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Abstract

Representations of associative algebras are homomorphisms from the algebra
into a matrix algebra. A group action can be defined on the set of represen-
tations which corresponds to conjugation of matrices. The orbits under this
action define the degeneration order. Results and examples around this or-
der are discussed, along with some curiosities regarding partitions of natural
numbers. Coxeter functors and the dual of the transpose are also considered,
and it is in particular demonstrated that these two types of functors do not
always coincide.

Samandrag

Representasjonar av assosiative algebraar er homomorfiar fra algebraen inn
i ein matrisealgebra. Ein gruppeverknad kan definerast pa mengda av rep-
resentasjonar som korresponderar med konjugering av matriser. Banene un-
der denne verknaden definerer degenereringsordninga. Resultat og eksempel
rundt denne ordninga vert diskutert, i tillegg til nokon nysgjerrigheiter om
partisjonar av naturlege tal. Coxeterfunktorar og det duale av den transpon-
erte vert ogsa teken i tanke og det demonstrerast spesielt at desse to funk-
tortypane ikkje alltid fell saman.
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1 Degeneration

We begin by defining representations of algebra and the group action on
representations which allows us to discuss degeneration. The Zariski topology
is also necessary to this end. A group action on representations of quivers
will also be defined such that this action coincides with the group action on
representations of algebras. The sections 1.1, 1.2, 1.5 and 1.6 are largely
based on [12].



1.1 Representations of Associative Algebras

Definition 1.1. Let R be a commutative ring. An algebra over R is an
R-module A with a multiplication A x A — A which satisfies the following
criteria for all € R and «, 3,7 € A:

L y(a+f) =ra+98
2. (a4 p)y =ay+ By
3. r(af) = (ra)f = a(rp)
4. A contains an element 1, such that 15 -a=a - 1,.
If in addition (af)y = a(f7), we call A associative. A

Example 1.1. Let R be a commutative ring, d € N and let My(R) be the
set of d x d matrices with entries from R. Here is some useful notation for
dealing with matrices. If M € My(R) and 7,5 € Ny := {1,...,d}, then we
let [M];; denote the ij-th entry, that is the entry on the i-th row and j-th
column. Additionally, we let [M];s denote the i-th row and [M].; denote
the j-th column of M. On another note, we can easily show that M,(R) is
an R-algebra. Assuming we already know that matrix multiplication is left
and right distributive, compatible with scalars and associative, then these
properties coupled with the fact that the identity matrix I, defined such

that
lifi=j
I ij = )
[£d] J {0 otherwise}

acts as a multiplicative identity in My(R), we obtain that M,(R) is an R-
algebra. A

Definition 1.2. Let R be a commutative ring and let A and A’ be R-algebras.
An R-algebra homomorphism is a function f: A — A’ which satisfies the
following criteria for all » € R and «, 8 € A:

1. f(ra)=rf(a)
2. fla+8) = fla)+ f(B)
3. f(aB) = fla)f(B)



4. f(lA) = 1.

A

If A is an algebra over a commutative ring R, then a A-homomorphism
f A — A is called an endomorphism, and the set of A-endomorphisms is
denoted Endgr(A) := {f : A — A | f is a A-homomorphism}. If f is a bijec-
tion in addition, then f is called an automorphism on A, and we define
Autgr(A) = {f: A — A| f is a bijective homomorphism on A}. Bijective
algebra homomorphisms are called algebra isomorphisms.

Let R be a commutative ring, A an R-algebra and A € U(A), where
U(A) is the set of invertible elements of A. Define ¢, : A — A such that
ér(0) = XAoA7! for all 0 € A. In Appendix A we show that ¢, is a A-
automorphism. We also give it a name.

Definition 1.3. Let R be a be a commutative ring, A an R-algebra and
A € U(A). An inner automorphism is a function ¢, : A — Ajo —
AoA™t Vo € U(A). We write Inn(A) = {¢, | A € A} for the set of inner
A-automorphisms. A

For the next lemma we define the center of an algebra A over a commu-
tative ring to be the set

Z(N)={NeA | o=0AVo € A}.
The lemma is based on a similar result for groups given in [6].

Lemma 1.1. Let R be a commutative ring and A an R-algebra. Then
UN/zw(a)) and Inn(A) are isomorphic as groups < Z(U(A)) C Z(A).

Proof. We should verify that U(A)/zw(a)) and Inn(A) are groups. We already
know that U(A) is a group under multiplication since A is a ring, and we
show that the center of any group is a subgroup in Appendix B, so U(A)/zw(a))
is a group. In Appendix C we show that Inn(A) is a group. Then it remains
to show that these groups are isomorphic < Z(U(A)) C Z(A).

(<) Suppose Z(U(A)) € Z(A) and define the function

¢ : U(A) — Inn(A)
A= O



for all A € U(A). Since given A, € U(A), ®(Ao)(1) = ¢r(7) =
(Ao)T(Ao)™t = ANoTmo )AL = (¢ 0 ¢,)(7) VT € U(A)

= O(\o) = ¢pr00,, we have that @ is a group homomorphism. Further-
more, if ¢ € Inn(A), then I\ € U(A) such that for every o € A, we have
that 6(0) = AoA~ = 63(0) = (D(V)(0) = & = D) = & € B(U(N)),
so @ is onto.

The kernel of ® consists of every element A\ € A such that <I>( ) = @1,
the identity in Inn(A). Let A € ker®. Then AoA™! = <b,\( ) =
(®(N\)(0) = ¢1(0) = 1-0-1 =0 Vo € A, that is oA = 0 =
oA =XoVo e A= \e Z(U(A)). Thus ker ® C Z(U(A)).

Now suppose A € Z(U(A)). Since by assumption Z(U(A)) C Z(A),

A € Z(A). Then Vo € A, we have that Ao = o\ = 0 = Ao\™! =
or(o) = (P(N)(0) = P(N) =1 = A € ker @, so Z(U(A)) C ker P.
Thus Z(U(A)) = ker ®, and we have that UM /kerd = O(U(A)), so

U/ zw@n)) ~ Inn(A).

(=) Suppose UW)/zwn)) ~ Inn(A). Then ker® = Z(U(A)), so if X\ €
Z(U(A)), then AoA™! = ¢y(0) = (P(N)
oAVo e A=\ e Z(A).
Thus Z(U(A)) C Z(A).

Hence UWN)/zw () ~ Inn(A) < Z(U(A)) C Z(A). O

Example 1.2. Let R be a commutative ring, d € N and consider the
R-algebra My(R). We shall show that Gla(®)/u(ryr, ~ Inn(My(R)), where
UR)I; == {rly|r € U(R)} denotes the set of d x d scalar matrices of
U(R). Since Gly(R) = U(Mg4(R)), then if we can show that Z(Gly(R)) =
U(R)1; and Z(Gly(R)) C Z(My(R)), we can conclude that Gla(R)/u(r)1, and
Inn(M,(R)) are isomorphic as a consequence of Lemma 1.1 above.

The proof that Z(Gly(R)) = U(R)I, is based on a similar proof found in
3].

Let d = 1. M(R) = R, Gl4(R) = U(R) and U(R)I; = U(R), so
Gh(R)/umrn = UBR/umr) ~ (1), the trivial group under multiplication. If
¢, € Inn(M;(R)) = Inn(R), then ¢,(r) = wru™ = ruv™ =r Vr € R
since R is commutative, so ¢, = ¢; = Inn(R) ~ (1). Thus CLB/u(r) ~
Inn(M;(R)).

Let d > 1 and suppose A € U(R)I,, that is Ir € U(R) such that A = rl;.
Then

BA = Brl;=rBI, = rI,B = ABVYB € Gly(R)

5



= A Z(Gly(R))
= U(R)I4 C Z(Gla(R)).

Now suppose A € Z(Gly(R)), p,q,i,j € Ng,p # q and r € R. Consider the
matrix ey, (r) € My(R) defined such that

()]s = {““‘pa“dj‘q}

0 otherwise

Define the matrix E,,(r) = I; + eyy(r). In Appendix D we show that
E,(r)Eyy(—r) = Ig = Epy(—1)Ey (1), so Ey(r) € Gly(R) and in particu-
lar we have that AE,,(r) = E,;A. Then

Aepg(r) = A(Epy(r) — 1a) = AEp(r) — Aly

= Epq(r)A — 1A = (Epg(r) — La) A = ep4(r) A,
that is Aey,(r) = eye(r)A. Furthermore, if [A],, # 0, then

[Aepy(1) Algrlep(1 = [Algplepg(1)]pg = [Algp # 0

HM&

since [ep,(1)]kg = 0 for all k € Ny \ {p}, but

d
[epg(1 E [epg(1)]gr[Alkg = 0
k=1

since [epg(1)]ge = 0 VE € Ny Then [A],, = 0, so A is a diagonal matrix.
Now let 7 : N; — Ny be a permutation of Ny, that is a bijection on Ny. We
define P, € Md(R) to be the permutation matrix which is defined such that
[Prlij = al=();- If M € My(R), then

[PeM]ij = [Prlie[M]i; = [Prlin(i)[M1x(ir; = [M]ro

= [PﬂM]Z. = [M]ﬂ-(l). and



= [MPrlej = [M]er(j), so a left and right multiplication by P, represents
a permutation given by m of rows and columns, respectively. If 7 is the
permutation which interchanges p and ¢, that is

qgifi=np
(i) =<(pifi=gq
1 otherwise

Notice that [P2?];; = [Prlr(); = [La]r2(;); and that

m(q) =pifi=p
(i) = (mom)(i) = q7(p) =qifi=q ;,
7(i) = i otherwise
which implies that 7%(i) = i = [P?];; = [laij = P2 = I4, so Pr € Gly(R).
Then P, A = AP, = P,AP, = P?A = A. Also, by our calculations above,
we can see that [PrAP];; = [APx|x@); = [Alr@)n(j), that is,

[A]qq ifi=j=p
[A]pp ifi=j=q
Al ifp#i=j#q

0 otherwise

[PrAP);; =

Thus P, AP, is a matrix with nonzero entries along the diagonal. We obtain
that [P, AP;];; = 0 when i # j from the fact that since A is an invertible
diagonal matrix and P, AP, is a permutation of the entries of A, then the
entries along the diagonal of P, AP, are the only nonzero ones of P, AP,.
Since P AP, = A, then [A],, = [A],, so the entries along the diagonal of A
are all identical, so A = rl; for some r € R. Moreover, A is invertible, so

JA” € Gly(R) such that I, = AA" = rI;A’ = rA’. Then we have that

lifi=jy
Al =
riA] J {0 otherwise}

= rr'=1forsomer € R=reU(R)= AecU(R)I,
= Z(Gla(R)) € U(R)14,

and since we previously showed that U(R)I; C Z(Gly(R)), we can conclude
that Z(Gly(R)) = U(R)1,.



All that remains to show then is that Z(Gly(R)) C Z(My(R)). Let A €
Z(Glg(R)) = U(R)I;. Then 3r € U(R) such that A =rl;. Let B € My(R).
Then

BA =Brl;=rBl;=rl4B=AB = Ac Z(MyR))

= Z(Gly(R)) € Z(Ma(R)).
Hence Gla(®)/u(ry1, ~ Inn(My(R)) for all d € N. A

Definition 1.4. Let R be a commutative ring, A an R-algebra and d € N.
A representation of A with rank d is an R-algebra homomorphism f : A —
My(R). The set of d-dimensional representations of A is denoted by

repg A ={f: A — My(R) | f is an R-algebra homomorphism}.

We can define an action of Gla(R)/u(r)1, on rep, A by

U : Gla(R) /Ry, X repy A — rep, A
(A, f) = (A)o f

for all f € rep; A, where

& : Gla(B)[y(ry1, — Inn(My(R))
A ¢a

for all representatives A € Gly(R) of the cosets A-U(R)I; = A € Gu(R)/u(r)1,.
By Example 1.2, we know that Z(Gly(R)) € Z(My(R)), which means that
® is the induced isomorphism of the homomorphism ® defined in the proof
of Lemma 1.1. Therefore ® is well-defined, so ¥ is well-defined. To simplify
notation, we often suppress U(R)I, and call ¥ an action of Glg(R) on repy(A).
If f € repy(A), then we let Gly(R)f := {¢c o f | ¢c € Inn(A)} denote the
orbit of f.

Remark 1. Let R be a commutative ring and A an R-algebra. Any m € rep; A
defines a A-module M,, := R? where for any A € A and v € M,,, scalar
multiplication in M,, is defined as Av := m(\)v. We have that m(\) € My(R)
VA € A, so the scalar multiplication in M,, is actually multiplication with a
matrix. A



Lemma 1.2. Let R be a commutative ring, A an R- module, d € N and
m, m’ € repy A. Then
M, =M, & Gld(R)m = Gld(R)m’

Proof.

(<)

Suppose Gly(R)m = Glg(R)m'. Since m = ¢, om € Gly(R)m =
Gly(R)m/, meaning m € Glg(R)m/, then ¢ € Inn(My(R)) such that
m = ¢g o m’. This means that m(\) = Gm/(\)G~! VA € A. Now
define the function 7' : M,, — M,,;v — G~ v for all v € M,, and let
v,w € M, and A € A. Then

L. Tw+w) =G v+w) =G v+ Gw=T()+ T(w), since
multiplication by matrices is distributive.

2. T(\) =G (W) =G 'm(\)v =G HGm' (NG
= m/ (NG v = MG ') = AT'(v) by the definition of scalar
multiplication in M,, and M,,.

T is then a A-module homomorphism. Moreover, since G™! € Gly(R),

then T is a bijection, so it is an A-module isomorphism between M,,
and Mm/. Thus Mm = Mm/.

(=) Suppose M,, = M,,. Then 3T : M,, — M,,, which is an isomorphism,
so 3G € Gly(R) such that T'(v) = Guv for all v € M,,. If v € M, and
A € A, then
Gm(AN)v = T(m(ANv) =T (M) = A\T'(v) = m'(\)T(v) = m'(\)Gv
= Gm\) =m/ (VNG = m/(\) = Gm(A)G™ = pg(m(N))
=m' =¢gom&m=¢g1om.
Then we have that
— f € Gly(R)m = Jp4 € Inn(M4(R)) such that f =¢paom = ¢, 0
¢G—1 om = ¢AG—1 om' = f € Gld(R m = Gld(R)m - Gld(R)m’
— f € Gly(R)m’ = ¢4 € Inn(My(R)) such that f = ¢4 0m =
gbA o CbG om = ¢AG om = f < Gld(R)m = Gld(R)m’ - Gld(R)m
Thus Gly(R)m = Gly(R)m/.
Hence M,, = M,, < Gld(R)m = Gld(R)m/ ]

9



For a bit of notation, let

® Miep,a := {My, | m € repy A} be the set consisting of the kind of A-
modules described in Remark 1.

o [M] = {NEMr

repg A+

A ‘ M = N} be the isomorphism class of M €

€Pg

o Micpyn/~ 1= {[M ] ‘ M e MrepdA} be the set of isomorphism classes in
Mrepd/\-

o repaA/ciyr) = {Gly(R)f | f € repy(A)} be the set of Gly(R)-orbits in
rep, A.

Then a consequence of Lemma 1.2 is that the function

O : Mrepgn /> — 1epa A/G14(R)

is a bijection, since:

o for m,m’ € repy(A) such that O([M,]) = O([M,y]), we have that
GlyR)ym = O([M,]) = O([Myy]) = Gly(R)ym' = M,, = M, =
[M,,] = [My]. Thus O is injective.

o If p € repad/aiy(R), then Jg € rep,(A) such that p = Gly(R)g, and
O([My]) = Gla(R)g, so p = O([M,]) for some g € repy(A). Thus O is

surjective.

Hence there is a bijection between the set of isomorphism classes of A-modules
that are free and has length d as R-modules and the set of Gly(R)-orbits in

repg(A).

1.2 Representations Correspond to Matrix Tuples

We can show that the set of representations rep,(A) are in bijection with a
subset of My(R). I order to show this, we first need a lemma, and proving
the lemma requires us to do some work beforehand.

Let R(Xy,...,X,) denote the free R-algebra on n € N indetermi-
nates, where R is a commutative ring. Let I' be some R-algebra and
Y= Y1,---7) €™ For I = (iy,...,in) € NN where N € Ny := {0} UN,

10



we introduce the notation v; := vazl Vi;- It N =0, we say that 77 := 1. We
then define
(M ={w|TeN), NeNy}.

(7)* equipped with the multiplication from I" becomes what we call a monoid.
A monoid is akin to a group because it is a set with a closed binary operation
which is associative and admits an identity element, but the elements in a
monoid do not necessarily have inverses with respect to the binary operation.

Having defined (v)* ,we can then write any element z € R(X;,..., X)) as
T =) e(xy- Tww Where 7, € R for each w € (X)* and X = (X3,...,X,) €
R(Xy,...,X,)". If we let I'" be another R-algebra and v = (71,...,7,) €
(I'")™, then we define a function

*

Pyt (v)" — <7,>
Y1 7}

for all I € NY and N € Ny. The function p, ., is what we call a monoid
homomorphism, that is it has the properties p, (Aog) = py (A)py (o) for
all A\,o € (y)* and p, ,(1r) = 1. To prove this, let A,o € (y)*. We can
write these elements as A = vy and 0 = ; where [ = (iy,...,in,) € Nﬁ“,
J = (J1,---,7n,) € N¥2 and Ny, Ny € Ny. Let K = (i1, .. iny, J1s- -5 JN,)
and observe the following.

Py y(AT) = pyry (V1Y) = Py (VK) = Vi

= '7}'7& = Py (’YI) Py ('YJ) = p’y’,v()‘)p'y’,'y(a)'

The definitions of monoids and monoid homomorphisms are from |7].

We also have that p ,(1r) = H?:l Vi; = ngl p(7i;) = 1. Thus p.y, is
a monoid homomorphism. We also define a function

PVIN:F—>F’

D rw i Y rupy (W)
we(y)*

we(Y)*

for all r, € R for each w € (v)*. We show that P, . is an R-algebra, so
let t € Rand \ = Zae(X)* TaQl,0 = Zaax)* sqa € I for some 14,8, € R
Vo € (7)*. Then

11



Z roQ
ag(y)*

Z Sa@ | = Py (A) + Py (o).

Bely
= Py, Z raspof | = Z TaSpPy
o, BE(Y)* a,Be(y)*
Z Tasﬂpw @)y ( Z TO"O'Y al
a,BE(y a,BE(y

- Z Tapy (@) Z Tapy 4 (B)

ag(y)*

12

BE()*

2

~(aB)

56/)7 v(ﬁ)



= Py y Z Ta® | Py y Z raB | = Py (A) Py y(0).
ac{y)* Be()

Thus P,/ ., is an R-algebra homomorphism.

Lemma 1.3. Let A be an algebra over a commutative ring R. Then
A = RXi,..Xa)/1 for some ideal I in R(Xy,...,X,) and a suitable n € N
< A is finitely generated.

Proof.

(<) Suppose A is finitely generated, that is A can be generated by n el-
ements for some n € N, say Ay,..., A\, € A. Let A = (A\,...,\,)
and consider the R-algebra homomorphism P, x. Since A is gener-
ated by A1,..., A\, if we let 7, € R for each w € (X)* and define
Sy = Zwepglx(v) r, for each v € py x((X)*) = (\)*, then we can write
any element o € A as

o= Z 5,y = Z Z Tw | 7= Z Twprx (W)
YE)* we(X)*

ye(A)* wep;lx ()

:P)\’X E Trow

we(X)*

Then P, x is surjective and we have an induced isomorphism

P)\,X s R(Xq,.., Xn)/kerPA%X — A

x + ker Py x — P x(2)

for all representatives x € R(Xj,...,X,) of the cosets x + ker P, x.
Thus BX1-.Xn) /1 = A for some ideal I in R(X;,...,X,).

(=) Suppose that there is some ideal [ in R(X},...,X,) such that

R<X1 ..... Xn)/] g A

13



where n € N and let g be an isomorphism from B{X1...Xa)/1 to A. We
have a surjective quotient map

q: R(Xy,..., X,) = BX1.Xn)/1
z—x+1

for all z € R(Xj,...,X,), which is an R-algebra homomorphism.
f = g oq is then a surjective R-algebra homomorphism. Let I =
(i1,...,iy) € N¥ for some N € Ny. Since f is an R-algebra homomor-

phism, f(X;) = va:l f(X5;) = f(X); and
FUX)) = {f(X)r [ T €N, N € Noj.

Then f(z) = >, c(x) rwf(w) is a linear combination of elements in
JUX)™) for all x = 37 ¢y row € R(Xy,..., X,) where 1, € R for
each w € (X)*, and since f is surjective, every element in A = Im f

is a linear combination of words in f((X)*). A is then generated by
f(X1),..., f(X,). Thus A is finitely generated.

Hence A = R{X1,.Xn)/1 for some ideal I in R(Xy,...,X,) and n € N if and
only if A is finitely generated. [

For the following result, define
=) ={A e My(R)" | Pax(\) =0VX e I}
for any ideal I in R(X,...,X,).

Proposition 1.1. Let R be a commutative ring, d € N, A a finitely gener-
ated R-algebra and I an ideal in R(Xj,...,X,,) for some n € N such that
R{X1,..Xn) /1 =2 A, Then

rep, A is in bijection with =(7).

Proof. Let g : BX1,.Xn) /15 A be an R-algebra isomorphism and

q: R<X1, “e aXTL> — R(X1,..., Xn)/[

Vo € R(Xy,...,X,). Define a function
O :repy A — =(1)
fr=(fogoq(Xy),...,fogoq(Xy))

14



for all f € rep; A. We would like to show that © is an isomorphism, and we
do so by first showing that it is well-defined, then bijective and lastly that ©
is an R-algebra homomorphism.

1. If J € NY for some N € Ny and f € rep, A, then

Po(p).x (Xy) = Pe(f),x (X5)=0O(f)s= f9a(X)s = fgq(X,)

since f, g and g are R-algebra homomorphisms. Here concatenation
of functions is assumed to signify function composition. We then have
that

Po(p.x(w) = fogoqw)
for all w € (X)*, so if A € I such that A =3_ . y.7ww where r, € R
for each w € (X)*, then

Popyx(N) = Ponx | D rew | = D rupern.x(w)

we(X)* we(X)*

= Z rofogoq(w)=fogogq Z row | = fog(0)=0.

we(X)* we(X)*

This means that © is well-defined.

2. We prove that © is a bijection by first showing it is injective and then
that it is surjective.

(a) To show injectivity, assume fi, fo € rep, A such that O(f;) =
©(f2). Then

(fr9a(Xa), .-, f199(Xn)) = (faga(X1), ..., f299(X,))

& filgoq(Xy)) = fi(goq(X;)) Vi € N,,.

Since both f; and f; are R-algebra homomorphisms, we then have
that fi(w) = fo(w) for all w € (g o q(X))*, where

goq(X)=(goq(X1),...,90q(Xy)),

15



and consequently that

fl Z ToW | = f2 Z Tow

we(gog(X))* we(gog(X))*

for all r, € R, w € (g o ¢(X))*. Furthermore, by the proof of
Lemma 1.3, we have that A is generated by goq(X3),...,g0q(X,),
so every element A € A can be written as A = 3 oy« Tww for
some 7, € R for all w € (goq(X))*. Then f1(\) = fo(\) VA € A,
so f1 = fs. Thus © is injective.

(b) To prove surjectivity, let A = (A;,...,A,) € Z(I). We want to
show that 3f € rep, A such that ©(f) = A, that is fogoq(X;) =
A; Vi € N,,. Consider the R-algebra homomorphism Py goq(x). We
have that Pa goq(x)(9 0 ¢(X3)) = pagoqx)(Xi) = A; for all i € N,,,
50 O(Py gogx)) = A. Then 3f € repy A such that ©(f) = A for
every A € My(R)"™. Thus O is surjective.

Hence © is a bijection. O]

1.3 Representations of Quivers

In this section we introduce concepts related to representations of quivers. We
also give a group action on quiver representations and show that it coincides
with the action of Gly(R) on algebra representations.

A quiver I' = (I'g, I'y) consists of a finite set I'y of vertices and a set I'y of
edges. Each edge a € I'; has a starting point s(a) and an end point e(«).

Let k be a field and T' a quiver. A representation (V, f) of I' consists
of a family of k-vector spaces that contains a vector space V(i) for each
vertex ¢ € 'y and a family f of k-linear transformations that contains a
transformation f, for each o € I'y.

Let (V, f) and (W, g) be representations of a common quiver I'. A ho-
momorphism h : (V, f) — (W, g) between representations consists of k-linear
transformations h(i) : V(i) — W(i) for each i € T'y such that for every
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a:i— jin ['1, where a : i — j means s(a) =i and e(a) = 7, the diagram

Vi) 22w

fa lga

V() =2 w()

commutes. If h(7) is an isomorphism for every i € Ty, then we say that h is
an isomorphism.

For any quiver I' and field k£ we can construct a category rep I’ whose
objects are representations of I' over k. The set of morphisms Hom,e, r(V, W)
between any two objects V' and W consists of the homomorphisms between
V and W. Define for any d € N the full subcategory rep,I' of repI" whose
objects (V, f) satisfy the equation ), dim; V(i) = d. Let m = [Ty,
D = (dy,...,d,) € N™ and define the full subcategory rep, I" of rep I' whose
objects are the representations (V, f) where dimy V(i) = d; for each i € I'y.
If > icr, di = d, then rep,, I' is a full subcategory of rep, I'.

Let D(dy,...,d,) € N™ and consider the cartesian product Mp(k) =
[1:%, Mg,(k). Define addition, multiplication and scalar multiplication on
Mp(k) as component-wise addition, multiplication and scalar multiplication
on matrices. This defines a k-algebra structure on Mp(k), as we show in
Appendix E. Then U(Mp(k)) = Glp(k) =[]~ Gl (k).

Choose a basis for every vector space in every representation in repp I'.
Define then a group action of Glp(k) on the objects of rep,I', denoted
Ob(repp I'), as

Glp(k) x Ob(rep, I') — Ob(rep,, I)
(A4, (V. f)) = (W, 9)
for all representations (V, f) in repp, I and A = (A4, ..., A,) € Glp(k). The
representation (W), g) is defined such that W (i) = V(i) for all i € I'y and for

every edge « : 1 — j € I'y we have that g, is the unique linear transformation
W (i) — W(j) such that the diagram

V(i) <2 W)
. e
V(i) = W)

17



commutes, that is g, = A;foA; . Then A;g, = foA;, so A defines a bijective
homomorphism between (V, f) and (W, g), which means (V, f) and (W, g) are
isomorphic. Since there is a bijective correspondence between representations
of I' and kI'-modules, we can say that two representations are in the same
Gla(k)-orbit if and only if they are in the same Glp(k)-orbit, where d is the
rank of each of the modules the two representations correspond to.

If k£ is a finite field, say GF(q) for some prime power ¢ € N, then we
can find the size of the Gls-orbits. We have that for the group action of
any finite group G on a set X, the size of the orbit of an element x is %
where GG, is the stabilizer subgroup of z. In the case of representations of
quivers we have G = Glp(k) and X = Ob(repp '), so if z = (V, f), then
Go = {A € GL(k) | A-(V.f) = (V, /)}. We have that A - (V, f) = (V)
if and only if A describes an isomorphism from (V) f) to itself. We call
such isomorphisms for automorphisms on (V, f), and we denote Aut(V, f) =
{automorphisms on (V, f)}. Then G, = Aut(zx), so if Gz denotes the orbit
of x, then

|Aut(V, f)]

1.4 The Zariski Topology

The Zariski is the last puzzle piece needed to define degeneration on Gly(K)-
orbits. We define affine spaces and the Zariski topology and state some
properties of these concepts.

The following definition is based on the one found in [13].

Definition 1.5. Let V' be a vector space over a field K. An affine space is
a nonempty set A together with an addition A x V' — A which satisfies the
following criteria for all p € A.

I. (p+a)+b=p+(a+b)VabeV.

2. Given g € A, 3l a € V such that ¢ = p + a.

A

It is not uncommon to include a third condition to the affine addition in
A, namely that p = p + Oy for all p € A. This condition is however implied
by the two others. We first have by (2) that p = p+a for some unique a € V.

18



Thenp=p+a=(p+a)+a=p+(a+a),sop=p+aand p=p+ (a+a),
but by the uniqueness of a, we have that a = a+a = a =0y = p=p+0y.
An example of an affine space is A" := K™ with standard vector addition,
where K is an algebraically closed field and n € N. A" is also a vector space
and all vector spaces are in fact affine spaces.
Next we have affine algebraic sets. These are defined to be the algebraic
sets of A™. That is, affine algebraic sets are on the form

V(S)={z € A" | f(z) = 0Vf € S}

where S C K[Xy,...,X,]. This definition of affine algebraic sets, the fol-
lowing properties and the subsequent definition of the Zariski topology are
based on [10].

Lemma 1.4. The following statements about algebraic sets are true.

1. V(S) = V((S)) for any subset S C K[Xi,...,X,]. (S) denotes the
ideal generated by S.

2. V(A)UV(B) = V(AB) for ideals A, B in K[X7,...,X,].

3. Nier V(A) =V (3, As) for ideals A; in K[Xq,...,X,], i € I, where
I is some set of indices.

Proof.

1. Let S be asubset of K[X,...,X,]. S C (S5) implies that if x € V((.5)),
ie. if f(z) =0 for all f € (9), then g(x) =0 for all g € V(5). Thus

V((S)) CV(9).

Next, if a; € K[Xy,...,X,] and s; € S for i € N,,m € N, and
z € V(S), then s;(x) = 0, implying (37", a;s;) (x) = 0. Since every
element in () is on the form )" | a;s;, then f(z) = Oforall f € V((5))
=

V(S) € V((9)).
Hence V(S) = V((9)).

2. Let A, B be ideals in K[X7,..., X,]. Suppose x € V(A)UV(B). Then
f(x)y =0forall fe Aor g(z) =0forallge B. If fi,...,fn € A
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and g1,...,9m € B, m € N, then (3_.", f;g;) (x) = 0 since f;(z) =0 or
gi(z) = 0 for each i € N,,. Then z € V(AB), and

V(A)UV(B) C V(AB).

Suppose = € V(AB). We can assume that there exists a f € A such
that f(x) # 0 because if f(z) = 0Vf € A, x € V(A)UV(B) and
we are done. For every g € B we have that (fg)(z) = f(x)g(z) = 0.
Since K is an integral domain, we then have that f(z) = 0 or g(z) = 0,
but f(z) # 0, so g(x) = 0. Since g is an arbitrary element in B, then
g(x)=0Vg € B. Thenx € V(B) =2 € V(A UV(B) =

V(AB) CV(A)UV(B).
Hence V(A)UV(B) = V(AB).
3. Let A; be ideals in K[X7, ..., X,] for all i in an indexing set I. Suppose

€ Nie; V(A) =z € V(A) for every i € I. Let f; € A; Vi € I. Since
filz)=0Vel, then (},.; fi)) () =0,s0z €V (>, A) =

V() cV (Z Ai> :

el el

Suppose = € V(Ziel Ai). Suppose f; € A; for each @ € I. Then
> ier fi € Dier Ai- Let j € I Thesum fi+37, (= fi) = Xiep (=)
is also in ) .., A; since f; — f; =0 € Ajand —f; € A; Vi € I\ {j}.
Dier fi + Zie[\{j}(_fi> = fj, 0 fj € XierAi- Then fj(z) =0, so
reV(A)Vjel =xe(), V(A =>

4 (Z Az’) - ﬂ V(4.
icl iel
Hence V (3°,c; 4i) = Nier V (A).
O
With algebraic sets in our arsenal, we move on to the Zariski topology.

Definition 1.6. The Zariski topology is defined such that the closed sets
are the algebraic sets of A", A
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This does really define a topology:
o if f=0,then f(z)=0Vxe A" = V((0)) = A" = A" is closed.

o if f(x) =0forsome f € K[Xy,...,X,]andz € A", then (f+1)(z) = 1.
Then, for every x € A", there always exists a function g such that
g(x) #0,s0 V(K[Xy,...,X,]) =@ = & is closed.

e by Lemma 1.4, we see that finite unions and arbitrary intersections
of algebraic sets are again algebraic sets, which in the context of the
Zariski topology means that finite unions and arbitrary intersections of
closed sets are closed.

Let S be a subset of A"™. For the sake of convenience, if A is a subset of
K[Xy,...,X,)], we write A(S) =0if f(zr) =0forall f € Aand z € S. The
closure is

S= N viy=v| > A4

A ideal A ideal
A(S)=0 A(S)=0

We can show that show that

Y A={feK[Xi,. .. X,]|f(x)=0VzeS}.

A ideal
A(S)=0
1. Suppose f € Zﬁx(iqd)eal A. Then f(z) for each z € S
=0
= fe{feK[X,...,X,]|fx)=0Vx e S}.

2. Suppose f € {f € K[X1,...,X,]| f(x) =0Vx € S}. We have that
f € (f), which is the ideal generated by f, and (f) C ZA(id)eal A.
A(S)=0
Th S idea A
NI E L

Then S = {z € A" | f(z) = 0Vf € K[Xy,...,X,] such that f(S) = 0}.
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1.5 Degeneration

We now have the necessary concepts and results needed for defining degen-
eration on Gly(K)-orbits for algebraically closed fields K. Afterwards we
state a result about how the degeneration order relates to certain short exact
sequences and how this result can be used as a way to expand the defini-
tion of degeneration. We also give a second order <., and discuss how
this order and degeneration are associated. Lastly we present an example of
degeneration on certain representations of the Cronecker quiver.

Remark 2. Let A be an algebra over a algebraically closed field K which is
generated by n € N elements, d € N and let © be the group isomorphism
described in the proof of Lemma 1.1. Then we have the following facts about
the Gly(K)-orbits in repy(A):

1. Glg(K)m is open in its Zariski closure Gly(K)m = {m’ € repy(A) |
p(©(m')) = 0 where p is a polynomial in nd? variables such that
p(O(f)) =0Vf € Gly(R)m}.

2. If m € repy(A), then Gly(K)m is a union of orbits.

3. dim (Gld(K)m\Gld(K)m> < dim (Gld(K)m) for all m € repy(A),
where dimension is referring to Krull dimension of the variety. More-

over, the following formula for the dimension holds: dim(Gl,;(K)m) =
d? — dim (End, (M,,)).

A

For the following definition, recall the function O such that O( [Mm]) =
Glg(K)m for all m € rep,(A).

Definition 1.7. Let A be a finite-dimensional algebra over an algebraically
closed field K, d € N and let M, N € M,q,,». Then we say that [M/] degen-
erates to [N], denoted [M] <4es [N], if and only if the orbit corresponding
to [N] is included in the closure of the orbit corresponding to [M], that is

O([V]) € O([M]). A

Remark 3. We sometimes drop the equivalence class notation and say M
degenerates to N, or M <4 N for some M, N € M,cp,a, but this really
means that [M] <ge [IV]. A
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Theorem 1.5. Let K be an algebraically closed field, A a finite-dimensional
K-algebra and M, N A-modules that are finite-dimensional as K-modules.
Then M <o N if and only if there exists an A which is finite-dimensional
as a K-module such that the sequence 0 - A - A@® M — N — 0 is short
exact.

We can then extend the definition of degeneration to include A-modules
that have finite length as R-modules where A is any algebra over a commuta-
tive ring R. For any such A-modules M, N, we say that M <4, N if there is
an A-module X that has finite length as an R-module such that the sequence
0=>X—=>XdM-— N — 0 is exact.

Remark 4. The degeneration relation <ge, defines a partial order on isomor-
phism classes of A-modules that have finite length as R-modules.

1. Let M be an A-module that has finite length as an R-module. Then for
any A-module X that has finite length as an R-module we have that the

idx .
( 0 ) XM (© 1dM>) > 0 is short exact.

sequence 0 » X
Thus M <geg M.

2. We prove antisymmetry later on.

3. Let L, M, N be A-modules that have finite length as R-modules. There
there are A-modules X,Y that have finite length as R-modules such
that the sequences

()

0 % (gl}/@M(gigégN

commute. We have that the map

idy 0
0 f
-—5

0 y X y XL U2 ' 0

and

[}

Yo X YSXDL

is injective and the maps

(f{ 0 0
15 91 92 (9% 95)

YOXODL Y®&M and YEM —— N
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are surjevtive. Then the composition

.0 0
6 @) () o o) = G nst )

:(0 929} gggg) Y XL N

is surjective. Thus we get that the sequence

), ., e
0 VoXx Y yvexer 020920

e}

is short exact since

1 0
(0 9207 9295) ={0 fi] =(0 ghlgrfi + g2/2))
0 fo
=(0 ¢g5-0)=(0 0).
Then L <geg N.

A

Definition 1.8. Let M, N be A-modules that have finite length as R-
modules. We say that [M] <. [N] if there exist A-modules A, B that have
finite length as R-modules such that N 2 A@Band0 —- A — M — B —0
is a short exact sequence. A

Remark 5. We sometimes write M <. N, which means [M] <. [N]. A

Theorem 1.6. Let M, N be A-modules that have finite length as R-modules.
If M <c N, then M <geg V.

Proof. Suppose M, N are A-modules that have finite length as R-modules
such that M <.,; N. Then there are A-modules A, B that have finite length
as R-modules such that N = A @ B and we have an exact sequence

0 v A1 2y B s 0 .
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Then the sequence

0 ida 0

0 > A (f)>AG9M(O—g>>A@B—>O
is exact since (?) : A — A® M is injective, (ldAO) A M — Ad B is
surjective and (i%“‘(g))(?) =(00). Thus M <4y A®B=N. O

Corollary 1.6.1. Let M, N be A-modules that have finite length as R-
modules. If M <. N, then T'® M <goe T'@® N for any A-module 7" that
has finite length as a R-module.

Proof. Suppose M, N, T are A-modules which have finite length as R-modules

and let N =2 A@® B such that 0 — A i) M % B — 0 is short exact for
suitable A-homomorphisms f and g. Then

(ldT0> 0
0— s Tod " Nrgy 22

s B > 0

is short exact, so T & M <gqee T ® A® B =T @& N by Theorem 1.6. O

1
Example 1.3. Let I" be the quiver la . We want to construct two
2

B
representations of I'. For one representation (V, f) we want that fg =0 and
fsfa # 0. For the other representation (W,g) we want that g5 = 0 and

k
939a = 0. Then let (V| f) = l(ﬂ) and (W, f) =

1

b
) U

. We can show
that (Vv, f) Sdeg (VVa g)
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0 -1 k2 10
; (0,(33)) % (0,(49)) )
| (§8) |®
k?2 @ /{52
() 2
GO o) &~y @Y
k‘2
(31)

The commutative diagram above implies the existence of a short exact

sequence
0 > X » Xe((V,f) — (W,g) — 0
0
where X = l . Thus (V, f) <qeg (W, g). Another observation is that
/{2
(00)
(V, f) and (W, g) are indecomposable. Since f, # 0 and g, # 0, then we

0 k
cannot have decompositions of the form l S5 l . The other possible

k2 0
0 k
sort of decomposition would be l & l , but fz # 0, gg # 0 and

o G
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fg = gg = 0, which rules out this type of decomposition. Then we have
proper degeneration between indecomposables, so there exist modules M, N
such that

M SdegN# M Sext N.

A

1
Example 1.4. Consider the Cronecker quiver I' = u, k = GF(q) for a

2
prime power ¢ € N. The number of representations with dimension vector
(2,2) is
|Ob(rep(272) IDIES |M2(GF(Q))2| =q".

The group acting on Ob(rep, 5 I') is G = Gla(k) x Gly(k) and we have that
G| = ("=1)(°=q)-(¢°=1)(¢°—q). Let us find the G-orbits of Ob(repy 5 I').

If € rep(y 5 I, then the size of its orbit is |Gz| = (q2_1)(‘12;&‘1&'%'—1)((12—‘1).

Through the following calculations we try to find representatives for all
the G-orbits of Ob(reppq) I').

]{Z2
1. z1(a) = Izuj(a) where J(a) is the matrix of Jordan Canonical form
kQ
/{32
with a € k along its diagonal. We also define x1(0c0) = j(o)| |7, - There
kQ
is one J for each element in k, and any two J’s correspond to non-
isomorphic representations. We can interpret x;(00) as being the "point

at infinity". Then there are ¢ + 1 orbits represented by x;. As for the
size of these orbits, we have that Aut(x;) = *Xl/(x2) which has size

2 2 \\2
¢ — g, s0 |Gay| = (®=1)(a*=q))® _ (2 — 1)2(¢* — q).

a*—q
12
2. xo(M) = IQuM7 where M is a matrix whose characteristic polyno-
12

mial is irreducible in k[X]. The formula for the number of irreducible
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polynomials over GF(q) of degree n is %de 1(2)q?. Here pu(1) =1
and p(r) = (—1)° where s is the number of factors of r. This formula
is from [4]. Since the characteristic polynomial of M has degree 2,

then the number of orbits is @. Furthermore, Aut(z;) = GF(¢%)* =

|Aut(zs)| = ¢ — 1 = |Gxo| = (¢* — 1)(¢* — ¢)*.

k k

. T3 = ((1))u((1)) &) u There is only one orbit represented by z3. We
k2 0
~ End(V) Hom(W,V ~
have that End(V & W) = (Hom(\(/,v)v) End((W))), so End(z3) = (7).
If an endomorphism a = (%' 2 ) on x3 is bijective, then all entries
along its diagonal are nonzero. Thus Aut(z3) = (% %), so |Aut(z;)] =
k|- |k*|? = q(¢ — 1)? and |Gz3| = q(¢® — 1)%

k2 0
LTy = (g 0)u(0 1 @ u There is only one orbit belonging to this rep-
k k
resentation. We have that End(z4) = (k%) and any automorphism on

x4 must have nonzero entries along its diagonal, so Aut(z,) = (% £).

Then |Gxy| = q(¢* — 1)2

k k
. z5(a,b,c,d) = aub &) Cud where a, b, ¢, d € k such that we do not have

k k
that both a and b equal are 0, or that both and ¢ and d equal 0, and

k k k k
we have that aub = cud. For every w € k* and 8 € k, auﬁ = luﬂ,

k k k k
for some v € k. Then every isomorphism class of representations on

k k
the form auﬁ can be represented by 1u«y for some v € k. Then

k k
there are |k| = ¢ isomorphism classes of representations on this form
and thus there are also g orbits represented by x5 where a,c € k*

28



k k k
and b,d € k. If « = 0 and § € k*, then auﬁ > Oul, and Oul

k k k
represents a unique isomorphism class, which means that there is one
orbit represented by x5 where a = ¢ = 0 and b,d € k*. Thus there
are ¢ + 1 orbits in total which are represented by x5. We can represent

k k
q orbits by z5(\) = 1u,\ ® lu/\ for A € k and the last orbit by
k k

k
z5(00) 1= Oul 2 ouy
k

k

We have that End(xs) = (k%), so Aut(z;) = Gly(k) and [Aut(z;)| =
(¢* = D(¢* = ¢)- Then |Gs| = (¢* = 1)(¢* — g).

k k
. xgla,b,c,d) = aub & Cud where a,b,c,d € k such that we do not

k k
have that both a and b equal 0, or that both and ¢ and d equal 0,

k k
and we have that aub % cud . There are g+ 1 isomorphism classes of

k k
k
representations on the form of auﬁ where «, $ € k and not both a and

k

[ are zero, so since any xg is a direct sum of two such representations,

then there are (q;rl) = @ orbits represented by zg. We can represent
k k

some of these orbits by zg(\, \') := luA @ 1u/\, for varying A\, \' € k
k k

such that A # X'. It might seem like allowing any A and X’ such that \ #
X would mean there are ¢* — g orbits represented by x4(), \'), but since
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(A, ') = x6(N, A), then there are actually ‘IQT_‘I = (%) such orbits.

k k
The other ¢ orbits can be be represented by xg(\, 00) := 1u,\ &) Oul :
k k
k k
Let f € Hom aub, cud . Then there exist fi, fo € k such that
k k
ks k
the diagram aib c| |4 commutes, that is fea = cf; and foc =
ks k
k k
df,. Since the representations “u” and Cud are supposed to be non-
k k

isomorphic, then f; = 0 or fo = 0. Suppose f; = 0 and f5 # 0, then
a=b=0. If fy #0 and fo = 0, then ¢ = d = 0. This contradicts
the initial assumption that not both a and b can equal zero or that
not both ¢ and d can equal zero. Thus fi; = fo, = 0= f = 0, so

k k
Hom aub, Cud = 0. We then have that End(z4) = (’5 ) and
k k

Aut(xg) = (k(:)* k?*) = |Aut(zg)| = [k*]? = (¢ — 1)

= |Gas| = ((¢° — ¢)(q + 1))

k k 0
. X7 = “u” & u & where not both a € k£ and b € k are zero.
k 0 k

There are ¢ + 1 isomorphism classes of representations of the type
k
aub, so x7 represents ¢ + 1 orbits. We can represent ¢ of these orbits

k
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k k 0
by x7(\) = &> ® here A € k. The last orbit can be
y 7( ) 1u,\ u u w

k 0 k

k k 0
represented by z7(00) := Oul @ u & u
k 0 k

We have that End(z7) = (g % Ié . Invertible elements in End(z7) must
have nonzero entries along their diagonals, so
k0 k
Aut(zr) = | K kE* O
0 0 k*

Then |Aut(z7)] = ¢*(¢ — 1)? and |Gay| = (¢* — 1)(¢ + 1).

2 2
k? k 0

L ag= (9 g)u(g 0) = u @ u . There are no variables in this
k2 0 k

expression, so xg only represents one orbit.

k‘2 My k2
Let My, My € My(k). The diagram (88)u(88) (88)&(88) com-

k2 My k,Q
mutes since (3 9) - My = (§9) = My-(59). Then

M = (Ml,Mg) c End(ZL’g) = EIld(l’g) = Mg(k?) X MQ(k)

= Aut(zg) = Gly(k) x Gly(k) = |Aut(xs)| = ((¢* — 1)(¢* — q))?

We collect these findings in the following table.
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Type Characterization Orbits Orbit Size
1 | 2x 2 Jordan matrix | ¢+ 1 | (¢*> —1)*(¢*> — q)
irreducible 2
T characteristic q 5 q (*—1)(¢* —q)?
polynomial
k k
23 u ® u 1 q(q* —1)?
k2 0
k? 0
T4 u o u 1 q(q® —1)?
k k
k k
s u“:“u g+1 | (=1 -9
k k
k k 2
q-+q 2 2 2
_ 1
6 u % u 5 (¢ —a)*(g+1)
k k
k k 0
7 u@u@u g+1 | (¢-1)(¢g+1)
k 0 k
k k
g ol lo D ouo 1 1
k k
The sum

8

Z]{orbits of type x;}| - |any orbit of type ;|

=1

should equal the total number of representations of the quiver I' with dimen-
sion vector (2,2) over k, which is ¢®. We can then compute this sum as an
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assurance that we have not missed any representations.

(¢+1)(¢* —1)*(¢* —q)

2
¢ —q
+ (¢* = 1)(¢* — q)°
+1-g(¢* = 1)?
+1-q(¢* — 1)?
+g+1)(¢* - 1)(¢° —q)
7 +q
+ (" — q@)*(qg+1)°
+(g+1)(¢> = 1)(g+1)
111
= q —3¢° +3¢3 —q
+3¢° =347+ +0° —§¢' +3d°
+¢° —-2¢°  +q
+q° -2¢°  +q
+¢° -2¢°  +gq

2@ 434" @ —¢° 34" 430
+¢*  +2¢4  —2¢ -1
+1
=1-¢®+0-¢+0-¢"+0-¢"+0-¢"+0-¢*+0-¢*+0-¢g+0
Below is a Hasse diagram which depicts part of, if not the entire degeneration

order on rep,(f’Q) I'. The edges in the diagram stand for degeneration in such
a way that if an edge connects two vertices x and y where x is above y in
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x
the diagram, which could look like ‘ , then x <geg .

Y
xo(M) x1(N) xe(N, A
T3 96'50\)ﬁ L4
\ ) /

xrg

The degenerations depicted above exist for every A\, X', \" € kU {co} where
N # XN and M € My(k) whose characteristic polynomial is irreducible. If

k = GF(2), then we can make the following degeneration diagram which
includes every orbit.

=

xo(M) x1(0) x1(1) x1(00)  x6(0,1) z4(0,00) w6(1,00)
x z5(0) z5(1)  as(

3

NS

(0) z7(1)  ar(

xs

We can choose M = (}}) or M = ({1) for the diagram since both have
characteristic polynomial X2 + X + 1, which is irreducible in GF(2)[X].
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Through the following calculations we show that the edges in the Hasse
diagram above actually correspond to degeneration. The first points prove
the degenerations x; <4es x; between the first two rows in the degeneration
diagram by constructing a commutative diagram

0 y Ay I, B AN > 0
u alu% bi| | b2 Clucz u
0 > Ag 5 » By TR Cy > 0
Al Bl C’1
where z; = Band z; 2 A@ C for A = 4| |a, B = 4, bQ,C’:clucQ,
A2 B2 02

f="(f1,f2) and g = (g1, g2). If the rows

and

0 s Ay 2 B, 25 s 0

f

are short exact, then the sequence 0 > A sy B —2 5 C > 0 s
short exact. Leveraging Theorem 1.6 then gives B <4os A®C, or equivalently
Ti Sdeg Tj-

o 71(N\) <qgeg z3 for all A € kU {oo}:

If \ € k, then
k2 k?
nN = n|lw = 9]
k? k?
and we have that
k k
== @)oo
k2 0
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The diagram

0 > k y k2 > k > 0
I @lo anllay || ik
0 > k2 y k2 > 0 > 0

(61)

commutes and has short exact rows.

For A = oo, we have that

k2 k?
n(00) = o[ = (319)](49)
k? K
0 » k (o) Ny LN > 0
| oo avllen || Il
0 . ]2 N »: s 0 > 0

01
(Y6)
commutes and has short exact rows.

o 1(\) <geg x4 for all A € kU {oo}:
We have that

k2 0 0 k2
Ty = (10)u(01) D u = u ® O)H(O 1)
k k k k

by definition. For A € k£ we have the following commutative diagram
with short exact rows.

(94)
0 > 0 s k2 > k2 s 0
1l | anlen aoljen ]
AN AN 2 AN AN
0 7 k (él)) 7 k (01) 7 k 7 O



For A\ = oo, we have the following commutative diagram with short
exact rows.

10
0 > 0 y k2 <01)‘k2 > 0
Il I anlen aollon ]
\ \ 2 \ \
21(A) <deg 5(A) for all A € kU {o0}:
For A € k, we have that
k k
r5(\) = 1u>\ D luA
k k
The diagram
0
0 s k (2) yp2 10 g > 0
Il Jbhoooanllay 1l
\ \ 2 \ \
O 7 k (?) 7 k (10) 7 k 7 O
commutes and has short exact rows.
If A = oo, then
k k
r5(\) = 25(00) = oul S Oul-
k k

Then we have the following commutative diagram with short exact
rOws.

0
0 > k () g2 1O Ly > 0
i of o anlan  of]s i}
\ \ 2 AN AN
0 4 k ([1)) 4 k (10) 4 k 4 O
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2o(M) <geg ©3 VM € Ms(k), irreducible characteristic polynomial:

Let f(X) = X? — aX — b be irreducible in k[X] for some a, be k. We
have that f(X) = X(X —a)— b—det(a’lx’ba)—det(X( ) —=(92)).
Then f is the characteristic polynomial of (%), and we get the follow-

ing commutative diagram with exact rows.

1
0 > k (o) N = JECER NG > 0
I ede anllan | i
0 > k? ((1)%)162 > 0 > 0

To(M) <geg T4 YM € My(k), irreducible characteristic polynomial:

The following commutative diagram has exact rows.

(68)
0 > 0 y k2 067 o 2 > 0
11 ahllan ollen ]
\ 2 \ \
0 s k ((1)) > k 10) > k > 0

26( N, N") <geg w3 for all X, N € kU {oo} such that N # A"
If N, \" € k such that X' # \”, then

k k k2
=@l = @06
k k k2
This gives us the following commutative diagram with short exact rows.

1

0 > k (1) NI R Dy > 0

| oo evllaw | 1l

0 s k2 s k2 > 0 > 0
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If N € k and \' = oo, then

k k k?
z6(N, X") = 26(A, 00) = 1ux b Oul (39 u 39)-
k k k2
Then we have the following commutative diagram with short exact
rows.
0 > k () N R S BN > 0
I ®lo evllen | Il
0 > k2 > k2 > 0 > 0

(671)
o 26(N,\") <geg x4 for all N, X" € kU {oo} such that X' # \":
For X', \” such that X' # \”, the diagram

11
0 s 0 >k;2 Q) 2 > 0
1 I eolee uo)um u
N L 1.2
commutes and has short exact rows.
For M € k and )" = oo, the diagram
10
0 > 0 y k2 (A'1)>k2 > 0
u u gu YO 0>u(o 1) u
\ 2 \ \
0 s k ) s k oo k s 0

commutes and has short exact rows.

The following points prove the last degenerations x; <4es ; in the degener-
ation diagram by constructing commutative diagrams

0 y Ay B <LNYoH > 0
u aluCLQ blubQ CluCQ u
0 > A2 7 > B2 9 > 02 > 0
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A
with exact rows, where v; = T ® B and z; =T &A@ C for A = alu@ ,

Ay
By Ch
B = 4 ||, C= Clu@, some representation T of I', f = (fi, f2) and
By Cy

g = (91,92). The sequence 0 v AL p 2, > 0 is then

short exact, so by Corollary 1.6.1 we have that T'® B <qeg T'® A @ C, which
is equivalent to z; <qeg ;.
o 5(N\) <qgeg z7(A) for all A € kU {oo}:
If A € k, then

0 > 0 > k > k
Il I 1| 1l
> k > k > 0

0

~

~

1

is commutative and has exact rows. We get

k k k 0 k
z5(A) = lu/\ > 1u>\ <deg luA @ u ® u
k k k k 0

Then z5(\) <qeg 7(A) for all A € k.

Let A = 0o. The following commutative diagram has exact rows.

IIZ

0 > 0 > k Lk >
I Il ol I I
0 > k — k > 0 > 0
We then have that
k k k 0 k
00) = o[ |1 D of |1 Zde 0 1@u@ug
k k k k 0

Then 5(00) <deg 27(00).
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o T3 <geg x7(A) for all A € kU {oo}:
For A\ € k£ we have that

0 > 0 >k Lk > 0

1 o @loe ) 1l
\ \2 AN AN

0 by B b » 0

k k k 0 k
w2 || @ ()][@) Sws || @[] @[ 2,
0 k? 0 k k
50 T3 <deg T7(A) for X € k.
Let A = oo. The diagram
0
0 oWy Lk > 0
1l L ole s 1l
\ \ 2 AN AN
0 y k oy k TEY k > 0
is commutative and has exact rows. Then
k k k 0 k
m%u@@u@smu@u@%b%mm,
0 k? 0 k k

50 23(00) <geg T7(00).

T4 Sdeg l’7(>\) forall A e kU {OO}
Let A € k. Then

1
0 s k () g2 D g s 0
u 1u)\ (10)u(0 1) u u
0 > k > k > 0 > 0

1
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is commutative and has short exact rows. We obtain that

0 k2 0 k k
Ty = u D o)u(o 1) Sdeg u b 1ux ©® u = a7(N).
k k k k 0
Then x4 <geg x7(A) for all A € k.
Let A = oo. The diagram
0
0 s k (2) N R L > 0
u of|1 (1 o)u(o 1) u u
0 > k - > k > k > 0
is commutative and has exact rows. Then
0 k2 0 k k
Ty = u ® (1 o)u(o 1) Sdeg u ® Oul ® u = x7(00)
k k k k 0
Thus 24 <geg 27(00).
27(A) <deg xs for all A € kU {oo}:
If A € k, then
0 > 0 > k ! > k > 0
1l I 1
0 > k > k > () > 0

1

is commutative and has exact rows. We have that

Then z7(\) <qeg s for all A € k.
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Let A = co. Then

0 > 0 > k > k > 0
I I || Il I
0 > k - > k > 0 > 0
is commutative and has exact rows. We get that
0 k k 0 k 0 k
M@gu@u@%b&%u@u@u@ug@
k 0 k k 0 k 0

1.6 Additional Orders

There are two more orders on modules that we wish to discuss, namely virtual
degeneration and the hom order. We use these orders in particular to show
that degeneration is a partial orderand we get a chain of implications from
the ext order to the hom order. In this section we assume A is an algebra
over a commutative ring R.

Definition 1.9. Let M and N be A-modules that have finite length as R-
modules. We say that M virtually degenerates to N, or M <,q4 N, if
there exists a A-module B that has finite length as an R-module such that
M @ B <4es N ® B. A

Theorem 1.7. Let M, N be A-modules that have finite length as R-modules.
If M Sdeg N, then M Svdeg N.

Proof. Suppose M <ge N. Corollary 1.6.1 implies M & A <4ee N ® A for
any A-module A that has finite length as an R-module. In particular there
exists such a module, so M < geg V. O

Let A be a A-module that has finite length as a R-module. We let [(A)
denote the length of A as an R-module.
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Definition 1.10. The hom order on A-modules that has finite length as
R-modules is denoted by <j.m, and is defined as the following. M <pom N
if {(Homy (X, M)) < I(Homy (X, N)) for every A-module X that has finite
length as an R-module. A

Theorem 1.8. Let M, N be A-modules that have finite length as R-modules.
If M Svdeg N, then M Shom N.

Proof. Suppose M <, 4eg N. The there exist A-modules A, B that have finite
length as R-modules such that the sequence

0 s A s A BoM —— BN —— 0

is exact. Let X be a A-module that has finite length as an R-module. Ap-
plying the left exact covariant functor Homy (X, ) gives an exact sequence

0 — Homy (X, A) — Homp (X, A® B M) — Homy(X,B& N) .

If we denote Homy (X, ) by [X, ], then we get the following inequality.
X, A® B M| <I[X,Al+I[[X,B& N]|
= [([X, A B] @ [X, M]) < [([X, A] & [X, B] & [X, N])
= I[X,A® B|+1[X,M (X, A® B|+1[X, N]
= I[X, M] < I[X, N]
& [(Homp (X, M)) < l(Homy (X, N)).

<!
<!

]

Now we can show antisymmetry of the degeneration order. Suppose
M, N are A-modules that have finite length as R-modules such that M <g.,
N and N <geoe M. Then M <yom N and N <yom M, so in particular
[(Homy (M, M)) = [(Homy (M, N)). We also have a A-module X that has
finite length as an A-module with finite length as an R-module such that the
following sequence is short exact.

0 > X s X O N s M > 0

This sequence splits due to the equality {(Homp (M, M)) = I{(Homy (M, N)),
which means X & N = X & M. The Krull-Schmidt theorem then gives that
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M = N. Since we already showed reflexivity and transitivity, then we can
conclude that degeneration is a partial order on A-modules that have finite
length as R-modules.

The last theorem also gives rise to the following sequence of implications
for any A-modules M, N that have finite length as R-modules.

MSextN:>M§degN:>M§vdegN:>M§homN

2 Partitions of Natural Numbers

Definition 2.1. Let n € N. A partition of n is a tuple a = (a1, ..., q,) €
N§ such that Z?:l a; =n and o; > a4 Vi € N,,_1. We call o; the i-th part
of a for each 7 € N,,, and we say that the number of non-zero parts of « is
the number of parts of a.

o If a; > ;11 Vi € N,,_q, then we say that « is a strict partition. Another
name for such an « is a partition with distinct parts.

e The length of « is defined as I(a) = |i € N,|a; > 0|, which is the num-
ber of nonzero parts of a.

e The set of all partitions of n is denoted P,.

e The set of all strict partitions of n is denoted 7/9;

A

One way to depict partitions of natural numbers is by drawing Young
diagrams. The Young diagram of a € P, consists of n squares arranged
in /(«) rows where row i is comprised by «; squares for each i in Ny. For
example, the Young diagram of (5,5,3,2,0,...,0) is

45



2.1 Counting Partitions with Power Series

In [8], a couple of formulas are given, such as [[:2,(1 + @) = 200 |P,|2"
or [T, > = > °0% )[Palz™, which relate the number of certain types
of partitions to infinite products. The first part of this section attempts to
explain this relationship and expand on it.

Example 2.1.
e Consider the infinite product
[T+
t=1

If we write the product vertically as

'(1—;—%'3)
(1+27)
(14 2)

and change the numbers in the exponents for boxes, resulting in the
expression

14 2
(14 27)
'(1+$D)7

then multiplying out the expression gives a sum where each term cor-
responds to a partition. For instance, a term corresponding to the
partition @F can be obtained by multiplying the boxed entries in the
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expression as shown below.

Not all partitions can be obtained this way. One example is the parti-
tion BH, as the part oo occurs twice in fH, but its corresponding entry
2™ only shows up once in the product [],2, (1 + ). In fact, no parti-
tion with parts that occur more than once can be obtained the way we
obtained EF Then, since every part is represented exactly once in the
expression, it might be reasonable to believe that all the strict parti-
tions and only those can be obtained from multiplying out [[;2, (1+z").

S 7/7;
(the trivial partition)

o

[mm)

o B
oo BH
oo B EH
oo Fo e A

YT W= O3
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—|—x5+x4x+x3x2
+ 25 + 2%2 + a'a? + 232’
=1+a+a>+22° + 22" +32° +4a®+ - - - .

We see from this that all the strict partitions of n can be obtained from
[1.2,(1+ 2) for the first few n € N.

e Let us look at another infinite product,

> =1l

t=1 =0 t=1

write vertically and switch the numbers in the exponents for boxes like
we did in the previous example. This looks like

(A+2®+a25+2%4+...)
1+2*+2+2%+--)
(I+z+a*+a°+--),
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and then

(1+x“3+x533+x@+--->
(1+xm+xm+x@+---)
(1+xn+xﬁ+xﬁ+---).

If we multiply out this product, we get a sum whose terms correspond
to partitions like in the previous example, but we can obtain many
more partitions from [[;2, > oo &' than [];° (1 + z'). Firstly, the
same strict partitions represented in [];°,(1 + z) are also represented
in ]2, >, 2" since 1 and 2 are terms in y . " for all ¢ € N.
Secondly, if we for instance multiply the boxed entries in

(+xm+xm+x@+--~)
(1+xm++x@+'-->
(+xm+xm+x@+~-->

<1++x5+xg+-~-)
A1

~~> T s

the partition HH is obtained and this partition could not be obtained
from []2,(1 +2"). Then [[;2, > oo, 2" yields all the strict partitions
which could be obtained from [[,7,(1+2"). Actually, any part which is
repeated any number of times is represented in [[;2, > oo ' and that
might mean that any partition can be obtained from [~ %, "
If that is the case, then writing [[,°, >z = > 7 ja,2™ means
a, = |Py|, the total number of partitions of n, for all n € Ny. We can
easily test this for a few n € Nj.
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a € P,

n

0 (the trivial partition)
1 o

2 m f

3 oo P

4 o g 6 7§

5 e 0 P B (B
6

e 500 550 P g P 7 B P

—_
e .

Finding the first coefficients of >~ ;a,2™ yields

[D =" =1+a2+22"+32% + 52" + 72° + 1125 - |
t=1 1=0

which coincides with the number of partitions of every n € {0} U Ng.

A

For any subset 7" C N and sequence s = (s, S1, S2, ... ) where so = 1 and

T ||
81, 89, -+ € Z, we denote N'O | = Npx --+ XNy, so we have that
e.)
[I> s
teT i=0

= (so+s18" + 500 4 ) (sg+5102 489022 4+ - ) (So+ 512 + 859274 -1 ) -

_ § it t1 itot2 ital3
fnd (Sitlx 1 'Sit2x 2 .Sitg‘r 3 )

(it)rer Ny’
o0
= 2 Ise™=> 1 > s |«
(i)ereNy L€T =0 (in)rereny €T
ZtGT itt=n
Setting 75 r(n) == Z(it)teTeNLT‘ [Licr i, gives the equality
ZteTitt:n

[0.9] o0

H E st = g rsr(n)z".
teT i=0 n=0
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We can show that there is a bijection between the set of sequences (i;)ier
which are such that ZteT 1t = n, where i; € Ny for all ¢ € T', and the set P,
of all partitions of n € N whose parts are in T". To help us see this, we choose
an indexing on the set T, that is we say T' = {t1, %2, ... } where t;4; > t; for
every applicable j. Given a sequence (i;)icr such that >, , it = n, we let
J=max{j€{1,2,...,|T|} | iy, > 0}, which is the largest index in (,),cs
such that its corresponding number 7; in the sequence is nonzero. Note that
T might not be finite, so we could have |T'| = oo, but since ), it = n,
then J is always finite as long as n is finite. We construct a partition

<t], .it.J.,tJ,t‘],l,it.Jf.l,tJ,h R A .it.l.,tl,O, . ,0) e P,

which corresponds to (i;);er. This suggests that there is a function ¢ from the

set of sequences (i;)ier € N'OT‘ such that ), . ti, = n to the set of partitions
of n whose parts are elements in 7', and ¢ is such that

< ((it)tGT) = <tJ7 'it"]'v tJa tJfla it'J'_'1>tJ71> s 7t17 'it'lv tl? 07 ) O) .
We get the following facts about .

1. Any sequence (i;)ier € N|0T| such that ), . ti; = n admits a unique
partition of n under ¢. This is because if two sequences (a;)ier, (bt )ier €
Ngﬂ are such that ¢ ((a¢)ter) = < ((bt)ter), that is

at aty
(t]l, ..‘]1,tJ1,tJ1,1, .J.l.l,t‘]lfl,...7t1,.a?1.,t1,0,...,0)

btJ btJ_ b
= <tj2, 2ty g1, .?.1,tJ2,1,...,tl,.’fl.,tl,O,...,O

where we have that J; = max {j € {1,2,...,|T} ’ a, > 0} and Jo =
max {j € {1,2,...,|T|} | b, > 0}, then J; = J> and a;, = by, Vj € Ny,
and we obtain that (a;)ier = (b)ier since a,, = by, = 0 for j € {J; +
L, Ji+2,....]7T|}.

2. Every partition of n whose parts are elements in T is the image of a

sequence in Nl) | under ¢, since if @« = (o, ..., ) is such a partition,
then

i ity _ i
o= <tJ,.t.J.,tJ,tJ_1, . .1,tJ_1,...,tl,.t.l.,tl,(),...,0>
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where i, = [{i €N, |y =1;}| Vj € {1,2,...,|T|} and J € N such
that t; = ay. By setting i, = 0Vj € {J+1,J+2,...,[T|}, we get
that >, ti; = ijl tjiy, = >y @ = n, and the partition « is then
admitted by the sequence (i;)ier € Nl)T‘.

Thus ¢ is a bijection.

Again let s be a sequence (sg, s1,...) with sp = 1 and 1, s9,- -+ € Z, and
write 7y, = H;]:l i, for any

o = <tJ,.Zt.J.,tJ,tJ_l,lt.J._.l,tJ_l, . ,tl,.“.l.,tl,(), . ,0> S Pn,T,

where P, r is the set of all partitions of n whose parts are elements in 7". This
means that every part ¢; of « is assigned the element Si, in s, where i, is the
number of times ¢; occurs in a. The Si,, are then multiplied together. For
instance, if s = (s;)ien,, then m, s = 1 for all o € P, 7, s0 rs1r(n) = |Purl.
From this definition of 7, s we can see that

Ts,T(n): Z Ta,ss

a€Pp,T
SO
o0 o0 o0
it
[I> s =2 rr()=2_ > mas
teT i=0 n=0 n=0 a€Py, T

Thus we have a connection between infinite products and sums over parti-
tions. We illustrate what we just achieved with some examples.

Example 2.2.

e Suppose we want to count the number of partitions with odd parts
where every part occurs exactly an odd number of times. Then we can
let T' be the set of odd numbers, and s = (1,1,0,1,0,1,0,...), that
iss; =1if i =0 oriis odd and s; = 0 otherwise. ryr(n) sums over
partitions with parts from 7', which in this case are partitions with only
odd parts. For any such partition

a = <tJ7 'Zt'Jth?tJ717“'J'_'17tJ717 s 7t17 'Zt'l'athoa s 70) € Pn,Ta

. . J . ..
its corresponding summand 7, 4 <: I i1 sl-t,) = 0 if at least one iy 18
’ = J

an even number, that is the part ¢; occurs an even number of times in
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a, and 7, s = 1 if 4;; is odd for all j € N, which is equivalent to every
part ¢; occuring an odd number of times in . Thus « increases 75 r(n)
by 1 if and only if the parts in a occur an odd number of times, and
the a’s permitted are those with only odd parts, so 5 7(n) does really
equal the number of partitions with only odd parts whose parts have
an odd number of occurences.

n o€ Pur Ta,s 70S,T(n)
0 (the trivial partition) 1 1
1 o 1 1
2 : 0 0
3 o i 1,1 2
4 5o f 1,0 1
5 ereen 2 1,0,1 2
6 g g E’“E 1,0,1,0 2
7 MBEBEEEIE 1,0,0,0,1 2

e Let 7= Nand s = (1,1,2,0,0,0,...). Then r,,(n) sums over all
partitions and the parts in any partition o can occur at most twice. If
a part occurs more than twice, then 7, = 0, and if all parts appear
at most twice, we have that m,, = 2¥ where k is the number of parts
that appear twice in a.

n o € Pn,T Ta,s rs,T(n)
0 (the trivial partition) 1 1
1 o 1 1
2 = B 1,2 3
3 oo 1,1,0 1
4 o g2 i 1,1,2,2,0 6
5 ceeen 00 P B2 B 1,1,1,2,2,0,0 7
6 mamaarﬁmaaaﬁ?ﬁﬂmﬁﬁjﬁ 1,1,1,2,2,1,0,0,4,0,0 12

e Let T be the set of prime numbers and s = (1,—1,1,—1,1,—1,1,...).
Then P, r is the set of partitions whose parts are primes. For any
a € P,r, let t € T be a part which occurs ¢, times in o. The part ¢
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corresponds to the factor s;, in 7, . If ¢, is odd, then s;, = —1, and if
i; is even, then s;, = 1. Thus s;, = (—1)*. Writing

i ity i
o = (tJ,.t.J.,tJ,tJ,b . .1,25],1,...,tl,.fl.,tl,O,...,O),

we obtain that

J
it; I_ it o
Ta,s = Hsit]‘ = H(—l) i = (-1)2]71 i — (_1)l( )

J=1 J=1

Then 7, s = —1 if the length of o is odd and 7, = 1 if @ has even
length.

n a€P,r Ta,s rsr(n)
0 (the trivial partition) 1 1
1 0 0
2 m —1 —1
3 on -1 -1
4 H 1 1
5 crrm B 1,1 0
6 BH B 1,—-1 0
7 oo D B —-1,1, -1 —1
8 e B 1,-1,1 1

If 7= Nand s = (1)en,, then P, = P,, so r5r(n) sums over all
partitions of n, and for each partition a € P,, we have that 7, =1, so
rs7(n) =Y ocp 1 = |Pul, which is the number of partitions of n € N.
The generating function is

o

;TS,T(n)a:” = HZsix” = HZx“ = H N _lxt.

t=1 =0 t=1 =0 t=1

Let T=Nand s = (1,1,0,0,0,...). Then ryr(n) sums over all parti-
tions of n. If all parts in any a € P,, only occur once, then 7, s = 1,
and if at least one part appears more than once, then m,, = 0. Thus
rsr(n) equals the number partitions of n € N whose parts only occur
once, which are the strict partitions of n. The generating function is

ZT&T(n)x” = H Z st = H(l + ).

t=1 =0 t=1
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e If T is the set of odd natural numbers and s = (1);en,, then 7,7(n)
sums over the partitions of n whose parts are odd and 7, = 1 for
all partitions o € P, r. Then ryr(n) equals the number of partitions
whose only positive parts are odd and the generating function is

> rar(ma® =D sia”
n=0 teT i=0
_ (2t—1)i __ _
—HZ“’ _Hl_th—l _H(1_$2t—1)(1_1.2t)
t=1 i=1 =1 t=1
B 1 — 22 11—zt 1— 26
(1 —2)(1—22) (1 —23)(1 —24) (1 — 25)(1 — 25)
1—a?1—2%*1—25 1 — 22
— - (1
l—z1-221—2° Hl—xt H +)
since (1+ 2')(1 —2') =1 — 2% = =%, Hf: =1+ 2"Vt € N. Thus the

number of partitions of any n € N with only odd positive parts equals
the number of strict partitions of n. This fact and the reasoning for it
is a special case of the proof given in [5].

e Suppose T'=Nand s = (1,—1,0,0,0,...). Then r,7(n) sums over P,.
We also have that for any a € P,,, 7, s = 0 if any part in o occurs more
than once, m, s = 1 if all parts in a only occur once and the number
of part that occur only once is even, and 7, s = —1 if if all parts in «
only occur once and the number of part that occur only once is odd.
In other words, if a is not a strict partition, then 7, s = 0, if « is strict
and [(«) is even, then 7, s = 1, and if « is strict and /() is odd, then
Tas = —1. Thus, if a is strict, then 74,4 = (—1)4®). Then r,r(n) is the
number of strict partitions of n € N with even length minus the number
of strict partitions of n with odd length. The generating function is

ﬁ i": st = ﬁ(l — ).
t=1 i=0 t=1
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Let K = GF(q), the finite field of order ¢ for ¢ a prime power and let n €
N. We have that | Gl,(K)| = (¢" — 1)(¢" — q) - -- (¢" — ¢" ') and |M,(K)| =
q”Q. Then

LK) T — gy e (1-5)

| M, (K))| q ¢

(!

n?2
q t=1

Taking successive field extensions of GF(q) approaches

i Gy = i I (- ) =TT - =1

t=1

If we instead take the limit as n — oo, we get

IGL(K) . T ( 1) s ( 1)
hm—:hm” 1—=| = 1——,
n—o0 ‘M (K)| n—00 - - qt pobey qt

which we can explore further through the next theorem. the theorem is found
in [9] and the proof we give is based on the proof from the same article.

Theorem 2.1.

(1-2") = Z (—1)’%%_1).

t=1 k=—o00

,’:18

Proof. The idea of this proof will be to construct a function f which maps a
partition with length m onto a partition Wlth either length m — 1 or m + 1.
We can show that if n is not equal to * k REEZD for any k € Z, then f is a
bijection and f? is the identity. This will nnply that every strict partition
of n with odd length can be paired with a unique strict partition with even
length, and vice versa, which means that there are exactly as many strict
partitions with odd length as there are strict partitions with even length.
We already showed that



where 7(n) for n € N is the number of strict partitions of n with even length
minus the number of strict partitions of n with odd length, and r(0) = 1.
Thus 7(n) = 0 for n # & Sk ML i e 7.

We will also show that if 9k € Z such that n = w7 then the number
of strict partitions of even length is either exactly one more than the number
of strict partitions of odd length if k£ is even, and exactly one less if £k is odd.
Thus r(n) = (=1)* if n = @ for some k € Z.

Provided the claims above are true, we can then conclude that
> k(3k—1)
Hl—:z: :Z(—l)kx Eanl
t=1 k=—o00

We now prove the claims, and we start by specifying the function f.

Let a be a strict partition of n € N. and let d, be equal to the num-
ber max{i € N, | a; =y —i+1}. We have that the sequence of parts
(cv,...,aq,) is such that each part not on one of the ends of the sequence is
preceded by a part which is one larger and followed by a part which is one
smaller. We call this sequence the first diagonal of «, so d,, is then the length
of the first diagonal. Let f be a function from the set of strict partitions to
the set of general partitions defined such that if o) < dq, then

flag, .o yan) = (a1 + 1, ag, + 1, Q00115+ QUa)-1,0, - .., 0) € N,
and if ay,) > dq, then
flag, ... ;an) =(a —1,...aq, — 1, 4,41, - -, Qu(a), da, 0, ..., 0) € Nf.

In terms of Young diagrams, if aj) < d,, then f takes the last part of «
and moves it onto the first diagonal.

., m
L]

If aya) > do, then f takes the first diagonal and moves it underneath the

last part.
|
.? &

o7




From here we look at four different cases. For now we specifically avoid the
cases where [(a) = d, and either o) = do O 0y(q) = do + 1. The reason for
this choice will become apparent later in the proof.

L. If l(a) > do and oqa) < da, or I(a) = do and ooy < dq, then
fla) = (a1 + 1,0 a0, + 1, Qo415 - -5 Quga)-1,0, ..., 0).
If I(f(«)) > df(a), then

F(@)ige)) = F(@)ia)-1 2 Qa)-1 > quga) = dya) = f(Q)i(1(0)) > di(a)s

SO

f(f(@))

(f(a)l - 17 BRI f(a)df(a) - ]-7 f(a)df(a)-i-h BRI f(a)l(f(oz))7 df(a)7 07 s )0)
= (0417 . ,Oéal(a),aal(a)+1, s Q)15 Q) O, . ,0) = Q.

If I(f(«)) = df(a), then
F@) sy = F(@ia)-1 = Qa)y—1 + 1> ooy + 1 =dpa) + 1

= [(@)i@) > dfa),
SO

(@) = (fla) = 1,..., f@)d;, — 1, ds(),0,...,0)

= (Ozl, ‘e ,Ozl(a)_l,al(a),o, NP ,0) = Q.

| |
. l? .
HEN HEN

In either case, f2(a) = a. Thus f is bijective on this type of partition
if we restrict the target of f and is its own inverse. This means that for
every strict partition a such that I(a) > d, and o) < da, o1 l(a) = dy
and o) < dq, there exists a unique strict partition 3 of n such that

1(8) = l(a) — 1.
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2. If (o) > do and qy(q) > da, or (o) = dy and ayq) > do + 1, then
fla) = (a1 —1,... a4, = L, 4,41, -, M(a), da, 0, ..., 0).

IEI(f(e) > dpa), then fla)ifa)) = da < dpo)- I 1(f(a)) = da),
then f(a)i(f(a)) = da < df@). In either case, f(f(a))

= (F(@)i+ Loy (@)t + 1, F(@agsts -, F(@u(g-1:0s -, 0)

= (o1, .+, 0y Qdyg1s - - M), 0,...,0) = au.

"t g e
.

Then f?(a) = a, so f is a bijection on this type of partition too, and
is its own inverse. Thus for each strict partition a such that ((«) > d,
and ayq) > dg, or l(a) = do and oye) > do + 1, there exist a unique
partition 8 of n such that I(8) = l(«) + 1

Thus, if no strict partition o of n € Nrespects [(a) = d, and either a;) = dq
or (o) = do + 1, then the number of strict partitions of n with odd length
equals the number of strict partitions of n with even length. Hence the
coefficient of 2™ in the series expansion of [[;~,(1 — z") is 0.

Now we check what happens if I(a) = do and ay) = dq, or I(a) = dq
and ay) = do + 1.

3. If n = 1, then the only strict partition, and in fact the only partition
altogether, is @ = (1). We have that [(a) = d, = 1 and oya) = do = 1.
Since « is the only partition of 1, it does not correspond to any other

partition under f. Also,n=1=32 = 1(3;_1) = 3k U for k=1.
Let n € N\ {1}. If a is a strict partition with [(a) = d, and o) = da,
then

f(Oé) = (Oé1+1,...,oz1(a)_1—i—l,l,O,...,O),
but now f(oz)l(f(a)) =1 S df(a), SO f(f(a))

= (f(a)1 + 1, f(@)a, ..., f(@)ia)-1,0,...,0)

= (1 +2,a5+1,..., -1 + 1,0,...,0) # a.
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EEE |i>l " e

Then we cannot say that a corresponds to a unique [ like we did
before. If n is such that there exists a partition such that [(«) = d,

and oy(q) = da, then n = Zi(:ag*l(l(a) +i) = l(a)(3l2(o‘)_1) = k(3l;—1) for
k=1(a).

Conversely, if n = w for some k£ € N, then we can write n =
Zf;ol (k + 1) and construct the strict partition

a=(2k—1,2k—2,...,k0,...,0).

We have that I(a) = dq = k and a0y = do = k.
Thus there exists a strict partition « of n such that I(a) = d, and

(o) = dq if and only if n = w for some k € N.

. If n = 2, then there is only one strict partition, namely a = (2,0), for
which we have that [(a) = do, = 1 and oyo) = do + 1 = 2. Since a

is the only strict partition, o does not correspond to any other strict

partition under f. We can also writen = 2 = % = EDEED-D)  AEE-L)

2 2
for k = —1.

Let n € N\ {2}. If v is a strict partition with I(a) = dy and qy) =
de + 1, then

fla) = (a1 —1,... @) — 1,1(c),0,...,0)

= (a1 —1,...,dg,du,0,...,0),

which is not a strict partition.

|
.? i>
Then this a does not correspond to any strict partition under f. More-
over, we have that

l(a)

n=3 la)4i = (BN +D _ UGl —1) _ KBk 1)

2 2 2
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for k = —I(a). On the other hand, if we can write n = *®*=1 for some
k € 7\ Ny, then n = MQ_MH) = Z;kl —Fk + 1. We can then define
the partition o = (—2k, -2k — 1,...,—k+ 1,0,...,0). We have that

l(o) = do = —k and oyq) = do +1 = —k+ 1. Thus there exists a strict
partition a of n such that I(a) = d, and o) = do + 1 if and only if
n= W for some k € Z \ Ny.

If we collect everything we have proved up to this point, we get that for any
n € N, there exists a strict partition of n which does not correspond to any
other strict partition if and only if n = w for some k € Z \ {0}.

Next we show that there is at most one partition of any n which does not
correspond to any other partition under f. To see this, suppose that there
are two partitions o and 3 of n such that I(a) = da, @) = da, f(f(a)) # a,
[(B) = ds, Bup) = dg and f(f(B)) # . Then n = w and n = w
for some ki, ke € Z \ {0}. We have that

ky(3ky — 1) ko(3ky — 1)

= 3ki—ky =3k —ky = 3ki —k; —(3k3 —k2) =0

2 2
14 /1+4-3(3k3 — ko) 14+/36k3 —12ky+1 1+ (6ky—1)
:>k1: e e
2-3 6 6
146k, —1 6k
skh=——=—"=k
1 6 6 2
o 1 — (6ky — 1) 6k + 2 1
- - —6ky +
! 6 6 > ¥ 3

Suppose that k1 = —ky + % and notice that for all ks € Z, k1 = —ko + % ¢ 7,
which contradicts the requirement that k; € Z. Then we must have that
k?l = kg.

From this argument we can see that if n = k(32_1) for some k € Z\ {0},
then there is exactly one exceptional strict partition « of n. Since k = [(«)
or k = —l(«), a has an odd number of parts if k£ is odd and a has an even

number of parts if k is even. We have that

H(l —a) = Zr(n)x”

t=1 n=0

where r(n) for n € N is the number of partitions with an even number of parts
minus the number of partitions with an odd number of parts and r(0) = 1.
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Then, if n = k(3l;—1)7 r(n) =1 when k is even and r(n) = —1 when £ is odd,
W) = (=1)k. If there is no k € Z such that n = k(:ﬂzfl), then
r(n) = 0. Thus

SOT(

[e.9]

ﬁ 1—x = Z (—1)kxw.
t=1

k=—o0

From this theorem we then obtain the equality

LK)l &, s
lim = (=1)*q~ 2
oo~ 2

k=—o00

k@Bk=1)

where K = GF(q) for a prime power () € N. By calculating 3k D for a few

k, we get
k lo1 -1 2 —2 3 -3 4 —4 5 -5 6 —6
FBEED g1 2 05 7 12 15 22 26 35 40 51 57

which we can use to find the first couple of terms in the series expansion of

: |Gl (K))|
iy o0 (]

Gl (K

Lo G|
w5 [M,(K)]|

1 1 1 1 1 1 1 1 1 1 1 1

Syt ety T Tt EtE T m w tEtE T
=(0.¢q—2¢—100100g—1¢g—1g—1q—1g—2q—1g—1¢q—100...),,
where a = (b), denotes that a is the base ¢ representation of b for any a € R.
For ¢ = 2 we get

GL(GF(2))
Iim ———————= = (0.01001001111011100000010...)9o < (0.1)9 = —
A L (GR)] )2 < (0.1):

If ¢ is any prime power, then

122 _ (g2, < i |S(CFO)

n=oe | M, (GF(q))|

~1
—(0g—2¢—10010...), < (0.g—1), = L—.
q
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Let I' = (I'p, I'1) be a quiver where m = |I'¢| = |['1], that is the number
of vertices equals the number of edges. Consider representations of I' over
K = GF(q) with dimension vector D = (n,n,...,n) € N™. The size of each

orbit is less or equal to %, SO

M, (K)"| = [Ob(repp D) = >~ o,
p orbit of
objects inrepp I'

GL.(K)" | _ Gl (K)™
p orbit of
objects inrepp I’
o M ()
= |{orbits of object Uil > (¢ = D7 mr
|{orbits of objects in rep, I'}| > (¢ )|G1n(K)m|

By taking the limit as n — oo, we get that the number of orbits is greater

m -1
than or equal to (¢ — 1) <limn_>oo %) > ngf_ll) =q.

2.2 Degeneration over Principal Ideal Domains

There is a nice correspondence between degeneration of certain modules over
principal ideal domains and that which is called the dominant order on par-
titions. Many of the following concepts and ideas are based on 3.3 in [11].

Definition 2.2. Let n € N. The dominant order on the set of partitions
of n is defined such that if & and 3 are partitions of n, then we say that « is
dominated by [, or equivalently that f dominates « if Zle a; < Zle Bi
for all £ € N,,. We write a <qom [ as a shorthand.

It is fairly straight-forward to see that the dominant order is a partial
order for all n € N.

1. Let a be a partition of n. Zle o = Zle a; Vk € N, = a <qom @,
which shows reflexivity.

2. Let o and (8 be partitions of n and suppose o <gom £ and 5 <gom Q.
This implies that Zle o = Zle B;. First of all, we have that oy =
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Zl L0 = Zl L Bi = B1. Secondly, suppose r € N,,_;. By assumption,
we have that >/ o, = 27, B and 3201 i = 3201 B, Then

r+1 r+1

Qpy1 = Z o — Z o = Z ﬁz Z B@ ﬁrJrl

Thus a = 3, which proves antisymmetry.

3. Suppose «, [ and v are partitions of n such that o <gor, £ and 5 <gom
~. Then Zle o; < Zle B < Zle vi Vk € N,, = a <gom 7, which
shows transitivity.

Let M be a finitely generated module over a principal ideal domain R. By
the Structure Theorem for Finitely Generated Modules over Principle Ideal
Domains, we have a following R-module isomorphism

M = @ R4

for some q1,...,q, € R and m € N. Since R is a PID, then any generating
element ¢ € R of an ideal (¢) in R can be written as ¢ = p", a power of an
irreducible element p € R, where 7 € N. Then M = ", /(p]") for some
irreducible elements py,...,p, € R and integers ry,...,7, € N.

For the following definition, we have that modyR is the category of all
R-modules of length d € N where R is any ring.

Definition 2.3. Let R be a principal ideal domain and p an irreducible
element in R. Define M (p) to be the full subcategory of modyR such that
M € Ob(My(p)) if and only if M = @7, R/es) where (ay, ..., aq) € Pa. A

Let M € M (p) and assume M = @?:1 R/(pei) where oy > -+ - > ay and
Zle a; = d. Define the partition ay; = (aq, ..., aq) € Py.

Next, define the conjugate partition o/ of a partition o of n € N to be such
that of = |{j € N,|a; > i}| for each i € N,,. If we draw a Young diagram of
a, then o corresponds to the i-th column in the diagram for every i € Ny.

Lemma 2.2. If M € My(p), then | Hom (/(»), M) = S al forall i€
Ny.
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Proof. If M € Mg(p), then we have that M = @¢_, B/(per) for some apy =

(g, ...,0q) € Py and

Hom (R/(pi)7 R/(pj)) o R/(pmin{z',j})

~ Hom (#/(). M) = Hom (R/m D R/w)

k=1

ISH

= [Hom (B/('), M) = Zmin{z’, ar}

1) 7 . 7
=Y {ieNala; >k} =)
s P

Equality (1) can be obtained by drawing the Young diagram of a;; and
counting only ¢ boxes in each row that consists of at least ¢+ and all the boxes
in every row that consists of less than ¢ boxes. The resulting number should
be the as what we get if we count the boxes in the first ¢ columns. For

example, let i = 3 and consider the partition o = (6,5,4,2,0,...,0)
|
whose Young diagram is I". We count the grey boxes in

ways. If we count them row-wise, then we get

17

D min{3,ap} =3+3+3+24+0+ - +0=1L
k=1

If we count the grey boxes column-wise, then we get

3 3
Y HjeNsa; >k} =D af=4+4+3=1L
k=1

k=1

Equation (1) clearly holds for this example.

To prove the general case, let ¢ € Ng\Njo,,)-1 = {l(car), l(an)+1, . ..

such that
B = (min{i, a1 },..., min{i, a.}) € P..
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We have that ' = ([{j e N. | 8; > 1}|,....[{j € N. | B; > ¢}|) € P. by the
definition of conjugate partitions, so

d c c
Zmin{z’, apt = Zmin{i, ap} = Zﬂkz =c
k=1 k=1 k=1

c

=> B=> HieN| 8>k} => I{j €N |min{i,a;} > k}|
k=1 k=1

k=1

DN |{j € No | mindi, a5} > k)|
k=1

DN € No | mindi, a5} > k)|
k=1

@ Xy
=Y {ieNala; >k},
k=1

(2) Equality (2) holds because if j € N\ N, then
a; = 0= min{i, a;} =0,

SO
{j € N. | min{i,o;} > k}| = |{j € Ny | min{s, a;} > k}|

for all £k € N..
(3) We obtain (3) because if ¢ > k > i, then min{i,a;} < i < k for all
J€ENg
= [{j € Ng | min{é,;;} > k}| =0

for all £ € Ny \ N..
(4) Let k € N;. Since a; > min{i, a;} for all j € Ny, then
[{j € Na [ min{i, o5} > k}[ < [{j € Na | oy >k}
We have that if o; > k, then min{i, o;} > k since k < ¢, so

[{j € Ng | min{i, a5} > b} > [{j € Na | a; > K}
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Then
{j € Na | minfi, a5} > kY = [{j € Na | oy > k}|

if a;j > k. If a; < k, then min{i, o;} <k, so
{7 € Na | min{i, a5} > k}| = [{j € Na | oy > k}] = 0.

Thus
{j € Na | mini, a;} > K} = [{j € Na | o > K}

for all k € N;.
H

Lemma 2.3. Let M, N € My(p). If o}y <dqom @y minimally, then M <y,
N.

Proof. Let M, N € My(p) and suppose o); <gom @ minimally. Then there
are 1, ) € Ny such that ¢ > j and

(ahy)i—1 ifk=i
(e = (ay);+1 ifk=j

(ay)k otherwise
This can be seen as obtaining ay from ajp; by
e shortening (o));, the i-th column in the Young diagram of a;y, by one.
e lengthening the j-th column (a/,); by one.
If we write i" = (¢);); and j' = (a/y);, then this is equivalent to
e shortening the row with index (o;); = %', which is (aas)s, by one.

e lengthening the row with index (a/y;);+1 = (/y); = j', which is (aas) 7,

by one.

Visually, it looks like the following.

67



p ) (y)i
£;;4%’ (o)
I ]
JIRRIES R (@)
() (an);

Then we have that

(OéM)i/ +1 if k= Z'I

(OéN)k: (aM)j’ —1 lf/{:j/
(nr) otherwise

Then

N = R/(p(aM)l) DD R/(p(f"M)i/+1) ®---P R/(p(aM>j/—1> @---P R/<p(aM>d>

= R/(Z’(aM)i’“) ¥ R/(p(&M)J"_1> S¥ @ R/(P(alw)k).

keNa\{i".5'}

Suppose r, s € Ny such that r < s. Consider the sequence

(%) —p 1

0 —— B/(p=) —= B/or) ® B/p) ( Bf(pr+t) —— 0 .

For v € R, ¥ denotes the homomorphism v : R/(pk) — R/(pl) for k,l € N
such that ﬂ(aH— (pk)) = vxr + (pl) for all x € R. Given a,b € R, then

(P)(a+ () = (i) ) and (=51 (5107)) = (=pa+8) + (). Let
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a € R such that a ¢ (p*~!). If a = d'p' for some ¢’ € R and ¢ € Ny, then
t < s—1. We have that pa = a’ptfl, and since t + 1 < s, then pa ¢ (p°).
Then pa # 0, and ker (1) =0, so (1) is injective.

Letbe R. Ifb e (p*!), then b+ (p'*) = 0+ (p'*!) = (—ﬁﬂ(“ﬁ,’??)- It

b¢ (prth), then b ¢ (p°) since r +1 < s. Then b+ (p'™!) = (@T)(%j:g:))),
so (-p 1) is surjective. B
We also have that (—571) (1) = —p+p = 0. Then the sequence above is

p
short exact. In particular we get that

I I
0 — R/(p<04M>j/71> ﬁ) R/(p(aM)i/) ©® R/(p(aM>j/) m R/(p(a]\/j)i/+1) —5 0
is short exact.

Suppose A, B,C are R modules and suppose f: A — Band g: B — C

are R-homomorphisms. If the sequence

0 Al 2y > 0
is short exact, then the sequence
(5(1)) (90)
0 —— AT —5 BaT > C > 0

is also short exact for any R-module 7. Then

0

~

R/(p(aM)j/fl> P @keNd\{i’,j’} R/(p(aM)k)

10
(L)
~ 0 Id72
R/(p(O‘M)i/) o) R/<p(°‘M)j’> &) @keNd\{i’,j’} R/(p(aM)k)

(-p10)

Bf(pleanu 1)
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is short exact

= R/(p(O‘M)i/) P R/(p(“M)j’) D @ R/(p(aM)k)

keNa\{i',j"}

Sdeg R/<p(aM>i/+1) st R/<p<aM>j’*1) fa) @ R/(p(aM)k)
keNg\{¢.,7'}
by Theorem 1.6. Since

RBf(pemir) @ Bf (505" ) & @ R/ (plannn)

keNg\{¢'.j'}
= EB R (plean) 2 M
keNy
and
R/(p(aM)i/) ® R/(p(aM)j/) ® @ R/<p(aM)k) ~ N,
keNg\{¢'.j'}
then M <geg N. [

Theorem 2.4. Let M, N € My(p). Then M <4ee N & oy <dom Oy-
Proof. Assume M, N € My(p).
=)
M <4qeg N
= M <yom N
< [Hom (X, M) <{Hom (X, N) for all R-modules X of finite length
= [Hom (B/('), M) < [Hom (B/(»), N) Vi € Ny

i

1
Lempng 2.2 S (ah)k <D () Vi € Ny
k=1 k=1

& oy <dom Uy
Thus M <geg N = oy <dom y-
(<) Suppose oy <gom «y. There are only finitely many isomorphism
classes of objects in Mg(p), so there exist My, My, ..., M, € My(p) for
some n € N such that oy, = o <dom @)y, dom "+ Zdom )y, = Ay

where o), | <dom @), minimally for every i € N,,. By Lemma 2.3 we
have that M = M, Sdeg My Sdeg s Sdeg M, =ZN=M Sdeg N.

[]
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3 The Dual of the Transpose and Coxeter
Functors

In this last section we will discuss a few functors on categories of represen-
tations and modules.

3.1 Coxeter Functors

The definitions and most of the calculations in this section are from [2|. The
example at the end is an exception.

Let I' be a finite connected graph. An orientation o on I" gives every edge a
direction. This means an orientation consist of two functions s,,t, : I'y = I'g,
where we say that s,(«) is the starting point and that e, («) is the end point of
a € I';. It is implied here that « already connects s, () and e, () regardless
of orientation.

This definition of graphs with orientations is equivalent with the definition
of quivers. The reason for introducing this new notion is because this section
will discuss changing the orientation on a graph.

Let ¢ be any vertex in I'. We say that i is (—)-accessible if e, (a) # i
Va € I'y and we say that i is (4)-accessible if s,(a) # i Vo € Ty

Denote by I'* the subset of I'; which consists of the edges o such that
Se(@) = i or e,(a) = i. Let r;o denote the orientation that reverses the
direction of the edges in I'* and leaves all other edges with the same direction
they had under o.

Let k be a field and (V, f) an object in the category rep(I', o) of repre-
sentations over k.

1. Suppose i is a (+)-accessible vertex in I'. Define a representation (W, g)
of (T, k;0) where W (j) = V(j) for all j # i in [y and if we write I =
{aq,..., ap}, then W (i) is the kernel of the map from ;" V (s, ()
to V(i) which is given as the matrix (fa, -+ fan)-

W (i) = ker ( B, V(se(an)) o Jom), V(i) ) )

The maps are defined such that g, = f, for a ¢ I'" and for each oy € T
we define g,, as the natural inclusion from W (i) into @@}, V (s, (a))
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composed with the projection from this direct sum onto V (s, (o)) =
W (ss(ay)). We then have that

Yo
(fozl fam) =0.
Jan,

We refer to the representation (W, g) by the notation C;"(V f).

. Suppose i is a (—)-accessible vertex in I". Define a representation
Co (V. f) = (W,g) of (I', ko) where W(j) = V(j) for all j # i in
[y and g, = fo Va ¢ T''. We define W (i) to be the cokernel of the map

foq
from V(i) to @;-, V(e,(a)) which is given by the matrix ( : )

fam
. ( }faam )
.

W (i) = Coker | V(i) — @, V(es(a))

For o« € T" we define the map g, : W(ey(a)) — W(i) as the com-
position of the natural inclusion from W(e,(a)) = V(e ()) into
@D.", V(es(at)) and the projection from this direct sum onto W (7).
Then

Jeu

(ga1 gam) : =0.
fam

For a representation A of (I', o), where we write A(7) for the vector space

at vertex ¢ and A, for the linear transformation at edge «, and a (+)-
accessible vertex i, we have that C; C;*A has C; C;FA(j) = A(j) for j # i

C7 CFA(T) = ®itr Mso(an) /ot Ay = Tm (Aay = Ao ),

where (aq,...,an) = I C;CFA(i) is then 0 if A, = 0 for each o € T".
This means that if A is a representation where A(j) = 0 for j # i, then
CFC;7A(i) = 0, so C;"C; A is the zero representation.
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If i is instead a (—)-accessible vertex, then we have C;"C; A(j) = A(j)
for j # 4 and

CrCo A1) = ker (CAay = C Aay, ) = AD/OT Ker(Aa,)

Let A be a representation such that A(j) = 0 for j # i. Then A, = 0 =
ker(Ao) = A(4) for each o € T" = A7) = (2, ker(Ao,) = C; CFA»1) = 0
= C;CHA =0.

There is a natural way to construct functors from C~ and C*. Suppose a
vertex i is (—)-accessible and let h : V' — W be a homomorphism between two
representations V and W of (I', o). We define C; (h) such that C; h(j) = h(j)
for j # i and C; h(7) is the unique linear transformation which makes the
following diagram commute.

Vo‘l
(wm)

((C7V)ay = (C]V)am )

V(i) —=— @;", V(e,n) > CoV (i)
h(esar) 0 0
0 h(esa) - 0
h(i) : : . : C; h(7)
6 0 h(eo—‘am)
W(i) ———— @, W(esar) > CoW (1)

(WQI ) ((C7W)ay = (€7 W)ap, )
Wern

For the identity homomorphism idy : V. — V we get that C;idy (i) =
ido-y ;) and if we have another homomorphism n W — U between W

and a representation U, then C; (h' o h)(i) = (C; KW')(i) o (C; h)(i) since
(h' o h)(i) = k(i) o h(i) and

B (esap) -+ 0 h(esaq) - -- 0
0 o W (egm) 0 o h(egun)
h'(eycq) o h(eyay) -+ 0
0 o W (esum) o h(eyaun)
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(W oh)(e 1) -~ 0

6 .. (W' o h)(eyaum)

Then C; :rep(I',0) — rep(I', k;0) is a functor.
If i is instead (+)-accessible, then we define C;"h(j) = h(j) for j # i and
C;" (i) to be the unique linear transformation which makes the diagram

( (G V)ay )
(Cj_"/)am
—

(Vay - Vam)

C;v (i) DL V(soau) > V(i)
h(soca1) 0 0
0 h(soca) - 0
ChO) . (i)
6 O h(sg‘am)
+ : m . .
Ci W(Z> @t:l W(Sﬂ&t> (Way = Wam ) ’ W<Z)

i pTE——
(CfW)ay
((ojvmm )

commute. Then C;" : rep(T, o) — rep(T, k;0) is functor.
Suppose (I', o) has no oriented cycles. Then we can identify each vertex
in I' with a natural number such that Iy = N,, for some n € N and s,(a) <

e,(a) Vo € T'y. Any vertex i € N,, is (—)-accessible under the orientation
Ki_1- -+ Kokio and (+4)-accessible under K; 41Kt -+ Kpo.

Definition 3.1. Let (I',0) be a oriented graph with no oriented cycles and
n vertices. Number the vertices so that s,(«a) < e,(a) Va € T';. We define

Coxt =CfCy ---Cf and Cox™ =C ---C; Cy. A

We note that if (V, f) is a representation of (T',c), then Cox™(V, f) and
Cox™ (V, f) are also representations of this graph with the original orientation
o. This is because the direction of every edge o € I'; is reversed exactly
twice in the compositions Cy"Cy ---C," and C,, ---Cy Cy, once by CF )
and C_ ), and the other time by C’;( and C

eq(a)
Another important observation is that Cox™ and Cox™ do not depend on
the specific numbering of the vertices.

o) , respectively.
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Since Cox™ and Cox~ are compositions of fuctors, then Cox™ and Cox™~
are also functors.

1
Example 3.1. Let (I',0) be the oriented graph o [l . Let k be a field.
N
3

Consider representations with dimension vector (n,n,n). Suppose

Inzk:"
A= pn JM
N
In o
where M is a n X n matrix. Then
I, k" v k" I k"
+ ol ++ 4 + K
Cf(A) = 4o Tln,cz Cf(A) = o T,ﬂ,cox A) = o | _ar
N N N
-M kn In ke In ke
If
Inzkn
A - kn J/I",
N
M o
then
In k" —In k" _u K"
+ K + + 2 + K
Cy(A) = pn ]\M Oy O3 (A) = pn ]\M ,Cox™(A) = o |1,
N N N
In o In o In o
If
M an
A — kn ljn,
N
In o



then

v kn In kn In k’I’L
- K + ot 4 + K
CF(A) = pn T_In,cg Cf(A) = pn T_In,cox A) = |
N N N
" g M M

For any matrix we have a homomorphism ¢ given by the following diagram.

o(1)

Then
Lp(1) = ¢(2)A, 1,9(1) = ¢(3)In, Ap(2) = ¢(3) 1

= 0(2)A = ¢(1) = ¢(3) = A9(2).
This means that ¢ = (AB, B, AB) where B is a n X n matrix such that

In k:’fl A k:n
%4 %4
AB = BA, so Hom | jn ljﬂ - lfn ~ (B e M,(k) | AB = BA}. 1f
Y Y
A kn L, kn

we choose B to be invertible, B = I, for example, then ¢ is an isomor-
phism if and only if A is invertible as well. We can in similar fashion show

v %4
that Hom | pn JI“ - JI” ~ (B e M, (k)| AB = BA}. Suppose A
N N
W AT
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is invertible. The map ¢ given by the following diagram.

¥(1)

This means that
Lap(1) = (2)A, A7 (1) = ¢(3) 1, [,Y)(2) = $(3) 1,

= (DA™ =9(2) = %(3) = A7(1).
Then ¢ = (B, A~'B, A7' B) for some n x n matrix B which commutes with
A. If B is invertible, then ¢ is an isomorphism. Assuming M is invertible

k™ k™ k™
My - I N In,
k,n JI" = k’n Jln == kn JM—I
N N N
I’IL k'n M kn I7L kn
and
k™ k" k™
N My P % - N Ty
Cox En Jln =~ Cox En JI" =~ Cox L JMI .
N N N
In k,n M kn In kn

Let f(X) = X"+ ap X" '+ +ao = > ;X" with a, = 1 be an
irreducible polynomial in k[X]| with coefficients ay,...,a,—1 in k. We can
choose M to be its companion matrix

0 0 0 —ao
10 -+ 0 —-a
01 0 —as
00 -+ 1 —ap
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Then

—ayag 1 .00
M™ = _q, sa5" 0 1 0]

—an_lao_l 0 1

—agt 0 -+ 0

which has characteristic polynomial

X +aagt -1 -+ 0 0

det (p—20y 0 -1 0
(p—10g 0 X -1

ag’ 0 0 X

i=0
We have that f* is irreducible. To prove this, suppose A € k is a root of f*.
Since A # 0, then

FOY) = zn: a;(A1) = Zn: A" = (A1) zn: 4y A\
=0 =0 1=0

= ao)\_"f*()\) = (lo)\_n -0 = 0.,

which seems to imply that A\~! is a root of f, but that contradicts the as-
sumption that f is irreducible in k[X]. Then f* is irreducible.

Now suppose £k = GF(q) where ¢ € N is a prime power and suppose
f € GF(q)[X] is primitive with respect to the field extension GF(¢™), which
means there exists a root w € GF(¢™) of f which multiplicatively generates
UGF(q¢™) = GF(¢™) \ {0} and that f is the minimal polynomial of w. First
off, we know that w™! is a root of f*, and if (w™)" = 1, then w" = W™ (W™ 1)" =
1, so w™! generates U GF(¢™). Secondly, suppose E;io b; X with n' < n is
an irreducible polynomial in k[X] with w™' as a root. Then w is a root
of by* Z;‘io b,_1 X", which is irreducible in k[X], but that contradicts the
assumption that f is the minimal polynomial of w. Thus f* is primitive.
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On another note, we have that

0 0 0 aop

—1 0 0 aq
_M=]0 -1 0 a |,

0 O -1 a,

which has characteristic polynomial

X 0 0 —ay

1 X 0 —aq
det 0 1 O —Qa9

0O 0 --- 1 X—a,

= X" - an,anfl + an,QX"J — e+ (-1)”@0 = Z(—l)nilale
i=0
where a, = 1. We can show that this polynomial is irreducible. Suppose
F(X) =" o(—=1)""a; X" has a root A € k. If n is even, then

FEN) = (X" an 1 (A" 4 - ar (=) + ag

= A" —ay N 4 — At ag = f(/\) = 0.
If n is odd, then

f<—>\) =-\" + (17171)\7171 — e — al)\ + Ao

= (A" =@ A" ) —ag) = —f(\) = 0.

In either case we have that —\ is a root of f, but this contradicts the as-
sumption that f is irreducible. Then f has to be irreducible in k[X]. Sup-
pose again that f € GF(q)[X] is a primitive polynomial with respect to
the field extension GF(¢™). This means there is some w € GF(¢™) which
generates U GF(¢™) = GF(¢™) \ {0} multiplicatively and has f as its min-
imal polynomial. We can assert that f is the minimal polynomial of —w
because if some other irreducible polynomial ' + b,_12™ ' + .-+ + by in
k[X] with degree n’ < n had —w as its root, then w would be a root of
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2" —by_12™ " -+ (=1)"by, which would imply f is not primitive. Since
—w is a root of f, then f is primitive if —w generates U GF(¢™). This is
obviously the case whenever chark = 2, as —w = w when chark = 2. In
general, if the order of —X is ¢™ — 1 in ¥XJ/f(x), then f is primitive.

For example, choose k = GF(3) and n = 2. We first check that X?+2X+2
is primitive. For X = X + (X2 42X + 2) in GFG)X]/(x212x+2), we have that

X' =X+T1=2X =X 42X 41=-T1=X"=1
= X2 42X + 2 is primitive. For —X we have
(—X)P=X+1=(-X)=-1=(-X)pP=1

= X2 4 X + 2 is primitive.
We can actually be sure that if we assume ¢ is odd and ¢™ =1 (mod 4),

then —w also generates U GF(¢™). This is because qm2_1 is even in that case,
which implies (—w)“ 2" = w2 = —1 since (—w)" = (—1)"w" Vr € N, 80

the order of —w has to be ¢ — 1. This means —w generates U GF(¢") = f
is primitive.
If ¢ is odd and ¢™ # 1 (mod 4), then ¢" = 3 (mod 4) = qm;l is odd

m_q gMm—1

= (—w)"7 = -w"z = —(—=1) =1 = the order of —w is qu_l <qgm—1
= —w does not generate U GF(¢™). Since this is the case for all roots of f,
then f is not primitive.

We can get even more specific about this. If z =1 (mod 4), then 2" =1
(mod 4) for all € N. If # =3 (mod 4), then 2" = 3 (mod 4) when r is odd
and z = 1 (mod 4) when r is even. Thus f is primitive if and only if one of

the following criteria are satisfied:

1. char GF(q) = 2,
2. ¢g=1 (mod 4),
3. ¢ =3 (mod 4) and m is even.

If we identify the isomorphism class represented by the representation
Inzk;"
En lM with the characteristic polynomial of M, then for this type of

I

kn
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representation we can view Cox"™ as a map on the set of monic irreducible
polynomials of degree n.

Suppose
A0 - 0 0
1 X - 00
M=J,AN:=[:+ + -~
00 -+ X0
00 --- 1 A
for some A € k, which is a matrix on Jordan Canonical form. Then
A 0 --- 0 0
1 =X\ --- 0 0
-M = : R :
o 0 -+ =X 0
0O 0 -+ =1 =X
and the Jordan Canonical form of this matrix is
X 0 -~ 0 0
1 =X -~ 0 0
SN =1+
o 0 -+ =X 0
0O 0 -+ 1 =X

since —M has one eigenvalue —\ with multiplicity n as its characteristic
polynomial is (X — \)". If A # 0, then

A0 -0 0

-1 Xt .. 0 0

ML= : : . : :

0 0O --- Xt 0
0 0o --- —1 X!

whose Jordan Canonical matrix is
A0 -0 0
1 At 0 0
Jn(>‘_1) = :
0 0 D S ¢!
0 0 1 At



Then we have that

L kn Jn(A_l) kn L k,n
% N % - 4
N N IR

In kn In kn Jn()‘ 1) kn

kn

I,
"¢

If we identify the representation jn J J.(n) With its one eigenvalue A, for
\

I
no K n K
each A € k, pn ljn with a symbol co; and g Jln with another symbol

N

In Jn(o)N

k" k™
009, then Cox™ on this type of representation can be seen as the bijection on
k U {001,009} which sends A € k to —\, 0o to 0og and ooy to 0o;. A

3.2 The Dual of the Transpose

This section is based on IL1.3, II.4 and IV.1 in [1]. We define the dual and
the transpose, then we give some properties of the dual and the dual of the
transpose. The transpose does not always describe a functor, so we give
some criteria for whenthis is the case. Lastly we consider an example where
we compare the dual of the transpose and Cox' on some representations of
quivers.

We begin by describing the dual. Let R be a commutative artin ring.
Then R has only finitely many isomorphism classes of simple submodules
S1,S89,...,5,. Let I(S;) be the injective envelope of S; for each i and let
J = @;_, I(S;), which is the injective envelope of @, S;. We have that
the functor D : mod R — mod R such that D = Homy,eqr( ,J) is a duality
which induces a duality D : mod A — mod(A°?) where A is an artin R-
algebra.

Let C be in mod A and let P, ., P > C > 0 be a minimal

projective resolution of C'. Then C' = Coker f. Applying the duality ( )* =
Homyoaa( ,A) on f gives the morphism f* : Py — Pf. We define the
transpose of C' as Tr C' = Coker f*. This transformation does not induce a
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duality mod A — mod A°P, and there is in general not even a functor which
maps C' to Tr C. It is often still useful to consider this map.

Let C be an object in mod A. Then we have a decomposition C' = C'» @,
which is unique up to isomorphism, where C'5» has no projective summands
and C" is projective. Let mod s denote the subcategory of mod A every object
C satisfies C' = C» and Homyyea,, (A, B) = Homyeaa (A, B) for all objects
A, B in mod 4 A.

If C is an indecomposable and non-projective object in mod A, and we

have a minimal projective resolution P, N =) > C >0 of C,
then f is indecomposable an indecomposable map that is not an isomorphism.
Thus f*: By — P} is also an indecomposable map which is not an isomor-
phism, which implies Coker f* = Tr C' is indecomposable. We can also see

that B AN P > TrC —— 0 is a minimal projective resolution of
Tr C' if C is not projective. If C = P is projective, then 0 - P —- P — 0
is a minimal projective resolution of C', but P* — 0 — 0 — 0 is not a mini-
mal projective resolution of Tr P = 0. From these arguments we obtain the
following properties of the transpose.

Proposition 3.1.
L. Tr (P, Ai) =B, Tr A; where Ay, ..., A, are objects in mod A.
2. Tr A =0 if and only A is projective.
3. TrTr A = Ay for all objects A in mod A.

4. Let A and B be objects in mods A. Then Tr A = Tr B if and only if
A=DB.

5. Tr : mod A — mod(A°P) induces a bijection between the isomorphism
classes of indecomposable objects in mods A and the isomorphism
classes of indecomposable objects in mod z(A°P).

We now define similar notions for injective modules as we did for pro-
jectives above. Let C' be an object in mod A. There is a decomposition
C = C,& ', which is unique up to isomorphism, where C', has no nonzero
injective summands and C’ is injective. Denote by mod s A the full sub-
category of mod A where C = C, for each object C. We now list some
properties of D Tr : mod A — mod A which is the composition of the maps
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Tr : mod A — mod(A°?) and D : mod(A°?) — mod A, and Tr D : mod A —
mod A which is the compostition of the maps D : mod A — mod(A°P) and
Tr : mod(A°?) — mod A. These properties are derived from Proposition 3.1.

Proposition 3.2.
L. DTr (P, A) =D, DTr A; where Ay, ..., A, are objects in mod A.
2. DTr A =0 if and only if A is projective.
3. D'Tr A is an object in mod s A for all objects A in mod A.
4. (Tr D)(DTr)A = Ay for all objects A in mod A.

5. If A and B are objects in mods A, then DTr A = D Tr B if and only
if A~ B.

6. DTr : mod A — mod A induces a bijection between the isomorphism
classes of indecomposable objects in mods A and the isomorphism
classes of indecomposable objects in mod » A with Tr D as inverse.

The transpose might not be a functor as a map Tr : mod A — mod(A°P),
but we can turn it into a functor by defining it on an appropriate factor
category. We proceed by discussing factor categories.

A relation #Z on an R-category .7 consists of A-submodules Z(A, B) C
Hom,, (A, B) such that if ®z denotes the composition map Hom, (A, B) ®g
Hom,, (B, C) — Hom, (A, C), then

1. Im (%2(A, B) @z Hom,/ (B, C) — Hom (A, C)) C Z(A,C),
2. Im (Hom,,/ (A, B) ®r #(B,C) — Hom (A, C)) C Z(A,C).

The factor category </# is defined as the category where Ob(#/#) = Ob./,
Hom./, (A, B) = Home (4.8)/%(4,8) and composition is such that

(9+Z(B,C)(f +Z(A,B)) = gf +%#(A,C)

for all A, B,C € Ob(¥/%), f € Hom, (A, B) and g € Homy (B, C).

Let Z(A) denote the category of finitely generated projective A-modules.
The morphism category of Z(A) is an R-category Morph &(A) where the
objects are the morphisms f : P, — P, in &(A) and the morphisms between
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two objects f: P, — P and f’: P{ — Pj are pairs (g1, go) of maps g; : P, —
P| and go : P, — Pj such that the diagram

Plépg

bl

P L P

commutes. Addition and composition on the morphism sets in Morph Z(A)
are defined component-wise.

The R-functor Coker : Morph Z(A) — mod(A) is defined such that
Coker(f : P, — P,) = Coker f for every object f in Morph Z(A), and
Coker(g1, go) is the unique morphism Coker f — Coker f’ that makes the
diagram

P, L P, > Coker f
lgl g2 lCOker(gl ,92)
Pl Pl —— Coker f'

commute. The functor Coker is full and dense, and Coker(g;, g2) = 0 if
and only if go = f’h for some h : P, — P/, that is

P,
% lgz
P Py

commutes. From this we can define a relation % on Morph Z(A) such
that Z(f, f') consists of the morphisms (gs, g2) between f and f’ that satisfy
g2 = f'h for some h : P, — P|. Then Coker : Morph #(A) — mod A induces
an equivalence of categories between Morph Z(A)/% and mod A.

We have a duality 7' = Hompmean( ;A)| 2 : P(A) = P (AP) defined
such that P — Hom(P,A), which induces a duality T : Morph Z(A) —
Morph Z2(A°P) that maps an object f: P, — Py to f*: Py — Pf. If (g1, 92)
is in Z(f, f'), then there is an h : Py, — Pj such that go = f’h we have the
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diagram

/%
Py —— P

b I
f*

P2—>P1

with g5 = h*f™. To have (g3,97) € Z(f™, f*) we need gf = f*h*, but we
see from the diagram above that this is not necessarily the case. We want a
relation with this property, that is we want a relation & on Morph & (A) such
that (g3,97) € 2(f"™, ) if (91,92) € Z(f, f'). The smallest such relation
that also contains & is generated by the following maps. For f : P, — P,
and f': P — P, we have that (g1,92) : f — f'is in Z(f, f') if and only
if there is some object h : Py — P in Morph &(A) such that g = hf or
g2 = f'h. We then get that the duality 7" : Morph &(A) — Morph & (A°P)
induces a duality Tr : Morph &Z(A) — Morph Z(A°P) with inverse duality
Tr : Morph &(A°) — Morph &(A). We have the following result.

Lemma 3.1. Let (g1, 92) be a morphism between two objects f : P, — Py
and f': P — P in Morph Z(A). Then (g1, ¢2) is in Z(f, f') if and only if
there exists some h : P, — P| such that f'hf = gof.

Proof. Let f: P, — Py and f': P| — Pj be objects in Morph &(A) with a
morphism (g1, g2) : f — f'.

(=) Suppose Jh : P, — P| such that go = f'h or gy = hf. If go = f'h,
then gof = f'hf. If gg = hf, then since f'g; = gof, we have that
gof = f'g1 = f'hf. In either case we have f'hf = gof.

(<) Assume there is an object h : P, — P| such that gof = f'hf. Then
f'hf = f'g1, so (g1, f'h) is a morphism between f and f’. We also
have that (g1, f'h) € Z(f, f') due to the simple reason that f'h = f'h.
Furthermore (g1,92) — (g1, f'h) = (0,92 — f'h) € Z(f,f’) because
0 = 0f, so since (g1, 92) = (0,92 — f'h) + (g1, f'h) and Morph Z(A) is
preadditive, then (g1, go) is in Z(f, f').

]

We now wish to transfer these considerations from Morph #(A) to mod A.
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Consider a commutative diagram

0 s P > P, —— Coker f —— 0

l&h lgz lCOker(m ,92)

0— P P <y Coker f' —— 0

with short exact rows. Then (g1,¢2) is in Z(f, f') if and only if there is
some t : Coker f — P} such that Coker(gy, go) = et. The image of & under
the functor Coker : Morph &(A) — mod A consists of morphisms A — B
that can be written as the composition A — P — B where P is a projective
object in mod A.

Additionally, since & contains the relation Z on Morph &(A) and there
exists an equivalence between Morph 2(A)/% and mod A, then the image of &
under the full and dense functor Coker : Morph #(A) — mod A is a relation
on mod A. We denote this image by .

We say that a morphism f : A — B in mod A factors through a projective
module if f = hg with g : A — P and h : P — B where P is a projective
module. We denote Hommoaa(4,8)/5(4,8) by Hom 4, (A, B) and the factor
category medA/%» by modA.

Since Coker : Morph Z(A) — mod A is full and dense, it induces an
equivalence Coker : Morph #(A)/5 — modA. The duality Tr : Morph 2(A)/ 5 —
Morph Z(A°?)/ 2 then induces a duality Tr : modA — modA°P.

Let C be an object in mod A. Then we have a decomposition C' = C'» @,
which is unique up to isomorphism, where C'5» has no projective summands
and C" is projective. Let mod s denote the subcategory of mod A every object
C satisfies C' = C» and Homyyea,, (A, B) = Homyeaa (A, B) for all objects
A, B in modg A. The relation &2 on mod A induces a relation on modz A,
which we also denote by &2, and we denote the category med= A/ by mod , A.
The inclusion mods» A — mod A then induces an equivalence of categories
mod A — modA and we also get a duality Tr : mod , A — mod ,A°P.

Now we want to consider D Tr, the dual of the transpose. We can
see that if D : mod A — mod(A°P) denotes the duality such that X +—
Homyoq r(X, J) where J is the direct sum of the injective envelopes of ev-
ery simple non-isomorphic R-module, then for A, B in mod A, the morphism
f:A— Bisin #(A,B) if and only if there is an injective module I and
morphisms g : D(B) — [ such that D(f) : D(B) — D(A) equals hg. This
motivates the notion of categories modulo injectives.
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We say that a morphism f : A — B factors through an injective module
if f=~hgwithg: A— I and h: I — B where [ is an injective module.
We define the relation .# on mod A such that the elements of .7 (A, B) are
the morphisms in Homy,eqa (A, B) that factor through an injective module.
Denote the sets of morphisms Hommedaa(4,8)/.7(4,5) by Homyeqs(A, B) and
denote the factor category modA/s by modA. We have that the duality D :
mod A — mod A% induces D : modA — mod(A°?) and DTr : modA —
modA is an equivalence of categories with inverse equivalence Tr D : modA —
modA. The relation . on mod A induces a relation on mod » A which we also
denote by .#. Denote mods A/s by mod ,A. Then the inclusion mod s A —
mod A induces an equivalence of categories mod A — modA since C in
modA is the zero object if and only if C' is injective.

1
B
Example 3.2. Let I'y; be the quiver o < la. Let k be a field and Ag; =

N

3
k

1
4 . . . .
k 1 for some nonzero. A minimal projective resolution of Ay, is

R

k
p1 po
P1 > PO > Ag}l ,

with
1{1{: )/0
P @m0
() 2 i
po=(1,1,(11)) and p; = (0,0,(1)).

Then the projective resolution is the following.

0 i Tk
v v v
0 B k Jl
AV N
k L) g "k

\(j)/’ (11)



The respective duals of Fy and P, are

2
. %),k
= T and Py = . T((l))
N X
0 k.

We get that pf = ((4),0,0) and from the diagram
(11) ()

we can see that
1

k
N
Tr(Ag,;) = Coker(py) = . J ,
k

N

SO
1

k
4
DTI'(AQJ) = Lk J/l = Agﬂl.
k

R
On another note, since

1
ker(k2(1—1)>k): LC Y

and

——

), 12

ker(/#“—lik): VR

then
1

k
v A
Cy(Ag1) = Tl = C5 Cf (A2y)
k

-1

Il
e
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e
= COX+(A271) = 01+02+03+<A271) = k J_l :

Suppose ¢ : Ay — Cox'(Ag,) is a homomorphism between representations.
If the diagram

¢(1) = 9(2), 6(2) = ¢(3) and — (1) = ¢(3)

= ¢(1) = ¢(2) = 6(3) =0,
so Hom (AQJ, Cox™ (Agyl)) = 0. In particular we get that Ay ; and Cox™* (Ag;)
are not isomorphic. Thus, since DTr(Ag;) = Mgy, then DTr(Ag;) 2
Cox <A2,1)-
More generally, suppose

1
ai \B:
2 / m+1
2] 18
Linn = z :
am_ll Lo
m m+n—1
N
m—+n
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and

is a representation of ', ,,. We claim that Cox"(A,,,) = D Tr(A,,,) if and

only if m + n is even. To prove this claim, we first show that D Tr(A,,,) =
Ay The diagram

— O
— O
—
- &
<_

[

j—
<_
<_

[

is a minimal projective resolution of A,,,, which we can write as

P f>P0 > A — 0.

Taking the duality Homuyedsr,,.,, (s k) where kI, ,, denotes the path al-
gebra on I'y, ,,, we get

0 —— TrA,,, < Py < 7 Fj .
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We can express this as a diagram

(11) (1)

VT R O L)

e TR A
k k k k
T T

and obtain that

k k
N
k
which means D Tr A, , = Ay, 0.

Now we show that for the representations

SP=k S5k Sk k

and

Si= kS kb Lk k

of the graph A;,; with orientation

1—2— - — 1+ 1+1,
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we have that if [ is odd, then
cf - CrE)=k—k S5 - HEDk

and

CH - CHE )= ke k kS LBk k,

and if [ is even, then
CH - CHEf)= ke k kS . L1k

and
Cf - CrE)=ke—k S k5 Bk k.

Let P(h) be the statement that
Cr, - CrEf)= k5 5 }]f — k = =k

and

i oy 1 D" 1 1
cr,CrE )= k— - — k <+ ==k
[=h LA I—h—1 I~h

where h € N\ {1}. We show that P(h) is true for all [ € N\ {1} and
h € {0} UN;_5. Suppose h = 0. Then

Cr, - CHEN =CHEN = kS k5 Lk p g
and
Ch, - CHE)=CrE) =k kb o Lrd kg,

Assume P(h) is true for some h € {0} UN,_3, that is

O, - CH (%) = k_1>..._1>l /]f1<_z h_>..._>k
and
_1\h
Ot CF () = kL - 4”1?1(&”14 Lk



Then

Clt(hﬂ)"'cfr@f): E Ly ol ilf LN

since
ker( k? —>(1 o) k ) =k @
and
Gy GFED) = kS T g
because

_1\h (-1)h+t
ker(k?%k>: k’(—>>

1

k* .

By induction on h we get that P(h) is true for all A € {0} UN,_3.
Let h =1 —2. If [ is odd, then (—1)" = —1 and (—1)"*! =1, so

-GS =k~ S ESH LSk

and

CHCHE )= ke kS kS o LB ek,

If [ is even, then (—1)" =1 and (—1)"!, so

Cf- CHEf)= he—k k5 - HE-Sk

and

cf CrE)=ke—k-SHErSH o  HED k.

Now we have that

\
Cr:—&-n(Am,n):
1
k

A



Then X, and X;F correspond to the arrows on the left and right parts of the
diagram of C, 1, (Ay,n), respectively. If both m and n are odd, then

1] il
Cy o Copn(Amn) = Do
1] &
k k
N
k
If both m and n are even, then
k
AN
k k
1] il
1] &
k k
N
k
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In both cases we get that

Then Cox*(Apn) = App if m+nis even. If m is odd and n is even, then

k’yk\lk

1] 4
O;_ : C:r;—i-n(Am,n) = Do
@ I
k k
N
k
If m is even and n is odd, then
k
N
k k
1] N
O;_ T O7Tz+n(Am7n) =
@ I
k k
N
k
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In both of these cases we have that

COX+(Am,n) = Of T CrZ—&—n(Am,n) = Do
1) &
k k
NoA
k

Then Cox™(Apn) Z Ay if m+n is odd. Lastly, since D Tr(Ayn) = Ay,
then we get that Cox™ (A, ) & D Tr(A,,) if and only if m + n is even. A
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A ¢, is an R-algebra automorphism

Let R be a commutative ring, A an R-algebra, A € U(A) and define the
function

Qﬁ)\ZA—)A
o Ao\t

for all o € A.
Claim. ¢, is a A-automorphism for all A € U(A).

Proof. Suppose o, 8 € A and r € R. We show that ¢, is a A-homomorphism.

1. ¢, is compatible with scalar multiplication since

Pa(ra) = drad™t = rdad™! = roy(a).
2. ¢, is compatible with addition since
or(a+B) = Ma+BA™H = XX £ ABAT = gu (@) + oa(8).
3. ¢, is compatible with multiplication since

or(af) = AafAT = AaATIABAT = da(@)pa ().

Thus ¢, is a A-homomorphism.
Now we show that ¢, is bijective.

1. ¢, is injective since
Pxa(a) = ox(B) = Aad ™t = A8 = A AaAd HA = AT ABATHA
= AN AN = (AN = a= 8.
2. ¢, is surjective since

acA=)XtTadeA=TycA:y=2"ad=a= M\ =g\(7).

We have shown that ¢, is a injective and surjective A-homomorphism. Hence
it is a A-automorphism.

[]
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B Z(G) is a subgroup of G

Let G be a group and let Z(G) = {g € G | gh = hg Vh € G} denote the
center of G.

Claim. Z(G) is a subgroup of G.
Proof. First observe that Z(G) C G. Suppose a,b € Z(G).
1. Z(G) is closed under the group operation of G since

(ab)g = agb = g(ab) Vg € G = ab € Z(G).
2. e, the identity in G, is contained in Z(G) since
eg=g=geVgeGqG.
3. The inverse of every element in Z(G) is contained in Z(G) since
g€Z(Q)=gth=Mh"9) ' =(@gh ) '=hg'Vheqd
=g ' e Z(G).
Thus Z(G) is a subgroup of G. O

C Inn(A) is a group

Let R be a commutative ring and A an R-algebra.

Claim. Tnn(A) is a group under function composition.
Proof. Assume a, 3, € U(A).

0. Inn(A) is closed under function composition since

(65 0 ¢a)(N) = Bara ' 87 = (Ba)A(Ba) ™" = dpa(A) VA € A
= ¢ 0 Pa = Ppa-
1. Composition is associative since
(4 0 05) 0 @a)(N) = (¥B)ara™ (871 71) = y(Ba)Ma™ f7 )y
= (Pyo(gpoda))(A) VAET
= (¢4 0 Pp) 0 Pa = ¢ 0 (P50 Pa)-
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2. Inn(A) has an identity element since
(61 © 62 (V) = Ta(ara )15 = ara™

= ¢a()‘)
=ada ' =a(ly-A-1p)a™ = (¢a0¢1,)(N) VA € A
:>¢1Ao¢a:¢a:¢ao¢1/\-
3. Every element in Inn(A) is invertible since
(o © Po-1)(N) = aa " Aaa™ =\
= ¢1(N)
=A=alarala = (¢a-1 0 da)(\) VA € A
= Pa © Q-1 = @1 = Pa-1 © Pa.

Thus Inn(A) is a group under function composition. O

D Ey(-r)= (qu(r))‘l

Let p,q,i,5 € {1,...,d},p # q and r € R. Consider the matrix e,,(r) €
My(R) defined such that

e (F)]is = {rifi:pandj:q}'

0 otherwise

Define the matrix E,,(r) 1= Iz + epq(7).

Claim. E,y(r)Ep (—1) = Iy = Epg(—1)Ep(r).

Proof. We first show that E,,(r)E,,(—r) = I;. First we have that
Epg(r) Epg(—=7) = I + Laepg(1) + Laepg(—7) + pg(1)epg(—7).-

Notice that Izep, (1) + Lgepg(—1) = €pg(1) +epg(—1) = epy(r —1) = €,,(0) = 0.
If M € My(R), then let [M];s be the i-th row and [M],; be the j-th column
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of M. If i # p, then [epy(r)]ie = 0, and if j # ¢, then [epy(—7)]s; = 0. Thus
the only potentially nonzero entry in ep,(r)e,,(—r) is then

[epq(T)epg(—7)]pg = [€pg(T)]pe[€pqg(— Z €pg (7)) pk[€pg (—7)]kg-

Since [e,y(r)]p; = 0 when j # ¢, then

[epg ()] prlpg (—T)]kg = [€pq(T)]pal€pa(—T)]gq-

B
Il &
—_

But [epg(—7)]gq = 0, 80 €py(7)epy(—1) = 0. Then E, (r)Ey,(—r) = I;. We
show that E,,(—7r)E,,(r) = I; in a similar way.

Epy(—1) Epg(r) = —[3 + Laepg(—7) + Laepg (1) + epg(—7)epg (7).
Idepq(_r) + Idepq(r) = egg(_r) + epq(r) = epq(_r +7r) = epq(O) = 0. If

i # p, then [e,g(—7)]ie = 0, and if j # ¢, then [eyy(r)]s; = 0. Thus the only
potentially nonzero entry in e,,(—r)e,,(r) is then

k=1
Since [eyq(—7)]p; = 0 when j # ¢, then
d

Z epg(—T)|pkl€pq (1) ]kg = [€pg(—7)]pgl€pq (7)]gq-

k=1
But [epq(T)]qq = 0, S0 €pq(—7)epg(r) = 0. Then E,,(—7)E,,(r) = I;. Hence
Epg(r)Epg(—1) = La = Epg(—1)Epq(r). O
E Mp(k) is an associative k-algebra

Let k be a field, n e N, D = (dy,--- ,d,) € N*, r € kand A = (Ay,..., A)
and B = (By,..., B,) be elements in Mp(k) = [[;_, Mg, (k). Define

e scalar multiplication such that rA = (r4y, ..., A,).
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e addition such that A+ B = (A; + By,..., A, + B,).
e multiplication such that AB = (A1 By, ..., A, By).

Claim. Mp(k) is an associative algebra.

Proof. We first show that Mp(k) is an k-vector space. Let A = (Ay,..., A,),
B = (By,...,B,)and C = (C4,...,C,) be elements in Mp(k).

1. Addition is associative since
(A+B)+C= (A1 +By,..., A, + B,) + (Cy,...,C)

= (A1 +B1)+C4,....,(Ay+ Bn) + Cy)
:<A1+(Bl+01)77An+(Bn+Cn))
= (A, A) + (Bi+ C,.. By +Co) = A+ (B +C).

2. Define Opz, 1) = (OMd1 k)» - - -» 0, (k). This is the additive identity of
Mp(k) since

A+ OMD(k) = (Al + OMdl(K)7 LA+ OMdn(k)) = (Al, ... ,An)
=A
= (A1, An) = Oy, 0 + A - Ongy, () + An) = Oarpi) + A

3. Let —A = (—Ay,...,—A,). Then any element in Mp(k) has an addi-
tive inverse since

A+ (—A) = (A + (A1), .. Au + (=A0) = Oary, )5 - -+ Onry, (1)

= Ompw)
= (OMdl(k)a s 70Mdn(k)) = ((_A1> + A17 R (_An) + An) = (_A) + A.

4. Addition is commutative since

A+B:(A1+B177An+Bn>:(B1+A1,,Bn+An):B+A

Thus Mp(k) is an abelian group.
Now let r,s € D.
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1. Scalar multiplication is distributive with addition in Mp(k) since
r(A+B) = (r(A1+ B1),...,7(An, Bn)) = (rA1 + 7By, ... ,rA, +1rB,)

= (rAy,...,rA,) + (rBy,...,rB,) =rA+rB.

2. Scalar multiplication is distributive with addition in k since

(r+s)A=((r+s)Ay,...,(r+s)A,) = (rd; +s4,...,rA, + sA,)

=(rAy,...,rA,) + (sAq, ..., s4,) = 1A+ sA.

3. Scalar multiplication is compatible with multiplication in k since

(rs)A = ((rs)Ay, ..., (rs)A,) = (r(sAy),...,r(sA,))
=r(sAi,...,sA,) =r(sA).

4. Scalar multiplication is compatible with the multiplicative identity in
k since

LA = (1AL .. 1 An) = (A, Ay) = A

Thus Mp(K) is an k-vector space.
It is time to show that multiplication behaves the way we want it to.

1. Multiplication is left distributive since
AB+C)=(Ay,...,A)(B1+Cy,...,B1 + C,)

= (A1(B1+CY),..., A (B, +C,)) = (A1 B1+ A1Ch, ..., A, B+ A C)
= (AlBla o ,Aan) + (AlCl, ce ,AnCn) = AB + AC

2. Multiplication is right distributive since
(A+B)C = (A1 + By,..., A, + B,)(Ch,...,Cp)

= ((Al +Bl)017 ey (An+Bn)Cn) == (Alcl —|—Blc'1, e 7AnCn+BnCn)
- (Alcl, e ,AnCn) + (Blcl, ey BnCn) - AC + BC

104



3. Multiplication is compatible with scalars since
T(AB) = T(AlBl, Ce ,Aan) = (’T’(AlBl), Ce ,’I“(Aan))
= ((TAl)Bl, ceey (TAn)Bn) = (TAl, e ,TAn)(Bl, ey Bn)
=(rA)B
= (TAl, e ,TAn)(Bl, ceey Bn) = ((T’Al)Bl, ey (TAn)Bn)
= (Al(TBl), e ,An(TBn>) = (Al, Ce ,An>(7’Bl, . ,T’Bn)
= A(rB).

4. Multiplication is associative since
A(BC) = (Ay, ..., An)(B1Cy, ..., B,Cy)

= (A(B1CY); - -, An(BnCr)) = (A1B1)Cy, - - -, (AnBy)Cr)
- (AlBl, e ,Aan)(Cl, e ,Cn) - (AB)C

5. Define 1y, = (1Md1(k’)7 s 1ag, ). Then Mp(k) has a multiplica-
tive identity since

A]-MD(k) = (AllMdl(k)v- .. 7An1Mdn(k)) = (Al,. .. ,An)
=A
= (Al, e ,An) = <1Md1(k)A17 ey 1Mdn(k)An) = 1MD(k)A

Hence Mp(k) is an associative algebra. O
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