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Summary

Solving and estimating the Cauchy-Riemann equations du = f has been a staple in
complex analysis since its inception and is central in many applications. In this the-
sis we will solve and find estimates for the d-equation in two complex variables for
bounded pseudoconvex domains with real analytic boundary of finite type. The tech-
niques used are similar to a paper titled “Sup-Norm Estimates for 4” by Grundmeier,

Stenseones and Simon and involves using a bumping to type of a domain.

Oppsummering

Det 4 lose og estimere Cauchy-Riemann-ligningene du = f har veert grunnleggende
i kompleks analyse siden feltets begynnelsen og er sentralt i mange applikasjoner. I
denne oppgaven vil vi lgse og estimere 5-ligningen i to komplekse variabler for be-
grensende pseudokonvekse omrader med reell analytisk rand av endelig type. Teknikkene
som brukes er som i en artikkel kalt “Sup-Norm Estimates for 9” av Grundmeier, Sten-

senes og Simon og innebarer bruk av bumping til type til et omrade.
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In this thesis we will solve the 8-equation on bounded weakly pseudoconvex domains
with real analytic boundary of finite type using methods from [5]. These methods are

such that we will obtain sup norm and Hélder estimates for the solution operator.

The main result we will show is the following Theorem.

Main Theorem. Let Q c C? be a bounded pseudoconvex domain with real analytic
boundary of D'’Angelo finite type 2k and let f be a d-closed (0,1)-form on . Then there

exists a solution u of du = f on Q) such that

where Cq is independent of f. Furthermore for everyn > 0 there is a solution u™ as

above that satisfy (ﬁ —n)-Hélder estimates with constant only depending on Q andn.

1.1 Motivation

We recall that a function of one complex variable is called analytic if and only if it

satisfies the Cauchy-Riemann equations

ou 3 ov ou ov

ox oy 98y ox
where u(x, y) and v(x, y) are the real and imaginary parts of a complex-valued func-
tion f(z), respectively. Symbolically we can rewrite the Cauchy-Riemann equations
from real and imaginary parts to holomorphic and anti-holomorphic parts by the

relations

o 1,0 .0, 9 1,0 .0

9z -2tz oy a3 alar ey
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The requirement of being an analytic function then becomes 0 f/0z = 0 meaning that

the function does not depend on conjugate variables.

For a function f(z,...,z,) of several complex variables we say it is holomorphic if
it is analytic in each variable z; — f(z,...,2j,...,254). More generally, in a complex

differential structure the exterior derivative d decomposes into operators 4 and 8 by
0
of = Z f dz i

afZ

dz
10%Z; I
Therefore, as in the one variable case, we can say that f is holomorphic if and only
if f = 0. Naturally then, the d-operator serves as a generalization to the Cauchy-

Riemann equations.

The d-operator appears in many areas of complex analysis. For example the Cauchy

integral formula in C for C! functions on a domain D

1 fl@dz 1 f@f(z) dz
2niJop (—z 2milp 0z (-2

fQ=

and its generalization to several variables in the Bochner-Martinelli formula [6]

f(C)=fan(()w(Z)—fD5f(z)/\w(z).

Here

) (n 1)' 1
W 2) = ,ZnZ@f Z)AG NS A .dl . AT, A d .

Other examples where the d-operator arises are in the Hartogs phenomenon and in

classification of peak points.

Proposition 1.1.1 (Hartogs Phenomenon). Let Q cc C”, n > 1. Let K be a compact
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in Q so that Q\ K is connected. If f is holomorphic on Q\ K, then there is a unique
holomorphic function F on Q such that Flo\x = f .

The proof of the Proposition relies on the following solution to the 0-problem.

Lemma 1.1.2. Lety be ad-closed (0,1)-from on C" with compact support. Then there
exits a function u with compact support such that du = w where u = 0 on the un-

bounded component of suppy).

Proof of Hartogs Phenomenon. Let ¢ € CZ°(Q2) be so that it is identically 1 on a neigh-
borhood of K and is 0 in a neighborhood of the boundary 0Q2. Define the function

- (l—gb(z))-f(z) ifze O\ K,
f(2) =
0 ifze K.

Then f € C®(Q) and set w = 3 f. We see that w has C* coefficients, dw = 0 and that w
has compact support. We then find u so that du = w. We have also that u is identically
0 in a neighborhood U of 0Q. We define F = f — u and see that

5F=5f—5u=w—w:0
and so notice that
Fly=(f-wlu=flu
yielding that F = f on Q\ K and thus F is an extension of f. O
The following Proposition and proof is as in (7] and shows how a solution to the 8-

problem can be used show the existence of a function which peaks on the boundary

of a pseudoconvex domain.
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Proposition 1.1.3. If Q is a smooth bounded pseudoconvex domain in C" that is
strongly pseudoconvex at p € 0Q then there exists a function f : @ — C holomorphic
on Q and smooth on Q with f(p) =1 and |f] <1 on Q\ {p}.

Proof. Since the boundary is smooth we can find a local strong support function g(z)
at p, namely a function g € C*°(U) where U is a neighborhood of p with g(0) = p and
Reg > 0 on QN U\ {p}. Then by choosing a smooth cut off function y in a small
neighborhood of p we can define a d-closed (0,1)-form

0, when z=p
v(z) = {_ »
6(5), when z # p.

Then v is smooth d-closed with compact support. We solve 8 by finding u so that
du = . Define so f by

0, when z =
f(Z)—{ . P

g~ when z # p

It is easy then to see that f satisfies the sought criteria. O

Remark 1.1.4. In this Proposition we are using that for strongly pseudoconvex do-
mains we have solutions for  which satisfies sup-norm estimates. This will be dis-

cussed later.

The d-problem has many aspects one can consider. In this thesis we will consider
solutions when our input of data is a 8-closed (0,1)-form. So the question is: Given
a (0,1)-form f on a domain Q with 4 f = 0, does there exist a function « on Q so that
ou=f?

The question concerning existence of a solution to the d-equation can be answered
when the domain is pseudoconvex. Hormander showed that given a (0, g)-form v on

a pseudoconvex domain with ov = 0, then there exists a solution.
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Theorem 1.1.5 (Héormander, Demailly, Theorem (8.4) [2]). Let p be a plurisubhar-
monic function on a pseudoconvex domain D < C", v be a d-closed (0, g)-form. Then

there exists a (0, g — 1)- form u such that du = v and

f lul?e P < Cf (M~ 'v,v)e?,
D D

where M is a matrix that depends on p and q.

Remark 1.1.6. When g = 1 the matrix M is just the complex Hessian matrix of p.

The estimates for this solution are weighted L? estimates. For the solution to be the
most applicable we would like to be able to produce solutions with stronger estimates
and have a solution formula. A later result by Henkin and Ramirez [6] gives us this
on strongly pseudoconvex domains in terms of an integral formula which satisfies
Holder estimates of order 1/2.

Theorem 1.1.7. IfQ c C" is strongly pseudoconvex with C* boundary and f is a 8-
closed (0,1)-form on a neighborhood of Q with C' coeffiecients, then the function

@

Hof = e [ T RIS

00Qx[0,1]

FAanwAw@) - f T

satisfies 0Hq, f (z) = f(2). Here c,, is a constant dependent on dimension n, the func-

tions

wl):=dliN... Ay,

@ =Y DI dE A ARAE Sy NdEjr AL A dE,
j=1

forany¢ = (&y,...,¢,) € C", and for A € [0,1]

j=%
;= )L+h 1-1
==z =4
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whereall hj((, z) : 0QxQ — C are holomorphic in z and solves the Cauchy-Fantappie

equation

n
hi((,2)({j—zj) =1
j=1

when{ €0Q,z€ Q.

Remark 1.1.8. In the construction of the kernel one uses that strongly pseudoconvex
domains are locally convex to construct the functions k;. This is not the case for

weakly pseudoconvex domains, as such domains are not locally convex.

Naturally the question of sup-norm estimates arises in the general pseudoconvex
case aswell. However some additional assumptions need to be made. Sibony [10]
gave an example of a C* smooth pseudoconvex domain in C* and a d-closed (0,1)-
form f which is bounded in the given domain, but no solution u of the d-equation
du = f is bounded. This tells us that pseudoconvexity is not the sole requirement for

solving 0 with sup norm estimates.

Fornaess have shown that for some domains of finite type one is able to find solutions
with sup norm estimates [3]. An example of such is the Kohn-Nirenberg domain.
Therefore one suspects that finite type for points in the boundary is a requirement to
find a solution with sup norm estimates. For strongly pseudoconvex boundary points
we have that the type is 2, thus this requirement holds for strongly pseudoconvex

domains.

1.2 Definitions and Preliminaries

Most theory on the 5-equation involves the concept of pseudoconvex domains as al-
ready mentioned. Such domains are central in several complex variables. We can

characterize them in different ways, and for this thesis we will use the notion of Levi-
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pseudoconvexity. This type of pseudoconvexity is dependent on the smoothness of

the boundary.

Definition 1.2.1. We say that a domain Q cc C" with boundary dQ has C*-differentiable
boundary at the point p € dQ) if there exists a real valued function p € C¥(U) defined
in a neighborhood U of the boundary of Q such that

QNU=1{zeU:p(z) <0}, (1.1
dp(z) #0forze U. (1.2)

We say the boundary is of class C¥ if all points p € Q) is of class CF.
Remark 1.2.2. We call the function p a defining function for the the domain Q.

Definition 1.2.3. Consider the function J : R?"” — R?" defined by

](xl;J’l,---,xn»J/n) = (‘J’l,xl»---,—Yn,xn)-
The complex tangent space is defined as a subspace of the real tangent space

TS M :={xe TyM|Jxe T,M}.

Knowing these concepts we can define the concept of Levi-pseudoconvexity.

Definition 1.2.4 (Levi pseudoconvex). Let Q < C" be a domain with C? boundary.
Then there is a C? defining function r : C" — R. We say that Q is Levi-pseudoconvex
ifforevery peodQand r € T;',:Q

If the inequality is strict for all p € 0Q, we call Q strongly Levi-pseudoconvex.
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Remark 1.2.5. Levi-pseudoconvexity is independent of choice of defining function.

Remark 1.2.6. For domains not satisfying the required smoothness we classify pseu-
doconvexity differently. However, all domains in this thesis will have sufficiently
smooth boundary. Therefore we will throughout this thesis refer to all Levi-pseudoconvex

domains as just pseudoconvex.

We will also require that our domains have points of finite type in the boundary. We

will consider the notion D’Angelo finite type.

Definition 1.2.7 (D’Angelo type [1]). Let Q cc C” be pseudoconvex domain with
C* boundary and let r be the defining function for Q. For a holomorphic function
f:A— C" where f(0) = p define the type at the point p as

v(rof)
P

where v(f) is the order of vanishing at the origin of C.

Remark 1.2.8. We say a domain is of finite type m if all points p € 0Q is of finite type
m or less. Further if the domain in question is pseudoconvex the type of the point

must be an even number as a result of computing the Levi-form.

To give estimates we will use a the concept of bumping to type which will be a larger
pseudoconvex domain containing the original domain. Here we will utilize the extra

room to find pointwise estimates which we can then translate to smooth ones.

Definition 1.2.9. Given a pseudoconvex domain 2 and p € 0€2, we say that Q2 can be
locally bumped at p if there exists a neighborhood U of p and another pseudoconvex
domain Q, satisfying the inclusions Q\{pinUc Q}, with p € 0Qy,. We then say Q, is

alocal bumping at p.

Throughout the thesis we will be using that for functions f(z) and g(z) that|f(z)| <|g(2)|
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if there is a constant C > 0 so that | f(z)| < C|g(z)|. Also we will write |f(2)| ~ |g(2)|
when |f(2)| < 1g(z)| and |g(z)| < |f(z)|]. When | f| ~ |g| we call the functions propor-

tional in size.

A crucial point is that whenever we have a defining function for a domain Q = {r(z) <
0}, we can use it to measure the distance to the boundary of the domain. This is be-
cause defining functions are not unique, rather they depend on one another. That is,
if there are two C¥ defining functions r; and r, for Q, then thereisan h € Ck1(Q) with
h # 0 such that r; = hry. This means that all defining functions are comparable in size

and using the following Lemma gives us that a defining function |r(z)| ~ dist(z,0Q).

Lemma 1.2.10. Let Q) be a nonempty open subset of R*, where k = 2. Assume Q is
bounded and the boundary of Q is of class C?. Then the signed distance function

—dist(x,0Q), ifxeQ
dao(x) =
dist(x,0Q), ifxgQ

is a defining function for Q.

To prove the main theorem we will first show that a bounded domain with real ana-
lytic boundary of finite type can be bumped to type at each boundary point. We will

use this fact to construct a solution operator and provide bounds.

Then to construct the solution operator we will use the Henkin Integral kernel. What

we need to do is adjust the functions £; involved in the Cauchy-Fantappie equation

hi((,2)((1—21) + h2(,2) ({2 —22) = 1.

By strong pseudoconvexity these functions satisfies bounds from below allowing the
integral to be estimated. We then need to construct functions satisfying bounds when

the domain is weakly pseudoconvex. This will be done by choosing smooth pointwise
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solutions to the Cauchy-Fantappié equations and making them holomorphic.

Using the local bumping and Hérmanders theorem 1.1.5 we can show there are func-
tions satisfy pointwise bounds on the boundary. By considering a smaller domain
Q_, these pointwise estimates can be replaced with estimates which are smooth on
the boundary and satisfy the Cauchy-Fantappieé equation. These new functions can
then be used in the Henkin Integral formula to get a solution operator on 0Q2 x Q_;

which will satisfy Holder estimates.

The final step is then to extend this solution to a solution 0Q x Q_,.



Chapter 2

Bumping to Type

In this chapter we will show how to construct a local bumping of a bounded pseudo-

convex domain with real analytic boundary of finite type.

12
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2.1 Local Bumping

First we will show that weakly pseudoconvex, bounded domains of finite type with
real analytic boundary can be bumped to type. Let Q cc C"*! for n = 1 be such a
domain. Then we can find a local description near a boundary points via a smooth
defining function in a neighborhood of the domain. Let W be a neighborhood of 0
and let p : W — R be the smooth defining function for W N Q, then

QNW={zeC":p(=) <0}

Translating the domain we can assume without loss of generality that 0 is in the
boundary and by a rotation assume that ¢ = (1,0, ...,0) is in the complex tangent space
T, 3: (Q). Since the domain has real analytic boundary, by writing the series expansion

around 0, we express

n+l1 0,0 1 n+l 02 n+l 2 _ )
p(z) =p(0) + 2Re(j§1 O_ijj 3 i:;’:l mzizj) + i:12,];=1 Wa_zjzizj +0(|zl").

Write (w,z) = (u+iv,x; +1iy1,...,Xp +iyn) € C x C" and introduce a linear coordinate

change so that

op op _

op
— =1, — = - . 2.1
3 30 0 and 3z 0 (2.1)

Set further

o0
r(zz)= ) Pnz2
m=2k
where each Py, (z) ishomogeneous polynomial in z and z of order m and P, # 0. The
boundary is of finite type and the domain is pseudoconvex, therefore the number
2k must be less than or equal to the type at 0. The series expansion can then be

expressed as

u+rz,z) + 0wzl v)
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and we can write the domain locally as

{(w,z) eCxC": u+r@+0w?|zl|lv) <0} (2.2)

We want to control the higher order terms O3, 1zl|v). Calculating the Levi form
Lev(p,z,z) in a neighborhood of 0, we know from the pseudoconvexity of 2 must be
greater than or equal to 0. The Levi form consists of terms of the form

02 0r i . ey _
p sz 12+ 1202 4 stvzl 17 1y sz571

— ~ — +
aziazj' aziazj' ! J v J ! J

Therefore the terms which are of degree lower than the smallest degree of r(z,z), in
this case 2k, cannot be negative as they would dominate r(z,z) in the neighborhood.
In other words when s + ¢ > 2k + 1 the terms vz°Z’ are small and cannot affect the
positivity of the levi form. This means that the bumped out domain can be assumed

to have defining function
u+r(zz +0wzlMv)
where M = 2k.

We now show how to deal with higher order terms. By a holomorphic change of co-

ordinates w = 1 — B? with large constant B >> 0

— B(i* - %),
- 2B

<
Il
N

1

<
1]
<
N

We can express
p(w,z) = ii— Bii? + Bi? + r(z,2) + O, |2|1M v, 9%, | |z||™M ti D).

Multiplying the defining function with some nonzero function we can obtain a new
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defining function. Let s be a nonzero function, then
V(ps)=V(p)s+pV(s)

and since r = 0 on the boundary, we have that V(ps) = V(p)s and thus ps also locally

defines the domain.

For terms of the form i i?, ii||z||™ # and —Bii*> we can, for some C > B, multiply by
(1+C?), 1+ Cl|zl|M#) and (1 + Cii), respectively. Notice that then

Ci(7 +1zIMv+ @) — Ba® + 0% i, ||z [Mav) > 0.
Further consider the function
i+ B0 +r(zz)+ 00> ||zI|MD). (2.3)

Higher order terms are just those multiplied with 7. For an 0 < << 1 add 0 to the
expression by adding n||z/|%* — nl|z/1?F + 21/Bnl|z||*v — 2/Bn||z||* v. We want to com-

plete the square in such a way that

(VB —ynllzl%)? = Bv? + 1l|zl|** - 2+/Bnl|zl|* v
< Bv? +1)||z||** - 2\/Bnuz‘Z".

This holds when k > 2k + 1 as v||z||¥ = |vz°Z!| in a small neighborhood of 0. We then
get that

(VBv— yAllzl*)? + 002, |1zl v) > 0.
Therefore the expression can

i+ Bi? +r(z,2) + (VBv - yallzll)? = nl|zl|** + 2/Bnv||zl|** + 072, 1211 D),



CHAPTER 2. BUMPING TO TYPE 16

can be rewritten using

Bi? +0(9%) > 0;
2v/Bni||zl|** + 0(|zI|M ) > 0;
(VBv - qllzl%)? > 0.

We are left with a larger domain with defining function
ii+1(z,2) —llz|[**
where 1 > 0 is a small.

The local bumping will rely on the leading term in r(z,z). Namely, if P,y is plurisub-
harmonic and not pluriharmonic we can bump the domain. To this end we will use

a Proposition.

Proposition 2.1.1 (Bedford, Fornass, Noell). Suppose that P(z) is a homogeneous
plurisubharmonic polynomial on C""', and assume that P is not harmonic on any
complex line through 0. Then there exists a function F(z) which is C*°, homogeneous
of degree equal to that of P, positive away from 0 and which satisfies the condition that

P —€F is strictly plurisubharmonic away from 0 for any0 < € << 1.

If the leading term in r(z,z) satisfy the requirements of the Proposition, we find F as
in the Proposition. Setting P, = Pyi — €F we have from the Proposition that Py, is
subharmonic. Since F is strictly positive away from 0 and of degree 2k we see that

there is ab &' > 0, so that we have F > ¢||z||**. This leads us to the inequality

s / 2k " 2k
Py < Py —e€'||z||™" = Py —€"||z||"".
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where " = e¢’. Setting Ryj+1 =Y P,,(z,Z) we see that

o0
m=2k+1

~ —. 2k ~ 2k
u+r(zz) —nlzl|”" =i+ Py + Rogy1 — nllzl]

~ s " 2k 2k
> U+ Por(z) +&"1zl|”" + Rog1 — nllzl|*".

Now choosing 77 > 0 so that 17 < €” the inequality (¢ —1)||z/|** + Rox41 > 0 holds by
(possibly) shrinking the neighborhood of 0. Then the local bumping can be given as

Qg ={(w,z) € C x C" : Re (w) + Py (z) < 0}. (2.4)

Figure 2.1: Visualization of a 2d slice of the local bumping Q

2.2 A Pseudoconvex Extension

To extend the locally bumped domain to a pseudoconvex extension we will intersect
our local bumping with a larger pseudoconvex domain coming from the Stein neigh-
borhood basis for Q.

Definition 2.2.1. Let D cc C" be pseudoconvex, we say that D has a Stein neighbor-
hood basis if for any open neighborhood U of D there is a pseudoconvex domain Dy
sothat Dc D, c U.
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We know (2 has a neighborhood basis from the following theorem.

Theorem 2.2.2. [4] If D is a pseudoconvex domain with real analytic boundary, then

D has a Stein neighborhood basis.

The idea is that the pseudoconvexity from the local bumping needs to be continued
when leaving the local area. Therefore we need D, coming from the Stein neighbor-
hood basis. For a neighborhood U of 0, the domain U N Q] is pseudoconvex as we
have constructed. Then taking the domain D,, we find a smaller neighborhood V of
0 so that V < U. We see thus that V n D, < U n Q. Then the intersection

DN QY

defines the pseudoconvex domain which will be the extension satisfying pseudocon-

vexity everywhere on.

The intersection is pseudoconvex by the classic lemma.

Lemma 2.2.3. If Dy and D, are pseudoconvex domains, then the intersection Dy N D-

is pseudoconvex.

Proof. A domain is pseudoconvex if and only if —log(dist(p,dD)) is plurisubharmonic.
Now dist(p, (D1 N D3)) = min{dist(p,0D,),dist(p,0D;)} and further

—log(dist(p, (D1 N D2)) = max{ —log(dist(p,dD,)), — log(dist(p,0D2))}

which is plurisubharmonic. O

We want to define an intermediate bumped domain Qg*. It will be a bumping in

the same sense as (;, however only “half”. We define this domain by in some sense



CHAPTER 2. BUMPING TO TYPE 19

halving the bumping function from Proposition 2.1.1. More explicitly by considering
2F, we define P, = P, — 2¢F and further notice that

Por < Par—2¢" |12 %
and
Py —2€"||zl1* < Poy — &”||z]|*¥
$0 Doy < Poy.. Then define
QF* = {(w,2) € C x C" : Re (w) + Py (z) < 0}.

It follows easily that Qj* < Q.

Figure 2.2: Visualization of a 2d slice of the intermediate Q"

So far we have defined a local bumping for finite type domains in C"*! with n > 1
with the restriction that the leading polynomial term in r(z,Z) is not harmonic along
any complex line through 0, but it is plurisubharmonic. For domains in C? we can
guarantee that this is the case for every bounded domain of finite type. This is be-
cause complex curves are easier to control and therefore finding a polynomial which

satisfies the requirements in Proposition 2.1.1 is a then simpler ordeal.

In C? the polynomial P,y is only a polynomial in one complex variable. By a change
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of coordinates and using that a harmonic function in one variable is the real part of
holomorphic function, we absorb harmonic terms into Re (w) and get subharmonic,

but not harmonic, and homogeneous polynomial of order 2k.

In the rest of the thesis we will then only consider when Q < C? is a bounded domain

with real analytic boundary of finite type 2k.



Chapter 3
A Solution Operator for 0

In this chapter we show how the bumping can be used to a solution operator which

satisfies Holder estimates on a slightly smaller domain.

21
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Throughout this chapter Q c C? will be a bounded pseudoconvex domain with real

analytic boundary of finite type 2k and ), will denote the bumped domain at p.

3.1 Koszul Complex

Given functions g1(p,z) and g»(p,z) on Q,, which are smooth in z and solve the
Cauchy-Fantappié equation pointwise for each p, there is a way to modify them
so that they become holomorphic and still satisfy the Cauchy-Fantappie equation
pointwise. This procedure is done via a Koszul complex and is what we will use this

section to show.

Lemma 3.1.1. For a fixed p and smooth solutions g1, g» which satisfy
81(p,2)(p1—21)+ &(p,2)(p2—22) =1,
then there exists functions hy, h, holomorphic in z which satisfy

h(p,2)(p1—2z1) + ho(p2 —22) = 1.

Proof. Since
gsi(p,2)(p1—z21)+ & (p,2)(p2—22) =1,
we see that

0(g1(p, 2)(p1—21) + &2(p, 2) (P2 — 22)) = 0.
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By multiplyingin 1
0gj-1=0g;(g1(p,2)(p1—21) + &2(p, 2) (P2 — 22))
which yields

dg1-1=0g (&1(p, 2)(p1—21) + &2(p, 2) (P2 — 22)),
0g2-1= 5gz(g1 (p,2)(p1—21) + &(p, 2) (P2 — 22)).

By using that 5g1 (p1—21) = —5g2(p2 — Zp) we rewrite

0g1 = —81082(p2— 22) + 081 82(p2 — 22) = (82081 — 81082) - (P2 — 21),
0g2 =0g281(p1 — 21) — 82081 (1 — 21) = (g1082 — £2081) - (1 — 21).

Now define a (0,1)-form
w:= g25g1 — g15g2 (3.1)

and notice that dw = 0 s0 w is a d-closed form. Now, by using Theorem 1.1.5, we find

a solution u satisfying du = w lying in weighted L? space. Define

hy:=g1—u(p2—2z) 3.2)
hy :=go + u(p1 — z1). (3.3)

These functions satisfy the Cauchy-Fantappié equation

hl(pl _Zl) + hZ(pZ - ZZ) = gl(pl - Zl) - u(pz —Zz)(pl — Zl) +g2(p2 _ZZ) + u(pl _ Zl)(pZ _ ZZ)
=gipr—z21)+8(p2—2) =1

and by construction dh j=0forj=1,2. O
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3.2 Constructing a Support Function

Now we need to choose the smooth functions to modify via the Koszul complex.
These function will chosen related to the bumped domain Q). The function will
reflect the type at 0 and the tangential direction. In a similar manner to the con-
struction of the Henkin integral kernel, we seek local functions G, G2 and ® which

will solve the division problem

G+ Gy =0, (3.4)

First we will construct ®(w, z). We will require that it is holomorphic in the first vari-

able and smooth in the second variable. We also require that it also satisfies

(1) ®=(p;—2z1)— A-F(p2— z2) where A>0;
(2) F>0away from p;
3) {<D=0}HQ:,\{0}=¢;

4) |®|~ dist(-,OQ;‘,) on 0Q\ {p}.

Indeed we can find such a function ® on the bumping Qj,. For ease of notation we

set p = 0. For a constant A > 0 so large so that A|z|** + P, = 0 we define
®(w, 2) := w— Alz**. (3.5)

The first two criteria follow directly from how ® is defined. When ® = 0 we then have
that w = A|z|?* implying that w is real. It follows then that Re w + Py = A|z|** + Py =
0, so we get {® =0} N Q; \ {0} = @.

On the boundary 0Q) the defining function for Q0 is 0. That is, Re w + Py =0, mean-
ing that near the boundary |Re w| ~ |z|2k, Noting also that near 0 we have that the
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defining function p is dominated by Re w being the only first order term, in particu-

lar then |Re w| = |Im w| near 0Q). Therefore

|lw| < |[Re w| + [Im w| < 2|Re w| ~ |z|2*

and |z|** ~ |Re w| < |w| eventually showing that |w| ~ |z|?¥.

Similarly we can see that dist(-,00Q) ~ [Re w + Porl ~ w|. Using this we can then see
that

1 1
dist(-,0Q) ~ =|w| + =|w| ~ |D|.
( 0) 2| | 2| | ~ |D|

Having constructed the supporting function ® we now chose the accompanying func-

tions G; and G, which will solve the division problems. Let

Glzlr

Gg = —AZk_lzk.

These functions will, together with ®, satisfy the division problem in (3.4). We see
this by noting that

w —zAzZF1ZF _w- Alz*f

) ) O]

1.

We then want to apply the Koszul complex procedure in Lemma 3.1.1 to get holomor-
phic solutions. The (0,1)-form w = g,0g1 — 108> from (3.1) is then

0G,  —Ak|z|*2
P2 - (w—AIzIZk)Z'

w =

Finding the u which satisfy du = w on Qg using Theorem 1.1.5 we get that the holo-
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morphic functions relating to our smooth ones are given by

1
hl =—+uz
()
—Azk-1ZF
hy = —uw
)

as in equation (3.3).

3.3 Weighted L° Estimates

This section will be used to prove some lemmas which will allow us to pass from L? to
pointwise estimates for the kernel. To do that what we need to find are estimates for
the function u which is the solution of du = w from (3.1) when using Theorem 1.1.5.

We want to calculate an integral of the form

f (M~ v, vye".
D

The matrix M appearing in the integral depends on ¥ and the degree of the from v.
In our case we have a (0,1)-form, meaning that M is only the Levi matrix of w. The
choice of ¥ needs to be carefully considered. An apt choice of weight should be such

that the matrix M is simple to compute and gives an integrable integral.
In the case of our (0,1)-form w we would ideally see that

f lwl?dwAdwAdzAdz < oo,
Q*
0

and thus have estimations for u. Inserting the expression for lw|? we see

|Z|4k—4 . _
/;2* de/\dW/\dZ/\dz
0
|Z|4k—4

= dwndwndzAndz.
fﬂg (w— AlzIPR)2 (@ — Alzi2e2 " R AR AR




CHAPTER 3. A SOLUTION OPERATOR FOR 8 27

Integrating over w and w gives essentially

|Z|4k—4 |Z|4k—4

dzndz=———dzndz. 3.6
(w— AlzPoy@ - Alzl2%) T Ak N (5:6)

We now notice that if we gain |z|? this can be integrated and seen finite. This is then

our aim when choosing the weight .

The choice of ¥ will rely on the classic plurisubharmonic function on pseudoconvex
domains —log(dist(-,002])) and in the same manner as ® be chosen related to how
the bumped domain Qg looks like. We would like the weight to reflect the type at 0.
Let € > 0 and define the function p = log(|w| + lw| 1+ +1z|%%). To avoid a vanishing
Levi matrix we have introduced a term |w|!*¢. The function p is plurisubharmonic

and together with the —log(dist(-,0Q;)) will form a suitable weight.

We integrate over the domain Q;*, which is a bumping in the same sense as Q,
just “half” of the original bumping, but still having the —log(dist(-,0Q2;) term in the
weight. This is weight is only singular in 0 and not on the boundary 0Q*.

Lemma 3.3.1. Let (w,z) € Qy™ and fore >0 and 6 > 0 set

v = —(e +6)log(dist(-,00Q)) + dp
= —(e +0)log(dist(-,003)) + dlog(lw| + |w|'* + 12|25,

then y is plurisubharmonic and the integral

f luPe Vdwnandwndzndz
Q

* %
0

is finite.

To prove this Lemma we want to apply Theorem 1.1.5. This requires us to compute

the Levi-matrix of ¥, whose expression is not easily computed. Seeing as we are going
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to get Hermitian matrices we can therefore simplify the computation by applying a

result concerning such matrices.

Lemma 3.3.2. Let T,L be complex valued Hermitian matrices with T positive semi
definite and L positive definite. Then

v+ T o< L (3.7)

Proof. Let L be a positive definite matrix, and T be a positive semi definite matrix.

Writing the Cholsesky decomposition for L™} = UU we can write
v+ v=2v"wu+nv=2v"va+u" oy oty

since inverses of positive definite matrices are positive definite. Set u = U”v. Now

we notice that

W1+ U TU) Yu= (w 1+ U TU) W)™
_ 1
C (wHu + uHUHTU YY)

< (u_lu_H)_1 =uflu

since
vy vy 'ulTuw > Hy ™!

which leads to the result. O

Proof of Lemma 3.3.1. Let L be the Levi-matrix of p, and T be the Levi-matrix of v,
then T is the matrix that is used in Theorem 1.1.5. The term 6 p is plurisubharmonic.

To see this we create a locally holomorphic function f : C*> — C3 defined by

1 1+¢
L Lie g
fw,z)=(wz,wz,z").
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Then we can write p =log(|| f|) which is a plurisubharmonic function.

When the functions are plurisubharmonic (strictly plurisubharmonic), the Levi ma-
trices are positive semi definite (positive definite). Then we can apply Lemma 3.3.2

and we get the inequality

f (T_lw,w)e_”’sf (L w,wye Y.
QS*

* 5k
Q0

We want to find an integrable expression which estimates (L7 'w,w)e™. As men-

tioned, L is the Levi-matrix corresponding to the function p, that is

Pww Pwz

Pzw Pzz

L=

To compute the inverse use the inverse formula for 2 x 2 matrices, giving

-1 1

— Pzz —Puwz
detL )

—Pzw Pww

Being that w is a (0,1)-form, the expression L~ 1w will be the form

(_pw2+ wa)w
PzzPww — |pZW|2

detL(_pr"' Pww)w =

and by Cauchy-Schwarz inequality we have an estimate

Y 4 0wl

(L w,wye™¥ <
(lpzzpww—lpzw|2| |szpww_|sz|2|

Jlwl“e™?. (3.8)

After some somewhat lengthy computations we can get a local estimate for this ex-
pression given by |z|*¥=2/|®|*~¢ ignoring constants. Roughly speaking integrating
with respect to d wAdw reduces the exponent in the denominator by 2 and we are left
with |z|*¥=2/|®|?~¢ which will yield a finite integral. The details of the computations

are now what follows.
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To compute L1, we for ease of notation set Q=|wl+ |lw|**€ + |z|?k. Then

0 _
aQ:k k-1zk
z
9Q 1 bph (128 1
ow 2
and the partials for p
1 _
Pz = ka_IZk,
11 _E_%+(1+€) Lie )l
=——w 2w —)w
Pw 02 >
We then see that
1 1 l1+¢ _l-e___l-¢
puw = ga gy * 0T
w_%w% l1+¢ lie _q__lie w_%w% 1+¢ lie ] lse
- () wz)]
_i (L (£)2| |€—1)Q
Q? M 4|w| 2
11 1__1
ww?  1+e e g __ley, W 2W2 14+E 1re 1k
—( +( yw?2 “w ez + ( Yw 2 )]
2 2 2 2

Using that (z+ w)(z + w) = |z|*> + |w|* + 2Re (zw) can rewrite

1 1 1+e€,2 _
= 5|+ (Il ) (wl + w) + 122)
Q? M| w| 2
1 1+€ 5 o 1 211 14€  e+1__e1
———(—)lw|” —2Re(-w? w2 w?2w:? ]

2 ( > )7 lwl (2 ( ) )
11w 1z25  1+4e, l+e,, l+¢&,» _
S B B (e (RS e g () e 2
Q*la 4 4w 2 2

1 1+¢ 1 a1 1+€& enn__e1

___(—)2|W|28—2Re(_w71w%( Jw 21w 21)]

4 2 2 2

Notice that
1 211 14€  e+1__e1 l1+¢
2Re (= w2 w2 ( oW S ):(T)l N
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so we can further rewrite

1+
(5w

|z]

1l wle zP* 1+e 1+¢€.,
it e (G il (5w
Q*la 4 4w 2
1 I+e, . l1+€ E]
LA T w
7~ (S W = () lwl
1wl 2% 1+e, l+en . l+e¢
__2[ + (=) Tl + (=) lwlf 1Izlz’“—(—)|w|f]
Q°t 4 4wl 2 2 2

by grouping together terms so that we can use

l+eo 1+¢ Iy e
(- 5+3)=3
we can see that
1rlzlP* 1+en o4 o d+en . d+e
:_QZ._4|w|+(_2 ) 1wl 2l + (——) lw! —(—2 Jlwl® +
1 rlzI?*  1+¢ _ l+¢ l+e, 1
:@L”ﬁ“T)Z'“"E el () - () + )
! '|z|2k 1+€2 o1, ok e c
= G Ly + (51wl et

For the partials with respect to the z-variable we get

pZZ_

_ k2|Z|2k_2(| wl + |w|l+£ + |Z|2k) _ k2|Z|2k_2|Z|2k

— k2lz|2k—2

(lw| + | w1+ +|z|2k)2

(lwl+|w

|l+€)

Finally we compute the mixed terms

Pzw

Pwz =

— 1
kzF-1Z% w3

-1
2

(1wl +w|1+e + | z[2K)2

— 1
kzkZ5 ' wrw

(

g

QZ

DN~

(

\S)

QZ

|w

4

|E

2k

|

31

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Then we have all the terms which appear in the Levi matrix. Now for computing the
determinant we see that

k2|Z|2k—2( ) | |2k l+¢ 9 . 82
- k £
20w = — g (1wl w]") [ T+ () Plwl 2P =l
k2|Z|2k 2 |Z|2k 1+ 82
[ ) |w|E|Z|2k+Z|w|1+£

k € 2

|z|2 |w| l+¢ €

+ + (=) 1wl |21 + = |w|'*%
4 2 4

and that

k—l=k (T 2w? | liey——1te-1

kz z (T+(T)w 2

(lw| + | w|1*€ +|z|2k)?
K2|z12%2 11212k 14en 5. op l+E

k 2k

= | S+ (PPl (=) wi 21
Q 4 2 2

1+e
) wz )2
|Pzw| :‘ ‘

which leads to an expression for p zp % — |0, given by

K21z122 11212 1+, e lzZPKlwlE  1+e, £
: [ +( ) |w|£|Z|2k+_|w|1+E+ +( ) |w|28|Z|2k+_|w|1+28
Q 4 2 4 4 2 4
1zI2% 1+¢ 1+¢
_T_(T)2|w|26|2|2k_(T)|w|£‘|z|2k]
K|zl?k 2 1+¢ €2 zIPF|lwiE €2 l+e¢
— I | [( )2|w|£|Z|2k+_|w|1+€+M+_|w|1+25_(_)|w|8lz|2k:|
Q° 2 4 4 4 2



CHAPTER 3. A SOLUTION OPERATOR FOR 8 33

Now by grouping the terms containing |w|?|z|** and again using (3.9)

kzlelik_z[(128)2|w|5|z|2k+%2|w|1+‘€+lleﬁ#lg Z_2|w|1+25—(12i)|w|£|z|2k]
:kzgik_z (221011212~ (ol 2015 + g1 4 S oo
_ —kZ|ZQ|ik_2 (0 ()4 ) St s S

:kz'z—'ik_z %2|w|f|z|2’“+1—2|w|”5+1—2|w|“25
:kz%ik_z'Z_Z[lw|f|z|2"+|w|”£+|wl”zg

Now that we have computed all the entries in the matrix L we can express the recip-

rocal of the determinant as

-1
1 4 Q*
1+ 1+2 2k
:—2'2—%_2|w| R F77] R P bl §777 o I
detL &% 2|z
Note also that
1 1+2 2k 1 2k
lw|" €+ w8 + 217wl = [wlf(w] ™ + 2|7 + |wl)

so we can further rewrite
1 4 Q?
detL &2 k2|z[2k-2|w|¢’
We need to consider the expression

|puﬁD|
|szpww_ |pZW|2|
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which after inserting (3.10) turns out to be

- k2| z|2k-2 2 /4 |w|¢

11 glzPP*  1+e g
< B (2t 2+ £ .
4|lw| 2 4

Rewriting the expression some

Q 11 (lzP* d1+eo oy or € E]
+ w z|" + —|w
k2|z|2k-2 €2/4 |w|¢ L 4|w| ( 2 Jlwl* el 4| |
|w|€ 1 1 |z? 1,2
= + — +(1+e w|® 'z
Qlwlf[kzlzlﬂc 2 g2/4 k2 4|w)| ( > k2e e v ]
_o| 1 11 |z]? A4e2 ) |z]?
- k2|z|2k=2 €2 k2 |w|1+E k2e2 \w|
and by using that£—12>1and(1+€)2>lwe get that
1 11 |z? 1 |z
_W[—+__L+(]_+ 2_u
k2|z|2k—2 2 2 |w|1+f k2g2 [w|
0 _w[(m.e)2 1 (1+&)? 1 [zI2 (1+e)? 1 |z|2]
e —_— —_—
€2 [2|z|2k-2 e k2 |w|ltE 2 k2e? |\w
2 O L . S

:Qe

ez k? [ 2126 " Twite T w)
Recall that in the local bumping Qg we have that |w| ~ |z|?*. So we see that

lw| + |w|'+E +|z|?F

~1+|wl,
|Z|2k

lw| + | w|'*E + 2|2k
|w|
lw| + |w|'*€ +|z|?F 1

T ~1+ .
lwl[**€ lwl®

~1+|w|8’

Recall that in the local bumping we had that |w| ~ |z|2*. Therefore we bound locally

2 2
- zlIc(1+e¢
10wl . 1217 '2—( 2) 1+ |wlf + .
lozPpww—pwl?l k= € |w|®
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The term

|pzﬁl
|Pzzpww— |pzw|2|

we can also bound in the local bumping

2Q |zl A4 (148w 2 |w||z|+|w|1+f|z|+|z|2’€+1(1+(1+ wl©)
= a)lwl|) = — E)|w
ke? \w|¢ ke? |w|€
1+ |w|¢
L AL
|wl|¢
1
=22 2+ — +|wl)

|wl¢

1
<|zP@+— +|wl5).
lw|€

All these computations then lead to the final local estimate of (3.8)

e 1 (1+8)?
|w|£+|wl)+ﬁ 2

1
(L lw,wye™ <[+ 1+ wlf+ —1|1z1%e Y |w|?
|wl|¢

We see here that we have “gained” |z|? to the integrand which makes (3.6) integrable.
The weight in the integral can be handle by noting that Q = |w| + |w|'*¢ + |z|** =
lw| + |z|2k 2 |®| and that dist(-,0Q) ~ |®] in Q, so we see that

eV =expl(e + 6)log(dist(-,0Q5)) — 6 ]
= (dist(-,00%))*0 Q0
Sl

The estimates we have achieved are all local, however this is of no problem to us
because away from a neighborhood of 0 the integral is bounded, so we need only
consider the integral in a small ball around 0. Let therefore Br(0) be a ball around 0

of radius R << 1. The integrals we consider are

+ dwndwndzndz
snBro) K* €2 lwle ] jw — Alz|2k|4=¢

1 (1+¢)? 1 z|4k-2
f 1O+ e 2|
Q



CHAPTER 3. A SOLUTION OPERATOR FOR 8 36

and

|Z|4k—4

1 — —
f |Z|2(1+—E+IWI£) T dwndwndzndz
Q¢ *NBR(0) lwl |lw — Alz|=*|*~¢

after inserting for w. We know that |w|® is a bounded term in Q;, what we essentially

need to compute are the integrals:

|Z|4k—2
; (3.14)
ng*mBR(O) |w — Alz|?k|4—¢
f 1 2 (3.15)
1*nBr(0) | WIF |w — Alz[2k|4~¢ '

Using this we want to compute

|Z|4k—2

f srasdwndwndzndz.,
Q3 nBR0) W — Al2|=F|*7¢

Containing the domain of integration in a sufficiently large polidisk we can in an

easier fashion compute the integral. Choose an R’ dependent on R and Q;* so that

we can contain Q3 *NBr(0) < {0 < |w| < R',0<|z| < R'}. Use that |®| > |Re w—A|z|?*|+

|Im w| the fact that Re w < 0 to see |D| > |w| + A|z|?*. Then using polar coordinates

for |w| we see that

f B 1l 2@ -or + Al R
dr =
o (r+ Alz|2k)d-¢ (e-3)(e-2) (r + A|z|?k)3-¢ 0
1 |Z|4k—2

= e-3)(c-2) (Alzyze

Using polar coordinates for |z| we get

‘/‘R, r4k—1 (ARIZIC)E
< 00.
0

r=
(Aer)Z—e 2A2£k

The second integral can be computed in the same manner, but we have to deal with
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the potential singularity in |w| ™. Let |w| = v, then

f 1 |z*k—2ev <f 1 |z|*k=2ev
ap*nBrO) [WIE [w = AlzI2k|1* ™~ Jag nspo) V¢ lw — Alz|2k|*

Then we want to compute

1 (R pR pgtk-l
lim — f —————drds
v—=0vE Jo Jv (r+ As?k)d-e
We get then that for some constant C the expression Cv®~¢ = C dominates the inte-

gral proofis done.

O

Remark 3.3.3. The terms when calculating the weight involves a term £72. So when
€ — 0 the weighted integral blows up. This means that to use the weighted estimates

to gain |z|2 we also lose the sharp Holder estimate 1/(2k) by a small amount.

3.4 Passing to Pointwise Estimates

We want to pass from the L? weighted estimates to pointwise estimates. To do this
we will show that it is possible to fit a polidisk into the intermediate bumping domain
Q;* centered at a point g € 0. Because of the way we chose the ® we will can fit a
polidisk such that the volume is similar to |®(qg)||g2|. We can use this to find a point-
wise bound for u involving ®. We show these estimates locally where the domain is

given in the local coordinates Q = {Rew + r(z, z2) + O(Im w?,|z|Im w) < 0} as in 2.2.



CHAPTER 3. A SOLUTION OPERATOR FOR 8 38

Figure 3.1: Visualization of 2d slice of Q(’;* with the polidisk Pg(q) centered at a
boundary point.

For r > 0, define a polidisk by

1
Pi(q):={(w,2) eC*: \w— q1| < T|®(Q)], |z - Ga| < Elqzl}.

In the local bumping we know that for a point g € 0Q2 we have that dist(g,0Q;) ~
|@(q)|. Then we can find g’ > 0 so that §'|®(q)| < dist(g,09;). In the intermediate
bumping we can then find a 0 < < ' so that B|®(g)| < dist(q,0Q;"). Then for any
z € Pp(q) we get

*

|21 — q1] < dist(q,0Q4 "),

1
|22 — g2l < Elqzl,
showing that ||z - gl| < dist(g,0€; ") and therefore Pg(q) < Q*.

When z € Q is away from 0Q we also want to fit a polidisk in Qg*. show that we
still have that |®(z)| < dist(z,0Q;"). This will follow from ® being a continuously
differentiable function and therefore also locally Lipschitz. This means that there is
an a > 0 so that [®($1) — D(S2)| S1I€1 — 21l when [[§1 — &2l < a.

Notice that dist(z,0Q;) = ||z - gl| since g € 0Q and dist(z,0Q;") = dist(q,0Q;").
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Hence we get that

|D(2)| = [(q)] + P (2) — P(q)|
<@l +1lz—qll
< dist(q,0Q,") +dist(z,00Q4 ")
< dist(z,0Q4)

when ||z — g|| < a. This then implies that there is a y > 0 so that Py (z) = Qg*.

Figure 3.2: Visualization of 2d slice of Qj* with the polidisk Pg({) centered at point
(eQ.

Having fit a polidisk in Q;* we can use sub-averaging to get pointwise estimates for
u by utilizing that u is part of a holomorphic function. We want to show the following

Proposition.

Proposition 3.4.1. Let p € 0Q and z = (21, 22) € Q\ {p} with ||z - p|| < a, then for each

: 1
n >0 withn << 5 we have

1 1
|p2 — 22| |®(p, 2)| 1+’

lu(p—2)| < Cy

where Cy, > 0 is a constant depending onn).
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Proof. Without loss of generality set p = 0. We choose n >0 and 6 > 0 and set
v = —2(n +6)log(dist(z,003)) + 26 log(| 21| + 12217 + | 25/%F).
From Lemma 3.3.1, we have seen that the integral
f lul*e”" < B. (3.16)
Qr*
is finite.

Let g € 0Q2. We have seen earlier that dist(q,0Q;) ~ |®(g)|. By the discussion above

we can fit a polidisk into the domain Q;* and there is a ¢ > 0 so that

\/ vol(Pg) = c|®(q)|g2|. (3.17)

Using that y(g) — ¥ (2) is bounded in Q; we can find a suitable constant B > 0 so that

we increase the bound by multiplying in Be¥(?~¥(?) Hence

|ulze—u/(z)+u/(q)

(@) <
9 vol(Pg) Ps(q)

BeV@

IA

lul?e?.
vol(Pg) Q*

The integral is finite and thus
1
eglll(ﬁl)
\/vol(Pg)

Inserting in for the weight ¥ and using the volume estimate (3.17) we get

lu(q)l <

dist(q,0Q) 10 (lqu] + a1 € + 1 g212%)?
1D(q)1g-] )

lu(q@)l <
Now dist(g,0Q;) ~ |®(q)| when g € 0Q, therefore dist(q,0Q) > |®(g)|, and because

Q=g+ 111" +1g21*F = |11 +19212F = 10 ()]
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we finally get that

|D(q)|7170|D(q)|°

1g211P(q)]
1

<—"
|G| |D(q) |1+

lu(q) <

Now when we have a point z is away from 0€2, we can then still fit a polidisk of size
|®(2)]|z2] in Q5 * as by the discussion preceding the Proposition. The estimates for u

then also hold for z € Q when ||z]| < «, so

Uz < ———.
] < g o

O

Remark 3.4.2. We cannot achieve better estimate than |®|!*7. There will always be
a loss of n coming from the weighted estimates in Lemma 3.3.1. This means that if

1 — 0 the estimates blow up.

Using the pointwise estimates from Proposition 3.4.1 we then readily achieve point-
wise estimates for h,(p, z) and hy(p, z). We see that for z € Q with ||z — pll < a and
p €0Q

1
|hi(p,2)| = |5 —u(p2 — 22)|

1
< —+|ulp2 — z)|

L]
. 1
STy (3.18)
—k
—A(p2—22) (P2 — 22)
|ho(p,2)| =| P2 Zq) P2— 2 —u(p1—21)|
B Ipz_ZZIZk—l
~ |q)|1+n
. 1
ST (3.19)

by recalling that |p1 —z1| ~ |p2— 22 12k in Q;. When ||z|| > a the functions are bounded,
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which follow from the fact that /; and h; are holomorphic in Q so we can apply stan-

dard Cauchy estimates to u on Q.

We also seek estimates for the derivatives d(h;) and d(h,). Because the functions h;

and h, are holomorphic, we apply Cauchy estimates on the fitted polidisk to see that

o lf hi (&)
JE— S— d
Ozl 2m |51—Zl|=ﬁ|@|‘(él_zl)2 61’

. Sup |y I’
Bl
oh 1 hi()
haht IS _f 1—2(152’
0z, 27 Jiér-z21=1 122l ($2—22)
< Zsuplhll.
|p2 — 22|
This readily implies that
ld(h)] < + = (3.20)
T R PATT T T, '
The same argument holds for &, since |p, — Zz|2k—1 is bounded in Q;‘,, thus
1
ld(h2)| < (3.21)

+ .
|21 |zp]|®[T+N

3.5 Constructing an Integral Kernel

To prove the main Theorem we want estimates which are smooth in the boundary
variable. The functions h; are dependent on solving du = w, so the smoothness in-
volves checking the smoothness of Hormander’s solution. We bypass this problem
by showing that the functions can be replaced with similar functions which depend

smoothly on the boundary variable.

Similarly to [9] we will create the integral kernel on a smaller domain Q_, < Q to

ensure the functions /; depend smoothly on the boundary variable. As we have es-
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timated and constructed our £;’s locally we will thereafter use a partition of unity to

glue together a solution operator on Q_,.

Proposition 3.5.1. Let p € 0Q). Then there is an open neighborhood U of p and func-
tions h1((, z) and h»((, z) on (U NAQ) x Q_, which are smooth in(, holomorphicin z

which satisfies

h(C,2)((1—21) +ha((,2) {2~ 2z2) =11,

and when ||{ — z|| < « there is a constant C;; so that
h;(,2)| Cn (3.22)
. < '
T e, o '

- C C
|dRi((,2) < ————+ ]
R, PP 102 - 2D, 2)|1+7

(3.23)
forj=1,2.

When || — z|| = a, the functions fzj((, z) and dfzj are bounded for j = 1,2.

Figure 3.3: Visualization of Q_,.

Proof. Fixapoint p € 6Q and choose a small € > 0. In the same manner as in Chapter
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2 we set with out loss of generality p = 0 and define for a neighborhood W of 0
WNQ_,={zeC?: p(2) < —¢}.
This is still pseudoconvex if € is sufficiently small and we have Q_, cc Q.

We have the pointwise holomorphic solutions h;(p, z) and ha(p, z) to the Cauchy-
Fantappie equation for p € 0Q2 and z € Q) with estimates in p — z with (p, z) € 9Q x Q.
We now show these functions can be translated to smooth estimates on 0Q2xQ_.. We
define ¥:0Q x Q_, — C by

Y((,2) = hi(p,2)((1—z1) + ha(p, 2) ({2 — 22).

This is continuous in the {-variable, holomorphic in the z-variable and with W (p, z) =
1. By continuity in { we can find a neighborhood U of p so that |V ((, z)| = % on (U(p)n
0Q) x Q_,. We can so define a new function

~ hj(p,z)
hﬂ(ﬂ)—m

for j =1,2. Then h is smooth in ¢, holomorphicin z and le 6, 2)((1—z1)+ flz (,2)((2—
z2) =1 on (U(p) NoQ) x Q_,. Each of the functions h (¢, z) will satisfy the bound

|hj({,2)| <2|h;(p,2).

From (3.18) and (3.19) we know the functions are then pointwise bounded by

|h1(C,Z)ISW

|p2 — zo|?%7!

|h2((,Z)| S |q>(p,z)|1+'7

when ||p — z|| < a. By possibly shrinking U further to ensure that |[p — (|| < ||p — z||

we may assume that ||p — z|| = %II( — z|| because

W=zl <llp=Cll+Ip-=zll <2|lp-zll.
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In this neighborhood we also have that |®(p, z)| > |D({, z)| as seen by

2|®(p,z)| = |ReD| + [Im P|
= | —|Re(p1 — 21)| — Alp2 — 2o|*F| + [Im (p2 — 22|
= |Re (p1 — z1)| + [Im (p2 — 22)| + Al p2 — 25|
> |p1 — 21| + Alps — 2%
1 A
> 210 =21l + Spler = 2l

2 |0(¢, 2)|

so the estimates then become

- 1
h(,2)| < +
M@ 5021 0@

1

S0, I 3.24)

. 10— 2oP71 |0y — o271
hy((,2)| < +
h @RS =g ar T o, 9

! (3.25)

<.
D, 2) [T

when { € U(p), z € Q_, and ||¢ - z|| < @. The smooth estimates for the differentials

dhj are obtained in the same manner. O

To get a solution operator on the entirety of the domain we need to glue these local
constructions together. Our domain is bounded, meaning that the boundary 0 is
compact. For each p € 0Q2 we know that there is an open neighborhood V of p so
that Proposition 3.5.1 holds. Then letting {V)} ,csq be an open cover of the boundary
0Q we use the compactness to reduce to a finite subcover V,,,...,Vj,,.
To glue these functions together we will use a partition of unity. Therefore choose
{)(j(()};.”:l to be a family of functions with each y; € C°°(ij), where 0 < x;({) <1so

that Z;.”: L Xj(Q) =1 0n0Q. This is a partition of unity subordinate to the finite cover
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{Vp; ;": ,- Note that Proposition 3.5.1 hold for each of the sets V),.. We set

)

3‘
1]
[\’Js

(()hl Pj (( Z)y

.
1l
—

S
[\S]

Il
[\’Js

(() h2 Pj (C Z)

~.
1l

These new functions satisfy the Cauchy-Fantappie equation on 0(2 as seen by

m
h((,2)((1—z1)+h2((,2) =

m
=Y Xi@Qhg; 1 =20+ ) xj(Qha,g; (2~ 20)
= j=1

—Eanwhl%@zxa 21) + 24,0, 2 (2~ 22)) = 1.

Recall from Theorem 1.1.7 the Henkin integral formula

HQf:Cnf f(()/\n(u)/\w(()—cnf L)ZU(Z—E)/\(U(()-
0Qx[0,1] QI — z[|="

Using the now constructed functions h j we set

U; )L+h(1 A)
”’H(zw

and because h; and h, satisfy the Cauchy-Fantappié equation, we then get an inte-

gral operator Hg) on 0Q xQ)_, which maps d-closed (0,1)-forms f on Q into functions
on Q_.. This operator is given by the modified Henkin formula

H@ﬂ@z@f

00 x[0,1]

FOADE) Aw@) —c2 Q”(f(()”ﬂ(( 2) Aw(). (3.26)

Note that the estimates from Proposition 3.5.1 still hold locally which we will use
when finding estimates for the operator
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3.6 Holder Estimates

Now that we have constructed the solution operator H((f) which maps d-closed (0,1)-
forms on Q to functions on Q_, with 5(Hg)f) = f on Q_,. We have yet to prove
any estimates for this operator. To do this we need to use the local estimates which
we found in Proposition 3.5.1.What we will show now are Holder estimates of order
1/(2k) —n.

Theorem 3.6.1. Let Q c C? be a pseudoconvex bounded domain with real analytic
boundary of D'Angelo finite type 2k. Then for every d-closed (0,1)-form f on Q and for
eachn > 0 there is a constant Cq , > 0 such that one has

I(HD ))& — HE F)E2)] = Canll flloolér - 21577

for all sufficiently smalle >0 and all {1,E2 € Q.

The proof requires us to estimate the integrals in the operator Hg). However note
that the integral over Q is unchanged from the that in the Henkin integral formula.
The Holder estimates then must arise from the integral over the boundary. This is as

expected in that the local estimates reflect the type of the boundary.

Further we define

B (f):= CZf FOANE®) Aw©),
00x[0,1]
€ . fQ = _
I5°(f):=c Q—||(—Z||4n(( Z) Aw(().

Thus we can write Hg)f = Bg)f - Ig)f. If we then show that both Bg)f and Ig)f

satisfy Holder estimates of order 1/(2k) —n the theorem will follow easily.
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First we show that Ig) satisfies
I 1) = I ()] < Capll fllool€r = Eo1 T (3.27)
for for all sufficiently small e >0 and all {;,¢> € Q_,.

We know that Ig) f satisfies Holder estimates of order 1/2 by the properties of the
Henkin integral kernel [6]. This means Ig) will also satisfy estimates of lower order,
in particular of order 1/2k —n. This follows from embedding of Hélder spaces on

bounded sets.
Next we want to show that
(® © L _p

IBE) 1)&1) — (BE &) < Capll flloolér — 12 (3.28)
for for all sufficiently small e >0 and all {;,¢> € Q_,.
To see this we apply a known result from real function theory as stated and proved in
chapter V.3.1 of [8].
Lemma 3.6.2. Let D cc RY be a bounded domain with C' boundary. Suppose g €
Cl(D) and that for some0 < a < 1 there is a constant ¢ so that

ldg(x)| < c-dist(x,0D)* 1,
for x € D. Then there is a constant C so that
18(x)— g = Cllx—yll*

forx,yeD.

Proof. Let 6 > 0 and define the set Us = {z € RN:0<z <8, and ||z|| < 8}. Suppose
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that |dg(2)| = cz‘f‘l. For any x, y € Us/» we see that

x1+|x=yll og
Ig(xl,x)—g(x1+||x—yll,x)|Sf ’—
Oxl

X1

(umwr

X1+ x=yll
so[ ldg(t,x)|dt
X

1

X1+ x=yll .
< Ccf 7 de
X

1

<Ccllx—yll*
By the Mean Value Theorem we see that

lgx1 +llx=yll,x) =g +lIx=yll,»I<ldg@Illx - yll

-1
<czy lx—-yll

-1
<cllx—=yll* lx-yll.

Then

lg(x) —gW =1g(x1,x)—glx1 +lx—yll, x)|
+lgxr +llx=yll, x)— g1 +llx=yll, x|

+lgy +llx=yll,y) — g,y
<3Ccllx-y||*

for all x, y € U/, with |[x—y| <6/2.

49

Now we translate the domain so that 0 € 0D and change coordinates so that Ty(0D) =

{x € RN : x; = 0}. Then in a neighborhood Us around 0 we have dist(x,0D)%"! <

|x11%"! for all x € U n D. This gives

ldg(x)| < cxf”_1

and we apply the local result giving that |g(x) — g(»)| < ||x— y||* when ||x— y|| < /2.

By compactness of 0D we can reduce an open cover of sets {Vj/2 v }ver to a finite cover
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of open sets Vs, which cover dD. Then we get that |g(x) — g(»)| < Ilx — y[|* when
x,y €U Vsy2,; with [|x — y|| < r where r >0 and depends on a and D.

Define the compact set E = {x € D : dist(x,0D) = r} and so
18(x) — gl =Cllx—yll <oo

when x, y € E. Therefore when ||x — y|| = r we can write

lg(x)— gl - lg(x) — gl < oo
[lx—yllY rY

and we are done. O

To apply Lemma 3.6.2 we want to fix a point z € Q_, and show that

d. f F© An(@) A0©)| < dist(z,00)% 7", (3.29)
00 x[0,1]

Recall the functions

J

N =Y (VMEdE A ANAE L AdE AL N dE,
=1

_ LA
NTeIE

A+hi(1-A).

=

We see that

0 0 —
dli;=—qmidA —u:dd;.
Uj Gi'u] +;66,~M (;
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We can then express

= [(HZ(I ||2;L+h1(1 M)(l%_—sz T

7 L-7 -
(ncz— A+ =) (= =

— {2_22/\_21—21/\
_MK—ZW ! H{—mphﬂ A. (3.30)

We see that only terms containing dA appear in the final expression. The reason for

this is that the integral cannot support the added differentials d¢ i

Differentiating under the integral sign we see that Bg )(f) becomes

-2~ (-
U ron ||2h1_||( S noc)
ZAI)“" dz(g i 2A2)’ S(0).
IIC z|| 11—zl
Apply the quotient rule to see that (setting (w,z) = ({1 — z1,{2 — z2) to shorten the
expression)
( FARPN ) d(_hl)llf ZIIZ—Zhld(Il( zl1?)
-zl 1 - zIl*
1 -~ ~ —~
= W((h1d2+2dh1)|l{— z|? = zh (zdz + zdZ + wdw + wdw)),
-z
— 1 ~ ~ ~
(g a) = ——— (o d @+ W) 1C — 211 + Why Gz + 2dZ + W w + wd ).
[1C -zl 11—zl

Taking the norm we get an estimate

G| = H4((|E1|+|zdﬁl|)||c—z||2+|El|(2|z|2+2|zw|)).

Using that |z] < ||{ — z|| and |w| < ||{ — z|| we can simplify the expression to

zh by lzlldhy 4l
d < + + (3.31)
H”(_z”z)‘ -zl I{-2zl2  [1{—zl]?
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and similarly we have

| (‘wﬁz IE hol | |wlidhy| 41k

< + + . 3.32
¢ —=2lP T g —2l> ¢ -zll*  [IE - zll? (852

We will use these estimates to show (3.29). We will consider the integral in two cases:

when ||{ — z|| < @ and ||{ — z|| = a as in Proposition 3.5.1.

Lemma 3.6.3. Fix z€ Q_, then the estimate

i d
oan{li{-zl|za}

holds.

(=%~ (-7
A

N —zI2 " 11 —zl)?

o) dS(Q)| < Copdist(z,007% 1! (3.33)

Proof. When ||{-z|| = @ we have from Proposition 3.5.1 that 7’;]- and d(ﬁj) are bounded

functions. Hence

(Co—Z2) (¢ -z h 1
dl—=—===1|+|d < . (3.34)
‘ ( 11¢ - z||2 )’ ‘ ( 11— z||? )‘ 11¢ - z||2
Since ||{ — z|| = dist(z,0Q) and ||{ — z|| = a we can rewrite
1 1
o lg—zllzETh dist(z,0Q)2E 17!
-z 2= AT 1
1§ — 272677 a2
and therefore
1
f ————dS(() < Ca,ydist(z,00) % 1! (3.35)
o0Qn{ll{~zl|za} [1¢ =zl
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Lemma 3.6.4. Fixz€ Q_,, then the estimate

f d
0Qn{ll{—zll<a}

holds.

Z( Zz—zz 7~ 21—51

T 1
- hy |dS()| < Cq,pdist(z,00Q) 2% 171
N=zl2 " 1 —zl]2 ﬁ (‘ Qn

To show this we want to use a local coordinate system to integrate over the boundary.
The coordinate system will be such that we can use Im® and the defining function p

as coordinates. This will be useful in coming estimates.

Lemma 3.6.5. Thereisaconstanty > 0 so that for each z € Q_, thereisa C' coordinate

system in B(z,y) with

x1=p() +p(2)]
X =ImP((, 2)
x3 = Re((2— 2zp)

xg =1Im({2 — 22).

Proof. Fix z€ 0Q. Asin (2.1) from section 2.2 we have a coordinate change so that

op op op
—=1, —=0 d —=0.
ou ov an 0z
Notice then that
0p Odpodu 1

o, ouol, 2
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as2u={; — z1 +{; — z; and therefore

1 _0p _0podz _10z

200, 0z100, 20(;

Similarly we see that ngz =0. Then

dxiNdx; =dp) AdIm ({; - z1)

a
0y

1 _
:del/\d(ﬁfo

dCi A @ +5)(¥)

The result holds now for the fixed z as follows from the inverse function theorem, so

we can use {xi, X2, X3, X4} as local coordinates in a neighborhood around z. O

Proof of Lemma 3.6.4. When ||{ — z|| < a we have the local estimates

|hj((,Z)ISW

~ C C
|dR;i((,2) < ————+ )
D, 212 12— 2O, 2|

from Proposition 3.5.1. This then gives that

‘d((22—22)ﬁl)‘< 1 +|(2—Zz|( 1 N 1 )+ 1

N —zlI> NI —zl121®1F1 I — 2|2\ [P |{2 — 2ol | P [IC - 2]]?| D17
- 1 N 1
“ N -zl PRI | -zl l| @

Near each boundary point we have that |®| < |{; — z1| + Al{2 — 212K < |1 - z|| + A||IC -

z|1?* < |1¢ - z|| and so

1 ~ ||

IC = zlP|@[T+ |IE - 2] 2| @2+
1

S

I =zl 1@+
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Likewise we see that

‘d((zl—il)ﬁz)‘ 1

S .
¢ = zl12 1™ 11 =zl | @]#*7

Then we get the bound

———dS) 3.36)
faQﬂ{H(—zIKa} 1| = z|||®?>*N ¢ (

We know that |®| = dist(z,0Q), so |®|"7 = dist(z,00Q)7 and

ds@) = dS(q).

o)
fan{IIC—zlka} 1|1 — z|||®|>*N dist(z, 00" Jaanii¢-zli<a} 11§ — zI| | @2

From the local bumping we know that the defining function for the bumped domain

is smaller than the defining function p for Q. So we have Re ({1 — z;) + Po; < p < 0.

Rearranging we get that Re ({1 — z1) < p— Por < p — |2 — 22|**. Now this means that we

can use the local defining function in our expression because
Re (1 - 21) = Al{2 = 221¥| = |p = (c + A)N¢2 — 2],
and as p < 0 we have
o= (A+ 0Lz = 21¥1 = | = 10 pl + (A+ OILa = 29| ~ lpl + 182 — 22>,

What we seek to compute is then

| 1 ds)
saniic-zli<al [I¢ - zll(1pl + 102 - z21%)*

We use the local coordinates form Lemma 3.6.5. We choose an R, dependent on «
and Q, such that

0QNn{ll¢ -zl < a} c{x1 =p@)|,|x2l,1x3],|x4] < R}

‘ )dS(() |590{I|(—z|l<a}

S|ldxo Adxs A dxgll.
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This means we can bound the integral in terms of the new local coordinate system

and the defining function for Q and the inequality

1
fammc—zllw} ¢ =zl (1p] + 102 — 2212K)?

1
<

fosx%x&x‘*s}? (Ipl+ A5 + x5 K + | x20)% 1/ x5 + x2

holds. Integrating up x, gives us

as(¢)

dedX3dX4.

1 1 1
- dxsdx
./(;sxg,x4sR((|,0| + A5+ x5 (Ipl+ A(x3 +x§)k+3)) X2+ 22 e

1 1
< dxsdxy.
f(lpl+A(X§+xi)k),/x§+x§ o

Introducing polar coordinates for x3 and x4 we can further increase the bound and

thus we need to consider

1
——
|pl+ Ar2k

1
Using a substitution r = |p|2k s we get

1 Rlpl—l/(zk) 1
- —des
|p|1_ﬁ 0 1+s

and since the integral is finite we have the following bound

1
——————dS() < lp()| 2% L.
faﬂn{n(—znm}IIZ—ZHI@IZ Qsle

Because |p| ~ dist(z,0Q2) we see that

1
————————dS({) S dist(z,00Q) 2 1
faﬂn{llf—zlka} [1{ — z|| |D|>+n ¢

and Lemma 3.6.4 holds. O
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Now proving that Bg) satisfies Holder estimates only requires us to apply our Lem-

mas and proving Theorem 3.6.1 is just combing the estimates for Bg) and Ig).

Proof of Theorem 3.6.1. We have seen that we have the inequality

% -
dz(||c2—z2|72h1)’+

dz( 21—51

dB(E) < oof
ld( Qf)(z)|<||f|| 50, ||(—Z||2

o) | dS(@).
Applying Lemmas 3.6.3 and 3.6.4 we further see that
1d(BE) £)(2)]] < | fllooCaypdist(z,0Q) 7 11
and applying Lemma 3.6.2 and we get that
(B £)(E) = BE (&) <1 fllooCaplér — &l 27,
Now Theorem 3.6.1 follow from (3.27) and (3.28) since

(Ba - I0) () E1) — (Ba — 1) (HEDI = 11 fllocCaylér — 21777,



Chapter 4

The Main Result

This chapter will prove the Main Theorem by extending the integral kernel to entire

domain Q.

58
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4.1 Proof of Main Theorem

We will now extend the solution operator from Theorem 3.6.1 to a solution operator
which yields functions defined on Q2 which also achieves Holder estimates of order

1/(2k) —n and sup-norm estimates. Recall first the Main Theorem.

Main Theorem. Let Q c C? be a bounded pseudoconvex domain with real analytic
boundary of D'Angelo finite type 2k and let f be a d-closed (0,1)-form on Q. Then there

exists a solution u of du = f on Q such that

lulloo = Call flloo

where Cq is independent of f. Furthermore for everyn > 0 there is a solution u™ as

above that satisfy (ﬁ —1)-Hélder estimates with constant only depending on Q) and .

We will construct a sequence of functions u; which will be solutions to 5uk = fon
each Q_,, and show that we can obtain « as a limit of a convergent sequence. We
will create a family of functions and find the sequence from there. We will use the

Arzela-Ascoli theorem to then show convergence.

Theorem 4.1.1 (Arzela-Ascoli Theorem). If K is a compact metric space and {f;} is
a sequence of complex valued functions which is uniformly bounded and uniformly

equicontinuous on K, then {f;} has a uniformly convergent subsequence.

We also want to define what it means to exhaust Q by compacts.

Definition 4.1.2. We say a topological space M can be exhausted by compacts if there
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is a nested sequence of compact sets K; € K» <.... such that K; < int(K;;) for each i
and M =2, K;.

We need to define what it means to be equicontinuous.

Definition 4.1.3. Let I' = {f; : Q — C}¢; be a family of functions. We say that the
family is uniformly equicontinuous if for every £ > 0 there exists a § > 0 such that
when z, w e Qwith |z—w| <6, |f(z) - f(w)| <eforall feT.

First we show that solutions arising from Hg) equicontinuous. Let v > 0, then there
isad and 1,85 € Q_; so that when |é; — &,| < 6, then

1 (1) = ul (€)1 < Call flleolér — E2287 < v

1
V1~ 2k
1 flleoCan *

(m
k

for all u;’l’ elu

|k =1} by choosing 6 =
Let {e}37 , be a sequence of positive numbers so that 4.1 < €x. Then as k — co we
have that e — 0. Let further f be d-closed (0,1)-form on Q and set ugcm = Hg’“)f
which solves 5u;cm ;c")

bounded and uniformly equicontinuous functions on Q, .

= f on Qg,. The family of functions {u," : Q; — C} is uniformly

Further let {ﬁgk}%’zl be sequence of compact domains dependent on the sequence

{e k}%ozr This sequence is nested since €4 < € and also ﬁgi cQ The family of

Eit+1°
functions {u|k = m} is normal on ﬁgm from the Arzela-Ascoli Theorem. We therefore

can find a subsequence {ukj}‘;‘jl which converges uniformly to a function z on ﬁgk‘.
- J

For an arbitrary compact K < Q since {2, } is a nested open cover of (2, some Q,,
must contain K. This is because the sequence exhaust Q2. Then since uﬁZ’ has a
convergent subsequence in ., , the same subsequence converges in K. This then

implies that there exists a a ™ on Q which then satisfies du™ = f.
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On an arbitrary compact K, we can then find a subsequence converging to ™. Then

the limit u must also satisfy du = f because of
0~ f1=10(u — ux) +0ug; — f1 < 10(u — ug))| + 10ug; = f1 — 0+0.
and

o) ( ) m
4™ (2) - u™ (w)| = 1u™ (2) - u (W) + u,” (2) - u,” (@) + " (W) - u,” (W)
J J J J

(m
kj

(m

<1 @)~ @1 + 11y ()~ u (W) + 1] (@) — ] (w)

1
— 0+ 0+ Copllflleolz — wlzE™"

Sup-norm estimates now follow from the Holder continuity. If the domain of a Holder

continuous function is a bounded subset of R"”, then the function is also bounded.

Proposition 4.1.4. LetQ c C" be a bounded domain. If a function f : Q — C satisfies
1f(2) = fw)l < clz—w|*

forana € (0,1) and all z, w € Q, then f is bounded.

Proof. Suppose [ is unbounded. Then we can find a sequence {z,}7, < Q so that
| f(z,)| > nfor all n. As Q is a bounded domain, the sequence is bounded. Then there
exists a convergent subsequence {znk}i":1 < {zn}5., satistying |f(z,,)| > ng. Now

since
|f (zn;) = f(zn)| < Clzn; — 2n;|*

and {z,,}77, is a Cauchy sequence we get that the sequence {f(z,,)}7, is a Cauchy
sequence. Cauchy sequences are bounded, however since we supposed f unbounded

we have that | f(z,,)| > ny for all k. This is a contradiction. O
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Applying this result to our solution ©™ we immediately see that

llutlloo < ClI flloo

and we have proved the main theorem.
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5.1 Conclusion

We have proved that we can modify Henkins integral formula to become a solution
operator for d on bounded weakly-pseudoconvex domains with real analytic bound-
ary of finite type in C2. This operator satisfied Holder estimates reflecting the type
of the boundary. We did this by showing that for bounded domains of finite type in
C? we can always find a local bumping to type of the domain around any bound-
ary point. Using then an appropriate choice of smooth solutions to the Cauchy-
Fantappié equation we used Hormanders solution of 4 to modify them into holo-
morphic functions with weighted L? estimates also satisfying the Cauchy-Fantappié
equation. Selecting an appropriate weight and using Cauchy estimates we achieved

pointwise estimates for h; and h;.

On a slightly smaller domain Q_, we replace the functions with functions where the
local estimates are smooth on the boundary. Patching these together we obtained
an integral formula which satisfied Holder estimates which reflects the type at the

boundary, with some small loss coming from the weighted estimates.

Further we extended the solution operator to the entire domain Q using exhaustion

of compacts, the Arzela-Ascoli and a normal families argument.

5.2 Future Work

In this thesis we have shown the main theorem when we have a pseudoconvex do-
main of finite type in C2. Naturally one seeks solutions when domains lie in C" with
n = 3. The challenge lies in the geometric behavior of the boundary. This is easier for
domains lying C? as the only complex curves which are tangent to the boundary is C.
Moving up in dimension there exists possibilities for curves touching to much higher
order, meaning the type might change depending on direction. Finding a bumping
to type of the domain and a corresponding support function is then a central ques-

tion. For similar domains in C3 the paper this thesis is based on [5] proves the same
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result.

65



Bibliography

(1]

(3]

John P. D’Angelo. Real Hypersurfaces, Orders of Contact, and Applications. An-
nals of Mathematics, 115(3):615-637, 1982. Publisher: Annals of Mathematics.

Jean-Pierre Demailly. L2 estimates for the $\overline\partial$-operator on com-

plex manifolds. page 86.

John Erik Fornaess. Sup-Norm Estimates for $\overline \partial$ in C2. Annals
of Mathematics, 123(2):335-345, 1986. Publisher: Annals of Mathematics.

John Erik Fornaess and Berit Stensenes. Lectures on counterexamples in sev-
eral complex variables, volume 33 of Mathematical Notes. Princeton University
Press, Princeton NJ, 1978.

Dusty Grundmeier, Lars Simon, and Berit Stensgnes. Sup-norm Estimates for
$\overline{\partial}$ in $\mathbb{C}*3$. arXiv:1909.04080 [math], December
2020. arXiv: 1909.04080 version: 3.

Steven Krantz, G. Function Theory of Several Complex Variables. Wadsworth &

Brooks/Cole Advanced Books & Software, second edition edition, 1992.

Alan Noell. Peak points for pseudoconvex domains: a survey. arXiv:0710.0868
[math], April 2008. arXiv: 0710.0868.

R. Michael Range. Holomorphic Functions and Integral Representations in Sev-
eral Complex Variables, volume 108 of Graduate Texts in Mathematics. Springer
New York, New York, NY, 1986.

66



BIBLIOGRAPHY 67

[9] R. Michael Range. Integral kernels and Holder estimates for $\bar\partial$ on
pseudoconvex domains of finte type in $$\mathbb{C}A2$$, 1989.

[10] Nessim Sibony. Un exemple de domaine pseudoconvexe regulier ou I'équation
du = f n'admet pas de solution bornée pourf bornée. Inventiones Mathemati-
cae, 62(2):235-242, June 1980.



@ NTNU

Kunnskap for en bedre verden



	Acknowledgment
	Summary
	Oppsummering
	Introduction
	Motivation
	Definitions and Preliminaries

	Bumping to Type
	Local Bumping
	A Pseudoconvex Extension

	A Solution Operator for 
	Koszul Complex
	Constructing a Support Function
	Weighted L2 Estimates
	Passing to Pointwise Estimates
	Constructing an Integral Kernel 
	Hölder Estimates

	The Main Result
	Proof of Main Theorem

	Final Remarks
	Conclusion
	Future Work


