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Abstract

In this thesis, we define Kan extensions and introduce the pointwise construction

in order to define derivators in an appropriate context. By developing the theory of

pointed and stable derivators, we prove that stable derivators induce additive categor-

ies. We establish the functors needed to construct the auto-equivalence and class of

triangles in the main result, which states that stable and strong derivators give rise

to triangulated categories. This provides a replacement for the well-known flaw of

triangulated categories, namely the non-functorial cone construction. Lastly, the re-

lated functors between the induced triangulated categories are proven to be exact

functors.

Sammendrag

I denne oppgaven definerer vi Kan-utvidelser og introduserer den punktvise kon-

struksjonen som lar oss definere derivatorer i en passende kontekst. Ved å utvikle

teorien om punktede og stabile derivatorer, beviser vi at stabile derivatorer induserer

additive kategorier. Vi etablerer funktorene som er nødvendige for å konstruere auto-

ekvivalensen og klassen av trekanter i hovedresultatet, som sier at stabile og sterke

derivatorer gir opphav til triangulerte kategorier. Dette gir en erstatning for den

velkjente ulempen ved triangulerte kategorier, nemlig den ikke-funktoriale kjeglekon-

struksjonen. Til slutt viser vi at de relaterte funktorene mellom de induserte trian-

gulerte kategoriene er eksakte funktorer.
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Introduction

The aim of this thesis is to introduce derivators, prove that they induce triangulated categor-
ies and understand how that solves, to some extent, the issue regarding the non-functorial
cone construction.

The triangulated category was introduced by Jean-Louis Verdier [Ver96], based on ideas
of Alexander Grothendieck, in order to axiomatise the extra structure of the derived cat-
egory D(A), for an abelian category A. Both for triangulated categories in general, and
the derived category in particular, the respective cone constructions T [1] Cone−−−→ T and
D(A)[1] Cone−−−→ D(A), are not functorial. However, for the derived category there is a
functor D(A[1])→ D(A). Utilising this approach is the idea behind a derivator.

Although similar concepts were studied and introduced independently by several others, it
was Grothendieck who first introduced the notion of a derivator [Gro]. A derivator can be
thought of as a well-behaved 2-functor Catop → CAT with some requirements, one being
that the induced functors admit adjoints. These adjoints are inspired by Kan extensions, a
notion initiated by Daniel M. Kan [KT76].

The main result of this thesis is theorem 6.9, stating that for some derivator D and small
category X , the category D(X ) is triangulated. In proving this, we construct the functor
D([1]) → D(1), providing the main ingredient of the solution to the non-functorial cone
construction. This functor is exactly D(A[1])→ D(A) for the derivator ofA, denoted DA.

In regards to sources, the author found the paper by Moritz Rahn (previously Moritz Groth)
[Gro13] the most useful and it is therefore the primary source for the chapters 3-6. Most
of chapter 1 is regarded as well-known homological algebra, see for example [Opp16],
and [KS74] for the definition of a 2-category and 2-functor, specifically. The definitions
in chapter 2 are based on Saunders Mac Lane [Lan71], see also [Rie14] for additional
details. Simultaneously, a previous thesis on derivators [Bra21] proved a valuable source
regarding details, and as a result of this, several proofs follow a similar structure. Following
is an outline of how the thesis builds up the theory resulting in the main theorem.

The first chapter is meant as a gentle and particular introduction to the category theory ne-
cessary for the rest of the thesis. In addition to the more familiar definitions of categories,
functors and natural transformations, there are also some concepts which might be new to
some, such as slice categories, 2-categories and 2-functors.

In the second chapter we define Kan extensions, which at first sight are an abstract way
of extending a functor F along a functor G. Section 2.1 provides another way of thinking

iii



of Kan extensions by showing that they generalise adjoints, and more importantly, that
they generalise (co)limits. Kan extensions can also be calculated pointwise, which is done
in section 2.2, and results in proposition 2.7, preparing us for the prime example of a
derivator, namely the represented derivator Drep.

In the third chapter we introduce Beck-Chevalley transformations, leading to the definition
of a derivator. Then we establish the opposite derivator and show some useful properties
of derivators, before proving in theorem 3.19 that they give rise to categories which admit
products and coproducts. The chapter ends with the definition of a shifted derivator and
proposition 3.22 assuring us that this is a reasonable definition.

The fourth chapter is concerned with pointed derivators, that is, when the underlying cat-
egory admits a zero object. In section 4.1 we prove lemma 4.9, a result often thought about
as an extension by zero. This leads to the very important pairs of adjoints in section 4.2,
namely the cone and fiber functor, and the suspension and loop functor. We see how these
generate cartesian and cocartesian squares, and in section 4.3 we prove corollary 4.22,
allowing us to calculate the (co)cartesian squares pointwise.

In the fifth chapter we define stable derivators and unravel the consequences of when
cartesian and cocartesian squares coincide. We prove lemma 5.6, which emphasises the
nuances in generating (co)cartesian squares and leads to the related two out of three prop-
erty given by corollary 5.8. We also characterise stable derivators via certain squares
in proposition 5.10, before proving that stable derivators induce pre-additive categories.
With reference to the mentioned main source of this thesis, we state that these categories
indeed are additive.

In the sixth chapter we introduce the triangulated derivator, through the notion of a strong
derivator. Finally, we prove theorem 6.9, and discuss the consequences regarding the re-
lated cone constructions. The chapter ends with proposition 6.11, stating that the induced
functors G∗, GL and GR are exact.

iv



Notation

Categories X ,Y , etc.
Objects a, b, c, A,B, etc.

Morphisms f, g, h, id, etc.
Set of morphisms from a to b Hom(a, b)

Functors F,G,H, Id, etc.
Natural transformations α, β, γ, etc.

Terminal category 1

Limit of F limF

Colimit of F colimF

Slice category for functor G and object y ∈ Y [G � y]

Vertical 2-cell composition β|α
Horizontal 2-cell composition βα

Category of all small categories Cat
Category of all categories CAT

Left Kan extension functor of F along G LKGF

Right Kan extension functor of F along G RKGF

Pre-derivator and derivator D
Induced restriction functor D(G) G∗

Right adjoint to G∗ GR

Left adjoint to G∗ GL

The derivator of A DA
Category of chain complexes C(A)

The derived category D(A)

The represented derivator Drep

The opposite derivator Dop

The diagonal functor ∆K

The shifted derivator DK

The arrow category [1]

Subcategories of [1]× [1] = � ,

Suspension functor Σ

Loop functor Ω

v



1 Category theory

The first chapter begins with the definition of a category, and ends with the definition
of a 2-functor, the preamble of a pre-derivator. Most of the definitions in between are
from homological algebra, and might be familiar to the experienced reader. The examples
and observations provided in this chapter are chosen such that they hopefully clear any
confusion that might arise in the rest of the thesis.

1.1 Categories, functors and natural transformations

Definition 1.1. A category C consists of

i) a class of objects, denoted obj(C)

ii) for any two objects a, b, a set of morphisms,HomC(a, b)

iii) for any three objects a, b, c, a composition map

◦ : HomC(a, b)×HomC(b, c)→ HomC(a, c), (f, g) 7→ g ◦ f

which is associative. In other words, for any objects a, b, c, d, and any morphisms
f ∈ HomC(a, b), g ∈ HomC(b, c), h ∈ HomC(c, d) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

iv) for any object a, a morphism called the identity morphism ida in HomC(a, a) such
that for f ∈ HomC(a, b) and g ∈ HomC(b, a) we have

f ◦ ida = f

ida ◦ g = g

Example 1.2. The terminal category, denoted 1, is defined as the category with a single
object, and is of course a category.

Example 1.3. Any poset forms a category. For two elements p1, p2 in a poset P there is a
morphism p1 → p2 whenever there is a relation p1 ≤ p2.

Example 1.4. Any set S forms a discrete category if one allows identity morphisms for
each element in S.

1



1.1 Categories, functors and natural transformations

Definition 1.5. Let X be a category.

i) An initial object i ∈ X is an object such that for every other object x ∈ X there
exists exactly one morphism i→ x.

i) An terminal object t ∈ X is an object such that for every other object x ∈ X there
exists exactly one morphism x→ t.

Definition 1.6. A small category is a category where the class of objects forms a set.

The terminal category has an object which is both initial and terminal. Such an objects is
a zero object. A poset category admits an initial object if it has a ”smallest” element, and
likewise for a terminal object. A discrete category has no initial or terminal object. All
three of the mentioned categories are small.

Definition 1.7. Let X ,Y be two categories. Then a functor F from X to Y consists of
two maps

F : obj(X )→ obj(Y)

F : HomX (x1, x2)→ HomY(F (x1), F (x2))

satisfying the following properties.

i) for all x ∈ X we have F (idx) = idF (x)

ii) for any two composable morphisms f, g ∈ C we have F (gf) = F (g) ◦ F (f)

It is often useful to think of diagrams in categories as functors. For example, consider
a diagram consisting of two objects, say a and b, in some category C. If we let P be a
category consisting of only two objects, then the diagram {a b} can be identified with a
functor P F−→ C, given by sending one of the objects in P to a and the other to b.

Definition 1.8. Let X F−→ Y be a functor and x1, x2 objects in X .

i) F is full ifHomX (x1, x2)
F−→ HomY(F (x1), F (x2)) is surjective.

ii) F is faithful ifHomX (x1, x2)
F−→ HomY(F (x1), F (x2)) is injective.

iii) F is essentially surjective if for every y ∈ Y there exists a x ∈ X such thatF (x) ∼= y.

iv) The essential image of F , denoted essIm(F ), is all objects y ∈ Y such that F (x) ∼=
y for some x ∈ X .

2



1.2 Adjoints, limits and 2-categories

Functors F such that HomX (x1, x2)
F−→ HomY(F (x1), F (x2)) is a bijection are called

fully faithful.

Definition 1.9. Let F,G : X → Y be functors between two categories. A natural trans-
formation α : F → G consists of a morphism αx : F (x)→ G(x) for all x ∈ X such that
the following diagram commutes for f : x1 → x2.

F (x1) F (x2)

G(x1) G(x2)

F (f)

G(f)

αx1 αx2

It will be useful in many proofs to consider natural transformations that are the result of a
natural transformation composed with a functor. For example, given G α−→ H , we have a
natural transformation αF from the functor GF to the functor HF .

X Y ZF

H

G

α

This is also the same as using α only on objects in Y that are in the image of F .

Definition 1.10. Let X F−−−−→ Y be a functor and x ∈ X . The identity transformation
on F , denoted IdF , is defined by (IdF )x = idF (x).

1.2 Adjoints, limits and 2-categories

Definition 1.11. There are two equivalent ways of defining an adjoint pair of functors,
(F,G) : X � Y . Both definitions are useful, and in both cases F is the left adjoint while
is G the right adjoint.

i) there are two natural transformations called the counit and unit, respectively,

ε : FG→ Id

η : Id→ GF

such that the natural transformations

F
Fη−−−−−→ FGF

εF−−−−−→ F

3



1.2 Adjoints, limits and 2-categories

G
ηG−−−−−→ GFG

Gε−−−−−→ G

compose to the identity transformations. These are often referred to as the triangle
identities.

ii) there is an isomorphism

HomY(F (x), y) ∼= HomX (x,G(y))

which is natural for all objects x ∈ X and y ∈ Y .

Following are some useful results which will be used multiple times throughout the thesis.

Observation 1.12. Let (F,G) : X � Y be an adjoint pair of functors. Then F preserves
initial objects and G preserves terminal objects.

Proof. We prove the first claim, the second is dual. Let i ∈ X be an initial object. By
definition there exists only one morphism in the set HomX (i, x) for all x ∈ X , and in
particular for G(y) given some y ∈ Y . And by definition of adjoint pair we have that

HomX (i, G(y)) ∼= HomY(F (i), y)

implying that F (i) is an initial object in Y .

Observation 1.13. Let 1 t−→ X be the functor identifying the terminal object t ∈ X , and
X π−→ 1 be the canonical projection functor. Then (π, t) is an adjoint pair.

Proof. Let • be the only object in 1, and x some object in X . Then both Hom1(π(x), •)
andHomX (x, t(•)) consist of a single element due to the fact that t is terminal. Hence

Hom1(π(x), •) ∼= HomX (x, t(•))

Lemma 1.14. Let (F,G) : X � Y be an adjoint pair of functors. Then

i) F is fully faithful if and only if the unit IdX
η−−−−→ GF is an isomorphism.

ii) G is fully faithful if and only if the counit FG ε−−−−→ IdY is an isomorphism.

Proof. We prove ii). We have the following composition where Φ is the natural isomorph-
ism related to the adjoint pair.

HomY(y, y′)
G−−−−→ HomX (G(y), G(y′))

Φ−−−−→ HomY(FG(y), y′)

4



1.2 Adjoints, limits and 2-categories

In order to find out what this composition does on a map y g−→ y′, we use the naturality of
Φ.

HomX (G(y), G(y)) HomY(FG(y), y)

HomX (G(y), G(y′)) HomY(FG(y), y′)

G(g) g

Φ

Φ

The square commutes, hence Φ(G(g)(idG(y))) = g(Φ(idG(y)) and since Φ(idG(y)) = εy

we get that Φ(G(g)) = gεy. Now it is possible to see that G is fully faithful if and only if
gεy is an isomorphism if and only if the counit ε is a natural isomorphism.

In the next chapter we will see how limits and colimits form a bridge between the more
concrete concepts such as a product and the relatively abstract definition of a Kan exten-
sion. The definition of a slice category will be important in creating that bridge.

Definition 1.15. For a functor F : X → C, the limit of F , denoted limF , is an object in
C together with morphisms limF α−→ F (x) for x ∈ X such that

i) given x1
f−→ x2 ∈ X we have that F (f) ◦ α1 = α2

ii) for any other object T ∈ C with morphisms T β−→ F (x) which also satisfies the
previous criterion, there exists a unique map γ : T → limF s.t. α ◦ γ = β

F (x1) F (x2)

limF T

F (f)

α1 α2 β1
β2

∃!

Definition 1.16. For a functor F : X → C, the colimit of F , denoted colimF , is an object
in C together with morphisms F (x)

α−→ colimF for x ∈ X such that

i) given x1
f−→ x2 ∈ X we have that α2 ◦ F (f) = α1

ii) for any other object T ∈ C with morphisms F (x)
β−→ T which also satisfies the

previous criterion, there exists a unique map γ : colimF → T s.t. γ ◦ α = β for all
x ∈ X

5



1.2 Adjoints, limits and 2-categories

F (x1) F (x2)

colimF T

F (f)

α1 α2 β1
β2

∃!

Definition 1.17. For a functor X G−→ Y and object y ∈ Y , the slice category, denoted
[G � y], has objects of the form (x, f) for x ∈ X and G(x)

f−→ y ∈ Y . A morphism
between two objects (x1, f1) and (x2, f2) is a morphism x1

g−→ x2 in X such that the
following diagram commutes in Y .

G(x1) G(x2)

y

G(g)

f1 f2

Together with a slice category [G � y] comes a canonical projection functor

ρy : [G � y]→ X

sending (x, f) to x, and (x1, f1)
g−→ (x2, f2) to x1

g−→ x2. Using this functor is the same as
forgetting the extra structure a slice category carries. Given y1

h−→ y2 ∈ Y there also exists
a functor

[G � y1]
[G�h]−−−→ [G � y2]

which sends (x, f) to (x, hf), and (x1, f1)
g−→ (x2, f2) to (x1, hf1)

g−→ (x2, hf2). Finally
comes the definition of a 2-category and 2-functor, central concepts in chapter 3.

Definition 1.18. A 2-category C consists of

i) 0-cells A,B, C, etc.

ii) 1-cells F,G,H, etc.

iii) 2-cells α, β, γ, etc.

such that

i) the 0-cells and 1-cells form a category C0 together with standard composition

6



1.2 Adjoints, limits and 2-categories

ii) the 1-cells and 2-cells form a category C(A,B) together with vertical composition

A B = A B

F

H

G

H

F

β|α
α

β

In addition we have horizontal composition of 2-cells

A B C = A C
H

F

T

G

TH

GF

βαα β

which is associative and s.t. (β|α)(δ|γ) = (γα)|(δβ) holds for the diagram

A B CH K

G

F I

J

γα

β δ

Lastly we need horizontal identity, i.e. for ididA : idA → idA, ididB : idB → idB and
α : F → G we have ididAα = α = αididB for the diagram

A A B B

idA

idA

G

F

idB

idB

ididA α ididB

and the 2-identity idGidF = idGF

A B C = A C

F

F

G

G

GF

GF

idF idG idGF

Definition 1.19. The category of all small categories is denoted Cat and the category of
(not necessarily small) categories is denoted CAT .

Example 1.20. Cat and CAT are both 2-categories. The 0-cells are categories, the 1-cells
are functors and the 2-cells are natural transformations.

Definition 1.21. A 2-functor D is a map between two 2-categories X and Y such that

i) D : X0 → Y0 is a functor

7



1.2 Adjoints, limits and 2-categories

ii) D : X(X1,X2)→ Y(Y1,Y2) is a functor

iii) given α : F → H and β : G→ T we require that D(β)D(α) = D(βα)

iv) given idF : F → F we require D(idF ) = idD(F )

A 2-functor is a map between 2-categories that preserves all identities and compositions.
Therefore, if a diagram commutes prior to applying a 2-functor, it will commute afterwards
as well. Since a derivator will be defined as a 2-functor, this property will be utilised
implicitly throughout. We end the chapter with another useful observation making use of
this property.

Observation 1.22. Let D : Catop → CAT be a 2-functor. If (F,G) : X � Y is an adjoint
pair of functors, then (D(G),D(F )) : D(X )� D(Y) is an adjoint pair of functors.

Proof. By using the mentioned property of 2-functors and definition 1.11 ii), we see that
the following now commutes

D(Y) D(X ) D(Y)
D(G) D(F )

Id

D(ε)

Likewise for D(η), and again by definition, we are done.

8



2 Kan extensions

Saunders Mac Lane wrote that ”All concepts are Kan extensions” ([Lan71]). In section
2.1 we argue the same, first by generalising the concept of a product to that of a limit, then
by introducing Kan extensions and showing how limits are right Kan extensions, tying
all three concepts together. We end the section with an example regarding adjoints, again
emphasising the quote. In section 2.2, we construct the pointwise Kan extension, giving
us an example of a derivator for chapter 3.

2.1 All concepts are Kan extensions

Assume we have two objects, a, b, in some category C. The product of a and b is an object,
a× b, together with two morphisms a× b πa−→ a and a×B πb−→ b, satisfying the universal
property. That is, for any other object T and morphisms (T

ta−→ a, T
tb−→ b) we get a unique

map T → a× b such that the following diagram commutes.

a b

a× b T

πa
πb ta

tb

In order to generalise the concept of a product, we introduce a discrete category P con-
sisting of two objects, 1 and 2. Let P F−→ C be the functor sending 1 to a and 2 to b. Then,
hopefully it is clear that the limit of F is a× b. By changing the category P , many similar
concepts, such as pushouts and kernels, can be generalised and shown to be a limit.

In a similar manner, the concept of a limit can be generalised and shown to be a right Kan
extension. Dually, the colimit is a left Kan extension.

Definition 2.1. Given two functors X F−→ C and X G−→ Y , a left Kan extension of F along
G is a functor Y LKGF−−−−→ C together with a natural transformation F α−→ LKGF ◦ G such
that for any other functor and natural transformation (Y T−→ C, F β−→ TG) there exists a
unique LKGF

γ−→ T s.t. β = Gγ ◦ α.

9



2.1 All concepts are Kan extensions

X C F

LKGF ◦G TG

Y

F

G
LKGF

T

α β

α β

γGγ

Definition 2.2. Given two functorsX F−→ C andX G−→ Y , a right Kan extension of F along
G is a functor Y RKGF−−−−→ C together with a natural transformation RKGF ◦ G

α−→ F such
that for any other functor and natural transformation (Y T−→ C, TG β−→ F ) there exists a
unique T γ−→ RKGF s.t. β = α ◦Gγ

X C F

RKGF ◦G TG

Y

F

G
RKGF

T

α β

α β

γGγ

Let us see one perspective on how to think about Kan extensions. Given any functor
X F−→ C and the projection functor X π−→ 1, the right Kan extension of F along π turns out
to be the limit of F, i.e. RKπF = limF .

X C

1

F

G
limF

T

α
β

γ

If we recall definition 1.15, we see that the notation matches up nicely. From the definition,
i) is satisfied because α is a natural transformation, while ii) is satisfied by the universal
property of the right Kan extension, namely the fact that β = α ◦Gγ.

10



2.1 All concepts are Kan extensions

If we try and tie all three concepts together, the product, limit and right Kan extension,
the result might be slightly overwhelming or satisfying, depending on the reader. Since
the limit is our middle ground, that is the notation used in the diagram. However, keep in
mind that RKπF = limF = a× b for our specific case.

a b

1 2 P C

limF T

1

•

F

π limF

T

limF
T

αa

αb

γ

βb

βa

F

α

γ

β

We end this section with another example of how an important construction actually is a
Kan extension.

Example 2.3. Any functor F : X → Y has a right adjoint G, if and only if the right Kan
extension of IdX along F exists and it is preserved by any functor H : X → Z for some
category Z . What is meant by the latter criterion, is that H ◦ RKF IdX = RKF IdX ◦
H . In this case the right Kan extension is the right adjoint G and the related natural
transformation is the unit. The natural transformation related to the left Kan extension is
the counit.

X X

Y

F

IdX

RKF IdX=Gη

11



2.2 Pointwise Kan extensions

2.2 Pointwise Kan extensions

We want to know what the left Kan extension, LKGF , does on objects. This is known
as the pointwise construction of Kan extensions. In other words, given y ∈ Y , what is
LKGF (y) ∈ C?

X C

?

Y

y

F

G
LKGF

It turns out that if we define any mapL by sending y to a particular colimit, then it is indeed
a functor and left Kan extension. This section is about proving this and we therefore start
with the set up as follows.

[G � y] X C

Y

F

G
L

ρy

[G � y] is a slice category, ρy is the corresponding projection functor and L is given by
sending any y ∈ Y to colimFρy.

Lemma 2.4. L, as described above, is a functor.

Proof. We need to show that for y h−→ y′
h′−→ y′′ we have that L(h′h) = L(h′)L(h)

colimFρy colimFρy′ colimFρy′′
L(h′)L(h)

It suffices to show that L(h) is unique, because then, by similar reasoning, L(h′) will also
be unique implying L(h′h) and L(h′)L(h) will both be the same unique map. In addition,

12



2.2 Pointwise Kan extensions

if L(h) is unique, it will be clear that L(idy) = idL(y). In aid of this, consider the diagram

[G � y]

[G � y′] C

1

Fρy

π

π

colimFρy

colimFρy′

Fρy′

[G�h]

(2.1)

where colimFρy sends the only object in 1 to the object colimFρy in C, and likewise for
colimFρy′ . Hence, finding a unique map between the objects colimFρy and colimFρy′
in C is the same as finding a unique natural transformation between the functors colimFρy
and colimFρy′ .

We know from earlier discussions that colimFρy is the left Kan extension of Fρy along
π. We have another functor from 1 to C, namely colimFρy′ . If we can find a natural trans-
formation from Fρy to colimFρy′ ◦ π we can invoke the universal property of colimFρy.
We also know colimFρy′ is a left Kan extension, and therefore have a natural transform-
ation colimFρy′ ◦ π

α′−→ Fρy′ .

We see that colimFρy′π = colimFρy′π[G � h]
α′[G�h]−−−−→ Fρy′ [G � h] = Fρy using the

two commuting triangles

[G � y]

C 1

[G � y′]

Fρy π

πFρy′

[G�h]

from diagram 2.1. Now, by the universal property of colimFρy, there is a unique natural
transformation colimFρy

γ−→ colimFρy′ which is what was needed.

Now that we know L is a functor, we want a natural transformation ε : F → LG in order
to show later that L indeed is a Kan extension. Our goal is, given x g−→ x′, to end up with
a commuting diagram of the form

13



2.2 Pointwise Kan extensions

F (x) LG(x)

F (x′) LG(x′)

εx

εx′

F (g) LG(g)

We adopt diagram 2.1 from the proof of lemma 2.4, and replace y and y′ with G(x) and
G(x′). The transformations α and α′ are the natural transformations associated with their
respective Kan extensions, and γ is as in the previous proof.

[G � G(x)]

[G � G(x′)] C

1

FρG(x)
[G�G(g)]

colimFρG(x′)

π

π

α′

FρG(x′)

colimFρG(x)

α

γ

Lemma 2.5. There exists a natural transformation ε : F → LG.

Proof. Using the three functors FρG(x), colimFρG(x) ◦ π and colimFρG(x′) ◦ π on the
object (x, id(G(x)) ∈ [G � G(x)] we get the triangle

F (x) colimFρG(x)

colimFρG(x′)

αG(x)

γ
α′◦[G�G(g)]

(2.2)

which commutes by definition of γ. Using the two functors FρG(x′) and colimFρG(x′) ◦ π

14



2.2 Pointwise Kan extensions

on the morphism (x,G(g))
g−→ (x′, idG(x′)) ∈ [G � G(x′)] we get the triangle

F (x)

F (x′) colimFρG(x′)

F (g)

α′
G(x)

α′
G(x′)

(2.3)

which commutes because α′ is a natural transformation. Noticing that α′ ◦ [G � G(g)]

and α′G(x) are the same morphism, we get a commuting square which is a combination of
the triangles 2.2 and 2.3.

F (x) colimFρG(x)

F (x′) colimFρG(x′)

F (g)

α′
G(x′)

αG(x)

γ

Remembering that L(G(x)) = colimFρG(x) by definition, completes the proof.

Now that we have a functor L together with a natural transformation ε, it remains to show
that the pair is a Kan extension.

Theorem 2.6. (L, ε) as constructed above is a left Kan extension.

Proof. We assume (Y T−→ C, F τ−→ TG) is another pair of functor and natural transforma-
tion and need to show that there exists a unique L γ−→ T such that the triangle on the right
commutes.

X C

F

Y LG TG

ε τ

γG

G

F

L

T

ε
τ

γ

15



2.2 Pointwise Kan extensions

The fact that using L on objects is defined as a colimit, will be used in order to construct
γ. Fixing some y ∈ Y results in the following diagram

[G � y] X C

Y

G

F

L

T

ρy

ε
τ

Using the different functors on the objects and morphism (x, f)
g−→ (x′, f ′) ∈ [G � y],

gives us the following diagram, allowing us to use the universal property of L(y).

F (x) F (x′)

LG(x) TG(x) TG(x′)

L(y) T (y)

F (g)

τx
τx′

TG(g)

T (f) T (f ′)

εx

L(f)

!γy

(2.4)

The right top square commutes because τ is a natural transformation, and the right lower
triangles commutes becauseT is a functor. This implies that there is a unique mapL(y)

γy−→
T (y) by definition 1.16. It is unique in the sense that for all (x, f) ∈ [G � y] it is the unique
morphism such that γy ◦ L(f)εx = T (f)τx.

The next goal is to show that γ is a natural transformation, i.e. that for y h−→ y′ ∈ Y the
following square commutes in C, where γy′ is constructed in the same manner as γy.

L(y) T (y)

L(y′) T (y′)

γy

T (h)L(h)

γy′

In order to achieve this, we turn our attention to a new diagram, where the right triangle is
the same commuting triangle as in diagram 2.4, only extended with the morphism y

h−→ y′.
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2.2 Pointwise Kan extensions

F (x) F (x′)

L(y) T (y′)

L(f)εx

F (g)

T (hf)τx T (hf ′)τx′

∃!

The universal property of L(y) implies a unique morphism from L(y) to T (y′), say φ,
making the left triangle commute. Both γy′L(h) and T (h)γy also make that particular
triangle commute, as shown in the following diagram.

F (x)

L(y) T (y)

L(y′) T (y′)

γy

T (h)L(h)

γy′

L(f)εx T (f)τx

Therefore, γy′L(h) and T (h)γy must be the same unique morphism. The reason that the
latter diagram commutes is the observation

γy′L(h)L(f)εx = T (h)T (f)τx = T (h)γyL(f)εx

where the first equality is by the colimit property of γy′ , and the second is from the top
commuting triangle.

Lastly, it is required that γ is such that γGε = τ . We fix the morphism (x1, f1)
k−→ (x2, f2)

and object (x, idG(x)) in the slice category [G � G(x)]. Using the functors F, TG and
LG, we get the diagram

F (x1) F (x2)

F (x) TG(x1) TG(x2)

L(G(x)) T (G(x))

εx
τx T (f1)

γG(x)

F (k)

τx1 τx2

T (f2)

TG(k)

where the right hand square and triangle commute because τ is a natural transformation
and T is a functor, respectively. This then allows us to use the colimit property ofL(G(x)),
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2.2 Pointwise Kan extensions

giving us a unique morphism γG(x). The last observation that γG(x) = (γG)x finishes the
proof.

Proposition 2.7. Let X ,Y , C be small categories, let C admit colimits, and let X G−→ Y
be a functor. Then there is a left Kan extension functor CX LK−−→ CY , given by LK(F ) =

LKGF , which is left adjoint to CY G∗−→ CX , given by G∗(T ) = TG.

CX CY
LK

G∗

Proof. We need to show that

HomCY (LKGF, T )
φ−→ HomCX (F, TG), γ 7−→ (Gγ)α

is a bijection, where α is the natural transformation associated to LKGF . Let the inverse
of φ, say ψ, be such that it sends a natural transformation F τ−→ TG to some LKGF

γ̂−→ T ,
where γ̂ is constructed as the γ from the previous theorem. That is, such that τ = (Gγ̂)α

and γ̂ is unique such that T (f)τx = γ̂yLKGF (f)αx for all (x, f) ∈ [G � y]. It remains
to show φ and ψ are inverses. The first direction is the easiest as φ(ψ(τ)) = φ(γ̂) =

(γ̂G)α = τ where the last equality is by definition of γ̂.

Conversely, ψ(φ(γ)) = ψ((γG)α) = γ̂ s.t. (γG)α = (γ̂G)α. If γ also is such that
T (f)((γG)α)x = γyLKGF (f)αx then we are done. Since γG(x) = γGx, it is the same as
asking the following to commute, which it does because γ is a natural transformation.

F (x)

LKGF (G(x)) TG(x)

LKGF (y) T (y)

αx

T (f)LKGF (f)

γG(x)

γy

18



2.2 Pointwise Kan extensions

Example 2.8. For Y = 1 and the projection functor X → π, the previous proposition
implies an adjunction

CX C

LK

π∗

where LK sends a diagram in C with shape X to LKπF which, as we saw in the previous
section, is the colimit of F . Hence, the left adjoint of π∗ is the colimit functor.

In later chapters, whenever the reader sees πL, the notation for the left adjoint of π∗, it it
safe to think of it as a variation the colimit functor. Likewise, πR can be thought of as a
variation of a limit functor.
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3 Derivators

In order to define a derivator, we first introduce pre-derivators, Beck-Chevalley transform-
ations, and in particular those transformations induced by slice squares. After defining the
opposite derivator, we investigate some properties of general derivators. We also construct
the (partial) underlying diagram functor, an essential piece to proving that derivators in-
duce categories that admit products and coproducts. Lastly, we prove that it makes sense
to define the shifted derivator.

3.1 Pre-derivators and Beck-Chevalley transformations

Definition 3.1. A pre-derivator D is a 2-functor

D : Catop → CAT

Before we give examples of some pre-derivators, we introduce some notation which will
be used throughout this thesis. Given a morphism x

h−→ y in some small category X ,
there are two induced functors x, y : 1 → X identifying their respective object, and a
natural transformation h between them. Applying the pre-derivator results in the func-
tors D(x),D(y) and the natural transformation D(h), which we denote by x∗, y∗ and h∗,
respectively.

1 X D(X ) D(1)

x∗

y

x

y∗

h h∗

For a f−→ b ∈ D(X ) we denote x∗(a)
x∗(f)−−−→ x∗(b) as ax

fx−→ bx, and likewise for y∗. Using
h pointwise between x∗ and y∗ results in the following commuting square.

ax bx

ay by

h∗b

fx

h∗a

fy

These are all objects in D(1), which often is called the underlying category. Given an
object a in X , we evaluate a pointwise in the underlying category by using the functors
D(X )

x∗−→ D(1) for x ∈ X . If we do this for all x ∈ X , we get the underlying shape of a.
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3.1 Pre-derivators and Beck-Chevalley transformations

We are already in a position to construct the underlying diagram functor diaX , which sends
an object in D(X ) to its underlying diagram or shape in D(1).

Lemma 3.2. Let D be a pre-derivator and X a small category. For a f−→ b ∈ D(X ) and
x

h−→ y ∈ X as above

i) X diaX (a)−−−−→ D(1) given by x 7→ ax and h 7→ h∗a is a functor.

ii) diaX (a)
diaX (f)−−−−→ diaX (b), given by f component-wise, is a natural transformation.

iii) D(X )
diaX−−→ D(1)X with a 7→ diaX (a), f 7→ diaX (f) is a functor.

Proof. i) For x h−→ y
i−→ z and x idx−→ x ∈ X we have that

diaX (a)(ih) = (ih)∗a = (i)∗a(h)∗a = diaX (a)(i)diaX (a)(h)

and
diaX (a)(idx) = (idx)

∗
a = (idx∗)a = idax = iddiaX (a)(x)

using that D is a 2-functor, and the definition of an identity transformation.

ii) In the following square, fx and fy are the components of diaX (f).

ax bx

ay by

h∗a h∗b

fx

fy

As h∗ is a natural transformation, the square commutes, and diaX (f) is therefore a
natural transformation.

iii) For a f−→ b
g−→ c and a ida−→ a ∈ D(X ), we look at the natural transformations

component-wise

(diaX (gf))x = (gf)x = (g)x(f)x = (diaX (g)diaX (f))x

and
(diaX (ida))x = (ida)x = x∗(ida) = idx∗(a) = idax = (IddiaX (a))x

In these steps we are using that x∗ is a functor.
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3.1 Pre-derivators and Beck-Chevalley transformations

Now that we are more familiar with the notation that will be used for functors and natural
transformations induced by a derivator, namely −∗, we look at some examples of pre-
derivators.

Example 3.3. Let C be a category which admits (co)limits. We define the represented
pre-derivator for a small category X by Drep(X ) := CX . Given a functor X G−→ Y
between small categories, the represented pre-derivator induces the pre-composition func-
tor CY G∗−→ CX , as seen in proposition 2.7, and is indeed a pre-derivator.

X Y CY CX
G G∗

H H∗

α α∗

Example 3.4. What follows is a rough introduction to another example of a pre-derivator.
For more details, see [Gro19] and [Kra21].

Given an abelian category A, one can form the category of chain complexes, C(A). Ob-
jects are chain complexes . . . dn−1

−−−→ An
dn−→ An+1 dn+1

−−−→ . . . for Ai ∈ A and such that
dn ◦dn−1 = 0. A morphism between two complexes A φ−→ B consists of levelwise morph-
isms between them Ai

φi−→ Bi such that the obvious squares commute. φ is said to be a
quasi-isomorphism if the induced map in homologyHnφ : HnA→ HnB is an isomorph-
ism for all n ∈ Z.

Given a small category X , we can also form the category C(A)X . As the objects now
are functors, a quasi-isomorphism in this category is a natural transformation that is level-
wise a quasi-isomorphism. We denote the class of quasi-isomorphisms in C(A)X byWX

A .
Localisation of a category C with respect to a class of morphisms in C, say S is a way of
creating a category C[S−1] where all the morphisms in S are invertible. This leads to the
definition of the derivator of (chain complexes in) A.

DA(X ) := C(A)X [(WX
A )−1]

This is the derived category D(A). For a functor X G−→ Y , there is a pre-composition
functor C(A)Y

G∗−→ C(A)X as seen in the previous example. This will preserve quasi-
isomorphisms and in turn induce a functor

DA(Y) = C(A)Y [(WY
A )−1]

DA(G)−−−−→ C(A)X [(WX
A )−1] = DA(X )

Definition 3.5. Let D be a pre-derivator and X G−→ Y a functor. We say D admits a left
Kan extension along G if there exists a left adjoint, GL, to the induced restriction functor
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3.1 Pre-derivators and Beck-Chevalley transformations

G∗. Likewise, D admits a right Kan extension along G if there exists a right adjoint, GR,
to G∗.

D(X ) D(Y) D(Y) D(X )

G∗

GL G∗

GR

Remark 3.6. This definition is not directly connected with the definitions of Kan ex-
tensions. However, recalling proposition 2.7 it is clear that the represented pre-derivator
admits both left and right Kan extensions, and that these are precisely the Kan extensions
from section 2.1.

We are almost ready to define a derivator. Before we do so, consider a pre-derivator D and
some small categories X1,X2,Y1,Y2. Applying the pre-derivator to the square on the left
induces the square on the right.

X1 X2 D(X1) D(X2)

Y1 Y2 D(Y1) D(Y2)

F

G

H1 H2

F ∗

G∗

H∗1 H∗2
α∗α

If we assume D admits left Kan extensions along its functors, it results in the diagram

D(Y1) D(X1) D(X2)

D(Y1) D(Y2) D(X2)

F ∗

G∗

H∗1 H∗2
Id

HL
2

Id

HL
1

α∗
ε

η

where η and ε are the counit and unit of they respective adjunctions. We can then compose
η, α∗ and ε to get the following composition and simplified square
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3.1 Pre-derivators and Beck-Chevalley transformations

D(X1) D(X2)

HL
1 F
∗ G∗HL

2

D(Y1) D(Y2)

F ∗

G∗

HL
1 HL

2

α!(ε◦G∗HL
2 )(HL

1 ◦α∗◦HL
2 )(HL

1 F
∗◦η)

This is called the Beck-Chevalley transformation associated to α. In order to avoid writing
the long composition in the future, it is denoted by α!. The dual construction begins with
the following square on the left, and its associated Beck-Chevalley transformation is on
the right.

X1 X2 D(X1) D(X2)

Y1 Y2 D(Y1) D(Y2)

F

G

H1 H2

F ∗

HR
1 HR

2

G∗

β!β

We will now take a look at a special case of the Beck-Chevalley transformations, which
will show up in the definition of a derivator. We look at the following diagrams, which
will be referred to as a slice squares.

[G � y] X [y � G] X

1 Y 1 Y

π G

ρy

y

α

y

Gπ

ρy

β

Consider the left slice square. For the functor X G−→ Y , we get the slice category [G � y]

and its corresponding projection functor ρy. The functor y identifies the objects y in Y ,
and π is the canonical projection functor. We should also notice that for an object (x, f)

in [G � y] we get α(x,f) = f , which is the reason α might be denoted as the morphism f .

If D admits left and right Kan extensions, it results in the corresponding Beck-Chevalley
transformations α! and β!.
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3.1 Pre-derivators and Beck-Chevalley transformations

D([G � y]) D(X ) D([y � G]) D(X )

D(1) D(Y) D(1) D(Y)

ρ∗y

y∗

πL
α!

GL πR GR

ρ∗y

y∗

β!

Asking that the Beck-Chevalley transformations associated to slice squares are natural
isomorphisms, is a way of integrating pointwise Kan extensions into derivators.

25



3.2 Derivators

3.2 Derivators

Definition 3.7. Let X1,X2,X ,Y be small categories, and y ∈ Y . A pre-derivator D is a
derivator if it satisfies the following

Der i) The inclusionsX1 → X1tX2 andX2 → X1tX2 induce an equivalence of categories
D(X1 t X2)→ D(X1)× D(X2), and D(∅) is equivalent to 1.

Der ii) A morphism a
f−→ b ∈ D(X ) is an isomorphism if and only if ax

fx−→ bx is an
isomorphism in D(1) for all x ∈ X .

Der iii) Each functor X G−→ Y induces a restriction functor D(Y)
G∗−→ D(X ) which admits

left and right Kan extensions GL and GR.

D(X ) adj D(Y) D(Y) adj D(X )

G∗

GL

GR

G∗

Der iv) The Beck-Chevalley transformations induced by slice squares are isomorphisms.

πLρ∗y y∗GL y∗GR πRρ∗y
isoiso

Remark 3.8. We will use the notation Der i) when referring to the first derivator axiom,
and similarly for the other axioms.

Example 3.9. It is now possible to see that the previous chapter was concerned with show-
ing that the represented pre-derivator, Drep, actually is a derivator. Der i) is satisfied be-
cause CX1tX2 ∼= CX1 × CX2 and C∅ ∼= 1. Der ii) is true by definition of a natural iso-
morphism. Der iii) is satisfied as mentioned in remark 3.6. Der iv) also holds if we take
a closer look at the Beck-Chevalley transformation given when applying the represented
pre-derivator to a slice square.

C[G�y] CX

C CY

GLπL

ρ∗y

y∗

26



3.2 Derivators

Recall that πL is the colimit, as seen in example 2.8. For a functor F ∈ CX we have
that πLρ∗y(F ) = colimFρy and y∗GL(F ) = LKGF (y). In section 2.2 we defined a
map L such that L(y) = colimFρy and then showed that L actually was the left Kan
extension LKGF . Hence the Beck-Chevalley transformation πLρ∗y → y∗GL is a natural
transformation. The arguments are dual for the other transformation, meaning Der iv) is
satisfied. The conclusion is that the represented pre-derivator D(X ) = CX is a derivator.

Example 3.10. With some restriction on A, the derivator of A is in fact a derivator. In
addition to the mentioned sources, [Bra21] provides a detailed explanation.

Definition 3.11. The opposite derivator, Dop, is defined as Dop(X ) = (D(X op))op for
some small category X .

Proposition 3.12. D is a derivator if and only if Dop is a derivator.

Proof. Let X1,X2,X and Y be small categories, a f−→ b a morphism in Dop(X ), and fix
y ∈ Y .
(⇒) Assume D is a derivator.
[Der i)]

Dop(X1 t X2) = (D(X1 t X2)op)op (by def)

= (D(X op
1 t X

op
2 ))op

= (D(X op
1 ) u D(X op

2 )op (D derivator)

= (D(X op
1 ))op u (D(X op

2 ))op

= Dop(X1) u Dop(X2) (by def)

and Dop(∅) = (D(∅op))op = (D(∅))op = 1
op = 1
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3.2 Derivators

[Der ii)]

a
f−→ b isomorphism in Dop(X )

⇐⇒ a
f−→ b isomorphism in D(X op)op

⇐⇒ a
fop←−− b isomorphism in D(X op)

⇐⇒ ax
fopx←−− bx isomorphism in D(1) for all x ∈ X op

⇐⇒ ax
fx−→ bx isomorphism in D(1)op for all x ∈ X op

⇐⇒ ax
fx−→ bx isomorphism in Dop(1) for all x ∈ X

The last step is true because the objects in X and X op are the same.

[Der iii)]
Given X G−→ Y we want to define the induced functor Dop(Y)

Dop(G)−−−−→ Dop(X ) such that it
admits left and right Kan extensions, i.e. left and right adjoints. We have thatX op Gop

−−→ Yop

induces D(Yop) (Gop)∗−−−−→ D(X op) with left adjoint (Gop)L and right adjoint (Gop)R. Taking
the opposite functor results in

(D(Yop))op ((Gop)∗)op−−−−−−→ (D(X op))op

with left adjoint ((Gop)R)op and right adjoint ((Gop)L)op. Hence, Dop(G) = ((Gop)∗)op

with left adjoint (Dop(G))L = ((Gop)R)op and right adjoint (Dop(G))R = ((Gop)L)op.

[Der iv)]
Given the slice square on the left, we want to show that the induced Beck-Chevalley trans-
formation, α!, is a natural isomorphism.

[G � y] X Dop([G � y]) Dop(X )

1 Y Dop(1) Dop(Y)

(Dop(π))L (Dop(G))L

Dop(ρy)

Dop(y)

α!

π

ρy

G

y

α (3.1)

Taking the opposite of the slice square induces the Beck-Chevalley transformation (αop)!.
Because [G � y]op ∼= [y � Gop], the induced (αop)! is a natural isomorphism by Der iv).
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3.2 Derivators

[G � y]op X op D([G � y]op) D(X op)

1
op Yop D(1op) D(Yop)

Gop

yop

ρopy (ρopy )∗

(yop)∗

πop (πop)R (Gop)R
(αop)!αop

Taking the opposite of the right square gives exactly the right square in diagram 3.1 using
the definitions from [Der iii)], and ((αop)!)op = α! is a natural isomorphism. The other
Beck-Chevalley transformation is dual.

(⇐) We have that (Dop)op(X ) = (Dop(X op))op = ((D((X op)op))op)op = D(X ). We as-
sume Dop is a derivator and see that its opposite, D, must also be a derivator by (⇒).

Lemma 3.13. The two diagrams

X1 X2 X3 X1 X3

Y1 Y2 Y3 Y1 Y3

F1 F2

G1 G2

H1 H2 H3
α β

H1 H3

F2F1

G2G1

(G2α)|(βF1)

induce three different Beck-Chevalley transformations, α!, β! and ((G2α)|(βF1))!, where
the two first can be vertically composed to induce the third. In other words, that

(G∗1β
!)|(α!F ∗2 ) = ((G2α)|(βF1))!

Proof. It is possible, but perhaps not insightful to brute force this proof. Instead, we use
diagrams and notice (G∗1β

!)|(α!F ∗2 ) is the same as composing all of the natural transform-
ations in the diagram

D(Y1) D(X1) D(X2)

D(Y1) D(Y2) D(X2) D(X3)

D(Y2) D(Y3) D(X3)

F ∗1

G∗1

H∗1 H∗2

H∗3

F ∗2

G∗2

H∗2

HL
2

Id

Id

HL
1

Id

Id

HL
3

α∗

β∗

η

ε

ε

η

which, by using the triangle identities of adjoints (definition 1.11), is the same as
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3.2 Derivators

D(Y1) D(X1) D(X2) D(X3)

D(Y1) D(Y2) D(Y3) D(X3)

F ∗1

G∗1

H∗1 H∗2 H∗3

HL
1

Id

Id

HL
3

α∗

F ∗2

G∗2

β∗
ε

η

which is the same as the diagram

D(Y1) D(X1) D(X2) D(X3)

D(Y1) D(Y2) D(Y3) D(X3)

F ∗1

G∗1

H∗1 H∗3

HL
1

Id

Id

HL
3

F ∗2

G∗2

((G2α)|(βF1))∗
ε

η

because ((α∗G∗2)|(F ∗1 β∗)) = ((G2α)|(βF1))∗. Realising that the last diagram is the defin-
ition of ((G2α)|(βF1))! completes the proof.

This result implies that if two of the three transformations α!, β! and ((G2α)|(βF1))! are
natural isomorphisms, then the last one must also be a natural isomorphism.

Lemma 3.14. Let (G,H) : X � Y be a pair of adjoint functors. Given the squares

X Y Y X

1 1 1 1

G H

πY πY πXπX

IdId

αβ

the Beck-Chevalley transformations β! : πRXG
∗ → Id∗πRY and α! : πLYH

∗ → Id∗πLX are
natural isomorphisms.

Proof. We prove that α! is a natural isomorphism. Since (G,H) is an adjoint pair, by
observation 1.22, (H∗, G∗) is also an adjoint pair. This implies H∗ ∼= GL and allows us
to see that πLYH∗ = πLYG

L = (πYG)L = (IdπX )L = πLX by the left commuting square in
the diagram. Since D(−) = −∗ is a functor, it means Id∗ = Id, hence Id∗πLX = πLX .

Lemma 3.15. If X G−→ Y is a functor, then GL and GR are fully faithful.

Proof. We prove the result for GL. The Beck-Chevalley transformation induced by the
following left square is the unit of the adjunction (GL, G∗), namely Id η−→ GLG∗.
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3.2 Derivators

X X D(X ) D(X )

X Y D(X ) D(†)

G

Id

G

Id
Id

Id∗

IdL

G∗

GL
η=Id!

Therefore, if η is an isomorphism, we are done by lemma 1.14. We paste a slice square to
the left of our original square and obtain the diagram

[Id � x] X X

1 X Y

G

Id

G

Id
Id

ρx

π

x

f

By Der iv) we know that f ! is an isomorphism, and by lemma 3.13 we know that if the
outer square induces an isomorphism, we are done. In aid of this, consider the following
diagram where the outer square agrees with the outer square of the previous diagram.

[Id � x] [G � G(x)] X

1 1 Y

G

ρG(x)

G◦x

π
g

Ĝ

π

Id

id

Notice that Ĝ, given by sending (x, f) to (x,G(f)), is an equivalence. This is true because
Ĝ is dense, and G is fully faithful, so Hom(x, x′) ∼= Hom(G(x), G(x′)) meaning that Ĝ
is also fully faithful.

As Ĝ is an equivalence, the Beck-Chevalley transformation of the left diagram, id!, is an
isomorphism by lemma 3.14. In addition, g! is an isomorphism by Der iv), so the Beck-
Chevalley transformation of the outer diagram is an isomorphism by lemma 3.13.
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3.3 D(X ) admits products and coproducts

3.3 D(X ) admits products and coproducts

The underlying diagram functor used functors induced by 1
x−→ X for x in X . In the

next lemma, we want to construct the partial underlying diagram functor, and instead use
functors induced by

1×X k×IdX−−−−→ K×X

Lemma 3.16. D is a derivator and K,X are small categories. Let a f−→ b be a morphism
in D(K ×X ), and let k1

h−→ k2 be a morphism in K.

i) K
diaK,X (a)
−−−−−→ D(X ) given by k 7→ (k × IdX )∗(a) and h 7→ h∗a is a functor.

ii) diaK,X (a)
diaK,X (f)
−−−−−→ diaK,X (b), given by f component-wise, is a natural transform-

ation.

iii) D(K ×X )
diaK,X−−−−→ D(X )K with a 7→ diaK,X (a), f 7→ diaK,X (f) is a functor.

Proof. Analogous to lemma 3.2.

Definition 3.17. The diagonal functor ∆K : X → XK sends an object A in X to the
constant diagram of shape K in X .

X XK

A K X

k A

∆K

Consider diaK : D(X )→ D(X )K. Finding left and right adjoints to ∆K is something we
want to do in general, as it would mean that D(X ) admitted colimits and limits of shapeK.
There is a case in particular when these adjoints exist. We will use diaK,X and the functor
D(X )

π∗K−→ D(K ×X ) induced by K ×X πK−→ X .

Lemma 3.18. Let A ∈ D(X ).

i) The composition D(X )
π∗K−→ D(K ×X )

diaK,X−−−−→ D(X )K is equal to ∆K.

ii) If diaK,X is an equivalence, then ∆K admits left and right adjoints.
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3.3 D(X ) admits products and coproducts

Proof. i) Writing out what the composition does on objects, we get the following dia-
gram.

D(X ) D(K ×X ) D(X )K

A π∗K(A) K D(X )

k (k × idX )∗(π∗K(A))

diaK,X (π∗K(A))

π∗K diaK,X

If we observe that πK(k × idX ) = idX , it is clear that the composition sends A to
the constant diagram of shape K in D(X ).

ii) We know that π∗K admits adjoints by Der iii), and if diaK,X is an equivalence it will
also admit adjoints. By i), this means that the diagonal functor diaK,X ◦ π∗K = ∆K

will admit adjoints.

Theorem 3.19. D is a derivator. Given a small category X , the category D(X ) admits
products and coproducts.

Proof. Let S be a discrete category, which can also be considered as a set by ignoring the
identity morphisms. By lemma 3.18, if we letK = S , it is enough to show that diaS,X is an
equivalence. This is true by the following commuting square where the three equivalences
come from Der i), and the two known facts S × X ∼= ts∈SXs and us∈SXs ∼= X S .

D(S × X ) D(X )S

D(ts∈SXs) us∈SD(X )s

diaS,X

∼=∼=

∼=

Corollary 3.20. The category D(X ) admits initial and terminal objects.

Proof. Similarly to the proof of the theorem, by settingK = ∅ in lemma 3.18 the resulting
functor dia∅,X = Id1 is an equivalence.

Definition 3.21. LetK and X be small categories. Then the shifted derivator DK is given
by

DK(X ) = D(K ×X )
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3.3 D(X ) admits products and coproducts

Proposition 3.22. Let D be a pre-derivator and K ∈ Cat. Then D is a derivator if and
only if DK is a derivator.

Proof. (⇐) If DK is a derivator, then in particular D1 ∼= D is a derivator.
(⇒) We assume D is a derivator.

[Der i)]

DK(X1 t X2) = D(K × (X1 t X2))

= D(K ×X1 t K × X2)

= D(K ×X1)× D(K ×X2)

= DK(X1)× DK(X2)

and

DK(∅) = D(K × ∅) = D(∅) = 1

[Der ii)] Let f ∈ DK(X ). Consider the commuting triangle.

D(K ×X ) D(K)

D(1)

(k,x)∗ k∗

inclusion∗

f is an isomorphism in D(K × X ) if and only if f(k,x) is an isomorphism in D(1)

for all (k, x) ∈ K×X if and only if fx is an isomorphism in D(K) = DK(1) for all
x ∈ X .

[Der iii)] A functor X G−→ Y induces DK(Y) = D(K × Y)
idK×G−−−−→ D(K × X ) = DK(X ) ,

which admits adjoints because D is a derivator.

[Der iv)] The goal is to show that (idK × f)! from the following diagram is a natural iso-
morphism.

[G � y] X D(K × [G � y]) D(K ×X )

1 Y D(K × 1) D(K × Y)

π G

ρy

y

f

(idK×ρy)∗

(idK×G)L(idK×π)L

(idK×y)∗

(idK×f)!

The transformation (idK×f)! is induced by idK×f in the following diagram where
we have pasted a slice square to the left.
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3.3 D(X ) admits products and coproducts

[(idK × π) � k] K × [G � y] K ×X

1 K × 1 K × Y

π

idK×ρy

idK×GidK×π

idK×y

ρk

k

idK×f

By lemma 3.13, it is enough to show that the left and outer square induce Beck-
Chevalley isomorphisms. The left square is by construction a slice square, so by
Der iv) it will induce an isomorphism. Tracing what the functors do to objects, it
can be seen that the outer square is the same as the slice square

[(idK ×G) � (k, y)] K ×X

1 K × Y

π idK×G

ρk,y

(k,y)

which also will induce an isomorphism by Der iv).
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4 Pointed derivators

In this chapter we introduce the notion of a pointed derivator, requiring a zero object in the
underlying category. This enables us to prove lemma 4.9, which we think of as an extension
by zero. At the end of section 4.1 we highlight a subtle observation, which will be used
liberally throughout. We define cartesian and cocartesian squares in order to introduce the
fiber, cone, suspension and loop functors in section 4.2. These will be revisited in theorem
6.9, the main result of the thesis. The last section shows how the (co)cartesian squares can
be calculated pointwise.

4.1 Extension by zero

Definition 4.1. A derivator D is pointed if the underlying category D(1) has a zero object,
that is, an object which is both initial and terminal.

Example 4.2. The represented derivator is pointed if and only if C admits a zero object,
as Drep(1) ∼= C is the underlying category.

Example 4.3. The homotopy derivator DA is pointed due to the fact that A is abelian
([Gro19] example 3.18).

Lemma 4.4. Let D be a pointed derivator and K a small category. Then,

i) D is pointed if and only if Dop is pointed.

ii) D is pointed if and only if DK is pointed.

Proof. i) (⇒) If D is pointed, then D(1) has a zero object, hence (D(1))op has a zero
object. Since Dop(1) = (D(1op))op = (D(1))op we are done.
(⇐) We assume Dop is pointed, and by (⇒) its opposite must be pointed, which is
(Dop)op = D.

ii) (⇒) By corollary 3.20 we know DK(1) ∼= D(K) has an initial and terminal object,
say i and t. The morphism between them, i f−→ t, is an isomorphism in D(K) if and
only if ik

fk−→ tk is an isomorphism in D(1) for all k ∈ K. As k∗ is both left and
right adjoint, we know by observation 1.12 that ik and tk are initial and terminal
in D(1), respectively. In addition, D is pointed, hence must both ik and tk be the
zero element in D(1). This implies fk is an isomorphism for all k and hence f is an
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4.1 Extension by zero

isomorphism.
(⇐) If DK is pointed for all K ∈ Cat, then in particular D1 ∼= D is pointed.

Lemma 4.5. Let X G−→ Y be a functor. Then G∗, GL and GR preserve zero.

Proof. Let x ∈ X and consider the induced commuting triangle on the right.

X Y D(X ) D(Y)

1 D(1)

G(x)x

G G∗

G(x)∗x∗

D(1) has a zero object by definition, and by lemma 4.4 ii) both D(Y) and D(X ) also have
zero objects. G(x)∗ and x∗ are both left and right adjoints, implying G(x)∗(0Y) = 01 and
x∗(0X ) = 01, by observation 1.12.

Consider the unique morphism G∗(0Y) → 0X . This is an isomorphism if and only if
x∗G∗(0Y)→ x∗0X is an isomorphism in D(1), which is true because by the two equations
above. Hence G∗ preserves zero, and again by observation 1.12 GL and GR preserve
zero.

Lemma 4.6. Let X ,Y be small categories and X G−→ Y a fully faithful functor. For
B ∈ D(Y), then

i) the following are equivalent

1) B ∈ essIm(GR).

2) the adjunction unit Id η−→ GRG∗ induces an isomorphism B → GRG∗(B).

3) the adjunction unit Id η−→ GRG∗ induces an isomorphism By → GRG∗(B)y

for all y ∈ Y −G(X ).

ii) the following are equivalent

1) B ∈ essIm(GL).

2) the adjunction counit GLG∗
ε−→ Id induces an isomorphism GLG∗(B)→ B.

3) the adjunction counitGLG∗
ε−→ Id induces an isomorphismGLG∗(B)y → By

for all y ∈ Y −G(X ).
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4.1 Extension by zero

Proof. We prove ii). By lemma 3.15 we have that GL is fully faithful.
[1) ⇐⇒ 2)]

B ∈ essIm(GL)

⇐⇒ B ∼= GL(A) for some A ∈ D(X )

⇐⇒ G∗(B) ∼= G∗GL(A) ∼= A using lemma 1.14

⇐⇒ GLG∗(B) ∼= GL(A) ∼= B

[2) ⇐⇒ 3)] By Der ii) it is clear that 2) ⇒ 3). It remains to show that if y ∈ G(X )

then we have thatGLG∗(B)y → By is an isomorphism. Therefore, let y = G(x) for some
x ∈ X , then

By
∼= G∗(B)x ∼= G∗GLG∗(B)x ∼= GLG∗(B)y

where the first and last steps are given by the commuting triangle

D(X ) D(Y)

D(1)

G∗

x∗ y∗

and the middle step is by lemma 1.14.

It is time to introduce some useful categories. Let [1] be the category with two objects and
a morphism between them, 0→ 1.This is often called the arrow category. We denote by
� the category [1]× [1] which is the following poset considered as a category.

(0, 0) (1, 0)

(0, 1) (1, 1)

In addition, there are full subcategories and , together with the canonical inclusions
ip−−−−→ � and iy−−−−→ �.

(0, 0) (1, 0) (1, 0)

(0, 1) (0, 1) (1, 1)
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4.1 Extension by zero

Definition 4.7. Let X G−→ Y be a fully faithful, then

i) G is a sieve if whenever there is a morphism y → G(x) it implies y ∈ G(X ).

ii) G is a cosieve if whenever there is a morphism G(x)→ y it implies y ∈ G(X ).

There is an immediate example of a sieve and cosieve.

Example 4.8. The functor ip−−−−→ � is a sieve, and iy−−−−→ � is a cosieve.

Lemma 4.9. D is a pointed derivator and X G−→ Y is a functor.

i) If G is a sieve, then GR is fully faithful and B ∈ D(Y) lies in the essential image of
GR if and only if By

∼= 0 for all y ∈ Y −G(X ).

ii) If G is a cosieve, then GL is fully faithful and B ∈ D(Y) lies in the essential image
of GL if and only if By

∼= 0 for all y ∈ Y −G(X ).

Proof. We prove ii). Since G is a cosieve it is fully faithful, and by lemma 3.15, GL is
also fully faithful. By the previous lemma we need to show that GLG∗(B)y

εy−→ By is an
isomorphism for all y ∈ Y − G(X ) if and only if By

∼= 0 for all y ∈ Y − G(X ). In aid
of this, let y ∈ Y −G(X ). In this case the slice category [G � y] is the empty set and by
Der iv) we have y∗GLG∗(B) ∼= πLρ∗yG

∗(B)

D(∅) D(X )

D(1) D(Y)

ρ∗y

y∗

πL GL

giving us that
By
∼= GLG∗(B)y ∼= πLρ∗yG

∗(B) ∼= πL(0) ∼= 0

where the last step by the fact that adjoints preserve zero (lemma 4.5).

Remark 4.10. Let D(Y) be the full subcategory of D(Y) such that all objects are in the
essential image ofGR. ThenGR will be dense and fully faithful, and hence an equivalence.

D(X ) equiv D(Y)

G∗

GR
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4.1 Extension by zero

Example 4.11. Let [1]
h−→ be the functor identifying the horizontal morphism and let

A ∈ D([1]) with underlying shape a b−→ f . Then h is a sieve and by lemma 4.9 we have
that hR(A) has the following underlying shape. This is the reason it might be appropriate
to think of the lemma as an extension by zero.

a b a b

0

ff hR

In the example, we see that hR(A)(0,0)
∼= A(0,0) and hR(A)(1,0)

∼= A(1,0). The subtle reason
for this is mainly Der iv). Consider the following where we have applied the derivator on
a slice diagram in order to understand (0, 0)∗hR(A).

D([(0, 0) � h]) D([1])

D(1) D( )

hR

(0,0)∗

πR

ρ∗
(0,0)

∼=

The slice category [(0, 0) � h] has the initial object ((0, 0), id). By the dual of observation
1.13, and observation 1.22, (π∗, (0, 0))∗ is an adjoint pair, meaning πR ∼= (0, 0)∗. In
addition, [(0, 0) � h] ∼= [1], hence ρ(0,0)

∼= Id. This implies

(0, 0)∗hR(A) ∼= πRρ(0,0)(A) ∼= (0, 0)∗ρ(0,0)(A) ∼= (0, 0)∗(A)

The case for (1, 0) is simpler as the slice category will be equivalent to 1. These arguments
hold for many similar cases and will be used implicitly multiple times throughout the
thesis.
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4.2 Fiber, cone, suspension and loop

4.2 Fiber, cone, suspension and loop

Definition 4.12. Let D be a derivator and B ∈ D(�).

i) B is said to be cocartesian if B is in the essential image of iLp .

ii) B is said to be cartesian if B is in the essential image of iRy .

Consider the following compositions where h and v identify the horizontal and vertical
morphisms, respectively.

[1]
h−−−−→ ip−−−−→ � v←−−−− [1]

[1]
v−−−−→ iy−−−−→ � h←−−−− [1]

Definition 4.13. D is a pointed derivator. We define

i) the cone functor as the composition

Cone : D([1])
hR−−−−−→ D( )

iLp−−−−−→ D(�)
v∗−−−−−→ D([1])

ii) the fiber functor as the composition

Fiber : D([1])
vL−−−−−→ D( )

iRy−−−−−→ D(�)
h∗−−−−−→ D([1])

As seen in the previous example, h is a sieve and hR is therefore an extension by zero. Let
A ∈ D([1]) have the underlying shape a f−→ b. Then iLp hR(A) is cocartesian by definition
and will have an underlying shape of

a b

0 C(f)

cone(f)

f

where C(f) is notation for iLp hR(A)(1,1). Likewise, the squares in D(�) that lie in the
essential image of iRy vL will be cartesian and have an underlying shape of

F (f) a

0 b

f

fiber(f)
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4.2 Fiber, cone, suspension and loop

Example 4.14. The cone functor is a generalisation of a cokernel. Let D = Drep and let
A ∈ D([1]) = C[1] have the underlying shape a f−→ b as above. We know hR(A) is the
extension by zero and want to see what iLp does to this diagram, in particular at the corner
(1, 1). Consider the following slice square and the induced square using Drep.

[ip � (1, 1)]  C[ip�(1,1)] Cp

1 � C C�
πL iLp

Id

(1,1)∗

π ip

(1,1)

ρ(1,1)

Here we are using that [ip � (1, 1)] ∼= . So for hR(A) in Cp, Der iv) gives us that
(1, 1)∗iLp (A) ∼= πL(A). As we saw in example 2.8, this is the colimit of A. And the
colimit of the diagram

a b

0

f

is the cokernel of f . Similarly, the fiber is a generalisation of the kernel.

Lemma 4.15. D is a pointed derivator. Then there is an adjoint pair

(cone, fiber) : D([1])� D([1])

Proof. We consider the full subcategories D( ), D(�) and D( ), all consisting of objects
B such that B(0,1)

∼= 0. By construction of D( ) and D( ), hR and vL will be dense and
therefore equivalences (similar to remark 4.10). The two inner pairs of functors are adjoint
by definition.

D([1]) D( ) D(�) D( ) D([1])

hR

h∗ i∗p

iLp

i∗y

iRy

v∗

vL
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4.2 Fiber, cone, suspension and loop

Consider the following composition where (0, 0) and (1, 1) identify the respective corners.

1
(0,0)−−−−−−→ ip−−−−→ � (1,1)←−−−−−− 1

1
(1,1)−−−−−−→ iy−−−−→ � (0,0)←−−−−−− 1

Definition 4.16. D is a pointed derivator. We define

i) the suspension functor as the composition

Σ : D(1)
(0,0)R−−−−−−−→ D( )

iLp−−−−−→ D(�)
(1,1)∗−−−−−−−→ D(1)

ii) the loop functor as the composition

Ω : D(1)
(1,1)L−−−−−−−→ D( )

iRy−−−−−→ D(�)
(0,0)∗−−−−−−−→ D(1)

Again, we notice that (0, 0) is a sieve and therefore (0, 0)R is an extension by zero. Any
A ∈ D(�) which is in the essential image of iLp (0, 0)R is cocartesian and will have an
underlying shape of

a 0

0 Σa

Likewise, there will be a cartesian square A ∈ D(�) with an underlying shape of

Ωa 0

0 a

Example 4.17. For the represented derivator, this is a special case of example 4.14, so Σa

is the cokernel of 0, namely 0. Hence, the functor Σ ∼= 0 : C → C.

Lemma 4.18. D is a pointed derivator. Then there is an adjoint pair

(Σ,Ω) : D(1)� D(1)

Proof. Analogous to lemma 4.15.
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4.3 Pointwise cartesian and cocartesian

4.3 Pointwise cartesian and cocartesian

This section aims to prove that if there is a (co)cartesian squareB in a category D(K×�),
then that is the same as the underlying pointwise squares Bk being (co)cartesian in D(�)

for all k ∈ K.

Lemma 4.19. Let D be a pointed derivator, 1 i−→ X is the functor identifying the initial
object i in X , and 1 0−→ [1] is a particular such functor.

i) B ∈ D(X ) is in the essential image of iL if and only if Bi
∼= Bx for all x ∈ X .

ii) Let [1] × 1
Id×0−−−−−−→ [1] × [1] ∼= � be the functor identifying the top horizontal

morphism, and let B ∈ D(�). Then B is in the essential image of (Id× 0)L if and
only if the vertical morphisms B(0,0) → B(0,1) and B(1,0) → B(1,1) are isomorph-
isms.

iii) Let B ∈ D(�). Assume B(0,0) → B(0,1) is an isomorphism. Then B is cocartesian
if and only if B(1,0) → B(1,1) is an isomorphism.

Proof. i) Notice first that the slice category [i � x] only has a single element because i
is initial. Hence the following square commutes using Der iv) and that [i � x] ∼= 1.

D(1) D(1)

D(1) D(X )

Id

Id

iL

x∗

This means B ∼= iLA for some A ∈ D(1) if and only if Bx
∼= x∗B ∼= x∗iLA ∼= A

for all x ∈ X including i. Hence, B ∈ essIm(iL) if and only if Bi
∼= A ∼= Bx.

ii) An important observation is that [1]× 1
Id×0−−−−−−→ [1]× [1] is the same functor as

D[1](1)
0L−−−−−→ D[1]([1]), where 0L is notation for (D[1](0))L. By i)B ∈ essIm(0L)

if and only if B0
∼= B1 ∈ D[1](1) ∼= D([1]). Looking at this in the underlying

categoryD(1) using the functors 0∗, 1∗ : D([1])→ D(1), this meansB(0,0) → B(0,1)

and B(1,0) → B(1,1) are isomorphisms.

iii) (⇐) We observe that [1]
Id×0−−−−−−→ � is the composition

[1]
h−−−−→ ip−−−−→ �
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4.3 Pointwise cartesian and cocartesian

where h identifies the horizontal morphism. By the assumption and ii) we have
that B ∈ essIm((Id × 0)L), implying B ∈ essIm((iph)L) which means B is
cocartesian.
(⇒) We assume B is cocartesian, so let B ∼= iLpA for some A ∈ D( ). If we can
show that A ∈ essIm(hL), then B ∈ essIm((Id× 0)L) and by ii) we will be done.
Showing that A ∈ essIm(hL) is the same as showing hLh∗A ∼= A by 4.6 ii). By
assumption, A(0,0)

∼= A(0,1), hence the underlying shape of A is

A(0,0) A(1,0)

A(0,1)

∼=

Using h∗ on A we restrict to the morphism A(0,0) → A(1,0), and using hL on h∗A
gives us exactly the same underlying shape as above, meaning hLh∗A ∼= A.

Above there are three subtle uses of the discussion after example 4.11. These are that
the left vertical morphism in A is an isomorphism because it is in B, that h∗A has
underlying shape A(0,0) → A(1,0), and that the left vertical morphism in hLh∗A is
an isomorphism. The confused reader is encouraged to write out the corresponding
slice categories and squares, and hopefully see that they reduce to similar cases as
the mentioned discussion.

Lemma 4.20. D is a derivator. Let X ,X ′,Y ,Y ′ be small categories, and let X U−→ X ′,
Y V−→ Y ′ be functors. Then, given the squares

Y × X Y ′ ×X Y × X Y ′ ×X

Y × X ′ Y ′ ×X ′ Y × X ′ Y ′ ×X ′

V×IdX

V×IdX′

IdY×U IdY′×U
Id1

V×IdX

IdY×U IdY′×U

V×IdX′

Id2

the induced Beck-Chevalley transformations, Id!
1 and Id!

2, are isomorphisms.

D(Y × X ) D(Y ′ ×X ) D(Y × X ) D(Y ′ ×X )

D(Y × X ′) D(Y ′ ×X ′) D(Y × X ′) D(Y ′ ×X ′)

(V×IdX )∗

(V×IdX′ )∗

(IdY×U)L (IdY′×U)L
Id!1

(IdY×U)R

(V×IdX )∗

(IdY′×U)R

(V×IdX′ )∗

Id!2
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4.3 Pointwise cartesian and cocartesian

Proof. We show that Id! is an isomorphism. Consider the following diagram.

Y × [U � x′] Y × X Y ′ ×X

Y × 1 Y × X ′ Y ′ ×X ′

V×IdX

V×IdX′

IdY×U IdY′×U
Id1

Id×ρx′

Id×π

Id×x′

Using the derivator DY and Der iv), we have that the induced Beck-Chevalley transform-
ation in the left square is an isomorphism. By lemma 3.13, if the Beck-Chevalley trans-
formation associated to the outer square is an isomorphism, we are done. To this end,
consider the diagram with the same outer square.

Y × [U � x′] Y ′ × [U � x′] Y ′ ×X

Y × 1 Y ′ × 1 Y ′ ×X ′

IdY′×ρx′

IdY′×x′

IdY×π IdY′×U

V×Idslice

IdY×π

V×Id1

The right square Beck-Chevalley transformation is an isomorphism by similar reasoning as
above, only using DY ′ instead. Therefore, if the left square Beck-Chevalley transformation
is an isomorphism, we are done. Consider the following diagram where [U � x′] is
denoted as S for simplicity.

S [IdY � y]× S Y × S Y ′ × S

1 1 Y × 1 Y ′ × 1

IdY′×π

V×Idslice

IdY×π

V×Id1

ρy×Idslice

π

y

(y,id)×Idslice

Id1

π (4.1)

The middle square is a slice square by realising that [IdY � y] × S ∼= [(IdY × π) � y],
meaning that the associated Beck-Chevalley transformation is an isomorphism. The left
square also induces an isomorphism by using that (y, id) is a terminal object in [IdY � y]

together with observation 1.13 and lemma 3.14. This means that if the outer square Beck-
Chevalley transformation is an isomorphism, we are done. The outer square is the same
as the following square.
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4.3 Pointwise cartesian and cocartesian

S Y ′ × S

1 Y ′ × 1

IdY′×ππ

V (y)×Idslice

V (y)

which can be extended to the following square, denoting V (y) as y′.

S [IdY ′ � y′]× S Y ′ × S

1 1 Y ′ × 1

IdY′×ππ

(y′,id)×Idslice

π

y′Id

ρy′×Idslice

Comparing this diagram to diagram 4.1, we realise that we have almost exactly the same
squares as the two leftmost squares in 4.1. Therefore, by the same reasoning as above,
both squares induce natural isomorphisms, and by one last reference to lemma 3.13 we are
done.

Lemma 4.21. D is a pointed derivator. Let X ,X ′,Y be small categories, and X U−→ X ′ a
fully faithful functor. Consider the diagram where D has been applied to the left square.

X X × Y D(X ) D(X × Y)

 

X ′ X ′ × Y D(X ′) D(X ′ × Y)

U U×Id

Id×y

Id×y

y∗

y∗

UL (U×Id)LUR (U×Id)R

Let B ∈ D(X ′ × Y). Then

i) B is in the essential image of (U × Id)L if and only if By is in the essential image
of UL for all y ∈ Y .

ii) B is in the essential image of (U × Id)R if and only if By is in the essential image
of UR for all y ∈ Y .
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4.3 Pointwise cartesian and cocartesian

Proof. We show i). U is fully faithful, hence U × Id is fully faithful. By lemma 4.6, B is
in the essential image of (U × Id)L if and only if the counit (U × Id)L(U × Id)∗B → B

is an isomorphism. This counit is the same as the induced Beck-Chevalley transformation
from the right square in the diagram

X X × Y X ′ × Y

X ′ X ′ × Y X ′ × Y

U U×Id

Id×y

Id×y

(U×Id)

Id

Id

The left square induces an isomorphism (by lemma 4.20), implying that B lies in the
essential image of (U × Id)L if and only if the outer square induces an isomorphism, by
lemma 3.13.

The counit ULU∗ → Id is the Beck-Chevalley transformation associated to the following
left square, so by similar reasoning we see that By is in the essential image of UL for all
y ∈ Y if and only if the outer square induces an isomorphism.

X X ′ X ′ × Y

X ′ X ′ X ′ × Y

U Id

U

Id

Id×y

Id

Id×y

As the two outer squares agree, we are done.

The previous lemma immediately provides the following result.

Corollary 4.22. D is a pointed derivator. Let K be a small category and B ∈ DK(�).
Then

i) B is cocartesian if and only if Bk is cocartesian for all k ∈ K.

ii) B is cartesian if and only if Bk is cartesian for all k ∈ K.
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5 Stable derivators

In the last chapter we introduced cartesian and cocartesian squares. Stable derivators re-
quire that these two notions coincide. In section 5.1 we explore related properties, in
particular the two out of three-property in the context of derivators and the characterisa-
tion of stable derivators. Along the way we prove lemma 5.6 and 5.9, both dealing with the
nuances of generating (co)cartesian squares. The most important statement of the chapter
is found in section 5.2, that is, stable derivators give rise to additive categories.

5.1 Definitions and properties

Definition 5.1. A derivator D is said to be stable if it is pointed and every B ∈ D(�) is
cartesian if and only if it is cocartesian. Squares that are both cartesian and cocartesian
are called bicartesian.

Example 5.2. It can be shown that a derivator D is stable if and only if the adjunction
(Σ,Ω) : D(1)� D(1) is an equivalence (see [GPS13] theorem 7.1). For the represented
derivator, Σ ∼= 0 (example 4.17), hence it is stable if and only if C ∼= 1.

Example 5.3. With some constraint on A, the homotopy derivator DA is stable. See
[Gro19, ex. 3.30] for details.

Lemma 5.4. D is a derivator. D is stable if and only if Dop is stable.

Proof. By lemma 4.4 i), we only need to check that cartesian and cocartesian squares are
bicartesian.

A cocartesian in Dop(�)

⇐⇒ A ∈ essIm of Dop( )
(Dop(ip))L−−−−−−−−−→ Dop(�)

⇐⇒ A ∈ essIm of D( op)op
((iopp )R)op

−−−−−−−−−→ D(�op)op

⇐⇒ A ∈ essIm of D( op)
(iopp )R

−−−−−−−→ D(�op)

⇐⇒ A ∈ essIm of D( )
iRy−−−−−→ D(�)

⇐⇒ A cartesian in D(�)

If we assume D is stable, we get thatA is cocartesian in Dop(�) if and only ifA is cartesian
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5.1 Definitions and properties

in D(�) if and only if A is cocartesian in D(�) if and only if A is cartesian in Dop(�).
Similarly for the opposite implication.

Lemma 5.5. D is a derivator and K a small category. D is stable if and only if DK is
stable.

Proof. Again, by lemma 4.4 i), we only need to check that cartesian and cocartesian
squares are bicartesian. Therefore, let B ∈ DK(�). Using corollary 4.22 and the as-
sumption that D is stable we have

B cocartesian in DK(�)

⇐⇒ Bk cocartesian in D(�) for all k ∈ K

⇐⇒ Bk cartesian in D(�) for all k ∈ K

⇐⇒ B cartesian in DK(�)

For the other direction, if DK is stable for allK ∈ Cat, then in particular D1 = D is stable.

Lemma 5.6. Let l, r, o : � → be the functors which send a square to the left, right

or outer square, respectively. Let i1−−−−→ i2−−−−→ and
iLp−−−−−→ � be the

canonical inclusions, i = i1i2, and B ∈ D( ).

i) l∗(B) ∈ essIm(iLp ) ⇐⇒ i∗2(B) ∈ essIm(iL1 )

ii) r∗(B) ∈ essIm(iLp ) ⇐⇒ B ∈ essIm(iL2 )

iii) o∗(B) ∈ essIm(iLp ) ⇐⇒ B ∈ essIm(iL)

Proof. i) By lemma 4.6 we need to prove that iLp i∗pl∗(B) → l∗(B) is a natural iso-
morphism if and only if iL1 i∗1i∗2(B)→ i∗2(B) is a natural isomorphism. Consider the
diagram

�

l
u v

i1 i2

ip
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5.1 Definitions and properties

where u, v are inclusions such that everything commutes. Applying the derivator
results in a diagram where everything still commutes.

D( ) D(�)

D( ) D( ) D( )

u∗

i∗p

i∗1

v∗

i∗2

l∗

Using this, we can rewrite iLp i∗pl∗(B)→ l(B) as iLp u∗i∗1i∗2(B)→ v∗i∗2(B), which is a
natural isomorphism if and only if iLp u∗i∗1i∗2(B)p → v∗i∗2(B)p is a natural isomorph-
ism for all p ∈ (�− ip( )) = (1, 1).

Now we would like to argue that (1, 1)∗iLp u
∗i∗1i

∗
2(B) = (1, 1)∗iL1 i

∗
1i
∗
2(B). In aid of

this, denote i∗1i∗2(B) = C and consider the cube induced by slice squares

D([i1 � (1, 1)]) D( )

D([ip � (1, 1)]) D( )

D(1) D( )

D(1) D(�)

iL1

ρ∗1

πL

(1,1)∗
iLp

u∗

ρ∗p

πL

(1,1)∗

v∗

Id

Id

There is no map from (2, 0) to (1, 1) in , so the two slice categories are actually
equal, meaning the top square commutes. Using this and Der iv) we can now see
that

(1, 1)∗iLp u
∗i∗1i

∗
2(B)

= (1, 1)∗iLp u
∗C

= πLρ∗pu
∗C

= πLρ∗1C

= (1, 1)∗iL1C

= (1, 1)∗iL1 i
∗
1i
∗
2(B)
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5.1 Definitions and properties

With this information, iLp u∗i∗1i∗2(B)(1,1) → v∗i∗2(B)(1,1) can be rewritten in the form
iL1 i
∗
1i
∗
2(B)(1,1) → v∗i∗2(B)(1,1). Noticing that (1, 1) = v(1, 1) implies v∗i∗2(B)(1,1) =

i∗2(B)(1,1).

In summary, we have shown that iLp i∗pl∗(B)→ l∗(B) is an isomorphism if and only
if iL1 i∗1i∗2(B)(1,1) → i∗2(B)(1,1) is an isomorphism, which is if and only if iL1 i∗1i∗2(B)→
i∗2(B) is an isomorphism, by lemma 4.6.

ii) The idea of this proof is similar to i). However, in this case the goal is to show
that (2, 1)∗iLp i

∗
pr
∗(B) = (2, 1)∗iL2 i

∗
2(B). Unfortunately, the two corresponding slice

categories are not equal, as they were in i). The way to remedy this is to use the
following square.

D([i2 � (2, 1)]) D([ � (2, 1)])

D(1) D(1)

j∗

πL πL

Id

The square commutes by 3.14, and the observations that [i2 � (2, 1)] ∼= and
[ip � (2, 1)] ∼= together with the fact that j−−−−→ is a right adjoint to the
canonical map → .

iii) Analogous to ii).

Proposition 5.7. D is a pointed derivator. Let the functors be as in lemma 5.6, let B ∈
D( ) and assume l∗(B) is cocartesian. Then r∗(B) is cocartesian if and only if o∗(B)

is cocartesian.

Proof. We know that l∗(B) is cocartesian if and only if l∗(B) ∈ essIm(iLp ) if and only
if i∗2(B) ∈ essIm(iL1 ) by lemma 5.6), which is if and only if iL1 i∗1 → Id is a natural
isomorphism by lemma 4.6. Using ii) and iii) of lemma 5.6 together with our assumption,
we get
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5.1 Definitions and properties

o∗(B) cocartesian

⇐⇒ o∗(B) ∈ essIm(iLp )

⇐⇒ B ∈ essIm(iL)

⇐⇒ iLi∗B → B is a natural isomorphism

⇐⇒ (i2i1)L(i2i1)∗B → B is a natural isomorphism

⇐⇒ iL2 i
L
1 i
∗
1i
∗
2B → B is a natural isomorphism

⇐⇒ iL2 i
∗
2B → B is a natural isomorphism

⇐⇒ B ∈ essIm(iL2 )

⇐⇒ r∗(B) ∈ essIm(iLp )

⇐⇒ r∗(B)cocartesian

We are rewarded with the two out of three-property in the context of derivators.

Corollary 5.8. If any two of l∗(B), r∗(B) and o∗(B) are bicartesian, then so is the third.

Lemma 5.9. We have the following square

�

l

iy

v

i2

where l, i2, iy are as before and v is such that the square commutes. Let B ∈ D( ). If B
is in the essential image of iR2 , then l∗(B) is cartesian.

Proof. B ∈ essIm(iR2 ), so let B ∼= iR2 (A) for some A ∈ D( ). Our goal is to show that
l∗iR2 (A) ∼= iRy v

∗A. By Der ii), this is an isomorphism if and only if p∗l∗iR2 (A) ∼= p∗iRy v
∗A

for all p ∈ �. Consider the following diagram.
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5.1 Definitions and properties

D([lp � i2]) D( )

D([p � iy]) D( )

D(1) D( )

D(1) D(�)

ρ∗

v∗

l∗

Id

(lp)∗

πR

πR

incl.∗

ρ∗y

iRy

iR2

p∗

By Der iv), our goal can be rewritten to proving that πRρ∗(A) ∼= πRρ∗yv
∗(A), which is

reduced to showing that πRρ∗(A) ∼= πRincl∗ρ∗(A) because the top square commutes.
Hence it is enough to prove that πR ∼= πRincl∗. This is similar to the corresponding
argument in 5.6 ii) when using lemma 3.14.

Proposition 5.10. D is a pointed derivator. Then the following are equivalent.

i) D is stable.

ii) A ∈ D(�) such that A(0,1)
∼= 0 is cartesian if and only if it is cocartesian.

Proof. The direction i)⇒ ii) is by definition.
ii)⇒ i) Consider the inclusions

�
i1−−−−→ i2−−−−→

which induce
D(�)

iL1−−−−−→ D( )
iR2−−−−−→ D( )

where iL1 is an extension by zero since i1 is a cosieve. Let B ∈ D( ) in the essential
image of iR2 iL1 . Then the underlying shape of B is

B(0,0) B(0,0) B(0,0)

0 B(0,0) B(0,0)
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5.1 Definitions and properties

Recalling the functor r from lemma 5.6, we denoteA = r∗(B), and assume it is cartesian.
We want to show thatA is also cocartesian. By lemma 5.9 we have that l∗(B) is cartesian,
implying that the outer square is also cartesian by lemma 5.7. The outer square and the
left square, l∗(B), are both cocartesian by ii). This means the right square, A, must also
be cocartesian, again by lemma 5.7.
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5.2 Stable derivators induce additive categories

5.2 Stable derivators induce additive categories

One way to define a coproduct in a categoryX , is by the left adjoint of the diagonal functor
X ∆−−−−→ X ×X , sending an object x to (x, x). Likewise, the product is the right adjoint
to the same functor. Comparing this to the functor D(1)

π∗−−−−−→ D(1) × D(1) induced
by 1× 1 π−−−−→ 1, we see that ∆ = π∗ for X = D(1). This implies that the coproduct is
πL, and the product is πR, leading us to the following definition.

Definition 5.11. Let 1 × 1
j−−−−→ and 1 × 1

i−−−−→ be functors identifying the
corners (0, 1) and (1, 0). For B ∈ D( ), we say

i) B is a coproduct cocone if it is in the essential image of D(1 t 1)
jL−−−−−→ D( ).

ii) B is a product cone if it is in the essential image of D(1 t 1)
iR−−−−−→ D( ).

Consider the two slice categories

[j � (1, 1)] 1 t 1 [(0, 0) � i] 1 t 1

1 1

π

ρ(1,1)

j

(1,1) (0,0)

ρ(0,0)

π i

Recalling that D(1t 1) ∼= D(1)×D(1) by Der i), and realising that both slice categories
are equivalent to 1 t 1, results in the following commuting squares.

D(1)× D(1) D(1)× D(1) D(1)× D(1) D(1)× D(1)

D(1) D( ) D(1) D( )

πL

Id

jL

(0,0)∗

Id

πR iR

(1,1)∗

If B ∼= jL(A) for some A ∈ D(1 × 1), then jL(A)(1,1)
∼= (1, 1)∗jLA ∼= πLA., which,

by the discussion above, is the coproduct of A. Likewise, for B ∼= iR(A) we get that
iR(A)(0,0)

∼= πRA, which is the product.
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5.2 Stable derivators induce additive categories

Lemma 5.12. Let ip, iy, i and j be as above, B ∈ D(�), and B(0,0)
∼= 0. Then

i) i∗y(B) is a coproduct cocone if and only if B is cocartesian.

ii) i∗p(B) is a product cone if and only if B is cartesian.

Proof. We show i). Consider the commuting square

D(1)× D(1) D( )

D( ) D(�)
iLp

jL

iL iLy

where both iL and iLy are extensions by zero by lemma 4.9. Also notice that by lemma
3.15, the functor iLy is fully faithful, hence i∗yiLyC ∼= C for all C ∈ D( ), by lemma 1.14.
Hence

B is cocartesian and B(0,0)
∼= 0

⇐⇒ B ∈ essIm(iLp i
L)

⇐⇒ B ∈ essIm(iLy j
L), say B ∼= iLy j

LA

⇐⇒ B(0,0)
∼= 0 and i∗yB ∼= i∗yi

L
y j

LA ∼= jLA

Definition 5.13. A category X is pre-additive if the following is satisfied.

Add i) X has a zero object.

Add ii) X admits products and coproducts.

Add iii) All (co)products are biproducts in X .

Theorem 5.14. D is a stable derivator and X is a small category. Then the category
D(X ) is pre-additive.

Proof. By lemma 5.5 it is enough to show D(1) is pre-additive.

[Add i] A stable derivator is pointed by definition, so D(1) has a zero object.
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5.2 Stable derivators induce additive categories

[Add ii] By theorem 3.19.

[Add iii] For two objects a, b ∈ D(1), the goal is to show that the product and coproduct of a
and b coincide. Therefore, note that the object (a, b) ∈ D(1)×D(1) can be identified
with an object (a, b) ∈ D(1t1) by Der i). LetD denote the poset category [2]× [2].

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

Consider the full subcategories 1 t 1, D1 and D2, respectively from left to right,

(2, 0) (2, 0)

(2, 1) ⊆ (2, 1) ⊆ (2, 1)

(1, 2) (0, 2) (1, 2) (0, 2) (1, 2) (2, 2)

together with the inclusions 1 t 1 i1−−−−→ D1
i2−−−−→ D2

i3−−−−→ D. Notice that
i1 and i3 are cosieves, while i2 is a sieve. This results in a composition of functors

D(1 t 1)
iL1−−−−−→ D(D1)

iR2−−−−−→ D(D2)
iR3−−−−−→ D(D)

where the first two are extensions by zero, using lemma 4.9. Now we can look at the
underlying shape of the object iR3 iR2 iL1 (a, b) ∈ D(D)

d a′ 0

1 2

b′ c b

3 4

0 a 0

for some objects a′, b′, c, d ∈ D(1). Adding the objects c, a′, b′ and d using the
functor iR3 created four cartesian squares. The argument for this is in the same style
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5.2 Stable derivators induce additive categories

of the proof of lemma 5.9. By lemma 5.7 and proposition 5.10, any combination of
these four squares is bicartesian. Using lemma 4.19 iii) on the outer square, we get
that d ∼= 0. Likewise, the squares 2 + 4 and 3 + 4 imply that a′ ∼= a and b′ ∼= b,
respectively. Lastly, considering the squares 1 and 4 using lemma 5.12, we get that
c is both the product and coproduct of a and b.

We will refer the reader to [Gro13, sec.4.1] in regards to proving that the morphism sets
in D(X ) are abelian groups, and that composition of morphisms is bilinear. Showing that
a morphism has an inverse in this case, is a fairly technical process. However, with this
reference, we can now state that D(X ) in fact is an additive category.

For a functor X G−→ Y , we have shown that the induced functors G∗, GL, GR preserve
zero in lemma 4.5. A functor is a group homomorphism on morphism sets if it preserves
biproducts. Left adjoints preserve coproducts and right adjoints preserve products, hence
we can state that G∗, GL, GR are additive functors.
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6 Triangulated derivators

In order to prove that derivators induce triangulated categories, we must require that they
are both stable and strong. Defined in section 6.1, strongness of a derivator will enable us
to lift objects and morphisms from underlying categories, so that we can apply appropriate
functors to create bicartesian squares. In section 6.2 we finally prove the main result and
include a discussion of how this solves the flaw of triangulated categories. Lastly, we prove
that the induced functor G∗ and its adjoints are exact functors.

6.1 Strong derivators

Definition 6.1. Let X ∈ Cat. A derivator D is called strong if the partial underlying
diagram functor

dia[1],X : D([1]×X )→ D(X )[1]

is full and essentially surjective.

Lemma 6.2. Let K ∈ Cat.

i) D is strong if and only if Dop is strong.

ii) D is strong if and only if DK is strong.

Proof. i) We show that we can lift an object in Dop(X )[1] = (D(X op)op)[1] to an object
in Dop([1]×X ) = D([1]×X op)op.

A
fop−−→ B is an object in (D(X op)op)[1] if and only ifA f←− B is an object inD(X op)[1].

D is strong, so this can be lifted to an object A′ f ′←− B in D([1]× X op). Lastly, this
is if and only if A′ f ′op←−− B′ is an object in D([1]×X op)op.

The opposite implication is analogous.

ii) We can lift an object in DK(X )[1] = D(K×X )[1] to an object in D([1]×K×X ) =

DK([1]×X ) becauseD is strong. Conversely, ifDK is strong, thenD1 ∼= D is strong.

Definition 6.3. A derivator D is triangulated if it is stable and strong.

Example 6.4. The represented derivator is strong as C[1]×X ∼= (CX )[1] is an equivalence.

Example 6.5. The derivator of A is strong ([Gro19, ex. 3.48]).
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6.1 Strong derivators

From example 5.2 we know that the represented derivator rarely is stable. On the other
hand, the derivator ofA is both stable and strong, and is therefore a triangulated derivator.

Definition 6.6. A triangulated category is an additive category T , together with an auto-
equivalence [1] : T → T , and a class ∆ consisting of sequences, also called triangles, of
the form a

f−→ b
g−→ c

h−→ a[1], such that the following axioms are satisfied.

[T1] • For any a f−→ b ∈ T there is a triangle a f−→ b→ c→ a[1] in ∆.

• For any a ∈ T the triangle a ida−→ a→ 0→ a[1] is in ∆.

• ∆ is closed under isomorphisms.

[T2] For any triangle a f−→ b
g−→ c

h−→ a[1] in ∆, the triangles

b
g−→ c

h−→ a[1]
−f [1]−−−→ b[1]

c[−1]
−h[−1]−−−−→ a

f−→ b
g−→ c

are also in ∆.

[T3] Given the solid part of the diagram

a b c a[1]

a′ b′ c′ a′[1]

k1 k2 k1[1]k3

where the left square commutes and the rows are triangles in ∆, there always exists
a morphism c

k3−→ c′ such that the entire diagram commutes.

[T4] Given the sequence a f−→ b
k−→ u, there is a commuting diagram

a b c a[1]

a u v a[1]

w w

b[1] c[1]

gf

kf

k

g[1]

where the rows and columns are triangles in ∆.
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6.2 The induced triangulated categories

Remark 6.7. The third object in a triangle is usually called the cone object. The fourth
axiom is often referred to as the octahedral axiom, because if the triangles are drawn as
geometric triangles, the fourth axiom creates an octahedral.

6.2 The induced triangulated categories

Remark 6.8. In the following proof we use:

i) [3] is the category 0→ 1→ 2→ 3.

ii) � t−→ is an inclusion and sieve, hence tR is an extension by zero by lemma 4.9.

iii) i2−−−−→ is as in lemma 5.6.

Theorem 6.9. Let D be a triangulated derivator, and X a small category. Then D(X ) is
a triangulated category.

Proof. By lemma 5.5 and lemma 6.2, it suffices to show that D(1) is a triangulated cat-
egory. In order to prove this, let the auto-equivalence on D(1) be the suspension functor

Σ : D(1)
(0,0)R−−−−−−−→ D( )

iLp−−−−−→ D(�)
(1,1)∗−−−−−−−→ D(1) from section 4.2. This

functor also comes to play in the definition of the class ∆.

Recall the cone functor D([1])
hR−−−−−→ D( )

iLp−−−−−→ D(�)
v∗−−−−−→ D([1]) from the

same section. For an object a f−→ b in D(1)[1] we use that D is strong and lift this to
an object C in D([1]), which has the underlying shape of f . If we use the composition
tria := iL2 t

RiLp h
R on C it looks like the following on the underlying shapes.

a b a b a b

0 0 c

a b 0 a b 0

0 c 0 c d

f f f

cone(f)

f

cone(f)

f

cone(f)

cone2(f)

hR iLp

tR iL2

62



6.2 The induced triangulated categories

Consider the last double square. By definition, the left square is cocartesian, and by lemma
5.6 ii), the right square is also cocartesian. The outer square is cocartesian by lemma 5.7,
and since D is stable, all of these are bicartesian. In addition, the corners are zero, so
the outer square is in the essential image of iLp (0, 0)R, hence we have an isomorphism
φ : d ∼= Σa. We pick out the sequence

a
f−→ b

cone(f)−−−−→ c
φcone2(f)−−−−−→ Σa

using the composition D( ) → D([3])
dia[3]−−−→ D(1)[3] on the double square. We define

∆ as the class consisting of sequences that are isomorphic to the one constructed above.

[T1] By the above discussion, it is clear that any morphism f in D(1) can be completed
to a sequence in ∆. By definition, ∆ is closed under isomorphisms. Lastly, using
the construction above on ida for some a in D(1) results in the sequence

a
ida−→ a

cone(ida)−−−−−→ 0
cone2(ida)−−−−−−→ Σa

by lemma 4.19 iii).

[T2] Given a sequence a f−→ b
g−→ c

h−→ Σa in ∆, we want to show that

b
g−→ c

h−→ Σa
−Σf−−→ Σb

is in ∆, the other rotation is dual. Let J1 be the full subcategory [2] × [2] −
{(1, 1), (2, 1), (0, 2), (2, 2)} and J2 is [2] × [2] − {(0, 2)}. If [1]

j1−→ J1
j2−→ J2

are the canonical inclusions, then they are both sieves and jR1 is an extension by
zero, while jL2 creates bicartesian squares. The latter is true by the same reasoning
as in lemma 5.6.

Therefore, if we lift a f−→ b in D(1)[1] to an object F in D([1]) using that D is strong,
we can apply the composition jL2 jR1 to F and achieve an object in D(J2) with an
appropriate underlying shape.

a b a b 0 a b 0

0 0 c d

0 0 e

Again, similar to the above discussion regarding the triangles in ∆, we have that the
squares are bicartesian, d ∼= Σa, and e ∼= Σb. The fact that the morphism between
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6.2 The induced triangulated categories

them is−Σf is related to the details of showing thatD admits categories with abelian
morphisms sets. The reader is referred to [Gro13, prop. 4.12] for details.

[T3] Consider the diagram

a b c Σa

a′ b′ c′ Σa′

f

f ′

(6.1)

The leftmost square is a morphism between two objects (a
f−→ b) and (a′

f ′−→ b′)

in D(1)[1]. As dia[1],1 is full and essentially surjective, we can lift both objects and
morphism to objects and morphism A

K−→ A′ in D([1]). If we now apply the functor
D([1])

tria−−→ D( ) it results in tria(A)
tria(K)−−−−→ tria(A′) with underlying shape

a b 0

a′ b′ 0

0 c Σa

0 c′ Σa′

f

f ′

g

(6.2)

where everything commutes and the two front and back squares are bicartesian, as
seen in the construction of tria. Using dia sends the objects and morphism to their
underlying shapes, giving us the morphism c→ c′ in D(1) completing diagram 6.1
such that it commutes.

[T4] There are three parts to proving this axiom. First we argue that we can lift an object
in D(1)� to D(�), and send it to D([1] × ) with the tria functor, where it will
have the same underlying shape and bicartesian squares as in diagram 6.2. Then we
observe a useful result, allowing us to finally show the fourth axiom using the third
axiom twice.

As in [T3], we begin with the square in diagram 6.1. This time we view it as a
morphism between the objects (a → a′) and (b → b′) in D(1)[1] and lift it to a
morphism A

F−→ B in D([1]). That is, an object F in D([1])[1]. Again, this is lifted
to an object F ′ in D[1]([1]), before applying D[1]([1])

tria−−→ D[1]( ) on it. Keeping
track of the underlying shape of tria(F ′) in D[1](1), we end up with
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6.2 The induced triangulated categories

A B 0

0 C ΣA

where the left and right squares are bicartesian, for the same reasons as when con-
structing the original functor D([1])

tria−−→ D( ). By corollary 4.22, the pointwise
(or underlying) squares will also be bicartesian. In other words, our object tria(F ′)

in D[1]( ) has exactly the underlying shape in D(1) as diagram 6.2. This allows
us to make a very useful observation.

Consider the right cube in diagram 6.2, where the front and back are bicartesian. By
corollary 5.8, the left square is bicartesian if and only if the outer square of the left
and front square combined is bicartesian if and only if the outer square of the right
and back square combined is bicartesian if and only if the right square is bicartesian.
Lastly, this is if and only if g is an isomorphism, by lemma 4.19 iii). We refer to this
observation as ?.

Finally, we prove [T4]. Given the sequence a f−→ b
k−→ u, we want to induce the

appropriate commuting octahedral diagram. As mentioned, the idea is to use the
same construction as in [T3] twice. We begin by viewing the square

a b

a u

f

k

kf

as an object in (D(1)[1])[1]. Then, as in [T3], we lift it to some object A K−→ A′ in
D([1])[1] and apply the functor D([1])[1] tria−−→ D([3])[1].

a b c Σa

a u v Σa

f

k

kf

g

l

Because Σa → Σa is an isomorphism, by ?, the middle square is bicartesian. We
repeat the process, only this time on the middle square to get the following.
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6.2 The induced triangulated categories

a b c Σa

a u v Σa

w z

Σb Σc

f

k

kf

g

l

m

φ

Σg

We know the bottom morphism is Σg because tria is a functor such that 3∗ ◦ tria =

Σ ◦ 0∗. By ? and the fact that the top middle square is bicartesian, we get that φ is
an isomorphism. Hence we have

a b c Σa

a u v Σa

w w

Σb Σc

f

k

kf

g

l

φ−1m

Σg

where everything commutes, thus finishing the proof.

As advertised in the introduction, one of the issues with triangulated categories is that
the cone construction T [1] Cone−−−→ T is not functorial. However, in proving that D(1) is
triangulated, we constructed a functor D([1]) → D(1)[3] which can be extended to the
functor D([1]) → D(1) selecting the object c from our sequence, namely the cone of
the triangle. This, in addition to the strongness of a triangulated derivator, enables us to
establish a replacement for the non-functorial cone construction.

D(1)[1] lift−−→ D([1])→ D(1)

For the derivator of A, our example of a triangulated derivator, this is exactly utilising
the fact that although there is no functor D(A)[1] Cone−−−→ D(A), there is instead a functor
D(A[1])

Cone−−−→ D(A).
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6.2 The induced triangulated categories

Definition 6.10. An exact functor is an additive functor T F−→ T ′ between triangulated
categories together with a natural isomorphism F ◦ [1]T

α−→ [1]T ′ ◦ F , such that for every
sequence a f−→ b

g−→ c
h−→ a[1] in ∆T , the triangle

F (a)
F (f)−−→ F (b)

F (g)−−→ F (c)
αa◦F (h)−−−−−→ F (a)[1]

is in ∆T ′ .

We end the chapter with proving that the functors G∗, GL and GR are exact functors
between the induced triangulated categories.

Proposition 6.11. D is a triangulated derivator. For the functor X G−→ Y , the induced
G∗, GL and GR are exact functors.

Proof. We know G∗, GL and GR are additive by the discussion at the end of section 5.2,
and that functors that are adjoint to exact functors are also exact. Therefore it suffices to
show that G∗ preserves triangles. In other words, that given a triangle a→ b→ c→ Σa

in D(Y), the induced G∗(a)→ G∗(b)→ G∗(c)→ G∗(Σa) is a triangle in D(X ). We can
assume a→ b→ c→ Σa in D(Y) came from an object A in D( × Y)

a b 0

0 c Σa

as in the construction of triangles in the previous proof. G induces the functor

D( × Y)
D( ×G)−−−−−−−−−→ D( ×X )

If the object D( ×G)(A) has bicartesian squares, this will result in a triangle in D(X )

with G∗(Σa) ∼= ΣG∗(a), finishing the proof. It therefore suffices to show that given a
bicartesian square A in D(� × Y), it will result in a bicartesian square in D(� × X ).
Since A is bicartesian, it follows from corollary 4.22 that this is equivalent to Ay being
bicartesian in D(�) for all y ∈ Y . Ay is really D(�× y)(A), and since this is true for all
y, then in particular we have that D(�×G(x))(A) is bicartesian for all x ∈ X .

We notice D(� × G(x)) = D(� × x) ◦ D(� × G) and therefore we have that the object
D(� × x)(D(� × G)(A)) is bicartesian for all x ∈ X . Again by corollary 4.22, this is
equivalent to D(�×G)(A) being bicartesian in D(�×X).
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