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Abstract

Interpreting linear regression models is a common desire in research. A common question re-
searchers are interested in is how important a predictor is to the model. Knowing the individual
importance of each predictor can give the researchers a better understanding of their data, from
which their results are derived, and therefore lead to better research. The probably most com-
monly used tool to determine the importance of a predictor to a model is the p-value. The
p-value is involved when testing the null-hypothesis that the coefficient of a predictor is zero,
against the alternative hypothesis, that the coefficient is not zero. The p-value of that hypo-
thesis test, however, is not suited to determining the importance of a predictor and does not give
any information about the impact the predictor has on the model. To get better information
on the importance of a predictor to a regression model, other, supplementary, tools are used.
We will consider tools based on on the coefficient of determination (R2) because of it’s ease of
interpretation.

This thesis proposes extensions of two popular methods based on R2 for linear regression models,
the LMG and relative weights methods, such that they work on linear random intercept models.
Such models are commonly used in fields like biology, epidemiology and the social sciences.
The LMG method considers the mean increase in R2 when the predictors are added to the
model in different orderings, which is computationally expensive. The relative weights method
takes advantage of the fact that the squared coefficients are meaningful when the predictors are
uncorrelated to be more computationally efficient than the LMG method. To use the fact that
the squared coefficients are meaningful for uncorrelated predictors, the relative weights method
transforms the data to get uncorrelated predictors, gives each of these an importance using the
squared coefficients, and then transforms the importances back to the original form of the data.
The transformation of the data requires that all the predictors are numerical, so the relative
weights method does not work with categorical predictors.

The extended LMG method works by considering the random intercepts the same as fixed effects
and looks at the mean increase in R2 when they are added to the model. The extended relative
weights method works by combining the LMG method and the relative weights method, where
the numerical fixed effects are transformed as usual in relative weights, and then are always either
all in the model or none are in the model. The increase in R2 when the transformed numerical
fixed effects are added to the model can then be distributed to each original fixed effect.

The two proposed extensions are applied in a simulation study while the extended relative weights
method is also applied on an example with real data. The simulation study shows that the
extended relative weights method is a useful approximation of the extended LMG method while
the application on real data shows the extended relative weights methods usefulness by comparing
the calculated importances to other measures of importance, such as the p-value and squared
coefficients. Finally, the R-package decompR2 is developed, which implements the proposed
methods such that they are easy to use. Having the proposed methods in an easy to use package
will hopefully make it more likely that they will be used and thus lead to researchers having a
more robust understandings of their data and results.
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Sammendrag

Å tolke lineære regresjonsmodeller er et vanlig ønske innen forskning. Et vanlig spørsm̊al forskere
er interessert i er hvor viktig en prediktor er for modellen. Å vite den individuelle betydningen
av hver prediktor kan bidra å øke forskernes forst̊aelse av dataen som resultatene deres er utledet
fra og derfor føre til bedre forskning. Det sannsynligvis mest brukte verktøyet for å bestemme
betydningen av en prediktor for en modell er p-verdien. Mer spesifikt s̊a er p-verdien som
er involvert den som er tilknyttet nullhypotesen om at koeffisienten til en prediktor er null,
mot den alternative hypotesen om at koeffisienten ikke er null. Denne p-verdien er imidlertid
ikke egnet til å bestemme viktigheten av en prediktor og gir ingen informasjon om hvilken
innvirkning prediktoren har p̊a modellen. For å f̊a bedre informasjon om betydningen av en
prediktor for en regresjonsmodell, brukes andre, supplerende, verktøy. Vi vil bruke verktøy
basert p̊a bestemmelseskoeffisienten (R2) p̊a grunn av dens enkle tolkning.

Denne oppgaven foresl̊ar utvidelser av to populære metoder basert p̊a R2 for lineære regres-
jonsmodeller, LMG og relative weights metodene, slik at de fungerer p̊a lineære stokastiske
skjæringspunktmodeller. Slike modeller er ofte brukt innen felt som biologi, epidemiologi og
samfunnsvitenskap. LMG-metoden vurderer gjennomsnittsøkningen i R2 n̊ar prediktorene legges
til modellen i forskjellige rekkefølger, noe som er beregningsmessig kostbart. Relative weights-
metoden bruker det faktum at de kvadrerte koeffisientene gir nyttig informasjon n̊ar prediktorene
er ukorrelerte, som gjør metoden mer beregningsmessig effektiv enn LMG-metoden. For å bruke
det faktum at de kvadrerte koeffisientene gir nyttig informasjon for ukorrelerte prediktorer, trans-
formerer relative weights-metoden dataene for å f̊a ukorrelerte prediktorer, gir hver av disse en
viktighet ved å bruke de kvadrerte koeffisientene, og transformerer deretter viktighetene tilbake
til den opprinnelige formen av dataene.

Den utvidede LMG-metoden fungerer ved å behandle de stokastiske skjæringspunktene p̊a samme
m̊ate som fikserte effekter og ser p̊a gjennomsnittsøkningen i R2 n̊ar de legges til modellen. Den
utvidede relative weights-metoden fungerer ved å kombinere LMG-metoden og relative weights-
metoden, hvor de kontinuerlige fikserte effektene transformeres som vanlig i relative weights-
metoden, og deretter er enten alle i modellen eller ingen i modellen. Økningen i R2 n̊ar de
transformerte kontinuerlige fikserte effektene legges til modellen kan deretter distribueres til
hver originale fikserte effekt.

De to foresl̊atte utvidelsene brukes i en simuleringsstudie, mens den utvidene relative weights-
metoden i tillegg brukes p̊a et eksempel med ordentlige data. Simuleringsstudien viser at den
utvidede relative weights-metoden er en nyttig tilnærming til den utvidede LMG-metoden, mens
applikasjonen p̊a ordentlige data viser nyttigheten av utvidede relative vekter-metoder ved å
sammenligne de beregnede betydningene med andre viktighetsm̊al, som for eksempel p-verdien
og de kvadrerte koeffisientene. Til slutt utvikles R-pakken decompR2, som implementerer de
foresl̊atte metodene slik at de er enkle å bruke. Å ha de foresl̊atte metodene i et brukervennlig
format vil forh̊apentligvis gjøre det mer sannsynlig at de vil bli brukt og dermed føre til at
forskere f̊ar en mer robust forst̊aelse av deres data og resultater.
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1 Introduction

When interpreting statistical models it is often interesting to know how important each predictor
is to the model, or how much information each predictor explains in the response. This is useful
for model interpretation, i.e., trying to understand the relationships in the data.

Probably the most common way to determine how important a predictor is to a model is to
use p-values, which tests the null-hypothesis that a predictor’s coefficient is zero. Interpreting
p-values in such a way is based on a fundamental misunderstanding of what p-values are, but
is nevertheless prevalent. The p-value is the probability of observing the given observations, or
observations more extreme, assuming that the null-hypothesis is true. The concept of p-values
and null-hypotheses testing dates back to the 18th century but was popularized by Ronald Fisher
(Arbuthnot, 1710; Fisher, 1925). When using p-values, an arbitrary significance level is usually
set, often 0.05, and if the p-value of a hypothesis test is smaller than the significance level the
null-hypothesis is rejected under that significance level. More specifically, in regression models,
the null-hypothesis that the coefficient of a predictor is equal to 0 is tested against the alternative
hypothesis that the coefficient is not equal to 0. If the p-value is smaller than the significance
level, then the null-hypothesis, that the coefficient is equal to 0, is rejected and the predictor is
considered “statistically significant”.

Unfortunately, p-values are difficult to understand properly and are therefore often misused and
misinterpreted, especially in the applied sciences. A common mistake when interpreting p-values
is thinking that a smaller p-value means that a predictor has a larger effect in the model, or that
the predictor has a larger scientific significance. This is generally not true since any predictor
with any kind of “effect” on the response can get an arbitrarily small p-value if there are enough
observations (Simmons et al., 2011; Head et al., 2015). Goodman (2008) lists some other common
mistakes in interpreting p-values. In addition to the problems in the interpretability of p-values,
another common critique on p-values is that there is a sharp cut-off, where a result is considered
statistically significant if the p-value is smaller than the significance value and not statistically
significant if the p-value is larger than the significant value. The sharp cut-off can lead to what is
called p-hacking, which is the practice of redoing statistical analyses with small modifications until
a statistical significant result is found. The practice of p-hacking, combined with the tendency of
journals to only publish papers with “statistically significant” results, has led to a large amount of
false positives in literature and what is called a “reproducibility crisis” (Ioannidis, 2005; Gelman
and Loken, 2014). The difficulty in interpreting p-values correctly along with the reproducibility
crisis has caused controversy and has led to debate on how p-values should be used, or even if
they should be used at all (Nuzzo, 2014; Claridge-Change and Assam, 2016; Goodman, 2016;
Wasserstein and Lazar, 2016; Ioannidis, 2018; Wasserstein, Schirm et al., 2019). All this is not
to say that p-values are not useful or that they do not give valuable information about a model,
only that that information is more limited than what many researchers believe and that care
should be used when interpreting them.

In light of the problems that p-values have, scientists have started to look for supplementary tools
which give additional information about statistical models and which can help make the models
easier to interpret. Some of the most common supplements that are often used in conjunction
with or instead of p-values are

(i) The absolute- or squared value of the coefficients of the (standardized) predict-
ors. These are useful to get an idea of the size of the effect of the predictor on the response
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if the predictors are uncorrelated. If the predictors are correlated, however, then some pre-
dictors might get artificially large coefficients, while other predictors would correspondingly
get artificially small coefficients which makes the coefficients difficult to interpret.

(ii) Confidence intervals of the coefficients of the predictors. Confidence intervals of
the coefficients give more information than the pure coefficient and the p-value and gives
a range of values for the coefficient which is compatible with the data. Unfortunately, the
way confidence intervals are often used is by checking if 0 is included in the 95% confidence
interval of a coefficient estimate, which is equivalent to checking if the p-value is less than
0.05. Such a use of confidence intervals therefore inherits most of the problems that p-values
have. Confidence intervals of the coefficients also have the same problem as looking at the
coefficients, i.e., if the coefficients are correlated, predictors might get artificially large or
small coefficients, which causes the center of the confidence intervals to change.

(iii) The correlation between the predictors and the response (Darlington, 1968; Grömp-
ing, 2015). The advantage of looking at the correlation between a predictor and the response
is that it is not influenced by the predictors being correlated. The correlation will give in-
formation on how strong the linear relationship between the predictor and the response
is, which is not influenced by the other predictors in the model. The disadvantage is that
if a model has two strongly correlated predictors, X1 and X2, then it might be difficult
to interpret the result. In this case, by just using the sum of the correlations between the
predictors and the response, it would seem like a model with both X1 and X2 would contain
roughly twice the amount of information as a model with only one of the predictors. But
since the predictors are strongly correlated, very little new information would be added
to the model when adding a predictor, so the model with both predictors would be only
slightly better.

If the pairwise correlation between all the predictors and the correlation between the pre-
dictors and response are analyzed carefully, the correlations could give a lot of information
about the model, but analyzing the correlations properly can be challenging, especially as
the number of correlations increases with the square of the number of predictors in the
model.

(iv) Information criteria such as AIC or BIC (Akaike, 1973; Schwarz, 1978). Information
criteria have been considered as a useful alternative to p-values and are especially useful
for variable selection in statistical models (Burnham and Anderson, 2002; Johnson and
Omland, 2004; Claeskens and Hjort, 2008; Burnham and Anderson, 2014). Information
criteria are not as useful when interpreting models, however, since the criteria are usually
used to look at the unique information added to the model by a predictor. This can be
useful information, but it can be difficult to interpret, since predictors will not get “credit”
for information shared with other predictor. This causes the same problem as in the above
methods, where it can be difficult to interpret importances of correlated predictors.

(v) Look at the difference in R2 when the predictor of interest is removed from
the full model. This method gives the proportion of variance in the response uniquely
explained by the predictor.

(vi) Look at the R2 of the model with only the predictor of interest. This method
gives the total proportion of variance in the response explained by the predictor.

(vii) Add the predictors to the model in some order, and look at the increase in R2

when each predictor is added to the model. This method gives the amount of new

2



contribution each predictor gives to the model when they are added to the model in some
order.

Where (v) - (vii) are naive approaches based on the coefficient of determination, commonly called
R2. The R2 gives the proportion of variance in the response explained by the model, which is
a value scientists often have an understanding of. Since the R2 is an intuitive value, a simple
to understand supplementary statistic that can be used to understand the model could be the
contribution of a predictor to the R2 of the model. Because the R2 is the proportion of variance in
the response explained by the model, the contribution of a predictor to the R2 can be interpreted
as the proportion of variance in the response explained by the predictor. As long as the scientist
has an understanding of the R2, then the interpretation of the predictors contribution to R2

should be relatively simple to understand. Since metrics based on R2 are simpler to interpret
than the p-value these metrics will hopefully reduce the misuse and misunderstandings when
interpreting models.

The methods listed above all have problems when the predictors are correlated, which is usually
the case in real world applications. Since p-values are based on the coefficients in the model they
have the same problems as the coefficients when there are correlated predictors. The methods
based on R2, (v) - (vii), will all give the same result when the predictors are uncorrelated,
but when the predictors are correlated the methods each give different information about the
predictors. The problems caused by correlated predictors means that the methods listed above
are difficult to use in practice. Methods to determine the relative importance of predictors, which
we will call relative variable importance, which handle correlated predictors are therefore needed.
The methods which will be focused on in this thesis are ones which are based on R2. The prior
work described below is developed for linear regression models.

Some of the earliest of the work on relative variable importance methods based on R2 which
handle correlated predictors dates back to the 1960s (Hoffman, 1960; Hoffman, 1962; Ward, 1962;
Johnson, 1966). The first methods were based on the fact the squared standardized coefficients
are meaningful for uncorrelated predictors, and scientists therefore worked on transforming the
observed data to get uncorrelated predictors. Using the coefficients of the uncorrelated predictors
it is possible to determine the contribution of each original predictor to the model R2. The work
by Johnson (1966) was later improved on by Fabbris (1980), Genizi (1993) and Johnson (2000),
who all, independently, proposed the same improved technique to relate the coefficients of the
uncorrelated predictors back to the original predictors, which will be called relative weights in
this thesis (Nimon and Oswald, 2013).

Lindeman et al. (1980) created a variation of method (vii), which is commonly called the LMG
method according to the last names of the authors, Lindeman, Merenda and Gold, where instead
of just considering one ordering of the predictors, look at the mean increase in R2 over all order-
ings of the predictors when the predictor of interest is added to the model. The LMG method
was independently discovered by Kruskal (1987). A variation of the LMG method, called the
PMVD method, where the orderings are weighted differently was introduced by Feldman (2005).
Chevan and Sutherland (1991) used a similar concept to the one used in the LMG method in
what they call hierarchical partitioning. The LMG method was extended into dominance analysis
by Budescu (1993), Azen and Budescu (2003) and Budescu and Azen (2004), which in addition
to giving an importance to each individual predictor also considers groups of predictors. Stufken
(1992) and Lipovetsky and Conklin (2001) related the LMG method to game-theory, by noting
that the method is equivalent to the Shapley value (Shapley, 1953). As the relative weights
method is less computationally demanding than the LMG method it has been considered an ap-
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log (Hgsoil) age smoking
√
amalgam

√
fish Total R2

Coefficient 0.048 0.014 0.265 0.286 0.139

p-value 0.38 0.06 0.003 < 0.001 < 0.001

Rel. imp. 0.002 0.038 0.023 0.316 0.064 0.444

Table 1: Coefficients, p-values and relative variable importances based on the LMG method.
The values are from a model modeling the mercury in urine with the predictors: log (Hgsoil)
which is the mercury concentration in the soil where the person lives, age which is the age of the
person, smoking which is whether the person smokes or not,

√
amalgam which is the number

of amalgam fillings the person has in their teeth and
√
fish which is the number of fish meals

consumed by the person each month. The data is from Imo et al. (2017)

proximation of the LMG method that can be used when the LMG method is not computationally
viable (Grömping, 2015). This thesis will focus on the LMG method and the relative weights
method. Both the LMG method and the relative weights method will be considered because we
believe that the LMG method will give more accurate decompositions than the relative weights
method, but the relative weights method is needed when too many predictors in the model makes
the LMG method computationally unviable.

The approaches discussed above based on the proportion of variance explained by each predictor
gives complementary information to p-values. The p-value gives information on whether the
predictor has any effect on the response, but it says nothing about how large the effect is or how
much information the predictor carries. The relative variable importance measures, however,
do not try to tackle the problem of testing the null-hypothesis that each predictor has no effect
on the model, it only focuses on the amount of information the predictor contributes to the
model. The difference is illustrated in Table 1, which shows coefficients, p-values and the relative
variable importances from the LMG method of a model with 5 predictors. The model has the
concentration of mercury in urine as the response and the predictors are the amount of mercury
in the soil, the age of the person, whether the person is smoking or not, the number of teeth
with amalgam fillings and the number of fish meals consumed per month respectively (Imo et al.,
2017). We can see that

√
amalgam and

√
fish both have p-values < 0.001, which could at first

glance give the impression that they are equally important to the model and they explain roughly
the same amount of the mercury concentration. Looking at the relative importance of the two
predictors, however, we see that

√
amalgam has a relative importance of 0.316 while

√
fish has a

relative importance of only 0.064. This means that, according to the LMG method,
√
amalgam

explains roughly 5 times more of the variance in the response than
√
fish and that the number

of amalgam fillings is therefore likely more important to the concentration of mercury than the
amount of fish eaten a month.

All the methods discussed so far are based on linear regression models. In many applications,
such as biology, epidemiology and the social sciences, standard linear regression models are not
sufficient, instead, random intercept models are often used. Probably the most common method
used to determine the importance of a random intercept in a model is to look at the random
intercepts variance in the model. A larger variance means there is more information contained
in the random intercept. Looking at variances, however, has the same problem of looking at
coefficients of fixed effects, if the random intercepts are correlated, either with each other or with
fixed effects, then the random intercepts might absorb information from the other predictors
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in the model or other predictors might absorb information from the random intercepts. The
absorption of information can cause the variances to change and not represent the correct amount
of information contained in the random intercept. This thesis will therefore focus on expanding
the concept of relative variable importance to random intercept models. More specifically, we
want to expand the LMG method and the relative weights method to give relative importances
to both the fixed effects and the random intercepts in random intercept models.

Some work on relative variable importance measures for random intercept models has recently
been done by Stoffel et al. (2021), where they attempt to calculate relative variable importances in
generalized linear mixed-effect models (GLMMs). Their approach has some weaknesses, however.
First, importances are only given to the fixed effects in the model, not the random effects. Second,
little attempt at taking the correlations between the predictors into account is made. The idea
behind the two approaches Stoffel et al. (2021) end up with, part R2 and inclusive R2, will
be considered and criticized in Section 2.5.1. Simply explained, only the uniquely explained
variance, similar to method (v), and the total explained variance, similar to method (vi), by
each predictor, respectively, were considered. A different attempt at extending the concept of
relative variable importance to random intercept models was done by Byhring (2020). That work,
however, was only able to give importances to the predictors in a model with only one random
intercept, which is limiting. Additionally, it did not properly take the correlations between the
fixed effects and the random intercept into account.

The approaches proposed in this thesis will expand the LMG and relative weights method to
random intercept models with an arbitrary number of random intercepts and fixed effects. The
approaches will, simply speaking, distribute the “credit” for information contained in correlated
predictors to all predictors containing that information. Such a distribution of the credit will
give shares which add up to the model R2, which makes the shares more interpretable. The
shares can be interpreted as the amount of R2 each predictor contributes, or, equivalently, as
the proportion of information in the response the predictor explains.

In addition to proposing methods to calculate relative variable importance of the predictors in
random intercept models, a focus of this thesis is the development of an R package implementing
these methods. We believe an R package will be a useful tool for statistical analyses, since
usage of relative variable importances has been increasing and the R package relaimpo, which
implements several of the mentioned methods for linear regression models, is quite popular with
over 260 000 downloads since it’s introduction (Grömping, 2006; MetaCRAN, 2022). The end
goal of this thesis is therefore to create a simple to use tool that researchers can use to help
interpret their models which is easier to interpret than the tools available today. Such a tool will
hopefully let researchers who are not statisticians better understand their results which can lead
to better research. The R-package can be found at https://gitlab.com/elonus/decompr2.

Section 2 will contain background theory and an introduction to relative variable importance
metrics. The proposed new methods which give relative variable importances to random intercept
models will be in Section 3. Section 4 contains a simulation study showing some of the properties
of the proposed methods while Section 5 shows the new methods applied on a real dataset. A
discussion of the results will be in Section 6. Finally, a vignette showing the use of the R-package
along with the implementation will be in Appendix A and Appendix B.
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2 Theory

We will here cover existing theory and methods that will be used in this thesis. Linear regression,
linear mixed-effect models and the coefficient of determination for linear regression models are
assumed known to the reader. This section will therefore only contain a brief review of the
respective theory. Then, calculation of the coefficient of determination for linear mixed-effect
models will be discussed before introducing relative importance measures that will be generalized.

2.1 Linear regression models

A very commonly used technique in data modeling is linear regression. Linear regression models
the relationship between the response, yi, i ∈ {1, 2, . . . , n}, and the predictors, {x1,x2, . . . ,xn},
where n is the number of observations and xi = (xi,1, xi,2, . . . , xi,p)

T is one observation, where p
is now the number of predictors, for i ∈ {1, 2, . . . , n}. The data is assumed to be in the form

yi = β0 + β1xi,1 + β2xi,2 + · · ·+ βpxi,p + ϵi , (1)

where β = (β0, β1, . . . , βp)
T , called the coefficients of the model, describes the deterministic part

of the relationship between yi and xi. The stochastic part of the relationship between yi and xi

is described by ϵi ∼ N(0, σ2
ϵ ), which is the error term of the model and called the residual. The

β0 in β is called the intercept, which makes the model centered on the mean of the response.

If a predictor is categorical, some special care needs to be taken when adding it to the model.
The encoding of the categories should not matter, meaning that if the different categories are
identified by different numbers, then changing these numbers should not affect the model. This
means that even if the encoding is numeric, it should not just be added to the model as any
other predictor, since changing the encoding would change the model. Instead, the typical way
to add categorical predictors to a linear regression model is through dummy encoding. If the
categorical predictor has l levels, then dummy encoding adds l − 1 new binary “predictors”,
xi,k1 , xi,k2 , . . . , xi,kl−1

, where

xi,k1
= I(Observation i has level k1 of the categorical predictor)

xi,k2
= I(Observation i has level k2 of the categorical predictor)

...

xi,kl−1
= I(Observation i has level kl−1 of the categorical predictor) ,

where I() is the indicator function. A column for when observation i has level kl is not needed,
since this case is equivalent to all of xi,k1

, xi,k2
, . . . , xi,kl−1

being zero.

The relationship in equation (1) is usually rewritten in the more compact form

y = Xβ + ϵ ,

where ϵ ∼ Nn

(
0, σ2

ϵ In
)
and X is the n× (p+ 1) matrix

X =


1 x1

1 x2

...
...

1 xn

 .
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The 1’s are added to the matrix to represent the intercept.

Generally, the true coefficients are not known. Only the response, y = (y1, y2, . . . , yn)
T , and the

predictors, X, are observed. The goal of fitting the model is therefore to find estimates for the
coefficients, β̂, to attempts to understand the deterministic part of the relationship between y
and x. Fitting the model is usually done by minimizing the error sum of squares

SSE =

n∑
i=1

(yi − ŷi)
2
=

n∑
i=1

(
yi − xT

i β̂
)2

,

which gives the estimate

β̂ =
(
XTX

)−1

XTy .

The derivation of the estimate can be found in, e.g., Fahrmeir et al. (2013, Chapter 3.2).

2.2 Linear random intercept models

A common scenario when modeling real world data is that observations might be clustered in
some way. Either in time, e.g., by repeated measurements of the same individual, or in space,
e.g., measurements of several individuals in the same geographic area, like an island. Since
observations within the same cluster are often not statistically independent, the clustering needs
to be taken into account in the model. If there are few clusters compared to the number of
observations, this can be solved by categorical predictors. If the number of clusters are large
compared to the number of observations, however, this approach will give a model with a large
amount of predictors estimated by relatively few observations. This means that the predictors
will be very sensitive to slight changes in the observed data, which gives a model with a large
variance.

Linear Mixed-effect Models (LMMs) attempt to solve this problem by imposing a regularization
assumption on the coefficients explaining the cluster effects. This assumption restricts the es-
timates of these coefficients, which makes them less sensitive to small changes in the observed
data, which causes the variance in the model to be reduced. The assumption will, however, have
a trade-off. It will cause the model to not fit as closely to the observed data, since the restriction
will prevent the coefficients from taking the value which makes the predicted values as close
to the observed values as possible. This is called the bias in the model. Generally, decreasing
the variance will increase the bias in the model, and vice versa. This tendency is called the
bias-variance trade-off, see e.g., Hastie et al. (2009, Chapter 2.9).

The simplest type of a LMM is the random intercept model, which assumes the data can be
described by

yi,j = β0 + xT
i,jβ + αj + ϵi,j , (2)

where yi,j is the i’th observation of cluster j, β0 is the mean of the response, while αj ∼ N
(
0, σ2

α

)
is the random effect, also called the cluster-specific effect, which describes how the mean of the
cluster deviates from the population-wide mean. Further, ϵi,j ∼ N

(
0, σ2

ϵ

)
is the residual for the

i’th observation for cluster j. Finally, σ2
α is called the between-cluster variance and σ2

ϵ is called
the within-cluster variance (Nakagawa and Schielzeth, 2013).
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Adding the cluster-specific effects, α = (α1, α2, . . . , αm)
T
, where m is the number of clusters, to

the model means that the model explains the dependence caused by the observations being in the
same cluster, since αj explains the dependent part. A similar effect of removing the dependence
could be achieved by using a categorical predictor in a normal linear regression model. However,
this results in a slightly different model, since the assumed normal distribution of the cluster-
specific effects works as a regularization assumption. This regularization assumption reduces the
variance of the model by introducing bias through the bias-variance trade-off. More concretely,
the assumed normal distribution causes a shrinking effect, which causes the cluster-specific effects
to be closer to zero than they would otherwise be.

The model in equation (2) can be written in a more general form

y = β0 +Xβ +Ru+ ϵ , (3)

where β0 is the mean of the response and X is a n × p matrix describing the fixed effects.
Note that X does not have an intercept column since the intercept is added as a separate term.
Further, β is a vector of length p describing the relationship between the fixed effects and the
response and R describes the random effects (in this case it is just a dummy encoding of the
categorical clustering predictor). Finally u ∼ Nm

(
0, σ2

αIm
)
is the same as α, and ϵ is the same

as the residuals described above.

More complicated random intercept models can be constructed with several different clustering
predictors, where the coefficients describing the relationship of the clustering predictors with
the response have a dependency structure. Then, R will be a matrix containing the dummy
encoding of all the clustering predictors, while u ∼ N (0,A) describes the relationship between
the clustering predictors and the response, with A describing the dependency structure of the
coefficients. For the simple case where there are two independent clustering predictors A will
simply be [

σ2
r1I 0
0 σ2

r2I

]
,

where σ2
r1 is the variance of the coefficients for the first clustering predictor and σ2

r2 is the variance
of the coefficients for the second clustering predictor. But A can be any valid covariance matrix,
which describes more complex data relationships. More complex models where R does not
just contain dummy encodings of categorical predictors are also possible, but they will not be
discussed in this thesis. For more information of these more complex models as well as details
of how LMMs are fitted, see, e.g., Fahrmeir et al. (2013, Chapter 7).

2.3 Coefficient of Determination (R2)

2.3.1 Linear regression

The coefficient of determination, usually called R2, is a value often used in statistical modeling,
since it gives information regarding how much of the information in the response the model
explains. More precisely, it is the proportion between the variance of the fitted values and the
variance of the response, or equivalently, one minus the proportion between the variance of the
residuals and the variance of the response. In linear regression it is defined through sum of
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squares. By defining

SSR =

n∑
i=1

(ŷi − ȳ)
2

SStot =

n∑
i=1

(yi − ȳ)
2

SSE =

n∑
i=1

(yi − ŷi)
2
=

n∑
i=1

ϵ̂2i ,

R2 can be defined by

R2 =
SSR
SStot

= 1− SSE
SStot

,

where the last equivalence comes from the fact that SStot = SSE + SSR in linear regression
models. SSR, SStot and SSE can be thought of as V̂ar (ŷ), V̂ar (y) and V̂ar (ϵ) respectively.

An R2 close to 1 means that the model explains a lot of the variance in the response while an R2

close to 0 means that there is a lot of variance in the response that the model does not explain.
Different fields and applications have different criteria for what is considered a good R2 value. If
there is a lot of noise in the response that can not be modeled by the available predictors, then
even a relatively small R2 might be considered good.

2.3.2 Linear Mixed-effect Models

To generalize the concept of R2 to LMMs it is useful to rewrite the variance of the response.
If the fixed effects are assumed independent from the random effects and the residuals and the
random effects are assumed independent from the residuals, then the variance of the response
can be written as

Var (y) = σ2
f + σ2

r + σ2
ϵ , (4)

where σ2
f = Var

(
xTβ

)
is the variance of the fixed effects, σ2

r is the variance of the random effects

and σ2
ϵ is the variance of the residuals. Then two R2 definitions can be made

R2
(m) =

σ2
f

σ2
f + σ2

r + σ2
ϵ

(5)

R2
(c) =

σ2
f + σ2

r

σ2
f + σ2

r + σ2
ϵ

, (6)

where R2
(m) is called the marginal R2, which gives the proportion of variance the fixed effects

explain, and R2
(c) is called the conditional R2, which gives the proportion of variance the whole

model explains.
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The variance of the fixed effects, σ2
f , can be estimated by

σ2
f = Var

(
xTβ

)
=

1

n− 1

n∑
i=1

(
ŷf,i − ¯̂yf

)
,

where ŷf = Xβ̂. The other variances, σ2
r and σ2

ϵ , are estimated as part of the model fit. More
details regarding this extension of R2 to LMMs can be found in Nakagawa and Schielzeth (2013).

2.4 Relative variable importance based on R2 decomposition

As mentioned in Section 1, many approaches have been proposed to find the relative importance
of a predictor in linear regression models. A common approach is to base the relative importance
on the coefficient of determination (R2), since the R2 of a model gives information regarding how
much of the variance in the response the model explains (Grömping, 2015). For uncorrelated
predictors, it is trivial to give a relative importance to a predictor; the decomposition can be
based on the coefficients in the model. To see this, consider that according to the assumptions
of a linear regression model, the variance of y is,

Var (y) = Var
(
xTβ + ϵ

)
=

p∑
i=1

β2
i Var (xi) +

p∑
i,j=1
i ̸=j

βiβjCov (xi, xj) + σ2
ϵ .

If the predictors are uncorrelated, the above equation simplifies to

Var (y) =

p∑
i=1

β2
i Var (xi) + σ2

ϵ ,

meaning that the contribution of each predictor is simply β2
i Var (xi), which simplifies to β2

i if
X is standardized. It is not obvious, however, how to distribute the R2 to each predictor in the
model when the predictors are correlated.

The literature agrees that when considering relative importance metrics there are some conditions
that should be satisfied such that decompositions can be interpreted in a useful way (Grömping,
2007; Grömping, 2015; Feldman, 2005). While Grömping (2015) lists 12 criteria that can be
used when evaluating relative importance measures, we will focus on

i. Proper decomposition: The R2 of the model is to be decomposed into shares, that is, the
sum of all shares has to be the R2 of the model.

ii. Non-negativity: All shares have to be non-negative.

iii. Inclusion: A regressor Xj with βj ̸= 0 should receive a nonzero share.

which are the ones focused on in Grömping (2007). We consider these three the most important
criteria, especially proper decomposition is considered important at it is essential for the intuitive
understanding of the relative importances. When evaluating the relative importance measures
we will be checking whether they satisfy the proper decomposition, non-negativity and inclusion
criteria.
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2.5 Relative variable importance for linear regression

In this section we will discuss approaches used to decompose the R2 of linear regression models
with correlated predictors.

2.5.1 Naive approaches that do not work

Before looking at possible approaches to handle correlated predictors, some notation is needed.
There is a response, y, along with p predictors, note that this is a different p from the p-
value, (1, 2, . . . , p), to which a linear regression model is fitted. Let the relative importance of
predictor xi be RI(i). Since we want to compare the R2 of models with different subsets of
predictors in them, let R2 (S), where S = {h1, h2, . . . , hr} ⊆ {1, 2, . . . , p}, be the R2 of the linear
regression model fitted with only the predictors {h1, h2, . . . , hr}. Three easy solutions will now
be considering as well as showing why they do not work.

The most obvious approach to see how much predictor i contributes to the model R2 would be to
look at the difference in R2 between the full model and the model with predictor i removed, i.e.,
RI(i) = R2 ({1, 2, . . . , p})−R2 ({1, 2, . . . , p} \ i). However, this approach has problems when the
predictors are correlated. To see why, consider the simple case where Y = X1 +X2 and

Var ((X1, X2)) =

[
1 0.9
0.9 1

]
.

Then R2 ({1, 2}) = 1, since the relationship between Y and (X1, X2) is deterministic and all the
variance in Y is explained by the predictors. In this case, it would be expected that RI({1}) =
RI({2}) = 0.5 since X1 and X2 explain the same amount of variance due to symmetry. However,
looking at the difference in R2 when the predictor of interest is removed from the full model would
instead give

RI(1) = R2 ({1, 2})−R2 ({2}) = 1− β̂2
2

Var (Y )
= 1− 1.92

3.8
≈ 0.05 ,

where, in the second equality, the known result that, for linear regression with one predictor, the
coefficient is simply the correlation between the response and the predictor is used.

Symmetry gives RI({2}) = RI({1}). Hence, looking at the difference in R2 when the predictor
of interest is removed from the full model violates the proper decomposition criterion in this
example, since

RI({1}) +RI({2}) = 0.05 + 0.05 = 0.1 < 1 .

More generally, the same problem occurs whenever there is correlation between the predictors, the
relative importance of each predictor will be too small, since each predictor only gets “credit”
for the information uniquely in that predictor, not the information in the overlap with other
predictors in the model (Grömping, 2015). Looking at the difference in R2 when the predictor
of interest is removed from the full model is what Stoffel et al. (2021) calls part R2.

Another simple approach is to instead compare the model where predictor i is the only predictor
with the empty model with only an intercept, i.e., RI({i}) = R2 ({i}) − R2 ({}). The R2 of a
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model with only an intercept is always 0, however, so RI(i) simplifies to RI(i) = R2 ({i}). The
same example used when discussing the previous approach gives

RI({1}) = R2 ({1}) = β̂2
1

Var (Y )
=

1.92

3.8
≈ 0.95 ,

where symmetry again gives RI({2}) = RI({1}). This means

RI({1}) +RI({2}) ≈ 0.95 + 0.95 = 1.9 > 1 .

Such an approach generally gives a too large share when there are correlated predictors, since
each predictor gets “credit” for both the information uniquely explained by that predictor, but
also all the information it explains jointly with other correlated predictors. Just looking at the
R2 of a model only the predictor of interest is a scaled version of what Stoffel et al. (2021) calls
Inclusive R2.

Finally, consider linear regression models fitted with the sets of predictors

{}, {1}, {1, 2}, . . . , {1, 2, . . . , p} .

Then, give predictor 1 the share R2 ({1})−R2 ({}), predictor 2 the share R2 ({1, 2})−R2 ({1}),
and so on until predictor p would get the share R2 ({1, 2, . . . , p})−R2 ({1, 2, . . . , p− 1}). However,
this is not a very robust approach either, since if two predictors are correlated, the first one added
will get the contribution of the common part. Thus, changing the ordering of the predictors will
likely change the shares, e.g., if the predictors are added to the model in the reverse order, then
predictor p will likely get a larger share than when it is added last.

2.5.2 The LMG method

To address the shortcomings of the naive methods presented in Section 2.5.1, Lindeman et al.
(1980) proposed to consider all possible orderings of the predictors, and give each predictor the
mean increase in R2 when the predictor is added to the model as its share. If P = {π1, π2, . . . , πp!}
is the set of all permutations of (1, 2, . . . , p), and Si(πh) be the set of predictors appearing before
i in πh, then the share given to predictor i is the mean increase of R2 when predictor i is added
to the model, defined as

RI(i) = LMG(i) =
1

p!

∑
π∈P

(
R2 (Si(π) ∪ i)−R2(Si(π))

)
. (7)

Equation 7 can be rewritten in the more computationally efficient form

RI(i) = LMG(i) =
1

p!

∑
S⊆{1,2,...,p}\i

|S|! (p− |S| − 1)!
(
R2 (S ∪ i)−R2(S)

)
, (8)

since the order of predictors before and after predictor i does not change the compared models
(Grömping, 2007). The reformulation in equation (8) reduces the computational complexity from
O(p!) to O(2p−1).

The LMG method has no problem working with categorical predictors. The categorical predictor
can be permuted the same way as a numerical predictor. Note, however, that it is not the
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individual columns in the dummy encoding that is permuted, it is the whole categorical predictor
which is added or removed from the model.

Importantly, the criteria listed in Section 2.4 are satisfied by the LMG approach:

• Proper decomposition: Feldman (2005) gives a proof showing that the LMG method,
called the averaging decomposition in the paper, will always give a proper decompositions.
This proof is complex, however, so a simpler proof, which also applies to the proposed new
methods of the thesis, will be shown in Section 3.1.

• Non-negativity: R2 never decreases when a predictor is added to a model, see e.g.,
Fahrmeir et al. (2013, Chapter 3.2.3). This means thatR2 (S ∪ i) ≥ R2(S) ∀i ∈ {1, 2, . . . , p}, S ⊆
{1, 2, . . . , p} \ i, from which RI(i) ≥ 0 trivially follows.

• Inclusion: Let h ∈ {1, 2, . . . , p} be some predictor. If β̂h ̸= 0 and y and xh have a non-zero
variance, then

R2({h})−R2({}) = β̂2
hV̂ar (xh)

V̂ar (y)
− 0 > 0 . (9)

This, combined with the fact that none of the terms of the sum in equation (8) can be
negative, means that RI(h) > 0.

Thus, the LMG method is a robust approach that gives useful shares to each predictor.

2.5.3 Relative weights for linear regression

The high computational complexity of the LMGmethod means that it can be difficult to calculate
the relative variable importances when the number of predictors is large. This section will
therefore introduce an alternative approach which is significantly less computationally complex.
The alternative method, denoted as relative weights, will give an approximation of the LMG
method and was independently discovered by Fabbris (1980), Genizi (1993) and Johnson (2000),
see Nimon and Oswald (2013). Here, the formulation and name used by Johnson (2000) will
be used. The relative weights method relies on the fact that relative importances are easy to
calculate for uncorrelated predictors, in which case they simply are the square of the standardized
coefficients of the linear regression model (Section 2.4). We can assume, without loss of generality,
that the predictors and the response are standardized and centered such that they have zero mean
and unit variance. This makes it possible to remove the intercept from the n× p model-matrix,
X. The relative weights method works by using the singular value decomposition of the model-
matrix

X = PDQT ,

where P is an n × p orthonormal matrix containing the eigenvectors of XXT, D is a p × p
diagonal matrix with the singular values of X on its diagonal while Q is a p × p orthonormal
matrix containing the eigenvectors of XTX, see, e.g., Friedberg et al. (2003). The n× p matrix

Z =
√
n− 1PQT
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can then be created, which is the closest orthogonal matrix to X in the least-square sense,
meaning Z = PQT is the orthogonal matrix minimizing

tr
(
(X− Z)

T
(X− Z)

)
,

where tr () means the trace of a matrix (Johnson, 1966). The
√
n− 1 factor is used to keep Z

standardized, since each column of Z would otherwise have a variance of 1
n−1 .

Since the columns in Z are orthogonal, they are also uncorrelated, meaning that the relative
importance of each column in Z is the square of their coefficients. These coefficients can easily
be calculated by

β̂Z =
(
ZTZ

)−1
ZTy

=
(
(n− 1)QPTPQT

)−1√
n− 1QPTy

=
1√
n− 1

QPTy ,

as PTP = QQT = I and where y is the standardized and centered response. An intercept
column in Z is not needed since y is centered and hence has mean 0. The columns of Z thus

have relative importances β̂Z
[2]
, where β̂Z

[2]
means that all elements of β̂Z are squared. It is

the importances of the columns of X which are of interest, however, not the importances of the
columns of Z. The calculated importances therefore need to be related back to the columns of
interest. Johnson (2000) proposes using the regression coefficients when regressing Z on X for
this purpose, which can be calculated by

Λ =
(
ZTZ

)−1
ZTX

=
(
(n− 1)QPTPQT

)−1√
n− 1QPTPDQT

=
1√
n− 1

QDQT ,

Since X is a linear combination of Z, and vice versa, Λ will give a “perfect” regression, with an
R2 of 1. The “perfect” regression can be seen by

ZΛ =
√
n− 1PQT 1√

n− 1
QDQT

= PDQT

= X .

Additionally, the columns of Z are uncorrelated, meaning that the relative importance of each
column of Z to each column of X is just the square of the corresponding regression coefficient.
Combined, the sum of the squared elements of each column of Λ is 1.

The importances of the columns of X, i.e., the original predictors, are calculated by relating the
relative importance of each column of Z to the columns of X, by

RI(i) = [Λ[2]β̂Z
[2]
]i ,

where Λ[2] means that all elements of Λ are squared.
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It is computationally challenging to calculate P when there are many observations, since calcu-
lating P means calculating the eigenvectors of the n × n matrix XXT . Therefore, in practice,
another approach to calculate Z is used. Let

Rxx =
1

n− 1
XTX

=
1

n− 1
QDPTPDQT

=
1

n− 1
QDDQT

=
1

n− 1
QD[2]QT

be the correlation matrix of the columns of X, where Q and D are the same as above (Johnson,
2000). Next, let

R
− 1

2
xx =

√
n− 1QD[−1]QT .

Then Z can be calculated by

XR
[− 1

2 ]
xx = PDQT

√
n− 1QD[−1]QT

=
√
n− 1PDD[−1]QT

=
√
n− 1PQT

= Z ,

thus explicitly calculating P is not needed. Only Q and D[2] need to be calculated, but they
only contain the eigenvectors and eigenvalues of the p× p matrix XTX respectively.

The relative weights method satisfies the criteria listed in Section 2.4, which means that it is
useful as a more computationally efficient approximation of the LMG method.

• Proper decomposition: Since Z is a linear combination of X, and vice versa, we know

that the sum of the squared elements of the columns of Λ are equal to 1, i.e.,
p∑

i=1

λ2
i,j = 1

for j = 1, 2, . . . , p. Thus,

p∑
i=1

RI(i) =

p∑
i=1

[Λ[2]β̂Z
[2]
]i

=

p∑
i=1

p∑
j=1

λ2
i,j β̂

2
Z,j

=

p∑
j=1

β̂2
Z,j

p∑
i=1

λ2
i,j

=

p∑
j=1

β̂2
Z,j · 1

= R2 (Z1, Z2, . . . , Zp)

= R2 (X1, X2, . . . , Xp) ,
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where the last equality comes from the fact that since Z is a linear combination of X, the
linear regression models with the columns of Z and columns of X are equivalent, in the
sense that they explain the same information. This means that relative weights gives a
proper decomposition.

• Non-negativity: The relative weights method will satisfy non-negativity, since the relative

importances, Λ[2]β̂Z
[2]
, are a matrix with non-negative elements multiplied with a vector

with non-negative elements.

• Inclusion: The relative weights method satisfies the inclusion criteria (Grömping, 2015).

It would be useful if the relative weights method would work with categorical predictors in
addition to numerical predictors. To use the relative weights method on categorical predictors
the most obvious solution is to use the same method as described above, but add the column
saying which level of the categorical predictor each observation is in to X, alternatively, add
the dummy encodings of the categorical predictors to X. The problem, however, is that when
Z = PQT is created, the nice properties of the added columns to X will likely be lost. If one
column is added for each categorical predictor, then two observations with the same level in the
categorical predictor will likely get different values in that column, meaning that the information
that they are in the same “group” is lost. Alternatively, if dummy encoding of the categorical
predictors is used, then the properties of the dummy encoding, binary values with only one or
none 1’s in each row, will also likely be lost. Hence, the model will have no way of knowing the
structure of the categorical predictors.
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3 Methods

While Section 2 introduced existing theory that is needed to discuss relative variable importance,
the current section represents my contribution to the topic. First, a proof of the proper decom-
position criteria of the LMG method is shown before an extension of the LMG method to random
intercept models will be presented. Then, the main result of this thesis will be introduced, an
extension of the relative weights method that works for random intercept models that will make
the calculations computationally viable in real models.

3.1 Proof of proper decomposition

This section will give a simple proof that the LMG method will always give a proper decompos-
ition of the R2 of the model it is applied to. It is a simple result coming from the fact that most
of the R2 terms in equation (7) will cancel.

The same notation used in Section 2.5.2 will be used in this proof. Let P = {π1, π2, . . . , πp!} be
the set of all permutations of (1, 2, . . . , p), and Si(πh) be the set of predictors appearing before
i in πh. The LMG method giving a proper decomposition means that

R2({1, 2, . . . , p}) =
p∑

i=1

RI(i)

=

p∑
i=1

1

p!

∑
π∈P

(
R2 (Si(π) ∪ i)−R2(Si(π))

)
=

1

p!

∑
π∈P

p∑
i=1

(
R2 (Si(π) ∪ i)−R2(Si(π))

)
,

where the second equality simply comes from inserting equation (7). The order of the sums can
be changed as they are finite.

Let π = (h1, h2, . . . , hp) be some permutation of (1, 2, . . . , p) and let

d(π, i) = R2 (Si(π) ∪ i)−R2(Si(π)) ,

where Si(π) is the predictors appearing before i in π. It is then possible to prove that

p∑
i=1

d(π, i) = R2({1, 2, . . . , p}) .

To see this consider d(π, h1) + d(π, h2) which simplifies to

d(π, h1) + d(π, h2) = R2 (Sh1(π) ∪ h1)−R2(Sh1(π)) +R2 (Sh2(π) ∪ h2)−R2(Sh2(π))

= R2 ({} ∪ h1)−R2 ({}) +R2 ({h1} ∪ h2)−R2 ({h1})
= R2 ({h1, h2})−R2 ({}) .

Thus d(π, h1) + d(π, h2) + d(π, h3) further simplifies to

d(π, h1) + d(π, h2) + d(π, h3) = R2 ({h1, h2})−R2 ({}) +R2 (Sh3(π) ∪ h3)−R2(Sh3(π))

= R2 ({h1, h2})−R2 ({}) +R2 ({h1, h2} ∪ h3)−R2 ({h1, h2})
= R2 ({h1, h2, h3})−R2 ({}) .
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This is simple to extend to

p∑
i=1

d(π, i) = R2({h1, h2, . . . , hp})−R2 ({}) = R2({1, 2, . . . , p})

since R2 ({}) = 0.

Further, since
p∑

i=1

d(π, hi) =
p∑

i=1

d(π, i),

p∑
i=1

RI(i) =
1

p!

∑
π∈P

p∑
i=1

(
R2 (Si(π) ∪ i)−R2(Si(π))

)
=

1

p!

∑
π∈P

R2({1, 2, . . . , p})

= R2({1, 2, . . . , p}) 1
p!
p!

= R2({1, 2, . . . , p}) ,

which is what we wanted to show.

This proof is not specific to the use of R2 in equation (7), it actually holds for any deterministic
function, F , satisfying F ({}) = 0. This means that the definition of R2 does not matter, as long
as R2({}) = 0.

3.2 Extending the LMG method

In our proposed extension of the LMG method to random intercept models, the same approach
of permuting the predictors that is described in Section 2.5.2 and shown in equation (8) can
be used. The random intercepts can be treated the same as categorical fixed effects, that is,
the relative importance given to a random intercept is the mean increase of model R2 when the
random intercept is added to the model. The only difference with a random intercept compared
to a categorical predictor is that R2 needs to be extended to work for random intercept models.
Such an extension has been proposed by Nakagawa and Schielzeth (2013) and Johnson (2014),
who showed that a meaningful R2 extension can be calculated for random intercept models,
shown in equation (6). The extension works by decomposing the variance of the model into the
variance of the fixed effects, random intercept and residuals. Section 2.3.2 gives more details
regarding the extension of R2 to random intercept models. The method which we propose as
the extended LMG (ELMG) method is

RI(i) =
1

(p+ q)!

∑
S⊆{1,2,...,p,
p+1,...,p+q}\i

|S|! ((p+ q)− |S| − 1)!
(
R2 (S ∪ i)−R2(S)

)
, (10)

where there are p fixed effects and q random intercepts. Notice that equation (10) is identical to
equation (8) other than the fact that there are more predictors.

A potential challenge with this extension of the LMG method comes from the extension of the R2

to random intercept models. For linear regression models it is known that if S1, S2 ⊆ {1, 2, . . . , p}
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with S1 ⊂ S2 then R2(S1) ≤ R2(S2), see e.g., Fahrmeir et al. (2013, Chapter 3.2.3). This
property is not guaranteed for the extension of R2 to random intercept models by Nakagawa
and Schielzeth (2013) and Johnson (2014) however. Thus, it is theoretically possible that if
S1, S2 ⊆ {1, 2, . . . , p, p+ 1, . . . , p+ q} with S1 ⊂ S2 then R2(S1) > R2(S2), which can cause the
non-negativity and inclusion criteria to be violated. This possibility will be explored further in
a simulation study in Section 4. When discussing the criteria listed in Section 2.4 with regards
to the ELMG method we will, for now, assume that it is true that if S1, S2 ⊆ {1, 2, . . . , p, p +
1, . . . , p+ q} with S1 ⊂ S2 then R2(S1) ≤ R2(S2).

• Proper decomposition: This method will always give a proper decomposition, as the
R2 terms in the sums will cancel out, see Section 3.1 for details.

• Non-negativity: The definition of conditional R2, equation (6), is a fraction where both
the numerator and denominator are sums of non-negative values, hence it is always non-
negative. Additionally, |S|! (p− |S| − 1)! is non-negative. This means that each term of
equation (10) is |S|! (p− |S| − 1)!, which is non-negative, multiplied with R2(S∪i)−R2(S),
which is assumed non-negative, giving a non-negative result. Hence, equation (10) is a sum
of non-negative elements, giving a non-negative result.

• Inclusion: The definition of the inclusion criterion is:
“A regressor Xj with βj ̸= 0 should receive a nonzero share.”.
This definition needs to be modified slightly to make it fit with random intercept models as
only the fixed effects have coefficients. The equivalent statement for a random intercept is
that its variance is larger that zero. The following definition will therefore be used instead:
“A fixed-effect regressor Xj with βj ̸= 0 or a random intercept regressor with estimated
variance > 0 should receive a nonzero share.”.

The fixed effect part follows from the same argument as in Section 2.5.2. Let h ∈
{1, 2, . . . , p} be a fixed effect. If β̂h ̸= 0 and both y and xh have a non-zero variance,
then

R2({h})−R2({}) = β̂2
hV̂ar (xh)

V̂ar (y)
− 0 > 0 .

Since R2({h}) − R2({}) corresponds to R2 (S ∪ i) − R2(S) in equation (10) when S = {}
and i = h, the above inequality, combined with the assumption that none of the terms of
the sum in equation (10) can be negative, means that RI(h) > 0.

The random intercept part follows from a similar argument. If the variance of a ran-
dom intercept xj is non-zero, then R2({j}) > 0, since the numerator of R2 is the sum
of σ2

f >= 0 and the variances of the random intercepts, which is assumed larger than
zero. The denominator is also larger than zero, since it is a sum of variances. Com-
bined, this means that R2({i}) > 0, which means that one of the terms of RI(i) will be
(p− 1)!

(
R2({i})−R2({})

)
= (p− 1)!R2({i}) > 0. Using the assumption that each term

of equation (10) is in practice non-negative, this means that RI(i) > 0.

To calculate the relative variable importance of one predictor, 2p+q−1 subsets have to be con-
sidered. This means that to calculate the relative importance of all p+q predictors, (p+ q) 2p+q−1

subsets have to be considered. The computational complexity therefore increases very quickly
and can quickly make this method difficult to use when the number of predictors increases. The
next section proposes a solution to this problem.
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3.3 Extending the relative weights method

The previous subsection described an extension of the LMG method to random intercept models.
It works and gives results that make sense and mostly satisfy the criteria Grömping (2015)
outlined and which are listed in Section 2.4. The ELMG method has the drawback of being
computationally expensive, which makes it unviable for models with many predictors. Here, we
therefore propose an extension of the relative weights method as an alternative. The extended
relative weights method will calculate an approximation of the relative variable importance given
by the ELMG method in the same way the standard relative weights method in Section 2.5.3
calculated an approximation of the relative variable importance given by the LMG method in
Section 2.5.2.

First, a simplified method with a problem will be introduced before the more correct method
without the problem will be shown. The reason for starting with the simplified method is that
the simplified method is useful to show the intuition behind the more correct method.

The main idea is to first use the same techniques as in the relative weights method to get
uncorrelated fixed effects. Then, use the same approach as in the LMG method, that is, consider
the mean increase in R2 when a predictor is added to the model. Here, however, the fixed effects
are treated as one “block” which are either all in the model or not in the model. This approach
gives a share to each random intercept as well as a joint share to the fixed effects. The joint
share given to the fixed effects can then be distributed to each individual fixed effect by using
their coefficients in the model along with the fact that they are uncorrelated, as in the relative
weights method.

The first step is therefore to create Z =
√
n− 1PQT by using X = PDQT , which contains

the observed fixed effects. Recall that the random intercepts are not in X but are contained
in a separate matrix, R, see equation (3). The columns of Z creates new fixed effects which
are pairwise uncorrelated. Having uncorrelated columns means that, if we are able to give a
joint relative importance to the fixed effects, it is possible to distribute that in a meaningful and
efficient way to each fixed effect. This distribution can be done using the same techniques as in
the relative weights method shown in Section 2.5.3.

To get the joint relative importance of the fixed effects along with the relative importance of the
random intercepts it is possible to use the same approach of looking at the average increase in
R2 as in the LMG method

RI(i) =
1

(1 + q)!

∑
S⊆{f,p+1,...,p+q}\i

|S|! ((1 + q)− |S| − 1)!
(
R2 (S ∪ i)−R2(S)

)
,

∀i ∈ {f, p + 1, . . . , p + 1}. The difference here is that the transformed fixed effects, f , will be
considered as one “block”, where they are either all in the model or not. Considering the fixed
effects as a “block” means that many fewer subsets need to be considered. Without considering
the fixed effects as a block, 2p+q−1 subsets need to be considered for each predictor, while only
21+q−1 need to be considered when the fixed effects are considered as a block. Since the number
of fixed effects in the model is usually larger than the number of random intercepts, i.e., p > q,
the computational complexity is dramatically decreased.

The shares given to the random intercepts, i.e., RI(p+1), RI(p+2), . . . , RI(p+ q), can be used
as they are, but the joint share given to the block of fixed effects, RI(f), must still be distributed
to each individual effect. To distribute RI(f) to each individual fixed effect, fit the full model,

20



i.e., a model with the columns of Z along with all the random intercepts. The model gives the
columns of Z coefficients, βZ, which can be used to distribute RI(f) to the original fixed effects,
by creating Λ = 1√

n−1
QDQT and then

r = Λ[2]β̂Z
[2]

.

The values in r give importances to the fixed effects. These importances, however, are only valid
if the fixed effects are all uncorrelated with the random intercepts. Correlation between the
fixed effects and the random intercepts can cause two problems: First, the decomposition might
violate the proper decomposition criterion, since, if a fixed effect is correlated with a random
intercept, their coefficient might not be representative of their importance. This causes the same
problems as described in Section 2.5.1. And second, if fixed effects are correlated with random
intercepts, their relative importance will depend on which random intercepts are in the model.
For example, if Zg and Rh, a fixed effect and random intercept respectively, contain some of the
same information, then Zg will have a lower importance compared to the other fixed effects when
Rh is also in the model compared to when Rh is not in the model, since Rh would absorb some
of the information in Zg. This absorption would therefore give Zg a smaller coefficient when
Rh is in the model and a larger coefficient when Rh is not in the model. The method described
above, however, will only look at the coefficients of the full model, and will therefore not take
such relationships into account and give results that are intuitively wrong.

The first problem is simple to solve, r just needs to be scaled such that it sums to RI(f), i.e.,
create

r∗ =
r

p∑
i=1

ri

RI(f) .

The scaling ensures that the proper decomposition criteria is satisfied, since

RI(f), RI(p+ 1), RI(p+ 2), . . . , RI(p+ q)

is a proper decomposition, because the decompositions are created using the LMG method which
means that the proof in Section 3.1 is valid. Thus,

r∗1 , r
∗
2 , . . . , r

∗
p, RI(p+ 1), RI(p+ 2), . . . , RI(p+ q) ,

where r∗ =
(
r∗1 , r

∗
2 , . . . , r

∗
p

)
, is also a proper decomposition, since

p∑
i=1

r∗i = RI(f).

Solving the second problem, however, is more challenging. Currently, the method first looks at
the increase in R2 across all subsets of the random intercepts when adding the fixed effects to
the model and then distributes this increase to each fixed effect using the coefficients of the fixed
effects in the full model. A better approach is to instead look at each subset by itself and find
the increase in R2 when adding the fixed effects to this subset. The respective increase can then
be distributed to each fixed effect using the coefficients of the fixed effects in this model. More
precisely, for a subset of the random intercepts, S, fit the model with the random intercepts
in S together with the fixed effects in Z. Let β̂Z(S) be the coefficients of the fixed effects in
the respective model. Then, the relative contribution of each of the original fixed effects to this
model can be calculated by

r(S) = Λ[2]β̂Z(S)
[2] ,
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where Λ = 1√
n−1

QDQT as earlier. We still need to scale r(S), however, to ensure that the

relative contribution of each of the fixed effects sum to the increase in R2 for this subset such
that a proper decomposition is created, for the same reason as explained earlier,

R(S) =
r(S)

p∑
i=1

r(S)i

(
R2 (S ∪ f)−R2 (S)

)
.

Finally, the relative importance of each fixed effect is

(RI(1), RI(2), . . . , RI(p)) =
1

(1 + q)!

∑
S⊆{p+1,...,p+q}

|S|! ((1 + q)− |S| − 1)!R(S) . (11)

The resulting method is what we propose as the extended relative weights (ERW) method. A
compact description of the method is shown in Algorithm 1.

To calculate the relative variable importance of one predictor using the ERW method, 21+q−1 =
2q subsets need to be considered. To calculate the importance of all p+ q predictors, (1 + q) 2q

subsets need to be considered, as the relative variable importance of the p fixed effects are
calculated at the same time. Thus, the complexity of the ERW method scales only with the
number of random intercepts in the model, not the number of fixed effects. The computational
complexity scaling with only the number of random intercepts is a significant improvement
compared to the (p+ q) 2p+q−1 subsets that need to be considered when using the ELMGmethod,
since p, the number of fixed effects, will generally be large compared to q, the number of random
intercepts.

When considering whether the ERW method satisfies the criteria listed in Section 2.4 the same
problem as for the ELMG method where there is no guarantee that R2(S1) ≤ R2(S2) when
S1, S2 ⊆ {1, 2, . . . , p, p+ 1, . . . , p+ q} with S1 ⊂ S2 occurs. We will again assume that R2(S1) ≤
R2(S2) when discussing the criteria listed in Section 2.4 before discussing the problem more in
Section 4.

• Proper decomposition: The proposed method will give a proper decompositions because
for each subset S, then

p∑
i=1

R (S)i = R2 (S ∪ f)−R2 (S) .

This means that

p∑
i=1

RI(i) =

p∑
i=1

∑
S⊆{p+1,...,p+q}

|S|! ((1 + q)− |S| − 1)!R (S)i

=
∑

S⊆{p+1,...,p+q}

|S|! ((1 + q)− |S| − 1)!

p∑
i=1

R (S)i

=
∑

S⊆{p+1,...,p+q}

|S|! ((1 + q)− |S| − 1)!R2 (S ∪ f)−R2 (S) .
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Algorithm 1 Algorithm describing the calculations of the relative variable importance of each
predictor when using the extended relative weights method.

# Preparation
Z←

√
n− 1PQT

Λ← 1√
n−1

QDQT

# Relative importance of random intercepts
for i ∈ {p+ 1, p+ 2, . . . , p+ q} do

RI(i)← 1
(1+q)!

∑
S⊆{f,p+1,...,p+q}\i

|S|! ((1 + q)− |S| − 1)!
(
R2 (S ∪ i)−R2(S)

)
end for

# Relative importance of fixed effects
(RI(1), RI(2), . . . , RI(p))← (0, 0, . . . , 0)
for S ⊆ {p+ 1, p+ 2, . . . , p+ q} do

m← fitted model with the fixed effects in Z and the random intercepts in S
β̂Z(S)← coefficients for fixed effects in m

r(S)← Λ[2]β̂Z
[2]

R(S)← r(S)
p∑

i=1
r(S)i

(
R2 (S ∪ f)−R2 (S)

)
(RI(1), RI(2), . . . , RI(p))← (RI(1), RI(2), . . . , RI(p)) + |S|! ((1 + q)− |S| − 1)! R(S)

end for
(RI(1), RI(2), . . . , RI(p))← 1

(1+q)! (RI(1), RI(2), . . . , RI(p))

Thus,

p+q∑
i=1

RI(i) =
∑

i∈{f,p+1,...,p+q}

∑
S⊆{f,p+1,...,p+q}\i

|S|! ((1 + q)− |S| − 1)!R2 (S ∪ i)−R2 (S) ,

which means that the proof in Section 3.1 can be used.

• Non-negativity: We know from Section 2.5.3 that

r(S) = Λ[2]β̂Z(S)
[2] ,

will be non-negative, since both Λ[2] and β̂Z
[2]

only have non-negative values. Further,
since R2 (S ∪ f)−R2(S) is assumed to be non-negative,

R(S) =
r(S)

p∑
i=1

r(S)i

(
R2 (S ∪ f)−R2 (S)

)
,

is non-negative. Finally, each element of

(RI(1), RI(2), . . . , RI(p)) =
1

(1 + q)!

∑
S⊆{p+1,...,p+q}

|S|! ((1 + q)− |S| − 1)!R(S)

will be a sum of non-negative values, which means that it is also non-negative.

The values RI(p+1), RI(p+2), . . . , RI(p+ q) will be non-negative, since they are created
with the same approach as in the ELMG method.
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• Inclusion: We will again use the modified definition of the inclusion criteria used in
Section 3.2 which takes random intercept models into account, i.e., “A fixed-effect regressor
Xj with βj ̸= 0 or a random intercept regressor with estimated variance > 0 should receive
a nonzero share.”.

First we will consider fixed effects, i.e., let the predictor Xj have its coefficient βj ̸= 0.
This assumption means that for S = {p+1, p+2, . . . , p+q}, i.e., S includes all the random
intercepts, we can use the fact that the standard relative weights method satisfies the
inclusion criteria to get that r (S)j > 0. Further, R (S) is simply a rescaling of r (S) which
means that R (S)j > 0. Thus, |S|! ((1 + q)− |S| − 1)!R(S)j > 0 and since all the other
terms of the sum in equation (11) are assumed to be non-negative we get that RI(j) > 0.

Inclusion is satisfied for random intercepts because RI(p+1), RI(p+2), . . . , RI(p+ q) are
calculated using the same approach as in the LMG method, thus the same argument as in
Section 2.5.2 can be applied.

In addition to being able to handle random intercepts, the ERW method will also work for
categorical predictors, in contrast to the normal relative weights method. To get relative import-
ances for categorical predictors simply treat them the same as the random intercepts. Transform
the numerical predictors and then use the LMG approach to give a relative importance to each
categorical predictor as well as a joint share to the numerical predictors. The joint share can
then be distributed to each numerical predictor as described above.

Note that the ERW method is not a perfect approximation of the LMG method, as will be
discussed in Section 4 and Section 6, meaning that the ELMG method should still be preferred
for models with relatively few predictors. A comparison between the time needed to run the
methods will be shown in Section 5.

3.4 An illustrative example

To make the novel method more accessible to the reader, consider a simple case where there
are two fixed effects, X1, X2, and a random intercept, R1. To calculate the relative variable
importance of the predictors using the ERW method the steps will be as follows.

First, create new fixed effects which are uncorrelated, Z1 and Z2. Since the fixed effects are to
be kept together in one “block”, there are four possible sets of predictors: {}, {Z1, Z2}, {R1}
and {Z1, Z2, R1}. The relative variable importance given to R1 will be the mean increase in R2

when R1 is added to model, i.e.,

RI(R1) = 0.5
((
R2 ({R1})−R2 ({})

)
+
(
R2 ({Z1, Z2, R1})−R2 ({Z1, Z2})

))
.

To find the relative importance of the fixed effects, we need to consider the two subsets without
the fixed effects, i.e., {} and {R1}. Then, for each of these subsets, find the coefficients of Z1

and Z2 when they are added to the model and use their squared values to give an importance
to X1 and X2, denoted as (r1 (S) , r2 (S)), where S is the respective subset. These importances
then need to be scaled to the increase in R2 when Z1 and Z2 are added to the model such that
we get a proper decomposition, i.e.,

R (S) =
(r1 (S) , r2 (S))

r1 (S) + r2 (S)

[
R2 (S ∪ {Z1, Z2})−R2 (S)

]
.
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Predictor ELMG ERW
RI(R1) {}, {X1}, {X2}, {X1, X2} {}, {X1, X2}
RI(X1) {}, {X2}, {R1}, {X2, R1} {}, {R1}RI(X2) {}, {X1}, {R1}, {X1, R1}

Total subsets 12 4

Table 2: Comparison of the the number of subsets that need to be considered for the ELMG
method and the ERW method. Here there are two fixed effects, X1 and X2, and one random
intercept, R1.

Finally, the share given to the fixed effects is the mean of the R’s

(RI(X1), RI(X2)) = 0.5 (R ({}) +R ({R1})) .

Table 2 compares the number of subsets that need to be considered in this example for the
ELMG method and the ERW method. We see that there are many more subsets that need
to be considered for the ELMG method. The difference increases quickly when the number of
predictors in the model increases.
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4 Simulation study

We will do a simulation study to explore the properties of the ELMG and ERW methods. In the
simulation study we will compare the shares given to the predictors in random intercept models,
where we will vary the coefficients and the correlation structure of the fixed effects. The data
will therefore be of the form

y = β0 +Xβ +Ru+ ϵ ,

where X is a n × p design matrix containing the fixed effects, β is a p vector containing the
coefficients of the fixed effects, R =

[
R1 R2 . . . Rm

]
is a n × (l1 + l2 + · · · + lm) matrix,

where Ri is a n× li matrix containing the dummy encoding of the clusters of random intercept
i. Further, u is a (l1 + l2 + · · · + lm) vector containing the coefficients for each level of random
intercepts with distribution

u ∼ N

0,


σ2
1Il1 0 . . . 0
0 σ2

2Il2 . . . 0
...

. . .

0 0 . . . σ2
mIlm


 ,

where σ1, σ2, . . . , σm are the variances of the m random intercepts and ϵ a n vector which is the
error term with distribution ϵ ∼ N

(
0, σ2

ϵ In
)
. Details regarding how the data was technically

sampled can be found in Appendix C.

If all the predictors in the model, both fixed effects and random intercepts, are pairwise inde-
pendent of each other, it is possible to calculate the theoretical correct decomposition of the
model R2 by using that the variance of y will be

Var (y) =

p∑
i=1

β2
i +

q∑
j=1

σ2
j + σ2

ϵ .

Then, the proportion of variance in the response explained by each fixed effect is

β2
i

Var (y)

for i ∈ {1, 2, . . . , p} and the proportion explained by each random intercept is

σ2
j

Var (y)

for j ∈ {1, 2, . . . , q}. The proportions can be calculated using the parameters used to simulate
the data. The theoretical correct decompositions can be used to examine the performance of the
ELMG and ERW methods.

The shares given by the ELMG and ERW methods are compared using violin plots, which can
be thought of as estimated density curves which are rotated such that they are vertical and then
mirrored over their vertical axis. The width of the “violin” shows how many observations were
observed in the corresponding area. The three horizontal lines inside each “violin” show, from
top to bottom, the 90%, 50% and 10% quantile respectively.
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Figure 1: Violin plots showing decompositions of the ELMG method and the ERW method
based on 200 simulations. The predictors x1, x2 and x3 are fixed effects while group1 and
group2 are random intercepts. The horizontal lines inside each “violin” show, from top to
bottom, the 90%, 50% and 10% quantile respectively. The random intercepts have variance
σ2
1 = σ2

2 = 5. a. Fixed effect have coefficients β = (1, 1, 1)
T

and are pairwise independent.

b. Fixed effect have coefficients β = (1, 2, 3)
T

and covariances Cov (x1, x2) = Cov (x1, x3) =

Cov (x2, x3) = 0.5. c. Fixed effect have coefficients β = (1, 2, 3)
T
and covariances Cov (x1, x2) =

−0.2 and Cov (x1, x3) = Cov (x2, x3) = 0.5. The green and purple horizontal line in a. shows
the theoretically correct share for the fixed effects and random intercepts respectively.
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Figure 1 shows violin plots representing the distribution of the decompositions of three fixed
effects and two random intercepts in 200 simulated datasets. They differ in the coefficients and
covariances of the fixed effects. In Figure 1a the fixed effects have coefficients β = (1, 1, 1)

T
and

are all pairwise independent, i.e., Cov (x1, x2) = Cov (x1, x3) = Cov (x2, x3) = 0. In Figures

1b and c the fixed effects have coefficients β = (1, 2, 3)
T

and the covariances in Figure 1b
are Cov (x1, x2) = Cov (x1, x3) = Cov (x2, x3) = 0.5 while the covariances in Figure 1c are
Cov (x1, x2) = −0.2 and Cov (x1, x3) = Cov (x2, x3) = 0.5. Since all the predictors are pairwise
independent in Figure 1a the theoretical contributions of each predictor are shown as horizontal
lines. Figures 1b and c do not have these lines, since the theoretical contributions are challenging
to calculate when the coefficients of the fixed effects vary and the fixed effects are not independent.

We can see that the median of the decompositions on the simulated data of the fixed effects are
slightly larger than the theoretical proportions explained by the fixed effects and shown by the
horizontal green line (Figure 1a). Similarly, the median of the decompositions on the simulated
data of the random intercepts are slightly smaller than the theoretical proportions explained by
the random and shown by the horizontal purple line.

Generally, the “violins” of the ELMG and ERW methods are very similar indicating that the
ERW method is a good computationally efficient approximation of the ELMG method. There
are some differences, however, especially in Figures 1b and c. The two figures are created from
simulated data using the same parameters except for the covariance between X1 and X2, in
Figure 1b Cov (x1, x2) = 0.5 while in Figure 1c Cov (x1, x2) = −0.2. We see that in Figure 1b
the ELMG method and the ERW method gives almost identical decompositions. In Figure 1c,
however, the ERW method gives slightly larger shares to x1 and x2 than the ELMG method,
while the ERW method gives a slightly larger share to x3 than the ELMG method does. This
shows that small changes in the covariance structure of the fixed effects can influence how similar
the two methods are.

To further explore how changes in the covariance structure of the fixed effects influence the simil-
arity between the ELMG method and the ERW method we calculated the difference between the
ELMG method and the ERW method when the covariance between x1 and x2 varies (Figure 2).
The data is simulated the same way as in Figure 1. There are three fixed effects and two random
intercepts, but only the shares given to the fixed effects are shown in Figure 2, as the shares
given to the random intercepts by the ELMG and ERW methods were almost identical.

The difference between the decompositions given by the two methods varies with Cov (x1, x2).
In the left column, where Cov (x2, x3) = 0.5, the two methods seem to give identical results
for Cov (x1, x2) ≈ 0.5. Otherwise, the difference between the two methods increases when
Cov (x1, x2) goes further away from 0.5. In the right column, where Cov (x2, x3) = −0.2, the
relationship between the two methods seems to vary for the three fixed effects. For x1, the two
methods meet at Cov (x1, x2) ≈ 0 and Cov (x1, x2) ≈ −0.75, with the difference increasing as the
distance from those two points grow. When looking at x2, the two methods seem to agree only at
Cov (x1, x2) ≈ 0 while for x3, the two methods meet at Cov (x1, x2) ≈ −0.4. The largest differ-
ence between the two methods seems to be for x1 when Cov (x1, x2) = 0.7, where the difference
is ∼ 0.06.

The lines have 95% confidence intervals around them, but these intervals are very tight, it’s
clearest in the lower right panel for Cov (x1, x2) = −0.4. This shows that the shares given to the
fixed effects are robust with regard to small changes in the data.

The difference between the theoretical proportion of y’s variance explained by the predictors and
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Figure 2: Difference between the ELMG method and the ERW method when the covariance
between x1 and x2 varies. Cov (x1, x3) = 0.5. In the left column Cov (x2, x3) = 0.5 while in the
right column Cov (x2, x3) = −0.2. In the left column the covariance between x1 and x2 varies
between -0.4 and 0.9 while in the right column the covariance between x1 and x2 varies between
-0.9 and 0.7. The reason for the difference is that a valid covariance matrix is needed. For each
covariance value 50 simulations are done with the following parameters. The coefficients of the
fixed effects are β = (1, 2, 3)

T
and the fixed effects have unit variance. The random intercepts

have variance σ2
1 = σ2

2 = 5. The lines shown are the mean of the 50 simulations, while the gray
area around shows a 95% confidence interval.
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Proper decomposition Non-negativity Inclusion
The LMG method X X X

The relative weights method X X X
The ELMG method X X∗ X∗

The ERW method X X∗ X∗

Table 3: Overview of which of the three criteria listed in Section 2.4 the different methods
considered in this thesis satisfy. The X∗ means that the method usually satisfies the criteria in
practice, however the fact that it is possible, for random intercept models, for R2 (S1) > R2 (S2)
when S1 ⊆ S2 means that it is theoretically possible for the criteria to be violated.

the calculated decompositions in Figure 1a is due to LMMs imposing a shrinkage effect on the
random intercepts. The shrinkage effect causes the estimated coefficients of each level of the
random intercept to be closer to zero than they would otherwise be, which causes the estimated
variance of each random intercept to be slightly smaller than the data suggests. Thus, the shares
given to the random intercepts are slightly decreased. Since both the ELMG method and the
ERW method satisfy the proper decomposition criteria, this causes the share given to the fixed
effects to increase by the same amount. The shrinkage effect is a known property of LMMs, see
e.g., Clark and Linzer (2015) or Fahrmeir et al. (2013, Page 355). When decomposing the model
R2 there are two possible approaches regarding this shrinkage, try to explain the relationship
of the data or try to explain the properties of the model. Since relative variable importance
is meant as a tool to help interpret models, the choice was made to focus on explaining the
properties of the model. The fact that the theoretical contribution of the predictors and the
decompositions do not exactly match is therefore expected and desired. The difference between
the theoretical contributions and the decompositions thus means that the shrinkage in LMMs is
taken into account.

Simulations have shown that, for random intercept models, it is possible for the R2 of a model
to decrease when adding a predictor. This happened when data was simulated using the same
parameters as in Figure 1b. To make it happen, first a model, model1, was fitted with the three
fixed effects and one of the random intercepts. Then, a second model, model2, was fitted with
the same random intercept as a categorical predictor in addition to the predictors in model1, i.e.,
the random intercept was in model2 both as a random intercept and as a categorical predictor.
For some simulations of the data, the R2 of model1 was larger than the R2 of model2. Thus, it
is theoretically possible for the ELMG method and ERW method to violate the non-negativity
and inclusion criteria, as the proofs that the criteria are valid rely on the fact that the model R2

can not decrease when adding a predictor to the model. However, it is not likely for the criteria
to be violated in practice, for two reasons. First, it is not likely that someone will add the same
predictor as both a random intercept and a categorical predictor in the same model. Second, even
if the same predictor was added as both a random intercept and as a categorical predictor, the
R2 decreasing only happens rarely. The R2 only decreased in ∼ 5% of the simulations. Taking
the simulations into account, Table 3 shows which of the criteria outlined in Section 2.4 the LMG
method, the relative weights method, the ELMG method and the ERW method satisfy.
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5 Basketball example

Value Description
player name Name of player (categorical)
age Age of player (years) (numerical)
player height Height of player (cm) (numerical)
player weight Weight of player (kg) (numerical)
college Name of the college the player attended (categorical)
country Country player was born in (categorical)
draft round The draft round the player was picked (categorical)
draft number The number at which the player was picked in his draft round (categorical)
gp Number of games played in the season (numerical)
pts Average number of points scored in a game (numerical)
reb Average number of rebounds grabbed in a game (numerical)
ast Average number of assists in a game (numerical)
net rating Team’s point differential per 100 possessions while the player is on the court

(numerical)
oreb pct Percentage of available offensive rebounds the player grabbed while he was

on the floor (numerical)
dreb pct Percentage of available defensive rebounds the player grabbed while he was

on the floor (numerical)
usg pct Percentage of team plays used by the player while he was on the floor (nu-

merical)
ts pct A shooting percentage that factors in the value of three-point field goals and

free throws in addition to conventional two-point field goals (numerical)
ast pct Percentage of teammate field goals the player assisted while he was on the

floor (numerical)
season NBA season (categorical)

Table 4: Description of the variables in the example data set about basketball.

To illustrate the ERW method an example on real data will be shown. The data is about player-
statistics in basketball, compiled by Cirtautas (2022) and sourced from NBA (2022). There are
11700 observations and 21 variables, described in Table 4. A model is fitted with the average
number of points scored in a game, pts, as the response, with all other variables as predictors.
There has been no attempt at creating a good model, as it is only for illustration purposes. The
only transformation done on the data is to standardize and center all numerical variables, which
is done to make it possible to compare standardized coefficients with other relative importance
methods. All categorical predictors are added to the model as random intercepts.

Table 5 shows the coefficient, squared coefficient, p-value and relative importance from the ERW
method of each numerical predictor in the created model. The p-values are difficult to calculate
for random intercept models, as it is not obvious how many degrees of freedom to use for the
t-values when testing the null-hypothesis that the coefficients are equal to 0. A conservative
estimate of the degrees of freedom, however, can be acquired by taking the number of observations
and then subtracting the number of estimated values in the model, i.e., one coefficient for each
numeric fixed effect, a variance estimate for each random intercept and one coefficient for each
level of the random intercepts and categorical predictors. A random intercept model will generally
have more degrees of freedom than this, since it will not “use” a degree of freedom for each level
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β̂ β̂2 p RI
usg pct 0.309 0.096 < 0.001 0.146
ast pct -0.199 0.040 < 0.001 0.098
player height 0.009 < 0.001 0.170 0.093
reb 0.513 0.263 < 0.001 0.041
ast 0.473 0.224 < 0.001 0.036
player weight 0.001 < 0.001 0.441 0.028
ts pct 0.074 0.006 < 0.001 0.024
dreb pct -0.145 0.021 < 0.001 0.013
oreb pct -0.115 0.013 < 0.001 0.011
net rating 0.019 < 0.001 < 0.001 0.009
gp 0.051 0.003 < 0.001 0.004
age -0.010 < 0.001 0.002 0.001

Table 5: Coefficient, squared coefficient, t-value, p-value and the relative importance from the
ERW method of the numerical predictors in the created model of the basketball example data.
The predictors are shown in decreasing order of the relative importances.

σ̂ RI
player name 0.237 0.242
draft number 0.048 0.051

country 0.017 0.048
draft round 0.029 0.040

college 0.024 0.036
season 0.024 0.010

Table 6: Standard deviation and relative importance from the ERW method of the categorical
predictors in the created model of the basketball example data. The predictors are shown in
decreasing order of the relative importances.
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of each random intercept, because the regularization assumption imposes extra structure on the
model. The true p-values will therefore likely be slightly smaller than the ones shown in Table 5.
Table 6 shows the standard deviation and relative importance from the ERW method of each of
the random intercepts in the created model.

In Table 5 we can compare the information given by the coefficients in the model, the p-values
and the relative variable importances given by the ERW method when considering the numer-
ical predictors. Almost all of the predictors have a p-value which is less than 0.001, which is
normal when there are many observations in a data-set, since the many observations causes the
standard deviation of the coefficients to shrink, which causes the p-value to shrink. The squared
coefficients seem to agree with the p-values in the sense that the three numerical predictors
with the largest p-values are three of the four numerical predictors with the smallest squared
coefficients. The relative importances given by the ERW method, however, ranks the numerical
predictors differently. The two numerical predictors with the largest squared coefficients only
have the fourth and fifth largest relative importances. When looking at the random intercepts
in Table 6 we can see that the ranking of the random intercepts by the standard deviations and
the relative importances are mostly similar, with the exception of country which has the third
largest relative importance but the smallest standard deviation.

player height player weight
player height 1.000 0.827
player weight 0.827 1.000

age -0.012 0.052
gp -0.005 0.012
reb 0.422 0.437
ast -0.457 -0.387

net rating -0.009 0.001
oreb pct 0.591 0.604
dreb pct 0.615 0.608
usg pct -0.110 -0.072
ts pct 0.070 0.062
ast pct -0.626 -0.541

Table 7: Correlations between player height and player weight and the other numeric fixed
effects in the basketball example.

A good illustration of the difficulties of using p-values and squared coefficients to determine the
relative importance of correlated predictors is shown when looking at the predictors player height
and player weight. We can see that both player height and player weight have large p-values
and their squared coefficients are < 0.001, which could be interpreted as player height and
player weight being unimportant to the model and not containing much information about pts.
The relative variable importances of the two predictors are relatively large, however, third and
fifth largest respectively. The reason for this discrepancy is likely that the height and weight of a
player influences many other statistics which are used as predictors in the model. We can easily
imagine that a taller player performs better than a short player, for example. Table 7 shows that
player height and player weight are strongly correlated with the other numerical fixed effects,
which influences the coefficients of player height and player weight. The coefficients further
influences the p-values. If we look at a model where only player height and player weight are
included as predictors, the p-values are both < 0.001. This discrepancy is a good example of the
extra information given by the relative variable importance methods, which is not available from
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p-values and coefficients in the full model. Just looking at the full model where player height and
player weight have small coefficients and large p-values could easily lead to the conclusion that
player height and player weight do not contain any useful information to model the average
number of points scored in a game, but the relative variable importance gives more information.

An important detail to be aware of when using the ELMG and ERW methods (and also the
original LMG and relative weights methods), is that the relative variable importance given
to a predictor is dependent on the other predictors in the model. Here, player height and
player weight are strongly correlated, with a correlation of 0.827. The strong correlation means
that player height and player weight contain much of the same information, which the ERW
method distributes the credit for. Thus, if player weight were to be removed from the model
and the relative importances recalculated, then we would expect player height to get credit for
all the information it shared with player weight. When player weight was removed from the
model player height got a relative importance of 0.108, which is 0.015 more than in the full
model. When player weight is not in the model player height has a larger relative importance
than ast pct, while it had less when player weight was in the model. When looking at relat-
ive importances we should therefore think about the property we are interested in, for example
physical characteristics in this case for player height and player weight, and sum the relative
importances for the predictors in that property. The sum of these related shares should give a
more robust importance for the property we are interested in.

To get the relative importances, the accompanied R-package is used. This example is a good
illustration of the difference in computational complexity between the ELMG method and the
ERW method. The ELMG method ran for over 16 hours before it was canceled, while the ERW
method finished in just 2 minutes. This is expected, as the ELMG method has to consider
18 · 217 = 2359296 subsets while the ERW method only has to consider 7 · 26 = 448. This means
that a very rough estimate of the time it would take to complete the calculations of the ELMG
method is 2359296 subsets

448 subsets · 2 minutes
60minutes

hour

≈ 175 hours.
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6 Discussion and conclusion

6.1 What is accomplished?

In this thesis we have looked at how to extend the concept of relative variable importance in
linear regression to random intercept models. This extension has been accomplished by extending
the LMG method, which is quite computationally demanding, and the relative weights method,
which is not as accurate but more efficient. Extending the LMG and relative weights methods has
required the use of recent developments in expanding the R2 concept to random intercept models
before decomposing the R2 of the model such that each predictor is given a share (Nakagawa
and Schielzeth, 2013; Johnson, 2014). We have seen through a simulation study that the shares
given to the random intercepts are very similar for the LMG and relative weights methods. The
two methods vary slightly for the shares of the fixed effects, however. When the fixed effects are
pairwise independent, the two methods give very similar shares, but when the fixed effects have
more complex correlation structures, the two methods differ more. Finally, we have seen that
the main result of the thesis, the ERW method, gives useful results, by looking at a simulation
study and a real world data set.

The ELMG and ERW methods are new tools that researchers can use when interpreting random
intercept models. Currently, it can be difficult to understand the properties of statistical models,
where the p-value, which is probably the most used statistic when interpreting models, is difficult
to understand and prone to misinterpretation. The ELMG and ERW methods are hopefully
simple enough to interpret, so that less misinterpretations occur when the methods are used in
practice. Importantly, the sum of the shares given to the predictors in the model is the model R2,
which means that the shares can simply be interpreted as the predictor’s respective contribution
to the model R2. The ELMG method satisfies the goals for this thesis, that is, create a relative
variable importance measure for random intercept models that is easy to interpret and which
gives useful information about the model. It decomposes the R2 of the model, which is an
intuitive value for most scientists, and gives a share to each predictor which can be interpreted
as that predictors contribution to the model R2.

Unfortunately, the ELMG method is quite computationally demanding, which means that for
many applications the approximation given by the less computationally demanding ERWmethod
will need to be used instead. The ERW method is much more efficient, and will usually give
similar results as the ELMG method. The ERW method can be sensitive to the correlation
structure of the data however, where some correlation structures might cause the ERW method
to give less accurate results. Thus, while the shares given by the ERW method sum to the
model R2, and are therefore easy to interpret, the sensitivity of the method to the correlations
between the fixed effects means that the approximations given by the ERW method might not
be as easy to trust as the ELMG method and as hoped. The fact that the correlation structure
of the predictors in the model affects the calculated shares in a not understood way means that
it can be difficult to trust the results. Luckily, in the simulation study the difference between
the ELMG and ERW methods was relatively small, the largest absolute difference was ∼ 0.06
(0.235 - 0.3), but it can be enough to slightly change the results. Some care should therefore
be used when using the shares given by the ERW method and if computationally feasible, the
ELMG method should be preferred.

As a step in making the proposed ELMG and ERW methods easy to use, effort has been made
in creating the R-package decompR2, which is in the process of being submitted to CRAN.
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decompR2 makes it simple to use the ELMG and ERW methods, by simply requiring a fitted
model as input to calculate the relative importances of the predictors in the model. Making
it easy for the user to calculate the relative importance of predictors in created models will
hopefully make it more likely for relative importance measures to be used in research as an
additional tool to help in interpreting modeling output. The source code of decompR2 can be
found at https://gitlab.com/elonus/decompr2 and in Appendix B while an accompanying vignette
showing how to use decompR2 can be found in Appendix A.

Unfortunately, it is likely that any statistic used to interpret models and results will develop the
same malpractice as the p-value, where a cut-off value is chosen, and if the statistic is smaller
(or larger in some cases) than this limit the predictor is considered “significant”, and if not, the
predictor is not considered significant. Such a practice is difficult to prevent through technical or
scientific means, since it stems from people wanting simple rules they can use in practice. Instead,
better education is needed to prevent researchers from using such simple rules and instead use
more nuanced approaches and care when interpreting results.

Finally, both Chevan and Sutherland (1991) and Grömping (2007) have warned that relative
importance measures give more limited information than we might hope. First, as with other
statistics calculated when interpreting models, if the theoretical assumptions of the model is not
fulfilled by the data, then the calculated statistics will not be correct, and can give misleading
values. Relative variable importance and other statistics rely on the model being properly spe-
cified and can otherwise give incorrect information. Second, if the relative importance measures
are to be used to prioritize intervention to influence the response, care should be taken, since an
intervention might not only influence the predictor but also the correlation structure among the
predictor which can change the relationships in the data. To plan interventions and understand
causality, theory-driven explanatory models will give more robust information. A good model
should be based on a good understanding of the data, calculated statistics like relative variable
importance is no substitute for domain knowledge.

6.2 Further work

The work done in this thesis can be expanded in several ways. An obvious next step that would
be useful is to further explore when the ERWmethod does not give the same results as the ELMG
method. Having a better understanding of the estimates given by the ERW method would let
researchers be able to use the ERW method with more confidence in the cases that it gives more
correct results and avoid using the ERW method when it does not give correct results.

Another possibility is to work on further extending the ELMG and ERW methods to GLMMs
(Figure 3). The first step in such an expansion is creating relative variable importance measures
that calculate importances for general LMMs, i.e., models with random slopes and interactions
between predictors. Expanding the ELMG method to handle interactions has the challenge that
it makes no sense to have a model including the interaction between two predictors if the model
does not contain the individual predictors. That means that it is not possible to simply consider
all subsets of predictors as is done now. A solution to give a relative importance to an interaction
could be to only consider the increase in R2 when looking at the subsets including the individual
predictors of the interaction and not consider the subsets without the individual predictors of
the interaction. This approach is used in the relaimpo package (Grömping, 2006). Random
slopes have a similar problem, as random slopes can be interpreted as the interaction between a
numerical fixed effect and a random intercept. It does not make sense to have a random slope
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Figure 3: How to work towards relative variable importance for GLMMS.

in a model if the fixed effect and random intercept which are a part of the random slope are not
in the model. A similar solution might work as for interactions, where the increase in R2 when
adding the random slope to the model is only considered when the corresponding fixed effect
and random intercept are already in the model.

Before looking at GLMMs it would be useful to understand how to work with relative vari-
able importances for general GLMs. Chevan and Sutherland (1991) worked on generalizing the
concept behind the LMG method to GLMs, but since there was no good definition of R2 for
GLMs at that time, they instead decomposed a chi-square statistic. Decomposing the R2 has
the advantage of being easier to interpret, so we believe that it would be useful to take a new
look at this problem by using the work done by Nakagawa and Schielzeth (2013) and Johnson
(2014) on expanding the R2 concept to GLMs. Challenges in expanding the LMG method to
GLMs include the fact that there are different scales that can be used to measure the variance in
the model. It is possible to either measure variance on the scale of the response or it is possible
to measure variance on the scale of the linear predictor, i.e., before the inverse link function is
used. After approaches that work for LMMs and GLMs are created, it is hopefully possible to
combine these approaches to get an approach that works for GLMMs.

A different aspect that would be interesting to explore is the uncertainty in the shares given to
each predictor. A straightforward way to do this would be through bootstrapping, but that can
quickly become computationally expensive (Efron, 1992). In the example using the basketball
data in Section 5 the ERW method takes roughly 2 minutes to run. A bootstrapping procedure
with 100 iterations would therefore take roughly 2 minutes · 100 ≈ 3 hours. A more theoretical
approach of considering the distribution of the shares and then creating confidence intervals
would therefore be useful. Finding the distribution could be difficult, however, since that would
require understanding the statistical properties of the conditional R2 in equation (6), which is
not obvious.

6.3 Conclusion

We hope that the work done in this thesis will be a useful tool when interpreting linear random
intercept models. To prevent the problems caused by misinterpreting the p-value when inter-
preting models we believe a simple to use and easy to interpret tool, like decompR2, is helpful.
Hopefully decompR2 will cause some researchers to diversify the techniques they use in model
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interpretation which will give more robust results.
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A Vignette

A.1 Relative variable importance using R2

A.1.1 Background

Relative variable importance is the concept of determining how important each predictor is to
a model, or similarly, how much information there is in each predictor about the response in
the model. There are several approaches to calculate such importances, where likely the most
common, but erroneous, way is to use the p-value of the hypothesis test which is testing that the
coefficient of a predictor is 0. This is not a valid method to determine the amount of information
in a predictor, since the p-value only looks for an effect, it does not take the size of the effect
into account.

Some other common approaches are looking at the squared coefficients of the standardized pre-
dictors and the confidence intervals of the coefficients of the predictors. Both of these are useful
and make sense if the predictors are uncorrelated. If the predictors are correlated, however, it is
not clear how to interpret these metrics because the size of the coefficient no longer necessarily
indicates the amount of information explained by the predictor. If there are two strongly cor-
related preditors in the model which contain information about the response, then one of the
predictors might get a larger coefficient than the other, even if they contain the same information
about the response (Grömping, 2007).

Methods which handle correlated predictors are therefore needed. Basing such relative variable
importance methods on the coefficient of determination (R2) is common because of it’s simple
interpretation. The R2 of the model is the proportion of variance in the response explained
by the model. If a relative variable importance method manages to decompose the R2 of the
model to the predictors, then the respective importances can be interpreted as the proportion of
variance in the response explained by the respective predictor.

Two methods used for linear regression models are the LMG method and the relative weights
method (Lindeman et al., 1980; Johnson, 2000). The LMG method works by looking at all the
permutations of the predictors, and then considering the mean increase in R2 when the predictor
of interest is added to the model. The relative weights method instead takes advantage of the
fact that the squared coefficients are meaningful for uncorrelated predictors. Therefore, the data
is transformed such that the columns are uncorrelated, then the squared coefficients for these
uncorrelated columns are calculated, before the coefficients are distributed back to the original
predictors by doing the reverse transformation. Because of the transformation of the data the
relative weights method only works for numerical predictors. The LMG method gives good
results but is computationally expensive, so the more computationally efficient relative weights
method is often used as an approximation. These methods are implemented in other packages
as well, such as the relaimpo package. The new development in this package is an extension of
the LMG method and the relative weights method to linear random intercept models.

The extended LMG method works by simply treating the random intercepts the same as the
predictors of a normal linear regression model, i.e., look at the mean increase in R2 when each
predictor is added to the model. The extended relative weights method works by combining
the LMG method and the relative weights method. First, transform the numerical fixed effects
the same way as in normal relative weights. Then, when doing the permutations, let either all
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the transformed fixed effects be in the model or none of them. This reduces the computational
complexity since there are many fewer permutation to consider. To get the importance of a
random intercept or a categorical predictor, simply do the same as in the LMG method, except
that the transformed fixed effects are always together, either all in the model or not. For the
numerical fixed effects, consider all permutations and add all the transformed fixed effects to
the models together. Then, using the squared coefficients of the transformed fixed effects in the
model, distribute the increase in R2 to each transformed fixed effect. Then, transform these
shares back to the original numerical fixed effect using the same transformation as in normal
relative weights. Finally, take the mean of these shares to get an importance for each numerical
fixed effect.

Some nice properties of the above methods based on R2 is that

1. The sum of the importances of the predictors of a model will always sum to the R2 of the
model.

2. Each importance is always non-negative.

3. If a predictor has an effect on the model, i.e., a fixed effect has a coefficient not equal to
zero or a random intercept has variance larger than zero, then that predictor will have an
importance larger than zero.

which makes the importances easier to interpret as the amount of R2 contributed by the predictor
to the model.

A.1.2 Limitations

Currently, decompR2 has some limitations:

1. It can only handle random intercepts, not random slopes.

2. It can not handle interactions between predictors.

3. It can not handle GLMs

And some bugs which are being worked on:

1. It can not handle terms in the model formula which expand into several predictors in the
model, like poly().
As a workaround, instead add the terms manually to the formula, e.g., use y ∼ x1 + I(x1^2)

instead of y ∼ poly(x1, 2).

Additionaly, both Chevan and Sutherland (1991) and Grömping (2007) have warned that relative
importance measures give more limited information than we might hope. First, as with other
statistics calculated when interpreting models, if the theoretical assumptions of the model is not
fulfilled by the data, then the calculated statistics will not be correct, and can give misleading
values. Relative variable importance and other statistics rely the model being properly specified
and can otherwise give incorrect information. Second, if the relative importance measures are
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to be used to prioritize intervention to influence the response, care should be taken, since an
intervention might not only influence the predictor but also the correlation structure among the
predictor which can change the relationships in the data. To plan interventions and understand
causality, theory-driven explanatory models will give more robust information. A good model
should be based on a good understanding of the data, calculated statistics like relative variable
importance is no substitute for domain knowledge.

A.1.3 Warnings about convergence

There might be some warnings about models failing to converge when there are random intercepts
in the model. This likely comes from the fact that for some combinations of predictors there is
not enough difference between the different clusters, which gives lme4::lmer() problems when
fitting. This failed convergence, luckily, only seems to happen for few of the fitted models, which
means that it should not affect the results too much, since the result is an average of many
values.

A.2 How to use decompR2

The only function needed to calculate the relative importances of the predictors of a model
is decompR2(). This function takes as input either a model output, from either stats::lm()

or lme4::lmer(), or a model formula along with the data to fit the model. Additionally, the
method to be used to calculate the relative importances can be provided, although if no method
is given, then the extended LMG method will be used if there are less than 15 numerical fixed
effects and the extended relative weights method otherwise. This is to make the calculations not
take too long.

Since decompR2 is not on CRAN yet, it can not be installed with install.packages(decompR2),
but devtools::install git() must be used instead. This installs the latest version of the
package on GitLab.

devtools::install_git("https://gitlab.com/elonus/decompr2.git")

library(decompR2)

A.2.1 Simple example

# Load other packages

library(lme4)

We will show a simple example illustrating how to use decompR2(). The use of relative variable
importance will be illustrated on a data set containing player statistics in the National Basketball
Association (NBA). The data set contains information on physical characteristics and game
statistics of each player in each season from 1996-1997 until 2020-2021. The goal of this example
will be to determine the proportion of variance in the average number of points scored in a game
that is explained by the physical characteristics of a player. The data is included in the decompR2
package and can be loaded by
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data(basketball)

To not make the example too complex, we will only use a subset of the variables in the data set,
where we will standardize the numerical variables. The physical characteristics included are age,
player height and player weight.

basketball <- basketball[,c("pts", "age", "player_height", "player_weight",

"gp", "ast_pct", "season", "player_name")]

basketball[,c("pts", "age", "player_height",

"player_weight", "gp", "ast_pct")] <-

scale(basketball[,c("pts", "age", "player_height",

"player_weight", "gp", "ast_pct")])

The descriptions of the variables we will consider are shown in Table 8.

Variable Description
pts Average number of points scored in a game (the response)
age Age of player (years)
player height Height of player (cm)
player weight Weight of player (kg)
gp Number of games played in the season
ast pct Percentage of teammate field goals the player assisted while he was on the

floor
season NBA season
player name Name of player

Table 8: Description of the variables in the example data set about basketball.

Figure 4 shows plots with the predictors on the x-axes and pts on the y-axis.

We can see that age seems to have a quadratic relationship with pts, so we will use age2 instead.

basketball$agesq <- scale(basketball$age^2)

The correlations between the numerical predictors are

cor(basketball[,c("pts", "agesq", "player_height",

"player_weight", "gp", "ast_pct")])

## pts agesq player_height player_weight gp

## pts 1.0000000 -0.1036971247 -0.060523999 -0.03065530 0.538366685

## agesq -0.1036971 1.0000000000 0.044034913 0.02808822 -0.039522394

## player_height -0.0605240 0.0440349135 1.000000000 0.82730131 -0.005329397

## player_weight -0.0306553 0.0280882156 0.827301314 1.00000000 0.012496076
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Figure 4: Relationship between the predictors and the response, pts.
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## gp 0.5383667 -0.0395223944 -0.005329397 0.01249608 1.000000000

## ast_pct 0.3302695 -0.0005073946 -0.625888234 -0.54090218 0.134809543

## ast_pct

## pts 0.3302694537

## agesq -0.0005073946

## player_height -0.6258882340

## player_weight -0.5409021831

## gp 0.1348095426

## ast_pct 1.0000000000

We see that gp, the number of games played by the player in the respective season, has a relatively
high correlation with pts, the average number of points scored in a game, where the correlation
is ∼ 0.54. This makes sense as we would expect the better players to play in more games. The
physical characteristics seem more weakly correlated with pts, with all of them having an absolute
correlation less than 0.07. There is a high correlation between player height and player weight,
however, which makes sense, as a taller person usually weighs more.

We create a random intercept model, where player name and season are included as random
intercepts. Having the name of the player as a random intercept allows us to correct for individual
skill.

m <- lme4::lmer(pts ~ agesq + player_height + player_weight + gp + ast_pct +

(1 | season) + (1 | player_name), data = basketball)

summary(m)

## Linear mixed model fit by REML ['lmerMod']

## Formula: pts ~ agesq + player_height + player_weight + gp + ast_pct +

## (1 | season) + (1 | player_name)

## Data: basketball

##

## REML criterion at convergence: 19874.4

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -4.6935 -0.5484 -0.0755 0.5174 5.4549

##

## Random effects:

## Groups Name Variance Std.Dev.

## player_name (Intercept) 0.341592 0.5845

## season (Intercept) 0.008464 0.0920

## Residual 0.216298 0.4651

## Number of obs: 11700, groups: player_name, 2333; season, 25

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) -0.179116 0.022987 -7.792

## agesq -0.234886 0.005828 -40.301

## player_height 0.122824 0.019807 6.201
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## player_weight 0.005146 0.017267 0.298

## gp 0.327940 0.005953 55.089

## ast_pct 0.265969 0.009166 29.017

##

## Correlation of Fixed Effects:

## (Intr) agesq plyr_h plyr_w gp

## agesq 0.025

## player_hght 0.002 -0.016

## player_wght 0.027 0.035 -0.697

## gp 0.090 0.150 -0.012 0.000

## ast_pct 0.045 0.101 0.253 0.012 -0.039

lme4::fixef(m)[-1]^2

## agesq player_height player_weight gp ast_pct

## 5.517163e-02 1.508563e-02 2.647727e-05 1.075449e-01 7.073934e-02

sum(lme4::fixef(m)[c("agesq", "player_height", "player_weight")]^2)

## [1] 0.07028373

We see that the sum of the squared standardized coefficients of the physical characteristics is
∼ 0.07. This indicates that the physical characteristics explain ∼ 7% of the variance in the
average number of points scored in a game.

The coefficients and squared coefficients gives information about the size of the effect each pre-
dictor has on pts, but they are hard to interpret because of pairwise correlations between the
predictors, especially between player height, player weight and ast pct. We therefore want
to use relative variable importance to get more robust information. We can do this by using
decompR2(). We simply input the model, m, and we get the relative importances as output.
Here we specify the method to use to illustrate.

d_auto <- decompR2::decompR2(m)

d_lmg <- decompR2::decompR2(m, method = "lmg")

d_rw <- decompR2::decompR2(m, method = "rw")

Equivalently we could have inputted the model formula and data like this

d_auto <- decompR2::decompR2(pts ~ agesq + player_height + player_weight + gp +

(1 | season) + (1 | player_name), data = basketball)

d_lmg <- decompR2::decompR2(pts ~ agesq + player_height + player_weight + gp +

(1 | season) + (1 | player_name), data = basketball,

method = "lmg")

d_rw <- decompR2::decompR2(pts ~ agesq + player_height + player_weight + gp +

(1 | season) + (1 | player_name), data = basketball,

method = "rw")
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# Decompositions from not inputting a method:

print(d_auto)

## agesq player_height player_weight gp

## 0.0516723424 0.0016505247 0.0004707879 0.1450274572

## (1 | season) (1 | player_name)

## 0.0143853853 0.5067433253

# LMG decompositions:

print(d_lmg)

## agesq player_height player_weight gp

## 0.0516723424 0.0016505247 0.0004707879 0.1450274572

## (1 | season) (1 | player_name)

## 0.0143853853 0.5067433253

# Relative weights decompositions:

print(d_rw)

## agesq player_height player_weight gp

## 0.0218178515 0.0016518269 0.0005092512 0.1758156137

## (1 | player_name) (1 | season)

## 0.5036053358 0.0165498126

We can see that in this case the decompositions from the LMG method are identical with the
decompositions from not specifying a method, which is because the number of numerical fixed
effects are only 4, which is less than 15. Thus, the LMG method is used by default.

The proportion explained by physical characteristics according to the LMG method is

sum(d_lmg[c("agesq", "player_height", "player_weight")])

## [1] 0.05379365

While the proportion explained by physical characteristics according to the relative weights
method is

sum(d_rw[c("agesq", "player_height", "player_weight")])

## [1] 0.02397893

We can see that the two methods disagree slightly, but they both agree that physical charac-
teristics does not seem to explain more than ∼ 5% of the average number of points scored in a
game. The name of the player, on the other hand, explains roughly 50%, which makes sense,
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since the name of the player is just a proxy for individual specific effects, such as the skill of the
player, which is likely the most important factor.

The fact that physical characteristics have such a small importance might be explained by the
fact that there is a large sampling bias, only professional players are included in the statistics. If
a short player plays professionally, where being tall is considered an advantage, then they likely
are exceptionally skilled or have other advantages that bridge the gap. If the basketball skills
of the whole population was analyzed then we would expect that physical characteristics would
play a larger role.
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B Implementation of the R-package

The decompR2 R-package can be installed and loaded by

devtools::install_git(https://gitlab.com/elonus/decompr2.git)

library(decompR2)

1 ##' @title Decompose the coefficient of determination (R^2)

2 ##'
3 ##' @description Decompose the coefficient of determination (R^2) of a linear

regression or linear random intercept model such that each predictor gets a

share of the R^2 of the model.

4 ##' This creates a measure of relative variable importance which can

be used , as a supplement to p-values , to interpret the model.

5 ##'
6 ##' @details Creates a decomposition of the R^2 of a model , i.e., distribute the

R^2 to the predictors of the model such that each predictor gets a share

corresponding to it's contribution to the model R^2. These shares are called

the relative variable importances of the predictors.

7 ##' The relative importances have the properties that they will always

sum to the model R^2 (proper decomposition), are always non -negative

(non -negativity) and if a predictor has a non -zero coefficient in the model

it will not get a zero share (inclusion).

8 ##' There are two methods currently implemented to perform the

decomposition , the LMG method and the relative weights method.

9 ##'
10 ##' The LMG method is the most accurate one , but also the most

computationally expensive. It is therefore the default method if there are

less than 15 fixed effects in the model.

11 ##' The LMG method works by looking at all permutations of the

predictors , i.e., all the orderings of the predictors. Then , fit models with

just the first predictor in the permutation , the first two predictors in the

permutation , the first three predictors in the permutation , and so on.

12 ##' For a specific predictor , it 's share is calculated by looking at the

increase in R^2 of the model when that predictor is added to the model. Then

take the mean of this increase when looking at all permutations of predictors.

13 ##'
14 ##' The relative weights method is not as accurate , but much more

computationally efficient. It is therefore the default method when there are

more than 15 fixed effects in the model.

15 ##' The relative weights method works by first performing a linear

transforming on the numeric fixed effects such that new numeric fixed effects

are calculated which are uncorrelated.

16 ##' In a model with only uncorrelated standardized numeric fixed effects

the relative importance of each predictor is simply it 's squared coefficient.

17 ##' If there are categorical predictors or random intercepts in the

model it is more complicated. Then a similar approach is used as in the LMG

method , where the mean increase in R^2 is considered for each predictor , but

now the transformed numerical fixed effects are considered as one "block"

which is either all in the model or none are in the model.

18 ##' The categorical predictors and random intercepts get shares the same

way is in the LMG method , the mean increase in model R^2 when they are added

to the model.

19 ##' For the numerical fixed effect , look at the mean increase in R^2

when all the numerical fixed effects are added to the model. Then use the

squared coefficients to distribute this increase to each numerical fixed

effect.

20 ##' Having the numerical fixed effects as a "block" reduces the number

of possible permutations dramatically , thus reducing the computational

complexity.
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21 ##'
22 ##' There might be some warnings about models failing to converge when

there are random intercepts in the model. This likely comes from the fact

that for some combinations of predictors there is not enough difference

between the different clusters , which gives `lme4::lmer()` problems when

fitting. This failed convergence , luckily , only seems to happen for few of

the fitted models , which means that it should not affect the results too

much , since the result is an average of many values.

23 ##'
24 ##' @param obj is a model object from either `stats::lm ` or `lme4::lmer `
25 ##'
26 ##' OR

27 ##'
28 ##' a formula , e.g., y ~ x1 + x2 + (1 | group)

29 ##' @param data only if `obj ` is a formula. data -frame , contains data used to fit

the model. All variables referred to in the formula in `obj ` need to be

present as columns in 'data '.
30 ##' The random intercepts should have it 's column name on the form

"*name*", not "(1 | *name*)".

31 ##' @param subset only if `obj ` is a formula. Is passed to `stats::model.frame `
to subset data. A specification of the rows to be used: defaults to all rows.

32 ##' This can be any valid indexing vector (see [.data.frame)

33 ##' for the rows of `data ` or if that is not supplied , a data

34 ##' frame made up of the variables used in formula. For more

details see `?stats::model.frame `
35 ##' @param na.action only if `obj ` is a formula. Is passed to

`stats:: model.frame `. Is how `NA `s are treated. The default is first , any

36 ##' `na.action ` attribute of `data `, second a `na.action ` setting

37 ##' of options , and third na.fail if that is unset. The

38 ##' `factory -fresh ` default is na.omit. Another possible value

39 ##' is `NULL `. For mode details see `?stats::model.frame `
40 ##' @param weights only if `obj ` is a formula. Is passed to `stats::lm ` or

`lme4::lmer `, depending on if there are random intercepts in the formula. See

`?stats::lm` and `?lme4::lmer ` for more details.

41 ##' @param method is a character string saying which method to use to decompose

R^2.

42 ##' Available methods are the LMG method ("lmg") and the relative weights ("rw")

method. The default is to use the LMG method if there are less than 15 fixed

effects in the model and otherwise use the relative weights method , as it is

more computationally efficient.

43 ##' @param ... currently not used , only here to satisfy S3 generic requirements

44 ##' @return Named vector containing the relative variable importances of the

predictors of the specified model.

45 ##' @author Andreas Matre

46 ##' @aliases decompR2.formula decompR2.lm decompR2.lmerMod

47 ##'
48 ##' @examples

49 ##' data(cake , package = "lme4")

50 ##'
51 ##' decompR2(angle ~ temp + (1 | recipe) + (1 | replicate), data = cake)

52 ##' decompR2(angle ~ temp + (1 | recipe) + (1 | replicate), data = cake , method =

"rw")

53 ##'
54 ##' m <- lme4::lmer(angle ~ temp + (1 | recipe) + (1 | replicate), data = cake)

55 ##' decompR2(m)

56 ##'
57 ##' @export

58 decompR2 <- function(obj , ...) {

59 UseMethod("decompR2", obj)

60 }
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1 ##' @rdname decompR2

2 ##' @export

3 decompR2.lm <- function(obj ,

4 method = NULL ,

5 ...) {

6 f <- stats:: formula(obj)

7 data <- stats::model.frame(obj)

8 args <- list(formula = f, data = data , method = method)

9 if(!is.null(stats :: weights(obj))) {

10 args[["weights"]] <- stats:: weights(obj)

11 }

12 return(do.call(decompR2_internal , args))

13 #return(decompR2.formula(obj = f, data = data , weights = weights , na.action =

na.action , method = method))

14 }
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1 ##' @rdname decompR2

2 ##' @export

3 decompR2.lmerMod <- function(obj ,

4 method = NULL ,

5 ...) {

6 if(!identical(stats:: family(obj)$family , "gaussian") ||

!identical(stats:: family(obj)$link , "identity")) {

7 stop("'decompR2 ' only supports LMMs , i.e., the family of the model must be

gaussian and the link function must be the identity.")

8 }

9 if(any(!sapply(obj@cnms , function(x) identical(x, "(Intercept)")))) {

10 stop("'decompR2 ' only supports random intercepts as random effects")

11 }

12

13 f <- stats:: formula(obj)

14 data <- stats::model.frame(obj)

15 weights <- stats:: weights(obj) # If there are no weights the default for

`lme4::lmer ` is a vector of 1's, so don 't need to check if it exists as for

`lm ` objects.

16 return(decompR2_internal(formula = f, data = data , weights = weights , method =

method))

17 }

54



1 ##' @rdname decompR2

2 ##' @export

3 decompR2.formula <- function(obj ,

4 data ,

5 subset ,

6 weights ,

7 na.action ,

8 method = NULL ,

9 ...) {

10 t <- stats:: terms(obj , data = data)

11

12 response <- as.character(attr(t, "variables")[attr(t, "response") + 1])

13 predictors <- attr(t, "term.labels")

14 fixed_effects <- predictors[!grepl(pattern = '|', x = predictors , fixed = TRUE)]

15 if(any(grepl(pattern = '|', x = predictors , fixed = TRUE))) { # Check for

random effects

16 lf <- lme4:: lFormula(obj , data = data)

17

18 # Check for any random slopes

19 if(any(!sapply(lf$reTrms$cnms , function(x) identical(x, "(Intercept)")))) {

20 stop("'decompR2 ' only supports random intercepts as random effects")

21 }

22

23 random_intercept_cols <- names(lf$reTrms$cnms)
24 } else {

25 random_intercept_cols <- c()

26 }

27

28

29 # Use model.frame to do subsets and remove NA's according to na.action and

create columns for the transformed variables in the formula

30 model.frame_args <- list()

31 model.frame_args$formula <- stats::as.formula(paste0(response , " ~ ",

paste0(c(fixed_effects , random_intercept_cols), collapse = " + ")))

32 model.frame_args$data <- data

33 if(!missing(na.action)) {

34 model.frame_args$na.action <- na.action

35 }

36 if(!missing(subset)) {

37 model.frame_args$subset <- subset

38 }

39

40 data <- do.call(stats::model.frame , model.frame_args)

41

42 #browser ()

43 if(missing(weights)) {

44 weights <- NULL

45 }

46

47 return(decompR2_internal(formula = obj , data = data ,

48 method = method , weights = weights))

49 }
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1 ##' @title Decompose the coefficient of determination (R^2)

2 ##'
3 ##' @description Decompose the coefficient of determination (R^2) of the model

with `response ` as response and `predictors ` as predictors , such that each

predictor gets a share of the R^2 of the model.

4 ##' This creates a measure of relative variable importance which can be used , in

addition to P-values , to interpret the model.

5 ##' The relative importances have the properties that they will always sum to the

model R^2 (proper decomposition), are always non -negative (non -negativity)

and if a predictor has a non -zero coefficient in the model it will not get a

zero share (inclusion).

6 ##'
7 ##' @param formula is a formula specifying the model

8 ##' @param data data -frame , contains data used to fit the model. All data

referred to in 'response ' and 'predictors ' need to be present in 'data '.
9 ##' The random intercepts should have it 's column name on the form "*name*", not

"(1 | *name*)".

10 ##' @param weights weights vector passed to `stats::lm ` and `lme4::lmer ` when

fitting models.

11 ##' @param method Character string saying which method to use to decompose R^2.

12 ##' Available methods are the LMG method ("lmg") and the relative weights ("rw")

method.

13 ##' @return Named vector containing the relative variable importances of the

predictors of the specified model.

14 ##' @author Andreas Matre

15 decompR2_internal <- function(formula ,

16 data ,

17 weights = NULL ,

18 method = NULL) {

19 RW_limit <- 15 # Number of fixed effects to accept before using the relative

weights method

20 methods_lmg <- c("lmg")

21 methods_rw <- c("rw", "relative weights")

22

23 t <- stats:: terms(formula , data = data)

24 if(any(attr(t, "order") > 1)) {

25 stop(paste0("'decompR2 ' does not support interactions"))

26 }

27 if(attr(t, "response") == 0) {

28 stop("There needs to be a response (left hand term) in the formula")

29 }

30

31 response <- as.character(attr(t, "variables")[attr(t, "response") + 1])

32 predictors <- attr(t, "term.labels")

33

34 random_intercepts <- grepl(pattern = '|', x = predictors , fixed = TRUE)

35 fixed_effects <- !random_intercepts

36

37 predictors[random_intercepts] <- paste0("(", predictors[random_intercepts], ")")

38

39 # If there is only one predictor in the model , just return the R^2 of the model.

40 if(ncol(data) == 2 & !any(random_intercepts)) {

41 model <- fit_model(formula = as.formula(paste0(response , " ~ .")), data =

data , weights = weights)

42 R2 <- calc_R2(model)

43 names(R2) <- predictors

44 return(R2)

45 }

46 if(ncol(data) == 2 & any(random_intercepts)) {

47 model <- fit_model(formula = as.formula(paste0(response , " ~ ", predictors)),

data = data , weights = weights)

48 R2 <- calc_R2(model)
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49 names(R2) <- predictors

50 return(R2)

51 }

52

53 if(is.null(method)) {

54 if(sum(fixed_effects) >= RW_limit) {

55 method <- "rw"

56 } else {

57 method <- "lmg"

58 }

59 }

60

61 if(tolower(method) %in% methods_lmg) {

62 return(decompR2_lmg(response = response , predictors = predictors , data =

data , weights = weights))

63 } else if(tolower(method) %in% methods_rw) {

64 return(decompR2_rw(response = response , predictors = predictors , data = data ,

weights = weights))

65 } else {

66 stop(paste0("Invalid `methods ` value. Valid values are: ", methods_lmg , " for

LMG and: ", methods_rw, " for relative weights."))

67 }

68 }
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1 #' @title Calculate relative importance using the LMG method

2 #'
3 #' @description Internal function to calculate the relative variable importance

using the LMG method.

4 #'
5 #' @param response is the response of the model , specified as a character string.

6 #' @param predictors is a character vector containing the names of the predictors

to be used in the model.

7 #' @param data is a data.frame containing the data that will be used in the model.

8 #' @param weights is passed to `stats::lm ` or `lme4::lmer `, depending on if there

are random intercepts in the formula. See `?stats::lm` and `?lme4::lmer ` for

more details.

9 #'
10 #' @return Named vector with the relative importances of the predictors in

`fixed_effects ` and `random_intercepts `.
11 #' @author Andreas Matre

12 decompR2_lmg <- function(response ,

13 predictors ,

14 data ,

15 weights = NULL) {

16

17 # Rename the fixed effects to prevent problems from the fact that if f.ex.

sin(x2) a predictor then the column in `data ` for x2 is already transformed

to sin(x2).

18 # Thus , if trying to fit a model with for example y ~ x1 + sin(x2), the model

will look for the column x2 in data and not find it.

19 fixed_effects <- predictors[!grepl(pattern = '|', x = predictors , fixed = TRUE)]

20 random_intercepts <- predictors[grepl(pattern = '|', x = predictors , fixed =

TRUE)]

21 new_predictors <- c()

22 if(length(fixed_effects) > 0) {

23 colnames(data)[colnames(data) %in% fixed_effects] <- paste0("f",

1: length(fixed_effects))

24 new_predictors <- c(new_predictors , paste0("f", 1: length(fixed_effects)))

25 }

26 new_predictors <- c(new_predictors , random_intercepts)

27

28 R2s <- list()

29

30 res <- sapply(new_predictors , function(focus_pred) {

31 other_preds <- new_predictors[new_predictors != focus_pred]

32 subsets <- powerset(other_preds)

33

34 R2_diffs <- sapply(subsets , function(subset) {

35 subset_preds <- c(1, subset) # Add the intercept

36

37 # Find R2 for small model

38 sorted_preds <- sort(subset_preds) # Sort the predictors , to be able to

tell if they have been calculated before

39 # Check if the R2 has been calculated before

40 R2_key <- paste0(sorted_preds , collapse = "")

41 if (utils:: hasName(R2s , R2_key)) {

42 R2_small_model <- R2s[[ paste0(sorted_preds , collapse = "")]]

43 } else {

44 #R2_small_model <- calc_R2(response = response , predictors =

sorted_preds , data = data , weights = weights)

45 formula_for_modelfit <- stats ::as.formula(paste0(response , " ~ ",

46 paste0(sorted_preds , collapse

= " + ")))

47 model <- fit_model(formula = formula_for_modelfit , data = data , weights =

weights)

48 R2_small_model <- calc_R2(model = model)
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49 R2s[[R2_key]] <<- R2_small_model

50 }

51

52 # Find R2 for large model

53 sorted_preds <- sort(c(sorted_preds , focus_pred)) # Sort the predictors , to

be able to tell if they have been calculated before

54 # Check if the R2 has been calculated before

55 R2_key <- paste0(sorted_preds , collapse = "")

56 if (utils:: hasName(R2s , R2_key)) {

57 R2_large_model <- R2s[[ paste0(sorted_preds , collapse = "")]]

58 } else {

59 #R2_large_model <- calc_R2(response = response , predictors =

sorted_preds , data = data , weights = weights)

60 formula_for_modelfit <- stats ::as.formula(paste0(response , " ~ ",

61 paste0(sorted_preds , collapse

= " + ")))

62 model <- fit_model(formula = formula_for_modelfit , data = data , weights =

weights)

63 R2_large_model <- calc_R2(model = model)

64 R2s[[R2_key]] <<- R2_large_model

65 }

66

67 # Calculate the difference in R2 between the model with focus_pred and the

one without

68 diff <- R2_large_model - R2_small_model

69 return(factorial(length(subset)) * factorial(length(other_preds) + 1 -

length(subset) - 1) * diff)

70 })

71 return (1 / factorial(length(other_preds) + 1) * sum(R2_diffs))

72 })

73 names(res) <- predictors

74 return(res)

75 }
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1 #' @title Calculate relative importance using the relative weights method

2 #'
3 #' @description Internal function to calculate the relative variable importance

using the relative weights method.

4 #'
5 #' @param response is the response of the model , specified as a character string.

6 #' @param predictors is a character vector listing the predictors to be used in

the full model.

7 #' @param data is a data.frame containing the data that will be used in the model.

8 #' @param weights is passed to `stats::lm ` or `lme4::lmer `, depending on if there

are random intercepts in the formula. See `?stats::lm` and `?lme4::lmer ` for

more details.

9 #' @return Named vector with the relative importances of the predictors in

`fixed_effects ` and `random_intercepts `.
10 #' @author Andreas Matre

11 #decompR2_rw <- function(response ,

12 # fixed_effects ,

13 # random_intercepts = NULL ,

14 # data ,

15 # weights = NULL){

16 decompR2_rw <- function(response ,

17 predictors ,

18 data ,

19 weights = NULL){

20

21 fixed_effects <- predictors[!grepl(pattern = '|', x = predictors , fixed = TRUE)]

22 if(any(grepl(pattern = '|', x = predictors , fixed = TRUE))) {

23 # Get the names of the columns in the random intercepts

24 random_intercepts_full <- predictors[grepl(pattern = '|', x = predictors ,

fixed = TRUE)]

25 lf <- lme4:: lFormula(stats::as.formula(paste0(response , " ~ ",

paste0(random_intercepts_full , collapse = " + "))), data = data)

26 random_intercepts <- names(lf$reTrms$cnms)
27 } else {

28 random_intercepts <- NULL

29 }

30

31 data_fixed <- data[,fixed_effects , drop = FALSE]

32 if(length(fixed_effects) > 0) {

33 categorical_preds <- colnames(data_fixed)[which(sapply(data_fixed ,

is.factor))]

34 numerical_preds <- setdiff(colnames(data_fixed)[which(!sapply(data_fixed ,

is.factor))], response)

35 } else {

36 categorical_preds <- character (0)

37 numerical_preds <- character (0)

38 }

39

40 has_random_intercepts <- !(is.null(random_intercepts) ||

(length(random_intercepts) == 0))

41 has_only_numerical <- (length(categorical_preds) == 0) && !has_random_intercepts

42

43 # Restructure and scale data

44 y <- data[,response]

45 y <- scale(y)

46

47 if(length(numerical_preds) > 0) {

48 X <- data_fixed[,numerical_preds , drop = FALSE]

49 X <- scale(X)

50

51 # Calculate eigenvalues and eigenvectors

52 e <- eigen(t(X) %*% X)
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53 Q <- e$vectors
54 D <- diag(sqrt(e$values), nrow = nrow(Q))

55 Dinv <- diag(1/sqrt(e$values), nrow = nrow(Q))

56

57 # Calculate R_xx^( -0.5)

58 R <- sqrt(nrow(X) - 1) * Q %*% Dinv %*% t(Q)

59

60 # Calculate the transformed numerical fixed effects

61 Z <- X %*% R

62

63 lambda <- 1 / sqrt(nrow(X) - 1) * Q %*% D %*% t(Q)

64 } else {

65 Z <- NULL

66 }

67

68 # Create new data.frame with the transformed numerical fixed effects

69 data_Z <- as.data.frame(cbind(y, data_fixed[,categorical_preds , drop = FALSE],

data[,random_intercepts , drop = FALSE ]))

70 if(!is.null(Z)) {

71 data_Z <- cbind(data_Z, Z)

72 }

73 if(length(numerical_preds) > 0) {

74 numerical_preds_Z <- paste0("n", 1: length(numerical_preds))

75 } else {

76 numerical_preds_Z <- c()

77 }

78 if(length(categorical_preds) > 0) {

79 categorical_preds_Z <- paste0("c", (length(numerical_preds) +

1):( length(numerical_preds) + length(categorical_preds)))

80 } else {

81 categorical_preds_Z <- c()

82 }

83 #colnames(data_Z) <- c(response , numerical_preds_Z, categorical_preds_Z,

random_intercepts)

84 colnames(data_Z) <- c(response , categorical_preds_Z, random_intercepts ,

numerical_preds_Z)

85

86 if(has_only_numerical) {

87 f <- stats::as.formula(paste0(response , " ~ ."))

88 model <- fit_model(formula = f, data = data_Z, weights = weights)

89 beta <- get_fixed_coef(model = model)[-1]

90 result <- as.vector(lambda ^2 %*% beta ^2)

91 } else {

92

93 # The groups of predictors to look at subsets of. Same as all the predictors ,

except that the numerical fixed effects are always considered together.

94 # This reduces the number of subsets to look at.

95 groups <- list()

96 if(length(numerical_preds_Z) > 0) {

97 groups <- c(groups , list(numerical_preds_Z))

98 }

99 #groups <- list(numerical_preds_Z)

100 groups <- c(groups , as.list(categorical_preds_Z))

101 if(has_random_intercepts) {

102 groups <- c(groups , as.list(paste0("(1 | ", random_intercepts , ")")))

103 }

104

105 # Create lists to save the calculated R2 values and coefficients.

106 # This saves calculations , as models will be fitted several times.

107 R2s <- list()

108 coefs <- list()

109
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110 # Look at all predictors and find their importance

111 result <- lapply(groups , function(focus_pred) {

112 other_preds <- groups[!sapply(groups , function(pred) identical(focus_pred ,

pred))]

113

114 # Look at all subsets of the other predictors

115 R2_diffs <- lapply(powerset(other_preds), function(subset) {

116 subset_preds <- unlist(c(1, subset)) # Add intercept to set of predictors

117

118 # Find R2 for small model

119 sorted_preds <- sort(subset_preds) # Sort the predictors , to be able to

tell if they have been calculated before

120 # Check if the R2 has been calculated before

121 key <- paste0(sorted_preds , collapse = "")

122 if (utils:: hasName(R2s , key)) { # R2s and coefs will always have the same

keys

123 R2_small_model <- R2s[[key]]

124 } else {

125 formula_for_modelfit <- stats ::as.formula(paste0(response , " ~ ",

126 paste0(sorted_preds ,

collapse = " + ")))

127

128 model <- fit_model(formula = formula_for_modelfit , data = data_Z,

weights = weights)

129 R2_small_model <- calc_R2(model = model)

130 fixed_coefs <- get_fixed_coef(model = model)

131 fixed_coefs <- fixed_coefs[intersect(names(fixed_coefs),

numerical_preds_Z)] # Choose only the coefficients for the numerical

predictors

132

133 # Save the R2 and coefficients to use later

134 R2s[[key]] <<- R2_small_model

135 coefs[[key]] <<- fixed_coefs

136 }

137

138 # Find R2 for large model

139 sorted_preds <- sort(c(sorted_preds , focus_pred)) # Sort the predictors ,

to be able to tell if they have been calculated before

140 # Check if the R2 has been calculated before

141 key <- paste0(sorted_preds , collapse = "")

142 if (utils:: hasName(R2s , key)) {

143 R2_large_model <- R2s[[ paste0(sorted_preds , collapse = "")]]

144 } else {

145 formula_for_modelfit <- stats ::as.formula(paste0(response , " ~ ",

146 paste0(sorted_preds ,

collapse = " + ")))

147

148 model <- fit_model(formula = formula_for_modelfit , data = data_Z,

weights = weights)

149 R2_large_model <- calc_R2(model = model)

150 fixed_coefs <- get_fixed_coef(model = model)

151 fixed_coefs <- fixed_coefs[intersect(names(fixed_coefs),

numerical_preds_Z)] # Choose only the coefficients for the numerical

predictors

152

153 # Save the R2 and coefficients to use later

154 R2s[[key]] <<- R2_large_model

155 coefs[[key]] <<- fixed_coefs

156 }

157

158 # Calculate the difference in R2 between the model with focus_pred and

the one without

62



159 diff <- R2_large_model - R2_small_model

160

161 # Weigh the R2 difference

162 share <- factorial(length(subset)) * factorial(length(other_preds) + 1 -

length(subset) - 1) * diff

163

164 # If focus_pred is the numerical fixed effects , distribute the

R2-difference to each numerical fixed effect

165 if(identical(focus_pred , numerical_preds_Z)){

166 beta <- coefs[[key]]

167 shares <- lambda ^2 %*% beta^2

168

169 share <- share * shares / sum(shares) # Weigh the shares such that we

get a proper decomposition

170 }

171 return(share)

172 })

173 # If focus_pred is the numerical fixed effects R2_diffs is a list of vectors

174 # In that case , we need to make it into a matrix and then take the row

sums , to get the share for each numerical fixed effect

175 R2_diffs <- do.call(cbind , R2_diffs)

176 return (1 / factorial(length(other_preds) + 1) * rowSums(R2_diffs))

177 })

178 }

179

180 result <- unlist(result) # Make all elements have the same level in the list

181 name <- c(numerical_preds , categorical_preds)

182 if(has_random_intercepts) {

183 name <- c(name , paste0("(1 | ", random_intercepts , ")"))

184 }

185 names(result) <- name

186 return(result)

187 }
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1 ##' Checks if a formula contains a term of the form "(*something* | *something

else*)", which is the way to specify random effects in `lme4::lmer ` models.

2 ##' Currently , this function rather naive and only checks if "|" is in each term.

3 ##'
4 ##' @title Check if a formula contains a random effect

5 ##' @param f formula

6 ##' @return logical vector , TRUE if a term is a random effect , FALSE if non of

the terms are random effects.

7 ##' @author Andreas Matre

8 formula_contains_RE <- function(f) {

9 # Currently naive , only checks for '|' in the formula. Might need more advanced

check later.

10 any(grepl(pattern = '|', x = f, fixed = TRUE))

11 }

12

13 ##' @title Fit `stats::lm ` or `lme4::lmer ` model

14 ##' @description `lme4::lmer ` does not support fitting a model without random

effects , so this is a wrapper function that fits a `stats::lm ` model if there

are no random effects in the formula and a `lme4::lmer ` model if there are

random effects in the formula.

15 ##' @param formula is a formula used to fit the model

16 ##' @param data is a data.frame used to fit the model

17 ##' @param ... is other arguments to pass to `stats::lm ` or `lme4::lmer `
18 ##' @return the output from either `stats::lm ` or `lme4::lmer `
19 ##' @author Andreas Matre

20 fit_model <- function(formula , data , ...) {

21 if(formula_contains_RE(formula)) {

22 return(eval(substitute(lme4::lmer(formula = formula , data = data , ...)),

parent.frame()))

23 } else {

24 return(eval(substitute(stats ::lm(formula = formula , data = data , ...)),

parent.frame()))

25 }

26 }

27

28 ##' @title Get the coefficients of the fixed effects

29 ##' @description Gets the coefficients of the fixed effects from either a

`stats::lm ` or `lme4::lmer ` model.

30 ##' @param model is a model from either `stats::lm ` or `lme4::lmer `
31 ##' @return named vector containing the coefficients of the fixed effects of

`model `.
32 ##' @author Andreas Matre

33 get_fixed_coef <- function(model) {

34 if(inherits(x = model , what = "merMod")) {

35 return(lme4::fixef(model))

36 } else if(inherits(x = model , what = "lm")) {

37 return(stats::coef(model))

38 } else {

39 stop("Only supports lme4::lmer and stats ::lm models")

40 }

41 }

42

43 ##' @title Calculate the R^2 of a random intercept model

44 ##'
45 ##' @description Calculates the R^2 of an 'lme4::lmer ' random intercept model.

This function will not work for more complicated 'lme4::lmer ' models.

46 ##'
47 ##' @details The calculation is based on the ideas introduced in Nakagawa ,

Shinichi and Holger Schielzeth (2013).

48 ##' @param m merMod object created by 'lme4::lmer '
49 ##' @return numeric , the R^2 value of 'm'
50 ##' @author Andreas Matre
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51 calc_lmer_R2 <- function(m) {

52 if(inherits(m, "merMod")) {

53 fixed_effects <- setdiff(names(lme4:: fixef(m)), "(Intercept)") # We don 't
need the intercept , as adding a constant doesn 't change the variance

54 X <- stats:: model.matrix(m)

55 fixed_var <- stats ::var(as.vector(lme4::fixef(m)[-1] %*%

t(as.matrix(X[,fixed_effects ]))))

56

57 random_var <- do.call(sum , lme4:: VarCorr(m))

58 residual_var <- stats :: sigma(m)^2

59

60 return ((fixed_var + random_var)/(fixed_var + random_var + residual_var))

61 } else {

62 stop("Only supports lme4::lmer models")

63 }

64 }

65

66 ##' @title Calculate the R^2 of a `stats::lm ` or `lme4::lmer ` model.

67 ##' @description Calculates the R^2 of a `stats::lm ` or `lme4::lmer ` model. If

the model is from `lme4::lmer ` it can only handle random intercept models.

Random slopes are not handled.

68 ##' @details For a `stats::lm ` model calc_R2 uses the value from `summary(model)`
while for a `lme4::lmer ` model the conditional R^2 introduced by Nakagawa ,

Shinichi and Holger Schielzeth (2013) will be calculated.

69 ##' @param model is a model from either `stats::lm ` or `lme4::lmer `
70 ##' @return numeric

71 ##' @author Andreas Matre

72 ##' @export

73 calc_R2 <- function(model) {

74 if(inherits(x = model , what = "merMod")) {

75 return(calc_lmer_R2(model))

76 } else if(inherits(x = model , what = "lm")) {

77 return(summary(model)$r.squared)
78 } else {

79 stop("Only supports lme4::lmer and stats ::lm models")

80 }

81 }

82

83 ##' @title Create powerset

84 ##'
85 ##' @description

86 ##' Internal function creating the powerset of 'x'. The powerset of `x` is a set

including all possible subsets of `x`.
87 ##' As each element in `x` can either be or not be in a subset , the powerset of

`x` will include 2^ length(x) sets.

88 ##'
89 ##' @param x vector containing the set of elements to create a powerset of.

90 ##'
91 ##' @details

92 ##' Removes duplicates in 'x' if there are any.

93 ##'
94 ##' @return Returns a list with 2^ length(x) elements containing the powerset of

'x'.
95 ##'
96 ##' @examples

97 ##' #powerset(c(1, 2, 3))

98 ##' # Should return list(c(), c(1), c(2), c(3), c(1, 2), c(1, 3), c(2, 3), c(1,

2, 3))

99 ##' @author Andreas Matre

100 powerset <- function(x) {

101 if(length(x) == 0) {return(list())}

102
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103 x <- unique(x)

104

105 res <- lapply (1: length(x), function(n) {

106 m <- utils:: combn(x, n)

107 lapply (1: ncol(m), function(i) m[,i])

108 })

109

110 res <- unlist(res , recursive = FALSE)

111 res[[ length(res) + 1]] <- vector(mode = typeof(x)) # Add the empty set

112

113 return(res)

114 }
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C Simulation of data

1 ##' @title Create test data

2 ##' @description Creates data that is used to test the functionality of the

package.

3 ##'
4 ##' @param n.obs is numeric. Is the number of observations to create. Only used

if there are no random effects.

5 ##' @param fixed.coef is a numeric vector. Is the coefficients of the fixed

effects.

6 ##' @param fixed.cov is a numeric matrix. Is the covariance matrix of the fixed

effects.

7 ##' @param random.var is a numeric vector. Is the variance of each random

intercept

8 ##' @param random.n.levels is a numeric vector. Is the number of levels for each

random intercept.

9 ##' @param random.n.in.groups is a numeric. Is the number of times each

combination of random intercepts are repeated.

10 ##' @param residuals.var is a numeric. Is the variance of the residuals.

11 ##' @return a data.frame with either `n.obs ` or `prod(random.n.levels) *

random.i.in.groups ` rows and `1 + length(fixed.coef) + length(random.var)`
columns. There is one column for each fixed effect and each random intercept

and one column for the response.

12 ##' The fixed effects get column names `x1 `, `x2 `, ... and the random

intercepts get column names `group1 `, `group2 `, ... while the response gets

column name `y`.
13 ##' @author Andreas Matre

14 create_test_data <- function(n.obs = NULL , fixed.coef , fixed.cov =

diag(length(fixed.coef)),

15 random.var = NULL , random.n.levels = NULL ,

random.n.in.groups = 1,

16 residuals.var = 1)

17 {

18 if(length(fixed.cov) == 1 && !is.matrix(fixed.cov)) {fixed.cov <-

matrix(fixed.cov)}

19 if(length(random.var) == 1 && !is.matrix(random.var)) {random.var <-

matrix(random.var)}

20 if(is.null(random.var) & missing(n.obs)) {stop("`n.obs ` needs to be specified

if there are no random effects.")}

21

22 if(!is.null(random.var)) {

23 n.obs <- prod(random.n.levels) * random.n.in.groups

24 }

25

26 # Create fixed effects

27 X <- MASS:: mvrnorm(n = n.obs , mu = rep(0, length(fixed.coef)), Sigma =

fixed.cov)

28 X <- apply(X, 2, function(x) (x - mean(x)) / stats::sd(x)) # Standardize

29

30 # Create response calculated by just the fixed effects and residual

31 y <- X %*% fixed.coef + stats ::rnorm(n = n.obs , mean = 0, sd =

sqrt(residuals.var))

32

33 # If there are random effects , add them as well

34 if(!is.null(random.var) && !is.null(random.n.levels)) {

35 group <- do.call(expand.grid , lapply(random.n.levels , function(n) 1:n))

36 group <- as.data.frame(group[rep (1: nrow(group), each = random.n.in.groups) ,])

37 rownames(group) <- NULL

38 alphas <- lapply (1: length(random.var), function(i) {

39 stats:: rnorm(n = random.n.levels[i], mean = 0, sd = sqrt(random.var[i]))

40 })
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41 # Add the random intercepts to the response

42 for(i in 1: length(alphas)) {

43 y <- y + alphas [[i]][ group[,i]]

44 }

45 }

46

47 df <- as.data.frame(X)

48 colnames(df) <- paste0("x", 1: length(fixed.coef))

49 if(!is.null(random.var) && !is.null(random.n.levels)) {

50 if(length(random.var) == 1) {

51 colnames(group) <- "group"

52 } else {

53 colnames(group) <- paste0("group", 1:ncol(group))

54 }

55 df <- cbind(df, group)

56 }

57 df$y <- y

58

59 return(df)

60 }
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