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Abstract

This thesis compares three models for forecasting daily new cases for Covid-19. The first model is a class
of machine learningmodels, called an CNN-LSTMmodel, and was the state-of-the-art model for the stated
task on the global daily new cases data set during the summer of 2021. Some months earlier, Taraldsen
published two so-called toy models for forecasting the daily new cases in Norway. Both these models are
SARIMA models, but one of them assumes Gaussian white noise, while the other assumes that the noise
is conditionally heteroscedastic and is modeled by a GARCH model. They both gave accurate predictions
and come with a prediction interval, as opposed to the CNN-LSTM model. Additionally, they were
much less computer intensive, with only three and four parameters, respectively. On the other hand, the
CNN-LSTM model must fit more than 300000 parameters. The models had not yet been applied to other
Covid-19 data sets than what was used in their respective articles. This thesis compared the performance
of the three models on the global time series data, as well as the Norwegian data. A lot more data have
become available since the articles were published. This makes it possible to compare the models on other
partitions of both the data sets, and to experiment with reduced sample sizes across all these partitions.
Finally, a parametric bootstrap experiment was conducted to get a grasp of the uncertainty in the forecast
from the CNN-LSTM model. While the CNN-LSTM model achieved some accurate forecasts, the results
of this thesis suggest that the SARIMA model with GARCH noise may be the model of choice for the
earliest parts of the data sets, while the SARIMA model with Gaussian white noise would be the best
choice on the rest of the data sets, where its predictions are more accurate and has about the same spread.
These results are mostly explained by the varying heteroscedasticity of the two time series.
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1 Introduction

The novel corona virus 2019 (Covid-19) took the world by storm, killing over 6 million people in two
years. Unlike previous pandemics, lots of data have been gathered about the decease. This enables accurate
forecasts of the spread of the virus, which have been able to function as an early warning system for
authorities to react with appropriate responses (Dehning et al., 2020). Even though the current pandemic
might be under control, globalisation will likely cause future viruses with the same potency. Thus, the
development of better forecasting tools for decease spread should continue, to hopefully prevent another
disaster. There are at least two schools of thought when it comes to modeling the spread of deceases. The
epidemiological approach attempts to understand the inner workings of the virus, which can then be used to
model its spread, while a data-driven approach ignores where the data comes from and purely uses the data
at hand. In its simplest form, the latter approach only considers the new Covid-19 cases -C at day C. After
collecting the observations G1, . . . , G=, the goal is to predict the amount of future new cases -=+1, . . . , -=+ℎ
as accurately as possible. This thesis focuses on solving this exact problem.

In an article published by Zain et al. (2021), several predictive models were trained to solve the above
problem. It included a proposed machine learning model that combined the abstraction capabilities of a
Convolutional Neural Network (CNN) with a Long-Short Term Memory (LSTM) model’s ability to learn
long term dependencies. The current state-of-the-art model at the time of publishing was also among the
compared models. From their empirical results on the global daily new cases data set from January 4th to
August 14th 2020, they concluded that the proposed model was the best model for the task at hand. This
conclusion was based on the accuracy of 28-day forecasts from each model. Also among the most accurate
models in this study was an Auto Regressive Moving Average (ARMA) model. The ARMAmodel is a large
class of models, with many possible alterations. None of these alterations were explored in their article.
Some months earlier, Taraldsen (2020b) published two so-called toy models for the Norwegian daily new
cases from February 21st to November 10th 2020. They were both Seasonal Auto Regressive Integrated
Moving Average (SARIMA) models, but one of them assume that the underlying noise is Gaussian and
independent of time, while the other one assume GARCH(1, 1) noise; a more general noise model that
allows conditional heteroscedasticity. On the data set used by Taraldsen, both these models delivered
accurate forecasts. For the daily new cases of Covid-19 in some of the key countries, SARIMA models
and ARMA-GARCH models both have been shown to give accurate forecasts (Kumar et al., 2021)(Ekinci,
2021). However, at the time of writing, a combined SARIMA-GARCH model for daily new cases have
yet to be tested on the global new cases data. In this thesis, the three models were replicated as precisely
as possible, and their performances were compared on both the global and the Norwegian data set, seen
in Figure 1. The articles were written based on data from 2020. Since then, a lot more data has become
available. The two time series therefore include the daily new cases up to February 20th 2022. A lot has
happened to the handling of the virus over the course of the two years: new variants have emerged, vaccines
have been developed, and rulings and attitudes surrounding the decease have evolved. How will these
changes affect the models fit and prediction capabilities? And what happens to the results if the sample size
is reduced? This thesis attempts to answer these questions.

1



Figure 1: The Norwegian and global Covid-19 new cases time series.

The replicated models were initially tested on the two data sets from the articles from Zain et. al. and
Taraldsen. This made the results from the models in the thesis comparable to the results from the articles.
The models were later tested on newer and older partitions of the data sets, by regulating the last date
included in the training set, and the number of samples to include preceding said date. The primary goal
was to compare the accuracy of the models across these partitions of the data sets. However, this was
not the only task. If the models were to be used in practice, the uncertainty of the forecasts is almost as
important as the forecast itself. When using Taraldsen’s SARIMA models, this uncertainty can easily be
approximated with theoretical 95% prediction intervals. The CNN-LSTM model has no way to generate
such an interval. To get a grasp of the spread of this model’s forecast, a small parametric bootstrap study
was conducted. The secondary goal of the thesis was to describe and compare the spread in the forecasts
of each model. The two SARIMA models only contain 3 and 4 parameters, respectively. Some of these
specifies the structure of the auto regressive components and the moving average components, while others
describe the noise component of the models. The third goal of the thesis was to investigate the behaviour
of these parameters, especially the ones connected to the noise of the models. The CNN-LSTM model
contains more than 300000 parameters. Such an investigation was therefore not feasible for this model.

The time series analysis made in this thesis require some baseline knowledge about ARMA models and
machine learning models. The necessary theory is given in Section 2. Details about the specific models and
how the forecasts in this thesis were constructed are given in Section 3. The models were then applied to
the two data sets, as described above. These results are presented in Section 4 and discussed in Section 5.
The final thoughts and conclusions in Section 6 finalize the thesis.

2



2 Theory

This section introduces the necessary concepts and theoretical results needed to understand the thesis and
demonstrates how the later results were generated.

2.1 Time Series

The random variables lay the foundation of statistical theory. The exact definition is given.

Definition 2.1 (Random variable). Let (Ω, F ) and (Ω̃, F̃ ) be measurable spaces.

A map - : Ω→ Ω̃ is called a random variable if

-−1 (�̃) ∈ F for all �̃ ∈ F̃ .

In probability theory, the measurable spaces (Ω, F ) and (Ω̃, F̃ ) are called event spaces. In this thesis,
Ω̃ = R and F̃ = B(R), the Borel f-algebra. The associated probability space (measure space) is (Ω, F , %),
where % is the cumulative distribution function of - .

The Covid-19 new-cases data are viewed as a series of events from random variables -C , one for each passing
day C. A realization of these random variables is G1, . . . , G=. Figure 1, shows one such realization for each
of the two time series.

Definition 2.2 (Time series). A time series is a sequence of random variables {-C } = {-C }C ∈R indexed by
time. In this thesis, a realization of - , denoted by (G1, . . . , G=), is also called a time series.

More general definitions of time series exist. However, for the purposes of this thesis, the above definition
will suffice.

The remainder of this section outlines how tomodel time series. For the statistical models, a desired property
for time series when modeling is week stationary. Essentially, the elements of time series with this property
maintains the same relationship to its neighbouring data points across the whole time series.

Definition 2.3 (Weak Stationarity). A time series - is weakly stationary if it is shift-invariant. That is, -C
has a constant mean for all C and 2>E(-8 , - 9 ) = ℎ( |8, 9 |) for some unsigned function ℎ.

In other words, the correlation between two variables of a weakly stationary time series is only dependent
on the distance between their respective points in time, not time itself. On the other hand, some time series
has no correlation between the neighbouring variables. These are called white noise processes.

Definition 2.4 (White noise). If / ∼ ,# (0, f2), then {/C } is a sequence of uncorrelated random variables
that all have mean zero and the same variance f2. This sequence is called a white noise process.

2.2 Defining the ARMA process and its extensions

The Auto Regressive Moving Average (ARMA) process is widely used to model weakly stationary time
series. It is a general class of processes that can be specified by the hyper parameters ? and @.

Definition 2.5 (ARMA(?, @) process). Let {-C } be a zero-mean weekly stationary time series. {-C } is an
ARMA(?, @) process if it is a weakly stationary solution to the equations

q(�)-C = \ (�)/C , (1)

where q(�) = 1−q1�−q2�
2− . . . q?�? , \ (�) = 1+\1�+\2�

2+· · ·+\@�@ and � is the back-shift operator
defined by �-C = -C−1. Additionally, / ∼ ,# (0, f2) and q(�) and \ (�) have no common factors.

The special cases ARMA(?, 0) and ARMA(0, @) are the AR(?) and MA(@) process, respectively.

3



For most time series, � [-C ] = ` ≠ 0. However, the process {-C − `} ∼ ARMA(?, @). These processes are
called an ARMA process with mean `. The remaining theoretical results only considers zero-mean time
series without any loss of generality.

The stationarity assumption of the solution of the ARMA model implies some restriction of the possible
solutions of Equation (1). If q(I) ≠ 0, a candidate solution is

- =
\ (�)
q(�) /C (2)

Let k(I) = \ (I)
q (I) = k0 +k1I +k2I

2 + · · · . The solution -C = k0 +k1/C−1 +k2/C−2 + · · · is zero-mean since
it is a linear combination of zero-mean random variables. To satisfy the definition of week stationarity, the
variance of the solution -C needs to be finite. However, for ℎ ≥ 1,

� [-C-C−ℎ] = k2
0 + k0k1 (� [/C ] + � [/C+ℎ]) + · · · + kℎk0� [/C−ℎ/C−ℎ] + · · ·

= k2
0 +

∞∑
8=ℎ

k8k8−ℎ� [/2
C−8] = k2

0 + f
2
∞∑
8=ℎ

k8k8−ℎ ,

which may diverge if k(I) is not absolutely summable. Assuming absolute summability of k(I) is sufficient
to obtain a stationary solution of the ARMA equations. This would also imply uniqueness of the solution.
However, to verify that an ARMA process satisfies this condition can take a lot of time, which makes this
criterion impractical. An equivalent, and more practical condition is the following:

q(I) ≠ 0, for all I ∈ N

i.e., q(I) has no zeros on the unit circle. To understand why this is equivalent, consider the Taylor expansion
of 1

q (I) around zero. For X > 0,

1
q(I) =

∞∑
8=−∞

08I
8 < ∞, for 1 − X < I < 1 + X.

Since I can be made arbitrarily close to 1, the sum
∑∞
8=−∞ |08 | converges. Applying 1

q (�) to both sides of
the ARMA equations shows that

-C =
1

q(�) q(�)-C =
1

q(�) \ (�)/C = k(�)/ =
∞∑

8=−∞
k8/C−8 .

Thus, k(�)/ solves Equation (1) if and only if q(I) ≠ 0 for all I ∈ N. The above argument shows that
in most cases, the ARMA process can be expressed as a function of all the past, present and future noise
components. In certain cases, -C can be expressed uniquely using only /C−ℎ for ℎ ≤ 1.

Definition 2.6 (Causal process). The process {-C } is causal if the polynomials \ (I) and q(I) have no
common zeros and there exists a sequence {k 9 }∞9=0 with

∑∞
9=0 |k 9 | < ∞ such that

-C =

∞∑
9=0
k 9/C− 9 , for all C.

In otherwords, a causal process is independent of future noise. For anARMA(?, @) process, this is equivalent
to q(I) having no zeros inside the unit circle (Brockwell et al., 2016, p. 75). Note that

∑∞
9=0 k 9/C− 9 is an

MA(∞) process. Thus, any causal ARMA(?, @) process can be expressed as a MA(∞) process.

The dual property for {/C } is called invertibility.
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Definition 2.7 (Invertible process). The process {-C } is invertible if the polynomials \ (I) and q(I) have no
common zeros and there exists a sequence {c 9 }∞9=0 with

∑∞
9=0 |c 9 | < ∞ such that

/C =

∞∑
9=0
c 9-C− 9 , for all C.

Equivalently, an invertible process is a process where the noise only depends on past observations. The
invertibility property of an ARMA process can be shown to be equivalent to all zeros of \ (I) being outside
the unit circle (Brockwell et al., 2016, p. 76).

Both these properties are highly desirable, as they simplify some calculations. One of them is the derivations
surrounding large-sample prediction with ARMA models. Luckily, it can be shown that a non-causal or
non-invertible ARMA process can be transformed into a causal and invertible ARMA process by finding a
new white noise sequence {,C }. Hence, without loss of generality, all future ARMA processes are assumed
to be causal and invertible (Brockwell et al., 2016, p. 50). Note that for an MA(@) process, k(I) = \ (I),
whereas for an AR(?) process, c(I) = q(I). In other cases, the coefficients k8 and c8 can be found by
comparing the sides of the following equations:

k(I)q(I) = \ (I)
c(I)\ (I) = q(I).

The assumption that {-C } is weakly stationary, is important to note. In the real world, this is not always the
case. For example, both time series seen in Figure 1 have upward trends, implying that the mean of these
series are not constant. Even if {-C } is non-stationary, it is often possible to transform it to a stationary time
series. The remainder of this section describe how small alterations to the ARMA process can be made to
address time series with trend and seasonality.

Definition 2.8 (The ARIMA(?, 3, @) process). The time series {-C } is a ARIMA(?, 3, @) process if

(1 − �)3-C

is a causal ARMA?, @) process.

The ARIMA(?, 3, @) model can be used to transform a series with a linear trend to a stationary process,
which can then be modeled by an ARMA(?, @) process. The time series for the new Covid-19 cases seems
to both have a trend and a seasonal component (of period 7). This time series would not be stationary
by applying a single difference operation. The Seasonal Auto Regressive Integrated Moving Average
(SARIMA) model aims to remove both the trend and the seasonal component of {-C } by differencing not
only in the first order, but also for order B, where B is the period of the time series.

Definition 2.9 (The SARIMA process). The time series {-C } is a SARIMA(?, 3, @) × (%, �,&)B process if
the differenced series .C = (1 − �)3 (1 − �B)�-C is an ARMA process of the of the following form

q(�)Φ(�B)-C = \ (�)Θ(�B)/C , (3)

where q(I) = 1 − q1I − · · · − q?I? , Φ(I) = 1 − Θ1I − · · · − Θ%I% , \ (I) = 1 + \1I + · · · + \@I@ and
Θ(I) = 1 + Θ1I + · · · + Θ&I&.

Note that Equation (3) can be rewritten as anARMA(?%, @&) process (possibly with some of the coefficients
being fixed to zero and others as products of previous coefficients). Future results will only consider ARMA
processes, as these are notionally simpler, but these also apply to SARIMA models.
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2.3 The GARCH process

For all processes defined up to this point, the mean of -C has been conditionally dependent on its previous
iterations, while the variance f2 has stayed constant. Sometimes it is reasonable to assume that not only the
mean, but also the variance of {-C } changes over time. The noise component can be modeled by its own
process. A popular choice is theGeneralized Auto Regressive Conditional Heteroscedasticity (GARCH)
process, developed by Bollerslev (1986). It allows the variance at the current time step to depend on previous
variances and the previous iterations of /C .

Definition 2.10 (GARCH(?, @) process). The GARCH(p, q) process is the weekly stationary solution to the
equations

/C = fC4C , (4)

for 4C ∼ � �� (0, 1), where fC is defined by the recursions

f2
C = U0 +

?∑
8=1

U8/
2
8−8 +

@∑
9=1

V 9f
2
C− 9 , ∀C, (5)

for U0 > 0 and U8 , V 9 ≥ 0 for all 8, 9 .

Under these assumptions, f2
C > 0 for all C. When modelling, one must assume a particular distribution of

4C . This is often the standard normal distribution or Student’s t-distribution. The quantity f2
C is commonly

referred to as the volatility of the time series. A time series where the fluctuations are followed by fluctuations
of similar magnitude is said to exhibit persistence of volatility. In these cases, it might be wise to add a
GARCH model to the underlying noise.

2.3.1 The existence of the GARCH(1,1) model

The GARCH(1, 1) model, specified in Equation (6), has been particularly popular in time series forecasting.

/C = f
2
C 4C , f2

C = U0 + U1/
2
C−1 + V1f

2
C−1 (6)

However, a weekly stationary solution to Equation (6) only exists for certain values of U0, U1 and V1. Observe
that

/2
C = f

2
C 4

2
C = (U0 + U1/

2
C−1 + V1f

2
C−1)4

2
C = U04

2
C + 42

C (U14
2
C−1 + V1)f2

C−1

= U04
2
C + 42

C (U14
2
C−1 + V1) (U0 + U1/

2
C−2 + V1f

2
C−2)

= U04
2
C + U04

2
C (U14

2
C−1 + V1) + 42

C (U14
2
C−1 + V1) (U14

2
C−2 + V1)f2

C−2

= · · · = U04
2
C

(
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
+ 42

Cf
2
C−(=+1)

=+1∏
8=1
(U14

2
C−8 + V1).

This gives a candidate solution to Equation (6), namely

lim
=→∞

/C ,= = 4C

√√√
U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
,

where
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/2
C ,= = U04

2
C

(
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
.

However, it must be shown that this limit exists. As will be clear, this is not always the case.

Theorem 2.11. /C ,= is a Cauchy sequence and converges to

/̃C = 4C

√√√
U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
in !2 if and only if

U1 + V1 < 1.

Proof. To show that /C ,= is Cauchy, one needs to show that ∀n∃# ∈ N s.t.

� [(/C ,= − /C ,<)2] < n

for =, < ≥ # . Expanding this expression gives that

� [(/C ,= − /C ,<)2] = � [/2
C ,= − 2/C ,=/C ,< + /2

C ,<] = � [/2
C ,=] + � [/2

C ,<] − 2� [/C ,=/C ,<] . (7)

Note that

/C ,=/C ,< = 4C

√√√
U0

(
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
4C

√√√
U0

(
1 +

<∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)

= 42
C U0

√√√
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

√√√
1 +

<∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

Without loss of generality, assume = ≥ <. Since all terms in the above equation are positive, /C ,=/C ,< ≥ /2
C ,<.

By monotonicity of the expected value operator, it is clear that

� [/C ,=/C ,<] ≥ � [/2
C ,<] .

Plugging this result into Equation (7) gives

� [(/C ,= − /C ,<)2] ≤ � [/2
C ,=] − � [/2

C ,<]

= �

[
U04

2
C

(
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)]
− �

[
U04

2
C

(
1 +

<∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)]
= U0

=∑
:=1

�

[
42
C

:∏
8=1
(U14

2
C−8 + V1)

]
− U0

<∑
:=1

�

[
42
C

:∏
8=1
(U14

2
C−8 + V1)

]
= U0

=∑
:=<

�

[
42
C

:∏
8=1
(U14

2
C−8 + V1)

]
The following lemma can be utilized to reduce the above expression even further.

7



Lemma 2.12. �
[
42
C

∏:
8=1 (U14

2
C−8 + V1)

]
= (U1 + V1):

Proof. Proof by induction:

: = 1:

� [42
C (U14

2
C−1 + V1)] = U1� [42

C 4
2
C−1] + V1� [42

C ] = U1� [42
C ]� [42

C−1] + V1� [42
C ] = U1 + V1

Assume it holds for : = <. Then

�

[
42
C

<+1∏
8=1
(U14

2
C−8 + V1)

]
= �

[
(U14

2
C−<−1 + V1)42

C

<∏
8=1
(U14

2
C−8 + V1)

]
= �

[
(U14

2
C−<−1 + V1)�

[
42
C

<∏
8=1
(U14

2
C−8 + V1) | 4C−<−1

] ]
= �

[
(U14

2
C−<−1 + V1)�

[
42
C

<∏
8=1
(U14

2
C−8 + V1)

] ]
= � [(U14

2
C−<−1 + V1) (U1 + V1)<] = (U1 + V1)<� [U14

2
C−<−1 + V1]

= (U1 + V1)<+1,

where the second line equations used the law of iterated expectation and the fact that 4C ∼ IID(0, 1).

�

The above lemma implies that

� [(/C ,= − /C ,<)2] ≤ U0

=∑
:=<

(U1 + V1): .

Since U1 and V1 are assumed positive, the series converges if and only if U1 + V1 < 1. In this case, the sum
can be made arbitrarily small by increasing = and <. Thus, /C ,= is Cauchy and the limit

/̃C = 4C

√√√
U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
exists. �

The following argument shows that /̃C satisfies Equation (6). Let /̃C = f̃2
C 4C . Then

f̃2
C = U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
= U0

(
1 + U14

2
C−1 + V1 +

∞∑
:=2

:∏
8=1
(U14

2
C−8 + V1)

)
.

Note that

∞∑
:=2

:∏
8=1
(U14

2
C−8 + V1) = (U14

2
C−1 + V1)

∞∑
:=1

:∏
8=1
(U14

2
C−1−8 + V1)

and that
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f̃2
C−1 = U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−1−8 + V1)

)
.

Shuffling the terms around in the above equation gives

∞∑
:=1

:∏
8=1
(U14

2
C−1−8 + V1) =

f̃2
C−1
U0
− 1.

Combining the above equations results in the following:

f̃2
C = U0

(
1 + U14

2
C−1 + V1 + (U14

2
C−1 + V1) (

f̃2
C−1
U0
− 1)

)
= U0 +U14

2
C−1f̃

2
C−1 + V1f̃

2
C−1 = U0 +U1 /̃

2
C−1 + V1f̃

2
C−1.

Hence f̃2
C can be written as in Equation (6), and /̃C is a solution to the GARCH(1, 1) equations. For /̃C to

be a valid solution, it needs to be weekly stationary. When U1 + V1 < 1, the unconditional variance

� [/2
C ] = �

[
42
C U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)]
= U0 + U0

∞∑
:=1

�

[
42
C

:∏
8=1
(U14

2
C−8 + V1)

]
= U0 (1 +

∞∑
:=1
(U1 + V1): ) = U0

∞∑
:=0
(U1 + V1): =

U0
1 − U1 − V1

< ∞.

Further, by using the law of total expectation

� [/C ] = � [�4C ] = � [�� [4C | 4B , B < C]] = � [�� [4C ]] = 0

where � =
√
U0

(
1 +∑∞

:=1
∏:
8=1 (U14

2
C−8 + V1)

)
. By the same argument,

� [/C+ℎ/C ] = � [�4C+ℎ4C ] = � [�� [4C+ℎ4C | 4B , B < C + ℎ]] = � [�� [4C+ℎ4C ]] = 0,

for ℎ < 0 and with � =
√
U0

(
1 +∑∞

:=1
∏:
8=1 (U14

2
C+ℎ−8 + V1)

)√
U0

(
1 +∑∞

:=1
∏:
8=1 (U14

2
C−8 + V1)

)
. These

three qualities imply that /C ∼ ,# (0, U0
1−U1−V1

), which is a weekly stationary process.

To demonstrate that the solution is unique, denote ˜̃/C = ˜̃fC4C as another solution. Once again, iterating
thought Equation (6) gives

˜̃/2
C = · · · = U04

2
C

(
1 +

=∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
+ 42

C
˜̃f2
C−(=+1)

=+1∏
8=1
(U14

2
C−8 + V1).

When U1 + V1 < 1, the mean square limit

�

[
( ˜̃/C − /̃C )2

]
= �

[
42
C
˜̃f2
C−(=+1)

=+1∏
8=1
(U14

2
C−8 + V1)

]
= �

[
˜̃f2
C−(=+1)�

[
42
C

=+1∏
8=1
(U14

2
C−8 + V1) | ˜̃f2

C−(=+1)

] ]
= (U1 + V1)=+1� [ ˜̃f2

C−(=+1) ] → 0
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as =→ ∞. The above derivation used the fact that � [ ˜̃f2
C−(=+1) ] < ∞ since any solution to Equation (6) has

to be weekly stationary. Hence, /̃C is the unique weekly stationary solution to the GARCH(1, 1) equations.
Here is a summary of the results:

Solution of GARCH(1,1) Equations:
If (U1 + V1) < 1, a weekly stationary solution of the GARCH(1,1) equations is

/C = 4C

√√√
U0

(
1 +

∞∑
:=1

:∏
8=1
(U14

2
C−8 + V1)

)
.

It has the properties

� [/C ] = 0,

+0A (/C ) = � [/2
C ] =

U0
1 − U1 − V1

and

� [/C+ℎ/C ] = 0, for ℎ > 0.

It can be shown that, in general, a weekly stationary solution to the Equation (4) and Equation (5) exists if
and only if

∑?

8=1 U8 +
∑@

9=1 V 9 < 1 (Bollerslev, 1986).

Remark: The above derivations only showed that /C is unconditionally independent of /C+ℎ for |ℎ | ≥ 1.
This does not imply that, for example, � [/C/C+ℎ | /C ] = 0. After all, the whole point of the GARCH process
is to allow such quantities to be nontrivial.
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2.4 Parameter estimation for ARMA models

There are several ways to construct the likelihood function ! () | G1, . . . , G=) for an ARMA model with
) = (q1, . . . , q? , \1, . . . , \@ , f

2). This section considers two alternatives: An easier (but less precise) way
and a harder (but exact) way.

The residuals (often called innovations),

nC := GC − q1GC−1 − · · · − q?G? − \1nC−1 − · · · − \@nC−@ ,

for C = @ + 1, . . . , =, can be calculated from the observations. To do the calculation, n1, . . . , n@ have to be
assumed, and are usually set to zero, which is their unconditional expected value. The residuals serve as
estimates for the /@+1, . . . , /=, which are not observable. Let

b = (G1, . . . , G? , n1, . . . , n@).

The conditional likelihood function for an ARMA(?, @) model is derived by conditioning the density
function on the first ? observations and the first @ residuals.

! () | b, G?+1, . . . , G=) = 5 (G?+1, . . . , G= | ) , b)
= 5 (G?+2, . . . , G= | ) , b, G?+1) 5 (G?+1 | ) , b)
...

= 5 (G= | ) , b, G?+1, . . . , G=) · · · 5 (G?+1 | ) , b).

Assuming {/C } Gaussian, all these terms are univariate Gaussian CDFs with mean zero (by an earlier
assumption of ARMA processes) and variance f2. The conditional log likelihood can then be expressed as

; () | b, G?+1, . . . , G=) = ;>6(! () | b, G?+1, . . . , G=)) =
= − ? − 1

2
;>6(2c) − = − ? − 1

2
;>6(f2) −

=∑
C=?+1

n2
C

2f2 .

This expression can be estimated numerically w.r.t. ) to obtain themaximum likelihood estimates (Hamilton,
1994).

Remark: The conditional likelihood is a good measure of goodness of fit even for non-Gaussian time series
(Brockwell et al., 2016, p. 140).

Assuming /C ∼ GARCH(1, 1) and 4C ∼ # (0, 1) gives the following distribution of -C :

-C | b, f2
C ∼ # (0, f2

C ). (8)

Let ) = (q1, . . . , q? , \1, . . . , \@ , U0, U1, V1) and let b = (G1, . . . , G? , n1, . . . , n<), with < = <0G(?, @).
Given b and f2

? , the recursions

f2
C = U0 + U1nC−1 + V1f

2
C−1 (9)

give fC for C = ? + 1, . . . =, and the likelihood of the above model can be expressed in the following way:
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! () | b, f2
? , G?+1, . . . , G=) = 5 (G?+1, . . . , G= | ) , b, f2

?)
= 5 (G1, . . . , G= | b, )f2

?)

=

=∏
C=?+1

1
fC
√

2c
4
− n 2

C

2f2
C ,

Natural choices for n1, . . . , n< and f2
? are their unconditional expected values, i.e., zero and U0

1−U1−V1
,

respectively. The log of the above likelihood can be maximized numerically w.r.t. ) . Another popular
choice of distribution of 4C is Student’s t-distribution. When Matlab estimates the parameters of an ARMA
model, it maximizes the above likelihoods (The MathWorks, 2022a). However, by default, the conditional
values are b = G0, . . . , G1−? , n0, . . . , n1−@ , which are all set to zero. To obtain confidence intervals for the
estimates, Matlab uses a method called the outer product of gradients for ARMAmodels (TheMathWorks,
2022c).

While the conditional likelihoods where easy to derive, one must make assumptions on the first residuals and
the first ? observations have to be used as presamples, leading to a slight reduction in the sample size. This
should not be a problem if the sample size is large, as the first couple of terms only have a small contribution to
the total log likelihood. It is, however, possible to calculate an exact likelihood function for an ARMA(?, @)
model. Let Γ be the covariance matrix for -1, . . . , -=, defined by Γ8 9 = 2>E(-8 , - 9 ) = � (-8- 9 ), for
{-C } ∼ ARMA(?, @). Let G = (G1, . . . , G=)) be a vector containing the = zero-mean observations of {-C }
and let \ = (q1, . . . , q? , \1, . . . , \@ , f

2). Assuming /C ∼ N(0, f2), the exact likelihood is

! () | G1, . . . , G=) = (2c)−
=
2 det(Γ)− 1

2 exp
(
−1

2
G) Γ−1G

)
If = is large, it can be too computer intensive to find Γ−1. Additionally, the determinant of Γ may explode
or vanish, leading to numerical problems. For these reasons, some more work is needed to derive a easily
computable exact likelihood. One clever way to do this is through a lower unit triangular decomposition
(LUTD) of Γ:

Γ = ���) ,

where � is a lower triangular matrix with ones on the diagonal and � is a diagonal matrix.

Remark: Since Γ is a covariance matrix, it is also positive semi definite. It can be shown that all real positive
semi definite matrices can be decomposed by the Cholesky decomposition Γ = ��) , where � is a lower
triangular matrix (not necessarily with ones on the diagonal) of non-negative numbers (Higham, 2009). Let
� = ��

1
2 , for � and � as defined above. Then it is easy to verify that the Cholesky decomposition is

equivalent to the lower unit triangular decomposition. Thus, all covariance matrices can be decomposed in
the above fashion.

For an ARMA(?, @) process, the LUTD simplifies the calculation of Γ−1 (defined as the inverse of all the
elements on its diagonal) and det(Γ), since Γ81 = 0 for 8 > @ + 1. This implies that �8,1 = 0 for 8 > @ + 1.
The other columns of � has similar characteristics, resulting in the following matrix:

� =



1 0 0 · · · 0 0
021 1 0 · · · 0 0
031 032 1 · · · 0 0
...

...
... · · ·

...
...

0@+1,1 0@+1,2 0@+1,3 · · · 0 0
0 0@+2,2 0@+2,3 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0=,=−1 1


. (10)
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Note that

det(Γ) = det(���) ) = det(���) ) = det(�)det(�)det(�) ) = det(�)2det(�) = det(�)

and that (��) ) = �=, where �= is the = × = identity matrix. Thus, the likelihood can be rewritten as

! () | G1, . . . , G=) = (2c)−
=
2 det(�)− 1

2 exp
(
−1

2
(�G)) �−1�G

)
Since � is a diagonal matrix, this is much simpler to maximize than the former expression of the likelihood.
There are several ways to construct � and �. It can, for example, be done via the innovations algorithm,
described in (Brockwell et al., 2016, p. 87). It is not clear how to do this exactly if /C ∼ GARCH(?, @). The
series {f2

C } has to start somewhere, but conditioning on an early iteration of f2
C defeats the purpose of an

exact likelihood. It might be possible to utilize the week stationarity property of {/C } in a similar fashion as
what is done with {-C }. This is outside the scope of this thesis.

2.5 Prediction with ARMA models

The previous section shows how to obtain good estimates for the parameters in the ARMA model. In this
section, it is assumed that the parameters of the ARMA model are known with certainty. Otherwise, the
uncertainty of the estimates has to be accounted for when calculating the prediction error.

The goal of time series analysis is often to find the best possible prediction of -1, . . . , -=+ℎ based on the
observations G1, G2, . . . , G=. This requires more concrete notation. Let %=. = 5 (-=, -=−1, . . . ) be the
prediction operator. It is the function that minimizes the mean squared error (MSE)

� [(. − %=. | -=, -=−1, . . . )2] .

It can be shown that %=. = � [-=+1 | -=, -=−1, . . . ] minimizes the MSE (Brockwell et al., 2016, p. 34).
Ideally, the task should be to find this function. In practice, however, this task is generally too difficult, and
the objective is instead to find

%̃=. = �̂ [-=+1 | -=, -=−1, . . . ],

the best linear predictor of . based on -=, -=−1, . . . . Thus, %̃=. is on the form
∑=
8=1 28-=−8 . Note that if

/C is indeed Gaussian, %̃= = %=. The innovations algorithm gives a way to find %̃=-C+ℎ exactly (Brockwell
et al., 2016, p. 87). It is unclear how this algorithm works if the noise is assumed to be GARCH(?, @). In
this thesis, the programming language Matlab was used to generate predictions from the ARMA models.
Matlab uses a large sample prediction procedure to predict with ARMAmodels (TheMathWorks, 2022b).
For a causal and invertible ARMA process, the following identities hold:

-=+ℎ =
∞∑
8=0

k8/=+ℎ−8

/=+ℎ = -=+ℎ +
∞∑
8=1

c8/=+ℎ−8

Applying %̃= on both sides of both equations gives
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%̃=-=+ℎ =
∞∑
8=ℎ

k8/=+ℎ−8 (11)

%̃=-=+ℎ = −
∞∑
8=1

c8 %̃=-=+ℎ−8 , (12)

since %̃=/=+ℎ−8 = 0, for 8 ≤ ℎ, and %̃=/=+ℎ−8 = /=+ℎ−8 , for 8 > ℎ. Note that %̃=-=+ℎ−8 = -=+ℎ−8 for 8 > ℎ.
Since -1, . . . , -= are observed, Equation (12) defines a recursive way to obtain %̃=-C+ℎ . Given the infinite
past of -=, Equation (12) gives an exact prediction of -=+ℎ . However, good approximations can be made
by truncating the sum after = observations when the coefficients |c8 | are small and = is large. The above
equations give a neat expression of -=+ℎ − %̃=-=+ℎ , which is the first step towards calculating the MSE of
the forecast:

-=+ℎ − %̃=-=+ℎ =
ℎ−1∑
8=0

k8/=+ℎ−8 .

For an ARMA process with /C ∼ ,# (0, f2), the MSE of the forecast after ℎ steps is

� [(-=+ℎ − %̃=-=+ℎ)2 | -=, -=−1, . . . ] = f2
ℎ−1∑
8=0

k2
8 . (13)

If the coefficients |k8 | are small, this quickly converges when ℎ is large enough. When assuming /C ∼
GARCH(1, 1), Equation (12) still holds. However, the MSE changes in the following way:

� [(-=+ℎ − %̃=-=+ℎ)2 | -=, -=−1, . . . ] = f2
C

ℎ−1∑
8=0

k2
8 = (U0 + U1nC−1 + Vf2

C−1)
ℎ−1∑
8=0

k2
8

where f2
C can be calculated by the recursions described in Equation (9). Matlab uses Equation (12) to

generate predictions and use Equation (13) (or Equation (2.5) with GARCH noise) to generate the associated
prediction error (The MathWorks, 2022b).

2.6 Simulation with ARMA models

Simulation can be used to study the properties of a specific ARMA(?, @) process

-C − q1-C−1 − . . . q?-C−? = /C − \1/C−1 − . . . \@/C−@

with known parameters q1, . . . , q? , \1, . . . , \@ , f
2. Assume that the task is to simulate a realization

-̃=+1, . . . , -̃=+ℎ from an ARMA(?, @) based on the observations G1, . . . , G=. The residuals, nC , for @ < C ≤ =,
function as estimators for the unobserved /@+1, . . . , /=, assuming /C = 0, for C ≤ @. This is not a wild
assumption as it is their unconditional expectation (with or without GARCH noise). Simulating from -=+1
reduces to simulating from /=+1. In principle, no assumption of the particular distribution of /C needs
to be assumed for an ARMA process. There are at least two ways to deal with this. The first way is by
bootstrapping the already observed residuals n@+1, . . . , n=. The second method is to assume a distribution on
/C . The most popular choices are the Gaussian distribution and Student’s t-distribution. These distributions
can easily be simulated from. The latter simulation method, with an assumed normal distribution, was
used to simulate ARMA processes in this thesis, as this is the default approach in Matlab (The MathWorks,
2022d). Once /=+1 is simulated, the simulated value of -=+1 easily follows from the ARMA equations given
the observations and the residuals. Repeating this procedure for /=+2, gives a simulated realization of -=+2,
and so on. Thus, it is possible to simulate as far as necessary into the future. If the noise is assumed to

14



be a GARCH(?, @) process, /=+1 is simulated from the GARCH process, where the residuals n@+1, . . . , n=
are treated similarly as the observations where above. This time, a particular distribution of 4C has to be
assumed, where the default, Gaussian distribution was chosen.

2.7 Model Diagnostics for ARMA models

It is useful to qualify how good a certain ARMA model is fitted to the data. Most notably, this makes it
possible to compare different model configurations against each other, to find the best model for the data.

To quantify how well the model fits the observed time series data, the Akaike information criterion (AIC)
can be used. Denote the maximum likelihood estimates as \̂. The AIC for a model is defined as

��� (\̂) = −2; (\̂) + 2:,

where : is the number of parameters fitted. As an example, for a SARIMA(?, 3, @) × (%, �,&)B process,
: = ? + @ + % +&. The corrected AIC (AICc) is a bias-corrected version of the AIC and is defined as

���2(\̂) = ��� (\̂) + 2: (: + 1)
= − : − 1

,

where = is the sample size used to fit the model. In the case of small sample size, the AICc is usually
recommended, as this is when the bias is most prevalent. Note that the AICc converges to the AIC when
a large sample size is available. The AICc represents the information lost by the model compared to the
actual data. Thus, a lower value indicates a better fit.

The auto-correlation function (ACF) for a time series {-C } is defined as

U(ℎ) = �>A (-C , -C+ℎ)

A plot of the ACF is a nice way to visualize the dependencies of a time series and to choose the order
of @ for an ARMA model. The values of ℎ are displayed on the x-axis and are called lags. Each lag has
the associated value U(ℎ) on the y-axis. 95% confidence bands are also included in the plot. Thus, if for
example, the value at lag 3 is significant, it may be wise to fit an ARMA model with @ ≥ 3 to account for
this. In this thesis, the order of the models where already decided, and the ACF plot was only used to assess
the fit of the SARIMA models. This was done by plotting the ACF of the residuals {nC } of fitted models.

The residuals of a time series model should ideally be independent, as this means that all the dependencies
in the data are explained by the model. By looking at the ACF plot, one can assess whether the residuals
are uncorrelated. In this case, the lags of the ACF plot should not be significantly different from zero.
However, uncorrelated residuals do not imply independence. If, in particular, the squares of the residuals
show significant lags, the residuals still exhibit some serial dependence. Applying a GARCH model to the
ARMA model might solve this problem, as it models the dependence between the variances of {/C }.

Engel’s ARCH test is another way examine if the residuals exhibit conditional heteroscedasticity. Let
q(�)-C = \ (�)/C , for /C = f2

C 4C , with 4C ∼ � �� (0, 1). Then

+0A (-C | -C−1, -C−2, . . . ) = +0A (/C | -C−1, -C−2, . . . ) = � [/2
C | -C−1, -C−2, . . . ] = f2

C ,

since � [/C/C+ℎ] = 0. Thus, to identify heteroscedasticity, one only need to look at the auto-correlation
process. Even if the model accounts for all the correlation of {-C }, the variables in {nC } might still be
dependent. By expressing the squared residuals as a AR(<) process

n2
C = U

2
1n

2
C−1 + · · · + U

2
<n

2
C−< + FC , FC ∼ ,# (0, 1), (14)
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it is clear that homoscedasticity is obtained only when U0 = · · · , U< = 0. This is exactly what is done in
Engel’s ARCH test, where the null hypothesis is

�0 : U0 = · · · , U< = 0

for U 9 as in Equation (14), while the alternative hypothesis is

�0 : n2
C = U

2
1n

2
C−1 + · · · + U

2
<n

2
C−< + FC ,

with U 9 ≠ 0 for at least one 9 = 1, . . . , <. Under �0, it can be shown that n2
C ∼ j2

< (Engle, 1982). In Matlab,
the amount of significant lags to test for (given by < in Equation (14)) can be specified (The MathWorks,
2022e). The ARCH test can also be used to test for GARCH(?, @) processes, since it is locally equivalent
to an ARCH(? + @) process.
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2.8 The Machine Learning Model

Machine learning models usually have a large number of parameters, which in principle gives them the
flexibility to model any function. Machine learning models have recently shown good results in the field of
time series forecasting, and have become a contender to the more traditional statistical time series models
(Kiranyaz et al., 2021). This section covers two types ofmachine learningmodels, that will later be combined
and used to predict future daily new cases for the two Covid-19 data sets. It should be noted that the details
of each operation described in this section can be modified by the user. This section merely describes how
the methods where implemented in this thesis, using an API called TensorFlow.

2.8.1 Convolutional Neural Networks

Convolutional neural networks (CNN) have increased in popularity over the last decades. Their first big
achievements where in the field of image classification (Kiranyaz et al., 2021). Image data usually have lots
and lots of features (one for each pixel). Using traditional fully connected networks to do classification based
on all these features is time consuming, as too many weights must be tuned, and usually results in overfitting.
The CNNs solves these problems by having sparse connections between the first layers of neurons.

Figure 2: An illustration of a one-dimensional kernel operation with kernel size is 3 (TowardsDataScience, n.d.).

Recently, CNNs has shown great strides on one-dimensional data, e.g., time series data (Kiranyaz et al.,
2021). The key tomodeling time series data is to capture the dependence between each time step. CNNs does
exactly this, since they create new features by convolving neighbouring data points together, as illustrated
by Figure 2. With TensorFlow in the programming language Python, there are several settings specifying
the exact nature of the convolutional operation. The following definition only addresses the operation with
default settings, as this is what will be used later (Wei Zhang et al., 2017):

Definition 2.13 (Convolution in one-dimension). Let G = (G1, . . . , G=) be the observed time series and let  
be a B×1 convolutional kernel with corresponding bias 1. Define.8 = (G8 , . . . , G8+B), for 8 = 1, . . . , =− B−1.
The one-dimensional convolution operation can be defined in the following way:

�1 = 5 (.1 + 1)
�2 = 5 (.2 + 1)

...

�=−B+1 = 5 (.=−B+1 + 1),

where 5 (·) is called an activation function and � = (�1, . . . , �=−B+1) is the convolved time series, often
called a feature map.

The activation function is usually non-linear. If not, it would be impossible for the CNN to fit a non-linear
function to the data, as the convolution operation is linear. Recently, because of its efficiency, the most
popular activation function has been the rectified linear unit (ReLu), i.e., the function 5 (G) = <0G(G, 0).
However, other functions have their use cases. The activation function completes a convolutional layer.

A convolutional network consists of one or more convolutional layers, exemplified in Figure 3. Each layer
may have multiple filters and each filter is defined by its associated kernel. The convolutional operation from
Definition 2.13 happens in the filters, where each filter gives a mapping to the next layer of the network. This
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results in sparse connections between the layers of the network, which may reduce overfitting. Additionally,
the feature maps are in some sense shift-invariant, since each element is a function all neighbouring points
of the input time series.

Figure 3: An illustration of a one-dimensional convolutional neural network (Kiranyaz et al., 2021).

The elements inside a kernel are called weights and are tuned through backpropagation. The goal of
backpropagation is to minimize a loss function by tuning the weights in the opposite way of its gradient
(Z. Zhang, 2016). The choice of loss function depends on the problem.

Figure 4: An illustration of a one-dimensional pooling operation, with size 2 and stride 2 (Peltarion, 2022).

The feature maps vary from filter to filter. To reduce the variation between the feature maps, it is common to
add a pooling layer after a convolutional layer. They process the incoming feature map in a similar fashion
as the convolutional layers. However, instead of applying a kernel section wise, it computes a summarizing
statistic over each section, as shown in Figure 4. The dropout layer has a similar purpose. At a specified
rate A, the neurons are set to zero, while the remaining neurons are multiplied by 1

1−A , to keep the sum of
the neurons unchanged (TensorFlow, 2022a). This is a regularization technique that forces the model to
consider more features when training.
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(a) A visualization of how samples are construction for time series
data (MachineLearningMastery, n.d.).

(b) The samples are stored in two matrices, the input matrix and the
output matrix (J. Zhang et al., 2021)

Figure 5: Construction of samples from time series data.

To tune the weights of a one-dimensional CNN, the input series has to be reformatted into samples of
input-output pairs, as Figure 5 illustrates. The input matrix contains subsequences of the input time series
of the same length in each row, and the output matrix contains the ensuing time point(s). For example, if the
task is to use the previous = days to predict the next < days, then each row of the input matrix should contain
= elements, while the output matrix should contain the next < elements of the input time series. This gives
the network input-output samples to learn from and can perform the task at hand once it is trained. Each
filter is applied row wise to the input matrix to produce the feature maps. The predictions from the network
(one for each row) can then be compared to the respective row in the output matrix, and the weighs can be
tuned accordingly.

The output of the CNN can then be used as input in a different model, that can interpret the newly processed
data. A popular choice in time series modeling is to apply a Long-Short Term Memory (LSTM) model to
the convolved data (Luan et al., 2019).

2.8.2 Long Short Term Memory models

The LSTM model is a modified version of a Recurrent Neural Network (RNN) and is a popular option for
time series forecasting. A traditional RNN can be seen in Figure 6. The model takes in the input matrix
G = (G1, . . . , G=) and returns the output matrix > = (>1, . . . , >=). Note that G is not the observed time series.
For one-dimensional data, G could either be the input matrix created from the transformed data, with each
G8 being a sub sequence of observed data (as described in Figure 5), or it could be the output of the previous
layer (for example a CNN). The neurons are connected across time steps through the internal state vectors
B = (B1, . . . , B=). The mathematical description of a RNN is the following (W. Zhang et al., 2019):

BC = 6ℎ (*GC +,BC−1 + 1* + 1, )
>C = g> (+BC + 1+ ) ,

(15)

where*, + and, are weight matrices and 6ℎ and 6> are activation functions, corresponding to the hidden
and output layer, respectively. Excluded from Figure 6 are all the bias vectors, 1* , 1+ and 1, corresponding
to*, + and, , respectively.

Figure 6: An illustration of a RNN (W. Zhang et al., 2019).

Just as for CNNs, all weight matrices are trained by backpropagation. However, for RNNs, the backpropaga-
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tion algorithm also has to traverse all time steps C = 1, . . . =. This is no problem for short sequences of data,
however, for longer sequences, the gradient comprises of more and more multiplicative factors. Consider
the backpropagation of the weights in , . Let LC := L(GC − >C ) be the contribution to the loss function
at time step C. The loss function is the sum of all its contributions ! :=

∑=
C=1 LC . Since this is purely a

demonstration, the basic gradient decent algorithm was used to calculate the gradient (Ruder, 2016). The
error gradient w.r.t. , is (Pascanu et al., 2012):

m!

m,
=

=∑
C=1

mLC
m,

.

The gradient of the contribution to the loss at time step C, mLC

m,
, is propagated back to each time step:

mLC
m,

=
mLC
m>C

m>C

mBC

mBC

m,︸          ︷︷          ︸
contribution to the loss at time C

from internal state BC

+ · · · + mLC
m>C

m>C

mBC

mBC

mBC−1

mBC−1
mBC−2

. . .
mB1
m,︸                                ︷︷                                ︸

contribution to the loss at time C
from internal state B1

=
mLC
m>C

m>C

mBC

mBC

m,
+

C∑
:=2

mLC
m>:

m>:

mB:

mB:

mB:−1

C−:−1∏
8=0

mBC−8
mBC−8−1

mB:

m,
.

Thus, the total loss from = observations is

m!

m,
=

=∑
C=1

C∑
:=1

mL:
m>:

m>:

mB:

mB:

mB:−1

C−:−1∏
8=0

mBC−8
mBC−8−1

mB:

m,

=

=∑
C=1

C∑
:=1

mL:
m>:

m>:

mB:

mB:

mB:−1

C−:−1∏
8=0

[
m

mBC−8−1
6ℎ (*GC +,BC−8−1 + 1* + 1, )

]
mB:

m,

=

=∑
C=1

C∑
:=1

mL:
m>:

m>:

mB:

mB:

mB:−1
, C−:

C−:−1∏
8=0

6′ℎ (*GC +,BC−8−1 + 1* + 1, )
mB:

m,
.

The long term contributions to the gradient suffer from the growing exponent in the weight matrix, . If not
all weights are equal to unity, this effectively results in a vanishing or an exploding contribution to the full
gradient. The same problem occurs when backpropagating * and the biases 1, and 1* . This illustrates
why the traditional RNN struggles to learn long term dependencies. This is known as the vanishing or
exploding gradient problem.

Figure 7: An illustration of a LSTM cell (Varsamopoulos et al., 2018).
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A remedy to this problem is the LSTMmodel, which is illustrated in Figure 7. It uses memory cells to decide
what information to forget from the previous cells, and what new information to keep. This information is
then sent through to the internal state, just as for traditional RNNs. Let G = (G1, . . . , G=) be the same input
matrix as described earlier. The following set of equations define the LSTM model (Varsamopoulos et al.,
2018):

5C = 61
(
, 5 · [ℎC−1, GC ] + 1 5

)
8C = 61 (,8 · [ℎC−1, GC ] + 18)
>C = 61 (,> [ℎC−1, GC ] + 1>)
�̃C = 62 (,� · [ℎC−1, GC ] + 1� )
�C = 5C ∗ �C−1 + 8C ∗ �̃C
ℎC = >C ∗ 62 (�C ) ,

(16)

where 61 and 62 are activation functions.

In the above equation, the forget gate 5C controls what information from �C−1 to "forget" based on the new
information from ℎC−1 and GC . The input gate at time C, called 8C , specifies what new information should be
passed through to the cell state �C at the current time step. The output gate >C controls what information
from�C to output at time step C. The output vector is denoted ℎC . It is used as input in the cell corresponding
to the next time step, C + 1.

The vectors �C , �C−1, >C and ℎC have the same length, often referred to as the number of units D of the
LSTM-layer. The number of units has to be specified during implementation. Similar to other machine
learning models, the weight matrices ,∗ and the bias vectors 1∗ are randomly initialized and are trained
through back propagation in time.

The construction of the LSTM-cell results in an additive structure of the factors of the gradient. Let
! =

∑=
C=1 LC be the loss function. To show that the LSTMmodel solve the vanishing and exploding gradient

problem, it has to be shown that all partial gradients manage the problem. The derivation of the gradient for
, 5 ,,8 and,� and the corresponding biases are all similar to that of, in a RNN. For, 5 , the gradient is

m!

m, 5

=

=∑
C=1

C∑
:=1

mL:
mℎ:

mℎ:

m�:

m�:

m�:−1

C−:−1∏
8=0

m�C−8
m�C−8−1

m�:

m 5:

m 5:

m, 5

.

However, the terms m�C−8
m�C−8−1

from the LSTM model behaves nicer than mBC−8
mBC−8−1

from the RNN:

m�C−8
m�C−8−1

=
m 5C−8
m�C−8−1

�C−8−1 +
m�C−8−1
m�C−8−1

5C−8 +
m8C−8
m�C−8−1

�̃C−8 +
m�̃C−8
m�C−8−1

8C−8 ,

where

m 5C−8
m�C−8−1

= , 5

mℎC−8−1
m�C−8−1

6′1 (, 5 · [ℎC−8−1, GC−8] + 1 5 )

= , 5 · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (, 5 · [ℎC−8−1, GC−8] + 1 5 ),

m8C−8
m�C−8−1

= ,8
mℎC−8−1
m�C−8−1

6′1 (,8 · [ℎC−8−1, GC−8] + 18)

= ,8 · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (,8 · [ℎC−8−1, GC−8] + 18),

and
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m�̃C−8
m�C−8−1

= ,�
mℎC−8−1
m�C−8−1

6′1 (,� · [ℎC−8−1, GC−8] + 1� )

= ,� · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (,� · [ℎC−8−1, GC−8] + 1� ).

Hence

m�C−8
m�C−8−1

=, 5 · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (, 5 · [ℎC−8−1, GC−8] + 1 5 ) · �C−8−1

+ 5C−8
+,8 · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (,8 · [ℎC−8−1, GC−8] + 18) · �̃C−8
+,� · >C−8−1 · �C−8−1 · 6′2 (�C−8−1) · 6′1 (,� · [ℎC−8−1, GC−8] + 1� ) · 8C−8 .

Since 5C has direct influence on the value of m�C−8
m�C−8−1

and has a direct update mechanism, the model can better
regulate the long term gradients. This enables the model to learn long term dependencies in the direction of
, 5 .

The weights,8 ,,� and the biases 1 5 , 18 and 1� can be calculated in a similar way:
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In each of these error gradient, the long term memory is ensured by the forget gate. Finally, the gradients
for the output gate are the following:
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which is no problem since it does not contain the multiplicative term. This shows that, in principle, the
gradient manages to learn long term dependencies in each direction.

The series of vectors [ℎ1, . . . , ℎ=] is the output of the model, but the default behaviour in TensorFlow
(2022b) is to return only the last vector ℎ=, since this vector are associated with G=+1. This is regulated

22



by the input parameter return_sequences. It is important to remark that ℎ= is not supposed to be the
prediction of -=+1. Remember that ℎC are vectors of length D. A fully connected layer is often used after
the LSTM layer(s) to interpret ℎ=, and to return a single predicted value for each ensuing day. This forecast
can then be compared to the observed values, to compute the model’s accuracy.

2.9 Measures of accuracy

To compare the performance of each model, a measure of the accuracy of the forecasts from each model
is needed. Two accuracy measures are considered in this thesis. The first measure is the relative root
mean squared error (RRMSE). Given a =-day prediction Ĥ with corresponding test data H, the RRMSE is
calculated by

RRMSE ( Ĥ, H) =

√
(1/=)∑=

8=1 ( Ĥ8 − H8)2

(1/=)∑=
8=1 |H8 |

× 100%

RRMSE has the advantage of being comparable between data sets of different scales. By dividing the root
mean squared error by the total scale of the testing data, a data set with millions of new cases of Covid-19,
like the global data set, can be compared with models for the Norwegian data set. According to Zain et al.
(2021) and Li et al. (2013), the accuracy of a forecast is deemed excellent when the RRMSE is less than 10
percent, good when the RRMSE is between 10 and 20 percent, fair when the RRMSE is between 20 and 30
percent, and poor when the RRMSE is greater than 30 percent.

The mean absolute percentage error (MAPE) is calculated in the following way:

MAPE ( Ĥ, H) = 1
=

=∑
8=1

| Ĥ8 − H8 |
|H8 |

× 100%

The MAPE is similar to the RRMSE in that it divides the error by the values in the observed test data. It
can therefore, in principle, be compared across data sets with differing scales. The difference between the
MAPE and the RRMSE is that the division happens inside the summation, and that the absolute value is used
to measure the deviation between the prediction and the observed value. This means that extreme outliers
do not contribute as much to the MAPE as it would when using the RRMSE, especially when accompanied
with higher values in the test data.

23



3 Methods

This section specifies the three models used in this thesis and gives the necessary details to replicate the
upcoming results.

3.1 Defining the three models

The previous section described general results for ARMA(?, @) models, CNNs and LSTM models. The
three specific models used in this thesis are now introduced.

3.1.1 The SARIMA model

In the winter of 2020, Taraldsen (2020b) published a so-called toy model that fit the Covid-19 new-cases
data set from Norway nicely. After transforming the new-cases time series {.C }:

-C = log(max(.C , 0.1)), for C = 1, . . . , =,

he fitted the following model to {-C }:

(1 − �) (1 − �7)-C = (1 − \"��) (1 − Θ("��
7)/C , /C ∼ # (0, f2), (17)

i.e., a SARIMA(0, 1, 1) × (0, 1, 1)7 model. The model is completely defined by the three parameters \"�,
Θ("� and f2. The model will later be referred to as the SARIMA model.

Remark: An equivalent formulation of the above SARIMA model is to model the differenced time series
{-̃C } = (1 − �) (1 − �7)-C by the following MA(8) process:

-̃C = (1 − \"��) (1 − Θ("��
7)/C . (18)

A precondition for fitting the SARIMA model to {-C } is that the time series {-̃C } is stationary. This is
explored in Section 4.2.

3.1.2 The Gandalf model

The SARIMA model fits surprisingly well to the Norwegian data set, but Taraldsen discovered that the
squared residuals had a significant correlation at lag 1 (replicated in Figure 15a). To incorporate this into the
model, he used the same SARIMA model, but with the assumption that /C ∼ GARCH(1, 1). Section 2.3.1
established that U1 + V1 < 1. Additionally, Taraldsen fixed U0 = 0.001, because of numeric problems when
U0 approached zero. The model is described by the following equations:

(1 − �) (1 − �7)-C = (1 − \"��) (1 − Θ("��
7)/C ,

/C = f
2
C 4C , f2

C = 0.001 + U1/
2
C−1 + V1f

2
C−1.

This model is also a SARIMA model. However, to not confuse the reader, this model is called the Gandalf
model. Sometimes it is useful to refer both the Gandalf model and the SARIMAmodel together. The plural
SARIMA models will be used for this purpose.
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3.1.3 The CNN-LSTM model

At the time of publishing (July 23rd 2021), a hybrid between a CNN and a LSTM model gave one of the
best predictions of the global new-cases data set (Zain et al., 2021). An outline of the model can be seen
in Figure 8. First observe that the model is designed to take sequences of new cases of seven consecutive
days as input, and outputs the amount of new cases on the ensuing eight day. The input-output pairs are
constructed accordingly. The seven-day sequences are passed through two one-dimensional convolutional
layers with 64 filters each, with all filters having kernel size 3. Both convolutional layers use ReLU as
activation function. After the convolutional layers, a pooling layer of size 1 is added, followed by a dropout
layer. However, the dropout rate was not unspecified.

The remaining filters were then flattened into one long vector, which was used as input to the LSTM layer
with 200 units. The default activation functions were used, i.e., 61 (·) = sigmoid(·) and 62 (·) = tanh(·)
(TensorFlow, 2022b). Finally, there are two fully connected layers; the number of units in the first of these
layers was not specified and was set to 50, while the second one has 1 unit to be able to output one single
value. The fully connected layers used their default activation functions, i.e., ReLU.

Figure 8: The architecture of the specific CNN-LSTM model from Zain et al. (2021).

It should be noted that the observed new-cases data G = (G1, . . . , G=) was min-max-normalized, i.e., the
transformation

min-max(G8) =
G8 −min(G)

max(G) −min(G) ,

was applied to G. The inverse transformation was done to the final prediction, using the same min and max
value. Some sort of normalization of the input data is commonplace in machine learning models, as it
transforms all features to the same scale.

Adaptive Moment Estimation (ADAM), a modified version of gradient decent, was used for training the
model. The MSE was used as loss function. The learning rate was not specified, hence the default learning
rate for ADAM was chosen, i.e., 0.001 (TensorFlow, 2022c). The batch size of the model specifies the
number of input-output pairs to train on before updating the weights, while the number of epochs is defined
as the number of times the whole training data set is fed to the network. Zain et. al used a batch size of 22
with 472 epochs. The choice was based on a grid search algorithm using the Optuna framework. The same
number of epochs was initially adopted to the model in this thesis, and the (unspecified) dropout rate was
set to 0.2 from initial testing.

The model implemented in this thesis had 347109 weights (or parameters) in total. Hence, it is quite
a complicated function. On the other hand, at the end of the day, it is simply a function that takes in
seven values, and outputs a single value. Mathematically, the general modeling task can be described in
the following way: Considering each eight-day sequence (G8 , . . . , G8+7) of observations, find a function
F (G8 , . . . , G8+6 | %) = -̂8+7 that minimizes the loss function
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; (F (G8 , . . . , G8+6 | %) − G8+7),

w.r.t. the large parameter space %, for all 8 = 1, . . . , = − 7. Both the Covid-19 data sets have clear weekly
patterns, with higher prevalence in the weekdays than the weekends. The two SARIMA models were
constructed with this in mind. Can a model with such a simple problem description learn this pattern as
well? This is explored in Section 4.

Remark: Fitting a CNN-LSTM model will not guarantee the same parameter estimates each time since the
fitting procedure involves a lot of randomness: Firstly, the parameters are randomly initialized before the
training begins. Secondly, the dropout layer randomly excludes 20% of the data in each batch in each epoch.
However, for an already fitted model, the prediction is deterministic, as the dropout rate is excluded when
performing this operation (TensorFlow, 2022a).

Remark: Each of these stochastic parts has their own seed. To ensure reproducible, all these seeds must
be fixed. The first function in the provided Python script, called set_all_seeds, fixates all the necessary
seed values, and is applied at the beginning of each predictive function. Even after doing this, the results
may vary depending on software and hardware. The exact specifications used to produce the results in this
thesis are soon provided.

3.2 On the different ways of forecasting

While a general method for forecasting with the SARIMA models were established in Section 2.5, a
forecasting method for the CNN-LSTM model has yet to be specified. In this thesis, two different methods
were used to forecast with each of the models.

Taraldsen and Zain et. al. generated the forecast from their models in fundamentally different ways.
Taraldsen used the SARIMA models to predict the next seven days directly, as in Section 2.5, while the
CNN-LSTM model published by Zain et. al. predicted 28 days into the future. However, the exact method
used to predict these 28 days was not specified. Judging by the accuracy of the model prediction, and the
fact that the prediction seems to be as accurate for the final days of the prediction as for the first few days
(see Figure 7 in the article by Zain et al. (2021)), the model has probably been given updated information of
the actual test data along the way. An alternative is to update the model with the newest prediction, which
is more similar to how the SARIMA models generate their ℎ-step prediction directly. This section specifies
these two prediction schemes.

3.2.1 Prediction scheme 1

A trained CNN-LSTMmodel takes seven consecutive amounts of new cases from the Covid-19 data set and
returns the predicted amount on the eight, ensuing day. To predict the new cases on day nine, the amounts
for the seven preceding days are needed as input. When it is specified that the CNN-LSTM model uses
prediction scheme 1, the most recent input of the model comes from the test data, i.e., the actual value
of the day that was previously predicted. In Figure 9, only the grey-colored squares are used as input in
for prediction, and the red-colored Ges where originally part of the test data. Hence, they were therefore
and was therefore not seen by the model under training. Thus, the model gets updated information before
generating the next prediction. In this fashion, a series of one-step predictions can be used to generate a
ℎ-step prediction. Note that ℎ is limited to the amount of test data.
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Figure 9: An illustration of prediction scheme 1 for the CNN-LSTM model.

The SARIMA models are much less computer intensive than the CNN-LSTM model. For this reason, it
was decided that when the SARIMA models used prediction scheme 1, they make a series of one-step
predictions, and fit a new model with all the available data at each time step. This is reflected in Figure 10,
where the only difference from Figure 9 is that all data points preceding the next value to be forecasted are
highlighted in grey.

Figure 10: Illustration of prediction scheme 1 for the SARIMA models.

3.2.2 Prediction scheme 2

Using prediction scheme 1 implied that the trained models preformed a series of one-step predictions with
up-to-date information. When it is specified that prediction scheme 2 is used, the models are never exposed
to the test data. For the CNN-LSTM model, a series of one-step predictions are executed to perform a
ℎ-step prediction. However, the predictions themselves are used as input to predict the next day, as opposed
to the test data. This is illustrated in Figure 11, since the red test data is replaced by green -̂8s. When
prediction scheme 2 is used for the SARIMAmodels, they simply perform the ℎ-step prediction described in
Section 2.5. This is similar to the CNN-LSTMmodel’s prediction scheme 2 since the predictions replace the
observations from the training data as the prediction unfolds (see Equation (12)). Eventually, the input of the
forecasts using prediction scheme 2 are solely predicted values. By construction, this scheme should result
in less precise predictions, and the prediction error should rapidly increase, as explained by Equation (13)
for the SARIMA models. This is a more realistic prediction scheme for the task at hand, as one often wants
to predict multiple steps ahead, to have time to form a response based on it.
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Figure 11: Illustration of prediction scheme 2 for the CNN-LSTM model.

3.3 Programming languages

Matlab was used to implement the SARIMA models and to create all the plots in the thesis. Python was
used for the CNN-LSTM model, along with TensorFlow. Finally, R was utilized to pre-process the two data
sets. The relevant hardware and software specifications are given in Table 1. All code used to produce the
result of this thesis can be found in Appendix B.

Table 1: Relevant computer specifications.

Processor Intel Core i7-3820
CPU 3.60 GHz

Operating system Windows 10 Pro
Matlab version R2022a
Python version 3.7

TensorFlow version 2.8
R version 3.6.1
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4 Applying the models on Covid-19 data

In this section, the models were applied to the two Covid-19 data sets. Initially they were applied on the
training and test sets used in the two introductory articles published by Zain et. al. and Taraldsen, to
hopefully replicate their results. Concrete definitions of these data sets will now be given. Taraldsen’s data
set denotes the training set Taraldsen used to present the two SARIMA models. It consists of new cases in
Norway from February 21st 2020 to November 10th 2020, which amounts to 264 days. The CNN-LSTM
model was originally evaluated on Zain’s data set, i.e., the global new cases from January 4th 2020 to July
17th, which is 196 days of data. The models were later compared on other partitions of both the Norwegian
and the global data set. Finally, a simulation study was conducted to explore the behaviour of the models in
more depth.

4.1 Data

The two data sets used in this thesis were introduced in Section 1. Some additional details about the data
gathering process are now given.

The worldwide new cases data set, provided by WHO (2022), contains daily new Covid-19 cases from over
200 countries. A provided R-script was constructed to sum up the new cases on each day for each country,
and can be found in Appendix B. This data set is called the global data set. The last day included in both
data sets was February 20th 2022. The Norwegian data set started on February 21st 2020, while the global
data set begun some weeks earlier, on January 4th. This amounts to 731 and 779 days of data for the two
models, respectively. However, the last week of the data sets are especially uncertain and was ignored. Zain
et. al. reference the same data set from WHO. According to their article, their data set contained new cases
from 216 countries. However, at the time of writing, WHO’s new cases data set contains data from 236
countries. This may cause minor deviations in the results compared to the results reported by Zain et. al.

4.2 Exploring the fit of the SARIMA models on the Taraldsen’s data set

ARMAmodels assume stationary input data. To approach homoscedasticity, the input data for the SARIMA
model and the Gandalf model was log-transformed, preceded by a max(·, 0.1) operation to deal with zero
valued inputs. The two difference operators (1 − �) (1 − �7) was applied to the log-transformed data. As
remarked in Section 3.1, this transformed time series should be stationary to fulfil the SARIMA model
assumptions. Figure 12 shows the result of applying these transformations to the Norwegian and the global
data set. The first row shows the two time series. A rapid increase of the daily new cases can be observed
in the last few months of both time series. For the log-transformed time series in the next row, the variance
is drastically reduced, and the rapid increase in the final months of the data sets is not as notable. On
the contrary, a fast upward trend can be observed the earlier parts of both data sets. Both time series in
the last row of the figure look quite stationary, which implies that the difference operations did what they
are supposed to. The exception is at some of the earlier dates, where both time series have a much larger
fluctuations than for later dates. These fluctuations seem to be conditional on previous fluctuations since
high fluctuations are followed by high fluctuations and vice versa.
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Figure 12: The Norwegian and the global new cases time series with transformations.

Figure 13 shows the seven-day forecasts from the SARIMA models when fitted on Taraldsen’s data set.
The plot includes the predictions and the prediction intervals for the SARIMA model and the Gandalf
model. Like Taraldsen, prediction scheme 2 was used to generate the seven-day forecasts of new cases from
November 11th to November 18th. The accuracy measures and the parameters estimates have been included
in the plot. The forecast from the Gandalf model is slightly closer to the observed values than for the
SARIMA model, as indicated by both measures of accuracy. The prediction interval corresponding to the
Gandalf model is narrower than the SARIMA model’s, almost by a factor of four. The parameter estimates
for both models were also included and are close to Taraldsen’s estimates. These minuscule differences can
be explained by small adjustments in the data set provided by FHI since Taraldsen extracted the data set.
Figure 2 in Taraldsen’s article was used for reference.
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(a) seven-day forecast of Norwegian data from November 11 2020

(b) Zoomed version of (a). The upper limit of the prediction interval for the SARIMA model is not in frame

Figure 13: Replication of results from Taraldsen (2020b) with the SARIMA model and the Gandalf model.

The better performance of the Gandalf model on the Taraldsen’s data set suggests that the underlying noise
during this partition of the Norwegian data set is closer to GARCH(1,1) noise than Gaussian noise. This
was explored further by looking at the ACF plot of the residuals in Figure 14.
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(a) Normal (b) Squared

Figure 14: ACF plot of residuals and squared residuals for SARIMA model on Taraldsen’s data set.

The ACF plot of the residuals in Figure 14(a) barley shows one significant lag, indicating that the SARIMA
model fits the data well. Some lack of fit can be observed in Figure 14(b). The p-value produced by Engel’s
ARCH test with two significant lags (to test for GARCH(1, 1) noise) is lower than 0.05. These results
suggest conditional heteroscedasticity in the training data, and motivates the application of the Gandalf
model to the original Norwegian data set. The ACF plots of the squared residuals from the Gandalf model
can be seen in Figure 15(a). The plot displays three significant lags, specifically at lag 1, 3 and 14. While
they are barely significant, this is worse than for the SARIMA model. Additionally, the p-value generated
by the ARCH test on the residuals is even lower than its SARIMA equivalent.

(a) Normal (b) Squared

Figure 15: ACF plot of residuals and squared residuals for Gandalf model on Taraldsen’s data set.

4.3 Exploring the fit of the CNN-LSTM model on Zain’s data set

In the article from Zain et al. (2021), the CNN-LSTM model was initially trained in Zain’s data set. As
remarked in Section 3.1.3, the process of fitting a CNN-LSTM model involves randomness. Thus, the
predictions may vary each time the model was fitted. To account for this, Zain et. al fitted their model ten
times. With each of the ten fitted models, a 28-day forecast with prediction scheme 1 was generated. From
these forecasts, ten RRMSE scores and MAPE scores can be calculated. Zain et. al. reported the mean of
these ten RRMSE scores and of the ten MAPE scores to be 5.30 and 0.19, respectively. By inspection of
the prediction and the test data from Figure 7 in their article, the mean MAPE score seems way too low, and
was not used for reference in this thesis.
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Figure 16: Mean loss function of ten equally specified CNN-LSTM models, trained on Zain’s data set.

Initially, 472 epochs were run to fit the ten CNN-LSTMmodel. However, this resulted in a mean RRMSE of
8.35, which is worse than Zain et. al. The loss function for the models might explain why. Figure 16 shows
the mean of the ten loss functions (one for each model). The red line is the value of the mean loss function at
100 epochs. Observe that the mean loss quickly decreases to around 0.0015. While it continues to decrease
slightly afterwards, using all the 472 epochs might cause overfitting. To prevent this, the number of epochs
for all CNN-LSTM models used in this thesis was reduced to 100. A more practical benefit of this change
was that the time used to fit each model was substantially reduced. Figure 17 shows the predictions of the
ten CNN-LSTM models as specified above, together with a RRMSE and MAPE score for each model. The
mean RRMSE and MAPE from the ten models is also included. Observe than the mean RRMSE is lower
than what Zain et. al reported.

Figure 17: Forecast with ten CNN-LSTM models from July 18th to August 14th 2020 on the global new-cases data
with prediction scheme 1. The models were trained on Zain’s data set.
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4.4 Comparing the three models

All three models performed well on the training and test sets used in their respective articles. This was to
be expected; after all, they were constructed for those particular data sets. This section explores how good
the models predict on their opposing original data sets, how they perform across other partitions of the data
sets, and the effect on the models’ performances with reduced samples sizes.

4.4.1 Comparisons on Taraldsen’s data set

Initially, ten CNN-LSTM model were trained on Taraldsen’s data set and used to forecast the new cases on
the seven ensuing days. The forecasts are shown in Figure 18. Observe that the ten forecasts of the new
cases on November 18th are more spread out than the foretasted values on November 11th. This is expected
when using prediction 2.

Figure 18: Forecast with ten CNN-LSTM models from November 11th to November 18th 2020 on the Norwegian
new-cases data with prediction scheme 1. Taraldsen’s data set was used for training.

To compare the SARIMA models with the CNN-LSTM models, it would have been possible to fit ten of
each SARIMA models and generate one forecast for each of them. This would give ten forecasts for each
model. However, since the fitting and prediction of the SARIMAmodels are deterministic operations (when
a deterministic numerical optimization algorithm is used), this is not meaningful for these models. It is
also impractical to have ten forecast as opposed to one. There are many possible ways to display one single
prediction from the ten CNN-LSTMmodels. A tempting choice was to choose the CNN-LSTMmodel with
the best RRMSE and MAPE. However, this can only be determined when the test data is known. Hence,
a measure of central tendency of some sort was a better alternative. The mean was the measure of choice,
calculated as the mean of each of the ten predicted values of each day. This will later be called the mean
CNN-LSTM prediction. The accuracy of this single prediction must not be confused with the mean of the
ten accuracy measures.
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Figure 19: Forecast from the three models with prediction scheme 2, from November 11th to November 18th 2020 on
the Norwegian new-cases data. Taraldsen’s data set was used for training.

The three seven-day forecasts generated from the SARIMA model, the Gandalf model, and the mean CNN-
LSTM prediction, can be seen in Figure 19. Note that the upper limit of the prediction intervals for the
SARIMA model and the Gandalf model are mostly outside the plot. More importantly, note that there is no
prediction interval for the machine learning model. The Gandalf model performed best with respect to the
two accuracy measures, and the CNN-LSTM model was more accurate than the SARIMA model.

Zain et. al. presented the CNN-LSTMmodel with a 28-day prediction using prediction scheme 1. One such
prediction was generated by all three models, after they were trained on Taraldsen’s data set. These 28-day
forecasts are shown in Figure 20. The Gandalf model gave the most accurate forecast, and the SARIMA
model trailed closely behind. The CNN-LSTM model was worse than its competitors. The ten individual
predictions from the CNN-LSTM model can be found in Appendix A (Figure 41).

Figure 20: Forecast from the three models with prediction scheme 1, from November 11th to December 8th 2020 on
the Norwegian new-cases data. Taraldsen’s data set was used for training.
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The time to fit and predict with each model may also be an important factor to consider when differentiating
the models. To fit a single CNN-LSTM model to the above training data, Python used around 7.3 seconds,
while generating a seven-day and 28-day forecast from a pretrainedmodel took around 1.27 and 2.55 seconds,
respectively. Each of these processes are repeated ten times. The SARIMA model took 1.3 seconds to fit
and used 0.04 and 14.39 seconds to generate seven and 28-day forecasts on the fitted model, respectively.
To fit the Gandalf model on Taraldsen’s data set took around 1.30 seconds, while the forecasts took 0.05 and
37.90 seconds, respectively. The large deviation from the plain SARIMA model is a result of the slightly
longer time to fit. When using prediction scheme 1, this difference increases with the length of the forecast,
since they fit a new model on each consecutive day. The results are summarized in Table 2. Note that these
time measurements depend on a lot of factors, like the amount of samples in the data and the hardware used.
However, for the sample sizes used in this thesis, the relative differences in time between the models did not
change notably.

Table 2: Time used to fit and forecast with each of the models, trained on Taraldsen’s data set.

Model Time to fit Seven-day forecast 28-day forecast
SARIMA 0.32 seconds 0.04 seconds 14.39 seconds
Gandalf 1.30 seconds 0.05 seconds 37.90 seconds

CNN-LSTM 64.57 seconds 12.67 seconds 25.45 seconds

When using prediction scheme 1 to predict the 28 days ensuing Taraldsen’s data set (i.e., November 11th to
December 8th 2020), the SARIMA models estimate a new set of parameters each time a new value from
the test data is available. Figure 21 displays the change in parameter estimates for each of the parameters of
the Gandalf model. No significant deviation from the estimates obtained on the original training set could
be observed in any of the four parameters. This is not that surprising, since adding 28 days to the original
264 days is a relatively small addition. A possible linear upward trend can be observed for the estimated
U1, mirrored by a linear decrease in the V1 estimates. These may eventually deviate significantly from their
original estimates.

Figure 21: The parameter estimates from the Gandalf models used to predict the 28 days shown in Figure 20. The
dates along the x-axis is the last day used to train the model used to predict the day after. The colored dotted lines are
the parameter estimates of the Gandalf model fitted on Taraldsen’s data set.

Figure 22 displays the equivalent plot for the SARIMA model. While the estimates for \"� and \("� are
stable, the f2 estimates follows a clear linear trend, eventually reaching a significant difference from the
original f2 estimate.
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Figure 22: The parameter estimates from the SARIMA models used to predict the 28 days shown in Figure 20. The
dates along the x-axis is the last day used to train the model used to predict the day after. The colored dotted lines are
the parameter estimates of the SARIMA model fitted on Taraldsen’s data set.

4.4.2 Comparisons on Zain’s data set

The two SARIMA models were tested on Zain’s data set. Figure 23 shows the seven-day forecasts from the
SARIMA models, while Figure 24 shows the ACF plots of their residuals and their squared residuals. Both
models were more accurate than they were on Taraldsen’s data set, and the SARIMA model scored slightly
lower than the Gandalf model on both measures. Some of the parameter estimates are quite different from
Taraldsen’s data set. In particular, the estimated variance for the SARIMAmodel were almost twice as high,
and the estimated \"� and \("� are quite different between the Gandalf models. The SARIMA model is
more accurate than the Gandalf model, but it also has a much wider prediction interval.

Figure 23: Forecast from the SARIMA models with prediction scheme 2 from July 18th to July 24th on the global data
set. Both models were trained on Zain’s data set.
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The ACF plot in Figure 24(a) of the residuals from the SARIMA model showed several significant lags,
suggesting that some of the correlation in the data have not been captured by the model. The ACF of the
Gandalf-residuals (Figure 24(c)) were similar. When the residuals contain first order dependencies, it is
not surprising that the squared residuals are serially dependent (see Figure 24(b) and Figure 24(d). The
added GARCH(1, 1) model for the noise component was not enough to account for this. Engel’s ARCH test
supports these inferences, with p-values close to 0 for both the SARIMA and the Gandalf model’s residuals.

(a) ACF of residuals from the SARIMA model (b) ACF of squared residuals from the SARIMA model

(c) ACF of residuals from the Gandalf model (d) ACF of squared residuals from the Gandalf model

Figure 24: ACF plot of residuals and squared residuals for the SARIMA model and the Gandalf model, trained on
Zain’s data set.

Figure 25 and Figure 26 shows the seven-day and the 28-day forecasts from the three models trained on
Zain’s data set, respectively. The seven-day forecast used prediction scheme 2 (like Taraldsen), while the
28-day prediction used prediction scheme 1 (like Zain et. al). On the seven-day forecast, both SARIMA
models obtain a slightly lower RRMSE score than the machine learning model. However, all results are
excellent according to Zain et al. (2021) and Li et al. (2013). Note that the prediction interval for the
SARIMA model is outside the field of interest, but can be observed in Figure 23.
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Figure 25: Forecast from the three models with scheme 2, from July 18th to July 25th 2020 on the global new-cases
data. All models were trained on Zain’s data set.

On the 28-day forecasts, all three models obtain a slightly lower RRMSE score than what Zain et. al.
reported with their CNN-LSTM model. Note that the RRMSE and the MAPE for the mean prediction are
slightly lower than the mean of the RRMSE and MAPE for the ten models in Figure 17.

Figure 26: Forecast from the three models with scheme 1, from July 18th to August 14th 2020 on the global new-cases
data. All models were trained on Zain’s data set.

The 28 sets of estimated parameters for both models were collected and plotted in Figure 27. Similar
phenomena to their equivalent plots based on Taraldsen’s data set can be observed. However, the deviation
of the f2 estimate is even more drastic.
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(a) The parameter estimates from the SARIMA model. (b) The parameter estimates from the Gandalf model.

Figure 27: The parameter estimates for the two SARIMA models used to predict the 28 days shown in Figure 26. The
dates along the x-axis is the last day used to train the model used to predict the day after. The colored dotted lines are
the parameter estimates of the SARIMA model fitted on Zain’s data set.

As a curiosity, 28-day forecasts with prediction scheme 2 were compared between the three models. The
prediction from the ten individual CNN-LSTM models, in Figure 28(a), seems to converge to straight lines.
This suggests that the CNN-LSTM model predictions does not maintain the weekly structure of the test
data for longer forecasts. For the mean CNN-LSTM prediction in Figure 28(b), the same phenomenon is
amplified. On the contrary, the forecasts from the two SARIMAmodels keep theweekly structure throughout
their forecasts. Surprisingly, the machine learning model was more accurate than the SARIMA models.
Naturally, the prediction intervals for the SARIMA models expand since prediction scheme 2 was used.

(a) (b)

Figure 28: Forecast from the three models with scheme 2, from July 17th 2020 on the global data set. The models were
trained on Zain’s data set.

4.4.3 Comparisons with less training data and at different partitions

Until now, all data available before the final day of the training data sets have been used under training. More
data is usually preferred in statistics. On the other hand, the handling of a new positive Covid-19 test has
changed throughout the pandemic. Say, for example, that in an earlier period, a newly infected individual
and all people close to them were obligated to stay at home, whereas in a later period, a new ruling says that
neither the infected nor their closest people need to stay home if they did not feel ill. Giving the models
information from both of these periods might confuse then, and hence, make them more inaccurate.
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(a) Seven-day forecast (b) 28-day forecast

Figure 29: Forecasts using the 100 previous Norwegian data training data from November 10th 2020.

Figure 29 displays the seven-day and 28-day forecasts from the three models when reducing the training
data set to the 100 days prior to November 10th on the Norwegian data set. The most notable differences
are that the Gandalf model is less accurate on the seven-day forecast, and that the machine learning model
is less accurate on the 28-day forecast. The CNN-LSTM model is more accurate than the SARIMA models
on the seven-day forecast, but less accurate on the ensuing 28 days. Both the forecasts and the associated
prediction intervals from the SARIMAmodels are closer together than in Figure 19 and Figure 20, where all
264 data points were utilized. Overall, the results are worse than with all 264 data points, but not by much.

(a) Seven-day forecast (b) 28-day forecast

Figure 30: Forecasts using the 50 previous Norwegian data training data from November 10th 2020.

Figure 30 displays the same forecasts, but trained on the 50 data points prior to November 10th 2020. The
measures of accuracy are all higher than in Figure 19 and Figure 20, were all previous data was used. The
accuracies are close to what is displayed in Figure 29. The SARIMA models are inseparable, as both their
predictions and their prediction intervals align perfectly. The associated parameter estimates across the
28-day forecasts can be seen in Figure 31. As opposed to the earlier plots from Taraldsen’s data set, the
estimated f2 is stable, and the estimated \"� and \("� between the two models are almost identical. Also
note that the estimated U1 is close to zero, while V1 stays close to 1.
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(a) The parameter estimates from the SARIMA model. (b) The parameter estimates from the Gandalf model.

Figure 31: The parameter estimates for the two SARIMA models used to predict the 28 days shown in Figure 30. The
dates along the x-axis is the last day used to train the model used to predict the day after. The colored dotted lines are
the parameter estimates of the SARIMA model fitted on Zain’s data set.

Themodels have only been fitted on one particular ending date for each data set, while some experimentation
has been done with the sample size. In the remaining paragraphs of this section, they will also be compared
on the ending dates corresponding to day 100, 300, 500 and the last possible day, for both data sets. For all
these ending dates, the models were fitted with all preceding data points, but also with the preceding 100 and
50 samples. In total, this gives 14 training sets from the Norwegian and 14 training sets the global data set.
On each training set, the three models were evaluated on both a seven-day and a 28-day forecast. Note that
the ending dates are different for the Norwegian data set than for the global data set, since the latter starts
at an earlier date. Since the last week of the data set may have inaccurate measurements, the last possible
day to include in test data was February 13th 2022 (for both data sets). Thus, the last possible day to train
for a 28-day forecast is 28 days earlier than February 13th, i.e., January 16th 2022. For simplicity, this was
also the last training day for seven-day forecasts. This amounts to a total of 56 forecasts for each model.
In Table 5 in Appendix A, the mean prediction of the ten CNN-LSTM models universally achieves lower
RRMSE and MAPE scores than the mean RRMSE and MAPE of the ten prediction, which was reported
by Zain et. al. For this reason, only the RRMSE and MAPE of the mean prediction were compared to the
other models in the following table. All the results are shown into Table 3.
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Table 3: All forecast results from the SARIMA model and the Gandalf model, and the mean CNN-LSTM prediction.
Note that the RRMSE and MAPE from the CNN-LSTM model is based on the mean prediction of ten models. All
28-day predictions used prediction scheme 1, while prediction scheme 2 was used for all seven-day predictions.

Data set Last training
date

Sample
size

Days ahead
prediction

SARIMA model Gandalf model CNN-LSTM model

RRMSE MAPE RRMSE MAPE RRMSE MAPE

Norway 30.5 2020 100 7 118.52 100.00 118.52 100.00 64.23 88.08
28 74.12 60.63 75.13 61.46 73.05 87.49

50 7 87.02 56.39 87.02 56.39 64.52 40.73
28 60.35 40.00 262.40 118.28 52.72 41.21

10.11 2020 264 7 17.46 15.63 6.37 5.52 8.03 7.91
28 11.73 9.21 10.00 7.89 17.91 16.96

100 7 15.57 12.4 14.64 11.20 10.63 10.73
28 10.93 8.55 10.87 8.20 25.01 25.98

50 7 12.18 9.06 12.18 9.06 11.37 11.27
28 11.29 8.00 11.29 8.00 27.71 28.36

16.12 2020 300 7 17.22 13.71 16.82 13.25 14.18 11.83
28 25.26 21.62 26.71 20.25 28.85 22.54

100 7 19.03 15.16 19.89 16.02 7.41 6.65
28 24.77 20.03 23.93 19.16 29.22 22.85

50 7 16.24 12.70 16.24 12.70 18.28 14.00
28 28.14 22.61 28.41 22.49 25.81 20.82

04.07 2021 500 7 10.29 7.35 14.15 10.82 7.85 7.72
28 14.48 11.23 14.67 12.02 17.06 11.72

100 7 5.55 4.09 7.79 5.05 11.56 11.95
28 14.65 11.62 14.53 10.95 30.38 20.10

50 7 21.25 17.26 20.87 16.97 10.79 9.23
28 15.88 12.51 15.88 12.32 35.02 23.32

16.01 2022 696 7 8.66 6.84 8.39 6.83 23.05 21.81
28 10.93 11.06 9.41 9.38 18.76 16.57

100 7 9.43 7.72 11.18 8.98 24.04 18.24
28 8.90 8.78 9.19 9.12 29.56 30.89

50 7 12.97 11.03 3.59 3.08 23.76 22.69
28 8.86 8.51 8.87 8.28 45.55 46.06

Global 12.04 2020 100 7 30.39 28.25 35.32 31.34 10.72 9.85
28 6.76 5.52 6.95 5.45 7.34 6.33

50 7 15.65 14.44 15.63 14.42 14.38 13.47
28 6.24 5.19 6.33 5.32 9.86 8.51

17.07 2020 196 7 6.77 5.67 6.06 4.86 8.01 6.48
28 3.86 2.89 4.81 3.56 4.58 3.21

100 7 4.10 3.31 4.11 3.22 5.90 3.59
28 4.07 3.14 4.06 3.06 4.17 3.20

50 7 4.27 3.79 4.26 3.71 4.90 3.04
28 4.29 3.45 4.09 3.21 3.97 3.12

29.10 2020 300 7 6.79 6.16 4.75 3.52 11.19 9.90
28 5.10 4.15 6.54 4.79 12.19 11.07

100 7 6.79 6.16 6.61 6.01 7.97 6.79
28 5.12 4.23 5.14 4.16 9.03 7.59

50 7 6.69 5.88 6.67 5.85 9.44 8.41
28 5.64 4.44 5.74 4.44 10.46 9.34

17.05 2021 500 7 3.95 3.20 10.15 9.26 13.36 12.99
28 4.36 3.61 5.82 5.19 9.29 7.89

100 7 6.44 5.53 7.08 6.18 20.43 20.33
28 4.61 3.92 4.71 4.00 15.30 13.83

50 7 2.84 2.34 2.86 2.37 18.24 17.88
28 4.56 3.84 4.58 3.86 38.96 39.08

14.01 2022 725 7 14.81 11.74 10.49 9.42 12.17 12.08
28 8.56 6.98 7.28 5.96 20.59 20.08

100 7 12.24 10.52 13.64 10.86 10.35 10.30
28 7.06 6.02 7.30 5.93 20.64 20.11

50 7 12.47 10.66 13.16 10.39 11.38 10.64
28 6.62 5.80 6.64 5.49 85.18 82.83
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To get a grasp of the results in the above table, all the MAPE scores for each model were plotted in Figure 32.
Some outliers can be observed for all models, but they mostly score below 25. The MAPE scores for the
machine learning model seem to be a bit more spread out compared to the SARIMA models.

(a) (b) (c)

Figure 32: MAPE scores for each model from Table 3.

The MAPE scores of the models were examined further in Figure 33. To account for the outliers shown in
Figure 32, the median MAPE for different subgroups of the above table, rather than the mean. Figure 33(a)
shows that the SARIMA model obtains the lowest median MAPE score, with the Gandalf model closely
behind. In Figure 33(b), the models were compared on a seven-day and a 28-day forecast. The SARIMA
model scores lower on the 28-day forecasts, while the Gandalf model gave the best performance on the seven-
day forecasts. Themachine learningmodel struggles substantiallymore on the 28-day forecasts. Figure 33(c)
compared the MAPE between the Norwegian and the global data set. All models did significantly better on
the global data set, but the SARIMA models obtained an almost twice as low MAPE score as the machine
learning model on this data set. Figure 33(d) demonstrates that reducing the sample size to 100 did not affect
the MAPE much. When only 50 data points were available, the SARIMA models received lower MAPE
scores than previously, while the CNN-LSTM models increased slightly.

(a) (b)

(c) (d)

Figure 33: Comparisons of models based on MAPE scores from Table 3

The same analysis was also done on the RRMSE scores from Table 3. These results were placed in
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Appendix A (Figure 42 and Figure 43), since they gave more or less the same information as the analysis of
the MAPE. The main difference from the MAPE scores is that the Gandalf model performed worse relative
to the other two models, and that the CNN-LSTM model had a slightly better performance than the other
two on the seven-day forecasts.

4.5 The models on simulated realizations

While no analytical expression for constructing a probability interval of the CNN-LSTM model exists, by
using a parametric bootstrap technique, it is possible to estimate a distribution around the RRMSE scores
and the MAPE scores for the models. The spread of this distribution is an alternative measure of the spread
of the predictions from the CNN-LSTM model. Assuming that the time series are stochastic in nature and
that the underlying model is known and can be simulated from, it would be possible to use the models
to forecast on each of these simulations. This could be used to control the previous results. Maybe the
SARIMA model was lucky in the prediction on the one known realization? Unfortunately, the underlying
model for the Covid-19 new cases will forever be unknown. However, as the above analysis suggests, the
Gandalf model was a good model for the time series. Using a Gandalf model trained on Zain’s data set, 1000
simulated realizations of the global data from July 18th to August 14th 2020 were generated. The specific
parameter estimates of this Gandalf model are equivalent to the estimates in Figure 23, i.e., \"� = 0.09,
\("� = −0.66, U1 = 0.04, and V1 = 0.89. In Figure 34, three of these 1000 realizations were plotted
together with the forecast, the theoretical prediction interval for the Gandalf model, and the 95% quantile
range based on the 1000 realizations. Observe that the three realizations are contained inside the 95%
prediction interval, and that the quantile range approximates the theoretical prediction interval quite well.

Figure 34: Three simulations from the Gandalf model. The model was trained on the original global training data. The
28 ensuing days were then simulated.

Under the assumption that the underlying process is the Gandalf model, each of these simulated realizations
can be treated as a different realization of the global time series. Using prediction scheme 1, Figure 35
shows the prediction from the three models on the three realizations. Of particular interest was Figure 35(b),
where the machine learning model struggled to keep up with the fast upward trend of the realization.
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(a) (b) (c)

Figure 35: Predictions on three simulated realizations from the Gandalf model with prediction scheme 1.

For each of the 1000 simulations, one such forecast was made from each of the models, and the RRMSE
and MAPE were evaluated. For 1000 simulated realizations, this gives 1000 RRMSE scores and 1000
MAPE scores for each model. Figure 40 shows the result of this operation for the Gandalf model, displayed
as a histogram. The Gandalf model is expected to deliver the lowest RRMSE and MAPE scores, since it
generated the "test data". Hence, these distributions serve as a baseline for the performance of the two other
models. The measures of accuracy on the actual test data can also be seen in the plot. The Gandalf model
was expected to deliver more accurate forecasts on the simulated realizations (from the Gandalf model) than
on the test data. It would therefore be reasonable to expect the density of this histogram to center below the
original accuracy measures. However, this is not the case. In fact, none of the scores were lower than the
scores on the original test set.

Figure 36: Distribution of RRMSE and MAPE based on predictions from the Gandalf model on 1000 simulated
realizations from the Gandalf model. Prediction scheme 1 was used to generate the predictions, once for each simulation.

A closer inspection of the parameters for the Gandalf model could explain the above result. Since the
predictions were generated using prediction scheme 1, the Gandalf model was fitted 28 times for each of
the 1000 simulated realizations. For the 200 first simulations, the parameter estimates were plotted together
with a dotted line where the parameter estimates on the training data were. The confidence interval are also
based on the original data; they are therefore constant over time. Figure 37 displays the result. The estimates
are mostly contained inside the confidence intervals of the original estimates. Some bias can be observed
for U1 and V1. This supports the fact that the simulations were generated correctly, since they suggest the
same model as the one originally fitted.
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Figure 37: The deviation of the four Gandalf parameters on the 200 simulated realizations. For each simulated
realization, prediction scheme 1 was used to fit models and predict one day at a time. This gives 28 fitted models and
parameter estimates for each simulation.

The Gandalf model is fitted and predicts the new cases on log-scale. Hence, it was hypothesised that
the transformation back to normal scale caused the above result. The log-transformed prediction of the
simulated data was evaluated, and the results are shown in Figure 38. Once again, all accuracy measures
are above the original score.

Figure 38: Distribution of RRMSE andMAPE based on log-scaled predictions from the Gandalf model using simulated
realizations from the Gandalf model on log scale. Prediction scheme 1 was used to generate the predictions, once for
each of the 1000 realizations.

Even though the accuracy of the Gandalf model on the Gandalf simulations were worse than on the actual
test data, Figure 36 can serve as a baseline for the two other models. The SARIMA model was expected
to predict the results quite well, as the model is closely related to the Gandalf model. By inspection of
Figure 39, this was the case.
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Figure 39: Distribution of RRMSE and MAPE based on predictions from the SARIMA model on 1000 simulated
realizations from the Gandalf model. Prediction scheme 1 was used to generate the predictions, once for each realization.

The main reason for conducting the simulation study in the first place was to see how well the CNN-LSTM
model predicted the simulated realizations. Again, there is no analytical expression for the prediction error
for the machine learning model. Assuming the Gandalf model is a perfect model for the Covid-19 time
series, this was another way to monitor the spread of the model’s prediction. Observe that most of the
RRMSE scores for the CNN-LSTMmodel around 40. Once again, none of the forecasts were more accurate
on the simulated realizations than the actual test data w.r.t. the two measures.

Figure 40: Distribution of RRMSE and MAPE based on predictions from the CNN-LSTM model on 1000 simulated
realizations from the Gandalf model. Prediction scheme 1 was used to generate the predictions, once for each realization.
The mean CNN-LSTM prediction was used to generate the forecasts.

To make the comparisons easier, it was helpful to have concrete measures to summarize the three pairs of
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histograms. The arithmetic mean gives precise information about how accurate each model was in total,
while the standard deviation (Std) measures the spread of the distributions. However, for the purposes of
this study, the measure of spread of each distribution should be relative to the magnitude of the errors.
The relative standard deviation (RStd) satisfies these criteria. It is calculated by dividing the standard
deviation of the distributions by their mean. Table 4 displays the RStd for both distributions of measures, for
each model. The Gandalf model has the lowest relative spread for both measures, and the lowest mean. The
SARIMA model accuracy measures are only slightly more spread out. The RStd of the RRMSE scores for
the mean CNN-LSTM predictions are about twice as high as the other two, while it was four times higher
for the MAPE scores.

Table 4: Relative standard deviation of accuracy measures of 28-day forecasts on 1000 simulated realizations from the
Gandalf model. The models were initially trained on Zain’s data set.

Models RRMSE MAPE

Mean Std RStd Mean Std RStd

Gandalf 13.08 3.10 0.24 9.97 1.89 0.19
SARIMA 15.61 4.42 0.28 11.96 2.76 0.23
CNN-LSTM 47.57 26.24 0.55 39.48 30.12 0.76
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5 Discussion

This section discusses the results from the previous section, suggests possible improvements, and addresses
some problems with the applicability of the models.

5.1 The performance of the three models

The previous section studied the performance of the three models across the data sets, which are now
discussed.

5.1.1 Accuracy

The models were developed for the early parts of the Covid-19 data sets, where they all delivered fairly
accurate forecasts overall. Across the two yeas of the data set, a lot has happened to the way a positive
Covid-19 test is treated. Everything from the different variations of the virus to the rapid antigen tests and
the vaccines have contributed to this. A worry was that this might alter the behaviour of the time series, and
thus hamper the performance of the models. As this thesis have shown, this was not the case; the models
continued to deliver good forecast across both time series (in the sense that the mean RRMSE for all models
were around 20).

The SARIMA model gave the most accurate forecasts overall. However, the gap between the SARIMA
model and the Gandalf model was narrow when comparing MAPE scores. The prediction interval for the
Gandalf model were consistently much narrower than the SARIMA model’s. Thus, an argument can be
made for choosing either of these models. The CNN-LSTM model has the overall highest RRMSE and
MAPE score and does not come with a prediction interval. This is major drawback of the machine learning
model. It is still quite fascinating that the CNN-LSTM manages to predict with such good accuracies, since
it includes more than 300000 parameters: especially for the lower sample sizes.

One of the largest gaps between the models was illuminated when the RRMSE scores were grouped by
forecast length (and prediction scheme, since all 28-day forecasts used prediction scheme 1 and vice versa).
The SARIMA model performed much better than the other models on 28-day forecasts. On the seven-day
predictions, the models performed equally good. Moreover, the SARIMA model was the only model that
performed worse on these forecasts. This has a natural explanation, that will be discussed later. On both
measures of accuracy, the machine learning model gave the worse performance on the 28-day forecasts,
while it was just as good at forecasting seven days with prediction scheme 2. A possible flaw was that the
CNN-LSTM models were only fitted initially for the 28-day predictions with predictions scheme 1. On
the other hand, the SARIMA models were fitted at each step. The decision was based on the fact that the
CNN-LSTM models had a much longer time to fit (see Table 2). This seems to have had a clear effect
on the measures of accuracy in Figure 33 and Figure 43. These high inaccuracies of the 28-day forecast
translates over to the other comparisons in Figure 33 and Figure 43. In cases where only 50 training data
were available, this effect was quite clear, since the machine learning model has to forecast half the length of
the training data. If the CNN-LSTM model were forecasted in the same way, the accuracies on the 28-day
forecasts might have been more comparable to the SARIMA model, and thus, the other comparisons would
also go more in the favour of the CNN-LSTM model.

It is important to note that the above statements are only based on the 28 partitions of each data set in Table 3.
The results might have changed if the analysis were done with different ending dates, with a different set of
sample sizes, and with other prediction lengths.

Overall, the models were more precise on the global data set. This data set has a much higher volume of new
cases, and the relative changes are not as great as in the Norwegian data set. This means than the RRMSE
and MAPE often will be lower for the global data set. This was despite the fact that some lack of fit was
observed for the SARIMA model. Ideally, these relative measures of accuracy should be comparable across
the two data sets. In practice, this remark shows that these comparisons may be flawed.
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5.1.2 The changing volatility and the effect of sample reduction

Figure 12 showed that the series (1 − �) (1 − �7)-C exhibits conditional heteroscedasticity, with higher
variations in the early parts of both data sets. This suggests that a conditional variance model should be used
for all SARIMA models when the earliest parts of the data sets were included. This might explain why the
Gandalf model performed better than the SARIMA model on Taraldsen’s data set. At the later periods, the
series (1− �) (1− �7)-C looks quite stationary for both data sets. Thus, a GARCH(1, 1) model should have
little to no advantage here; it might even cause overfitting. For lower sample sizes, there is a greater chance
of avoiding the heteroscedastic parts of the data sets. On the other hand, if all previous data is used, these
parts are sure to be included. This is reflected in Table 3 and the associated Figure 33 and Figure 43, where
the SARIMA model is more accurate for lower sample sizes. The opposite relation is true for the Gandalf
model and the CNN-LSTM model.

The estimated \"� and \("� were stable for both the SARIMA models on both original data sets, seen
Figure 21, Figure 22 and Figure 27, with the exception of \"� for the Gandalf model on the global data set.
Together with Figure 12, this suggests that the moving average structure of these models fits the data well.
Otherwise, they should vary slightly with each additional data point. The major differences between the
parameters of the two models were in the estimates associated with the noise component. The same figures
show significant declines in the estimated f2 parameters. The models were trained on the parts of the data
with conditional heteroscedasticity (see Figure 12). Hence, the SARIMA model might have to reduce its
estimated variance when fitted on the test data, which is more stable than the average variation of the training
data. With prediction scheme 1, the models were fitted for each new day. The variance can therefore be
adjusted to the new data before each new value is predicted. This is not the case when using prediction
scheme 2, where the initial estimated f2 is used for the entire forecast. This may explain why the SARIMA
model is the only model with increased RRMSE and MAPE on the seven-day forecasts. In Figure 21 and
Figure 27, the noise estimates U1 and V1 in the Gandalf model, are more stable for the two original data sets.
However, if this were to be a problem, Figure 28 should then be the SARIMA model’s downfall, since the
parameter estimates were never updated on a 28-day forecast. This was not the case, which suggests that the
persistence volatility does not cause any significant drawback to the performance of the SARIMA model for
Zain’s data set. Additionally, the SARIMA model performs better than the Gandalf model on the seven-day
forecast trained on Zain’s data set. An explanation might be that the end of this data set is far enough away
from the part with higher variation. There is some evidence of the Gandalf model achieving more accurate
seven-day forecasts when the elevated variance is closer to the end of the training data, where the SARIMA
model has not had time to compensate. A closer investigation of the performances of each model should be
made around these problem areas.

The downwards trajectory of the f2 estimates for the SARIMA model on the two original data sets explains
the narrowing prediction intervals for 28-day forecasts in Figure 20 and Figure 26. The earlier assessment
that the Gandalf model have narrower prediction intervals might not be true for later data partitions, where
the time series are close to homoscedastic and has less variation overall.

Figure 30 and Figure 29 suggest that the similarity between the forecast of the two models increases as the
sample size reduces. A close inspection of Figure 12 gives a more reasonable interpretation. In the figure,
the part of the data with increased volatility is excluded from the training set when only considering the past
50 observations, and mostly excluded with the most recent 100 observations. Thus, the added GARCH(1, 1)
process should not differ much from the regular white noise process. Figure 31 supports this statement,
since the estimated variance for the SARIMAmodel stays constant across the 28-day forecast. Additionally,
the estimated U1 and V1 stayed close to 0 and 1, respectively. This gives the following conditional variance
process for the Gandalf model:

f2
C = U0 + U1/

2
C−1 + V1f

2
C−1 ≈ f

2
C−1,

since U0 was fixed at 0.001. Thus, the GARCH1, 1) model approximates conditional homoscedasticity. If
U0 had not been fixed, an alternative set of estimates would have been that U1 = V1 ≈ 0 and U0 ≈ f2. The
similarity between the estimated \"� and \("� in the two models supports the fact that the variance models
are similar. This explains why the models’ forecasts and prediction intervals align perfectly in Figure 30.

Even if the models preformed great overall, there were some partitions of the data sets that were seemingly
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harder for the models to model. This might simply be due to chance, but when all models preformed badly,
it is reasonable to assume that the time series in question changed behaviour on those partitions. Maybe
the vaccines started to become available to the masses. Or maybe a new variant increased in prominence.
These connections are interesting in themselves and should be investigated.

5.1.3 Results from the simulation study

The main motivation behind the simulation study was to quantify the spread of the predictions from the
CNN-LSTMmodel. None of the RRMSE scores nor theMAPE scores from the predictions on the simulated
realizations were lower than they were on original test data, with the Gandalf model. This was strange since
all the simulated realizations came from the Gandalf model. Most of the predictions on these were therefore
expected to be more accurate than on the original test data. An initial hypothesis was that this was due to the
transformation back to normal scale. After all, the SARIMAmodels were built to perform on the log-scaled
data sets. However, the same phenomenon was observed. One cannot exclude the possibility of this being
due to a programming error. However, the simulated prediction interval aligns quite well with the Figure 34,
and the parameter estimates from the Gandalf model do not go astray. These results provide some assurance
that the simulated realizations and the associated forecasts were generated correctly, which gives credibility
to later findings.

By inspection of Figure 34, an alternative explanation could be that the actual test data behaves nicer than
the simulated realizations, since these are observably much wilder. The high volatility in the beginning of
the data set might partially explain this. If this is the correct explanation, comparing the spread of these
predictions might still be fruitful. The SARIMA model is closely related to the Gandalf model and was
expected to be about as accurate on the simulated realizations. However, the SARIMA model showed a lot
wider prediction intervals on the forecasts ensuing Zain’s data set. Hence, it was reasonable to assume a
wider spread of the RRMSE scores for the SARIMAmodel than the Gandalf model. For the Gandalf model,
the mean RRMSE score was 13.08, and the relative standard deviation was 0.24. On the MAPE scores,
the mean and the RStd were slightly lower. The SARIMA model achieved almost as good results but has
a slightly higher mean and a wider spread for both measures. However, the relative spread of this forecast
is nowhere close the relative width of the prediction intervals on the actual test data, where the prediction
interval for the SARIMAmodel was consistently three to four times wider than the Gandalf model’s interval.
Whatever spread is measured by the RStd on these measures of accuracy, it should not be compared directly
to the prediction intervals. The machine learning models struggled to predict the simulated realizations,
with a mean RRMSE around 50 and MAPE around 40. The RStd was two and four times higher than the
Gandalf model, respectively, suggesting that the spread of its forecast on this partition of the data is higher.

5.2 Possible improvements

The models used in this thesis were, for the most part, replicated from the articles by Taraldsen and Zain et.
al. While the models performed fairly well on both data sets, there are several plausible ways to improve the
models.

5.2.1 The machine learning model

CNN-LSTM models has a lot of hyper parameters that might have a big impact on the results. Zain et.
al. did their own hyper parameter tuning with the Optuna framework. Sadly, they did not publish all their
optimal hyper parameters. Two of these parameters were essential to knowwhen building the model, namely
the dropout rate and the number of neurons in the fully connected layer. As noted earlier, the global data set
used in this thesis was not identical to what Zain et. al. used. Thus, even the published hyper parameters
might not be optimal. The same parameters were used across all partitions of the global data set. The same
hyper parameters were also used for the Norwegian data set, where they are even less likely to be optimal.
This was intentional, since if the models managed both data sets well using the same architecture, they
effectively capture some ground truth about the spread of Covid-19. However, to increase the performance
of the CNN-LSTM models, their hyper parameters model should be individually tuned for the Norwegian
and the global data set. Ideally, they should be re-tuned for each evaluated partition of the two data sets.
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Alterations to the entire model structure should also be included in the hyper parameter searches. This
includes the number of layers of each type (CNN layers, LSTM layers and fully connected layers, pooling
layers, and dropout layers) and the number of neurons in each of these. This would of course result in a lot
longer training times, but if they do not take several days, this should not be a hindrance in practice.

Using the MSE as loss function might not be ideal for this problem. After all, the forecasts were evaluated
based on the RRMSE and the MAPE. Some experimentation with the use of MAPE as loss function was
made. Ironically, this resulted in a worse MAPE of the forecasts. In hindsight, this loss function might have
required a completely different set of hyper parameters to give optimal forecasts. To choose the optimal
number of epochs, the models should incorporate early stopping, e.g., with a stopping criterion set to 0.0015.
Lastly, the median might be a better choice of measure of central tendency for the model’s forecasts, as it
deals better with outliers than the mean.

Figure 28 demonstrates a weakness of the CNN-LSTM model in its current form: it does not capture the
weekly variation and the models fades out as the prediction length increases. This did not reduce the
performance of the model in this one example, but this might not be consistent on other partitions of the
data sets. This motivates a variation of the model: The weekday model. This model is really seven sub
models, one for each day of the week. Thus, one of these models only considers the new cases on each
Monday, another considers all Tuesdays, and so on. Together, they can be used to predict the new cases on
each ensuing day. This could potentially be a better alternative, as it would capture the weekly structure by
construction. A problem with this proposed model is that this reduces the amount of training data for each
of these sub models by a factor of seven. The model was tested (and the code for the model are included
in the Python-file in Appendix B), but the initial tests did not achieve great accuracies, which is why it was
excluded from the thesis. Looking back, each sub model should be treated individually, with potentially
unique model architectures (determined by a unique hyper parameter search).

5.2.2 The SARIMA models

The structure of the SARIMAmodels was natural for modeling the Covid-19 new cases data, as both data sets
have a clear weekly pattern and an ever-changing mean. This is supported by the highly desirable behaviour
of the residuals on Taraldsen’s data set in Figure 14. Figure 12 showed that the series (1 − �) (1 − �7)-C
exhibits higher-than-usual variance in the early parts of this data sets. Together with the ACF plot of the
squared residuals, this suggests that a conditional variance model would have a better fit to the noise than
a white noise model. Even if the residuals and the accuracy of the two forecasts on Taraldsen’s data set
improved with the added GARCH(1, 1) model, the squared residuals on this data set was not improved by
the added GARCH(1, 1) model. It is possible that a different GARCH model might have been a better
alternative. This could be determined by a grid search for ? and @, where each combination (up to some
limit) was compared based on the AICc. This must be done with caution. As should be clear by now, the
SARIMAmodel fits the later partitions of the data set better than the Gandalf model. Even the GARCH(1, 1)
model seem to cause overfitting, as the predictions are slightly less accurate overall. The ACF plot of the
residuals based on Zain’s data set from the SARIMA model showed that many lags were significant. A
similar grid search as described above might have improved the results on the global data set even further
and should have been attempted.

As described in Section 2.4, Matlab uses a conditional likelihood to estimate the parameters for the SARIMA
models. The exact likelihood should give slightly more precise estimates, especially for the reduced sample
sizes. Another suggestion for lower sample sizes is to assume that either /C (or 4C , when a GARCH model
is used) follows Student’s t-distribution instead of the Gaussian distribution.

In all plots of the parameters for the Gandalf model (see Figure 21, Figure 27 and Figure 37) U1 + V1 was
consistently quite close to 1. The Exponential GARCH(1, 1) model fixates this sum to be one, and should
be considered as the noise process for these data sets.

None of the models presented in this thesis takes into account that the new cases are integers. In an
earlier article, Taraldsen (2020a) gives several alternatives for modeling new Covid-19 cases. Interer-valued
GARCH (INGARCH) models are one such example. The COM-Poisson process has been shown to deal
well with both overdispersion and underdispersion, which are commonalities when modeling count data.
Zhu (2012) proposes a COM-Poisson INGARCH model for modeling time series of counts. This model
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should be tested on both data sets used in this thesis.

5.3 A note on the application of the models in the real world

For the most part, all three models manage to forecast the daily new Covid-19 cases data set fairly well.
However, the utility of these forecasts can be questioned. The new cases data only includes reported cases.
The regular weekly fluctuations of the time series reflect this, with a drastic decrease in the reported cases at
the weekends. These are not correct representations of the spread of the virus. Neither are the forecasts of
these series. How useful is this if the goal is to foresee the next outbreak? For this to bring utility, multiple
data sources should probably be used in conjunction. Examples of this are mobility data and more detailed
models of the person-to-person trends. However, each data source introduces more uncertainty in the final
prediction. The models might be used on top of other types of models to account for the weekly fluctuations
in the new cases data sets. There might also be more utility in creating models based on the weekly new
cases, as these gives a better representation of the actual number of infected people. The hospitalizations
due to Covid-19 might also paint a more correct picture of the severity of the situation, especially in the
post-vaccine era, where most infected people only have minor symptoms. The problem with both of these
alternatives is that they contain less samples than the daily new-cases data set.

The different partitions of the data sets might require different models for optimal results. Thus, the models
should continually be tested on the newest data if they were to be used in a real-world setting.
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6 Conclusion

This thesis presented promising results for the three models. Overall, the SARIMA model performed better
than the other two models. For the CNN-LSTM model, this might be due to sub-optimal hyper parameters.
There seems to be persistence of volatility in the beginning of both the Norwegian and the global data set.
On these partitions, the Gandalf model is more accurate than the SARIMA model and has a much tighter
prediction interval. On most of both data sets, however, the variance is homoscedastic and much lower
in magnitude. Here, the added GARCH effect merely introduces more uncertainty, possibly resulting in
overfitting. Additionally, the reduced variance estimate will reduce the width of the prediction interval for
the SARIMA model on the majority of both data sets. The simulation study showed that the spread of the
two SARIMA models was about as low, while the spread of the machine learning model was multiple times
higher. However, the simulated realizations where wilder than the test data, so the results are not directly
comparable to the results on this data set. While the CNN-LSTM model competes with the other models,
there were few scenarios where it achieved better results. It is still quite remarkable that a model with over
300000 parameters gives accurate forecasts for such low sample sizes. If one had to choose one of these
models for modeling daily Covid-19 new cases, the SARIMA model with Gaussian white noise would most
likely give the best results overall. However, if clear signs of conditional heteroscedasticity are present at
during the last few days of the training data, the Gaussian white noise may be replaced by GARCH(1, 1)
noise.
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Appendix

A Figures and tables

Figure 41: Forecast with ten CNN-LSTM models from November 11th to December 8th 2020 on the Norwegian
new-cases data. The previous 264 days there used as training data.
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Table 5: All forecast results from the mean prediction of ten CNN-LSTM models and the mean RRMSE of the ten
(individual) models. All 28 day predictions used prediction scheme 1, while prediction scheme 2 was used for all seven
day predictions.

Data set Last training
date

Sample
size

Days ahead
prediction

CNN-LSTM mean prediction Ten CNN-LSTM models

RRMSE MAPE Mean RRMSE Mean MAPE

Norway 30.05 2020 100 7 64.23 88.08 70.75 92.84
28 73.05 87.49 75.77 89.19

50 7 64.52 40.73 65.04 42.56
28 52.72 41.21 53.58 41.95

10.11 2020 264 7 8.03 7.91 12.68 12.36
28 17.91 16.96 18.73 17.81

100 7 10.63 10.73 11.16 11.26
28 25.01 25.98 25.48 26.07

50 7 11.37 11.27 11.97 11.76
28 27.71 28.36 28.05 28.45

16.12 2020 300 7 14.18 11.83 15.43 13.45
28 28.85 22.54 29.26 22.76

100 7 7.41 6.65 12.72 12.38
28 29.22 22.85 30.24 23.82

50 7 18.28 14.00 18.35 14.23
28 25.81 20.82 26.17 20.98

04.07 2021 500 7 7.85 7.72 11.23 10.38
28 17.06 11.72 17.57 12.66

100 7 11.56 11.95 13.11 13.03
28 30.38 20.10 30.78 21.08

50 7 10.79 9.23 11.41 9.40
28 35.02 23.32 35.16 23.42

16.01 2022 696 7 23.05 21.81 23.17 21.81
28 18.76 16.57 20.72 18.27

100 7 24.04 18.24 25.53 21.51
28 29.56 30.89 29.89 31.11

50 7 23.76 22.69 24.88 23.65
28 45.55 46.06 45.72 46.15

Global 12.05 2020 100 7 10.72 9.85 10.79 9.89
28 7.34 6.33 7.54 6.44

50 7 14.38 13.47 14.41 13.47
28 9.86 8.51 9.93 8.56

17.07 2020 196 7 7.00 4.18 7.16 4.51
28 4.58 3.21 4.86 3.59

100 7 5.90 3.59 6.17 3.93
28 4.17 3.20 4.46 3.41

50 7 4.90 3.04 5.03 3.93
28 3.79 3.12 4.21 3.31

29.10 2020 300 7 11.19 9.90 11.27 9.94
28 12.19 11.07 12.28 11.14

100 7 7.97 6.79 8.05 7.02
28 9.03 7.59 9.13 7.71

50 7 9.44 8.41 9.49 8.46
28 10.46 9.34 10.53 9.39

17.05 2021 500 7 13.36 12.99 13.42 12.99
28 9.29 7.89 9.43 8.19

100 7 20.43 20.33 20.46 20.33
28 15.30 13.83 15.36 13.87

50 7 18.24 17.88 18.26 17.88
28 38.96 39.08 39.03 39.08

14.01 2022 743 7 12.17 12.08 12.80 12.32
28 20.59 20.08 21.08 20.42

100 7 10.35 10.30 10.58 10.40
28 20.64 20.11 20.75 20.22

50 7 11.38 10.64 11.76 11.08
28 85.18 82.83 85.18 82.83
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(a) (b) (c)

Figure 42: RRMSE scores for each model from Table 3.

(a) (b)

(c) (d)

Figure 43: Comparison of models based on RRMSE scores in Table 3
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B Code

In this thesis, three programming languages were utilized. Matlab was used for the econometric model
and for all the generated plots, while Python was used for the CNN-LSTM model. Finally, R was used for
pre-processing of the Norwegian and the global data set. To plot the results from the CNN-LSTMmodel, the
forecasts made in Python was saved and loaded in Matlab. It should be noted that most of the functionality
is commented out. To run the code, simply uncomment the desired section of code. Additionally, the file
paths should be replaced to fit the user’s computer. The code files and the two data sets are available on
request.

R-code

The following code was used to pre-process the global and the Norwegian data new cases data sets.

1 # Pre−process global
2 df = read.csv("WHO−COVID−19−global−data.csv")
3 df = df[, c(1, 2, 5)]
4 colnames(df) = c("Date","Country", "New_cases")
5 # Cut−off at February 20th 2022
6 df$Date = as.Date(df$Date , format = "%Y−%m−%d")
7 last_date = as.Date("2022−02−20", format = "%Y−%m−%d")
8 df$Date_diff = last_date − df$Date
9 df_ = df[df$Date_diff ≥ 0,]

10

11 new_cases_one_country = df_[df_$Country == "AF",]
12 worldwide_aggregated = new_cases_one_country[
13 !is.na(new_cases_one_country$Country),3]
14

15 countries_list = unique(df[df$Country!= "AF",]$Country)
16 countries_list = countries_list[!is.na(countries_list)]
17

18 for (country in countries_list){
19 new_cases_one_country = df_[df_$Country == country,]
20 worldwide_aggregated = worldwide_aggregated + new_cases_one_country[
21 !is.na(new_cases_one_country$Country),3]
22 }
23 write.csv(worldwide_aggregated[−1],"worldwide_aggregated_new.csv",
24 row.names = FALSE)
25

26 # Pre−process Norway
27 df = read.csv("antall−meldte−covid−19−t.csv", sep = ";")
28 df = df[, c(1, 3)]
29 colnames(df) = c("Date", "New_cases")
30 # Cut−off at February 20th 2022
31 df$Date = as.Date(df$Date , format = "%d.%m.%Y")
32 last_date = as.Date("2022−02−20", format = "%Y−%m−%d")
33 df$Date_diff = last_date − df$Date
34 df_ = df[df$Date_diff ≥ 0,]
35 write.csv(df$Nye.tilfeller,"new_cases_Norway.csv", row.names = FALSE)
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Python-code

The following code was used to derive all predictions from the CNN-LSTM model. The results were then
transferred to the Matlab file and was from there plotted.

1 import random
2 import time
3 from numpy import array
4 import numpy as np
5

6 import pandas as pd
7 import os
8 import tensorflow as tf
9 from keras.models import Sequential

10 from keras.layers import LSTM
11 from keras.layers import Dense
12 from keras.layers import Dropout
13 from keras.layers import Flatten
14 from keras.layers import RepeatVector
15 from keras.layers import TimeDistributed
16 from keras.layers.convolutional import Conv1D
17 from keras.layers.convolutional import MaxPooling1D
18 from sklearn.preprocessing import MinMaxScaler
19 import matplotlib.pyplot as plt
20

21

22 seed_value = 1234
23

24 # Set seed in all environments to help reproducibility
25 def set_all_seeds(seed_value):
26 # 1. Set `PYTHONHASHSEED` environment variable at a fixed value
27 os.environ['PYTHONHASHSEED']=str(seed_value)
28 # 2. Set `python` built−in pseudo−random generator at a fixed value
29 random.seed(seed_value)
30 # 3. Set `numpy` pseudo−random generator at a fixed value
31 np.random.seed(seed_value)
32 # 4. Set `tensorflow` pseudo−random generator at a fixed value
33 tf.random.set_seed(seed_value)
34

35

36 # import data
37

38 # Set current working directory one layer up
39 path_parent = os.path.dirname(os.getcwd())
40 os.chdir(path_parent)
41

42 ts_global = np.array(pd.read_csv(os.getcwd() + r"\Data\new_cases_global.csv"))
43 ts_norway = np.array(pd.read_csv(os.getcwd() + r"\Data\new_cases_Norway.csv"))
44

45

46 def split_sequence(sequence, n_steps):
47 # Formats the data for supervised learning
48 X, y = list(), list()
49 for i in range(len(sequence)):
50 # find the end of this pattern
51 end_ix = i + n_steps
52 # check if we are beyond the sequence
53 if end_ix > len(sequence ) −1:
54 break
55 # gather input and output parts of the pattern
56 seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
57 X.append(seq_x)
58 y.append(seq_y)
59 return array(X), array(y)
60

61 def k_step_prediction(k, x_train, model, scaler, prev_days = 7):
62 '''
63 Iteratively performes a one step prediction and use the newly
64 predicted as input to forecast the next day
65 :param k: amount of days ahead to predict
66 :param x_train: the time series used
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67 :param model: pre−trained model
68 :param scaler: the pre−trained min−max scaler,
69 used to revert the prediction back to normal scale
70 :param prev_days: Amount of previous days used to predict the next day.
71 :return: k−step prediction
72 '''
73 predictions = []
74 x_input = x_train[−prev_days:] # last prev_days days
75 x_input = x_input.reshape((1, prev_days, 1))
76 yhat = model.predict(x_input, verbose=0)[0][0].reshape(1,1)
77 predictions.append(yhat)
78 for i in range(1, k):
79 x_input = x_input.reshape(prev_days, 1)
80 # remove first day and add prediction to the end of the input
81 x_input = np.concatenate((x_input[1:], yhat), axis = 0)
82 x_input = x_input.reshape((1, prev_days, 1))
83 yhat = model.predict(x_input, verbose=0)[0][0].reshape(1,1)
84 predictions.append(yhat)
85

86 for i in range(len(predictions)):
87 predictions[i] = scaler.inverse_transform(predictions[i])[0][0]
88 return predictions
89

90

91 def train_model(X, y, days_ahead, prev_days = 7):
92 '''
93 :param X: Data matrix
94 :param y: Response vector
95 :param days_ahead: days ahead to be forecasted after last input
96 :param n_steps: amount of previous days used as input in forecasting
97 :return:
98 '''
99 model = Sequential()

100 model.add(Conv1D(filters=64, kernel_size=3, activation='relu', ...
input_shape=(prev_days, 1)))

101 model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
102 model.add(MaxPooling1D(pool_size=1, strides=1))
103 model.add(Dropout(0.2, seed=seed_value))
104 model.add(Flatten())
105 model.add(RepeatVector(1)) # days_ahead
106 model.add(LSTM(200, return_sequences=True))
107 model.add(TimeDistributed(Dense(50))) # 100
108 model.add(TimeDistributed(Dense(1)))
109 model.compile(optimizer='adam', loss='mse') # 'mean_absolute_percentage_error'
110 # fit model
111 history = model.fit(X, y, epochs=100, verbose=0, batch_size=22) # skal v re ...

472, 22
112 loss = history.history['loss']
113 # print(model.summary()) # uncomment to view amount of variables
114 return model, loss
115

116

117 def prediction_global(ts, endpoint, prev_days, len_train = −1, days_ahead = 7):
118 # The new version uses the repeat vector layer, and uses the
119 # Time Distributed Wrapper at the end insted of at the beginning.
120

121 '''
122 :param ts: Input time series to be forecasted
123 :param endpoint: Last index used for training the model
124 :param prev_days: Amount of days used to predict the next days
125 :param len_train: Amount of days back from endpoint used to train the model
126 :param days_ahead: Amount of days forecasted after endpoint
127 :return: days_ahead−forecast
128 '''
129 set_all_seeds(seed_value)
130 if len_train == −1:
131 len_train = endpoint
132 scaler = MinMaxScaler()
133 # only use train data to fit scaler:
134 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1)
135 scaler.fit(x_train)
136 x_train = scaler.transform(x_train)
137 X, y = split_sequence(x_train, prev_days)
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138 # reshape from [samples, timesteps] into
139 # [samples, subsequences, timesteps, features]
140 X = X.reshape((X.shape[0], prev_days, 1))
141

142 preds = np.zeros((10, days_ahead))
143 loss = []
144 for i in range(10):
145 start_time = time.time()
146 model, loss_i = train_model(X, y, days_ahead, prev_days=prev_days)
147 loss.append(loss_i)
148 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
149 start_time = time.time()
150 preds[i] = np.round_(k_step_prediction(
151 days_ahead, x_train, model, scaler, prev_days=prev_days))
152 print("Time used to forecast with model", i + 1, ": ",
153 (time.time() − start_time), " sec")
154

155 np.savetxt(os.getcwd() + r"\Predictions/glob_preds_" + str(days_ahead) +
156 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) +
157 "_train_data.csv", preds)
158

159 # This part can be uncommented to inspect and save the mean loss function
160 # loss = array(loss)
161 # mean_loss = loss.mean(axis = 0)
162 # print(mean_loss.shape)
163 # np.savetxt(os.getcwd() +
164 # r"\Predictions/mean_loss_on_original_test_data.csv", mean_loss)
165 # print(mean_loss.shape)
166 # plt.plot(mean_loss)
167 # plt.ylabel('loss')
168 # plt.xlabel('epoch')
169 # plt.show()
170 return preds
171

172 def prediction_norway(ts, endpoint, prev_days, len_train = −1, days_ahead = 7):
173 # The new version uses the repeat vector layer, and uses the
174 # Time Distributed Wrapper at the end insted of at the beginning.
175 # Thus, the model traines on a seven day output?
176

177 '''
178 :param ts: Input time series to be forecasted
179 :param endpoint: Last index used for training the model
180 :param prev_days: Amount of days used to predict the next days
181 :param len_train: Amount of days back from endpoint used to train the model
182 :param days_ahead: Amount of days forecasted after endpoint
183 :return: days_ahead−forecast
184 '''
185 set_all_seeds(seed_value)
186 if len_train == −1:
187 len_train = endpoint
188 scaler = MinMaxScaler()
189 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # 17th July
190 scaler.fit(x_train)
191 x_train = scaler.transform(x_train)
192 X, y = split_sequence(x_train, prev_days)
193 # reshape from [samples, timesteps] into [samples, subsequences, timesteps, ...

features]
194 X = X.reshape((X.shape[0], prev_days, 1))
195

196 preds = np.zeros((10, days_ahead))
197 for i in range(10):
198 start_time = time.time()
199 model, loss = train_model(X, y, days_ahead, prev_days=prev_days)
200 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
201 start_time = time.time()
202 preds[i] = np.round_(k_step_prediction(
203 days_ahead, x_train, model, scaler, prev_days=prev_days))
204 print("Time used to forecast with model", i + 1, ": ",
205 (time.time() − start_time), " sec")
206

207 np.savetxt(os.getcwd() + r"\Predictions/nor_preds_" + str(days_ahead) +
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208 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) +
209 "_train_data.csv", preds)
210 return preds
211

212

213 def single_pred_with_test_data(days_ahead, x_train_and_test, model, scaler, ...
prev_days = 7):

214 '''
215 Performes a series of one step predictions, one step at a time to generate a ...

k−step prediction.
216 At each iteration, the newly observed day is incorporated into the input of ...

the prediction.
217 :return: k−step prediction of covid−19 new cases
218 '''
219 predictions = []
220 length_relevant_data = prev_days + days_ahead −1 # how far back to start the ...

input
221

222 # the first input to the prediction is the last prev_days elements of the ...
train data

223 for i in range(0, days_ahead−1):
224 x_input = x_train_and_test[−length_relevant_data + ...

i:−length_relevant_data + prev_days + i]
225 x_input = x_input.reshape((1, prev_days, 1))
226 yhat = model.predict(x_input, verbose=0)[0][0].reshape(1, 1)
227 predictions.append(yhat)
228

229 x_input = x_train_and_test[−prev_days:]
230 x_input = x_input.reshape((1, prev_days, 1))
231 yhat = model.predict(x_input, verbose=0)[0][0].reshape(1, 1)
232 predictions.append(yhat)
233

234 for i in range(len(predictions)):
235 predictions[i] = scaler.inverse_transform(predictions[i])[0][0]
236 return predictions
237

238 def one_step_preds_global(ts, endpoint, prev_days, len_train = −1, days_ahead = 7):
239 set_all_seeds(seed_value)
240 if len_train == −1:
241 len_train = endpoint
242 scaler = MinMaxScaler()
243 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
244 scaler.fit(x_train)
245 x_train = scaler.transform(x_train)
246 # test data on day d is used to predict new cases on day d+1
247 x_train_and_test = ts[endpoint − ...

len_train:(endpoint+days_ahead−1)].reshape(len_train+days_ahead−1, 1)
248 x_train_and_test = scaler.transform(x_train_and_test)
249 # split train data into input−output matrix
250 X, y = split_sequence(x_train, prev_days)
251 X = X.reshape((X.shape[0], prev_days, 1))
252

253 # Make 10 predictions and take mean forecast, to reduce variability in forecast
254 preds = np.zeros((10, days_ahead))
255

256 for i in range(10):
257 start_time = time.time()
258 model, loss = train_model(X, y, days_ahead, prev_days=prev_days) # The ...

model is only trained in the train data!
259 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
260 start_time = time.time()
261 preds[i] = np.round_(single_pred_with_test_data(days_ahead, ...

x_train_and_test, model, scaler, prev_days=prev_days))
262 print("Time used to forecast with model", i+1, ": ", (time.time() − ...

start_time), " sec")
263

264 np.savetxt(os.getcwd() + r"\Predictions/glob_test_preds_" + str(days_ahead) +
265 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) + ...

"_train_data.csv", preds)
266 return preds
267
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268 def one_step_preds_norway(ts, endpoint, prev_days, len_train = −1, days_ahead = 7):
269 set_all_seeds(seed_value)
270 if len_train == −1:
271 len_train = endpoint
272 scaler = MinMaxScaler()
273 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
274 scaler.fit(x_train)
275 x_train = scaler.transform(x_train)
276 # test data on day d is used to predict new cases on day d+1
277 x_train_and_test = ts[endpoint − ...

len_train:(endpoint+days_ahead−1)].reshape(len_train+days_ahead−1, 1)
278 x_train_and_test = scaler.transform(x_train_and_test)
279 # split train data into input−output matrix
280 X, y = split_sequence(x_train, prev_days)
281 X = X.reshape((X.shape[0], prev_days, 1))
282

283 # Make 10 predictions and take mean forecast, to reduce variability in forecast
284 preds = np.zeros((10, days_ahead))
285 for i in range(10):
286 start_time = time.time()
287 model, loss = train_model(X, y, days_ahead, prev_days=prev_days) # The ...

model is only trained in the train data!
288 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
289 start_time = time.time()
290 preds[i] = np.round_(single_pred_with_test_data(days_ahead, ...

x_train_and_test, model, scaler, prev_days=prev_days))
291 print("Time used to forecast with model", i+1, ": ", (time.time() − ...

start_time), " sec")
292

293 np.savetxt(os.getcwd() + r"\Predictions/nor_test_preds_" + str(days_ahead) +
294 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) + ...

"_train_data.csv", preds)
295 return preds
296

297 def one_step_preds_on_train_global(ts, endpoint, prev_days, len_train = −1, ...
days_ahead = 7):

298 set_all_seeds(seed_value)
299 if len_train == −1:
300 len_train = endpoint
301 scaler = MinMaxScaler()
302 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
303 scaler.fit(x_train)
304 x_train = scaler.transform(x_train)
305 # test data on day d is used to predict new cases on day d+1
306 x_train_and_test = ts[endpoint − ...

len_train:(endpoint+days_ahead−1)].reshape(len_train+days_ahead−1, 1)
307 x_train_and_test = scaler.transform(x_train_and_test)
308 # split train data into input−output matrix
309 X, y = split_sequence(x_train, prev_days)
310 X = X.reshape((X.shape[0], prev_days, 1))
311 # Make 10 predictions and take mean forecast, to reduce variability in forecast
312 preds = np.zeros((10, days_ahead))
313 for i in range(10):
314 start_time = time.time()
315 model, loss = train_model(X, y, days_ahead, prev_days=prev_days) # The ...

model is only trained in the train data!
316 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
317 start_time = time.time()
318 preds[i] = np.round_(single_pred_with_test_data(days_ahead, ...

x_train_and_test[:−days_ahead], model, scaler, prev_days=prev_days))
319 print("Time used to forecast with model", i+1, ": ", (time.time() − ...

start_time), " sec")
320

321 np.savetxt(os.getcwd() + r"\Predictions/glob_test_preds_train_" + ...
str(days_ahead) +

322 "_from_" + str(endpoint) + "_with_" + str(len_train) + ...
"_train_data.csv", preds)

323 return preds
324
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325 def one_step_preds_on_train_norway(ts, endpoint, prev_days, len_train = −1, ...
days_ahead = 7):

326 set_all_seeds(seed_value)
327 if len_train == −1:
328 len_train = endpoint
329 scaler = MinMaxScaler()
330 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
331 scaler.fit(x_train)
332 x_train = scaler.transform(x_train)
333 # test data on day d is used to predict new cases on day d+1
334 x_train_and_test = ts[endpoint − ...

len_train:(endpoint+days_ahead−1)].reshape(len_train+days_ahead−1, 1)
335 x_train_and_test = scaler.transform(x_train_and_test)
336 # split train data into input−output matrix
337 X, y = split_sequence(x_train, prev_days)
338 X = X.reshape((X.shape[0], prev_days, 1))
339 # Make 10 predictions and take mean forecast, to reduce variability in forecast
340 preds = np.zeros((10, days_ahead))
341 for i in range(10):
342 start_time = time.time()
343 model, loss = train_model(X, y, days_ahead, prev_days=prev_days) # The ...

model is only trained in the train data!
344 print("Time used to fit model", i+1, ": ", (time.time() − start_time), " ...

sec")
345 start_time = time.time()
346 preds[i] = np.round_(single_pred_with_test_data(days_ahead, ...

x_train_and_test[:−days_ahead], model, scaler, prev_days=prev_days))
347 print("Time used to forecast with model", i+1, ": ", (time.time() − ...

start_time), " sec")
348

349 np.savetxt(os.getcwd() + r"\Predictions/nor_test_preds_on_train_" + ...
str(days_ahead) +

350 "_from_" + str(endpoint) + "_with_" + str(len_train) + ...
"_train_data.csv", preds)

351 return preds
352

353 def all_in_one_global(endpoint, days_ahead, len_train):
354 # Wrapper function to systemize predictions results
355 # The function will output both the one−step prediction and the days_ahead ...

prediction
356 prediction_global(ts=ts_global, endpoint=endpoint, prev_days=7, ...

days_ahead=days_ahead, len_train=len_train)
357 one_step_preds_global(ts=ts_global, endpoint=endpoint, prev_days=7, ...

days_ahead = days_ahead, len_train = len_train)
358

359

360 def all_in_one_norway(endpoint, days_ahead, len_train):
361 # Wrapper function to systemize predictions,
362 # The function will output both the one−step prediction and the days_ahead ...

prediction
363 one_step_preds_norway(ts=ts_norway, endpoint=endpoint, prev_days=7, ...

days_ahead = days_ahead, len_train = len_train)
364 prediction_norway(ts=ts_norway, endpoint=endpoint, prev_days=7, days_ahead = ...

days_ahead, len_train = len_train)
365

366 def accuracy_with_simulations_global(ts, simulations, endpoint, days_ahead, ...
prev_days = 7, len_train = −1):

367 '''
368 Forecasts with scheme 1, but use simulations instead of observations
369 :param ts: The time series of interest
370 :param simulations: Simulated observations from Gandalf model, imported from ...

Matlab
371 :param endpoint: Last index of dataset used in training
372 :param prev_days: how many days put in to the model (7 is default)
373 :param days_ahead: days ahead forecast
374 :return: the RRMSEs and MAPEs associated with each simulation
375 '''
376 set_all_seeds(seed_value)
377

378 simulations = np.array(simulations)
379 if len_train == −1:
380 len_train = endpoint

67



381 scaler = MinMaxScaler()
382 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
383 scaler.fit(x_train)
384 x_train = scaler.transform(x_train)
385 # split train data into input−output matrix
386 X, y = split_sequence(x_train, prev_days)
387 X = X.reshape((X.shape[0], prev_days, 1))
388

389 # Make 10 predictions and take mean forecast, to reduce variability in forecast
390 RRMSEs = np.zeros(simulations.shape[0])
391 MAPEs = np.zeros(simulations.shape[0])
392

393 models = [] # This saves a lot of time!
394 for j in range(10):
395 model, loss = train_model(X, y, days_ahead,
396 prev_days=prev_days) # The model is only ...

trained in the train data!
397 models.append(model)
398

399 for i in range(simulations.shape[0]):
400 start_time = time.time()
401 simulation = scaler.transform(simulations[i].reshape(−1, 1))
402 input_in_prediction = np.concatenate((x_train, simulation[0:−1]), axis=0)
403 ten_preds = np.zeros((10, days_ahead))
404 for j in range(10):
405 ten_preds[j] = np.round_(
406 single_pred_with_test_data(days_ahead, input_in_prediction, ...

models[j], scaler, prev_days=prev_days))
407 mean_pred = np.mean(ten_preds, axis = 0)
408

409 simulation = scaler.inverse_transform(simulation.reshape(−1, 1))
410 mean_sim = simulation.mean()
411 MSE = np.square(np.subtract(simulation, mean_pred)).mean()
412 RRMSEs[i] = np.round_(np.sqrt(MSE) / mean_sim * 100, decimals=3)
413 mape = tf.keras.losses.MeanAbsolutePercentageError()
414 MAPEs[i] = np.round_(mape(simulation, mean_pred).numpy(), decimals=3)
415 print("Time used to predict with simulation", i, ": ", (time.time() − ...

start_time), " sec")
416

417 np.savetxt(os.getcwd() + r"\Predictions/RRMSEs_from_simulation_global_" + ...
str(days_ahead) +

418 "_days_ahead_with_" + str(len_train) + "_train_data_from" + ...
str(endpoint) + ".csv", RRMSEs)

419 np.savetxt(os.getcwd() + r"\Predictions/MAPEs_from_simulation_global_" + ...
str(days_ahead) +

420 "_days_ahead_with_" + str(len_train) + "_train_data_from" + ...
str(endpoint) + ".csv", MAPEs)

421

422

423 def predictions_with_simulations_global(ts, simulations, endpoint, days_ahead, ...
prev_days = 7, len_train = −1):

424 '''
425 Forecasts with scheme 1, but use simulations instead of observations, the ...

accuracy measures are returned
426 :param ts: The time series of interest
427 :param simulations: Simulated observations from Gandalf model, imported from ...

Matlab
428 :param endpoint: Last index of dataset used in training
429 :param prev_days: how many days put in to the model (7 is default)
430 :param days_ahead: days ahead forecast
431 :return: the RRMSEs and MAPEs associated with each simulation
432 '''
433 set_all_seeds(seed_value)
434

435 simulations = np.array(simulations)
436 if len_train == −1:
437 len_train = endpoint
438 scaler = MinMaxScaler()
439 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # last ...

len_train days used to predict
440 scaler.fit(x_train)
441 x_train = scaler.transform(x_train)
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442 # split train data into input−output matrix
443 X, y = split_sequence(x_train, prev_days)
444 X = X.reshape((X.shape[0], prev_days, 1))
445

446 # Make 10 predictions and take mean forecast, to reduce variability in forecast
447 preds_matlab = np.zeros((3, 28))
448

449 start_time = time.time()
450

451 models = [] # This saves a lot of time!
452 for j in range(10):
453 model, loss = train_model(X, y, days_ahead,
454 prev_days=prev_days) # The model is only ...

trained in the train data!
455 models.append(model)
456 print("time to fit ten models: ", time.time() − start_time)
457

458 for i in range(3): # for the first three predictions
459 preds = np.zeros((10, 28))
460 print("simulations[i]", simulations[i])
461 simulation = scaler.transform(simulations[i].reshape(−1, 1))
462 input_in_prediction = np.concatenate((x_train, simulation[0:−1]), axis=0)
463 for j in range(10):
464 pred = np.round_(
465 single_pred_with_test_data(days_ahead, input_in_prediction, ...

models[j], scaler, prev_days=prev_days))
466 preds[j] = pred
467 preds_matlab[i] = np.mean(preds, axis = 0)
468 print("Time used to predict all simulations: ", (time.time() − start_time), " ...

sec")
469

470 print(preds_matlab, preds_matlab.shape)
471 np.savetxt(os.getcwd() + r"\Predictions/pred_three_preds_on_sims.csv", ...

preds_matlab)
472

473

474 def predict_weekday_no_test(Xs, Ys, x_trains, days_ahead, scaler, prev_days = 7):
475 '''
476 The function predicts a days_ahead forecast for seven models, one for each ...

weekday.
477 :param datas: list of seven scaled train data, one containing all Mondays etc...
478 :param days_ahead: how many days ahead to predict
479 :param scaler: pre−trained scaler function
480 :param prev_days: how many days used to predict preceding day for each submodel
481 :return: days_ahead forecast
482 '''
483

484 prediction = np.zeros(days_ahead)
485 prediction_days = [i for i in range(days_ahead)] # sequence of numbers
486 for i in range(len(Xs)):
487 days_to_predict = prediction_days[i::7] # divides what days to predict by ...

each submodel, the length is the amount of days to predict
488 X = Xs[i]
489 y = Ys[i]
490 x_train = x_trains[i]
491 model, loss = train_model(X, y, len(days_to_predict), prev_days)
492 prediction[days_to_predict] = k_step_prediction(len(days_to_predict), ...

x_train, model, scaler, prev_days) # prediction of all of a single ...
weekday

493 return prediction
494

495

496

497

498 def weekday_models_no_test_data_global(ts, endpoint, days_ahead, prev_days = 7, ...
len_train = −1):

499 set_all_seeds(seed_value)
500 if len_train == −1:
501 len_train = endpoint
502 scaler = MinMaxScaler()
503 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # use ...

train data to fit scaler
504 scaler.fit(x_train)
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505 x_train = scaler.transform(x_train)
506 x_train_1 = x_train[::7] # Every 7th day
507 x_train_2 = x_train[1::7]
508 x_train_3 = x_train[2::7]
509 x_train_4 = x_train[3::7]
510 x_train_5 = x_train[4::7]
511 x_train_6 = x_train[5::7]
512 x_train_7 = x_train[6::7]
513 print(x_train_1.shape, x_train_2.shape, x_train_3.shape, x_train_4.shape, ...

x_train_5.shape, x_train_6.shape,x_train_7.shape)
514

515 x_trains = [x_train_1, x_train_2, x_train_3, x_train_4, x_train_5, x_train_6, ...
x_train_7]

516 X_1, y_1 = split_sequence(x_train_1, prev_days)
517 X_2, y_2 = split_sequence(x_train_2, prev_days)
518 X_3, y_3 = split_sequence(x_train_3, prev_days)
519 X_4, y_4 = split_sequence(x_train_4, prev_days)
520 X_5, y_5 = split_sequence(x_train_5, prev_days)
521 X_6, y_6 = split_sequence(x_train_6, prev_days)
522 X_7, y_7 = split_sequence(x_train_7, prev_days)
523

524 Ys = [y_1, y_2, y_3, y_4, y_5, y_6, y_7]
525 # reshape from [samples, timesteps] into [samples, subsequences, timesteps, ...

features]
526 X_1 = X_1.reshape((X_1.shape[0], prev_days, 1))
527 X_2 = X_2.reshape((X_2.shape[0], prev_days, 1))
528 X_3 = X_3.reshape((X_3.shape[0], prev_days, 1))
529 X_4 = X_4.reshape((X_4.shape[0], prev_days, 1))
530 X_5 = X_5.reshape((X_5.shape[0], prev_days, 1))
531 X_6 = X_6.reshape((X_6.shape[0], prev_days, 1))
532 X_7 = X_7.reshape((X_7.shape[0], prev_days, 1))
533 Xs =[X_1, X_2, X_3, X_4, X_5, X_6, X_7]
534 preds = np.zeros((10, days_ahead))
535

536 for i in range(10):
537 start_time = time.time()
538 preds[i] = np.round_(predict_seven_no_test(Xs, Ys, x_trains, days_ahead, ...

scaler, prev_days))
539 print("Time used to fit and forecast with model", i + 1, ": ", ...

(time.time() − start_time), " sec")
540

541 np.savetxt(os.getcwd() + r"\Predictions/glob_weekday_preds_" + ...
str(days_ahead) +

542 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) + ...
"_train_data.csv", preds)

543

544 def predict_weekday_with_test(Xs, Ys, x_train_and_tests, days_ahead, scaler, ...
prev_days = 7):

545 '''
546 The function predicts a days_ahead forecast for seven models, one for each ...

weekday.
547 :param datas: list of seven scaled train data, one containing all Mondays etc...
548 :param days_ahead: how many days ahead to predict
549 :param scaler: pre−trained scaler function
550 :param prev_days: how many days used to predict preceding day for each submodel
551 :return: days_ahead forecast
552 '''
553

554 prediction = np.zeros(days_ahead)
555 prediction_days = [i for i in range(days_ahead)] # sequence of numbers
556 for i in range(len(Xs)):
557 days_to_predict = prediction_days[i::7] # divides what days to predict by ...

each submodel, the length is the amount of days to predict
558 X = Xs[i]
559 y = Ys[i]
560 x_train_and_test = x_train_and_tests[i]
561 model, loss = train_model(X, y, len(days_to_predict), prev_days)
562 # prediction of all of a single weekday:
563 prediction[days_to_predict] = \
564 single_pred_with_test_data(len(days_to_predict), x_train_and_test, ...

model, scaler, prev_days)
565 return prediction
566
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567 def weekday_models_with_test_data_global(ts, endpoint, days_ahead, prev_days = 7, ...
len_train = −1):

568 set_all_seeds(seed_value)
569 if len_train == −1:
570 len_train = endpoint
571 scaler = MinMaxScaler()
572 x_train = ts[endpoint − len_train:endpoint].reshape(len_train, 1) # use ...

train data to fit scaler
573 scaler.fit(x_train)
574 x_train = scaler.transform(x_train)
575 x_train_1 = x_train[::7] # Every 7th day
576 x_train_2 = x_train[1::7]
577 x_train_3 = x_train[2::7]
578 x_train_4 = x_train[3::7]
579 x_train_5 = x_train[4::7]
580 x_train_6 = x_train[5::7]
581 x_train_7 = x_train[6::7]
582

583 x_train_and_test = ts[endpoint − ...
len_train:(endpoint+days_ahead−1)].reshape(len_train+days_ahead−1, 1)

584 x_train_and_test = scaler.transform(x_train_and_test)
585 x_train_and_test_1 = x_train_and_test[::7] # Every 7th day
586 x_train_and_test_2 = x_train_and_test[1::7]
587 x_train_and_test_3 = x_train_and_test[2::7]
588 x_train_and_test_4 = x_train_and_test[3::7]
589 x_train_and_test_5 = x_train_and_test[4::7]
590 x_train_and_test_6 = x_train_and_test[5::7]
591 x_train_and_test_7 = x_train_and_test[6::7]
592

593 x_train_and_tests = [x_train_and_test_1, x_train_and_test_2, ...
x_train_and_test_3, x_train_and_test_4,

594 x_train_and_test_5, x_train_and_test_6, x_train_and_test_7]
595

596 X_1, y_1 = split_sequence(x_train_1, prev_days)
597 X_2, y_2 = split_sequence(x_train_2, prev_days)
598 X_3, y_3 = split_sequence(x_train_3, prev_days)
599 X_4, y_4 = split_sequence(x_train_4, prev_days)
600 X_5, y_5 = split_sequence(x_train_5, prev_days)
601 X_6, y_6 = split_sequence(x_train_6, prev_days)
602 X_7, y_7 = split_sequence(x_train_7, prev_days)
603

604 Ys = [y_1, y_2, y_3, y_4, y_5, y_6, y_7]
605 # reshape from [samples, timesteps] into [samples, subsequences, timesteps, ...

features]
606 X_1 = X_1.reshape((X_1.shape[0], prev_days, 1))
607 X_2 = X_2.reshape((X_2.shape[0], prev_days, 1))
608 X_3 = X_3.reshape((X_3.shape[0], prev_days, 1))
609 X_4 = X_4.reshape((X_4.shape[0], prev_days, 1))
610 X_5 = X_5.reshape((X_5.shape[0], prev_days, 1))
611 X_6 = X_6.reshape((X_6.shape[0], prev_days, 1))
612 X_7 = X_7.reshape((X_7.shape[0], prev_days, 1))
613 Xs =[X_1, X_2, X_3, X_4, X_5, X_6, X_7]
614 preds = np.zeros((10, days_ahead))
615

616 for i in range(10):
617 start_time = time.time()
618 preds[i] = np.round_(predict_weekday_with_test(Xs, Ys, x_train_and_tests, ...

days_ahead, scaler, prev_days))
619 print("Time used to fit and forecast with model", i + 1, ": ", ...

(time.time() − start_time), " sec")
620

621 np.savetxt(os.getcwd() + r"\Predictions/glob_weekday_preds_test_" + ...
str(days_ahead) +

622 "_days_ahead_from_" + str(endpoint) + "_with_" + str(len_train) + ...
"_train_data.csv", preds)

623

624

625

626

627 ############################### Global ###################################
628

629 # 28 day predictions global
630
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631

632 ###############
633 all_in_one_global( endpoint = 40, days_ahead = 28, len_train = 40)
634 # all_in_one_global( endpoint = 196, days_ahead = 28, len_train = 196)
635 # all_in_one_global( endpoint = 196, days_ahead = 28, len_train = 50)
636 # all_in_one_global( endpoint = 196, days_ahead = 28, len_train = 100)
637 #
638 # ##############
639 # all_in_one_global(endpoint = 100, days_ahead = 28, len_train = 100)
640 # all_in_one_global(endpoint = 300, days_ahead = 28, len_train = 300)
641 # all_in_one_global(endpoint = 500, days_ahead = 28, len_train = 500)
642 # all_in_one_global(endpoint = 743, days_ahead = 28, len_train = 743) # newest
643 #
644

645 # # Fewer observations: How robust is the model?
646 # all_in_one_global(endpoint = 100, days_ahead = 28, len_train = 50)
647 # all_in_one_global(endpoint = 300, days_ahead = 28, len_train = 50)
648 # all_in_one_global(endpoint = 300, days_ahead = 28, len_train = 100)
649 # all_in_one_global(endpoint = 500, days_ahead = 28, len_train = 50)
650 # all_in_one_global(endpoint = 500, days_ahead = 28, len_train = 100)
651 # all_in_one_global(endpoint = 743, days_ahead = 28, len_train = 50)
652 # all_in_one_global(endpoint = 743, days_ahead = 28, len_train = 100)
653

654 ############################### Norway ###################################
655

656 # An equivalent set of predictions can be made on the norwegian data set.
657 # Start at 264 to compare with original Gandalf model.
658

659 # all_in_one_norway(endpoint = 264, days_ahead = 28, len_train = 264)
660 # all_in_one_norway(endpoint = 264, days_ahead = 28, len_train = 50)
661 # all_in_one_norway(endpoint = 264, days_ahead = 28, len_train = 100)
662 #
663 # all_in_one_norway(endpoint = 100, days_ahead = 28, len_train = 100)
664 # all_in_one_norway(endpoint = 300, days_ahead = 28, len_train = 300)
665 # all_in_one_norway(endpoint = 500, days_ahead = 28, len_train = 500)
666 # all_in_one_norway(endpoint = 696, days_ahead = 28, len_train = 696)
667 #
668 # # Fewer observations: How robust is the model?
669 # all_in_one_norway(endpoint = 100, days_ahead = 28, len_train = 50)
670 # all_in_one_norway(endpoint = 300, days_ahead = 28, len_train = 50)
671 # all_in_one_norway(endpoint = 300, days_ahead = 28, len_train = 100)
672 # all_in_one_norway(endpoint = 500, days_ahead = 28, len_train = 50)
673 # all_in_one_norway(endpoint = 500, days_ahead = 28, len_train = 100)
674 # all_in_one_norway(endpoint = 696, days_ahead = 28, len_train = 50)
675 # all_in_one_norway(endpoint = 696, days_ahead = 28, len_train = 100)
676

677

678 ########################## Simulation study #############################
679

680 simulations = pd.read_csv(
681 os.getcwd() + r"\Matlab\Saved variables\simulations_from_gandalf.csv", ...

header=None)
682

683

684 # print("simulation.shape = ", simulations.shape)
685 #print("simulations.iloc[0:2, :] = ", simulations.iloc[0:3, :])
686 # accuracy_with_simulations_global(ts_global, simulations, endpoint=196, ...

days_ahead=28)
687 # predictions_with_simulations_global(ts_global, simulations.iloc[0:3, ...

:], endpoint=196, days_ahead=28)
688 # predictions_with_simulations_global(ts_norway, simulations.iloc[0:3, ...

:], endpoint=196, days_ahead=28)
689

690 ######################### Predict with weekday model ######################
691

692 # weekday_models_no_test_data_global(ts = ts_global, endpoint = 196, days_ahead = 7)
693 # weekday_models_with_test_data_global(ts = ts_global, endpoint = 600, days_ahead ...

= 7)
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Matlab-code

The following code was used to derive and present all the results of the thesis, except for the predictions
from the CNN-LSTM model.

1 warning('off','all')
2 %%%%%%%%%%%%%%% Import data sets %%%%%%%%%%%%%%%
3

4 Norwegian_data_set = table2array(readtable("Data\new_cases_Norway.csv"));
5 global_data_set = table2array(readtable("Data\new_cases_global.csv"));
6

7 % Transform to log scale imediately
8 ts = log(max(0.1, Norwegian_data_set));
9 ts_global = log(max(0.1, global_data_set));

10

11 %%%%% General dictionary: %%%%%
12

13 % endpoint: last index included as training data
14

15 % len_train: amount of training data
16

17 % days_ahead: length of forecast ensuing endpoint
18

19 % With_observed: predictioon scheme 1
20

21 % no_observed: prediction scheme 2
22

23 %%%%%%%%%%%%%%%%%%%%%%%
24

25

26

27

28 % Collecting predictions from CNN−LSTM model from Python
29

30 %%%%%%%%%%%%%%%%%%%% Gather Global Forecasts %%%%%%%%%%%%%%%%%%%%
31

32 loss_func = table2array(readtable(...
33 "Predictions\mean_loss_on_original_test_data.csv"));
34

35 % global 28 day forecast with prediction scheme 1
36 glob_test_preds_28_days_ahead_from_100_with_50_train_data = ...
37 table2array(readtable(...
38 'Predictions\glob_test_preds_28_days_ahead_from_100_with_50_train_data.csv'));
39 glob_test_preds_28_days_ahead_from_100_with_100_train_data = ...
40 table2array(readtable(...
41 'Predictions\glob_test_preds_28_days_ahead_from_100_with_100_train_data.csv'));
42

43 glob_test_preds_28_days_ahead_from_196_with_50_train_data = ...
44 table2array(readtable(...
45 'Predictions\glob_test_preds_28_days_ahead_from_196_with_50_train_data.csv'));
46 glob_test_preds_28_days_ahead_from_196_with_100_train_data = ...
47 table2array(readtable(...
48 'Predictions\glob_test_preds_28_days_ahead_from_196_with_100_train_data.csv'));
49 glob_test_preds_28_days_ahead_from_196_with_196_train_data = ...
50 table2array(readtable(...
51 'Predictions\glob_test_preds_28_days_ahead_from_196_with_196_train_data.csv'));
52

53 glob_test_preds_28_days_ahead_from_300_with_50_train_data = ...
54 table2array(readtable(...
55 'Predictions\glob_test_preds_28_days_ahead_from_300_with_50_train_data.csv'));
56 glob_test_preds_28_days_ahead_from_300_with_100_train_data = ...
57 table2array(readtable(...
58 'Predictions\glob_test_preds_28_days_ahead_from_300_with_100_train_data.csv'));
59 glob_test_preds_28_days_ahead_from_300_with_300_train_data = ...
60 table2array(readtable(...
61 'Predictions\glob_test_preds_28_days_ahead_from_300_with_300_train_data.csv'));
62

63 glob_test_preds_28_days_ahead_from_500_with_50_train_data = ...
64 table2array(readtable(...
65 'Predictions\glob_test_preds_28_days_ahead_from_500_with_50_train_data.csv'));
66 glob_test_preds_28_days_ahead_from_500_with_100_train_data = ...
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67 table2array(readtable(...
68 'Predictions\glob_test_preds_28_days_ahead_from_500_with_100_train_data.csv'));
69 glob_test_preds_28_days_ahead_from_500_with_500_train_data = ...
70 table2array(readtable(...
71 'Predictions\glob_test_preds_28_days_ahead_from_500_with_500_train_data.csv'));
72

73 glob_test_preds_28_days_ahead_from_743_with_50_train_data = ...
74 table2array(readtable(...
75 'Predictions\glob_test_preds_28_days_ahead_from_500_with_500_train_data.csv'));
76 glob_test_preds_28_days_ahead_from_743_with_100_train_data = ...
77 table2array(readtable(...
78 'Predictions\glob_test_preds_28_days_ahead_from_743_with_100_train_data.csv'));
79 glob_test_preds_28_days_ahead_from_743_with_743_train_data = ...
80 table2array(readtable(...
81 'Predictions\glob_test_preds_28_days_ahead_from_743_with_743_train_data.csv'));
82

83

84 % global seven and 28 day forecasts with prediction scheme 2
85 glob_preds_28_days_ahead_from_100_with_50_train_data = ...
86 table2array(readtable(...
87 'Predictions\glob_preds_28_days_ahead_from_100_with_50_train_data.csv'));
88 glob_preds_7_days_ahead_from_100_with_50_train_data = ...
89 glob_preds_28_days_ahead_from_100_with_50_train_data(:, 1:7);
90 glob_preds_28_days_ahead_from_100_with_100_train_data = ...
91 table2array(readtable(...
92 'Predictions\glob_preds_28_days_ahead_from_100_with_100_train_data.csv'));
93 glob_preds_7_days_ahead_from_100_with_100_train_data = ...
94 glob_preds_28_days_ahead_from_100_with_100_train_data(:, 1:7);
95

96 glob_preds_28_days_ahead_from_196_with_50_train_data = ...
97 table2array(readtable(...
98 'Predictions\glob_preds_28_days_ahead_from_196_with_50_train_data.csv'));
99 glob_preds_7_days_ahead_from_196_with_50_train_data = ...

100 glob_preds_28_days_ahead_from_196_with_50_train_data(:, 1:7);
101 glob_preds_28_days_ahead_from_196_with_100_train_data = ...
102 table2array(readtable(...
103 'Predictions\glob_preds_28_days_ahead_from_196_with_100_train_data.csv'));
104 glob_preds_7_days_ahead_from_196_with_100_train_data = ...
105 glob_preds_28_days_ahead_from_196_with_100_train_data(:, 1:7);
106 glob_preds_28_days_ahead_from_196_with_196_train_data = ...
107 table2array(readtable(...
108 'Predictions\glob_preds_28_days_ahead_from_196_with_196_train_data.csv'));
109 glob_preds_7_days_ahead_from_196_with_196_train_data = ...
110 glob_preds_28_days_ahead_from_196_with_196_train_data(:, 1:7);
111

112 glob_preds_28_days_ahead_from_300_with_50_train_data = ...
113 table2array(readtable(...
114 'Predictions\glob_preds_28_days_ahead_from_300_with_50_train_data.csv'));
115 glob_preds_7_days_ahead_from_300_with_50_train_data = ...
116 glob_preds_28_days_ahead_from_300_with_50_train_data(:, 1:7);
117 glob_preds_28_days_ahead_from_300_with_100_train_data = ...
118 table2array(readtable(...
119 'Predictions\glob_preds_28_days_ahead_from_300_with_100_train_data.csv'));
120 glob_preds_7_days_ahead_from_300_with_100_train_data = ...
121 glob_preds_28_days_ahead_from_300_with_100_train_data(:, 1:7);
122 glob_preds_28_days_ahead_from_300_with_300_train_data = ...
123 table2array(readtable(...
124 'Predictions\glob_preds_28_days_ahead_from_300_with_300_train_data.csv'));
125 glob_preds_7_days_ahead_from_300_with_300_train_data = ...
126 glob_preds_28_days_ahead_from_300_with_300_train_data(:, 1:7);
127

128 glob_preds_28_days_ahead_from_500_with_50_train_data = ...
129 table2array(readtable(...
130 'Predictions\glob_preds_28_days_ahead_from_500_with_50_train_data.csv'));
131 glob_preds_7_days_ahead_from_500_with_50_train_data = ...
132 glob_preds_28_days_ahead_from_500_with_50_train_data(:, 1:7);
133 glob_preds_28_days_ahead_from_500_with_100_train_data = ...
134 table2array(readtable(...
135 'Predictions\glob_preds_28_days_ahead_from_500_with_100_train_data.csv'));
136 glob_preds_7_days_ahead_from_500_with_100_train_data = ...
137 glob_preds_28_days_ahead_from_500_with_100_train_data(:, 1:7);
138 glob_preds_28_days_ahead_from_500_with_500_train_data = ...
139 table2array(readtable(...
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140 'Predictions\glob_preds_28_days_ahead_from_500_with_500_train_data.csv'));
141 glob_preds_7_days_ahead_from_500_with_500_train_data = ...
142 glob_preds_28_days_ahead_from_500_with_500_train_data(:, 1:7);
143

144 glob_preds_28_days_ahead_from_743_with_50_train_data = ...
145 table2array(readtable(...
146 'Predictions\glob_preds_28_days_ahead_from_743_with_50_train_data.csv'));
147 glob_preds_7_days_ahead_from_743_with_50_train_data = ...
148 glob_preds_28_days_ahead_from_743_with_50_train_data(:, 1:7);
149 glob_preds_28_days_ahead_from_743_with_100_train_data = ...
150 table2array(readtable(...
151 'Predictions\glob_preds_28_days_ahead_from_743_with_100_train_data.csv'));
152 glob_preds_7_days_ahead_from_743_with_100_train_data = ...
153 glob_preds_28_days_ahead_from_743_with_100_train_data(:, 1:7);
154 glob_preds_28_days_ahead_from_743_with_743_train_data = ...
155 table2array(readtable(...
156 'Predictions\glob_preds_28_days_ahead_from_743_with_743_train_data.csv'));
157 glob_preds_7_days_ahead_from_743_with_743_train_data = ...
158 glob_preds_28_days_ahead_from_743_with_743_train_data(:, 1:7);
159

160

161 %%%%%%%%%%%%%%%%%%%% Gather Norwegian Forecasts %%%%%%%%%%%%%%%%%%%%
162

163 % Norway 28 day forecast with prediction scheme 1
164 nor_test_preds_28_days_ahead_from_100_with_50_train_data = ...
165 table2array(readtable(...
166 'Predictions\nor_test_preds_28_days_ahead_from_100_with_50_train_data.csv'));
167 nor_test_preds_28_days_ahead_from_100_with_100_train_data = ...
168 table2array(readtable(...
169 'Predictions\nor_test_preds_28_days_ahead_from_100_with_100_train_data.csv'));
170

171 nor_test_preds_28_days_ahead_from_264_with_50_train_data = ...
172 table2array(readtable(...
173 'Predictions\nor_test_preds_28_days_ahead_from_264_with_50_train_data.csv'));
174 nor_test_preds_28_days_ahead_from_264_with_100_train_data = ...
175 table2array(readtable(...
176 'Predictions\nor_test_preds_28_days_ahead_from_264_with_100_train_data.csv'));
177 nor_test_preds_28_days_ahead_from_264_with_264_train_data = ...
178 table2array(readtable(...
179 'Predictions\nor_test_preds_28_days_ahead_from_264_with_264_train_data.csv'));
180

181 nor_test_preds_28_days_ahead_from_300_with_50_train_data = ...
182 table2array(readtable(...
183 'Predictions\nor_test_preds_28_days_ahead_from_300_with_50_train_data.csv'));
184 nor_test_preds_28_days_ahead_from_300_with_100_train_data = ...
185 table2array(readtable(...
186 'Predictions\nor_test_preds_28_days_ahead_from_300_with_100_train_data.csv'));
187 nor_test_preds_28_days_ahead_from_300_with_300_train_data = ...
188 table2array(readtable(...
189 'Predictions\nor_test_preds_28_days_ahead_from_300_with_300_train_data.csv'));
190

191 nor_test_preds_28_days_ahead_from_500_with_50_train_data = ...
192 table2array(readtable(...
193 'Predictions\nor_test_preds_28_days_ahead_from_500_with_50_train_data.csv'));
194 nor_test_preds_28_days_ahead_from_500_with_100_train_data = ...
195 table2array(readtable(...
196 'Predictions\nor_test_preds_28_days_ahead_from_500_with_100_train_data.csv'));
197 nor_test_preds_28_days_ahead_from_500_with_500_train_data = ...
198 table2array(readtable(...
199 'Predictions\nor_test_preds_28_days_ahead_from_500_with_500_train_data.csv'));
200

201 nor_test_preds_28_days_ahead_from_696_with_50_train_data = ...
202 table2array(readtable(...
203 'Predictions\nor_test_preds_28_days_ahead_from_696_with_50_train_data.csv'));
204 nor_test_preds_28_days_ahead_from_696_with_100_train_data = ...
205 table2array(readtable(...
206 'Predictions\nor_test_preds_28_days_ahead_from_696_with_100_train_data.csv'));
207 nor_test_preds_28_days_ahead_from_696_with_696_train_data = ...
208 table2array(readtable(...
209 'Predictions\nor_test_preds_28_days_ahead_from_696_with_696_train_data.csv'));
210

211

212 % Norway seven (and 28) day forecasts with prediction scheme 2
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213 nor_preds_28_days_ahead_from_100_with_50_train_data = ...
214 table2array(readtable(...
215 'Predictions\nor_preds_28_days_ahead_from_100_with_50_train_data.csv'));
216 nor_preds_7_days_ahead_from_100_with_50_train_data = ...
217 nor_preds_28_days_ahead_from_100_with_50_train_data(:, 1:7);
218 nor_preds_28_days_ahead_from_100_with_100_train_data = ...
219 table2array(readtable(...
220 'Predictions\nor_preds_28_days_ahead_from_100_with_100_train_data.csv'));
221 nor_preds_7_days_ahead_from_100_with_100_train_data = ...
222 nor_preds_28_days_ahead_from_100_with_100_train_data(:, 1:7);
223

224 nor_preds_28_days_ahead_from_264_with_50_train_data = ...
225 table2array(readtable(...
226 'Predictions\nor_preds_28_days_ahead_from_264_with_50_train_data.csv'));
227 nor_preds_7_days_ahead_from_264_with_50_train_data = ...
228 nor_preds_28_days_ahead_from_264_with_50_train_data(:, 1:7);
229 nor_preds_28_days_ahead_from_264_with_100_train_data = ...
230 table2array(readtable(...
231 'Predictions\nor_preds_28_days_ahead_from_264_with_100_train_data.csv'));
232 nor_preds_7_days_ahead_from_264_with_100_train_data = ...
233 nor_preds_28_days_ahead_from_264_with_100_train_data(:, 1:7);
234 nor_preds_28_days_ahead_from_264_with_264_train_data = ...
235 table2array(readtable(...
236 'Predictions\nor_preds_28_days_ahead_from_264_with_264_train_data.csv'));
237 nor_preds_7_days_ahead_from_264_with_264_train_data = ...
238 nor_preds_28_days_ahead_from_264_with_264_train_data(:, 1:7);
239

240 nor_preds_28_days_ahead_from_300_with_50_train_data = ...
241 table2array(readtable(...
242 'Predictions\nor_preds_28_days_ahead_from_300_with_50_train_data.csv'));
243 nor_preds_7_days_ahead_from_300_with_50_train_data = ...
244 nor_preds_28_days_ahead_from_300_with_50_train_data(:, 1:7);
245 nor_preds_28_days_ahead_from_300_with_100_train_data = ...
246 table2array(readtable(...
247 'Predictions\nor_preds_28_days_ahead_from_300_with_100_train_data.csv'));
248 nor_preds_7_days_ahead_from_300_with_100_train_data = ...
249 nor_preds_28_days_ahead_from_300_with_100_train_data(:, 1:7);
250 nor_preds_28_days_ahead_from_300_with_300_train_data = ...
251 table2array(readtable(...
252 'Predictions\nor_preds_28_days_ahead_from_300_with_300_train_data.csv'));
253 nor_preds_7_days_ahead_from_300_with_300_train_data = ...
254 nor_preds_28_days_ahead_from_300_with_300_train_data(:, 1:7);
255

256 nor_preds_28_days_ahead_from_500_with_50_train_data = ...
257 table2array(readtable(...
258 'Predictions\nor_preds_28_days_ahead_from_500_with_50_train_data.csv'));
259 nor_preds_7_days_ahead_from_500_with_50_train_data = ...
260 nor_preds_28_days_ahead_from_500_with_50_train_data(:, 1:7);
261 nor_preds_28_days_ahead_from_500_with_100_train_data = ...
262 table2array(readtable(...
263 'Predictions\nor_preds_28_days_ahead_from_500_with_100_train_data.csv'));
264 nor_preds_7_days_ahead_from_500_with_100_train_data = ...
265 nor_preds_28_days_ahead_from_500_with_100_train_data(:, 1:7);
266 nor_preds_28_days_ahead_from_500_with_500_train_data = ...
267 table2array(readtable(...
268 'Predictions\nor_preds_28_days_ahead_from_500_with_500_train_data.csv'));
269 nor_preds_7_days_ahead_from_500_with_500_train_data = ...
270 nor_preds_28_days_ahead_from_500_with_500_train_data(:, 1:7);
271

272 nor_preds_28_days_ahead_from_696_with_50_train_data = ...
273 table2array(readtable(...
274 'Predictions\nor_preds_28_days_ahead_from_696_with_50_train_data.csv'));
275 nor_preds_7_days_ahead_from_696_with_50_train_data = ...
276 nor_preds_28_days_ahead_from_696_with_50_train_data(:, 1:7);
277 nor_preds_28_days_ahead_from_696_with_100_train_data = ...
278 table2array(readtable(...
279 'Predictions\nor_preds_28_days_ahead_from_696_with_100_train_data.csv'));
280 nor_preds_7_days_ahead_from_696_with_100_train_data = ...
281 nor_preds_28_days_ahead_from_696_with_100_train_data(:, 1:7);
282 nor_preds_28_days_ahead_from_696_with_696_train_data = ...
283 table2array(readtable(...
284 'Predictions\nor_preds_28_days_ahead_from_696_with_696_train_data.csv'));
285 nor_preds_7_days_ahead_from_696_with_696_train_data = ...
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286 nor_preds_28_days_ahead_from_696_with_696_train_data(:, 1:7);
287

288

289 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
290

291 % plot_norway_and_global_time_series_and_transform(ts, ts_global, false)
292 % %
293 % plot_norway_and_global_time_series_and_transform(ts, ts_global, true)
294

295

296 %%%%%%%%%%%%%%%%%%%% Norwegian Forecasts %%%%%%%%%%%%%%%%%%%%
297

298 % plot_preds_sarima_gandalf(ts, 264, 264, 7, false)
299 % plot_acf_of_res(ts, 264, 264, false)
300 % plot_acf_of_res(ts, 264, 264, true)
301

302 % plot_10_norway_CNN_LSTM_Preds(floor(exp(ts)), ...
303 % nor_preds_7_days_ahead_from_264_with_264_train_data, 264, 264, 7, false)
304 % plot_preds_without_observed(ts, ...
305 % mean(nor_preds_7_days_ahead_from_264_with_264_train_data, 1), ...
306 % 264, 264, 7, false, 14)
307 % plot_10_norway_CNN_LSTM_Preds(floor(exp(ts)), ...
308 % nor_test_preds_28_days_ahead_from_264_with_264_train_data, ...
309 % 264, 264, 28, false)
310 % plot_preds_with_observed(ts, ...
311 % mean(nor_test_preds_28_days_ahead_from_264_with_264_train_data, 1), ...
312 % 264, 264, 28, false, 30)
313 %
314 %
315 % plot_parameters_from_prediction_scheme_1(ts, 264, 264, 28, false)
316 %
317 % plot_preds_without_observed(ts, ...
318 % mean(nor_preds_7_days_ahead_from_264_with_50_train_data, 1), ...
319 % 264, 50, 7, false, 14)
320 % plot_preds_with_observed(ts, ...
321 % mean(nor_test_preds_28_days_ahead_from_264_with_50_train_data, 1), ...
322 % 264, 50, 28, false, 21)
323 % plot_parameters_from_prediction_scheme_1(ts, 264, 50, 28, false)
324 % plot_preds_without_observed(ts, ...
325 % mean(nor_preds_7_days_ahead_from_264_with_100_train_data, 1), ...
326 % 264, 100, 7, false, 14)
327 % plot_preds_with_observed(ts, ...
328 % mean(nor_test_preds_28_days_ahead_from_264_with_100_train_data, 1), ...
329 % 264, 100, 28, false, 30)
330 % plot_parameters_from_prediction_scheme_1(ts, 264, 100, 28, false)
331

332

333 %%%%%%%%%%%%%%%%%%%% Global Forecasts %%%%%%%%%%%%%%%%%%%%
334

335 % plot_loss_function(loss_func)
336

337 % plot_10_global_CNN_LSTM_Preds(floor(exp(ts_global)), ...
338 % glob_test_preds_28_days_ahead_from_196_with_196_train_data, ...
339 % 196, 196, 28, true)
340 % plot_preds_sarima_gandalf(ts_global, 196, 196, 7, true)
341 % plot_acf_of_res(ts_global, 196, 196, false)
342 % plot_acf_of_res(ts_global, 196, 196, true)
343 %
344 % plot_preds_without_observed(ts_global, ...
345 % mean(glob_preds_7_days_ahead_from_196_with_196_train_data,1), ...
346 % 196, 196, 7, true, 14)
347 % plot_preds_with_observed(ts_global, ...
348 % mean(glob_test_preds_28_days_ahead_from_196_with_196_train_data, 1), ...
349 % 196, 196, 28, true, 30)
350 % plot_parameters_from_prediction_scheme_1(ts_global, 196, 196, 28, true)
351 %
352 % plot_10_global_CNN_LSTM_Preds(floor(exp(ts_global)), ...
353 % glob_preds_28_days_ahead_from_196_with_196_train_data, ...
354 % 196, 196, 28, true)
355 % plot_preds_without_observed(ts_global, ...
356 % mean(glob_preds_28_days_ahead_from_196_with_196_train_data, 1), ...
357 % 196, 196, 28, true, 30)
358
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359

360 %%%%%%%%%%%%%%%%%%%%% Results for table 2 %%%%%%%%%%%%%%%%%%%%%
361

362

363 % Generate all numbers to be inserted in table
364 % Norway:
365 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_100_with_50_train_data, 100, 50, 7)
366 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_100_with_100_train_data, 100, 100, 7)
367 %
368 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_264_with_50_train_data, 264, 50, 7)
369 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_264_with_100_train_data, 264, 100, 7)
370 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_264_with_264_train_data, 264, 264, 7)
371 %
372 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_300_with_50_train_data, 300, 50, 7)
373 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_300_with_100_train_data, 300, 100, 7)
374 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_300_with_300_train_data, 300, 300, 7)
375 %
376 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_500_with_50_train_data, 500, 50, 7)
377 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_500_with_100_train_data, 500, 100, 7)
378 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_500_with_500_train_data, 500, 500, 7)
379 %
380 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_696_with_50_train_data, 696, 50, 7)
381 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_696_with_100_train_data, 696, 100, 7)
382 % extract_percision_results_without_observed(ts, ...

nor_preds_7_days_ahead_from_696_with_696_train_data, 696, 696, 7)
383 %
384 %
385 %
386 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_100_with_50_train_data, 100, 50, 28)
387 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_100_with_100_train_data, 100, 100, 28)
388 %
389 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_264_with_50_train_data, 264, 50, 28)
390 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_264_with_100_train_data, 264, 100, 28)
391 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_264_with_264_train_data, 264, 264, 28)
392 %
393 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_300_with_50_train_data, 300, 50, 28)
394 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_300_with_100_train_data, 300, 100, 28)
395 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_300_with_300_train_data, 300, 300, 28)
396 %
397 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_500_with_50_train_data, 500, 50, 28)
398 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_500_with_100_train_data, 500, 100, 28)
399 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_500_with_500_train_data, 500, 500, 28)
400 %
401 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_696_with_50_train_data, 696, 50, 28)
402 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_696_with_100_train_data, 696, 100, 28)
403 % extract_percision_results_with_observed(ts, ...

nor_test_preds_28_days_ahead_from_696_with_696_train_data, 696, 696, 28)
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404 %
405 % Global:
406 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_100_with_50_train_data, 100, 50, 7)
407 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_100_with_100_train_data, 100, 100, 7)
408 %
409 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_196_with_50_train_data, 196, 50, 7)
410 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_196_with_100_train_data, 196, 100, 7)
411 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_196_with_196_train_data, 196, 196, 7)
412 %
413 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_300_with_50_train_data, 300, 50, 7)
414 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_300_with_100_train_data, 300, 100, 7)
415 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_300_with_300_train_data, 300, 300, 7)
416 %
417 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_500_with_50_train_data, 500, 50, 7)
418 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_500_with_100_train_data, 500, 100, 7)
419 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_500_with_500_train_data, 500, 500, 7)
420 %
421 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_743_with_50_train_data, 743, 50, 7)
422 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_743_with_100_train_data, 743, 100, 7)
423 % extract_percision_results_without_observed(ts_global, ...

glob_preds_7_days_ahead_from_743_with_743_train_data, 743, 743, 7)
424 %
425 %
426 %
427 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_100_with_50_train_data, 100, 50, 28)
428 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_100_with_100_train_data, 100, 100, 28)
429 %
430 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_196_with_50_train_data, 196, 50, 28)
431 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_196_with_100_train_data, 196, 100, 28)
432 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_196_with_196_train_data, 196, 196, 28)
433 %
434 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_300_with_50_train_data, 300, 50, 28)
435 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_300_with_100_train_data, 300, 100, 28)
436 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_300_with_300_train_data, 300, 300, 28)
437 %
438 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_500_with_50_train_data, 500, 50, 28)
439 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_500_with_100_train_data, 500, 100, 28)
440 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_500_with_500_train_data, 500, 500, 28)
441 % %
442 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_743_with_50_train_data, 743, 50, 28)
443 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_743_with_100_train_data, 743, 100, 28)
444 % extract_percision_results_with_observed(ts_global, ...

glob_test_preds_28_days_ahead_from_743_with_743_train_data, 743, 743, 28)
445

446

447

448 %%%%%%%%%%%%%%%%%%%%%%% Study table with bar plots %%%%%%%%%%%%%%%%%%%%%%%
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449

450 % Gather measures from Table 2 to plot summarized results:
451 % RRMSE:
452 results_RRMSE_28_day_preds = [74 75 73; 60 262 53; 12 10 18; 11 11 25;
453 11 11 28; 25 27 29; 25 24 17; 28 28 26; 14 15 30; 15 15 35; 16 16 19;
454 11 9 19; 9 9 30; 9 9 46; 7 7 7; 6 6 10; 4 5 5; 4 4 4; 4 4 4; 5 7 12;
455 5 5 9; 6 6 11; 4 6 9; 5 5 15; 5 5 39; 9 7 21; 7 7 21; 7 7 85];
456

457 results_RRMSE_7_day_preds = [119 119 64; 87 87 65; 17 6 8; 16 15 11;
458 12 12 12; 17 17 14; 19 20 7; 16 16 18; 10 14 8; 5 8 12;
459 21 21 11; 9 8 23; 9 11 24; 13 4 24;
460

461 30 35 11; 16 16 14; 7 6 8; 4 4 6; 4 4 5; 7 5 11; 7 7 8; 7 7 9; 4 10 13;
462 6 7 20; 3 3 18; 15 10 12; 12 14 10; 12 13 12];
463

464 input_bar_plot_RRMSE_days_ahead = [mean(results_RRMSE_28_day_preds, 1); ...
465 mean(results_RRMSE_7_day_preds, 1)];
466

467 results_RRMSE_Norway = [results_RRMSE_7_day_preds(1:14, :); ...
468 results_RRMSE_28_day_preds(1:14, :)];
469 results_RRMSE_Global = [results_RRMSE_7_day_preds(15:28, :); ...
470 results_RRMSE_28_day_preds(15:28, :)];
471

472 input_bar_plot_RRMSE_data_set = [mean(results_RRMSE_Norway, 1); ...
473 mean(results_RRMSE_Global, 1)];
474

475 results_RRMSE_full_data = ...
476 [results_RRMSE_7_day_preds([1, 3, 6, 9, 12, 15, 17, 20, 23, 26], :);
477 results_RRMSE_28_day_preds([1, 3, 6, 9, 12, 15, 17, 20, 23, 26], :)];
478

479 results_RRMSE_100_data = ...
480 [results_RRMSE_7_day_preds([1, 4, 7, 10, 13, 15, 18, 21, 24, 27], :);
481 results_RRMSE_28_day_preds([1, 4, 7, 10, 13, 15, 18, 21, 24, 27], :)];
482

483 results_RRMSE_50_data = ...
484 [results_RRMSE_7_day_preds([2, 5, 8, 11, 14, 16, 19, 22, 25, 28], :);
485 results_RRMSE_28_day_preds([2, 5, 8, 11, 14, 16, 19, 22, 25, 28], :)];
486

487 input_bar_plot_RRMSE_sample_size = [mean(results_RRMSE_full_data, 1); ...
488 mean(results_RRMSE_100_data, 1); mean(results_RRMSE_50_data, 1)];
489

490 input_bar_plot_RRMSE_models = mean([results_RRMSE_full_data; ...
491 results_RRMSE_100_data; results_RRMSE_50_data],1);
492

493 % MAPE:
494 results_MAPE_7_day_preds = [100 100 88; 57 57 41; 16 6 8; 12 11 11;
495 9 9 11; 14 13 12; 15 16 7; 13 13 14; 7 11 8; 4 5 12; 17 17 9; 7 7 22;
496 7 9 18; 11 3 23; 28 31 10; 14 14 13; 6 6 6; 3 3 4; 4 4 3; 6 4 10;
497 6 6 7; 6 6 8; 3 9 13; 6 6 20; 2 2 18; 12 9 12; 11 11 10; 11 10 11];
498

499 results_MAPE_28_day_preds = [61 62 87; 40 118 41; 9 8 17; 9 8 26; 8 8 28;
500 22 20 23; 20 19 23; 23 22 21; 11 12 12; 12 11 20; 13 12 23; 11 9 17;
501 9 9 31; 9 8 46;
502

503 6 5 6; 5 5 9; 3 4 3; 3 3 3; 3 3 3; 4 5 11; 4 4 8;
504 4 4 9; 4 5 8; 4 4 14; 4 4 39; 7 6 20; 6 6 20; 6 5 83];
505

506 input_bar_plot_MAPE_days_ahead = [mean(results_MAPE_28_day_preds, 1); ...
507 mean(results_MAPE_7_day_preds, 1)];
508

509 results_MAPE_Norway = ...
510 [results_MAPE_7_day_preds(1:14, :); results_MAPE_28_day_preds(1:14, :)];
511 results_MAPE_Global = ...
512 [results_MAPE_7_day_preds(15:28, :); results_MAPE_28_day_preds(15:28, :)];
513

514 input_bar_plot_MAPE_data_set = [mean(results_MAPE_Norway, 1); ...
515 mean(results_MAPE_Global, 1)];
516

517 results_MAPE_full_data = ...
518 [results_MAPE_7_day_preds([1, 3, 6, 9, 12, 15, 17, 20, 23, 26], :);
519 results_MAPE_28_day_preds([1, 3, 6, 9, 12, 15, 17, 20, 23, 26], :)];
520

521 results_MAPE_100_data = ...
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522 [results_MAPE_7_day_preds([1, 4, 7, 10, 13, 15, 18, 21, 24, 27], :);
523 results_MAPE_28_day_preds([1, 4, 7, 10, 13, 15, 18, 21, 24, 27], :)];
524

525 results_MAPE_50_data = ...
526 [results_MAPE_7_day_preds([2, 5, 8, 11, 14, 16, 19, 22, 25, 28], :);
527 results_MAPE_28_day_preds([2, 5, 8, 11, 14, 16, 19, 22, 25, 28], :)];
528

529 input_bar_plot_MAPE_sample_size = [mean(results_MAPE_full_data, 1); ...
530 mean(results_MAPE_100_data, 1); mean(results_MAPE_50_data, 1)];
531

532

533 input_bar_plot_MAPE_models = mean([results_MAPE_full_data; ...
534 results_MAPE_100_data; results_MAPE_50_data],1).';
535

536 % % Creating histogram for all RRMSEs:
537 % RRMSEs_from_table = ...
538 % [results_RRMSE_28_day_preds; results_RRMSE_7_day_preds];
539 % RRMSEs_sarima_table = RRMSEs_from_table(:, 1);
540 % RRMSEs_gandalf_table = RRMSEs_from_table(:, 2);
541 % RRMSEs_cnn_table = RRMSEs_from_table(:, 3);
542 % figure
543 % sar = histogram(RRMSEs_sarima_table, 40, 'FaceColor', [0.4940 0.1840 0.5560]);
544 % mean(RRMSEs_sarima_table)
545 % mean_sar = xline(mean(RRMSEs_sarima_table),'−−',...
546 % 'Color', [1 0 0], 'LineWidth',2);
547 % legend([sar mean_sar], 'SARIMA model','Mean RRMSE')
548 % xlabel('RRMSE')
549 % ylabel('Occurrences')
550 % set(gcf,'color','w')
551 % set(gca,'FontSize',24)
552 % % xticks(min(RRMSEs_sarima_table):5:max(RRMSEs_sarima_table))
553 % figure
554 % gand = histogram(RRMSEs_gandalf_table, 40, 'FaceColor', [.2, .9, .5]);
555 % mean(RRMSEs_gandalf_table)
556 % mean_gand = xline(mean(RRMSEs_gandalf_table),'−−',...
557 % 'Color', [1 0 0], 'LineWidth',2);
558 % legend([gand mean_gand], 'Gandalf model','Mean RRMSE')
559 % xlabel('RRMSE')
560 % ylabel('Occurrences')
561 % set(gcf,'color','w')
562 % set(gca,'FontSize',24)
563 %
564 % figure
565 % cnn = histogram(RRMSEs_cnn_table, 40, 'FaceColor', [0 0.4470 0.7410]);
566 % mean(RRMSEs_cnn_table)
567 % mean_cnn = xline(mean(RRMSEs_cnn_table),'−−',...
568 % 'Color', [1 0 0], 'LineWidth',2);
569 % legend([cnn mean_cnn], 'CNN−LSTM model','Mean RRMSE')
570 % xlabel('RRMSE')
571 % ylabel('Occurrences')
572 % set(gcf,'color','w')
573 % set(gca,'FontSize',24)
574

575

576 % Creating histogram for all MAPEs:
577 % MAPEs_from_table = [results_MAPE_28_day_preds; results_MAPE_7_day_preds];
578 % MAPEs_sarima_table = MAPEs_from_table(:, 1);
579 % MAPEs_gandalf_table = MAPEs_from_table(:, 2);
580 % MAPEs_cnn_table = MAPEs_from_table(:, 3);
581 % figure
582 % sar = histogram(MAPEs_sarima_table, 40, 'FaceColor', [0.4940 0.1840 0.5560]);
583 % mean(MAPEs_sarima_table)
584 % mean_sar = xline(mean(MAPEs_sarima_table),'−−',...
585 % 'Color', [1 0 0], 'LineWidth',2);
586 % legend([sar mean_sar], 'SARIMA model','Mean MAPE')
587 % xlabel('MAPE')
588 % ylabel('Occurrences')
589 % set(gcf,'color','w')
590 % set(gca,'FontSize',24)
591 % % xticks(min(MAPEs_sarima_table):5:max(MAPEs_sarima_table))
592 % figure
593 % gand = histogram(MAPEs_gandalf_table, 40, 'FaceColor', [.2, .9, .5]);
594 % mean(MAPEs_gandalf_table)
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595 % mean_gand = xline(mean(MAPEs_gandalf_table),'−−',...
596 % 'Color', [1 0 0], 'LineWidth',2);
597 % legend([gand mean_gand], 'Gandalf model','Mean MAPE')
598 % xlabel('MAPE')
599 % ylabel('Occurrences')
600 % set(gcf,'color','w')
601 % set(gca,'FontSize',24)
602 %
603 % figure
604 % cnn = histogram(MAPEs_cnn_table, 40, 'FaceColor', [0 0.4470 0.7410]);
605 % mean(MAPEs_cnn_table)
606 % mean_cnn = xline(mean(MAPEs_cnn_table),'−−',...
607 % 'Color', [1 0 0], 'LineWidth',2);
608 % legend([cnn mean_cnn], 'CNN−LSTM model','Mean MAPE')
609 % xlabel('MAPE')
610 % ylabel('Occurrences')
611 % set(gcf,'color','w')
612 % set(gca,'FontSize',24)
613

614

615

616 %
617 % bin_range = min(min(RRMSEs_from_table)):max(max(RRMSEs_from_table));
618 % counts_sarima = histc(RRMSEs_sarima, bin_range);
619 % counts_gandalf = histc(RRMSEs_gandalf, bin_range);
620 % counts_cnn = histc(RRMSEs_cnn, bin_range);
621 % counts_sarima_gandalf = counts_sarima + counts_gandalf;
622 % counts_total = counts_sarima + counts_gandalf + counts_cnn;
623 %
624 % clr = [0 0.4470 0.7410; .2, .9, .5; 0.4940 0.1840 0.5560];
625 % colormap(clr);
626 % figure
627 % cnn = bar(bin_range, counts_total);
628 % hold on
629 % gand = bar(bin_range, counts_sarima_gandalf);
630 % sar = bar(bin_range, counts_sarima);
631 % hold off
632 % xlabel('RRMSE')
633 % ylabel('Occurrences')
634 % legend([sar, gand, cnn], 'SARIMA model', 'Gandalf model', 'CNN−LSTM model')
635 % set(gcf,'color','w')
636 % set(gca,'FontSize',24)
637 % set(h, {'DisplayName'}, {'SARIMA', 'Gandalf', 'CNN−LSTM'}')
638

639

640 % % Creating histogram for all MAPEs:
641 % MAPEs_from_table = [results_MAPE_28_day_preds; results_MAPE_7_day_preds];
642 % MAPEs_sarima_table = MAPEs_from_table(:, 1);
643 % MAPEs_gandalf_table = MAPEs_from_table(:, 2);
644 % MAPEs_cnn_table = MAPEs_from_table(:, 3);
645 %
646 % bin_range = min(min(MAPEs_from_table)):max(max(MAPEs_from_table));
647 % counts_sarima = histc(MAPEs_sarima, bin_range);
648 % counts_gandalf = histc(MAPEs_gandalf, bin_range);
649 % counts_cnn = histc(MAPEs_cnn, bin_range);
650 % counts_sarima_gandalf = counts_sarima + counts_gandalf;
651 % counts_total = counts_sarima + counts_gandalf + counts_cnn;
652 %
653 % clr = [0 0.4470 0.7410; .2, .9, .5; 0.4940 0.1840 0.5560];
654 % colormap(clr);
655 % figure
656 % cnn = bar(bin_range, counts_total);
657 % hold on
658 % gand = bar(bin_range, counts_sarima_gandalf);
659 % sar = bar(bin_range, counts_sarima);
660 % hold off
661 % xlabel('MAPE')
662 % ylabel('Occurrences')
663 % legend([sar, gand, cnn], 'SARIMA model', 'Gandalf model', 'CNN−LSTM model')
664 % set(gcf,'color','w')
665 % set(gca,'FontSize',24)
666 % set(h, {'DisplayName'}, {'SARIMA', 'Gandalf', 'CNN−LSTM'}')
667
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668

669

670

671 % Figure tu create bar plots, switch out text and so on depending on the
672 % spesific plot
673 % % figure
674 % h = bar(input_bar_plot_RRMSE_sample_size); % , 'stacked')
675 % % ylabel('median MAPE')
676 % ylabel('median RRMSE')
677 % % xlabel('Model')
678 % % xticklabels({'SARIMA', 'Gandalf', 'CNN−LSTM'})
679 % % xlabel('Data set')
680 % % xticklabels({'Norway', 'Global'})
681 % % xlabel('Days−ahead forecast')
682 % % xticklabels({'28 day', '7 day'})
683 % xlabel('Sample size')
684 % xticklabels({'All available', '100', '50'})
685 % set(gcf,'color','w')
686 % set(gca,'FontSize',24)
687 % set(h, {'DisplayName'}, {'SARIMA', 'Gandalf', 'CNN−LSTM'}')
688 % legend()
689

690

691

692

693 %%%%%%%%%%%%%%%%%%%%%%%%% Simulation study %%%%%%%%%%%%%%%%%%%%%%%
694

695 % simulations = simulate_from_Gandalf(ts_global, 28, 196, 1000).';
696 % plot_simulations(ts_global, simulations.', 28, 196);
697 % predictions_on_simulations(ts_global, simulations(1:3, :), ...
698 % pred_three_preds_on_sims, 28, 196, true);
699

700

701 RRMSEs_cnn = table2array(readtable(...
702 'Predictions\RRMSEs_from_simulation_global_28_days_ahead_with_196_train_data_from196.csv'));
703 MAPEs_cnn = table2array(readtable(...
704 'Predictions\MAPEs_from_simulation_global_28_days_ahead_with_196_train_data_from196.csv'));
705 pred_three_preds_on_sims = table2array(readtable(...
706 'Predictions\pred_three_preds_on_sims.csv'));
707

708

709 %The below functions take approximately 20 hours to run with 1000 sims
710 % [RRMSEs_sarima, MAPEs_sarima, RRMSEs_gandalf, MAPEs_gandalf, ...
711 % ma_sim, sma_sim, arch_sim, garch_sim] = ...
712 % RRMSE_MAPE_from_simulation_sarima_and_gandalf...
713 % (ts_global, simulations, 196, false);
714 %
715 % [log_RRMSEs_sarima, log_MAPEs_sarima, ...
716 % log_RRMSEs_gandalf, log_MAPEs_gandalf] = ...
717 % RRMSE_MAPE_from_simulation_sarima_and_gandalf...
718 % (ts_global, simulations, 196, true);
719 %
720 %
721 % % save('RRMSEs_sarima.mat','RRMSEs_sarima');
722 % % save('MAPEs_sarima.mat','MAPEs_sarima');
723 % % save('RRMSEs_gandalf.mat','RRMSEs_gandalf');
724 % % save('MAPEs_gandalf.mat','MAPEs_gandalf');
725 % %
726 % % save('log_RRMSEs_gandalf.mat','log_RRMSEs_gandalf');
727 % % save('log_MAPEs_gandalf.mat','log_MAPEs_gandalf');
728 %
729 %
730 % load('RRMSEs_sarima.mat','RRMSEs_sarima');
731 % load('MAPEs_sarima.mat','MAPEs_sarima');
732 % load('RRMSEs_gandalf.mat','RRMSEs_gandalf');
733 % load('MAPEs_gandalf.mat','MAPEs_gandalf');
734 % load('log_RRMSEs_gandalf.mat','log_RRMSEs_gandalf');
735 % load('log_MAPEs_gandalf.mat','log_MAPEs_gandalf');
736 %
737 % Plot the results:
738 % plot_simulated_RRMSE_MAPE(RRMSEs_cnn, MAPEs_cnn)
739 % plot_simulated_RRMSE_MAPE(RRMSEs_sarima, MAPEs_sarima)
740 % plot_simulated_RRMSE_MAPE(RRMSEs_gandalf, MAPEs_gandalf)
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741 % plot_simulated_RRMSE_MAPE(log_RRMSEs_gandalf, log_MAPEs_gandalf)
742 % plot_simulated_parameters(ts_global, 196, ma_sim(1:200,:), ...
743 % sma_sim(1:200,:), arch_sim(1:200,:), garch_sim(1:200,:))
744

745 function extract_percision_results_without_observed...
746 (ts, preds_cnn, endpoint, len_train, days_ahead)
747 % Does not show plot of predictions, only results. This was used to
748 % fill out the summarized table.
749 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
750 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
751 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
752 gandalf.Variance = garchmod;
753

754 train_data = ts(endpoint−len_train+1:endpoint);
755 fitted_sarima = estimate(sarima, train_data, 'Display','off');
756 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
757 preds_sarima= forecast(fitted_sarima, days_ahead, train_data);
758 preds_gandalf = forecast(fitted_gandalf, days_ahead, train_data);
759

760 mean_preds_cnn = mean(preds_cnn, 1);
761 %mse_cnn = mse_cnn_lstm(ts, mean_preds_cnn, endpoint, len_train, true);
762

763 % convert to normal scale where needed
764 ts = floor(exp(ts));
765 test_data = ts(endpoint+1: endpoint + days_ahead);
766 preds_sarima = floor(exp(preds_sarima));
767 preds_gandalf = floor(exp(preds_gandalf));
768

769 % calculate RRMSE and MAPE for single predictions
770 RRMSE_sarima = sqrt(mean((test_data − preds_sarima).^2))/mean(test_data)*100;
771 MAPE_sarima = mean(abs(test_data − preds_sarima)./abs(test_data))*100;
772 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf).^2))/mean(test_data)*100;
773 MAPE_gandalf = mean(abs(test_data − preds_gandalf)./abs(test_data))*100;
774 RRMSE_cnn = sqrt(mean((test_data − mean_preds_cnn.').^2))/mean(test_data)*100;
775 MAPE_cnn = mean(abs(test_data − mean_preds_cnn.')./abs(test_data))*100;
776

777 % calculate RRMAE and MAPE for the 10 CNN−LSTM models
778 RRMSE = zeros(10, 1);
779 MAPE = zeros(10, 1);
780 for i = 1:10
781 RRMSE(i) = sqrt(mean((test_data.' − preds_cnn(i, ...

:)).^2))/mean(test_data)*100;
782 MAPE(i) = mean(abs(test_data.' − preds_cnn(i, :))./abs(test_data.'))*100;
783 end
784

785 mean_RRMSE_cnn = round(mean(RRMSE), 2);
786 mean_MAPE_cnn = round(mean(MAPE), 2);
787

788 disp("...................................................................................")
789 disp(["Displaying the results from the ", days_ahead,"−day predictions ...

starting at ", endpoint, ...
790 " using ", len_train, " data without test data:"])
791 disp(["RRMSE SARIMA: ", round(RRMSE_sarima, 2), ", MAPE SARIMA: ", ...

round(MAPE_sarima, 2)])
792 disp(["RRMSE Gandalf: ", round(RRMSE_gandalf, 2), ", MAPE Gandalf: ", ...

round(MAPE_gandalf, 2)])
793 disp(["RRMSE mean CNN−LSTM: ", round(RRMSE_cnn, 2), ", MAPE mean CNN−LSTM: ", ...

round(MAPE_cnn, 2)])
794 disp(["Mean RRMSE of ten CNN−LSTM models: ", round(mean_RRMSE_cnn, 2), ", ...

Mean MAPE of ten CNN−LSTM models: ", round(mean_MAPE_cnn, 2)])
795

796

797 end
798

799 function extract_percision_results_with_observed...
800 (ts, preds_cnn, endpoint, len_train, days_ahead)
801 % Does not show plot of predictions, only results. This was used to
802 % fill out the summarizinf table.
803 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
804 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
805 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
806 gandalf.Variance = garchmod;
807
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808 preds_sarima = [];
809 preds_gandalf = [];
810

811 train_data = ts(endpoint−len_train+1:endpoint);
812 for i = 1:days_ahead
813 fitted_sarima = estimate(sarima, train_data, 'Display','off');
814 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
815 preds_sarima(end+1) = forecast(fitted_sarima, 1, train_data);
816 preds_gandalf(end+1) = forecast(fitted_gandalf, 1, train_data);
817 train_data = [train_data; ts(endpoint+i)]; % add next observation to ...

training data
818 end
819

820 mean_preds_cnn = mean(preds_cnn, 1);
821 %mse_cnn = mse_cnn_lstm(ts, mean_preds_cnn, endpoint, len_train, true);
822

823 % convert to normal scale where needed
824 ts = floor(exp(ts));
825 test_data = ts(endpoint+1: endpoint + days_ahead);
826 preds_sarima = floor(exp(preds_sarima));
827 preds_gandalf = floor(exp(preds_gandalf));
828

829 % calculate RRMSE and MAPE for single predictions
830 RRMSE_sarima = sqrt(mean((test_data − preds_sarima.').^2))/mean(test_data)*100;
831 MAPE_sarima = mean(abs(test_data − preds_sarima.')./abs(test_data))*100;
832 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf.').^2))/mean(test_data)*100;
833 MAPE_gandalf = mean(abs(test_data − preds_gandalf.')./abs(test_data))*100;
834 RRMSE_cnn = sqrt(mean((test_data − mean_preds_cnn.').^2))/mean(test_data)*100;
835 MAPE_cnn = mean(abs(test_data − mean_preds_cnn.')./abs(test_data))*100;
836

837 % calculate RRMAE and MAPE for the 10 CNN−LSTM models
838 RRMSE = zeros(10, 1);
839 MAPE = zeros(10, 1);
840 for i = 1:10
841 RRMSE(i) = sqrt(mean((test_data.' − preds_cnn(i, ...

:)).^2))/mean(test_data)*100;
842 MAPE(i) = mean(abs(test_data.' − preds_cnn(i, :))./abs(test_data.'))*100;
843 end
844

845 mean_RRMSE_cnn = round(mean(RRMSE), 2);
846 mean_MAPE_cnn = round(mean(MAPE), 2);
847 disp("...................................................................................")
848 disp(["Displaying the results from the ", days_ahead,"−day predictions ...

starting at ", ...
849 endpoint, " using ", len_train, " data with test data:"])
850 disp(["RRMSE SARIMA: ", round(RRMSE_sarima, 2), ", MAPE SARIMA: ", ...

round(MAPE_sarima, 2)])
851 disp(["RRMSE Gandalf: ", round(RRMSE_gandalf, 2), ", MAPE Gandalf: ", ...

round(MAPE_gandalf, 2)])
852 disp(["RRMSE mean CNN−LSTM: ", round(RRMSE_cnn, 2), ", MAPE mean CNN−LSTM: ", ...

round(MAPE_cnn, 2)])
853 disp(["Mean RRMSE of ten CNN−LSTM models: ", round(mean_RRMSE_cnn, 2), ", ...

Mean MAPE of ten CNN−LSTM models: ", round(mean_MAPE_cnn, 2)])
854

855

856

857 end
858

859 function predictions_on_simulations...
860 (ts, simulations, preds_sim_cnn, days_ahead, endpoint, is_global)
861 % Displays three forecasts on simulated realizations
862 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
863 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
864 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
865 gandalf.Variance = garchmod;
866

867 % simulation was on normal scale
868 simulations = log(max(simulations, 0.1));
869 tic
870 for i = 1:size(simulations,1) % iterate through each simulation
871

872 preds_sim_cnn(i,:)
873 train_data = ts(1:endpoint);
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874

875 % Extract params from simulation model
876 preds_sarima = [];
877 preds_gandalf = [];
878 mse_sarima = [];
879 mse_gandalf = [];
880

881 % make predictions, iterating through the current simulation
882 for j = 1:size(simulations,2)
883 fitted_sarima = estimate(sarima, train_data, 'Display','off');
884 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
885 [preds_sarima(end+1), mse_sarima(end+1)] = forecast(fitted_sarima, 1, ...

train_data);
886 [preds_gandalf(end+1), mse_gandalf(end+1)] = forecast(fitted_gandalf, 1, ...

train_data);
887 train_data = [train_data; simulations(i,j)]; % add next simulation to ...

training data
888 end
889 % revert predictions and simulations back to normal scale
890 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
891 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
892 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
893 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
894

895 % convert to normal scale where needed
896 simulations(i,:) = floor(exp(simulations(i,:)));
897 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...

floor(exp(preds_gandalf));
898 upper_sarima = floor(exp(upper_sarima));lower_sarima = floor(exp(lower_sarima));
899 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...

floor(exp(lower_gandalf));
900

901 plot_length = 21;
902

903 if is_global
904 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
905 dates_test = index_to_date_global(endpoint:endpoint+days_ahead−1);
906 else
907 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
908 dates_test = index_to_date_norway(endpoint:endpoint+days_ahead−1);
909 end
910

911 RRMSE_sarima = sqrt(mean((simulations(i,:) − ...
preds_sarima).^2))/mean(simulations(i,:))*100;

912 MAPE_sarima = mean(abs(simulations(i,:) − ...
preds_sarima)./abs(simulations(i,:)))*100;

913 RRMSE_gandalf = sqrt(mean((simulations(i,:) − ...
preds_gandalf).^2))/mean(simulations(i,:))*100;

914 MAPE_gandalf = mean(abs(simulations(i,:) − ...
preds_gandalf)./abs(simulations(i,:)))*100;

915 RRMSE_cnn = sqrt(mean((simulations(i,:) − ...
preds_sim_cnn(i,:)).^2))/mean(simulations(i,:))*100;

916 MAPE_cnn = mean(abs(simulations(i,:) − ...
preds_sim_cnn(i,:))./abs(simulations(i,:)))*100;

917

918

919 figure
920 hold on
921 data = plot(dates_train, ...

floor(exp(ts(endpoint−plot_length+1:endpoint))),'Color',[0.25, 0.25, 0.25]);
922 obs = plot(dates_test,simulations(i,:), 'Color', '#A2142F','LineWidth',3);
923 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',2);
924 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
925 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
926 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...

'LineWidth',2);
927 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
928 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
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929 cnn = plot(dates_test,preds_sim_cnn(i,:), 'Color', [0 0.4470 0.7410], ...
'LineWidth',2);

930 % gtext(['RRMSE sarima: ', num2str(RRMSE_sarima), newline,'RRMSE gandalf: ', ...
num2str(RRMSE_gandalf)],'FontSize', 24)

931

932 gtext([ ...
933 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
934 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
935 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
936 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
937 '\color[rgb]{' sprintf('%f,%f,%f', [0 0.4470 0.7410]) '} CNN−LSTM model: ...

RRMSE = ', num2str(round(RRMSE_cnn, 2)), '%', ...
938 ', MAPE = ', num2str(round(MAPE_cnn, 2)), '%',
939 ], 'Interpreter', 'tex','FontSize', 30);
940

941 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
u_gandalf cnn],...

942 'Training data', 'Simulated realization', 'Forecast SARIMA','95% interval ...
SARIMA', ...

943 'Forecast Gandalf','95% interval Gandalf', 'Forecast CNN−LSTM', ...
'Location', 'NorthWest','FontSize', 30)

944 ylabel('New cases')
945 xlabel('Date')
946 set(gcf,'Color','w')
947 set(gca,'FontSize',24)
948 hold off
949 ax = gca;
950 if is_global
951 ax.YAxis.Exponent = 3;
952 else
953 ax.YAxis.Exponent = 0;
954 end
955 hold off
956 end
957 toc
958 end
959

960 function plot_simulated_parameters...
961 (ts, endpoint, ma_sim, sma_sim, arch_sim, garch_sim)
962 %ma_sim = 28x1000 array
963 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
964 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
965 gandalf.Variance = garchmod;
966

967 [¬, variances]= estimate(gandalf, ts(1:196), 'Display','off');
968 SDs = diag(variances).^0.5;
969 SDs = SDs([2 3 6 5]).';
970

971

972 % first element contain parametes fitted on training data only:
973 original_ma = repelem(ma_sim(1,1),34);
974 upper_ma = original_ma +2*SDs(1);
975 lower_ma = original_ma −2*SDs(1);
976 original_sma = repelem(sma_sim(1,1),34);
977 upper_sma = original_sma +2*SDs(2);
978 lower_sma = original_sma −2*SDs(2);
979 original_arch = repelem(arch_sim(1,1),34);
980 upper_arch = original_arch +2*SDs(3);
981 lower_arch = original_arch −2*SDs(3);
982 original_garch = repelem(garch_sim(1,1),34);
983 upper_garch = original_garch +2*SDs(4);
984 lower_garch = original_garch −2*SDs(4);
985

986 % Plotting
987 dates_before = index_to_date_global(endpoint−3:endpoint−1);
988 dates_sim = index_to_date_global(endpoint:endpoint+27);
989 dates_after = index_to_date_global(endpoint+28:endpoint + 30);
990

991 figure
992 subplot(2,2,1)
993 hold on
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994 orig_ma = plot([dates_before dates_sim dates_after], original_ma, '−−', ...
'Color', 'red', 'LineWidth', 2);

995 up_ma = plot([dates_before dates_sim dates_after], upper_ma, '−−', 'Color', ...
'black', 'LineWidth', 1);

996 low_ma = plot([dates_before dates_sim dates_after], lower_ma, '−−', 'Color', ...
'black', 'LineWidth', 1);

997 ma = plot(dates_sim, ma_sim, 'LineWidth', 1, 'Color', 'red');
998 ylabel('Estimated \theta_{MA}')
999 xlabel('Date')
1000 set(gcf,'Color','w')
1001 set(gca,'FontSize',24)
1002 legend([orig_ma up_ma ma(1)], 'Estimated \theta_{MA} on training data', ...
1003 'Condidence interval on training data',...
1004 'Estimated \theta_{MA} on simulations', 'Location', 'northwest');
1005 hold off
1006

1007 subplot(2,2,2)
1008 hold on
1009 orig_sma = plot([dates_before dates_sim dates_after], original_sma, '−−', ...

'Color', [0 1 0.7], 'LineWidth', 2);
1010 up_sma = plot([dates_before dates_sim dates_after], upper_sma, '−−', 'Color', ...

'black', 'LineWidth', 1);
1011 low_sma = plot([dates_before dates_sim dates_after], lower_sma, '−−', ...

'Color', 'black', 'LineWidth', 1);
1012 sma = plot(dates_sim, sma_sim, 'LineWidth', 1, 'Color', [0 1 0.7]);
1013 ylabel('Estimated \theta_{SMA}')
1014 xlabel('Date')
1015 set(gcf,'Color','w')
1016 set(gca,'FontSize',24)
1017 legend([orig_sma up_sma sma(1)], 'Estimated \theta_{SMA} on training data', ...
1018 'Condidence interval on training data',...
1019 'Estimated \theta_{SMA} on simulations', 'Location', 'northwest');
1020 hold off
1021

1022 subplot(2,2,3)
1023 hold on
1024 orig_arch = plot([dates_before dates_sim dates_after], original_arch, '−−', ...

'Color', 'blue', 'LineWidth', 2);
1025 arch = plot(dates_sim, arch_sim, 'LineWidth', 1, 'Color', 'blue');
1026 up_arch = plot([dates_before dates_sim dates_after], upper_arch, '−−', ...

'Color', 'black', 'LineWidth', 1);
1027 low_arch = plot([dates_before dates_sim dates_after], lower_arch, '−−', ...

'Color', 'black', 'LineWidth', 1);
1028 ylabel('Estimated \alpha_1')
1029 xlabel('Date')
1030 set(gcf,'Color','w')
1031 set(gca,'FontSize',24)
1032 legend([orig_arch up_arch arch(1)], 'Estimated \alpha_1 on training data', ...
1033 'Condidence interval on training data',...
1034 'Estimated \alpha_1 on simulations', 'Location', 'northwest');
1035 hold off
1036

1037 subplot(2,2,4)
1038 hold on
1039 orig_garch = plot([dates_before dates_sim dates_after], original_garch, '−−', ...

'Color', 'green', 'LineWidth', 2);
1040 garch_ = plot(dates_sim, garch_sim, 'LineWidth', 1, 'Color', 'green');
1041 up_garch = plot([dates_before dates_sim dates_after], upper_garch, '−−', ...

'Color', 'black', 'LineWidth', 1);
1042 low_garch = plot([dates_before dates_sim dates_after], lower_garch, '−−', ...

'Color', 'black', 'LineWidth', 1);
1043 ylabel('Estimated \beta_1')
1044 xlabel('Date')
1045 set(gcf,'Color','w')
1046 set(gca,'FontSize',24)
1047 legend([orig_garch up_garch garch_(1)], 'Estimated \beta_1 on training data', ...
1048 'Condidence interval on training data',...
1049 'Estimated \beta_1 on simulations', 'Location', 'northwest');
1050 hold off
1051 end
1052

1053 function plot_simulated_RRMSE_MAPE(RRMSEs, MAPEs)
1054
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1055 % Uncomment the corresponding accuracy measures on the original data set
1056 % mean_RRMSE_orig = 3.86; % RRMSE on original SARIMA
1057 % mean_MAPE_orig = 2.89; % MAPE on original SARIMA
1058 % mean_RRMSE_orig = 4.81; % RRMSE on original Gandalf
1059 % mean_MAPE_orig = 3.56; % MAPE on original Gandalf
1060 mean_RRMSE_orig = 0.3574; % RRMSE on original Gandalf log scale
1061 mean_MAPE_orig = 0.2834; % MAPE on original Gandalf log scale
1062

1063 % mean_RRMSE_orig = 4.58; % RRMSE on original CNN−LSTM
1064 % mean_MAPE_orig = 3.21; % MAPE on original CNN−LSTM
1065

1066 figure
1067 set(gcf,'color','w')
1068 subplot(1, 2, 1)
1069 hold on
1070 h = histogram(RRMSEs, 100, 'FaceColor', '#00b551', 'EdgeColor','#00b551');
1071 orig_RRMSE = xline(mean_RRMSE_orig,'−−',['Original RRMSE: ', ...

num2str(mean_RRMSE_orig)], ...
1072 'Color', [0 0 1], 'LineWidth',2, 'FontSize',16);
1073 ylabel("Frequency")
1074 xlabel("RRMSE")
1075 hold off
1076 set(gca,'FontSize',24)
1077 subplot(1, 2, 2)
1078 hold on
1079 h = histogram(MAPEs, 100, 'FaceColor', '#ad003d', 'EdgeColor','#ad003d');
1080 orig_MAPE = xline(mean_MAPE_orig,'−−',['Original MAPE: ', ...

num2str(mean_MAPE_orig)], ...
1081 'Color', [0 0 1], 'LineWidth',2, 'FontSize',16);
1082 ylabel("Frequency")
1083 xlabel("MAPE")
1084 hold off
1085 set(gca,'FontSize',24)
1086 end
1087

1088 function [RRMSEs_sarima, MAPEs_sarima, RRMSEs_gandalf, MAPEs_gandalf, ...
1089 ma_sim, sma_sim, arch_sim, garch_sim] = ...
1090 RRMSE_MAPE_from_simulation_sarima_and_gandalf(ts, simulations, endpoint, ...

log_scale)
1091 % This function predicts one step ahead with simulated data from
1092 % Gandalf model using the SARIMA model and the Gandalf model
1093 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1094 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1095 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1096 gandalf.Variance = garchmod;
1097

1098

1099 RRMSEs_sarima = [];
1100 MAPEs_sarima = [];
1101 RRMSEs_gandalf = [];
1102 MAPEs_gandalf = [];
1103

1104 ma_sim = [];
1105 sma_sim = [];
1106 arch_sim = [];
1107 garch_sim = [];
1108

1109 simulations = log(max(simulations, 0.1));
1110

1111 % RRMSE and MAPE on the real test data, for reference later:
1112 train_data = ts(1:endpoint);
1113 preds_sarima = [];
1114 preds_gandalf = [];
1115

1116 for i = 1:size(simulations,2)
1117 fitted_sarima = estimate(sarima, train_data, 'Display','off');
1118 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
1119 preds_sarima(end+1) = forecast(fitted_sarima, 1, train_data);
1120 preds_gandalf(end+1) = forecast(fitted_gandalf, 1, train_data);
1121 train_data = [train_data; ts(endpoint+i)]; % add next simulation to training data
1122 end
1123

1124
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1125

1126 test_data = ts(endpoint+1:endpoint+size(simulations,2));
1127

1128 % I d : Ta ut parameterverdiene i loopen over
1129

1130 RRMSE_sarima_orig = sqrt(mean((test_data − preds_sarima.').^2))/mean(test_data)*100
1131 MAPE_sarima_orig = mean(abs(test_data − preds_sarima.')./abs(test_data))*100
1132 RRMSE_gandalf_orig = sqrt(mean((test_data − preds_gandalf.').^2))/mean(test_data)*100
1133 MAPE_gandalf_orig = mean(abs(test_data − preds_gandalf.')./abs(test_data))*100
1134

1135

1136 % simulation was on normal scale, need to be on log−scale to fulfill the
1137 % SARIMA models assumptions.
1138

1139 tic
1140 for i = 1:size(simulations,1) % iterate through each simulation
1141 train_data = ts(1:endpoint);
1142 preds_sarima = [];
1143 preds_gandalf = [];
1144

1145 ma = [];
1146 sma = [];
1147 arch = [];
1148 garch_ = [];
1149 % make predictions, iterating through the current simulation
1150 for j = 1:size(simulations,2)
1151 fitted_sarima = estimate(sarima, train_data, 'Display','off');
1152 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
1153

1154 ma(end+1) = round(cell2mat(fitted_gandalf.MA), 4);
1155 sma(end+1) = round(cell2mat(fitted_gandalf.SMA(7)), 4);
1156 arch(end+1) = round(cell2mat(fitted_gandalf.Variance.ARCH), 4);
1157 garch_(end+1) = round(cell2mat(fitted_gandalf.Variance.GARCH), 4);
1158

1159 preds_sarima(end+1) = forecast(fitted_sarima, 1, train_data);
1160 preds_gandalf(end+1) = forecast(fitted_gandalf, 1, train_data);
1161 train_data = [train_data; simulations(i,j)]; % add next simulation to ...

training data
1162 end
1163

1164 if log_scale == false
1165 % revert predictions and simulations back to normal scale
1166 preds_sarima = floor(exp(preds_sarima));
1167 preds_gandalf = floor(exp(preds_gandalf));
1168 simulations(i,:) = floor(exp(simulations(i,:)));
1169 end
1170

1171 % add parameters
1172 ma_sim = [ma_sim; ma];
1173 sma_sim = [sma_sim; sma];
1174 arch_sim = [arch_sim; arch];
1175 garch_sim = [garch_sim; garch_];
1176

1177 % calculate RRMSE and MAPE
1178 RRMSEs_sarima(end+1) = sqrt(mean((simulations(i, :) − ...

preds_sarima).^2))/mean(simulations(i, :))*100;
1179 MAPEs_sarima(end+1) = mean(abs(simulations(i, :) − ...

preds_sarima)./abs(simulations(i, :)))*100;
1180 RRMSEs_gandalf(end+1) = sqrt(mean((simulations(i, :) − ...

preds_gandalf).^2))/mean(simulations(i, :))*100;
1181 MAPEs_gandalf(end+1) = mean(abs(simulations(i, :) − ...

preds_gandalf)./abs(simulations(i, :)))*100;
1182 length(MAPEs_gandalf) % To monitor progress
1183 end
1184 toc
1185 end
1186

1187 function plot_simulations(ts, simulations, days_ahead, endpoint)
1188 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1189 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1190 gandalf.Variance = garchmod;
1191

1192 train_data = ts(1:endpoint);
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1193 % test_data = floor(exp(ts(endpoint+1:endpoint+28)));
1194 rng(123) % Set seed for reproducability
1195 fitted_model = estimate(gandalf, train_data, 'Display', 'off');
1196 [prediction, YMSE]= forecast(fitted_model, days_ahead, 'Y0', train_data);
1197 upper = prediction + 1.96*sqrt(YMSE);
1198 lower = prediction − 1.96*sqrt(YMSE);
1199 prediction = floor(exp(prediction)); upper = floor(exp(upper)); lower = ...

floor(exp(lower));
1200

1201 % Plot
1202 plot_length = 21;
1203 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
1204 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
1205 figure
1206 hold on
1207 data = plot(dates_train, ...

floor(exp(ts(endpoint−plot_length+1:endpoint))),'Color',[0.25, 0.25, 0.25]);
1208 obs = plot(dates_test,floor(exp(ts(endpoint+1:endpoint+days_ahead))), ...

'Color', [1, 0, 0],'LineWidth',3);
1209 pred = plot(dates_test,prediction, 'Color', [.2, .9, .5], 'LineWidth',2);
1210 up = plot(dates_test,upper, '−−', 'Color', [.2, .9, .5], 'LineWidth',1);
1211 low = plot(dates_test,lower, '−−', 'Color', [.2, .9, .5], 'LineWidth',1);
1212 sims = plot(dates_test,simulations(:,1:3), 'Color', '#A2142F', 'LineWidth',2);
1213 up_sims = plot(dates_test,prctile(simulations,97.5,2), '−−','Color', 'b', ...

'LineWidth',1);
1214 low_sims = plot(dates_test,prctile(simulations,2.5,2), '−−','Color', 'b', ...

'LineWidth',1);
1215 %med_sims = plot(dates_test,median(simulations,2), 'Color', 'b', 'LineWidth',2);
1216 % Hvis du vil plotte alle med gjennomsiktighet
1217 % for i=1:length(sims)
1218 % sims(i).Color = [sims(i).Color 0.05]; % alpha=0.1
1219 % end
1220 legend([data obs sims(1) pred up up_sims], 'Training data', 'Test data', ...

'Simulations', 'Forecast Gandalf', ...
1221 '95% theoretical interval Gandalf', '95% quantile range simulations', ...

'Location', 'northwest')
1222 ylabel('New cases')
1223 xlabel('Date')
1224 set(gcf,'color','w')
1225 ax = gca;
1226 ax.YAxis.Exponent = 3;
1227 set(gca,'FontSize',24)
1228 hold off
1229 end
1230

1231 function simulations = simulate_from_Gandalf...
1232 (ts, days_ahead, endpoint, amount_simulations)
1233 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1234 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1235 gandalf.Variance = garchmod;
1236

1237 train_data = ts(1:endpoint);
1238 rng(123) % Set seed for reproducability
1239 fitted_model = estimate(gandalf, train_data, 'Display', 'off');
1240 [prediction, YMSE]= forecast(fitted_model, days_ahead, 'Y0', train_data);
1241 upper = prediction + 1.96*sqrt(YMSE);
1242 lower = prediction − 1.96*sqrt(YMSE);
1243 prediction = floor(exp(prediction));
1244 upper = floor(exp(upper));
1245 lower = floor(exp(lower));
1246 simulations = floor(exp(simulate(fitted_model,...
1247 days_ahead, 'NumPaths', amount_simulations, 'Y0', train_data)));
1248 % Save the results. These will be used in Python later
1249 writematrix(simulations.', ...
1250 'Matlab\Saved variables\simulations_from_gandalf.csv')
1251 end
1252

1253 function plot_loss_function(loss_func)
1254 %[minimum, minimum_ind] = min(loss_func); % find minimal loss and its ...

corresponding epoc
1255 figure
1256 hold on
1257 loss = plot(loss_func, 'LineWidth', 3);
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1258 yline(loss_func(100), '−−', 'Mean loss after 100 epochs', ...
1259 'Color', 'red', 'LineWidth',2, 'LabelVerticalAlignment', 'top', ...

'FontSize', 24);
1260 ylim([−0.001 0.01])
1261 ylabel('Mean loss')
1262 xlabel('Epocs')
1263 set(gcf,'color','w')
1264 set(gca,'FontSize',24)
1265 hold off
1266 end
1267

1268 function plot_acf_of_res(ts, endpoint, len_train, garch_noise)
1269 % plot ACF of residuals and squared residuals
1270

1271 train_data = ts(endpoint−len_train+1:endpoint);
1272

1273 mod = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1274 if garch_noise
1275 noise = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1276 mod.Variance = noise
1277 end
1278 % fit model
1279 fitted_model = estimate(mod, train_data, 'Display','off');
1280 residuals = infer(fitted_model, train_data);
1281

1282 % res = plot(residuals)
1283 [¬, p_arch] = archtest(residuals, 'Lags', 2);
1284 %[¬, p_lbq] = lbqtest(residuals);
1285 figure
1286

1287 [acf,lags,bounds] = autocorr(residuals);
1288

1289 stem(lags,acf, 'LineWidth',2); xlabel('Lag'); ylabel('\gamma(k)');
1290

1291 hold on;
1292 h = plot(lags,bounds(1)*ones(length(acf),1), '−−','LineWidth',2, 'Color',[1 0 ...

0]);
1293 h1 = plot(lags,bounds(2)*ones(length(acf),1), '−−' ,'LineWidth',2, 'Color',[1 ...

0 0]);
1294 title([''])
1295 % title(['Sample ACF of residuals of model from ',...
1296 % datestr(index_to_date_norway(endpoint−len_train+1)), ' to ' ...

datestr(index_to_date_norway(endpoint))])
1297 set(gcf,'color','w')
1298 set(gca,'FontSize',40)
1299 figure
1300 [acf,lags,bounds] = autocorr(residuals.^2);
1301 set(gca,'FontSize',40)
1302 stem(lags,acf, 'LineWidth',2); xlabel('Lag'); ylabel('\gamma(k)');
1303 hold on;
1304 h = plot(lags,bounds(1)*ones(length(acf),1), '−−','LineWidth',2, 'Color',[1 0 ...

0]);
1305 h1 = plot(lags,bounds(2)*ones(length(acf),1), '−−' ,'LineWidth',2, 'Color',[1 ...

0 0]);
1306 gtext(['P−value for Engels ARCH test: ', num2str(p_arch)],'FontSize',40) % , ...

newline, 'P−value for Ljung−Box Q−test: ', num2str(p_lbq)]
1307 title([''])
1308 % title(['Sample ACF of squared residuals of model from ', ...
1309 % datestr(index_to_date_norway(endpoint−len_train+1)), ' to ' ...

datestr(index_to_date_norway(endpoint))])
1310 set(gcf,'color','w')
1311 set(gca,'FontSize',40)
1312 end
1313

1314 function plot_preds_sarima_gandalf...
1315 (ts, endpoint, len_train, days_ahead, is_global)
1316 % Directly predicts the next days_ahead days after endpoint
1317 % These are then plotted and compared to the CNN−LSTM model with the
1318 % same prediction sceeme
1319

1320 % ts should be on log−scale
1321

1322 plot_length = 14;

92



1323

1324 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1325 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1326 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1327 gandalf.Variance = garchmod;
1328

1329 preds_sarima = [];
1330 mse_sarima = [];
1331 preds_gandalf = [];
1332 mse_gandalf = [];
1333

1334 train_data = ts(endpoint−len_train+1:endpoint);
1335

1336 [fitted_sarima, ¬, logL_sarima] = estimate(sarima, train_data, 'Display','off');
1337 [fitted_gandalf, ¬, logL_gandalf]= estimate(gandalf, train_data, ...

'Display','off');
1338 [preds_sarima, mse_sarima] = forecast(fitted_sarima, days_ahead, train_data);
1339 [preds_gandalf, mse_gandalf] = forecast(fitted_gandalf, days_ahead, train_data);
1340

1341 % Display the AICc values for both models
1342 [¬, ¬, AICc_sarima] = aicbic(logL_sarima, 3, len_train);
1343 [¬, ¬, AICc_gandalf] = aicbic(logL_gandalf, 4, len_train);
1344 AICc_sarima = AICc_sarima.aicc
1345 AICc_gandalf = AICc_gandalf.aicc
1346

1347

1348 % get parameter estimates
1349 MA_sarima = cell2mat(fitted_sarima.MA); SMA_sarima = ...

cell2mat(fitted_sarima.SMA(7));
1350 sigma2 = fitted_sarima.Variance;
1351 round(SMA_sarima, 2)
1352 MA_gandalf = cell2mat(fitted_gandalf.MA); SMA_gandalf = ...

cell2mat(fitted_gandalf.SMA(7));
1353 GARCH = cell2mat(fitted_gandalf.Variance.GARCH); ARCH = ...

cell2mat(fitted_gandalf.Variance.ARCH);
1354

1355 % create 95% intervals
1356 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
1357 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
1358 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
1359 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
1360

1361 % convert to normal scale where needed
1362 ts = floor(exp(ts));
1363 test_data = ts(endpoint+1: endpoint + days_ahead);
1364 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...

floor(exp(preds_gandalf));
1365 upper_sarima = floor(exp(upper_sarima));lower_sarima = floor(exp(lower_sarima));
1366 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...

floor(exp(lower_gandalf));
1367

1368 % calculate RRMSE and MAPE
1369 RRMSE_sarima = sqrt(mean((test_data − preds_sarima).^2))/mean(test_data)*100;
1370 MAPE_sarima = mean(abs(test_data − preds_sarima)./abs(test_data))*100;
1371 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf).^2))/mean(test_data)*100;
1372 MAPE_gandalf = mean(abs(test_data − preds_gandalf)./abs(test_data))*100;
1373

1374 % set dates
1375 if is_global
1376 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
1377 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
1378 else
1379 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
1380 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
1381 end
1382

1383 % plotting
1384 figure
1385 hold on
1386

1387 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...
0.25, 0.25]);

1388 obs = plot(dates_test,test_data, 'Color', [1, 0, 0],'LineWidth',3);
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1389 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',2);

1390 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1391 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1392 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...
'LineWidth',2);

1393 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1394 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1395

1396 %ylim([0 1700])
1397

1398 % insert percision results in plot
1399 set(gca,'FontSize',24)
1400 gtext([ ...
1401 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
1402 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
1403 '\theta_{MA} = ', num2str(round(MA_sarima, 2)), ', \theta_{SMA} = ', ...
1404 num2str(round(SMA_sarima, 2)), ', \sigma^{2} = ', num2str(round(sigma2, ...

2)), newline, ...
1405 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
1406 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
1407 '\theta_{MA} = ', num2str(round(MA_gandalf, 2)), ', \theta_{SMA} = ', ...
1408 num2str(round(SMA_gandalf, 2)), ', \alpha_{1} = ', num2str(round(ARCH, ...

2)), ...
1409 ', \beta_{1} = ', num2str(round(GARCH, 2))], 'Interpreter', ...

'tex','FontSize', 30);
1410

1411 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
u_gandalf],...

1412 'Training data', 'Test data', 'Forecast SARIMA','95% interval SARIMA', ...
1413 'Forecast Gandalf','95% interval Gandalf', 'NorthWest','FontSize', 30)
1414 ylabel('New cases','FontSize', 30)
1415 xlabel('Date','FontSize', 30)
1416

1417 % if is_global
1418 % title(['Forecasts of Global data from ', ...

datestr(index_to_date_global(endpoint+1)),'FontSize', 20])
1419 % else
1420 % title(['Forecasts of Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1))],'FontSize', 20)
1421 % end
1422 set(gcf,'color','w')
1423

1424 ax = gca;
1425

1426

1427 if is_global
1428 ax.YAxis.Exponent = 3;
1429 else
1430 ax.YAxis.Exponent = 0;
1431 end
1432 hold off
1433 end
1434

1435 function plot_parameters_from_prediction_scheme_1...
1436 (ts, endpoint, len_train, days_ahead, is_global)
1437 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1438 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1439 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1440 gandalf.Variance = garchmod;
1441

1442 preds_sarima = [];
1443 preds_gandalf = [];
1444

1445 train_data = ts(endpoint−len_train+1:endpoint);
1446

1447 % Gather initial SARIMA parameters
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1448 fitted_sarima = estimate(sarima, train_data, 'Display','off');
1449 inintial_MA_sarima = round(cell2mat(fitted_sarima.MA), 4);
1450 inintial_SMA_sarima = round(cell2mat(fitted_sarima.SMA(7)), 4);
1451 inintial_SIGMA_sarima = round(fitted_sarima.Variance, 4);
1452

1453 % Gather initial gandalf parameters
1454 fitted_gandalf = estimate(gandalf, train_data, 'Display','off');
1455 inintial_MA_gandalf = round(cell2mat(fitted_gandalf.MA), 4);
1456 inintial_SMA_gandalf = round(cell2mat(fitted_gandalf.SMA(7)), 4);
1457 inintial_ARCH_gandalf = round(cell2mat(fitted_gandalf.Variance.ARCH), 4);
1458 inintial_GARCH_gandalf = round(cell2mat(fitted_gandalf.Variance.GARCH), 4);
1459

1460 preds_sarima = [];
1461 preds_gandalf = [];
1462

1463 MA_sarima = [];
1464 SMA_sarima = [];
1465 SIGMA_sarima = [];
1466 MA_upper_sarima = [];
1467 SMA_upper_sarima = [];
1468 SIGMA_upper_sarima = [];
1469 MA_lower_sarima = [];
1470 SMA_lower_sarima = [];
1471 SIGMA_lower_sarima = [];
1472 MA_lower_gandalf = [];
1473 SMA_lower_gandalf = [];
1474 ARCH_lower_gandalf = [];
1475 GARCH_lower_gandalf = [];
1476 MA_gandalf = [];
1477 SMA_gandalf = [];
1478 ARCH_gandalf = [];
1479 GARCH_gandalf = [];
1480 MA_upper_gandalf = [];
1481 SMA_upper_gandalf = [];
1482 ARCH_upper_gandalf = [];
1483 GARCH_upper_gandalf = [];
1484 MA_lower_gandalf = [];
1485 SMA_lower_gandalf = [];
1486 ARCH_lower_gandalf = [];
1487 GARCH_lower_gandalf = [];
1488

1489 for i = 1:days_ahead
1490 [fitted_sarima, varmat_sarima] = estimate(sarima, train_data, ...

'Display','off');
1491 [fitted_gandalf, varmat_gandalf]= estimate(gandalf, train_data, ...

'Display','off');
1492

1493 SDs = diag(varmat_sarima).^0.5;
1494 SDs = SDs([2 3 4]).';
1495 SDs = diag(varmat_gandalf).^0.5;
1496 SDs = SDs([2 3 6 5]).';
1497

1498 % Collect parameter estimates from SARIMA model
1499 MA_new_sarima = round(cell2mat(fitted_sarima.MA), 4);
1500 MA_sarima = [MA_sarima MA_new_sarima];
1501 MA_upper_sarima = [MA_upper_sarima MA_new_sarima+2*SDs(1)];
1502 MA_lower_sarima = [MA_lower_sarima MA_new_sarima−2*SDs(1)];
1503 SMA_new_sarima = round(cell2mat(fitted_sarima.SMA(7)), 4);
1504 SMA_sarima = [SMA_sarima SMA_new_sarima];
1505 SMA_upper_sarima = [SMA_upper_sarima SMA_new_sarima+2*SDs(2)];
1506 SMA_lower_sarima = [SMA_lower_sarima SMA_new_sarima−2*SDs(2)];
1507 SIGMA_new_sarima = round(fitted_sarima.Variance, 4);
1508 SIGMA_sarima = [SIGMA_sarima SIGMA_new_sarima];
1509 SIGMA_upper_sarima = [SIGMA_upper_sarima SIGMA_new_sarima+2*SDs(3)];
1510 SIGMA_lower_sarima = [SIGMA_lower_sarima SIGMA_new_sarima−2*SDs(4)];
1511

1512 % Collect parameter estimates from Gandalf model
1513 MA_new_gandalf = round(cell2mat(fitted_gandalf.MA), 4);
1514 MA_gandalf = [MA_gandalf MA_new_gandalf];
1515 MA_upper_gandalf = [MA_upper_gandalf MA_new_gandalf+2*SDs(1)];
1516 MA_lower_gandalf = [MA_lower_gandalf MA_new_gandalf−2*SDs(1)];
1517 SMA_new_gandalf = round(cell2mat(fitted_gandalf.SMA(7)), 4);
1518 SMA_gandalf = [SMA_gandalf SMA_new_gandalf];
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1519 SMA_upper_gandalf = [SMA_upper_gandalf SMA_new_gandalf+2*SDs(2)];
1520 SMA_lower_gandalf = [SMA_lower_gandalf SMA_new_gandalf−2*SDs(2)];
1521 ARCH_new_gandalf = round(cell2mat(fitted_gandalf.Variance.ARCH), 4);
1522 ARCH_gandalf = [ARCH_gandalf ARCH_new_gandalf];
1523 ARCH_upper_gandalf = [ARCH_upper_gandalf ARCH_new_gandalf+2*SDs(3)];
1524 ARCH_lower_gandalf = [ARCH_lower_gandalf ARCH_new_gandalf−2*SDs(4)];
1525 GARCH_new_gandalf = round(cell2mat(fitted_gandalf.Variance.GARCH), 4);
1526 GARCH_gandalf = [GARCH_gandalf GARCH_new_gandalf];
1527 GARCH_upper_gandalf = [GARCH_upper_gandalf GARCH_new_gandalf+2*SDs(4)];
1528 GARCH_lower_gandalf = [GARCH_lower_gandalf GARCH_new_gandalf−2*SDs(4)];
1529

1530 train_data = [train_data; ts(endpoint+i)]; % add next observation to ...
training data

1531 end
1532

1533 if is_global
1534 dates_test = index_to_date_global(endpoint:endpoint+days_ahead−1);
1535 else
1536 dates_test = index_to_date_norway(endpoint:endpoint+days_ahead−1);
1537 end
1538

1539 % Plot SARIMA parameters
1540 figure
1541 subplot(2,5,[1 2])
1542 hold on
1543 ma = plot(dates_test, MA_sarima, 'Color', 'red','LineWidth',2);
1544 ma_upper = plot(dates_test, MA_upper_sarima,'black:','LineWidth',2);
1545 ma_lower = plot(dates_test, MA_lower_sarima,'black:','LineWidth',2);
1546 yline(inintial_MA_sarima, '−−', 'Original \theta_{MA} estimate', ...
1547 'Color', 'red', 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1548 legend([ma, ma_upper, ma_lower], '\theta_{MA}','95% confidence interval')
1549 ylabel('Estimated \theta_{MA}')
1550 xlabel('Date')
1551 set(gcf,'Color','w')
1552 set(gca,'FontSize',24)
1553 hold off
1554

1555

1556 subplot(2,5, [4 5])
1557 hold on
1558 sma = plot(dates_test, SMA_sarima, 'Color', [0 1 0.7],'LineWidth',2);
1559 sma_upper = plot(dates_test, SMA_upper_sarima,'black:','LineWidth',2);
1560 sma_lower = plot(dates_test, SMA_lower_sarima,'black:','LineWidth',2);
1561 yline(inintial_SMA_sarima, '−−', 'Original \theta_{SMA} estimate', ...
1562 'Color', [0 1 0.7], 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1563 legend([sma sma_upper], '\theta_{SMA}','95% confidence intervall')
1564 ylabel('Estimated \theta_{SMA}')
1565 xlabel('Date')
1566 set(gcf,'Color','w')
1567 set(gca,'FontSize',24)
1568 hold off
1569

1570 subplot(2,5, [7 8 9])
1571 hold on
1572 sigma = plot(dates_test, SIGMA_sarima, 'Color', 'blue','LineWidth',2);
1573 sigma_upper = plot(dates_test, SIGMA_upper_sarima,'black:','LineWidth',2);
1574 sigma_lower = plot(dates_test, SIGMA_lower_sarima,'black:','LineWidth',2);
1575 yline(inintial_SIGMA_sarima, '−−', 'Original \sigma^2 estimate', ...
1576 'Color', 'blue', 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1577 legend([sigma sigma_upper], '\sigma^2','95% confidence intervall')
1578 ylabel('Estimated \sigma^2')
1579 xlabel('Date')
1580 set(gcf,'Color','w')
1581 set(gca,'FontSize',24)
1582 hold off
1583

1584 % Plot Gandalf parameters
1585 figure
1586 subplot(2,2,1)
1587 hold on
1588 ma = plot(dates_test, MA_gandalf, 'Color', 'red','LineWidth',2);
1589 ma_upper = plot(dates_test, MA_upper_gandalf,'black:','LineWidth',2);
1590 ma_lower = plot(dates_test, MA_lower_gandalf,'black:','LineWidth',2);
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1591 yline(inintial_MA_gandalf, '−−', 'Original \theta_{MA} estimate', ...
1592 'Color', 'red', 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1593 legend([ma, ma_upper, ma_lower], '\theta_{MA}','95% confidence interval')
1594 ylabel('Estimated \theta_{MA}')
1595 xlabel('Date')
1596 set(gcf,'Color','w')
1597 set(gca,'FontSize',24)
1598 hold off
1599

1600

1601 subplot(2,2,2)
1602 hold on
1603 sma = plot(dates_test, SMA_gandalf, 'Color', [0 1 0.7],'LineWidth',2);
1604 sma_upper = plot(dates_test, SMA_upper_gandalf,'black:','LineWidth',2);
1605 sma_lower = plot(dates_test, SMA_lower_gandalf,'black:','LineWidth',2);
1606 yline(inintial_SMA_gandalf, '−−', 'Original \theta_{SMA} estimate', ...
1607 'Color', [0 1 0.7], 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1608 legend([sma sma_upper], '\theta_{SMA}','95% confidence intervall')
1609 ylabel('Estimated \theta_{SMA}')
1610 xlabel('Date')
1611 set(gcf,'Color','w')
1612 set(gca,'FontSize',24)
1613 hold off
1614

1615 subplot(2,2,3)
1616 hold on
1617 arch = plot(dates_test, ARCH_gandalf, 'Color', 'blue','LineWidth',2);
1618 arch_upper = plot(dates_test, ARCH_upper_gandalf,'black:','LineWidth',2);
1619 arch_lower = plot(dates_test, ARCH_lower_gandalf,'black:','LineWidth',2);
1620 yline(inintial_ARCH_gandalf, '−−', 'Original \alpha_{1} estimate', ...
1621 'Color', 'blue', 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1622 legend([arch arch_upper], '\alpha_{1}','95% confidence intervall')
1623 ylabel('Estimated \alpha_{1}')
1624 xlabel('Date')
1625 set(gcf,'Color','w')
1626 set(gca,'FontSize',24)
1627 hold off
1628

1629 subplot(2,2,4)
1630 hold on
1631 garch_plot = plot(dates_test, GARCH_gandalf, 'Color', 'green','LineWidth',2);
1632 garch_upper = plot(dates_test, GARCH_upper_gandalf,'black:','LineWidth',2);
1633 garch_lower = plot(dates_test, GARCH_lower_gandalf,'black:','LineWidth',2);
1634 yline(inintial_GARCH_gandalf, '−−', 'Original \beta_{1} estimate', ...
1635 'Color', 'green', 'LineWidth',2, 'LabelVerticalAlignment', 'bottom');
1636 legend([garch_plot garch_upper], '\beta_{1}','95% confidence intervall')
1637 ylabel('Estimated \beta_{1}')
1638 xlabel('Date')
1639 set(gcf,'Color','w')
1640 set(gca,'FontSize',24)
1641 hold off
1642 end
1643

1644 function plot_all_predictions_with_observed...
1645 (ts, preds_cnn, endpoint, len_train, days_ahead, is_global)
1646 % Plots the two previous functions in the same figure
1647 % ts is on log−scale
1648 plot_length = 14;
1649 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1650 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1651 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1652 gandalf.Variance = garchmod;
1653

1654 preds_sarima = [];
1655 mse_sarima = [];
1656 preds_gandalf = [];
1657 mse_gandalf = [];
1658

1659 train_data = ts(endpoint−len_train+1:endpoint);
1660 for i = 1:days_ahead
1661 fitted_sarima = estimate(sarima, train_data, 'Display','off');
1662 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
1663 [preds_sarima(end+1), mse_sarima(end+1)] = ...
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1664 forecast(fitted_sarima, 1, train_data);
1665 [preds_gandalf(end+1), mse_gandalf(end+1)] = ...
1666 forecast(fitted_gandalf, 1, train_data);
1667 % add next observation to training data:
1668 train_data = [train_data; ts(endpoint+i)];
1669 end
1670

1671 mean_preds_cnn = mean(preds_cnn, 1);
1672 %mse_cnn = mse_cnn_lstm(ts, mean_preds_cnn, endpoint, len_train, true);
1673

1674 % create 95% intervals
1675 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
1676 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
1677 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
1678 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
1679 %upper_cnn = mean_preds_cnn + 1.96*round(sqrt(mse_cnn));
1680 %lower_cnn = mean_preds_cnn − 1.96*round(sqrt(mse_cnn));
1681

1682 % convert to normal scale where needed
1683 ts = floor(exp(ts));
1684 test_data = ts(endpoint+1: endpoint + days_ahead);
1685 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...
1686 floor(exp(preds_gandalf));
1687 upper_sarima = floor(exp(upper_sarima));lower_sarima = ...
1688 floor(exp(lower_sarima));
1689 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...
1690 floor(exp(lower_gandalf));
1691

1692 % calculate RRMSE and MAPE for single predictions
1693 RRMSE_sarima = ...
1694 sqrt(mean((test_data − preds_sarima).^2))/mean(test_data)*100;
1695 MAPE_sarima = ...
1696 mean(abs(test_data − preds_sarima)./abs(test_data))*100;
1697 RRMSE_gandalf = ...
1698 sqrt(mean((test_data − preds_gandalf).^2))/mean(test_data)*100;
1699 MAPE_gandalf = ...
1700 mean(abs(test_data − preds_gandalf)./abs(test_data))*100;
1701 RRMSE_cnn = ...
1702 sqrt(mean((test_data − mean_preds_cnn.').^2))/mean(test_data)*100;
1703 MAPE_cnn = ...
1704 mean(abs(test_data − mean_preds_cnn.')./abs(test_data))*100;
1705

1706 % calculate RRMAE and MAPE for the 10 CNN−LSTM models
1707 RRMSE = zeros(10, 1);
1708 MAPE = zeros(10, 1);
1709 for i = 1:10
1710 RRMSE(i) = sqrt(mean((test_data.' − preds_cnn(i, :)).^2))/...
1711 mean(test_data)*100;
1712 MAPE(i) = mean(abs(test_data.' − preds_cnn(i, :))./...
1713 abs(test_data.'))*100;
1714 end
1715

1716 % set dates
1717 if is_global
1718 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
1719 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
1720 else
1721 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
1722 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
1723 end
1724 % generate RGB colors for plot for the 10 CNN−LSTM models
1725 rng(1234)
1726 cols = [];
1727 for i = 1:10
1728 c = [rand, rand, rand];
1729 cols = [cols; c];
1730 end
1731

1732 % plotting
1733 figure
1734 set(gca,'FontSize',24)
1735 subplot(1,2,1)
1736 hold on
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1737 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),...
1738 'Color',[0.25, 0.25, 0.25]);
1739 obs = plot(dates_test, test_data, 'Color', [1 0 0],'LineWidth',3);
1740 pred1 = plot(dates_test,preds_cnn(1, :), 'Color', cols(1, :), 'LineWidth',1);
1741 pred2 = plot(dates_test,preds_cnn(2, :), 'Color', cols(2, :), 'LineWidth',1);
1742 pred3 = plot(dates_test,preds_cnn(3, :), 'Color', cols(3, :), 'LineWidth',1);
1743 pred4 = plot(dates_test,preds_cnn(4, :), 'Color', cols(4, :), 'LineWidth',1);
1744 pred5 = plot(dates_test,preds_cnn(5, :), 'Color', cols(5, :), 'LineWidth',1);
1745 pred6 = plot(dates_test,preds_cnn(6, :), 'Color', cols(6, :), 'LineWidth',1);
1746 pred7 = plot(dates_test,preds_cnn(7, :), 'Color', cols(7, :), 'LineWidth',1);
1747 pred8 = plot(dates_test,preds_cnn(8, :), 'Color', cols(8, :), 'LineWidth',1);
1748 pred9 = plot(dates_test,preds_cnn(9, :), 'Color', cols(9, :), 'LineWidth',1);
1749 pred10 = plot(dates_test,preds_cnn(10, :), 'Color', cols(10, :), 'LineWidth',1);
1750

1751 gtext([ ...
1752 '\color[rgb]{' sprintf('%f,%f,%f', cols(1,:) ) '} Model 1: RRMSE = ', ...

num2str(round(RRMSE(1), 2)), '%', ...
1753 ', MAPE = ', num2str(round(MAPE(1), 2)), '%',newline, ...
1754 '\color[rgb]{' sprintf('%f,%f,%f', cols(2,:) ) '} Model 2: RRMSE = ', ...

num2str(round(RRMSE(2), 2)), '%', ...
1755 ', MAPE = ', num2str(round(MAPE(2), 2)), '%',newline, ...
1756 '\color[rgb]{' sprintf('%f,%f,%f', cols(3,:) ) '} Model 3: RRMSE = ', ...

num2str(round(RRMSE(3), 2)), '%', ...
1757 ', MAPE = ', num2str(round(MAPE(3), 2)), '%',newline ...
1758 '\color[rgb]{' sprintf('%f,%f,%f', cols(4,:) ) '} Model 4: RRMSE = ', ...

num2str(round(RRMSE(4), 2)), '%', ...
1759 ', MAPE = ', num2str(round(MAPE(4), 2)), '%',newline ...
1760 '\color[rgb]{' sprintf('%f,%f,%f', cols(5,:) ) '} Model 5: RRMSE = ', ...

num2str(round(RRMSE(5), 2)), '%', ...
1761 ', MAPE = ', num2str(round(MAPE(5), 2)), '%',newline ...
1762 '\color[rgb]{' sprintf('%f,%f,%f', cols(6,:) ) '} Model 6: RRMSE = ', ...

num2str(round(RRMSE(6), 2)), '%', ...
1763 ', MAPE = ', num2str(round(MAPE(6), 2)), '%',newline ...
1764 '\color[rgb]{' sprintf('%f,%f,%f', cols(7,:) ) '} Model 7: RRMSE = ', ...

num2str(round(RRMSE(7), 2)), '%', ...
1765 ', MAPE = ', num2str(round(MAPE(7), 2)), '%',newline ...
1766 '\color[rgb]{' sprintf('%f,%f,%f', cols(8,:) ) '} Model 8: RRMSE = ', ...

num2str(round(RRMSE(8), 2)), '%', ...
1767 ', MAPE = ', num2str(round(MAPE(8), 2)), '%',newline ...
1768 '\color[rgb]{' sprintf('%f,%f,%f', cols(9,:) ) '} Model 9: RRMSE = ', ...

num2str(round(RRMSE(9), 2)), '%', ...
1769 ', MAPE = ', num2str(round(MAPE(9), 2)), '%',newline ...
1770 '\color[rgb]{' sprintf('%f,%f,%f', cols(10,:) ) '} Model 10: RRMSE = ', ...

num2str(round(RRMSE(10), 2)), '%', ...
1771 ', MAPE = ', num2str(round(MAPE(10), 2))], 'Interpreter', 'tex','FontSize', 30);
1772

1773 gtext(['Mean RRMSE = ', num2str(round(mean(RRMSE), 2)), '%',', mean MAPE = ', ...
num2str(round(mean(MAPE), 2)), '%'],'FontSize', 30)

1774

1775 legend([data, obs], 'Training data', 'Test data', 'NorthWest','FontSize', 30)
1776 ylabel('New cases')
1777 xlabel('Date')
1778 if is_global
1779 title(['Forcast with 10 CNN−LSTM models on Global data from ', ...

datestr(index_to_date_global(endpoint+1)),...
1780 ' with sample size ', num2str(len_train), ' and nessesary observed ...

data'],'FontSize', 60)
1781 else
1782 title(['Forcast with 10 CNN−LSTM models on Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1)),...
1783 ' with sample size ', num2str(len_train), ' and nessesary observed ...

data'],'FontSize', 60)
1784 end
1785 ax = gca;
1786 ax.YAxis.Exponent = 3;
1787 set(gca,'FontSize',20)
1788 hold off
1789

1790 subplot(1,2,2)
1791 hold on
1792 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...

0.25, 0.25]);
1793 obs = plot(dates_test,test_data, 'Color', [1, 0, 0],'LineWidth',3);
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1794 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',2);

1795 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1796 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1797 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...
'LineWidth',2);

1798 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1799 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1800 predictions_cnn = plot(dates_test,mean_preds_cnn, 'Color', [0 0.4470 0.7410], ...
'LineWidth',2);

1801 %u_cnn = plot(dates_test,upper_cnn, '−−', 'Color', [0 0.4470 0.7410], ...
'LineWidth',1);

1802 %l_cnn = plot(dates_test,lower_cnn, '−−', 'Color', [0 0.4470 0.7410], ...
'LineWidth',1);

1803

1804 ylim([0 800000])
1805

1806 % insert percision results in plot
1807 gtext([ ...
1808 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
1809 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
1810 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
1811 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
1812 '\color[rgb]{' sprintf('%f,%f,%f', [0 0.4470 0.7410]) '} CNN−LSTM model: ...

RRMSE = ', num2str(round(RRMSE_cnn, 2)), '%', ...
1813 ', MAPE = ', num2str(round(MAPE_cnn, 2)), '%',
1814 ], 'Interpreter', 'tex','FontSize', 30);
1815

1816 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
u_gandalf, predictions_cnn, u_cnn],...

1817 'Training data', 'Test data', 'Forecast SARIMA','95% interval SARIMA', ...
1818 'Forecast Gandalf','95% interval Gandalf', 'Forecast CNN−LSTM', ...

'NorthWest','FontSize', 30) % '95% interval CNN−LSTM',
1819 ylabel('New cases','FontSize', 30)
1820 xlabel('Date','FontSize', 30)
1821 if is_global
1822 title(['Forecasts of Global data from ', ...

datestr(index_to_date_global(endpoint+1)), ...
1823 ' using only one−step predictions with observed values'],'FontSize', 30)
1824 else
1825 title(['Forecasts of Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1)), ...
1826 ' using only one−step predictions with observed values'],'FontSize', 30)
1827 end
1828 set(gcf,'color','w')
1829 set(gca,'FontSize',20)
1830 ax = gca;
1831 ax.YAxis.Exponent = 3;
1832 if is_global
1833 ax.YAxis.Exponent = 3;
1834 else
1835 ax.YAxis.Exponent = 0;
1836 end
1837 hold off
1838 end
1839

1840 function plot_all_predictions_without_observed(ts, preds_cnn, endpoint, ...
len_train, days_ahead, is_global)

1841 % Plots the two previous functions in the same figure
1842 % ts is on log−scale
1843 plot_length = 14;
1844 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1845 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
1846 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
1847 gandalf.Variance = garchmod;
1848

1849 %[sarima_1, ¬, logL_without] = estimate(mod, ts_train, 'Display','off');
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1850

1851 preds_sarima = [];
1852 mse_sarima = [];
1853 preds_gandalf = [];
1854 mse_gandalf = [];
1855

1856 train_data = ts(endpoint−len_train+1:endpoint);
1857

1858 tic
1859 fitted_sarima = estimate(sarima, train_data, 'Display','off');
1860 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
1861 [preds_sarima, mse_sarima] = forecast(fitted_sarima, days_ahead, train_data);
1862 [preds_gandalf, mse_gandalf] = forecast(fitted_gandalf, days_ahead, train_data);
1863 toc
1864

1865 mean_preds_cnn = mean(preds_cnn, 1);
1866 %mse_cnn = mse_cnn_lstm(ts, mean_preds_cnn, endpoint, len_train, false);
1867

1868 % create 95% intervals
1869 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
1870 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
1871 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
1872 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
1873 %upper_cnn = mean_preds_cnn + 1.96*round(sqrt(mse_cnn));
1874 %lower_cnn = mean_preds_cnn − 1.96*round(sqrt(mse_cnn));
1875

1876 % convert to normal scale where needed
1877 ts = floor(exp(ts));
1878 test_data = ts(endpoint+1: endpoint + days_ahead);
1879 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...

floor(exp(preds_gandalf));
1880 upper_sarima = floor(exp(upper_sarima));lower_sarima = floor(exp(lower_sarima));
1881 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...

floor(exp(lower_gandalf));
1882

1883 % calculate RRMSE and MAPE for single predictions
1884 RRMSE_sarima = sqrt(mean((test_data − preds_sarima).^2))/mean(test_data)*100;
1885 MAPE_sarima = mean(abs(test_data − preds_sarima)./abs(test_data))*100;
1886 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf).^2))/mean(test_data)*100;
1887 MAPE_gandalf = mean(abs(test_data − preds_gandalf)./abs(test_data))*100;
1888 RRMSE_cnn = sqrt(mean((test_data − mean_preds_cnn.').^2))/mean(test_data)*100;
1889 MAPE_cnn = mean(abs(test_data − mean_preds_cnn.')./abs(test_data))*100;
1890

1891 % calculate RRMAE and MAPE for the 10 CNN−LSTM models
1892 RRMSE = zeros(10, 1);
1893 MAPE = zeros(10, 1);
1894 for i = 1:10
1895 RRMSE(i) = sqrt(mean((test_data.' − preds_cnn(i, ...

:)).^2))/mean(test_data)*100;
1896 MAPE(i) = mean(abs(test_data.' − preds_cnn(i, :))./abs(test_data.'))*100;
1897 end
1898

1899 % set dates
1900 if is_global
1901 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
1902 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
1903 else
1904 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
1905 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
1906 end
1907

1908

1909 % generate RGB colors for plot for the 10 CNN−LSTM models
1910 rng(1234)
1911 cols = [];
1912 for i = 1:10
1913 c = [rand, rand, rand];
1914 cols = [cols; c];
1915 end
1916

1917 % plotting
1918 figure
1919 set(gca,'FontSize',24)
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1920 subplot(1,2,1)
1921 hold on
1922 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...

0.25, 0.25]);
1923 obs = plot(dates_test, test_data, 'Color', [1 0 0],'LineWidth',3);
1924 pred1 = plot(dates_test,preds_cnn(1, :), 'Color', cols(1, :), 'LineWidth',1);
1925 pred2 = plot(dates_test,preds_cnn(2, :), 'Color', cols(2, :), 'LineWidth',1);
1926 pred3 = plot(dates_test,preds_cnn(3, :), 'Color', cols(3, :), 'LineWidth',1);
1927 pred4 = plot(dates_test,preds_cnn(4, :), 'Color', cols(4, :), 'LineWidth',1);
1928 pred5 = plot(dates_test,preds_cnn(5, :), 'Color', cols(5, :), 'LineWidth',1);
1929 pred6 = plot(dates_test,preds_cnn(6, :), 'Color', cols(6, :), 'LineWidth',1);
1930 pred7 = plot(dates_test,preds_cnn(7, :), 'Color', cols(7, :), 'LineWidth',1);
1931 pred8 = plot(dates_test,preds_cnn(8, :), 'Color', cols(8, :), 'LineWidth',1);
1932 pred9 = plot(dates_test,preds_cnn(9, :), 'Color', cols(9, :), 'LineWidth',1);
1933 pred10 = plot(dates_test,preds_cnn(10, :), 'Color', cols(10, :), 'LineWidth',1);
1934

1935 gtext([ ...
1936 '\color[rgb]{' sprintf('%f,%f,%f', cols(1,:) ) '} Model 1: RRMSE = ', ...

num2str(round(RRMSE(1), 2)), '%', ...
1937 ', MAPE = ', num2str(round(MAPE(1), 2)), '%',newline, ...
1938 '\color[rgb]{' sprintf('%f,%f,%f', cols(2,:) ) '} Model 2: RRMSE = ', ...

num2str(round(RRMSE(2), 2)), '%', ...
1939 ', MAPE = ', num2str(round(MAPE(2), 2)), '%',newline, ...
1940 '\color[rgb]{' sprintf('%f,%f,%f', cols(3,:) ) '} Model 3: RRMSE = ', ...

num2str(round(RRMSE(3), 2)), '%', ...
1941 ', MAPE = ', num2str(round(MAPE(3), 2)), '%',newline ...
1942 '\color[rgb]{' sprintf('%f,%f,%f', cols(4,:) ) '} Model 4: RRMSE = ', ...

num2str(round(RRMSE(4), 2)), '%', ...
1943 ', MAPE = ', num2str(round(MAPE(4), 2)), '%',newline ...
1944 '\color[rgb]{' sprintf('%f,%f,%f', cols(5,:) ) '} Model 5: RRMSE = ', ...

num2str(round(RRMSE(5), 2)), '%', ...
1945 ', MAPE = ', num2str(round(MAPE(5), 2)), '%',newline ...
1946 '\color[rgb]{' sprintf('%f,%f,%f', cols(6,:) ) '} Model 6: RRMSE = ', ...

num2str(round(RRMSE(6), 2)), '%', ...
1947 ', MAPE = ', num2str(round(MAPE(6), 2)), '%',newline ...
1948 '\color[rgb]{' sprintf('%f,%f,%f', cols(7,:) ) '} Model 7: RRMSE = ', ...

num2str(round(RRMSE(7), 2)), '%', ...
1949 ', MAPE = ', num2str(round(MAPE(7), 2)), '%',newline ...
1950 '\color[rgb]{' sprintf('%f,%f,%f', cols(8,:) ) '} Model 8: RRMSE = ', ...

num2str(round(RRMSE(8), 2)), '%', ...
1951 ', MAPE = ', num2str(round(MAPE(8), 2)), '%',newline ...
1952 '\color[rgb]{' sprintf('%f,%f,%f', cols(9,:) ) '} Model 9: RRMSE = ', ...

num2str(round(RRMSE(9), 2)), '%', ...
1953 ', MAPE = ', num2str(round(MAPE(9), 2)), '%',newline ...
1954 '\color[rgb]{' sprintf('%f,%f,%f', cols(10,:) ) '} Model 10: RRMSE = ', ...

num2str(round(RRMSE(10), 2)), '%', ...
1955 ', MAPE = ', num2str(round(MAPE(10), 2))], 'Interpreter', 'tex','FontSize', 30);
1956

1957 gtext(['Mean RRMSE = ', num2str(round(mean(RRMSE), 2)), '%',', mean MAPE = ', ...
num2str(round(mean(MAPE), 2)), '%'],'FontSize', 30)

1958

1959 legend([data, obs], 'Training data', 'Test data', 'NorthWest','FontSize', 30)
1960 ylabel('New cases','FontSize', 30)
1961 xlabel('Date','FontSize', 30)
1962 if is_global
1963 title(['Forcast with 10 CNN−LSTM models on Global data from ', ...

datestr(index_to_date_global(endpoint+1)),...
1964 ' with sample size ', num2str(len_train)],'FontSize', 30)
1965 else
1966 title(['Forcast with 10 CNN−LSTM models on Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1)),...
1967 ' with sample size ', num2str(len_train)],'FontSize', 30)
1968 end
1969 ax = gca;
1970 ax.YAxis.Exponent = 3;
1971 set(gca,'FontSize',20)
1972 hold off
1973

1974 subplot(1,2,2)
1975 hold on
1976 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...

0.25, 0.25]);
1977 obs = plot(dates_test,test_data, 'Color', [1, 0, 0],'LineWidth',3);

102



1978 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',2);

1979 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1980 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...
0.5560], 'LineWidth',1);

1981 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...
'LineWidth',2);

1982 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1983 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...
'LineWidth',1);

1984 predictions_cnn = plot(dates_test,mean_preds_cnn, 'Color', [0 0.4470 0.7410], ...
'LineWidth',2);

1985 %u_cnn = plot(dates_test,upper_cnn, '−−', 'Color', [0 0.4470 0.7410], ...
'LineWidth',1);

1986 %l_cnn = plot(dates_test,lower_cnn, '−−', 'Color', [0 0.4470 0.7410], ...
'LineWidth',1);

1987

1988 ylim([0 800000])
1989

1990 % insert percision results in plot
1991 gtext([ ...
1992 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
1993 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
1994 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
1995 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
1996 '\color[rgb]{' sprintf('%f,%f,%f', [0 0.4470 0.7410]) '} CNN−LSTM model: ...

RRMSE = ', num2str(round(RRMSE_cnn, 2)), '%', ...
1997 ', MAPE = ', num2str(round(MAPE_cnn, 2)), '%',
1998 ], 'Interpreter', 'tex','FontSize', 30);
1999

2000 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
u_gandalf, predictions_cnn],...

2001 'Training data', 'Test data', 'Forecast SARIMA','95% interval SARIMA', ...
2002 'Forecast Gandalf','95% interval Gandalf', 'Forecast CNN−LSTM', ...

'NorthWest','FontSize', 30)
2003 ylabel('New cases','FontSize', 30)
2004 xlabel('Date','FontSize', 30)
2005 if is_global
2006 title(['Forecasts of Global data from ', ...

datestr(index_to_date_global(endpoint+1)),' with sample size ', ...
num2str(len_train)],'FontSize', 30)

2007 else
2008 title(['Forecasts of Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1)), ' with sample size ', ...
num2str(len_train)],'FontSize', 30)

2009 end
2010 set(gcf,'color','w')
2011 ax = gca;
2012 if is_global
2013 ax.YAxis.Exponent = 3;
2014 else
2015 ax.YAxis.Exponent = 0;
2016 end
2017 hold off
2018 end
2019

2020 function plot_10_norway_CNN_LSTM_Preds(ts, preds, endpoint, len_train, ...
days_ahead, use_observed)

2021 % Plot the results from all 10 CNN−LSTM models
2022 % preds = 10 days_ahead forecasts
2023 % use_observed should be true if observations are used to predict the
2024 % ensuing day
2025 plot_length = 14;
2026 test_data = ts(endpoint+1: endpoint + days_ahead);
2027 % calculate RRMSE, MAE and OSRE
2028 RRMSE = zeros(10, 1);
2029 MAPE = zeros(10, 1);
2030 for i = 1:10
2031 RRMSE(i) = sqrt(mean((test_data.' − preds(i, :)).^2))/mean(test_data)*100;
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2032 MAPE(i) = mean(abs(test_data.' − preds(i, :))./abs(test_data.'))*100;
2033 end
2034

2035 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
2036 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
2037

2038

2039 % generate RGB colors for plot
2040 rng(1234)
2041 cols = [];
2042 for i = 1:10
2043 c = [rand, rand, rand];
2044 cols = [cols; c];
2045 end
2046 figure
2047 hold on
2048

2049 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...
0.25, 0.25]);

2050 obs = plot(dates_test, test_data, 'Color', [1 0 0],'LineWidth',3);
2051 pred1 = plot(dates_test,preds(1, :), 'Color', cols(1, :), 'LineWidth',1);
2052 pred2 = plot(dates_test,preds(2, :), 'Color', cols(2, :), 'LineWidth',1);
2053 pred3 = plot(dates_test,preds(3, :), 'Color', cols(3, :), 'LineWidth',1);
2054 pred4 = plot(dates_test,preds(4, :), 'Color', cols(4, :), 'LineWidth',1);
2055 pred5 = plot(dates_test,preds(5, :), 'Color', cols(5, :), 'LineWidth',1);
2056 pred6 = plot(dates_test,preds(6, :), 'Color', cols(6, :), 'LineWidth',1);
2057 pred7 = plot(dates_test,preds(7, :), 'Color', cols(7, :), 'LineWidth',1);
2058 pred8 = plot(dates_test,preds(8, :), 'Color', cols(8, :), 'LineWidth',1);
2059 pred9 = plot(dates_test,preds(9, :), 'Color', cols(9, :), 'LineWidth',1);
2060 pred10 = plot(dates_test,preds(10, :), 'Color', cols(10, :), 'LineWidth',1);
2061

2062 set(gca,'FontSize',24)
2063 gtext([ ...
2064 '\color[rgb]{' sprintf('%f,%f,%f', cols(1,:) ) '} Model 1: RRMSE = ', ...

num2str(round(RRMSE(1), 2)), '%', ...
2065 ', MAPE = ', num2str(round(MAPE(1), 2)), '%',newline, ...
2066 '\color[rgb]{' sprintf('%f,%f,%f', cols(2,:) ) '} Model 2: RRMSE = ', ...

num2str(round(RRMSE(2), 2)), '%', ...
2067 ', MAPE = ', num2str(round(MAPE(2), 2)), '%',newline, ...
2068 '\color[rgb]{' sprintf('%f,%f,%f', cols(3,:) ) '} Model 3: RRMSE = ', ...

num2str(round(RRMSE(3), 2)), '%', ...
2069 ', MAPE = ', num2str(round(MAPE(3), 2)), '%',newline ...
2070 '\color[rgb]{' sprintf('%f,%f,%f', cols(4,:) ) '} Model 4: RRMSE = ', ...

num2str(round(RRMSE(4), 2)), '%', ...
2071 ', MAPE = ', num2str(round(MAPE(4), 2)), '%',newline ...
2072 '\color[rgb]{' sprintf('%f,%f,%f', cols(5,:) ) '} Model 5: RRMSE = ', ...

num2str(round(RRMSE(5), 2)), '%', ...
2073 ', MAPE = ', num2str(round(MAPE(5), 2)), '%',newline ...
2074 '\color[rgb]{' sprintf('%f,%f,%f', cols(6,:) ) '} Model 6: RRMSE = ', ...

num2str(round(RRMSE(6), 2)), '%', ...
2075 ', MAPE = ', num2str(round(MAPE(6), 2)), '%',newline ...
2076 '\color[rgb]{' sprintf('%f,%f,%f', cols(7,:) ) '} Model 7: RRMSE = ', ...

num2str(round(RRMSE(7), 2)), '%', ...
2077 ', MAPE = ', num2str(round(MAPE(7), 2)), '%',newline ...
2078 '\color[rgb]{' sprintf('%f,%f,%f', cols(8,:) ) '} Model 8: RRMSE = ', ...

num2str(round(RRMSE(8), 2)), '%', ...
2079 ', MAPE = ', num2str(round(MAPE(8), 2)), '%',newline ...
2080 '\color[rgb]{' sprintf('%f,%f,%f', cols(9,:) ) '} Model 9: RRMSE = ', ...

num2str(round(RRMSE(9), 2)), '%', ...
2081 ', MAPE = ', num2str(round(MAPE(9), 2)), '%',newline ...
2082 '\color[rgb]{' sprintf('%f,%f,%f', cols(10,:) ) '} Model 10: RRMSE = ', ...

num2str(round(RRMSE(10), 2)), '%', ...
2083 ', MAPE = ', num2str(round(MAPE(10), 2))], 'Interpreter', 'tex','FontSize', 30);
2084

2085 gtext(['Mean RRMSE = ', num2str(round(mean(RRMSE), 2)), '%',', mean MAPE = ', ...
num2str(round(mean(MAPE), 2)), '%'],'FontSize', 30)

2086

2087 legend([data, obs], 'Training data', 'Test data', 'NorthWest','FontSize', 30)
2088

2089 ylabel('New cases','FontSize', 30)
2090 xlabel('Date','FontSize', 30)
2091 if use_observed
2092 title(['Predictions\Forcast with 10 CNN−LSTM models on Norwegian data ...
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from ', datestr(index_to_date_norway(endpoint+1)),...
2093 ' using the ', num2str(len_train), ' previous days and ...

observations'],'FontSize', 30)
2094 else
2095 title(['Predictions\Forcast with 10 CNN−LSTM models on Norwegian data ...

from ', datestr(index_to_date_norway(endpoint+1)),...
2096 ' using the ', num2str(len_train), ' previous days'],'FontSize', 30)
2097 end
2098 set(gcf,'color','w')
2099 set(gca,'FontSize',20)
2100 ax = gca;
2101 ax.YAxis.Exponent = 0;
2102 hold off
2103 end
2104

2105 function plot_10_global_CNN_LSTM_Preds(ts, preds, endpoint, len_train, ...
days_ahead, use_observed)

2106 % Plot the results from all 10 CNN−LSTM models
2107 % preds = 10 days_ahead forecasts
2108 % use_observed should be true if observations are used to predict the
2109 % ensuing day
2110 plot_length = 30;
2111 test_data = ts(endpoint+1: endpoint + days_ahead);
2112 % calculate RRMSE, MAE and OSRE
2113 RRMSE = zeros(10, 1);
2114 MAPE = zeros(10, 1);
2115 for i = 1:10
2116 RRMSE(i) = sqrt(mean((test_data.' − preds(i, :)).^2))/mean(test_data)*100;
2117 MAPE(i) = mean(abs(test_data.' − preds(i, :))./abs(test_data.'))*100;
2118 end
2119

2120 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
2121 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
2122

2123

2124 % generate RGB colors for plot
2125 rng(1234)
2126 cols = [];
2127 for i = 1:10
2128 c = [rand, rand, rand];
2129 cols = [cols; c];
2130 end
2131 figure
2132 hold on
2133

2134 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...
0.25, 0.25]);

2135 obs = plot(dates_test, test_data, 'Color', [1 0 0],'LineWidth',3);
2136 pred1 = plot(dates_test,preds(1, :), 'Color', cols(1, :), 'LineWidth',1);
2137 pred2 = plot(dates_test,preds(2, :), 'Color', cols(2, :), 'LineWidth',1);
2138 pred3 = plot(dates_test,preds(3, :), 'Color', cols(3, :), 'LineWidth',1);
2139 pred4 = plot(dates_test,preds(4, :), 'Color', cols(4, :), 'LineWidth',1);
2140 pred5 = plot(dates_test,preds(5, :), 'Color', cols(5, :), 'LineWidth',1);
2141 pred6 = plot(dates_test,preds(6, :), 'Color', cols(6, :), 'LineWidth',1);
2142 pred7 = plot(dates_test,preds(7, :), 'Color', cols(7, :), 'LineWidth',1);
2143 pred8 = plot(dates_test,preds(8, :), 'Color', cols(8, :), 'LineWidth',1);
2144 pred9 = plot(dates_test,preds(9, :), 'Color', cols(9, :), 'LineWidth',1);
2145 pred10 = plot(dates_test,preds(10, :), 'Color', cols(10, :), 'LineWidth',1);
2146

2147 set(gca,'FontSize',24)
2148 gtext([ ...
2149 '\color[rgb]{' sprintf('%f,%f,%f', cols(1,:) ) '} Model 1: RRMSE = ', ...

num2str(round(RRMSE(1), 2)), '%', ...
2150 ', MAPE = ', num2str(round(MAPE(1), 2)), '%',newline, ...
2151 '\color[rgb]{' sprintf('%f,%f,%f', cols(2,:) ) '} Model 2: RRMSE = ', ...

num2str(round(RRMSE(2), 2)), '%', ...
2152 ', MAPE = ', num2str(round(MAPE(2), 2)), '%',newline, ...
2153 '\color[rgb]{' sprintf('%f,%f,%f', cols(3,:) ) '} Model 3: RRMSE = ', ...

num2str(round(RRMSE(3), 2)), '%', ...
2154 ', MAPE = ', num2str(round(MAPE(3), 2)), '%',newline ...
2155 '\color[rgb]{' sprintf('%f,%f,%f', cols(4,:) ) '} Model 4: RRMSE = ', ...

num2str(round(RRMSE(4), 2)), '%', ...
2156 ', MAPE = ', num2str(round(MAPE(4), 2)), '%',newline ...
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2157 '\color[rgb]{' sprintf('%f,%f,%f', cols(5,:) ) '} Model 5: RRMSE = ', ...
num2str(round(RRMSE(5), 2)), '%', ...

2158 ', MAPE = ', num2str(round(MAPE(5), 2)), '%',newline ...
2159 '\color[rgb]{' sprintf('%f,%f,%f', cols(6,:) ) '} Model 6: RRMSE = ', ...

num2str(round(RRMSE(6), 2)), '%', ...
2160 ', MAPE = ', num2str(round(MAPE(6), 2)), '%',newline ...
2161 '\color[rgb]{' sprintf('%f,%f,%f', cols(7,:) ) '} Model 7: RRMSE = ', ...

num2str(round(RRMSE(7), 2)), '%', ...
2162 ', MAPE = ', num2str(round(MAPE(7), 2)), '%',newline ...
2163 '\color[rgb]{' sprintf('%f,%f,%f', cols(8,:) ) '} Model 8: RRMSE = ', ...

num2str(round(RRMSE(8), 2)), '%', ...
2164 ', MAPE = ', num2str(round(MAPE(8), 2)), '%',newline ...
2165 '\color[rgb]{' sprintf('%f,%f,%f', cols(9,:) ) '} Model 9: RRMSE = ', ...

num2str(round(RRMSE(9), 2)), '%', ...
2166 ', MAPE = ', num2str(round(MAPE(9), 2)), '%',newline ...
2167 '\color[rgb]{' sprintf('%f,%f,%f', cols(10,:) ) '} Model 10: RRMSE = ', ...

num2str(round(RRMSE(10), 2)), '%', ...
2168 ', MAPE = ', num2str(round(MAPE(10), 2))], 'Interpreter', 'tex','FontSize', 30);
2169

2170 gtext(['Mean RRMSE = ', num2str(round(mean(RRMSE), 2)), '%',', mean MAPE = ', ...
num2str(round(mean(MAPE), 2)), '%'],'FontSize', 30)

2171

2172 legend([data, obs], 'Training data', 'Test data', 'NorthWest','FontSize', 30)
2173

2174 ylabel('New cases','FontSize', 30)
2175 xlabel('Date','FontSize', 30)
2176 if use_observed
2177 title(['Predictions\Forcast with 10 CNN−LSTM models on Global data from ...

', datestr(index_to_date_global(endpoint+1)),...
2178 ' using the ', num2str(len_train), ' previous days and ...

observations'],'FontSize', 30)
2179 else
2180 title(['Predictions\Forcast with 10 CNN−LSTM models on Global data from ...

', datestr(index_to_date_global(endpoint+1)),...
2181 ' using the ', num2str(len_train), ' previous days'],'FontSize', 30)
2182 end
2183 set(gcf,'color','w')
2184 set(gca,'FontSize',20)
2185 ax = gca;
2186 ax.YAxis.Exponent = 3;
2187 hold off
2188 end
2189

2190 function plot_preds_without_observed(ts, preds_cnn, endpoint, len_train, ...
days_ahead, is_global, plot_length)

2191 % Directly predicts the next days_ahead days after endpoint
2192 % These are then plotted and compared to the CNN−LSTM model with the
2193 % same prediction sceeme
2194

2195 % ts should be on log−scale
2196 % preds_cnn should not use observed values after training to forecast
2197

2198

2199 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
2200 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
2201 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
2202 gandalf.Variance = garchmod;
2203

2204 %[sarima_1, ¬, logL_without] = estimate(mod, ts_train, 'Display','off');
2205

2206 preds_sarima = [];
2207 mse_sarima = [];
2208 preds_gandalf = [];
2209 mse_gandalf = [];
2210

2211 train_data = ts(endpoint−len_train+1:endpoint);
2212

2213 tic
2214 fitted_sarima = estimate(sarima, train_data, 'Display','off');
2215 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
2216 [preds_sarima, mse_sarima] = forecast(fitted_sarima, days_ahead, train_data);
2217 [preds_gandalf, mse_gandalf] = forecast(fitted_gandalf, days_ahead, train_data);
2218 toc
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2219

2220 %mse_cnn = mse_cnn_lstm(ts, preds_cnn, endpoint, len_train, false);
2221

2222 % create 95% intervals
2223 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
2224 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
2225 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
2226 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
2227 %upper_cnn = preds_cnn + 1.96*round(sqrt(mse_cnn));
2228 %lower_cnn = preds_cnn − 1.96*round(sqrt(mse_cnn));
2229

2230 % convert to normal scale where needed
2231 ts = floor(exp(ts));
2232 test_data = ts(endpoint+1: endpoint + days_ahead);
2233 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...

floor(exp(preds_gandalf));
2234 upper_sarima = floor(exp(upper_sarima));lower_sarima = floor(exp(lower_sarima));
2235 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...

floor(exp(lower_gandalf));
2236

2237 % calculate RRMSE and MAPE
2238 RRMSE_sarima = sqrt(mean((test_data − preds_sarima).^2))/mean(test_data)*100;
2239 MAPE_sarima = mean(abs(test_data − preds_sarima)./abs(test_data))*100;
2240 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf).^2))/mean(test_data)*100;
2241 MAPE_gandalf = mean(abs(test_data − preds_gandalf)./abs(test_data))*100;
2242 RRMSE_cnn = sqrt(mean((test_data − preds_cnn.').^2))/mean(test_data)*100;
2243 MAPE_cnn = mean(abs(test_data − preds_cnn.')./abs(test_data))*100;
2244

2245 % set dates
2246 if is_global
2247 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
2248 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
2249 else
2250 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
2251 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
2252 end
2253

2254 % plotting
2255 figure
2256 set(gca,'FontSize',24)
2257 hold on
2258

2259 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...
0.25, 0.25]);

2260 obs = plot(dates_test,test_data, 'Color', [1, 0, 0],'LineWidth',3);
2261 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',2);
2262 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
2263 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
2264 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...

'LineWidth',2);
2265 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
2266 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
2267 predictions_cnn = plot(dates_test,preds_cnn, 'Color', [0 0.4470 0.7410], ...

'LineWidth',2);
2268 %u_cnn = plot(dates_test,upper_cnn, '−−', 'Color', [0 0.4470 0.7410], ...

'LineWidth',1);
2269 %l_cnn = plot(dates_test,lower_cnn, '−−', 'Color', [0 0.4470 0.7410], ...

'LineWidth',1);
2270

2271 %ylim([0 700000])
2272

2273 % insert percision results in plot
2274 gtext([ ...
2275 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
2276 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
2277 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
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2278 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
2279 '\color[rgb]{' sprintf('%f,%f,%f', [0 0.4470 0.7410]) '} CNN−LSTM model: ...

RRMSE = ', num2str(round(RRMSE_cnn, 2)), '%', ...
2280 ', MAPE = ', num2str(round(MAPE_cnn, 2)), '%',
2281 ], 'Interpreter', 'tex','FontSize', 30);
2282

2283 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
u_gandalf, predictions_cnn],...

2284 'Training data', 'Test data', 'Forecast SARIMA','95% interval SARIMA', ...
2285 'Forecast Gandalf','95% interval Gandalf', 'Forecast CNN−LSTM', ...

'NorthWest','FontSize', 30) % '95% interval CNN−LSTM',
2286 ylabel('New cases','FontSize', 30)
2287 xlabel('Date','FontSize', 30)
2288 if is_global
2289 title(['Forecasts of Global data from ', ...

datestr(index_to_date_global(endpoint+1))],'FontSize', 30)
2290 else
2291 title(['Forecasts of Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1))],'FontSize', 30)
2292 end
2293 set(gcf,'color','w')
2294 set(gca,'FontSize',20)
2295 ax = gca;
2296

2297 if is_global
2298 ax.YAxis.Exponent = 3;
2299 else
2300 ax.YAxis.Exponent = 0;
2301

2302 end
2303 hold off
2304 end
2305

2306 function plot_preds_with_observed(ts, preds_cnn, endpoint, len_train, days_ahead, ...
is_global, plot_length)

2307 % performes a series of one step predictions for the SARIMA model and
2308 % the Gandalf model, where the next observation is included as train
2309 % data.
2310 % These are then plotted and compared to the CNN−LSTM model with the
2311 % same prediction sceeme
2312

2313 % ts should be on log−scale
2314 % preds_cnn shold be a series of one−steps from CNN−LSTM model using
2315 % observations to predict the nex day.
2316

2317

2318 sarima = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
2319 gandalf = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
2320 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
2321 gandalf.Variance = garchmod;
2322

2323 %[sarima_1, ¬, logL_without] = estimate(mod, ts_train, 'Display','off');
2324

2325 preds_sarima = [];
2326 mse_sarima = [];
2327 preds_gandalf = [];
2328 mse_gandalf = [];
2329

2330 train_data = ts(endpoint−len_train+1:endpoint);
2331 for i = 1:days_ahead
2332 fitted_sarima = estimate(sarima, train_data, 'Display','off');
2333 fitted_gandalf= estimate(gandalf, train_data, 'Display','off');
2334 [preds_sarima(end+1), mse_sarima(end+1)] = forecast(fitted_sarima, 1, ...

train_data);
2335 [preds_gandalf(end+1), mse_gandalf(end+1)] = forecast(fitted_gandalf, 1, ...

train_data);
2336 train_data = [train_data; ts(endpoint+i)]; % add next observation to ...

training data
2337 end
2338 %mse_cnn = mse_cnn_lstm(ts, preds_cnn, endpoint, len_train, true);
2339

2340 % create 95% intervals
2341 upper_sarima = preds_sarima + 1.96*sqrt(mse_sarima);
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2342 lower_sarima = preds_sarima − 1.96*sqrt(mse_sarima);
2343 upper_gandalf = preds_gandalf + 1.96*sqrt(mse_gandalf);
2344 lower_gandalf = preds_gandalf − 1.96*sqrt(mse_gandalf);
2345 %upper_cnn = preds_cnn + 1.96*round(sqrt(mse_cnn));
2346 %lower_cnn = preds_cnn − 1.96*round(sqrt(mse_cnn));
2347

2348 % convert to normal scale where needed
2349 ts = floor(exp(ts));
2350 test_data = ts(endpoint+1: endpoint + days_ahead);
2351 preds_sarima = floor(exp(preds_sarima));preds_gandalf = ...

floor(exp(preds_gandalf));
2352 upper_sarima = floor(exp(upper_sarima));lower_sarima = floor(exp(lower_sarima));
2353 upper_gandalf = floor(exp(upper_gandalf));lower_gandalf = ...

floor(exp(lower_gandalf));
2354

2355 % calculate RRMSE and MAPE
2356 RRMSE_sarima = sqrt(mean((test_data − preds_sarima.').^2))/mean(test_data)*100;
2357 MAPE_sarima = mean(abs(test_data − preds_sarima.')./abs(test_data))*100;
2358 RRMSE_gandalf = sqrt(mean((test_data − preds_gandalf.').^2))/mean(test_data)*100;
2359 MAPE_gandalf = mean(abs(test_data − preds_gandalf.')./abs(test_data))*100;
2360 RRMSE_cnn = sqrt(mean((test_data − preds_cnn.').^2))/mean(test_data)*100;
2361 MAPE_cnn = mean(abs(test_data − preds_cnn.')./abs(test_data))*100;
2362

2363 % set dates
2364 if is_global
2365 dates_train = index_to_date_global(endpoint−plot_length+1:endpoint);
2366 dates_test = index_to_date_global(endpoint+1:endpoint+days_ahead);
2367 else
2368 dates_train = index_to_date_norway(endpoint−plot_length+1:endpoint);
2369 dates_test = index_to_date_norway(endpoint+1:endpoint+days_ahead);
2370 end
2371

2372

2373 % plotting
2374 figure
2375 set(gca,'FontSize',24)
2376 hold on
2377

2378 data = plot(dates_train, ts(endpoint−plot_length+1:endpoint),'Color',[0.25, ...
0.25, 0.25]);

2379 obs = plot(dates_test,test_data, 'Color', [1, 0, 0],'LineWidth',3);
2380 predictions_sarima = plot(dates_test,preds_sarima, 'Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',2);
2381 u_sarima = plot(dates_test,upper_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
2382 l_sarima = plot(dates_test,lower_sarima, '−−','Color', [0.4940 0.1840 ...

0.5560], 'LineWidth',1);
2383 predictions_gandalf = plot(dates_test,preds_gandalf, 'Color', [.2, .9, .5], ...

'LineWidth',2);
2384 u_gandalf = plot(dates_test,upper_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
2385 l_gandalf = plot(dates_test,lower_gandalf, '−−', 'Color', [.2, .9, .5], ...

'LineWidth',1);
2386 predictions_cnn = plot(dates_test,preds_cnn, 'Color', [0 0.4470 0.7410], ...

'LineWidth',2);
2387 %u_cnn = plot(dates_test,upper_cnn, '−−', 'Color', [0 0.4470 0.7410], ...

'LineWidth',1);
2388 %l_cnn = plot(dates_test,lower_cnn, '−−', 'Color', [0 0.4470 0.7410], ...

'LineWidth',1);
2389

2390 gtext([ ...
2391 '\color[rgb]{' sprintf('%f,%f,%f', [0.4940 0.1840 0.5560] ) '} SARIMA ...

model: RRMSE = ', num2str(round(RRMSE_sarima, 2)), '%', ...
2392 ', MAPE = ', num2str(round(MAPE_sarima, 2)), '%',newline, ...
2393 '\color[rgb]{' sprintf('%f,%f,%f', [.2, .9, .5]) '} Gandalf model: RRMSE ...

= ', num2str(round(RRMSE_gandalf, 2)), '%', ...
2394 ', MAPE = ', num2str(round(MAPE_gandalf, 2)), '%', newline, ...
2395 '\color[rgb]{' sprintf('%f,%f,%f', [0 0.4470 0.7410]) '} CNN−LSTM model: ...

RRMSE = ', num2str(round(RRMSE_cnn, 2)), '%', ...
2396 ', MAPE = ', num2str(round(MAPE_cnn, 2)), '%',
2397 ], 'Interpreter', 'tex','FontSize', 30);
2398

2399 legend([data, obs, predictions_sarima, u_sarima, predictions_gandalf, ...
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u_gandalf, predictions_cnn],...
2400 'Training data', 'Test data', 'Forecast SARIMA','95% interval SARIMA', ...
2401 'Forecast Gandalf','95% interval Gandalf', 'Forecast CNN−LSTM', ...

'NorthWest','FontSize', 30) % '95% interval CNN−LSTM',
2402 ylabel('New cases','FontSize', 30)
2403 xlabel('Date','FontSize', 30)
2404 if is_global
2405 title(['Forecasts of Global data from ', ...

datestr(index_to_date_global(endpoint+1)), ...
2406 ' using only observed values to predict each ensuing ...

day'],'FontSize', 30)
2407 else
2408 title(['Forecasts of Norwegian data from ', ...

datestr(index_to_date_norway(endpoint+1)), ...
2409 ' using only observed values to predict each ensuing ...

day'],'FontSize', 30)
2410 end
2411 set(gcf,'color','w')
2412 set(gca,'FontSize',20)
2413 ax = gca;
2414

2415 if is_global
2416 ax.YAxis.Exponent = 3;
2417 else
2418 ax.YAxis.Exponent = 0;
2419 end
2420 hold off
2421 end
2422

2423 function mse = mse_cnn_lstm(ts, preds_cnn, endpoint, len_train, use_observed)
2424 % simulates one step at a time from gandalf model to see how good the
2425 % prediction of the cnn−lstm model is if the underlying time series was
2426 % the gandalg model
2427

2428 % ts should be on log scale
2429 days_ahead = length(preds_cnn);
2430 mod = arima('Constant',0,'D',1,'Seasonality',7,'MALags',1,'SMALags',7);
2431 garchmod = garch('Constant',0.001,'GARCHLags',1, 'ARCHLags',1);
2432 mod.Variance = garchmod;
2433 mse = [];
2434 if use_observed
2435 log_preds = log(max(preds_cnn, 0.1)); % transform to log−scale to use ...

with gandalf model
2436 train_data = ts(endpoint−len_train+1:endpoint); % have to use predictions ...

as initial observations for simulation??
2437 for i = 1:days_ahead
2438 gandalf_mod = estimate(mod, train_data, 'Display','off');
2439 sim = floor(exp(simulate(gandalf_mod, 1, 'NumPaths', 1000000, 'Y0', ...

train_data)));
2440 mse(end+1) = mean((sim − preds_cnn(i)).^2);
2441 train_data = [train_data;log_preds(i)]; % add newest prediction to ...

the reain data
2442 end
2443 else % do everything all at once???
2444 gandalf_mod = estimate(mod, ts(endpoint−len_train+1:endpoint), ...

'Display','off');
2445 sim = floor(exp(simulate(gandalf_mod, days_ahead, 'NumPaths', 1000000, ...

'Y0', ts(endpoint−len_train+1:endpoint))));
2446 for i = 1:days_ahead
2447 mse(end+1) = mean((sim(i,:) − preds_cnn(i)).^2);
2448 end
2449 end
2450 end
2451

2452 function plot_norway_and_global_time_series_and_transform(ts, ts_global, ...
include_trans)

2453 % This function was used to plot both time series and their respective
2454 % log and difference transofrmations.
2455 ts = floor(exp(ts));
2456 ts_global = floor(exp(ts_global));
2457

2458 dates_norway = index_to_date_norway(1:length(ts));
2459 dates_global = index_to_date_global(1:length(ts_global));
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2460

2461 if include_trans
2462 figure
2463 subplot(3,2,1)
2464 plot_norway = plot(dates_norway, ts, 'Col', '#2eff8c');
2465 title('New Cases in Norway')
2466 ylabel('New cases')
2467 xlabel('Date')
2468 ax = gca;
2469 ax.YAxis.Exponent = 0;
2470 set(gca,'FontSize',24)
2471 subplot(3,2,2)
2472 plot_global = plot(dates_global, ts_global, 'Col', 'Magenta');
2473 title('Global New Cases')
2474 ylabel('New cases')
2475 xlabel('Date')
2476 set(gcf,'color','w')
2477 ax = gca;
2478 ax.YAxis.Exponent = 3;
2479 set(gca,'FontSize',24)
2480

2481 subplot(3,2,3)
2482 plot_norway = plot(dates_norway, log(max(ts, 0.1)), 'Col', '#2eff8c');
2483 title('New Cases in Norway')
2484 ylabel('New cases')
2485 xlabel('Date')
2486 ax = gca;
2487 ax.YAxis.Exponent = 0;
2488 set(gca,'FontSize',24)
2489

2490 subplot(3,2,4)
2491 plot_global = plot(dates_global, log(max(ts_global, 0.1)), 'Col', 'Magenta');
2492 title('Global New Cases')
2493 ylabel('New cases')
2494 xlabel('Date')
2495 set(gcf,'color','w')
2496 ax = gca;
2497 ax.YAxis.Exponent = 0;
2498 set(gca,'FontSize',24)
2499

2500

2501 % apply differencing on top of log transform:
2502 ts_trans = diff(diff(log(max(ts, 0.1)), 1), 7);
2503 ts_trans_global = diff(diff(log(max(ts_global , 0.1)), 1), 7);
2504 subplot(3,2,5)
2505 plot_norway = plot(dates_norway(9:end), ts_trans, 'Col', '#2eff8c'); % ...

Note that values of the first eight days are removed!
2506 title('New Cases in Norway')
2507 ylabel('New cases')
2508 xlabel('Date')
2509 ax = gca;
2510 ax.YAxis.Exponent = 0;
2511 set(gca,'FontSize',24)
2512 subplot(3,2,6)
2513 plot_global = plot(dates_global(9:end), ts_trans_global, 'Col', 'Magenta');
2514 title('Global New Cases')
2515 ylabel('New cases')
2516 xlabel('Date')
2517 ax = gca;
2518 ax.YAxis.Exponent = 0;
2519 set(gcf,'color','w')
2520 set(gca,'FontSize',24)
2521

2522 else
2523 figure
2524 subplot(2,1,1)
2525 plot_norway = plot(dates_norway, ts, 'Col', '#2eff8c');
2526 title('New Cases in Norway')
2527 ylabel('New cases')
2528 xlabel('Date')
2529 ax = gca;
2530 ax.YAxis.Exponent = 0;
2531 set(gca,'FontSize',24)

111



2532 subplot(2,1,2)
2533 plot_global = plot(dates_global, ts_global, 'Col', 'Magenta');
2534 title('Global New Cases')
2535 ylabel('New cases')
2536 xlabel('Date')
2537 set(gcf,'color','w')
2538 ax = gca;
2539 ax.YAxis.Exponent = 3;
2540 set(gca,'FontSize',24)
2541

2542 end
2543

2544

2545

2546 end
2547

2548 function date = index_to_date_norway(index)
2549 % get value in date format from index
2550 % index one is February 21th 2020 for Norwegian data.
2551 t0 = datetime(2020,2,21);
2552 date = t0 + days(index−1);
2553 end
2554

2555 function date = index_to_date_global(index)
2556 % get value in date format from index
2557 % index one is January 4th 2020 for Global data.
2558 t0 = datetime(2020,1,4);
2559 date = t0 + days(index−1);
2560 end
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