennes (BdG) equations [32].
To put the results into context, we consider the cases of
a normal metal and an isotropic s-wave superconductor, in
addition to the d-wave superconductor. In all three cases,
we investigate the interaction between ferromagnetic contacts
located on both diagonal and nondiagonal edges.

For magnetic contacts located on a diagonal edge of a
d-wave superconductor, we find that the system always favors
alignment of the two magnets. The variation in the strength
of the magnetic exchange interaction as we vary the distance
between the magnets is small compared to the magnitude of
the interaction itself. We attribute these results to the aligned
magnets more efficiently suppressing the midgap states than
the anti-aligned configuration. Although the aligned magnets
induce a stronger spin splitting in the superconductor, sup-
pressing the gap, the reduction of the midgap states leads to
an overall larger gap and increased condensation energy. The
parallel magnet configuration is therefore the ground state of
the system.

The paper is organized as follows. In Sec. II we introduce
the model and methodology. Then, in Sec. III we present and
discuss the results. Finally, in Sec. IV we provide a summary
of the findings. The phase diagram of our d-wave supercon-
ductor model for a square system with continuous boundary
conditions is included in the Appendix.

II. MODEL AND METHODS

By means of a tight-binding Hamiltonian on a square lat-
tice, we model the attractive electron-electron interaction in a

superconductor:

HSC = −
∑

〈i, j〉,α
ti jc

†
iαc jα −

∑
i,α

μiniα −
∑
i

Uini↑ni↓

+
∑

〈i j〉,α �=α′
Vi jniαn jα′ +

∑
〈i j〉,α

V ′
i jniαn jα. (1)

Here, c†iα is a creation operator creating an electron with spin
α on lattice site i = (ix, iy). The hopping amplitude is denoted
by ti j , and μi is the chemical potential. The third term rep-
resents on-site attractive interactions between opposite spins,
where the number operator is niα = c†iαciα . This term gives rise
to conventional spin singlet isotropic s-wave superconduc-
tivity. The fourth and fifth terms represent nearest-neighbor
interaction between opposite or equal spins, respectively.
These terms can give rise to d-wave, p-wave, or extended
s-wave pairing for an attractive interaction potential. For the
purposes of this paper, we will setV ′

i j to zero as we will not be
interested in the possibility of equal spin pairing. As shown
in the Appendix, the above model without V ′

i j can give rise
to a d-wave superconductor for a suitable choice of chemical
potential.

A. Analytical methods

Through a mean-field treatment, we simplify the interac-
tion terms. The on-site part of the interaction becomes

−
∑
i

Uini↑ni↓ = −
∑
i

Ui(c
†
i↑c

†
i↓〈ci↓ci↑〉 + ci↓ci↑〈c†i↑c†i↓〉

− 〈ci↓ci↑〉〈c†i↑c†i↓〉). (2)

Defining the superconducting gap for the on-site interaction
as �i = −Ui〈ci↓ci↑〉, we obtain

−
∑
i

Uini↑ni↓ =
∑
i

(c†i↑c
†
i↓�i + ci↓ci↑�∗

i ) + HS
0 , (3)

where we have defined

HS
0 =

∑
i

|�i|2
Ui

. (4)

The on-site interactionUi will be taken to a constantU � 0 in
the superconductor, and zero elsewhere. Once again, perform-
ing a mean-field treatment, the attractive nearest-neighbor
interaction term becomes∑

〈i j〉,α �=α′
Vi jniαn jα′ =

∑
〈i j〉,α �=α′

Vi j (c
†
jα′c

†
iα〈ciαc jα′ 〉

+ ciαc jα′ 〈c†jα′c
†
iα〉 − 〈c†jα′c

†
iα〉〈ciαc jα′ 〉).

(5)

We then define the nearest-neighbor pairing amplitude

Fαα′
i j = 〈ciαc jα′ 〉, (6)

transforming Eq. (5) into
∑

〈i j〉,α �=α′
Vi j

(
c†jα′c

†
iαF

αα′
i j + ciαc jα′

(
Fαα′
i j

)†) + Hd
0 , (7)
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where

Hd
0 = −

∑
〈i, j〉,α �=α′

Vi j
∣∣Fαα′

i j

∣∣2. (8)

As
∑

〈i, j〉Vi j |F↑↓
i j |2 = ∑

〈i, j〉Vji|F↓↑
i j |2, we can rewrite Hd

0 =
−∑

〈i, j〉 |F↑↓
i j |2(Vi j +Vji ), and similarly

∑
〈i j〉,α �=α′

Vi j (c
†
jα′c

†
iαF

αα′
i j + ciαc jα′ (Fαα′

i j )†)

=
∑
〈i j〉

(c†j↓c
†
i↑F

↑↓
i j + ci↑c j↓(F

↑↓
i j )†)(Vi j +Vji ). (9)

In the following, we will take the nearest-neighbor interac-
tion to be Vji = Vi j = V � 0 (corresponding to an attractive
interaction) in the superconductor and zero elsewhere. The
mean-field extended tight-binding Hamiltonian now takes the
form

HSC
m f = H0 −

∑
〈i, j〉,α

ti jc
†
iαc jα −

∑
i,α

μiniα

+
∑
i

(c†i↑c
†
i↓�i + ci↓ci↑�∗

i )

+ 2
∑
〈i j〉

V (c†j↓c
†
i↑F

↑↓
i j + ci↑c j↓(F

↑↓
i j )†), (10)

where H0 = HS
0 + Hd

0 .
The metallic ferromagnets that are attached to the su-

perconductor are described by the following tight-binding
Hamiltonian:

HFM = −
∑

〈i, j〉,α
ti jc

†
iαc jα −

∑
i,α

μiniα

−
∑
iδαβ

hδ
i (σz )αβ c

†
iαciβ. (11)

The last term represents the coupling between the spin of an
electron at site i and the local magnetic exchange field, giving
rise to ferromagnetism. The local exchange field hδ

i is taken
to produce a spin splitting in the z direction in spin space,
giving rise to a magnetization that could in general be either
in-plane or out-of-plane in real space. Our model does not
separate these cases as the magnetism is simply introduced
through a spin splitting. Orbital effects on the superconductor
arising from the magnets, not considered in this model, can be
limited by keeping the magnetization in-plane [33]. The Pauli
matrices are denoted by σ , and the index δ separates the local

exchange field of each of the two magnets with δ = L,R for
the leftmost and rightmost magnet, respectively. The sign of
the local exchange field can be either the same or opposite
for the two magnets, giving rise to parallel (P) or antiparallel
(AP) ferromagnets. Outside of the magnets, the local magnetic
exchange field is set to zero. The coupling between the mag-
nets and the superconductor is introduced by having a nonzero
hopping amplitude ti j across the ferromagnet-superconductor
interfaces. The region outside of the superconductor and mag-
nets is considered to be vacuum and decoupled from the rest
of the system with a vanishing hopping amplitude.

After diagonalization, the free energy of the system will be
expressed as

F = H0 − 1

2

2N∑
n=1

En − 1

β

2N∑
n=1

ln(1 + e−βEn ), (12)

where En is the quasiparticle energy associated with quantum
number n, and N is the number of lattice sites. The magnetic
exchange interaction is computed as the difference in free en-
ergy between the configurations with parallel and antiparallel
magnets

J = F↑↑ − F↑↓, (13)

which includes both the RKKY interaction mediated by the
quasiparticles as well as the effect of the magnetic configura-
tions on the condensation energy of the superconductor.

The Hamiltonian H = HSC + HFM is diagonalized by
means of the BdG method in order to compute the eigenvalues
En and eigenstates γn. The diagonalized Hamiltonian will then
take the form

H = H0 − 1

2

2N∑
n=1

En +
2N∑
n=1

Enγ
†
n γn. (14)

In order to perform the diagonalization, we start by rewriting
the Hamiltonian as H = H0 + 1

2

∑
i j B

†
i hi jB j where we have

introduced the basis

B†
i = [c†i↑ c†i↓ ci↑ ci↓]. (15)

Here, hi j is a 4 × 4 matrix that takes the following form for
i �= j

hi j =

⎡
⎢⎣

−t 0 0 −2VFi j
0 −t 2VFji 0
0 2V (Fi j )∗ +t 0

−2V (Fji )∗ 0 0 +t

⎤
⎥⎦, (16)

and for i = j

hi j =

⎡
⎢⎢⎣

−μi +
∑

δ h
δ
i 0 0 �i

0 −μi −
∑

δ h
δ
i −�i 0

0 −(�i )∗ +μi −
∑

δ h
δ
i 0

(�i )∗ 0 0 +μi +
∑

δ h
δ
i

⎤
⎥⎥⎦. (17)

Writing the Hamiltonian on matrix form H =
H0 + 1

2W
†SW , and introducing the matrix P,

we diagonalize the Hamiltonian H = H0 +
1
2W

†P†PSP†PW = H0 + 1
2W̃

†SdW̃ . The eigenvectors of S

are

�†
n =[ϕ∗

1n · · · ϕ∗
in · · · ϕ∗

Nn],

ϕ∗
in =[υ∗

in ν∗
in ω∗

in χ∗
in], (18)
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such that

P† = [�1 �2 . . . �4N ]. (19)

We next use P†W̃ = W along with

W̃ † = [γ †
1 . . . γ

†
4N ], (20)

and the relations between the quasiparticle operators that are
not independent of each other. There are then 2N remain-
ing independent quasiparticle operators with corresponding
eigenvalues. The creation and annihilation operators {c†, c}
can then be expressed in terms of quasiparticle creation and
annihilation operators {γ †, γ }:

ci↑ =
2N∑
n=1

υi,nγn + ω∗
i,nγ

†
n , ci↓ =

2N∑
n=1

νi,nγn + χ∗
i,nγ

†
n ,

c†i↑ =
2N∑
n=1

ωi,nγn + υ∗
i,nγ

†
n , c†i↓ =

2N∑
n=1

χi,nγn + ν∗
i,nγ

†
n .

(21)
Inserting these relations into the definition of the gap for the
on-site interaction, we obtain the self-consistent gap equation

�i = −Ui

2N∑
n=1

[(χ∗
i,nυi,n − νi,nω

∗
i,n) f (En) + νi,nω

∗
i,n]. (22)

For the nearest-neighbor pairing amplitudes, we introduce
a simplified notation F↑↓

i j = Fi j . Further, Fi,i+x̂ is expressed

as Fx̂+
i and likewise Fi+x̂,i ≡ F+x̂

i and so on. Inserting the
expressions from Eq. (21) into the definitions of the pairing
amplitudes, we obtain

Fx±
i =

2N∑
n=1

[(ω∗
i,nνi±x̂,n − υi,nχ

∗
i±x̂,n) f (En) + υi,nχ

∗
i±x̂,n],

F±x
i =

2N∑
n=1

[(ω∗
i±x̂,nνi,n − υi±x̂,nχ

∗
i,n) f (En) + υi±x̂,nχ

∗
i,n],

Fy±
i =

2N∑
n=1

[(ω∗
i,nνi±ŷ,n − υi,nχ

∗
i±ŷ,n) f (En) + υi,nχ

∗
i±ŷ,n],

F±y
i =

2N∑
n=1

[(ω∗
i±ŷ,nνi,n − υi±ŷ,nχ

∗
i,n) f (En) + υi±ŷ,nχ

∗
i,n].

(23)

As we are interested in the effect of the midgap states
on the indirect interaction between two ferromagnetic leads
connected to the superconductor, establishing the presence of
midgap states is of importance. This can be achieved by calcu-
lating the single particle local density of states (LDOS), which
should have a peak around zero energy in the presence of
midgap states. The number of charges on lattice site i is given
by ρi = ∑

α〈c†iαciα〉, but this quantity can also be expressed
as ρi = ∫ +∞

−∞ Ni(E ) f (E )dE . Here Ni(E ) is the local density
of states at site i, and f (E ) is the Fermi-Dirac distribution
with energy E measured relative to the chemical potential.
At T = 0, we have f (E ) = 1 for E < 0 and f (E ) = 0 when
E > 0. Comparing the above two expressions for the number

of charges on lattice site i, the LDOS can then be expressed as

Ni(E ) =
2N∑
n=1

[(|ωi,n|2 + |χi,n|2) δ(E + En)

+ (|υi,n|2 + |νi,n|2) δ(E − En)]. (24)

Another quantity of interest is the magnetization on lattice
site i, Mi = 〈Si〉. Here, the spin operator is defined as Si =∑

αβ c
†
iασαβciβ . The magnetization in the z direction can then

be expressed as

Mz
i =

2N∑
n=1

[(|υi,n|2 + |χi,n|2 − |ωi,n|2 − |νi,n|2) f (En)

+ |ωi,n|2 − |χi,n|2]. (25)

B. Computational methods

The computational part of this study consists of numer-
ically diagonalizing the Hamiltonian and self-consistently
solving the equations for either the on-site superconducting
gap [Eq. (22)] or the nearest-neighbor pairing amplitudes
[Eq. (23)], depending on whether the superconductor is taken
to be of the isotropic s-wave type or the d-wave type. Iterative
solution of these equations require an initial value for the gap
function/pairing amplitudes, and a convergence criterion in
order to determine when a solution has been obtained. In this
paper, the convergence criterion was that the relative change
in the gap/pairing amplitudes from one iteration to the next
should be less than 1 × 10−4 for the d-wave and 1 × 10−3 for
the s-wave state. The initial values for the d-wave state are
listed in the Appendix and the initial value for the s-wave gap
� was set to 0.5t .

III. RESULTS AND DISCUSSION

We first investigate the presence of midgap surface states,
i.e., zero-energy states existing on an edge of a superconduc-
tor. As displayed in Fig. 2, we calculate the LDOS for different
points on an s-wave and a d-wave superconductor without
magnetic contacts. One of the points is located at the diagonal
edge, one of the points is in the bulk, and the third point is
on the lower horizontal edge. Only on the diagonal edge of
the d-wave superconductor, Fig. 2(b1), there is a peak around
zero-energy signaling the presence of midgap states. In this
figure, the chemical potential has been set toμS = 0.7t , which
gives rise to an asymmetric density of states around E = 0 for
our tight-binding model as the gap in the electron spectrum is
opened away from the middle of the band.

As the presence of midgap states has been established,
we move on to results for the indirect interaction between
magnetic leads attached to a normal metal, an s-wave super-
conductor, and finally a d-wave superconductor.

A. Normal state

To put the results for the superconductors into context, we
start with the case of magnetic leads connected by a normal
metal (V = U = 0). The indirect exchange interaction J is
presented in Fig. 3. For the horizontal edge, the result is the
expected RKKY oscillations that are damped with increasing
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FIG. 2. Local density of states (LDOS) for different points of an s-wave superconductor (a) and a d-wave superconductor (b), showing the
presence of midgap states on the diagonal edge of the d-wave superconductor. In both cases the size of the structure is LxS = 34 and LyS = 30.
For the s-wave results we have takenU/t = 2 and V = 0, while for the d-wave results we have takenU = 0 and V/t = −1. In both cases we
have set the chemical potential μS = 0.7t .

distance between the magnets. For the diagonal edge, the
results are more peculiar, showing an enhanced interaction
when the electrodes are close to the endpoints of the diagonal
edge. Investigating the LDOS for E = 0 in Fig. 4, the reason
becomes clear. Close to the edges of the system, the LDOS
increases in magnitude and exhibits Friedel-like oscillations
due to the abruptly vanishing charge density at the edge. The
oscillatory and increased LDOS close to the edges corre-
spondingly affects the RKKY interaction when the electrodes
are close to the edge.

(a)

(b)

FIG. 3. Normal metal: Indirect exchange interaction between
magnetic leads connected to a diagonal (a) and a horizontal (b) edge
of a normal metal, presented as a function of the distance between
the leads. Here, the chemical potential in the normal metal is set
to μN = 0.9t and the chemical potential in the ferromagnets is set
to μF = 1.2t . Further, hi = 2t , LxN = 40, LyN = 40, LxF = 2, LyF =
10, and V = U = 0. In both subfigures, the leftmost magnet was
fixed two lattice points away from the endpoint of the edge.

B. s-Wave pairing

We then move on to the case of magnetic leads connected
by an isotropic s-wave superconductor (V = 0). The results
for the indirect exchange interaction are presented in Fig. 5. In
this case, there are two competing effects: The conventional
RKKY interaction and the blocking of the states that can
mediate the interaction due to the gap around the Fermi level
in the band structure. For a weak attractive interaction U in
the superconductor, the RKKY interaction dominates, giving
rise to an oscillating behavior. For larger U , the gap becomes
larger and can block more of the states that can mediate the
interaction between the magnets. The interaction then displays
a damping behavior instead of oscillations, and an antiparallel
configuration of the magnets is preferred [34]. For the diago-
nal edge, the electrodes have been kept further away from the
endpoints of the edge. For a weak attractive interactionU , the
enhanced RKKY oscillations occurring when the electrodes
are close to the end-points can, however, still be observed, as
explained previously. On the other hand, when the strength of

FIG. 4. Normal metal: Local density of states (LDOS) for E = 0
at the diagonal edge in the absence of magnetic contacts. The sys-
tem size is LxN = 40 and LyN = 40, V = U = 0, and the chemical
potential in the normal metal is 0.9t .
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(a)

(b)

FIG. 5. s-Wave : Indirect exchange interaction between magnetic
leads connected to a diagonal (a) and a horizontal (b) edge of a
s-wave superconductor. Here μS = 0.9t , μF = 1.2t , hi = 2t , LxS =
40, LyS = 40, LxF = 2, LyF = 10, and V = 0. For the diagonal edge,
the leftmost magnet is fixed 13 lattice points away from the endpoint
of the edge, while for the horizontal edge, the leftmost magnet is
fixed 2 lattice points away from the endpoint.

the attractive interaction is increased, increasing the supercon-
ducting gap, we see that J is damped to zero for sufficiently
large magnet separation also for the diagonal edge. Thus, in
the s-wave case, the qualitative behavior of J is the same
regardless of which edge we consider.

C. d-Wave pairing

Finally, we consider the main result of this paper, which is
how the magnetic leads interact when separated by a d-wave
superconductor (U = 0). The results for the indirect interac-
tion between the magnetic leads is presented in Fig. 6. For the
horizontal edge, the interaction displays an oscillating behav-
ior and varies in sign as a function of the distance between
the magnetic contacts. The results for the diagonal edge, on
the other hand, show a qualitatively different behavior. The
system now always prefers alignment of the ferromagnets and
the interaction varies little with distance. Further, increasing
hi now leads to a larger difference in free energy between the
parallel and antiparallel magnet configurations.

The result that a parallel magnet configuration is strongly
favored for the diagonal edge is surprising as one would
expect that the parallel configuration induces a larger magne-
tization in the superconductor, which suppresses the gap and
lowers the condensation energy. A particularly large induced
magnetization in the superconductor should be expected in the
presence of midgap states, which can give rise to a giant mag-
netic moment when subjected to a spin splitting [4,35,36]. In
accordance with this, we find a sizable induced magnetization
on the diagonal edge. As previously discussed in the litera-
ture, the magnetization induced in a superconductor due to

(a)

(b)

FIG. 6. d-Wave : Indirect exchange interaction between mag-
netic leads connected to a diagonal (a) and a horizontal (b) edge
of a d-wave superconductor. Here μS = 0.7t , μF = 1t , V/t = −1,
LxF = 2, LyF = 10, and U = 0. For the diagonal edge, the leftmost
magnet is fixed only 2 lattice points away from the endpoint of the
edge in order to maximize the number of data points. The d-wave
diagonal edge results are not sensitive to how close the magnets
are to the endpoints of the edge. Further LxS = 34, LyS = 30. For
the horizontal edge, the leftmost magnet is fixed 10 lattice points
away from the endpoint, and LxS = 40, LyS = 20.

proximity to a ferromagnet can be either aligned or anti-
aligned with the magnetization of the ferromagnet [37–39].
A physical picture for the origin of an anti-aligned induced
magnetization is that there are contributions from Cooper
pairs where one of the two electrons is located in the fer-
romagnet, aligned with the local magnetization, leaving a
Cooper pair partner with opposite spin in the superconductor.
In the present system the induced magnetization tends to be
anti-aligned with the magnetization of the magnetic contacts,
as displayed in Figs. 7(a) and 7(b).

The effect of introducing the magnets is, however, not
solely to reduce the gap due to an induced effective spin
splitting in the superconductor. The induced spin splitting
also splits the midgap states away from their resonance point
at zero energy, suppressing the midgap states. As the gap
close to the edge to begin with is strongly suppressed by
the midgap states, the effect of reducing the midgap states,
causing the superconducting order parameter to recover at
the edge, is stronger than the effect of the spin splitting on
the condensation energy. As the parallel configuration most
effectively produces a spin splitting in the superconductor, this
configuration features the largest condensation energy, giving
rise to the behavior that is observed in Fig. 6(a).

Investigating the constant term in the Hamiltonian H0 =∑
i H0,i, the difference between H0,i for the parallel and an-

tiparallel configurations is presented in Fig. 7(c). The figure
shows that H0, which is a positive quantity, is largest for the
parallel configuration, corresponding to a larger gap. In turn,
this produces a larger condensation energy that lowers the
free energy of the system. From the figure, it is clear that the
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(a) (b)

(c) (d)

FIG. 7. d-Wave: Magnetization on each lattice site for the paral-
lel (a) and antiparallel (b) configuration of magnets. The difference in
H0,i between the parallel and antiparallel configurations is presented
in (c). The local density of states (LDOS) for the 11th lattice site
(from the left) of the diagonal edge is presented in (d), showing that
the midgap states are more suppressed for the parallel magnet con-
figuration. Here we have taken the same parameters as in Fig. 6(a),
apart from a larger exchange field of hi = 2t in order to more clearly
show the differences between the two configurations.

main contribution to the difference in condensation energy be-
tween the magnetic configurations comes from the transition
region where the antiparallel configuration has a reduced edge
magnetization. LDOS results from this region are presented in
Fig. 7(d). While the AP configuration in this region has a clear
midgap peak around zero energy, the midgap states for the P
configuration have been split and suppressed by the induced
spin splitting.

We close by discussing briefly experimental considerations
and possible choices of materials for observation of the d-
wave results presented in this paper. While the system sizes
in the presented calculations are limited by computational
considerations, the presented results are expected to be robust
also for larger systems. As RKKY interaction typically de-
cays below experimentally accessible values over short length
scales of the order of nanometers, the separation between
the magnetic contacts typically needs to be kept small. This
might however only apply to the RKKY dominated indirect
interaction that we observe for the horizontal edge of the
d-wave superconductor. The preference of alignment of the
ferromagnets when attached to a diagonal edge of a d-wave
superconductor is expected to also be observable for larger
magnet separation as the indirect interaction in this case is
not dominated by itinerant carriers, but rather arises from
the parallel configuration more efficiently inducing a spin

splitting, suppressing the localized midgap states. The dis-
tance the magnets can interact over is then limited by the
length scale determining how far away from a magnet the
midgap states still experience a spin splitting. If the magnet
separation is much larger than this decay length of the induced
spin splitting along the edge, the spin splitting arising from
each magnet decays before interacting with the spin splitting
arising from the other magnet. There is then no difference
between the two magnet configurations when it comes to
suppression of midgap states, and the parallel configuration is
no longer favored. For an s-wave superconductor in proximity
to a ferromagnet, the proximity-induced magnetization decays
over a length scale of the superconducting coherence length
[40]. A natural length scale for the decay of the induced spin
splitting in the present case would then be the effective coher-
ence length corresponding to the strongly suppressed order
parameter at the edge. As the coherence length is inversely
proportional to the order parameter, the magnets will then be
able to interact over distances considerably larger than the
bulk coherence length.

Experimental investigation of our main finding would con-
sist of attaching magnetic leads to a {110} edge of a d-wave
superconductor. The indirect interaction between the magnets
can then be established by determining the energy barrier of
switching between the two magnet configurations through an
external magnetic field. Our prediction is that ferromagnetic
alignment of the magnets will be preferred for a wide range of
magnet separation distances. Possible material choices could
be YBCO [2,7,29] for the d-wave superconductor featuring
midgap states, and a nickel-alloy-like Ni80Co20 [41] for the
magnetic contacts.

IV. SUMMARY

We have investigated the indirect exchange interaction be-
tween two ferromagnetic leads connected to a superconductor
as a function of the separation between the magnets, showing
that the presence of zero-energy surface states in a d-wave
superconductor can qualitatively change the results. When the
magnets are connected to an edge without zero-energy surface
states we find a normal oscillating RKKY behavior. However,
when the magnets are connected to an edge featuring zero-
energy surface states, the strength of the magnetic exchange
interaction is shifted away from zero, always favoring align-
ment of the magnetization in the two magnets, as the aligned
configuration produces a larger superconducting condensation
energy.
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APPENDIX: PHASE DIAGRAM

In order to choose the parameters such that the supercon-
ductor used in the study is in a d-wave state, we obtain a
starting point by considering a square system with continuous
boundary conditions in both the x and y directions and no
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attached magnetic leads. The relevant Hamiltonian is the one
in Eq. (1) with Ui = V ′

i j = 0. We introduce Fourier trans-

formations for the electron operators ciα = 1√
N

∑
k e

ik·ick,α
where i = (ix, iy) and N is the number of lattice sites. After
the mean-field approximation, Eq. (1) then becomes

HSC = −
∑

〈i, j〉,α
tc†iαc jα −

∑
i,α

μiniα

+
∑
i,α �=α′

V [niαni+x̂,α′ + niαni−x̂,α′ + niαni+ŷ,α′

+ niαni−ŷ,α′ ]

=
∑
k,σ

ζkc
†
k,σ ck,σ +

∑
k

[(�k)
†c†k↓c

†
−k↑ + ϒkck↑c−k↓]

+ HSC
0 . (A1)

Here HSC
0 = −2NV (|Fx̂+|2 + |Fx̂−|2 + |Fŷ+|2 + |Fŷ−|2),

Fx± = 1

N

∑
k

e∓ik·x̂〈ck,↑c−k,↓〉,

Fy± = 1

N

∑
k

e∓ik·ŷ〈ck,↑c−k,↓〉,
(A2)

and we have defined,

ϒk = 2V (e−ik·x̂(Fx̂+)† + eik·x̂(Fx̂−)†

+ e−ik·ŷ(Fŷ+)† + eik·ŷ(Fŷ−)†),

�k = 2V (eik·x̂(Fx̂+)† + e−ik·x̂(Fx̂−)†

+ eik·ŷ(Fŷ+)† + e−ik·ŷ(Fŷ−)†),

εk = −2t[cos(k · x̂) + cos(k · ŷ)] − μ. (A3)

Further, t = ti j and V = Vi j .
Following the BdGmethod [32], we consider the following

basis in order to diagonalize the Hamiltonian

B†
k = [c†k↑ c†k↓ c−k↑ c−k↓]. (A4)

Then full Hamiltonian can be written as H = H0 +
1
2

∑
k B

†
kHkBk, where H0 = HSC

0 + ∑
k εk and Hk is

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εk 0 0 −(ϒk)†

0 εk (�k)† 0

0 �k −εk 0

−ϒk 0 0 −εk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)

Using the unitary matrix Pk the diagonalized form of the
Hamiltonian will be HSC = H0 + 1

2

∑
k B

†
kP

†
kPkHkP

†
kPkBk =

H0 + 1
2

∑
k B̃k

†
H̃kB̃k = H0 − 1

2

∑
k,σ Ek,σ + ∑

k,σ Ek,σ γ
†
kσ

γkσ . The relationship between the normal electron operators

TABLE I. Sets of initial values.

F x̂+ F x̂− Fŷ+ F ŷ−

d-wave 1 1 –1 –1
s-wave extended 1 1 1 1
px + ipy 1 –1 i −i
Normal state 0 0 0 0

and the quasiparticle operators is then

⎡
⎢⎢⎣

υk,↑ υk,↓ ω∗
−k,↑ ω∗

−k,↓
νk,↑ νk,↓ χ∗

−k,↑ χ∗
−k,↓

ωk,↑ ωk,↓ υ∗
−k,↑ υ∗

−k,↓
χk,↑ χk,↓ ν∗

−k,↑ ν∗
−k,↓

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γk↑
γk↓
γ
†
−k↑

γ
†
−k↓

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ck↑
ck↓
c†−k↑
c†−k↓

⎤
⎥⎥⎦,

(A6)

where the columns are the eigenvectors of Hk. The pairing
amplitudes can then be expressed as

Fx± = 1

N

∑
k,σ

[e∓ik·x̂υk,σ χ∗
k,σ (1 − f (Ek,σ ))

+ e±ik·x̂ω∗
k,σ νk,σ f (Ek,σ )],

Fy± = 1

N

∑
k,σ

[e∓ik·ŷυk,σ χ∗
k,σ (1 − f (Ek,σ ))

+ e±ik·ŷω∗
k,σ νk,σ f (Ek,σ )].

(A7)

Finally, the free energy of the system is

F = H0 − 1

2

∑
k,σ

Ek,σ − 1

β

∑
k,σ

ln(1 + e−βEk,σ ). (A8)

For different values of chemical potential and temperature,
we then solve the self-consistent equations for the pairing
amplitudes through iteration, using the different sets of initial
values listed in Table I. We then compare the resulting free
energies [Eq. (A8)] and determine the favored phase of the
system. The phase diagram is presented in Fig. 8. The choices
for the initial values are determined by the expressions for the

FIG. 8. Phase diagram for the tight-binding Hamiltonian with
attractive nearest-neighbor interaction between opposite spins V =
−1t . Here, T is the temperature, kB is the Boltzmann constant, μ is
the chemical potential, and t is the hopping amplitude.
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gap functions [42]

�d = (V/4)(Fx̂+ + Fx̂− − Fŷ+ − Fŷ−),

�s = (V/4)(Fx̂+ + Fx̂− + Fŷ+ + Fŷ−),

�px = (V/2)(Fx̂+ − Fx̂−),

�py = (V/2)(Fŷ+ − Fŷ−). (A9)
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The Chandrasekhar-Clogston limit normally places stringent conditions on the magnitude of the magnetic
field that can coexist with spin-singlet superconductivity, restricting the critical induced Zeeman shift to a
fraction of the superconducting gap. Here, we consider a model system where the spin-singlet Cooper pairing
in a dispersive band crossing the Fermi level is boosted by an additional flat-band located away from the
Fermi level. The boosting of the pairing in the dispersive band allows for nontrivial solutions to the coupled
gap equations for spin-splitting fields considerably larger than the superconducting gaps at zero field. Further,
the additional Cooper pairing in the flat-band, away from the Fermi level, can increase the superconducting
condensation energy without affecting the paramagnetic susceptibility of the system, making the free energy
favor the superconducting state. This opens up the possibility for spin-singlet superconductivity beyond the
standard Chandrasekhar-Clogston limit.

DOI: 10.1103/PhysRevB.105.L060501

I. INTRODUCTION

Coexistence of superconductivity and magnetism is es-
sential within the field of superconducting spintronics [1–8],
which relies on stabilizing superconductors in proximity
to magnetic materials and realizing phenomena such as
spin-polarized supercurrents [9–11]. Moreover, spin-split su-
perconductors can give rise to very large thermoelectric
effects [12–17], which can be used to convert excess heat into
useful energy.

Magnetism is, however, usually detrimental to supercon-
ductivity. Orbital effects induced in a superconductor due to a
magnetic field can be suppressed by making the superconduc-
tor sufficiently thin and applying the magnetic field in-plane
[16,18,19]. The critical magnetic field is then determined by
the Zeeman-splitting that the superconducting state can sur-
vive [20,21]. As the normal state of the system has a nonzero
density of states at the Fermi level, the free energy can be low-
ered in the presence of a spin-splitting field by spin-polarizing
the system. A spin-singlet superconductor with a gap around
the Fermi level [22], however, has no zero-temperature para-
magnetic susceptibility and is unable to lower its energy in the
same way. When the Zeeman energy gain in the normal state
becomes as large as the superconducting condensation en-
ergy, the system therefore transitions to the normal state. This
places an upper bound on the spin-splitting field that a conven-
tional superconductor can coexist with h = �0/

√
2 ≈ 0.7 �0

[20,21], referred to as the Chandrasekhar-Clogston limit.
Here, �0 is the superconducting gap at zero field. Bypassing
the Chandrasekhar-Clogston limit requires, e.g., spin-triplet
or Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing [23,24],
introduction of spin-orbit coupling in the system [25], or an

*These authors contributed equally to this work.
†jacob.linder@ntnu.no

applied voltage bias driving the superconductor out of equi-
librium [26].

Fermionic flat-band systems are systems containing one or
more fermionic energy bands with weak or no dependence on
momentum [27,28]. Such bands can be generated by realiz-
ing particular tight-binding models [29–35] in, e.g., artificial
electronic lattices [36–39] or optical lattices filled with ultra-
cold fermionic atoms [40,41]. For instance, spin-imbalanced
superfluidity in lattices featuring flat bands, such as Lieb
and kagome lattices, have been studied in Refs. [42,43].
Flat-bands can also be realized in twisted or lattice mis-
matched multilayers such as twisted bilayer graphene [28,44–
47], where the flat-bands are defined in a mini-Brillouin zone
corresponding to a long-wavelength superlattice arising from
the mismatch between the periodic structures in the separate
layers. Flat-band systems are appealing for superconductivity
as a larger density of states at the Fermi level normally leads to
a larger superconducting transition temperature. Early studies
identified that the presence of a flat-band could in fact give
rise to a linear dependence of the transition temperature on
the strength of the attractive interactions [48,49], generating
hope of achieving high critical temperatures. With the dis-
covery of superconductivity in magic-angle twisted-bilayer
graphene [45], interest in flat-band superconductivity rocketed
[50–54]. Recently, it has also been shown that superconductiv-
ity in twisted trilayer graphene can survive in-plane magnetic
fields beyond the Chandrasekhar-Clogston limit [55], which
has been interpreted as an indication of spin-triplet pairing
[55,56].

In this Letter, we consider a two-band model system for a
spin-split superconductor, in which a dispersive band crosses
the Fermi level and a flat-band is located in the vicinity of the
Fermi level. We consider both attractive intra- and interband
scattering, giving rise to two coupled self-consistency equa-
tions for the spin-singlet pairing amplitudes associated with
the two bands. The additional Cooper pairing in the flat-band
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gives rise to an increase in the condensation energy, without
affecting the zero-temperature paramagnetic susceptibility of
the system as long as the flat-band does not cross the Fermi
level. The free energy is therefore minimized by the super-
conducting state beyond the Chandrasekhar-Clogston limit.
Moreover, as the flat-band is located away from the Fermi
level, quasiparticle excitations associated with the flat-band
are energetically costly also for large spin-splitting, making
the flat-band contributions to the gap equations more resilient
to spin-splitting fields than the contributions from the dis-
persive band. We therefore find that the spin-singlet pairing
in this system can survive spin-splitting fields significantly
larger than the superconducting gaps at zero field. We close
by discussing how the physics captured by our model can be
realized in experiments.

II. MODEL

Our system is described by an interacting two-band Hamil-
tonian on the form

H =
∑
i,k,σ

εi,k,σ c
†
i,k,σ ci,k,σ

− 1

N

∑
i, j,k,k′

Vi j (k, k
′) c†

i,k,↑ c
†
i,−k,↓ c j,−k′,↓ c j,k′,↑. (1)

Here, ci,k,σ is an annihilation operator for an electron in band
i with momentum k, and spin σ . The noninteracting part of
the Hamiltonian describes the dispersive band with energies
ε1,k,σ = −2t[ cos(kx ) + cos(ky)] − μ − σh and the flat-band
with energies ε2,k,σ = −μ0 − σh. The strength of the spin-
splitting field is still h, the number of lattice sites is denoted
by N , and μ is the chemical potential. Further, μ0 is the shift
of the flat band away from the Fermi-level, where a positive
μ0 corresponds to the flat-band being located below the Fermi
level. With this parametrization, the Fermi level is moved
relative to the dispersive band when μ is varied, while the
separation of the flat-band and the Fermi level is fixed. The
band structure in the absence of spin-splitting is illustrated
in Figs. 1(a) and 1(b). The Hamiltonian in Eq. (1) is similar
to the one used in Ref. [48], which discussed boosting of
the pairing in a dispersive band through the presence of a
flat-band. However, no spin-splitting field was considered in
Ref. [48].

The interaction term in the Hamiltonian allows for attrac-
tive BCS-type intraband and interband scattering [57]. The
interaction is taken to be attractive in a thin shell of width
2h̄ωc around the Fermi level

Vi j (k, k
′) =

{
Vi j > 0, |εi,k|, |ε j,k′ | � h̄ωc,

0, otherwise.
(2)

Here, εi,k is defined from εi,k,σ = εi,k − σh, and Vi j is the
band-dependent attractive interaction strength. In the follow-
ing, we neglect any hybridization between the bands or other
changes to the normal state band structure arising from the in-
teraction, and investigate up to what values of h the attractive
interaction can give rise to superconductivity.

Performing a standard mean-field theory, defining spin-
singlet gaps �i(k) = 1

N

∑
j,k′ Vi j (k, k

′)〈c j,−k′,↓c j,k′,↑〉, and

FIG. 1. (a), (b) Illustration of the band structure of the two-
band model in the absence of spin-splitting. Dashed lines represent
three different values of the chemical potential μ = −0.2t , −2t ,
and −3.8t . The flat-band is fixed μ0 below the Fermi level, which
is illustrated by the blue line 2 in panel (b) for a specific choice
of the chemical potential. (c) Superconducting gap versus the ra-
tio between the strength of the spin-splitting field and the gap at
zero field for the three different chemical potentials in (a). The
Chandrasekhar-Clogston limit is indicated by the vertical dashed
line. The parameters have been set to T = 0, V11 = V12 = V21 =
V22 = 0.01t , μ0 = 0.00495t , and h̄ωc = 0.05t .

introducing the necessary Bogoliubov-de Gennes transforma-
tion, the coupled gap equations take the form

�i(k) = 1

N

∑
j,k′

Vi j (k, k
′)

� j (k
′)

2Ej,k′

× 1

2

[
tanh

(
β

2
Ej,k′,↑

)
+ tanh

(
β

2
Ej,k′,↓

)]
. (3)

Here, Ei,k =
√
ε2
i,k + |�i(k)|2, the quasiparticle energies are

Ei,k,σ = Ei,k − σh, and β = 1/(kBT ) is inverse temperature.
The free energy, which determines whether the superconduct-
ing state minimizes the free energy, is expressed as

F = 1

4

∑
i,k,σ

�2
i (k)

Ei,k
tanh

(
β

2
Ei,k,σ

)

+
∑
i,k

(εi,k − Ei,k ) − 1

β

∑
i,k,σ

ln(1 + e−βEi,k,σ ). (4)
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The first term in this expression is simply a generalization of
the term N�2/V , which it reduces to for the case of a single
electron band.

III. RESULTS

For simplicity, we start with the case where all the interac-
tion strengths are equal (V11 = V12 = V21 = V22 = V ). In this
case, the two coupled gap equations in Eq. (3) reduce to a
single self-consistent equation for the gap � = �1 = �2. By
numerically solving this gap equation and ensuring that the
free energy in Eq. (4) is minimized, we determine the value of
the gap as a function of the strength of the spin-splitting field
h. The results at zero-temperature are presented in Fig. 1(c)
for different values of the chemical potential μ. As displayed
in this figure, a nonzero superconducting gap can exist for
spin-splitting fields significantly larger than the gap at zero
field �0.

In the more familiar case of a superconductor with a
single dispersive band crossing the Fermi level, the super-
conducting gap vanishes when the field strength reaches the
Chandrasekhar-Clogston limit and the normal state minimizes
the free energy. In Fig. 1(c), this limit is indicated by a vertical
dashed line. The mechanism for this transition is easily seen
from the expression for the free energy in Eq. (4) if we limit
ourselves to the contributions from i = 1, corresponding to
the dispersive band. For the superconductor, as long as the
spin-splitting is smaller than the gap, all the quasiparticle
energies are positive and the last term in the free energy
vanishes at zero temperature. For the normal state, however,
there is no gap in the excitation spectrum and the energies
E1,k,σ = |ε1,k| − σh can turn negative, giving rise to negative
contributions from the last term in the free energy. This corre-
sponds to a lowering of the normal state free energy through
the system becoming spin-polarized. Comparing the rest of
the free energy for the two phases gives rise to the conden-
sation energy, favoring the superconducting state. When the
strength of the spin-splitting field is increased, the lowering of
the free energy of the normal state eventually dominates over
the condensation energy, and the normal state prevails.

In the present case, there are additional contributions to the
free energy arising from the flat band. As long as the quasipar-
ticle energies E2,k,σ are shifted away from the Fermi level by
|μ0| > h, these energies will always be positive even without
a gap. At zero temperature there are then no contributions
from the last term in the free energy arising from the flat-band,
regardless of whether the system is in the superconducting or
normal state. The effect of the flat-band on the free energy
is then simply to significantly increase the condensation en-
ergy due to its large density of states. We therefore find that
having a nonzero gap minimizes the free energy also beyond
the Chandrasekhar-Clogston limit. Moreover, considering the
dispersive band, when the spin-splitting becomes larger than
�0, the gaps in the separate spin-bands no longer overlap and
the superconducting state is able to lower its free energy by
spin-polarizing the quasiparticles as discussed in Ref. [58].
Such “gapless” superconductivity arises from time-reversal
symmetry breaking [59,60] and has been encountered in, e.g.,
systems with magnetic impurities [61,62] and in the presence
of a magnetic field [63,64]. For a model with two bands

crossing the Fermi level, the state where the spin-splitting is
larger than the superconducting order parameter of both bands
was discussed, but not found to be stable, in Ref. [65].

Turning to the gap equation, for a spin-splitting field larger
than the gap, the energies E1,k′,↑ and E1,k′,↓ on the right-hand
side of Eq. (3) can end up with opposite signs, leading to a
cancellation of the contributions. The first contributions to go
are those with the smallest energies E1,k′ , i.e., the most impor-
tant contributions from the dispersive band. For the flat-band,
however, the quasiparticle energies are always positive for
h <

√
μ2

0 + �2. The flat-band contributions to the gap equa-
tion are therefore robust towards spin-splitting. By having the
flat-band sufficiently close to the Fermi level (|μ0| < V/2),
nontrivial solutions to the gap equation can then be guaranteed
as long as the field is not large enough to change the sign of
quasiparticle energies.

Closer investigation of the free energy reveals that, when
contributions from the dispersive band are neglected, the su-
perconducting state is no longer favored for h >

√
μ2

0 + �2−
1
2 �2/

√
μ2

0 + �2. This expression is larger than or equal to |μ0|
and arises from the paramagnetic energy gain of the normal
state compensating the energy gain associated with the su-
perconducting gap. Moreover, the expression is smaller than√
μ2

0 + �2, meaning that at this field strength there still exists
a nontrivial solution to the gap equation if |μ0| < V/2. The
critical field is then limited by the free energy, giving rise
to a first-order transition where the gap suddenly vanishes.
Further, for μ2

0 	 �2, the critical spin-splitting field simply
becomes hc ≈ |μ0|, where the maximum value of |μ0| that can
produce a nontrivial solution to the gap equation is limited by
the interaction strength V .

The dependence of the gap equation on the strength of the
spin-splitting field can be observed in Fig. 1(c), and is most
easily seen by considering the pink curve corresponding to
μ = −0.2t . For h < �0, the curve is flat as the spin-splitting
has no effect on the contributions to the gap equation. Then, as
h > �0, contributions from the dispersive band start canceling
out, leading to a decrease in the gap. This corresponds to
the minimum energy of breaking a Cooper pair becoming
zero, as discussed by Abrikosov in the context of gapless
superconductivity in the presence of magnetic impurities [66].
In the present case, a nonzero superconducting gap exists until
around h > |μ0|, beyond which the free energy favors the
normal state.

Taking μ = −2t as an example, hc/�0 = 5.7 and, calcu-
lating the critical temperature at zero field, �0/Tc = 0.87.
For these parameters, we then obtain hc/μB = 7.4 T/K × Tc,
where μB is the Bohr magneton. For μ = −0.2t , the ratio
�0/Tc becomes larger as the dispersive band contributes more
to the gap equation, and oppositely for μ = −3.8t . Reducing
|μ0| can give rise to higher values for �0/Tc. Further, the
temperature dependence of the results for μ = −2t are pre-
sented in Fig. 2. As displayed in Fig. 2(b), the superconductor
to normal state transition becomes a second-order transition
at higher temperature. The change from a first-order to a
second-order transition is found to take place slightly above
T/Tc = 0.06. This ratio can be increased by moving the flat-
band closer to the Fermi level.

We next demonstrate how our results are influenced
by band-dependence of the interaction strengths. We first
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FIG. 2. (a) Superconducting gap � as a function of temperature
T and the strength of the spin-splitting field h for the parameters in
Fig. 1 with μ = −2t . (b) Curves showing �(h) for a selection of
temperatures.

consider the effect of reducing the interband scattering by
taking V12 = V21 smaller than V11 = V22. Solving the coupled
gap equations and checking the free energy, we obtain the
results in Fig. 3 . As the dominant contributions to the gap
equations arise from the flat-band, we find that �2, which
obtains contributions from V21�1 and V22�2, is not strongly
affected by a reduction of V21. However, �1 obtains contribu-
tions from V11�1 and V12�2, and a reduction of V12 therefore
leads to a significant reduction of �1. Substantial pairing in
the dispersive band crossing the Fermi level therefore requires
a sufficiently large interband interaction strength. In all cases,
the gaps survive until around h > |μ0|, which is considerably
larger than the gaps at zero field.

Finally, we consider the case where we also increase the
intraband interaction in the dispersive band compared to the
intraband interaction in the flat-band. The results for �1 are
displayed in Fig. 4, showing that significantly increasing V11

only leads to a moderate increase in �1 as the dominant
contributions to the gap equations still arise from the flat-band
due to its large density of states. A moderate increase in �1

has little impact on the results for �2 which therefore varies
little when we increase V11. The gaps once again survive until
around h > |μ0|, where the magnitude of |μ0| that can still

FIG. 3. (a) �1 (b) �2 as a function of the strength of the spin-
splitting field h for four different ratios ofV12/V11. The parameters are
set to T = 0, μ0 = 0.00495t , V11 = V22 = 0.01t , V12 = V21, h̄ωc =
0.05t , and μ = −2t .

FIG. 4. The gap �1 as a function of the strength of the
spin-splitting field h for four different ratios of V11/V22. The pa-
rameters are set to T = 0, μ0 = 0.00495t , V22 = 0.01t , V12 = V21 =
0.005t, h̄ωc = 0.05t , and μ = −2t .

provide a nontrivial solution to the gap equations is deter-
mined by how large we take V22.

IV. OUTLOOK

We have presented a mechanism for how a spin-singlet su-
perconductor can survive beyond the Chandrasekhar-Clogston
limit. The mechanism relies on having a sufficiently disper-
sive band crossing the Fermi level, an additional flat-band
nearby, sufficient intraband interaction in the flat-band, and
some interband scattering. Experimental realization would
typically be through a thin-film superconductor with a, prefer-
ably tunable, induced spin-splitting. The spin-splitting can be
achieved by exposing the superconductor to a strong in-plane
magnetic field, or to a combination of a ferromagnet and an
external field where the additional external field provides the
tunability of the strength of the spin-splitting [26]. The nec-
essary band structure could be realized in twisted multilayers,
artificial electronic lattices or alternatively in optical lattices.
The especially relevant case of a dispersive band on top of a
flat-band corresponds to the limiting case where the chemical
potential in Fig. 1 is taken almost down to the bottom of
the band, e.g., μ = −4t + μ0. Importantly, the flatness of the
flat-band should be stable in the presence of spin-splitting. Fi-
nally, the interactions could originate with phonons in twisted
multilayers or be engineered in artificial systems. The choice
of interactions in Fig. 1 could, e.g., in principle correspond
to the electrons in both bands coupling similarly to Einstein
phonons. As shown in Figs. 3 and 4, the results for the critical
field are, however, quite robust to band-dependence of the
interaction strengths, allowing for reduction of the interband
scattering as well as for a much larger intraband scattering in
the dispersive band than in the flat-band.

More exhaustive studies of realistic systems with similar
properties as our model system, taking into account the details
of the band structure and the interactions, should be performed
to more closely relate the results to experiments. Special
attention should be paid to the theoretical approach when a
flat-band is present and when the Fermi energy is not dominat-
ing the other energy scales in the system, which, e.g., can be
the case when the chemical potential is close to the bottom of
the conduction band. Future work could also include analysis
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of the stability of other superconducting phases such as FFLO
states, or investigation of, e.g., single-band models featuring
bands that are partially flat and partially dispersive [67], where
our mechanism in principle also could be applicable.

V. SUMMARY

Our results demonstrate that spin-singlet superconductivity
beyond the Chandrasekhar-Clogston limit could be possible

in flat-band systems. Future studies should perform more
detailed calculations for realistic systems to more closely con-
nect the findings to experiments.
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We study a bilayer structure consisting of an antiferromagnetic insulator and a normal metal. An electron
current is driven in the normal metal with direction parallel to the interface between the materials. Due to
interfacial exchange coupling between the localized spins in the antiferromagnet and the itinerant electrons
in the normal metal, a magnon current can then be induced in the antiferromagnet. Using an uncompensated
antiferromagnetic interface, creating an asymmetry in the interfacial coupling to the two degenerate magnon
modes, we find that it is possible to generate a magnon spin current. The magnon spin current can be enhanced
by increasing the temperature or by spin-splitting the magnon modes.

DOI: 10.1103/PhysRevB.105.184434

I. INTRODUCTION

A key element in spin-based electronics is the possibility of
using spin currents to transport information. The spin currents
should be efficiently generated, capable of propagating with
low loss of energy, and reliably detected. An interesting av-
enue for low-loss transportation of spin signals is provided by
magnetic insulators where spin currents are associated with
fluctuations in magnetic order rather than a spin-polarized
flow of electrons [1–4]. Information can thus be transferred
without the need of moving charge carriers. Detection of spin
currents propagating through magnetic insulators can, e.g., be
achieved through conversion to electron spin currents at metal
interfaces, which can then be detected through the inverse spin
Hall effect [5–7]. Conversely, the generation of spin currents
can be achieved through injection from a neighboring mate-
rial, such as a material exhibiting the spin Hall effect [1,2,5,8–
12]. Alternatively, spin currents in magnetic insulators can
also result from, e.g., a temperature gradient through the spin
Seebeck effect [13,14].

Antiferromagnetic insulators, specifically, have recently
gathered interest as alternatives to ferromagnetic insulators
as active components in spintronics applications [4,15–17].
An additional complication for spin transport in antiferromag-
netic insulators is, however, that their ability to carry spin
currents can be reduced by competing contributions from the
two oppositely polarized magnon modes, often giving rise to
a vanishing spin current for an easy-axis antiferromagnet with
two degenerate magnon modes [18]. Potential solutions to this
problem include splitting the magnon modes through, e.g., the
application of an external magnetic field [19,20], or utilizing
hard-axis antiferromagnets, naturally featuring nondegenerate
magnon modes [21]. The latter solution relies on the net spin
angular momentum of the magnons not vanishing [18].

Going in a different direction, it is also possible to work
with degenerate magnon modes, but inducing a magnon spin

*Corresponding author: asle.sudbo@ntnu.no

current through a coupling to another material where one
mode is more affected than the other. Such an asymmetry in
the coupling can, e.g., arise from the other material exhibiting
a spin accumulation at the interface [22–26], or from the anti-
ferromagnetic interface itself being uncompensated, meaning
that only one antiferromagnetic sublattice is exposed at the
interface [24]. In addition to a potential asymmetry in the
coupling to the two magnon modes, uncompensated interfaces
can also provide an enhancement of electron-magnon inter-
actions through suppressed sublattice interference [27,28].
This has been exploited in proposals for magnon-mediated
superconductivity in heterostructures consisting of antiferro-
magnets and conductors [29–32], as well as indirect exciton
condensation [33].

Spin currents associated with fluctuations in magnetic or-
der can also arise in metallic magnets featuring both ordered
localized magnetic moments and itinerant electrons. In this
case, the coupling between the localized spins and itinerant
electrons can give rise to a rich phenomenology pertaining to
transport phenomena [34–38]. For instance, a voltage-induced
electron current, naturally giving rise to an electron spin
current in a metallic ferromagnet due to the spin nondegen-
eracy of the system, can transfer momentum to the magnon
population in the system. This gives rise to a magnon spin
current [39]. Likewise, a ferromagnetic metal with a temper-
ature gradient will host flow of both electrons and magnons
coupled together through drag effects [40–43]. Coupling of
flow of electrons and magnons has also been investigated in
noncollinear antiferromagnetic metals [44]. This type of in-
terplay between electron and magnon currents is not naturally
present in magnetic insulators. It can, however, be realized in
heterostructures involving magnetic insulators and conducting
materials.

Recently, it has been proposed that an in-plane charge cur-
rent carried by spin-triplet Cooper pairs in a superconducting
thin film can induce a magnon spin current in a neighbor-
ing ferromagnetic insulator layer due to interfacial exchange
coupling [45]. This study, considering the coupling between
localized spins and an imbalanced population of left-moving
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and right-moving particles in an adjacent material, represents
a new way of inducing a spin current in a ferromagnetic insu-
lator. A natural question to ask is then whether it is possible
to induce a spin current in an antiferromagnetic insulator in
a similar way. Moreover, as a normal metal subjected to a
voltage also can host an imbalance of right-moving and left-
moving particles, exchanging the superconductor in Ref. [45]
with a normal metal could allow for the mechanism to be
extended to higher temperatures in a simpler system setup.

In the present article, we investigate a system consisting
of an antiferromagnetic insulator (AFMI) layer located on top
of a normal metal (NM) layer, where an in-plane current is
driven in the normal metal. Our modeling allows us to tune
between a compensated and uncompensated AFMI interface,
as well as to introduce spin splitting of both electrons and
magnons. Through interfacial scattering processes, momen-
tum can be transferred from the itinerant electrons of the NM
to the magnons in the AFMI, potentially giving rise to magnon
currents. Applying semiclassical Boltzmann theory, we here
derive a relationship between the macroscopic currents flow-
ing in the system.

For the case of spin-degenerate quasiparticles in both sub-
systems and a compensated antiferromagnetic interface, we
find that the charge current in the NM induces a magnon
current in the AFMI, but no magnon spin current as the contri-
butions from the two magnon modes cancel. Applying instead
an uncompensated AFMI interface, a magnon spin current
is produced. Interestingly, we find that the magnitude of the
induced magnon spin current is not always maximized for a
fully uncompensated interface. A weaker asymmetry in the
coupling between the NM and the two AFMI sublattices can
actually be more favorable, despite the fact that this weakens
the typical strength of the electron-magnon coupling. It is
further found that the magnon spin current increases with
temperature and that it can be enhanced by spin-splitting the
magnon modes.

II. MODEL

The system setup is illustrated in Fig. 1. An experimental
realization of the system will typically feature thin films of
some finite thickness. For simplicity, we consider the layers
to be two-dimensional and apply square lattice models. We
start out from a tight-binding description of electrons hopping
between lattice sites in the NM. For the AFMI, we consider
localized spins with easy-axis anisotropy K , interacting with
each other through a nearest-neighbor exchange interaction
J1 and a next-nearest-neighbor interaction J2. We perform a
Holstein-Primakoff transformation in order to describe spin
fluctuations in terms of magnons. Additionally, there is an in-
terfacial exchange coupling J̄�ϒ between the localized spins
of the ϒ = A,B sublattice in the AFMI and the spins of the
itinerant electrons in the NM, which gives rise to electron-
magnon scattering [32]. Importantly, we can, e.g., set �A = 1,
�B = � and tune our way from � = 1 (compensated inter-
face) to � = 0 (uncompensated interface). As discussed in
Appendix A, we go to the long-wavelength limit to obtain
isotropic expressions for the dispersion relations and magnon
coherence factors, which will simplify our further calcula-

AFMI

NMe ee e
J̄ΩA

x

y
zJ̄ΩB

x

y
zz

FIG. 1. A bilayer structure consisting of an antiferromagnetic
insulator (AFMI) on top of a normal metal (NM). A voltage bias
is applied to the normal metal in order to produce an electron current
directed along the x axis. The itinerant electrons in the NM can
interact with the spins in the AFMI, potentially leading to an induced
magnon spin current. The coupling between the electrons in the NM
and the A sublattice of the AFMI is J̄�A, while the coupling to the B
sublattice is J̄�B.

tions. For a sufficiently small and isotropic Fermi surface in
the NM, our modeling should be suitable.

The Hamiltonian describing the electrons then takes the
form

HNM =
∑
kσ

εkσ c
†
kσ ckσ , (1)

where εkσ = t (ka)2 − μ − σhe. Here, c†
kσ is a creation oper-

ator for an electron with momentum k and spin σ =↑,↓=
+,−. Further, t is the electron hopping amplitude, a is the
lattice constant, μ is the chemical potential, and he is a spin-
splitting field. The electron spin splitting can arise from either
asymmetric coupling to the two sublattices of the AFMI, an
external applied field, or a combination of these two sources,
as discussed in Appendix A.

The Hamiltonian describing the magnons is expressed as

HAFMI =
∑
q

(ωqαα†
qαq + ωqββ†

qβq), (2)

where ωqα = ωq + hm, ωqβ = ωq − hm, and

ωq =
√

	2
g + κ2(qa)2. (3)

Here, α†
q is a creation operator for an α magnon (spin down)

with momentum q, and β†
q is a creation operator for a β

magnon (spin up). The gap in the magnon spectrum is 	g,
while the dispersiveness of the spectrum is parametrized by
κ . A splitting of the magnon modes hm could, e.g., be intro-
duced through an external field. Similarly to the electrons,
we will use a short-form notation ωq,γ = ωq − γ hm, where
γ = α, β = −,+.

Finally, the electron-magnon scattering arising from the
coupling between the materials is described by [32]

Hint = V√
N

∑
kq

(Mq c
†
k+q,↓ck,↑ + M†

−q c
†
k+q,↑ck,↓), (4)
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where N is the number of lattice sites in each layer, V =
−2J̄

√
S, and

Mq = (�Auq + �Bvq)αq + (�Avq + �Buq)β†
−q. (5)

Here, S is the spin quantum number of the lattice site spins
in the AFMI, and the magnon coherence factors uq and vq are
defined in Appendix A. Importantly, uq and vq have opposite
signs and grow large in magnitude when q → 0, while always
satisfying u2

q − v2
q = 1. The coupling between electron and

long-wavelength magnons can therefore be enhanced by tak-
ing �A �= �B [28,29]. In addition to the scattering processes
included in (4), there can also be additional umklapp scatter-
ing processes where the outgoing electron has its momentum
shifted by a magnon reciprocal lattice vector [46]. Such scat-
tering processes arise because the magnon Brillouin zone is
reduced compared to the electron Brillouin zone. For a small
electron Fermi surface, umklapp processes will take electrons
far away from the Fermi surface, and such scattering processes
can therefore be neglected [29,32]. Moreover, umklapp pro-
cesses will typically not be present for a real uncompensated
interface where the NM is lattice matched with one of the two
sublattices of the AFMI.

In order to describe transport introduced by a voltage
bias applied to the NM, we utilize coupled Boltzmann equa-
tions for electrons and magnons. We express the linearized
Boltzmann equation for the electrons as [39,47]

−eE ve
kx

∂ f 0(εk,σ )

∂εk,σ
= − fσ (k) − fσ (k)

τσ

− fσ (k) − f−σ (k)

τ↑↓

+
[

∂ fσ (k)

∂t

]
int

. (6)

Here, e is the elementary charge, E is the electric field ap-
plied to the normal metal in the x direction, and ve

kx
is the x

component of the electron group velocity. Further, fσ (k) is
the electron distribution function, f 0(εk,σ ) = 1/(eβεk,σ + 1) is
the equilibrium electron distribution function, and f̄σ repre-
sents a momentum average over the angular coordinate. In
the absence of even-in-momentum corrections to the equi-
librium distribution, the angularly averaged distribution is
equivalent to the equilibrium distribution. Finally, τσ is the
spin-conserving electron relaxation time for electrons with
spin σ , and τ↑↓ is the spin-flip relaxation time for electrons.
We have assumed that the electron distribution function is
independent of in-plane position. An applied, uniform, elec-
tric field gives rise to spatially uniform corrections to the
electron distribution functions, giving rise to flow of electrons.
Interaction with magnons, represented by the last term [48],
can modify, and potentially spin-polarize, the electron current.
These effects are also assumed to be spatially uniform.

Furthermore, we express the linearized Boltzmann equa-
tion for the magnons as [21,39][

∂ bγ (q)

∂t

]
int

= bγ (q) − b0
γ (q)

τM,γ (q)
. (7)

Here, the magnon distribution function is denoted by bγ (q),
while b0

γ (q) = 1/(eβωq,γ − 1) is an equilibrium magnon distri-
bution function. Moreover, τM,γ (q) is a momentum-dependent
magnon-relaxation time. While the left-hand sides of the

Boltzmann equations for the electrons contain an external
driving term, any net magnon motion will have to result from
interaction with the electrons in the metal.

The electron and magnon distribution functions appearing
in the Boltzmann equations will be expressed as sums of the
equilibrium distributions and deviations from the equilibrium
distributions of the form [39,49,50]

fσ (k) = f 0(εk,σ ) − ∂ f 0(εk,σ )

∂εk,σ

[
δμe

σ + geσ (k)
]
, (8a)

bγ (q) = b0(ωq,γ ) − ∂b0(ωq,γ )

∂ωq,γ

[
δμm

γ + gmγ (q)
]
. (8b)

While δμ represents a uniform shift of the chemical potential,
any deviations associated with momentum-dependent correc-
tions to the excitation energies are captured by the functions
{geσ (k), gmγ (q)}. The part of these functions which is odd in
momentum may generate a net flow of particles and will
therefore be of relevance for this study. Moreover, the interac-
tion terms in the electron Boltzmann equations can, using the
interaction Hamiltonian together with Fermi’s golden rule, be
expressed as[

∂ f↑(k)

∂t

]
int

= 2πV 2

h̄N

∑
q

[
Qα (k, q) − QR

β (k, q)
]
, (9a)

[
∂ f↓(k)

∂t

]
int

= 2πV 2

h̄N

∑
q

[
Qβ (k, q) − QR

α (k, q)
]
, (9b)

while the interaction terms in the magnon Boltzmann equa-
tions similarly may be expressed as[

∂bγ (q)

∂t

]
int

= 2πV 2

h̄N

∑
k

Qγ (k, q). (10)

Here, we have defined

Qα (k, q) = (�Auq + �Bvq)2δ[εk,↑ + ωq,α − εk+q,↓]

× ([bα (q) + 1][1 − f↑(k)] f↓(k + q)

− bα (q)[1 − f↓(k + q)] f↑(k)), (11a)

Qβ (k, q) = (�Avq + �Buq)2δ[εk,↓ + ωq,β − εk+q,↑]

× ([bβ (q) + 1][1 − f↓(k)] f↑(k + q)

− bβ (q)[1 − f↑(k + q)] f↓(k)), (11b)

as well as introduced QR
γ (k, q), which is related to Qγ (k, q)

by sending q → −q followed by sending k → k + q. We see
that, with some necessary relabeling of momentum indices,
conservation of spin dictates the structure of the equations.
Processes increasing/decreasing the number of α magnons
contribute in the same way to the number of spin-↑ electrons,
and conversely to the number of spin-↓ electrons. For the β

magnons, the situation is the same, except for reversal of the
spin directions.

III. DERIVING MACROSCOPIC EQUATIONS

Starting from the coupled Boltzmann equations, we derive
a set of macroscopic equations relating the spin-polarized
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magnon current density jsm, magnon current density jm, and
spin-polarized electron current density js to the electron cur-
rent density je. The particle current densities are defined as
[19,39,51]

js = 1

(2π )2

∫
dk ve

kx [ f↑(k) − f↓(k)], (12a)

je = 1

(2π )2

∫
dk ve

kx [ f↑(k) + f↓(k)], (12b)

jsm = 1

(2π )2

∫
dq vm

qx [bβ (q) − bα (q)], (12c)

jm = 1

(2π )2

∫
dq vm

qx [bβ (q) + bα (q)], (12d)

where we in the thermodynamic limit have introduced inte-
gration over momentum. In the following, js and jsm will be
referred to as the electron and magnon spin currents, while jm
and je will be referred to as simply the magnon and electron
currents. Notably, we consider currents in the x direction in
real space, and the spin-space z component of the spin cur-
rents. Further, the electron and magnon velocities appearing
in the definitions of the currents are given by

ve
kx = 1

h̄

∂εk

∂k
k̂ · x̂, vm

qx = 1

h̄

∂ωq

∂q
q̂ · x̂. (13)

As the velocities are odd under inversion of momentum (odd
in the x direction and even in the y direction), only the cor-
responding odd part of the distribution functions fσ (k) and
bγ (q) contributes to the currents. Denoting the odd part of
geσ (k) and gmγ (q) by an index o, we can then write

js = 1

(2π )2

∫
dk ve

kx

∑
σ

σ

[
− ∂ f 0(εk,σ )

∂εk,σ

]
geσ,o(k), (14a)

je = 1

(2π )2

∫
dk ve

kx

∑
σ

[
− ∂ f 0(εk,σ )

∂εk,σ

]
geσ,o(k), (14b)

jsm = 1

(2π )2

∫
dq vm

qx

∑
γ

γ

[
− ∂b0(ωq,γ )

∂ωq,γ

]
gmγ ,o(q), (14c)

jm = 1

(2π )2

∫
dq vm

qx

∑
γ

[
− ∂b0(ωq,γ )

∂ωq,γ

]
gmγ ,o(q). (14d)

The next step is to multiply the electron Boltzmann equa-
tions by an electron velocity ve

kx
and integrate over momentum

k [39]. Similarly, we multiply the magnon Boltzmann equa-
tions by a magnon velocity vm

qx and integrate over momentum
q. Once again, any even-in-momentum corrections to the
distribution functions drop out of the equations so that the
remaining terms can be expressed in terms of the currents.
Adding or subtracting the two equations for the electrons, we
end up with

E T+ = 1
2P0τ

−1
e js − 1

2Y0τ
−1
e je + [F↑ + F↓], (15a)

E T− = 1
2P0τ

−1
e je − 1

2Y0τ
−1
e js + [F↑ − F↓]. (15b)

We have here defined τ−1
e = τ−1

↑ + τ−1
↓ , P0 = (τ↑ −

τ↓)/(τ↑ + τ↓), Y0 = 1 + 2τe/τ↑↓,

T± = −e

(2π )2

∫
dk

(
ve
kx

)2

[
∂ f 0(εk,↑)

∂εk,↑
± ∂ f 0(εk,↓)

∂εk,↓

]
, (16)

and

Fσ = 1

(2π )2

∫
dk ve

kx

[
∂ fσ (k)

∂t

]
int

. (17)

As τ↑↓ shows up in the equations of the form 1 + 2τe/τ↑↓,
its effect can be neglected for τ↑↓ � τe. Similarly, for the
magnons, we obtain

Bβ + Bα = τ−1
M0

jm, (18a)

Bβ − Bα = τ−1
M0

jsm, (18b)

where

Bγ = 1

(2π )2

∫
dq vm

qx ν(q)

[
∂ bγ (q)

∂t

]
int

. (19)

We have here neglected the γ dependence of the magnon
relaxation time [19,21], and written τM (q) = τM0ν(q), where
we take ν(q) to be of the form ν(q) = 1/[1 + ∑

n dn(qa)n].
Setting some coefficient dn nonzero, we can then capture the
effect of momentum dependence of the magnon relaxation
time. Further, it is worth noting that if both electrons and
magnons are spin degenerate, the left-hand side of (18b) can
vanish. A natural result would then be a nonzero magnon
current, but no magnon spin current. However, for �A �= �B,
the asymmetry between uq and vq can give rise to Qα �= Qβ ,
producing Bα �= Bβ . In order to evaluate the interaction terms
Fσ and Mσ , we insert the expressions for the distribution
functions from Eqs. (8a) and (8b). We then have

F↑ = V 2a2

h̄(2π )3

∫
dk ve

kx

∫
dq

[
Qα (k, q) − QR

β (k, q)
]
, (20a)

F↓ = V 2a2

h̄(2π )3

∫
dk ve

kx

∫
dq

[
Qβ (k, q) − QR

α (k, q)
]
, (20b)

Bγ = V 2a2

h̄(2π )3

∫
dq vm

qx ν(q)
∫

dkQγ (k, q), (20c)

now with

Qα (k, q) = β(�Auq + �Bvq)2δ[εk,↑ + ωq,α − εk+q,↓]

× b0(ωq,α )[1 − f 0(εk+q,↓)] f 0(εk,↑)

× ([
δμe

↓ − δμe
↑ − δμm

α

]
+ [

ge↓(k + q) − ge↑(k) − gmα (q)
])

, (21a)

Qβ (k, q) = β(�Avq + �Buq)2δ[εk,↓ + ωq,β − εk+q,↑]

× b0(ωq,β )[1 − f 0(εk+q,↑)] f 0(εk,↓)

× ([
δμe

↑ − δμe
↓ − δμm

β

]
+ [

ge↑(k + q) − ge↓(k) − gmβ (q)
])

. (21b)
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Here, β = 1/(kBT ), where T is the temperature of the system
and kB is the Boltzmann constant. Redefining k → −k and
q → −q, we see that we, once again, are left with only con-
tributions from terms involving geσ,o and gmγ ,o. The factors geσ,o
and gmγ ,o will be used in order to obtain Fσ and Bγ expressed
in terms of currents multiplied by some prefactors. Depending
on the order of the g’s in the square brackets in (21a) and
(21b), we give each term an index a = 1, 2, 3. Further, we
also give terms arising from Fσ an index γ depending on
whether they arise from Qα or Qβ . We then have a total of
16 terms to evaluate: 12 terms F (a)

σ,γ and 6 terms B(a)
γ , giving

rise to Fσ = ∑
γ ,a F

(a)
σ,γ and Bγ = ∑

a B
(a)
γ . Each term should

be expressed in terms of a combination of currents multiplied
by some prefactor �. As outlined in Appendix B, we achieve
this goal by, for each term, first performing one of the two
momentum integrals. For each term, we are then left with an
integral over geσ,o or gmγ ,o which can be related to a combina-
tion of currents by replacing additional momentum-dependent
factors by some characteristic value determined by the rest
of the integral. Along the way, we assume that the electron

energy scale is much larger than kBT . The energy kBT is again
assumed to be much larger than the typical magnon energies
that contribute to the integrals, which we find to typically be a
good approximation for our antiferromagnetic magnons living
in two dimensions.

Inserting the resulting expressions for the interaction terms
into Eqs. (18a), (18b), (15a), and (15b), we obtain

τ−1
M0

jm = [
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
je

+ [
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
js

− [
�

(3)
β + �(3)

α

]
jm − [

�
(3)
β − �(3)

α

]
jsm, (22)

τ−1
M0

jsm = [
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
je

+ [
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
js

− [
�

(3)
β − �(3)

α

]
jm − [

�
(3)
β + �(3)

α

]
jsm, (23)

E T+ = −[
1
2Y0τ

−1
e − [

�
(1)
↑,α + �

(1)
↓,α − �

(2)
↑,α − �

(2)
↓,α − �

(1)
↑,β − �

(1)
↓,β + �

(2)
↑,β + �

(2)
↓,β

]]
je

+ [
1
2P0τ

−1
e − [

�
(1)
↑,α − �

(1)
↓,α + �

(2)
↑,α − �

(2)
↓,α + �

(1)
↑,β − �

(1)
↓,β + �

(2)
↑,β − �

(2)
↓,β

]]
js

+ [
�

(3)
↑,β + �

(3)
↓,α − �

(3)
↑,α − �

(3)
↓,β

]
jm + [

�
(3)
↑,β − �

(3)
↓,α + �

(3)
↑,α − �

(3)
↓,β

]
jsm, (24)

and

E T− = [
1
2P0τ

−1
e + [

�
(1)
↑,α − �

(1)
↓,α − �

(2)
↑,α + �

(2)
↓,α − �

(1)
↑,β + �

(1)
↓,β + �

(2)
↑,β − �

(2)
↓,β

]]
je

− [
1
2Y0τ

−1
e + [

�
(1)
↑,α + �

(1)
↓,α + �

(2)
↑,α + �

(2)
↓,α + �

(1)
↑,β + �

(1)
↓,β + �

(2)
↑,β + �

(2)
↓,β

]]
js

+ [
�

(3)
↑,β − �

(3)
↓,α − �

(3)
↑,α + �

(3)
↓,β

]
jm + [

�
(3)
↑,β + �

(3)
↓,α + �

(3)
↑,α + �

(3)
↓,β

]
jsm. (25)

The coefficients � are defined in Appendix C, and their in-
dices relate them to one of the terms F (a)

σ,γ or B(a)
γ . For a

given set of parameters, these coefficients can be determined
through numerical integration.

Solving Eq. (25) for E and inserting this into Eq. (24), we
obtain

js = Ae→s je + Am→s jm + Asm→s jsm, (26)

where Ae→s, Am→s, and Asm→s are defined in Appendix D.
Inserting the expression in Eq. (26) into Eq. (22), we further
obtain

jm = Ce→m je +Csm→m jsm, (27)

where the expressions for the coefficients are once again pro-
vided in Appendix D.

Finally, combining Eqs. (27) and (26) with Eq. (23), we
can obtain an expression for jsm in terms of je. We can then
use this expression to also obtain expressions for jm and js in
terms of je.

IV. RESULTS

The final result of our calculation is⎛
⎝ js

jm
jsm

⎞
⎠ =

⎛
⎝ Ps
Pm
Psm

⎞
⎠ je. (28)

Here, the magnon spin-current drag coefficient is

Psm = Ae→sm +Ce→m Am→sm

+ (Ae→s +Ce→m Am→s)As→sm, (29)

where

Ae→sm = [
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
/Xsm, (30a)

As→sm = [
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
/Xsm, (30b)

Am→sm = −[
�

(3)
β − �(3)

α

]
/Xsm, (30c)

and

Xsm = τ−1
M0

+ [
�

(3)
β + �(3)

α

] +Csm→m
[
�

(3)
β − �(3)

α

]
− (Asm→s +Csm→m Am→s)

[
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
.

(31)
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The indices of the coefficients have been chosen to highlight
the origin of the different contributions. The role played by
the coefficients in Eqs. (26) and (27), can, e.g., provide some
information about the the origin of the different terms in the
numerator of Psm. If Ae→sm is nonzero, there can, e.g., be a
nonzero jsm even if Ce→m and Ae→s vanish, meaning that a
nonzero numerator of Ae→sm represents contributions to jsm
that can be interpreted as arising directly from je. The other
terms in the numerator of Psm can be interpreted as arising
indirectly from je via jm or js. Similarly, some understanding
of the terms in the denominator of Psm can be obtained. For
vanishing Csm→m, Asm→s, and τ−1

M0
, there is still a remaining

term [�(3)
β + �(3)

α ] in Xsm, associated with direct conversion of
magnon spin current into electron current.

Further, the magnon current drag coefficient can be ex-
pressed as

Pm = Ce→m + Psm Csm→m, (32)

and the ratio between the electron spin current and the normal
electron current is

Ps = Ae→s + Pm Am→s + Psm Asm→s. (33)

The two latter expressions for Pm and Ps have some room
for simplification, but their current form is convenient for
understanding the numerical results.

Setting �B = � and �A = 1, results for Psm and Pm as a
function of � are presented in Fig. 2. We have here neglected
any spin splitting of magnons and electrons and taken τ↑ = τ↓.
For � = 1, we see that there is a finite induced magnon cur-
rent, but no magnon spin current. In order to obtain a magnon
spin current, we need to introduce an asymmetry between the
coupling between the electrons and the two magnon modes.
This can be achieved by taking � < 1, producing a nonzero
magnon spin current. From the figure, we see that Pm simply
increases as we reduce �. The behavior of Psm is a bit more
peculiar. For sufficiently large τ−1

M0
, reducing � generally leads

to an increase in |Psm| (or at least not a strong reduction),
but for smaller τ−1

M0
we see that |Psm| has a clear peak at

some � > 0. Taking � = 0, maximizing the typical strength
of the electron-magnon coupling, does, in other words, not
necessarily maximize the induced magnon spin-current. We
also note that Ps is found to be small in all cases.

These results can be understood by inspecting the expres-
sions for the drag coefficients. Starting with Psm, the behavior
is mainly dominated by Ae→sm, where the dominant parts of
the denominator of Ae→sm are the terms related to magnon
relaxation and direct conversion of magnon spin current into
electron current. We can then inspect the resulting simplified
expression

Psm ∼
[
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
τ−1
M0

+ [
�

(3)
β + �

(3)
α

] . (34)

Here, asymmetry between �(1)
γ and �(2)

γ is related to asymme-
try between different scattering processes involving a specific
magnon mode, arising from an imbalance of electrons moving
in opposite directions. Moreover, an asymmetry between �(a)

α

and �
(a)
β has to arise from an asymmetry between scattering

processes involving α and β magnons. As we see from the
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FIG. 2. The ratio of magnon spin current (a) and magnon cur-
rent (b) to electron current as a function of the asymmetry in the
coupling between the normal metal and the two sublattices of the
antiferromagnet. Here, � = 1 corresponds to a compensated inter-
face, and � = 0 corresponds to an uncompensated interface. Three
different curves are displayed for different values of the inverse
magnon relaxation time at zero momentum τ−1

M0
. The rest of the

parameters are set to t = 1.6 eV, kFa = 0.6, S = 3/2, J1 = 6 meV,
J2 = 0, K/J1 = 1.0 × 10−3, J̄ = 15 meV, T = 300 K, τ↑ = τ↓ =
1.0 × 10−14 s, d3 = 5, and he = hm = 0.

simplified expression, asymmetries of both types are neces-
sary in order to obtain a magnon spin current.

Starting from large τ−1
M0

, this term dominates the denomi-
nator, and the effect of � will enter through the numerator of
Psm. Here, � < 1 will typically act to make (|uq| − �|vq|)2

(for α magnons) and (|vq| − �|uq|)2 (for β magnons) larger
and more different from each other, increasing the differ-
ence between α and β contributions to the numerator of Psm.
We therefore see that |Psm| increases with reduced �. As α

magnons, for � < 1, couple more strongly to electrons due to
|uq| > |vq|, the negative direction of the spin carried by the α

magnons makes Psm negative.
However, if we reduce τ−1

M0
so that the bracket in the

denominator of Psm also starts playing a role, the picture
becomes more complicated. In order to have Psm �= 0, we still
need � �= 1. Starting from � = 0 and increasing �, we again
have that �(a)

γ becomes smaller. Importantly, this reduction
mainly stems from suppression of dominant long-wavelength
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contributions with small q > 0. For such contributions |uq|
and |vq| are large. Since |uq|2 − |vq|2 = 1, we have that
(|uq| − |vq|) = 1/(|uq| + |vq|), meaning that the difference
between |uq| and |vq| is smaller for long-wavelength magnons.
This means that when we increase �, we most efficiently
suppress the long-wavelength contributions as, e.g., (|uq| −
�|vq|)2 is more efficiently suppressed with increasing � when
|uq| and |vq| are very similar. The key point to understanding
the behavior of Psm(�) is then that long-wavelength contribu-
tions are even more important for the denominator than the
numerator of Psm. In contrast to the denominator, the numer-
ator relies on |uq| �= |vq|, not allowing the magnon coherence
factors to have their normal boosting effect and making con-
tributions from somewhat larger q values more important. A
simple example is � = 0. Then, the magnon coherence fac-
tors of �(a)

α − �
(a)
β show up in the form u2

q − v2
q = 1, while the

coherence factors of �(3)
α + �

(3)
β show up in the form u2

q + v2
q ,

favoring long-wavelength magnons. By taking � > 0, we
then strongly suppress the bracket in the denominator through
its long-wavelength contributions, while the numerator of Psm
is less strongly affected. This makes it possible for |Psm| to
increase until the denominator becomes dominated by τ−1

M0
,

or the suppression of the numerator of Psm due to � → 1
eventually becomes too strong.

A similar increase in |Psm|, for sufficiently small τ−1
M0

,
can also be obtained by reducing the importance of long-
wavelength contributions to the �’s in other ways. One option
is to increase the easy-axis anisotropy, which both reduces the
value of uq and vq for small q and increases the excitation
energy of long-wavelength magnons. It is, however, worth
noting that, within our approximation scheme, one should be
careful with suppressing the importance of long-wavelength
magnons too much. For this reason, one should also not put
too much trust in, e.g., the results for Pm when � → 1, in
contrast to the result Psm(� = 1) = 0 which follows from
symmetry. Further, taking the magnon relaxation time to de-
cay faster with increasing momentum has an opposite effect,
pushing contribution weights toward smaller momenta. If τ−1

M0

is sufficiently small, we can compensate this effect by, e.g.,
taking a larger easy-axis anisotropy. However, if τ−1

M0
is too

large and/or ν(q) decays too quickly with momentum, there
can be a reduction in the achievable values of Psm. Increasing,
e.g., both d3 and K by an order of magnitude, the magnitude
of Psm(� = 0) for τ−1

M0
= 5 × 109 1/s is reduced by around

30%.
Similarly to Psm, the behavior of Pm in Fig. 2 can also be

understood from a simplified expression

Pm ∼
[
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
τ−1
M0

+ [
�

(3)
β + �

(3)
α

] . (35)

We see that the contributions from α and β magnons add, in
contrast to the case of Eq. (34), where they were subtracted.
In this case, also for small τ−1

M0
, there is typically no benefit

of increasing � as also the combination of magnon coherence
factors in, e.g., �(1)

α + �
(1)
β in the numerator still favors long-

wavelength magnons. Increasing � then simply leads to a
rapid suppression of the numerator.

Finally, we also comment on the smallness of Ps in the
simple case of no spin splitting of the electrons. The easiest
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-0.9 0.9
0.26

0.34

FIG. 3. The ratio of magnon spin current to electron current, Psm,
and the ratio of magnon current to electron current, Pm, are here
presented. In (a) and (b) we vary the interfacial coupling between
the materials, J̄ , as well as the temperature, T . In (c) and (d) we
vary the next-nearest-neighbor interaction in the antiferromagnet, J2,
where J2 > 0 corresponds to a frustration. In (e) and (f) we vary the
splitting of the magnon modes hm. Unless otherwise specified in the
panels, we have set hm = J2 = 0, J̄ = 15 meV, and T = 300 K. We
have also taken � = 0 and τ−1

M0
= 1 × 1010 1/s, while the rest of the

parameters are set to their values in Fig. 2.

case to analyze is if we simply take τ−1
e to be very large. In

that case, the denominator of Ae→s, Am→s, and Asm→s contains
a term τ−1

e that is not matched in the numerators. As there,
in this case, is assumed to be no intrinsic spin-current source
in the normal metal, an electron spin current will have to
arise from interaction with magnons. However, if the electron
relaxation time is too short, the effect of interaction with
magnons is washed away and the resulting electron spin cur-
rent becomes small.

We next consider, for � = 0, how the induced magnon
spin current and magnon current depend on some other im-
portant parameters of the system. In Figs. 3(a) and 3(b), we
show, for three different temperatures, how Psm and Pm vary
with the strength of the interfacial exchange coupling J̄ . For
J̄ = 0, there is, of course, no induced magnon currents. As all
coefficients � ∼ J̄2, increasing J̄ makes τ−1

M0
less important

until |Psm| and Pm reach their saturation values equivalent
to τ−1

M0
= 0. The shape of the curves resemble a function

a1/(1/x2 + a2), as expected from the simplified expressions
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for Psm and Pm. Further, increasing the temperature leads to
more spin fluctuations, which enter the expressions through
the Bose-Einstein distribution factors in �(1/2)

γ . This increases
the magnitude of the numerators of Psm and Pm, leading to the
results in Figs. 3(a) and 3(b). How much the magnon currents
actually can be enlarged by increasing the temperature will
necessarily be limited by how large temperature the order in
the antiferromagnetic material can survive. In order to obtain
larger drags at a given temperature, one can, e.g., reduce the
energy scale of the antiferromagnet by reducing J1, making it
easier to excite magnons. Oppositely, increasing J1 will make
it harder to excite magnons and increase the stability of the
magnetic ordering. Setting, e.g., J1 = 10 meV in Fig. 2 leads
to Psm(� = 0) = 0.009 and Pm(� = 0) = 0.15 for the purple
curves corresponding to τ−1

M0
= 5 × 109 1/s.

The behavior of Psm and Pm as a function of next-
nearest-neighbor interaction in the antiferromagnet is shown
in Figs. 3(c) and 3(d). Positive J2/J1 here corresponds to an
antiferromagnetic coupling between next-nearest neighbors,
acting as a frustration. Similarly to increasing the temperature,
frustrating the system leads to more spin fluctuations pro-
ducing larger induced magnon currents. Notably, frustration,
in contrast to a temperature increase, influences the magnon
energies. Frustration therefore also affects the magnon coher-
ence factors, with the particular effect of making them decay
more slowly with increasing momentum without affecting
their values at zero momentum [30,31]. The latter effect actu-
ally favors the denominator of Psm, but the effect of increased
number of magnons dominates and makes Psm increase with
increasing J2.

Finally, in Figs. 3(e) and 3(f), we display how splitting of
the magnon modes influences the drag coefficients. Taking
hm < 0 lowers the excitation energies of α magnons, increas-
ing the asymmetry favoring contributions to Psm associated
with α magnons. This leads to an enhancement of the induced
magnon spin current, which is quite significant because the
splitting of the magnon modes allows for long-wavelength
magnons to better contribute to Psm. Taking hm > 0 works
in the opposite direction of the asymmetry between α and β

magnons introduced by � = 0. Moreover, while Pm is also
influenced by hm, the effect is much weaker as Pm does not
rely on an asymmetry between contributions associated with
α and β magnons. Taking, e.g., hm < 0, the effect is that
the α contributions become larger while the β contributions
are suppressed. The growth of the α contributions slightly
outweighs the decrease in the β contributions, leading to a
weak enhancement of Pm. We also note that, if the results are
extended to |hm| even closer to 	g, the magnitudes of the drag
coefficients continue to grow larger, but they are not found to
diverge.

In order to attempt to describe the induced magnon cur-
rents in a real system featuring a sufficiently thick NM layer,
neglecting spin splitting of the electrons arising from � �= 1
(and/or an external field applied to the antiferromagnet) and
taking τ↑ = τ↓ might be a reasonable approximation. At least
for a thinner NM layer, these effects could, however, play
a larger role. We therefore investigate how the drag coeffi-
cients depend on he and τ↑ �= τ↓. The relationship between
these parameters is not evident, especially when the electron
density of states has weak or no energy dependence, and

0.8 0.9 1 1.11 1.25
-0.05

0

0.8 0.9 1 1.11 1.25
-0.1

0.1

0.8 0.9 1 1.11 1.25

0.2

0.4

FIG. 4. The ratio of magnon spin current (a), electron spin cur-
rent (b), and magnon current (c) to electron current as a function
of τ↑/τ↓ for different values of he, where τσ is the spin-conserving
relaxation time for electrons with spin σ and he represents a spin
splitting of the electron energies. The x axis is here logarithmic in
order to highlight symmetries between τ↑ < τ↓ and τ↑ > τ↓. For
the parameters, we have set � = 0, τ↓ = 1.0 × 10−14 s, τ−1

M0
= 1 ×

1010 1/s, while the rest of the parameters are equal to their values in
Fig. 2.

the relationship should be expected to vary strongly with the
details of the system. We therefore simply treat he and τσ as
independent parameters and display how their separate and
combined effects can influence the results.

In Fig. 4, we present Psm, Ps, and Pm as a function of τ↑/τ↓
for different values of he. As we now introduce an asymmetry
between spin-↑ and spin-↓ electrons, we have that, e.g., Ae→s

starts to grow as T−/T+ and P0 can become nonzero. We
are then, of course, generating a spin current, as displayed
in Fig. 4(b). For, e.g., τ↑ < τ↓, the spin current becomes
negative, which is quite natural. Moving on to the magnon
spin current, the last term in the numerator of Psm of the
form (Ae→s +Ce→m Am→s)As→sm now starts becoming more
active. This term can be viewed as converting electron spin
current into magnon spin current. The general trend is there-
fore that the changes to Psm in Fig. 4(a) follow the variations
in Ps. We also see that a spin-splitting field he presumably
will need to be somewhat larger than 	g in order to have
a real effect on the induced magnon spin current, meaning
that the effect on the electrons of applying an external field
to split the magnons modes might not be that important for
the resulting induced magnon spin current, even for a thin
NM layer. Discussing next the results for Pm in Fig. 4(c),
we see that Pm can be substantially affected by the combi-
nation of splitting of the electron energies and asymmetry in
τσ . Taking τ↑ �= τ↓ alone is enough to create a spin current
through Ae→s, but in order for this spin current to influence
the induced magnon current, we also need a sufficiently large
As→m ∼ [�(1)

β − �(1)
α + �

(2)
β − �(2)

α ]. While the electron spin
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current is naturally able to influence the magnon spin current,
we find that, e.g., the related asymmetry between ↑ and ↓
electrons introduced through he is needed in order to enhance
As→m, allowing the electron spin-current to influence the spin-
unpolarized magnon current.

V. DISCUSSION

As mentioned in the beginning of Sec. II, an experimental
realization of our system would typically involve thin films
of finite thickness. In particular, an experimentally realized
uncompensated interface naturally relies on an AFMI with
more than one layer. For a given material, the AFMI should
be sufficiently thick to, in a real system, stabilize magnetic
ordering in the presence of intrinsic quantum and thermal
fluctuations, as well as interfacial interaction with the elec-
trons from the metal. While a larger thickness can provide a
necessary increase in stability, as well as simply more spins
that can fluctuate, the added stability might also make it
harder for the electrons of the normal metal to induce magnon
currents. The density of the magnon currents should also be
expected to decrease as only the surface layer couples directly
to the electrons in the normal metal. The present study simply
demonstrates that driving an in-plane electron current in an
adjacent metal is a potential mechanism for creating a spin
current in an AFMI and highlights that increasing the tem-
perature and splitting the magnon modes are possible ways
of increasing the magnon spin current in an ordered AFMI.
In order to obtain reliable estimates for the magnitude of the
induced magnon currents in a real system, one would need
to take into account the effect of the thickness of the AFMI.
Taking properly into account finite thickness of the normal
metal layer could potentially also influence the results.

Moreover, the model we have used to study the system
is, also in other ways, relatively simple, motivated by a goal
of exploring some of the key physics that can arise in this
system. We have therefore been able to rely on, quite involved,
analytical calculations in order to interpret the origin of the
results obtainable within the boundaries set by our approxi-
mation scheme. A natural extension of this work would be
investigations more tailored toward specific material choices.
The magnitude of the induced magnon spin current, intimately
related to, e.g., the competition between effects pushing con-
tribution weights towards smaller or larger momenta, should
be expected to depend considerably on the details of the sys-
tem.

For a larger and more anisotropic Fermi surface, umklapp
processes, not considered in this study, could also become
of importance. For such scattering processes, � = 1 actually
maximizes the electron-magnon coupling [32,46]. However,
an induced magnon spin current relies on an asymmetry be-
tween α and β magnons. Hence, in the absence of splitting of
the magnon modes, having a compensated interface and rely-
ing on umklapp processes to generate a magnon spin-current
does not seem like a viable option.

As the induced magnon spin current is found to be
enhanced through splitting of the magnon modes, antifer-
romagnets with intrinsically nondegenerate magnon modes
present an interesting possibility. Nondegenerate magnon
modes that are still able to carry a spin current may be realized

in biaxial antiferromagnets, featuring both a hard axis and an
additional in-plane easy axis, such as NiO [21,52]. As long
as long-wavelength magnons are dominant, it might not be
problematic if the splitting of the magnon modes is only sig-
nificant near the Brillouin zone center. Moreover, as we find
that intermediate values of � could be more favorable than
� = 0, it could be worth considering other options than a fully
uncompensated interface. One option could be a compensated
interface where the two sublattices are made up of different
atoms, potentially introducing an intermediate-strength asym-
metry in the coupling between the normal metal and the two
sublattices of the AFMI.

VI. SUMMARY

Applying semiclassical Boltzmann theory, we have inves-
tigated the possibility of inducing magnon currents in an
antiferromagnetic insulator layer through proximity coupling
to a normal metal layer where a charge current is driven
parallel to the interface. We find that an asymmetry in the
coupling between the electrons and the two sublattices of
the antiferromagnet can allow for a magnon spin current to
be generated. The magnitude of the induced magnon spin
current depends intimately on the relative importance of long-
wavelength magnons, leading to the somewhat surprising
result that a more weakly asymmetric antiferromagnetic in-
terface can be a better choice than a fully uncompensated
interface. We also find that the induced magnon currents
increase with temperature, and that magnon mode splitting
can be beneficial for the magnon spin current. Future work
could include more application-oriented studies, as well as
experimentally investigation of our proposed mechanism for
generating a magnon spin current in an antiferromagnetic
insulator.
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APPENDIX A: STARTING MODEL

Following Ref. [32] we start out from a Hamiltonian de-
scribing an antiferromagnet

HAFMI = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj

− K
∑
i

S2
iz − hm

∑
i

Si,z, (A1)

where we have added an additional term splitting the magnon
modes. Our modeling is not sensitive to whether the spin-
space z direction is taken to align with the real-space z
direction or not. Performing a Holstein-Primakoff transforma-
tion, this Hamiltonian can be diagonalized and put in the form
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of Eq. (2) with [32]

ωq =
√
C2
q − D2

q, (A2)

where

Cq = 2z1J1S − 2z2J2S(1 − γ̃q) + 2KS, (A3)

Dq = 2z1J1Sγq. (A4)

Here,

γk = 2

z1
[cos(kxa) + cos(kya)], (A5)

γ̃k = 2

z2
[cos(kxa + kya) + cos(kxa − kya)], (A6)

where z1 is the number of nearest neighbors, and z2 is the
number of next-nearest neighbors.

For the coupling between the electrons and magnons, we
start out from

Hint = −2J̄
∑
ϒ

∑
i∈ϒ

�ϒ c†
i σci · Si, (A7)

where the sum over ϒ ∈ {A,B} is a sum over the two sub-
lattices of the AFMI, and σ is a vector of Pauli matrices.
We then, again, perform a Holstein-Primakoff transformation,
as well as Fourier transformations. Neglecting umklapp scat-
tering processes and moving electron spin-splitting terms to
the NM Hamiltonian, we arrive at the expression in Eq. (4)
[32]. Here, the magnon coherence factors, relating the AFMI
eigenexcitations to the original sublattice spin-flip magnons
introduced in the Holstein-Primakoff transformation, take the
form

uq = 1√
2

√
Cq

ωq
+ 1, (A8)

vq = −1√
2

√
Cq

ωq
− 1. (A9)

Finally, for the electrons, we start out from

HNM = −t
∑
〈i, j〉σ

c†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ − h′

e

∑
iσ

σc†
iσ ciσ ,

(A10)

where h′
e is a spin-splitting arising from an externally applied

field. Diagonalizing the Hamiltonian and including the poten-
tial additional spin splitting of the electrons arising from the
antiferromagnetic interface, we end up with the Hamiltonian
in Eq. (1). Here,

εkσ = −tz1γk − μ − σhe. (A11)

The additional spin splitting of the electrons arising from the
interaction term has a strength J̄S(�B − �A). However, if we
consider a NM of finite thickness, delivering a similar surface
current affecting the antiferromagnet, the effective spin split-
ting of the electrons due to proximity to the AFMI will be
reduced. We therefore treat the spin splitting of the electrons
as an adjustable parameter.

Finally, the last step is to consider the long-wavelength
limit in order to obtain isotropic expressions for ωq, εkσ , uq,

and vq. For ωq =
√

	2
g + κ2(qa)2, we have defined 	g =

2S
√
K (K + 8J1), and κ = 4S

√
2J2

1 − J2(K + 4J1). Further,
the magnon coherence factors now take the form

uq = 1√
2

√
8J1S − 4J2S(qa)2 + 2KS

ωq
+ 1, (A12)

vq = − 1√
2

√
8J1S − 4J2S(qa)2 + 2KS

ωq
− 1. (A13)

As we are working in the long-wavelength limit, under the
assumption that large-momentum processes are negligible,
it will not be of importance that the magnons live in a re-
duced Brillouin zone compared to the electrons. Momentum
integrals for both magnons and electrons will be performed
over circular Brillouin zones of radius π/a, where we make
sure that contributions from large momenta have little or no
influence on the results. In particular, by taking a sufficiently
small Fermi surface, we make sure that all integrands con-
taining magnon coherence factors vanish before the isotropic
expression for vq turns imaginary.

APPENDIX B: EVALUATING THE INTERACTION TERMS

As discussed above, in order to evaluate the interaction
terms, we start out from Eqs. (20a), (20b), (20c) and divide
these expressions up into terms involving a single factor geσ,o
or gmγ ,o. For terms involving geσ,o(k + q) or gmσ,o(k + q), we
send k → k − q. We then proceed to do the angular part of
the integral over the momentum that the involved factor g
does not depend on. If g depends on q, we can next do the
radial integral over k and use the remaining integral over q
to form a combination of magnon currents after having re-
placed some additional q-dependent factors by characteristic
values. If g depends on k, we use the assumption that the
important magnon energies are significantly smaller kBT in
order to decouple the two integrals. Replacing some additional
k-dependent factors by characteristic values, we are then left
with a combination of electron currents with a prefactor that
depends on a radial integral over q.

In this Appendix we outline the evaluation of two specific
terms. The rest of the terms can be evaluated in a similar
manner. We start with B(2)

α , which can be written out as

B(2)
α = −β

V 2a2

h̄(2π )3

∫
dk f 0(εk,↑)ge↑,o(k)

×
∫

dq vm
qxν(q)(�Auq + �Bvq)2[1 − f 0(εk+q,↓)]

× b0(ωq,α )δ[εk,↑ + ωq,α − εk+q,↓]. (B1)

We next proceed to perform the angular part of the integral
over q. For a given k, we then introduce a new coordinate
system for q where θ ′ is the angle between q and the x axis
of the new coordinate system which is taken to be aligned
with k. The angle between k and the x axis of the original
coordinate system is denoted by θ . We can then express B(2)

α

184434-10



MAGNON DRAG IN A METAL–INSULATING … PHYSICAL REVIEW B 105, 184434 (2022)

in the following form:

B(2)
α = −β

V 2a2

h̄(2π )3

∫
dk f 0(εk,↑)ge↑,o(k)

∫
dq q vm

q ν(q)

× (�Auq + �Bvq)2[1 − f 0(εk,↑ + ωq,α )]b0(ωq,α )

×
∫ 2π

0
dθ ′ [cos(θ ′) cos(θ ) − sin(θ ′) sin(θ )]

× δ[ωq,α − 2he − 2t (qa)(ka) cos(θ ′) − t (qa)2],
(B2)

where the square bracket of cosine factors arises because we
need the component of the magnon velocity in the x direction
of the original coordinate system. Performing the angular
integral, we obtain

B(2)
α = −β

V 2

2t h̄(2π )3

∫
dk

cos(θ )

k
f 0(εk,↑)ge↑,o(k)

×
∫

dq vm
q (�Auq + �Bvq)2[1 − f 0(εk,↑ + ωq,α )]

× b0(ωq,α )
2 ν(q)�q,α,2(k)√

1 − �2
q,α,2(k)

�(1 − |�q,α,2(k)|). (B3)

Using the assumption that the important magnon energies are
significantly smaller than kBT , we next approximate f 0(εk,↑ +
ωq,α ) ≈ f 0(εk,↑). We also use that ve

k = 2tka2/h̄, as well
as β[1 − f 0(ε)] f 0(ε) = −∂ f 0(ε)/∂ε. Finally, approximating
loose factors of k by kF , motivated by the combination of
Fermi distributions, we end up with

B(2)
α = −V 2

8πt2(kFa)2

∫
dq (�Auq + �Bvq)2

× b0(ωq,α ) vm
q

2 ν(q)�q,α,2√
1 − �2

q,α,2

�(1 − |�q,α,2|)

× 1

(2π )2

∫
dk ve

kx

[
− ∂ f 0(εk,↑)

∂εk,↑

]
ge↑,o(k), (B4)

where now

�q,α,2 = 1

2t (qa)(kFa)
[ωq,α − 2he − t (qa)2]. (B5)

Writing the integral over k as a combination of electron cur-
rents and inserting vm

q = κ2qa2/(ωqh̄), we then obtain

B(2)
α = −�(2)

α [ je + js], (B6)

where we have defined

�(2)
α = 1

h̄

(kFa)2V 2

8πE2
F

∫
d (qa) (�Auq + �Bvq)2

× b0(ωq,α )
κ2(qa)

ωq

ν(q)�q,α,2 �(1 − |�q,α,2|)√
1 − �2

q,α,2

. (B7)

The integral included in �(2)
α is somewhat complicated, but

can, for a given set of parameters, be calculated numerically.

We next evaluate B(3)
α , which is of the form

B(3)
α = −β

V 2a2

h̄(2π )3

∫
dq vm

qxb
0(ωq,α )gmα,o(q)

× ν(q)(�Auq + �Bvq)2
∫

dk [1 − f 0(εk+q,↓)]

× f 0(εk,↑) δ[εk,↑ + ωq,α − εk+q,↓]. (B8)

Following similar steps to those above, we proceed to, this
time, perform the angular part of the integral over k,

B(3)
α = −β

V 2a2

h̄(2π )3

∫
dq vm

qxg
m
α,o(q)

× ν(q)(�Auq + �Bvq)2b0(ωq,α )
∫

dk k

× f 0(εk,↑)[1 − f 0(εk,↑ + ωq,α )]
∫ 2π

0
dθ ′

× δ[ωq,α − 2he − 2t (qa)(ka) cos(θ ′) − t (qa)2],
(B9)

where we have introduced a rotated coordinate system for k
where the new x axis is aligned with q, and θ ′ is the angle
between k and q. The result after the angular integration
becomes

B(3)
α = −β

V 2

2t h̄(2π )3

∫
dq

vm
qx

q
b0(ωq,α )gmα,o(q)

× (�Auq + �Bvq)2 2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

×
∫

dk [1 − f 0(εk,↑ + ωq,α )] f 0(εk,↑), (B10)

with

�q,α,3 = 1

2t (qa)(kFa)
[ωq,α − 2he − t (qa)2], (B11)

where we have taken k ≈ kF in �q,α,3, once again motivated
by the combination of Fermi distributions. We then transform
the radial integral over k into an integral over electron energy,
producing a factor 1/

√
εk + μ which we approximate by its

value at the Fermi level. Further, using the assumption EF �
kBT, he, we end up with

B(3)
α = −β

V 2

2t h̄(2π )3

∫
dq

vm
qx

q
b0(ωq,α )gmα,o(q)

× (�Auq + �Bvq)2 2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

× 1

2a
√
t

1√
EF

eβωq,α

eβωq,α − 1
ωq,α. (B12)
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This expression can further be put in the form

B(3)
α = −V 2

4at
3
2 h̄(2π )3

√
EF

∫
dq vm

qx

[
− ∂b0(ωq,α )

∂ωq,α

]
gmα,o(q)

× (�Auq + �Bvq)2 ωq,α

q

2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

.

(B13)

The integral can here be rewritten as a combination of magnon
currents multiplied by the expectation value of the second line
of additional momentum-dependent factors calculated using
the first part of the integral as the distribution function. When
the first part of the integral is a sufficiently peaked func-
tion with respect to momentum, and the second part varies
slowly with momentum, this procedure approaches simply
approximating the second part by its value at the momentum
corresponding to the peak of the first part. Assuming that
radial momentum dependence of gmα,o(q) only has a weak
effect on the important momentum region for the integral, the
result for B(3)

α can be expressed as

B(3)
α = −�(3)

α [ jm − jsm], (B14)

where

�(3)
α = 1

h̄

(kFa)3V 2

8πE2
F

1

Iα

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]

× (�Auq + �Bvq)2 ωq,α

qa

ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

,

(B15)

and

Iα =
∫

d (qa) (qa)
κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]
. (B16)

Like �(2)
α , the expression for �(3)

α can also be evaluated numer-
ically.

APPENDIX C: FINAL EXPRESSIONS FOR INTERACTION
TERMS

Performing the necessary calculations for all interaction
terms, we end up with

B(1)
α = �(1)

α [ je − js],

B(2)
α = −�(2)

α [ je + js], (C1)

B(3)
α = −�(3)

α [ jm − jsm],

B(1)
β = �

(1)
β [ je + js],

B(2)
β = −�

(2)
β [ je − js], (C2)

B(3)
β = −�

(3)
β [ jm + jsm],

F (1)
↑,α = �

(1)
↑,α[ je − js],

F (2)
↑,α = −�

(2)
↑,α[ je + js], (C3)

F (3)
↑,α = −�

(3)
↑,α[ jm − jsm],

F (1)
↑,β = −�

(1)
↑,β[ je + js],

F (2)
↑,β = �

(2)
↑,β[ je − js], (C4)

F (3)
↑,β = �

(3)
↑,β[ jm + jsm],

F (1)
↓,α = �

(1)
↓,α[ je + js],

F (2)
↓,α = −�

(2)
↓,α[ je − js], (C5)

F (3)
↓,α = �

(3)
↓,α[ jm − jsm],

F (1)
↓,β = −�

(1)
↓,β[ je − js],

F (2)
↓,β = �

(2)
↓,β[ je + js], (C6)

F (3)
↓,β = −�

(3)
↓,β[ jm + jsm],

where

�(1/2)
α = 1

h̄

(kFa)2V 2

8πE2
F

∫
d (qa) (�Auq + �Bvq)2

× b0(ωq,α )
κ2(qa)

ωq

ν(q)�q,α,1/2 �(1 − |�q,α,1/2|)√
1 − �2

q,α,1/2

,

(C7)

�(3)
α = 1

h̄

(kFa)3V 2

8πE2
F

1

Iα

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]

× (�Auq + �Bvq)2 ωq,α

qa

ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

, (C8)

�
(1/2)
β = 1

h̄

(kFa)2V 2

8πE2
F

∫
d (qa) (�Avq + �Buq)2

× b0(ωq,β )
κ2(qa)

ωq

ν(q)�q,β,1/2 �(1 − |�q,β,1/2|)√
1 − �2

q,β,1/2

,

(C9)

�
(3)
β = 1

h̄

(kFa)3V 2

8πE2
F

1

Iβ

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,β )

∂ωq,β

]

× (�Avq + �Buq)2 ωq,β

qa

ν(q)�(1 − |�q,β,3|)√
1 − �2

q,β,3

,

(C10)

�(1)
σ,α = 1

h̄

(kFa)V 2

4πEF

∫
d (qa) (�Auq + �Bvq)2b0(ωq,α )

× �(1 − |�q,σ,α,1|)√
1 − �2

q,σ,α,1

[
1 − qa

kFa
�q,σ,α,1

]
, (C11)

�(2)
σ,α = 1

h̄

(kFa)V 2

4πEF

∫
d (qa) (�Auq + �Bvq)2b0(ωq,α )

× �(1 − |�q,σ,α,2|)√
1 − �2

q,σ,α,2

, (C12)
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�(3)
σ,α = 1

h̄

(kFa)2V 2

4πEF

1

Iα

∫
d (qa)(qa)

[
− ∂b0(ωq,α )

∂ωq,α

]
�q,σ,α,3

× (�Auq + �Bvq)2 ωq,α

qa

�(1 − |�q,σ,α,3|)√
1 − �2

q,σ,α,3

, (C13)

�
(1)
σ,β = 1

h̄

(kFa)V 2

4πEF

∫
d (qa) (�Avq + �Buq)2b0(ωq,β )

× �(1 − |�q,σ,β,1|)√
1 − �2

q,σ,β,1

, (C14)

�
(2)
σ,β = 1

h̄

(kFa)V 2

4πEF

∫
d (qa) (�Avq + �Buq)2b0(ωq,β )

× �(1 − |�q,σ,β,2|)√
1 − �2

q,σ,β,2

[
1 − qa

kFa
�q,σ,β,2

]
, (C15)

�
(3)
σ,β = 1

h̄

(kFa)2V 2

4πEF

1

Iβ

∫
d (qa)(qa)

[
− ∂b0(ωq,β )

∂ωq,β

]
�q,σ,β,3

× (�Avq + �Buq)2 ωq,β

qa

�(1 − |�q,σ,β,3|)√
1 − �2

q,σ,β,3

. (C16)

We have here defined

Iγ =
∫

d (qa) (qa)
κ2(qa)

ωq

[
− ∂b0(ωq,γ )

∂ωq,γ

]
, (C17)

as well as

�q,γ ,1 = 1

2t (qa)(kFa)
[ωq,γ + 2γ he + t (qa)2],

�q,γ ,2 = 1

2t (qa)(kFa)
[ωq,γ + 2γ he − t (qa)2], (C18)

�q,γ ,3 = �q,γ ,2,

�q,↑,α,1 = 1

2t (qa)(kFa)
[ωq,α − 2he + t (qa)2],

�q,↑,α,2 = 1

2t (qa)(kFa)
[ωq,α − 2he − t (qa)2],

�q,↑,α,3 = �q,↑,α,2,

�q,↑,β,1 = 1

2t (qa)(kFa)
[ωq,β + 2he + t (qa)2],

�q,↑,β,2 = −1

2t (qa)(kFa)
[ωq,β + 2he − t (qa)2],

�q,↑,β,3 = �q,↑,β,1,

(C19)

�q,↓,α,1 = −�q,↑,α,2, �q,↓,α,2 = −�q,↑,α,1,

�q,↓,α,3 = �q,↑,α,1, �q,↓,β,1 = −�q,↑,β,2,

�q,↓,β,2 = �q,↑,β,1, �q,↓,β,3 = −�q,↑,β,2. (C20)

APPENDIX D: DEFINITION OF COEFFICIENTS

The coefficients in Eq. (26) are given by

Ae→s = 1

Xs

[
1

2

(
Y0

T−
T+

+ P0

)
τ−1
e

+
(

1 + T−
T+

)( − �
(1)
↓,α + �

(2)
↓,α + �

(1)
↓,β − �

(2)
↓,β

)

+
(

1 − T−
T+

)(
�

(1)
↑,α − �

(2)
↑,α − �

(1)
↑,β + �

(2)
↑,β

)]
, (D1)

Am→s = 1

Xs

[(
1 − T−

T+

)(
�

(3)
↑,β − �

(3)
↑,α

)

+
(

1 + T−
T+

)( − �
(3)
↓,α + �

(3)
↓,β

)]
, (D2)

and

Asm→s = 1

Xs

[(
1 − T−

T+

)(
�

(3)
↑,β + �

(3)
↑,α

)

+
(

1 + T−
T+

)(
�

(3)
↓,α + �

(3)
↓,β

)]
, (D3)

where

Xs = 1

2

(
P0

T−
T+

+ Y0

)
τ−1
e

−
(
T−
T+

− 1

)(
�

(1)
↑,α + �

(2)
↑,α + �

(1)
↑,β + �

(2)
↑,β

)

+
(
T−
T+

+ 1

)(
�

(1)
↓,α + �

(2)
↓,α + �

(1)
↓,β + �

(2)
↓,β

)
. (D4)

Further, the coefficients in Eq. (27) take the form

Ce→m = Ae→m + Ae→s As→m,

Csm→m = Asm→m + Asm→s As→m,
(D5)

where

Ae→m = [
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
/Xm,

As→m = [
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
/Xm,

Asm→m = [
�(3)

α − �
(3)
β

]
/Xm,

(D6)

and

Xm = τ−1
M0

+ [
�

(3)
β + �(3)

α

]

− Am→s
[
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
. (D7)
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