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Abstract

We present the theory of Gröbner bases in algebras with a multi-
plicative basis, and in particular of Gröbner bases in path algebras.

We show how to construct the tensor product Λ ⊗K Γ of algebras
Λ and Γ as a quotient of a path algebra, when Λ and Γ are given as
quotients of path algebras. We extend this to a new result showing how
we can construct the tensor product Λ⊗ΣΓ, where Σ is another algebra.
Additionally, we show how we can explicitly describe a Gröbner basis
for the case where the tensor product is taken over the field K.

We also investigate how, given a quiver Q and an ideal I ⊆ KQ
satisfying the condition

JmQ ⊆ I

for some m, we can find a new quiver Q′ and ideal I ′ ⊆ KQ′ such that

KQ/I ∼= KQ′/I ′,

and such that I ′ is an admissible ideal, i.e.

JmQ′ ⊆ I ′ ⊆ J2
Q′

for some m.

Sammendrag

Vi presenterer teori for Gröbner-basis i algebraer med multiplikativ
basis, og spesielt for Gröbner-basis i vei-algebraer.

Vi viser hvordan man kan konstruere tensorproduktet Λ ⊗K Γ av
algebraer Λ og Γ som en kvotient av an vei-algebra, når Λ og Γ er gitt
som kvotienter av vei-algebraer. Vi utvider dette til et nytt resultat
som viser hvordan vi kan konstruere tensorproduktet Λ⊗Σ Γ, der Σ er
en annen algebra. I tillegg viser vi hvordan vi eksplisitt kan beskrive
en Gröbner-basis for tilfellet der tensorproduktet tas over kroppen K.

Vi undersøker også, gitt et kogger Q og et ideal I ⊆ KQ som
tilfredsstiller betingelsen

JmQ ⊆ I

for en eller annen verdi av m, hvordan vi kan finne et nytt kogger Q′

og et ideal I ′ ⊆ KQ′ slik at

KQ/I ∼= KQ′/I ′,

og slik at I ′ er et tillatelig ideal, det vil si

JmQ′ ⊆ I ⊆ J2
Q′

for en eller annen verdi av m.
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Prerequisites

It is assumed that the reader is familiar with the basics of ring theory in
general, and with quivers and path algebras in particular. It should be enough
to have taken the course MA3203 Ring Theory at NTNU, or similar.

For Chapter 3, it would benefit the reader to be familiar with tensor
products. At NTNU, this is covered in the course MA3204 Homological
Algebra. However, we recall the definition of tensor products at the start of
Chapter 3, so it may not be strictly necessary to know anything about tensor
products beforehand.
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Conventions regarding
terminology and notation

Throughout this thesis, K always denotes a field.
All rings have a multiplicative identity, and all algebras are associative

and unital. All ring homomorphisms and algebra homomorphisms preserve
the multiplicative identity unless otherwise noted.

Given a ring Λ and an ideal I ⊆ Λ, we sometimes use the notation [λ]
the equivalence class λ+ I. If λ, µ ∈ Λ and λ+ I = µ+ I, then we write

λ ≡ µ (mod I).

All quivers are finite by definition. When Q is a quiver, we denote the sets
of vertices and arrows by Q0 and Q1, respectively. Multiplication of paths
in a quiver is written from right to left. For example, for arrows α : v1 → v2

and β : v2 → v3, we have a path βα from v1 to v3. The source and target of a
path p are denoted by s(p) and t(p), respectively. The length of p is denoted
by l(p).
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Chapter 1

Introduction

In 1965, Bruno Buchberger introduced the concept of Gröbner bases in his
PhD thesis, naming them after his advisor Wolfgang Gröbner [Buc06]. Since
then, Gröbner bases have become an important tool in computational com-
mutative algebra and computational algebraic geometry. They were origi-
nally defined in the setting of commutative polynomial rings in a finite num-
ber of variables over a field, and while this remains the most notable use
case for Gröbner bases, they have since been generalized to various other
settings. In particular, there is a Gröbner basis theory for path algebras, and
this theory is used to facilitate computations with the package QPA (Quivers
and Path Algebras) [QPA22] for the programming language GAP [GAP20].
In this thesis, we present this theory of Gröbner bases. We also study tensor
products of algebras.

This thesis has three main chapters. In Chapter 2, we present Gröbner ba-
sis theory for algebras with a multiplicative basis, with an emphasis on path
algebras. We see how Gröbner bases can be used to facilitate computations
with quotient algebras, and show how they may be computed. Chapter 3
deals with tensor products of algebras. We prove a result that shows how
we can construct the tensor product Λ⊗K Γ as a quotient of a path algebra,
when Λ and Γ are given as quotients of path algebras. We then generalize
this to obtain a result that shows how we can construct the tensor product
Λ ⊗Σ Γ, where Σ is another algebra. Finally, we show that for the case of
tensor products over the field K, we can explicitly describe a Gröbner basis,
which means that we do not need spend time computing one. In Chapter 4,
we consider the following question: Given a quiver Q and an ideal I ⊆ KQ
which is “lower-admissible”, i.e. which satisfies the lower bound

JmQ ⊆ I

1



for some m, can we find another quiver Q′ and an ideal I ′ ⊆ KQ′ such that

KQ/I ∼= KQ′/I ′,

and such that I ′ is an admissible ideal? We answer this question in the
affirmative, and we present algorithms to find Q′ and I ′.

2



Chapter 2

Gröbner basis theory

In this chapter, we present the theory of Gröbner bases in algebras with a
multiplicative basis, with an emphasis on quivers and path algebras. We will
see how Gröbner bases lend themselves towards computational use, and in
particular how they facilitate computations with quotient algebras.

Section 2.1 introduces the basic concepts of Gröbner basis theory that
underpin the rest of the chapter, and indeed the rest of this thesis. In Sec-
tion 2.2, we show how Gröbner basis theory can be used to define canonical
representatives of equivalence classes in a quotient algebra, and how these
representatives can be computed with the aid of Gröbner bases. Section 2.3
discusses reduced Gröbner bases, which are in some sense the “best” kind of
Gröbner bases. Finally, in Section 2.4, we focus exclusively on path algebras,
and show how Gröbner bases may be computed. We also prove a theorem
that gives a sufficient condition for the existence of a finite Gröbner basis for
an ideal in a path algebra.

It bears mentioning that most of the ideas in this chapter are not origi-
nal. Unless otherwise stated, all theory in this chapter is based on [Gre99],
with the exception of some lemmas used in the proof of correctness for Algo-
rithm 2.3. Content and ideas based on other sources than [Gre99] are cited
whenever they appear.

2.1 Admissible orders and Gröbner bases
We will now introduce the basic concepts that are foundational to Gröbner
basis theory. Although we are primarily interested in path algebras in this
thesis, most of this chapter deals with Gröbner bases in a more general
setting, namely in the context of algebras with a multiplicative basis. This
allows us to state results that hold not only for path algebras, but also for the

3



classical case of a commutative polynomial ring. Let us start by explaining
what is meant by an algebra with a multiplicative basis.

Definition 2.1. Let Λ be a K-algebra. A K-basis B of Λ is called a multi-
plicative basis if for all p, q ∈ B, we have that either pq ∈ B or pq = 0. �

A notable example of an algebra with a multiplicative basis is the com-
mutative polynomial ring K[x1, . . . , xn], in which the canonical choice of a
multiplicative basis B is the set of all monomials, i.e. all elements of the form

xm1
1 . . . xmn

n

for non-negative integers mi. This is the context in which Gröbner bases
were originally introduced. Another example, and one which will be central
to this thesis, is the path algebra KQ of a quiver Q, where the set of all
paths in Q forms a multiplicative basis.

Although an algebra might have several different multiplicative bases, we
will always assume that if Λ is a path algebra (resp. polynomial ring), then
the multiplicative basis B denotes the set of all paths (resp. monomials).

Gröbner basis theory requires that the elements of a multiplicative basis
B have been given a total order, more specifically an admissible order. This
is essentially an order that is compatible with the multiplication of basis
elements. Before we state the definition, recall that a well-order on a set X
is a total order ≤ on X such that every nonempty subset of X has a smallest
element. For x, y ∈ X, we write x < y if x ≤ y and x 6= y.

Definition 2.2. Let Λ be a K-algebra with multiplicative basis B. An ad-
missible order on B is a well-order ≤ on B such that the following state-
ments hold for all p, q, r ∈ B:

(i) If p < q and pr and qr are nonzero, then pr < qr.

(ii) If p < q and rp and rq are nonzero, then rp < rq.

(iii) If pq is nonzero, then p ≤ pq and q ≤ pq.

�

Let us look at some examples of admissible orders.

Example 2.3. Let Λ = K[x1, . . . , xn]. We define an order on the monomials
in the following way:

xm1
1 . . . xmn

n < x
m′1
1 . . . xm

′
n

n

4



if and only if there exists some j such that

mi = m′i

for i ≤ j, and such that
mj < m′j.

This is known as the lexicographic order on the monomials inK[x1, . . . , xn]
�

Example 2.4. Let Q be a quiver, and let Λ = KQ be the path algebra of
Q over K. Recall that B then denotes the multiplicative basis consisting of
all paths in Q. Let ≤ be any total order on Q0 ∪Q1 such that v < α for all
vertices v ∈ Q0 and arrows α ∈ Q1. We extend ≤ to an order on B in the
following way: If p is a path of length at least 2, then v < p and α < p for
all vertices v and arrows α. If q is some other path of length at least 2, then
p < q if and only if one of the following holds:

• l(p) < l(q).

• p = α1 . . . αr and q = β1 . . . βr for some arrows αi and βi, and there
exists some j ∈ { 1, . . . , r } such that αi = βi for 1 ≤ i < j and αj < βj.

It can be seen that this is an admissible order on B, which we call the left
length-lexicographic order, or just the (left) length-lex order.

For a concrete example, consider the following quiver.

Q : v1 v2 v3
α β

γ

Suppose that we order the vertices and arrows of Q as

v1 < v2 < v3 < α < β < γ.

Then the paths in Q of length at least 2 have the following order in the left
length-lexicographic ordering:

βα < βγ < γα < γγ < βγα < βγγ < γγα < γγγ < . . .

It is also possible to define a right length-lex order. This is defined in the
same way as the left length-lex ordering, except that arrows are compared
from right to left instead of left to right. For example, if Q is the quiver above
with the same order on the vertices and arrows, then the paths of length at
least two have the following order in the right length-lex ordering:

βα < γα < βγ < γγ < βγα < γγα < βγγ < γγγ < . . .

�
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In the case where Λ = KQ for a quiver Q, we will often just say that “≤
is an admissible order on Q” when we mean that ≤ is an admissible order on
the set of paths in Q.

Throughout the rest of this chapter, let Λ be a K-algebra with multi-
plicative basis B, and assume that we are given some admissible order ≤ on
B. Although statements about Gröbner basis theory depend on the choice of
order, we will often omit reference to the order when it is clear from context
(in both this chapter and elsewhere in the thesis). For example, we might
simply say that a set G is a Gröbner basis, when what we really mean is that
G is a Gröbner basis with respect to the admissible order ≤.

Before we can state the definition of Gröbner bases, we need a few more
preliminary concepts.

Definition 2.5. Let

x =
n∑
i=1

aipi ∈ Λ,

where ai ∈ K\ { 0 } and the basis elements pi ∈ B are distinct. Then we say
that the elements p1, . . . , pn appear in x. �

For example, if Λ = K[x, y] is the commutative polynomial ring in two
variables, then x appears in xy + x+ 1, but x does not appear in xy + 1.

Definition 2.6. Let x ∈ Λ\ { 0 }. The tip of x, denoted Tip(x), is the
largest basis element that appears in x. We denote the coefficient of Tip(x)
in x by CTip(x).

If X ⊆ Λ is a subset, we define

Tip(X) = { Tip(x) | x ∈ X and x 6= 0 } ⊆ B.

We also define
NonTip(X) = B\Tip(X) ⊆ B.

�

Example 2.7. Consider the following quiver:

Q : v βα

We give Q the (left) length-lex order with α < β. Assume that char(K) = 0.
Then some examples of tips are

Tip(2αβ + β) = αβ

6



and
Tip(α− β) = β.

For these two elements, the coefficients of the tips are

CTip(2αβ + β) = 2

and
CTip(α− β) = −1.

�

We can now define the concept of Gröbner bases. We will eventually see
that a Gröbner basis for an ideal is a generating set that is suitable for doing
computations.

Definition 2.8. Let I ⊆ Λ be an ideal. We say that a subset G of I is a
Gröbner basis for I if

〈Tip(G)〉 = 〈Tip(I)〉 .

�

When working with Gröbner bases, it is useful to have a notion of divis-
ibility of basis elements. If p and q are elements of the multiplicative basis
B, then we say that p divides q (or that q is divisible by p) if there exist
basis elements r, s ∈ B such that q = rps. We then write p | q.

Lemma 2.9. Let S be a subset of the multiplicative basis B. Let p be an
element of B ∩ 〈S〉. Then p is divisible by some element of S.

Proof. Since p ∈ 〈S〉, the element p can be written as a finite sum of elements
of the form λsµ, where λ, µ ∈ Λ and s ∈ S. Since λ, µ ∈ Span(B), it follows
that

p =
n∑
i=1

aiqisiri

for scalars ai ∈ K\ { 0 }, basis elements qi, ri ∈ B, and si ∈ S. Moreover, we
can assume that qisiri 6= 0, and that qisiri 6= qjsjrj if i 6= j. But then we
have written p as a linear combination of distinct basis elements qisiri ∈ B
with nonzero coefficients, so since p is an element of the basis B, it follows
from linear independence that n = 1 and a1 = 1. Thus p = q1s1r1.

As a consequence of Lemma 2.9, we have the following alternate char-
acterization of Gröbner bases, which we will use frequently throughout this
thesis.

7



Corollary 2.10. Let I ⊆ Λ be an ideal, and let G be a subset of I. Then
G is a Gröbner basis for I if and only if for all x ∈ I\ { 0 }, there exists an
element g ∈ G such that Tip(g) divides Tip(x).

Proof. First assume that G is a Gröbner basis for I. Let x ∈ I\ { 0 }. Then

Tip(x) ∈ 〈Tip(I)〉 = 〈Tip(G)〉 ,

and hence Tip(x) ∈ B∩ 〈Tip(G)〉. Since Tip(G) is a subset of B, Lemma 2.9
then implies that Tip(x) is divisible by some element of Tip(G), as desired.

Conversely, assume that for all x ∈ I\ { 0 }, there exists some g ∈ G such
that Tip(g) divides Tip(x). Then every element of Tip(I) is a multiple of
some element of Tip(G), and hence Tip(I) ⊆ 〈Tip(G)〉. But we also have
Tip(G) ⊆ Tip(I) since G is a subset of I, and hence

〈Tip(I)〉 = 〈Tip(G)〉 .

Hence G is a Gröbner basis for I.

Note that in our definition of Gröbner bases, we did not assume that G is
a generating set for I. That is because this assumption would be redundant,
as the following result shows.

Lemma 2.11. Let I ⊆ Λ be an ideal, and let G ⊆ I be a Gröbner basis for
I. Then 〈G〉 = I.

Proof. For the sake of contradiction, suppose that I 6= 〈G〉. Then, because ≤
is a well-order, there must exist some x ∈ I\ 〈G〉 such that Tip(x) is minimal
with respect to ≤. Since G is a Gröbner basis, there exist p, q ∈ B and g ∈ G
such that

Tip(x) = pTip(g)q.

Without loss of generality, assume that

CTip(x) = CTip(g) = 1.

Note that x 6= pgq since x /∈ 〈G〉, so x− pgq 6= 0. Therefore it has a tip, and

Tip(x− pgq) < Tip(x).

By the minimality of Tip(x), we have that x− pgq ∈ 〈G〉. This implies that
x ∈ 〈G〉, which is a contradiction.

We illustrate the concept of Gröbner bases with the following example.

8



Example 2.12. Let Q be the following quiver:

Q : v1 v2
β

α

We give Q the length-lex order with

v1 < v2 < v3 < α < β.

Consider the ideal
I = 〈βα− β, α〉 ⊆ KQ.

Then the set { βα− β, α } is not a Gröbner basis for I, because we have

β = βα− (βα− β) ∈ I,

but β is not divisible by any element of the set

Tip { βα− β, α } = { βα, α } .

On the other hand, I is also generated by the set { α, β }, and this set is a
Gröbner basis for I. �

2.2 Normal forms and remainders
In this section, we will see how Gröbner bases can be used to do computa-
tions with quotient algebras. Let I ⊆ Λ be an ideal, and suppose that we
are interested in representing the quotient Λ/I on a computer. Then it is
important to be able to test if two elements of Λ/I are equal. That is, given
two elements λ and µ of Λ, we need to be able to determine whether

λ+ I = µ+ I.

In general, it is not obvious how we can create a computer program that
performs such an equality test. We will need to find a way to compute some
sort of canonical representative for an element of Λ/I. In order to define
such representatives, we require the following result. Recall that for a set
X ⊆ Λ, we denote by NonTip(X) the set of basis elements in B that are not
contained in the set Tip(X).

Proposition 2.13. Let I be an ideal in Λ. Then as vector spaces,

Λ = I ⊕ Span(NonTip(I)).

9



Proof. Let x ∈ I ∩ Span(NonTip(I)). If x 6= 0, then Tip(x) ∈ Tip(I). But
this is impossible since x ∈ Span(NonTip(I)). Hence we must have x = 0,
which shows that I + Span(NonTip(I)) is a direct sum.

For the sake of contradiction, suppose that Λ 6= I + Span(NonTip(I)).
Since ≤ is a well-order, there must exist some element

x ∈ Λ\(I + Span(NonTip(I)))

such that Tip(x) is minimal. Without loss of generality, we may assume that
CTip(x) = 1. Then we either have x− Tip(x) = 0 or

Tip(x− Tip(x)) < Tip(x),

so it follows from the minimality of Tip(x) that

x− Tip(x) ∈ I + Span(NonTip(I)).

This implies that Tip(x) ∈ Tip(I), for if Tip(x) ∈ NonTip(I) we would find
that

x = (x− Tip(x)) + Tip(x) ∈ I + Span(NonTip(I)).

Since Tip(x) ∈ Tip(I), there exist scalars ai ∈ K\ { 0 } and basis elements
pi ∈ B such that

Tip(x) +
∑
i

aipi ∈ I,

where pi < Tip(x). By the minimality of Tip(x), we see that∑
i

aipi ∈ I + Span(NonTip(I)).

We then have

Tip(x) =

(
Tip(x) +

∑
i

aipi

)
−
∑
i

aipi ∈ I + Span(NonTip(I)).

But then both x−Tip(x) and Tip(x) are elements of I + Span(NonTip(I)).
It follows that x ∈ I + Span(NonTip(I)), which is a contradiction.

The following definition makes sense in light of Proposition 2.13.

Definition 2.14. Let I be an ideal of Λ, and let x ∈ Λ. The normal form
of x modulo I is the unique element N(x) of Span(NonTip(I)) such that
x−N(x) ∈ I. �

10



As a consequence of Proposition 2.13, we have the following result about
normal forms.

Corollary 2.15. Let I be an ideal in Λ, and let x, y ∈ Λ.

(i) x ≡ y (mod I) if and only if N(x) = N(y).

(ii) x ≡ N(x) (mod I).

(iii) There is a vector space isomorphism

f : Λ/I → Span(NonTip(I))

given by f(a+ I) = N(a).

(iv) N(xy) = N
(
N(x)N(y)

)
.

Proof. The first three points follow immediately from Proposition 2.13. More-
over, since x ≡ N(x) (mod I) and y ≡ N(y) (mod I), we have

xy ≡ N(x)N(y) (mod I),

and hence N(xy) = N(N(x)N(y)) by point (i).

Corollary 2.15 shows that normal forms provide a way to check whether
two elements of the quotient algebra Λ/I are equal. Moreover, point (iii)
shows that normal forms are compatible with the vector space structure of the
quotient, while point (iv) shows that they are at least somewhat compatible
with ring multiplication. This suggests that normal forms are a suitable
choice of canonical representatives for elements of Λ/I, so if we wish to do
computations in Λ/I, we should find a way to compute normal forms modulo
I. To this end, we introduce a notion of division and remainders that is
analogous to the classical “division algorithm” in the polynomial ring K[x].

Definition 2.16. Let X be a (possibly infinite) subset of Λ, and let y ∈
Λ\ { 0 }. We say that an element r ∈ Λ is a remainder of y under division
by X, and write y ⇒X r, if there exist elements ui, vi ∈ Λ and xi ∈ X\ { 0 }
such that:

(i) y =
∑

i uixivi + r.

(ii) For all i, if uixivi 6= 0, then Tip(uixivi) ≤ Tip(y).

(iii) For all x ∈ X\ { 0 } and all p ∈ B, if p appears in r, then Tip(xi) does
not divide p.

11



If y = 0, then we say that y ⇒X r if and only if r = 0. �

Remark 2.17. If the remainder r in Definition 2.16 is zero, then point (iii)
is redundant. In particular, it follows that if X ⊆ Y are subsets of Λ, and if
y ⇒X 0, then we also have y ⇒Y 0. �

Note that if Λ = K[x] is the polynomial ring in one variable and X =
{g(x)} is a set containing a single (nonzero) polynomial g(x), then the notion
of remainders defined in Definition 2.16 coincides with the usual notion of
polynomial remainders. That is, it can be shown that for a polynomial
f(x) ∈ K[x], we have f(x) ⇒{g(x)} r(x) if and only if there exists some
polynomial q(x) such that

f(x) = q(x)g(x) + r(x),

and such that either r(x) = 0 or deg(r(x)) < deg(g(x)).
We illustrate the concept of remainders with some examples. Note that

both of these examples show that remainders need not be unique.

Example 2.18. Let Λ = K[x] be the polynomial ring in one variable. We
give the monomials in Λ the only possible admissible ordering, i.e. the one
where

xm < xn

if and only if m < n. Let g1(x) = x and g2(x) = x2 + 1, and consider the set

X = { g1(x), g2(x) } .

Let f(x) = x3 + x2 + 1. Then we have

f(x) = x2g1(x) + g2(x) + 0.

Writing f(x) in terms of g1(x) and g2(x) in this way satisfies Definition 2.16,
so f(x) has remainder 0 under division by X. However, we also have

f(x) = x2g1(x) + xg1(x) + 1,

so 1 is also a remainder of f(x) under division by X. �

Example 2.19. Consider the following quiver.

Q : v1 v2γ

α

β

δ
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Let Λ = KQ. We give Q the left length-lex order with

v1 < v2 < α < β < γ < δ.

Let x1 = αγ and x2 = δα + β, and consider the set

X = { x1, x2 } .

Let y = δαγ + βγ + αγ. Then we have

y = x2γ + x1 + 0,

and hence y has remainder 0 under division by X. We also have

y = δx1 + x1 + βγ,

so y also has remainder βγ under division by X. �

Lemma 2.20. Let X be a subset of Λ, and let y, r ∈ Λ. Suppose that r 6= 0
and y ⇒X r. Then

Tip(r) ≤ Tip(y).

Proof. Let ui, vi ∈ Λ and xi ∈ X\ { 0 } be elements such that

y =
∑
i

uixivi + r, (2.1)

and such that the other conditions in Definition 2.16 are satisfied. Suppose,
for the sake of contradiction, that Tip(r) > Tip(y). Then by (2.1), Tip(r)
must cancel with some of the terms in

∑
i uixivi, so there exists at least one

index i such that Tip(r) appears in uixivi. But then

Tip(uixivi) ≥ Tip(r),

which contradicts our assumption that

Tip(uixivi) ≤ Tip(y).

Algorithm 2.1, Remainder(y,X), lets us compute remainders, assuming
that we’re dividing by a finite set. Note that many of the variables in the

13



algorithm, such as mi,j, are not actually needed for the algorithm to be
correct, but they do make it easier to reason about the algorithm.
Algorithm 2.1: Remainder(y, X)
Input: An element y ∈ Λ, a finite set X = { x1, . . . , xn } ⊆ Λ\ { 0 }
Output: A remainder of y under division by X

1 for i = 1 to n do
2 mi,0 ← 0;
3 end
4 r0 ← 0;
5 z0 ← y;
6 j ← 0;
7 while zj 6= 0 do
8 DIVISION_OCCURRED← False;
9 for i = 1 to n do

10 if zj 6= 0 and Tip(zj) = uTip(xi)v for some u, v ∈ B then
11 j ← j + 1;
12 mi,j ← mi,j−1 + 1;
13 ui,mi,j

← CTip(zj−1)

CTip(xi)
u;

14 vi,mi,j
← v;

15 zj ← zj−1 − ui,mi,j
xivi,mi,j

;
16 rj ← rj−1;
17 DIVISION_OCCURRED← True;
18 end
19 end
20 if DIVISION_OCCURRED = False then
21 j ← j + 1;
22 mi,j ← mi,j−1;
23 zj ← zj−1 − CTip(zj−1) Tip(zj−1);
24 rj ← rj−1 + CTip(zj−1) Tip(zj−1);
25 end
26 end
27 r ← rj;
28 return r;

Proposition 2.21. Algorithm 2.1 produces a correct result. That is, given
y and X as in the input to the algorithm, the algorithm terminates after a
finite number of steps, and outputs a remainder r of y under division by X.

Proof. If y = 0, then the algorithm terminates shortly after it reaches line 7,
and clearly produces a correct result. So assume that y 6= 0. First note that

14



there is a descending chain

Tip(z0) > Tip(z1) > Tip(z2) > . . .

of elements of the multiplicative basis B. Since ≤ is a well-order, this chain
must eventually end, i.e. zj = 0 for some j, so the algorithm terminates.

Let us now prove that when the algorithm terminates, it produces a
correct result. We proceed by induction on the index j. Let P1(j), P2(j),
and P3(j) denote the following three statements.

P1(j): y =
∑n

i=1

∑mi,j

k=1 ui,kxivi,k + rj + zj.

P2(j): Tip(ui,kxivi,k) ≤ Tip(y) for all i and 1 ≤ k ≤ mi,j.

P3(j): If p ∈ B appears in r, then Tip(xi) does not divide p for any i.

Clearly the statements P1(0), P2(0), and P3(0) are true. For the inductive
step, suppose that j > 0, and assume that P1(j−1), P2(j−1), and P3(j−1)
are true. Let us check that the statements P1(j) through P3(j) are then also
true.

First assume that Tip(zj−1) is not divisible by the tip of any element of
X, so that no divisions will occur during the for loop (line 7 to line 19).
Hence we have

zj = zj−1 − CTip(zj−1) Tip(zj−1)

and
rj = rj−1 + CTip(zj−1) Tip(zj−1).

Moreover, we have mi,j = mi,j−1. Thus the truth of P1(j) and P2(j) follows
immediately from the inductive assumption. We also see that P3(j) follows
from P3(j − 1), because the only basis element that appears in rj but not
in rj−1 is Tip(zj−1), and we assumed that Tip(zj−1) is not divisible by any
element of X.

Now assume that Tip(zj−1) is divisible by the tip of some element of X.
Let i be the index such that the algorithm divides Tip(zj−1) by Tip(xi),
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where Tip(zj−1) = uTip(xi)v. Then we have

n∑
l=1

ml,j∑
k=1

ul,kxlvl,k + rj + zj

∗
=

((
n∑
l=1

ml,j−1∑
k=1

ul,kxlvl,k

)
+ ui,mi,j

xivi,mi,j

)
+ rj−1 +

(
zj−1 − ui,mi,j

xivi,mi,j

)
=

n∑
l=1

ml,j−1∑
k=1

ul,kxlvl,k + rj−1 + zj−1

†
= y,

where the equality marked with ∗ is due to the fact that mi,j = mi,j−1 + 1
and ml,j = ml,j−1 for l 6= i, while the equality marked with † follows from
the inductive assumption. Thus we see that P1(j) is true. We also see that
P2(j) is true because

Tip(ui,mi,j
xivi,mi,j

) = Tip(zj) < Tip(zj−1) < . . . < Tip(z0) = Tip(y),

while P3(j) is true because rj = rj−1.
By induction, we see that the statements P1(j), P2(j), and P3(j) hold for

all values of the index j. But when the algorithm terminates, the element zj
is zero, and then these three statements are just the definition of remainders.
Hence we see that, at the end of the algorithm, rj is a remainder of y under
division by X.

Remark 2.22. Algorithm 2.1 assumes that we are performing division by
a finite set. However, we can also use the algorithm to perform division by
certain infinite sets. Suppose that X ⊆ Λ\ { 0 } is an infinite set such that
for any basis element p ∈ B, the set

{ x ∈ X | Tip(x) ≤ p }

is finite. Given an element y ∈ Λ, let x1, . . . , xn ∈ X be those elements of X
whose tips are less than or equal to Tip(y). Let r be a remainder of y under
division by the finite set { x1, . . . , xn }. Then for any x ∈ X\ { x1, . . . , xn },
we have

Tip(x) > Tip(y) ≥ Tip(r).

It follows that Tip(x) - p whenever p ∈ B is a basis element that appears
in r. Hence r is also a remainder of y under division by X. Thus we can
perform division of y by the infinite set X by applying Algorithm 2.1 to y
and the finite set { x1, . . . , xn }.
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Also note that the proof of Proposition 2.21 does not actually depend on
the assumption that the set X is finite, except of course for the fact that
the algorithm Remainder(y,X) could not be implemented on a computer
(and hence would not deserve to be called an “algorithm”) if X were infinite.
In particular, if X ⊆ Λ is an arbitrary infinite subset, then Proposition 2.21
shows that there exists a remainder of y under division by X. �

As shown in Example 2.18 and Example 2.19, remainders need not be
unique. However, when we are dividing by a Gröbner basis, there is only one
remainder.

Proposition 2.23. Let I ⊆ Λ be an ideal, and let G be a Gröbner basis for
I. Let y be an element of Λ. Then the remainder of y under division by G
is unique. In fact, the remainder is the normal form of y modulo I.

Proof. If y = 0, then the only remainder of y is 0, which is also the normal
form of y. Assume that y 6= 0.

Let r ∈ Λ be a remainder of y under division by G. Then there exist
elements ui, vi ∈ Λ and gi ∈ G such that

y =
∑
i

uigivi + r,

and such that the other conditions in Definition 2.16 are satisfied. We first
show that r ∈ Span(NonTip(I)). Suppose p ∈ B is a basis element that
appears in r. Then by the definition of remainders, we have assumed that p
is not divisible by Tip(g) for any element g ∈ G. But since G is a Gröbner
basis for I, this must mean that p /∈ Tip(I), i.e. p ∈ NonTip(I). Hence
r ∈ Span(NonTip(I)).

Now observe that
y − r =

∑
i

uigivi,

which is an element of I because each gi lies in I. Since the normal form of
y is the unique element

N(y) ∈ Span(NonTip(I))

such that y −N(y) ∈ I, it follows that r = N(y).

Combining Proposition 2.23 with Algorithm 2.1, we get the following
important corollary.
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Corollary 2.24. Let I ⊆ Λ be an ideal, and suppose that G ⊆ I is a finite
Gröbner basis. Then there is an algorithm to compute normal forms modulo
I.

Recall that for an ideal I ⊆ Λ and for x, y ∈ Λ, we have N(x) = N(y) if
and only if x + I = y + I. In particular, Corollary 2.24 shows that there is
an algorithm to determine whether two elements of Λ/I are equal, at least
if we are given a finite Gröbner basis for I. This solves the problem of how
to represent Λ/I on a computer, which was outlined in the beginning of this
section. This is one of the main reasons why Gröbner bases are useful.

Of course, none of this is of very much use unless we can actually find
a (finite) Gröbner basis for an ideal. We will come back to this problem in
Section 2.4.

2.3 Reduced Gröbner bases
We will now discuss reduced Gröbner bases. We will see that every ideal has
a unique reduced Gröbner basis, which is in some sense the “best” possible
Gröbner basis for the ideal, in part because it satisfies a minimality condition.
We start with the following definition.

Definition 2.25. Let I ⊆ Λ be an ideal, and let G ⊆ I be a Gröbner basis
for I. We say that G is a reduced Gröbner basis if the following three
conditions hold:

(i) 0 /∈ G.

(ii) If g ∈ G, then CTip(g) = 1.

(iii) If g, g′ ∈ G are distinct elements and p ∈ B is a basis element which
appears in g, then Tip(g′) does not divide p.

�

The following lemma will be useful when proving the uniqueness of re-
duced Gröbner bases.

Lemma 2.26. Let I ⊆ Λ be an ideal, and suppose G ⊆ I is a reduced
Gröbner basis for I. Then

g − Tip(g) ∈ Span(NonTip(I))

for all g ∈ G.
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Proof. Let g ∈ G, and let x = g − Tip(g). For the sake of contradiction,
suppose that x /∈ Span(NonTip(I)). Then there must be some basis element
p ∈ B such that p ∈ Tip(I) and p appears in x. Since G is a Gröbner basis
for I, there exist elements q, r ∈ B and g′ ∈ G such that p = qTip(g′)r. We
then have that g 6= g′, because

Tip(g′) ≤ qTip(g′)r

= p

≤ Tip(x)

< Tip(g).

The first inequality holds because ≤ is an admissible order, and the last
inequality holds because CTip(g) = 1. But this contradicts item (iii) in
Definition 2.25, because Tip(g′) divides p, and p appears in g. Therefore it
must be the case that x ∈ Span(NonTip(I)).

The next result will help us prove the existence of a reduced Gröbner
basis. We first introduce some terminology. A monomial is an element
of B. An ideal is called a monomial ideal if it is generated by a set of
monomials.

Proposition 2.27. Let I ⊆ Λ be a monomial ideal. Then there exists a
smallest monomial generating set of I.

Proof. If I = 0, then ∅ is the smallest monomial generating set. So assume
that I 6= 0. (In particular, this implies that a generating set of I cannot be
empty.)

Let S = I ∩ B be the set of all monomials in I. Consider the set

M = { p ∈ S | if q ∈ S divides p, then q = p } .

We claim that M is the smallest monomial generating set of I. To see that
this is true, we first show that M generates I. Let C be some monomial
generating set of I, and let c be an element of C. If c /∈ M , then c is
properly divisible by some element of S, so we can write c = p1s1q1 for some
s1 ∈ S\ { c } and p1, q1 ∈ B. Observe that c > s1 since ≤ is an admissible
order. If we also have s1 /∈ M , we can continue this process, and we get a
descending chain of elements of S:

c > s1 > s2 > . . .

Since ≤ is a well-order, this chain must eventually terminate; that is, the
process cannot be continued indefinitely. Thus we eventually get

c = (p1p2 . . . pn)m(qnqn−1 . . . q1) ∈ 〈M〉 ,
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where pi, qi ∈ B and m ∈ M . This shows that C ⊆ 〈M〉, and it follows that
I = 〈M〉.

Next we show that any monomial generating set of I contains M . So let
C ⊆ I be a monomial generating set, and let m be any element of M . Since
m ∈ 〈C〉, it follows from Lemma 2.9 that there exists some c ∈ C which
divides m. But since c ∈ S and m ∈ M , the definition of the set M implies
that c = m. In particular we see that m ∈ C, and hence M ⊆ C.

We can now prove the following result, which allows us to speak of the
reduced Gröbner basis for an ideal (with respect to a given admissible order).

Proposition 2.28. Let I ⊆ Λ be an ideal. Then there exists a unique reduced
Gröbner basis for I.

Proof. We first prove the existence of a reduced Gröbner basis. Let T be
the smallest monomial generating set of 〈Tip(I)〉, which exists by Proposi-
tion 2.27. Consider the set

G = { t−N(t) | t ∈ T } ⊆ I,

where N(t) is the normal form of t modulo I. We claim that G is a reduced
Gröbner basis for I. To see that G is a Gröbner basis, let t ∈ T , and let

g = t−N(t) ∈ G.

Since Tip(I) is a monomial generating set for 〈Tip(I)〉, we have T ⊆ Tip(I),
and in particular t ∈ Tip(I). It follows that g 6= 0, because N(t) /∈ Tip(I).
Moreover, we have Tip(g) ∈ Tip(I) and N(t) ∈ Span(NonTip(I)), and hence
Tip(g) does not appear in N(t). It follows that Tip(g) = t, and hence
Tip(G) = T . Since T is a generating set for 〈Tip(I)〉, we see that G is a
Gröbner basis.

To see that G is reduced, note that we saw in the previous paragraph
that 0 /∈ G. We also have CTip(g) = 1 for all g ∈ G, since Tip(t−N(t)) = t
for all t ∈ T . Finally, suppose that g, g′ ∈ G are distinct elements. Then
g = t − N(t) and g′ = t′ − N(t′) for some distinct elements t, t′ ∈ T . From
the construction of the minimal monomial generating set T in the proof of
Proposition 2.27,1 it is clear that t′ cannot divide t. Moreover, t′ does not
divide any basis element which appears in N(t), since this would imply that
N(t) /∈ Span(NonTip(I)). It follows that G is a reduced Gröbner basis.

1Note that we used the variable name M instead of T in the proof of Proposition 2.27.
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We now prove the uniqueness of G. Let H be some reduced Gröbner basis
for I. For any h ∈ H, we have

Tip(h)− h ∈ Span(NonTip(I))

by Lemma 2.26. Then since h ∈ I and

Tip(h) = (Tip(h)− h) + h,

it follows that N(Tip(h)) = Tip(h)− h. In particular,

Tip(h)−N(Tip(h)) = h.

This shows that the set

{ x−N(x) | x ∈ Tip(H) }

is equal to H. But 〈Tip(H)〉 = I since H is a Gröbner basis, so T ⊆ Tip(H).
Then we have

{ t−N(t) | t ∈ T } ⊆ { x−N(x) | x ∈ Tip(H) } ,

or in other words, G ⊆ H.
To see that we also have H ⊆ G, suppose that there exists some element

h ∈ H\G. Since G is a Gröbner basis, there exists an element g ∈ G such
that Tip(g) divides Tip(h). But this contradicts our assumption that H is a
reduced Gröbner basis, because g ∈ H and g 6= h. Therefore H = G.

Remark 2.29. The proof of Proposition 2.28 suggests an algorithm for com-
puting the reduced Gröbner basis for an ideal I, assuming that we already
know a finite Gröbner basis G for I. We proceed as follows: We first compute
the set

T = { t ∈ Tip(G) | if t′ divides t for t′ ∈ Tip(G), then t′ = t } .

For each t ∈ T , we then use Algorithm 2.1 to compute the normal form N(t)
of t modulo I, which is possible because we know a finite Gröbner basis for
I. Then the set

{ t−N(t) | t ∈ T }

is the reduced Gröbner basis of I. �

One of the reasons why reduced Gröbner bases are nice is the following
minimality condition.
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Proposition 2.30 ([Lea06, Proposition 2.11]). Let I ⊆ Λ be an ideal, and
let G be the reduced Gröbner basis of I. Let H ⊆ I be any subset. Then H
is a Gröbner basis for the ideal I if and only if Tip(G) ⊆ Tip(H).

Proof. First assume that Tip(G) ⊆ Tip(H). Since G is a Gröbner basis for
I, it follows that

〈Tip(H)〉 = 〈Tip(I)〉 .
In other words, H is a Gröbner basis for I.

Conversely, assume that H is a Gröbner basis for I. Then Tip(H) is a
monomial generating set for 〈Tip(I)〉, so

T ⊆ Tip(H),

where T is the smallest monomial generating set for 〈Tip(I)〉. But by the
proof of Proposition 2.28, T is equal to Tip(G), so we see that

Tip(G) ⊆ Tip(H).

Corollary 2.31 ([Lea06]). Let I ⊆ Λ be an ideal, and let G be the reduced
Gröbner basis of I. Then G has the smallest cardinality of all Gröbner bases
for I.

Proof. Let H be any Gröbner basis for I. Then by Proposition 2.30,

Tip(G) ⊆ Tip(H),

and hence
|Tip(G)| ≤ |Tip(H)|.

Note that if g, g′ ∈ G are distinct elements, then Tip(g) 6= Tip(g′) by Defini-
tion 2.25. It follows that |G| = |Tip(G)|. Moreover, the map

H\ { 0 } → Tip(H)

h 7→ Tip(h)

is surjective, and hence |Tip(H)| ≤ |H|. Thus we see that

|G| = |Tip(G)| ≤ |Tip(H)| ≤ |H|,

as desired.

In particular, an ideal I has a finite Gröbner basis if and only if the
reduced Gröbner basis of I is finite.
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2.4 Gröbner bases in path algebras
Up until this point, we have been assuming that Λ is some K-algebra with
multiplicative basis B and admissible order ≤. This was sufficient for our
purposes, as none of the theory we have dealt with so far required any addi-
tional assumptions. However, much of the content that we will cover in this
section requires a somewhat different treatment for path algebras than for
the classical case of commutative polynomial rings. We therefore narrow our
scope to focus only on path algebras. Throughout the rest of this chapter,
assume that Λ = KQ is the path algebra of some quiver Q.

2.4.1 Tip reduced and uniform sets

When working with Gröbner bases, and with generating sets for ideals more
generally, it is often convenient to impose some additional technical condi-
tions on the sets we’re working with. The first condition is that of uniformity.

Definition 2.32. Let

x =
n∑
i=1

aipi ∈ Λ,

where ai ∈ K\ { 0 } and where the pi ∈ B are distinct paths. Then x is said
to be uniform if there exist vertices v and w in Q such that every path pi
starts at v and ends at w.

A subset X ⊆ Λ is called uniform if every individual element of X is
uniform. �

Example 2.33. Consider the following quiver.

Q : v1 v2 v3

α

β

γ

Then α−β is uniform, while the elements α+v1 and α+γ are not uniform. �

The following result shows that we can always replace a Gröbner basis
with a uniform Gröbner basis.

Lemma 2.34. Let G be a generating set for an ideal I in Λ. Then the set

H = { vgw | g ∈ G, v and w are vertices in Q }

is a uniform generating set for I. Moreover, if G is a Gröbner basis for I,
then so is H.
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Proof. The set H is clearly uniform. Moreover, every element g ∈ G can be
written as

g =
∑

v,w∈Q0

vgw ∈ 〈H〉 ,

which shows that I ⊆ 〈H〉 since G generates I. Because H ⊆ I, we also have
〈H〉 ⊆ I. Hence 〈H〉 = I.

Now suppose that G is a Gröbner basis. If g ∈ G\ { 0 }, then there exist
vertices v and w in Q such that Tip(g) is a path from w to v. Then vgw ∈ H,
and

Tip(g) = vTip(g)w = Tip(vgw) ∈ Tip(H).

This shows that
Tip(G) ⊆ Tip(H).

Since G is a Gröbner basis, this implies that H is also a Gröbner basis.

The next technical condition we will consider is the notion of a tip reduced
set.

Definition 2.35. A subset X ⊆ Λ is said to be tip reduced if for all
x, y ∈ X\ { 0 } with x 6= y, we have that Tip(x) does not divide Tip(y). �

A notable example of a set that is both tip reduced and uniform is the
reduced Gröbner basis of an ideal, as the following proposition shows.

Proposition 2.36 ([Lea06, Proposition 2.13]). Let I ⊆ Λ be any ideal, and
let G be the reduced Gröbner basis of I. Then G is tip reduced and uniform.

Proof. The fact thatG is tip reduced follows immediately from Definition 2.25.
For the sake of contradiction, assume that G is not uniform. Let g ∈ G

be some non-uniform element. Then there exist vertices v and w in Q such
that vTip(g)w = 0, but vgw 6= 0. Because vgw ∈ I and G is a Gröbner basis
for I, there exists some g′ ∈ G such that Tip(g′) | Tip(vgw). Note that

Tip(g′) ≤ Tip(vgw) < Tip(g),

and hence g′ 6= g. But this contradicts the fact that G is a reduced Gröbner
basis.
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Algorithm 2.2, TipReduce(G), allows us to replace any finite generating
set for an ideal with a generating set that is tip reduced.
Algorithm 2.2: TipReduce(G)

Input: A finite subset G = { g1, . . . , gn } ⊆ Λ
Output: A finite tip reduced subset H ⊆ Λ that generates the same

ideal as G
1 for i = 1 to n do
2 hi ← gi;
3 end
4 H0 ← { h1, . . . , hn };
5 k ← 0;
6 do
7 MODIFIED← False;
8 for i = 1 to n with hi 6= 0 do
9 for j = 1 to n with j 6= i do

10 if hj 6= 0 and Tip(hj) = pTip(hi)q for paths p, q then
11 x← hj − CTip(hj)

CTip(hi)
phiq;

12 k ← k + 1;
13 Hk ← { h1, . . . , hj−1, x, hj+1, . . . , hn };
14 hj ← x;
15 MODIFIED← True;
16 end
17 end
18 end
19 while MODIFIED = True;
20 H ← Hk;
21 return H;

Proposition 2.37. The algorithm TipReduce(G) (Algorithm 2.2) produces
a correct result. Moreover, if G is uniform, then so is H; and if G is a
Gröbner basis, then so is H.

Proof. We first show that the algorithm terminates. During every iteration
of the do-while loop (except the last iteration, if there is one), there is at
least one value of the index k such that some element hj ∈ Hk is replaced
with an element whose tip is strictly smaller. Since ≤ is a well-order and the
set Hk is finite (and because its size stays constant as k increases), this can
only happen a finite number of times. Hence the algorithm terminates.

When the do-while loop terminates, there do not exist any distinct el-
ements hi, hj ∈ Hk such that Tip(hi) divides Tip(hj). In other words, the
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returned set H is tip reduced.
Next we show that 〈G〉 = 〈Hk〉 for all k. This is clearly true for k = 0. So

let k ≥ 0, and assume, inductively, that 〈Hk〉 = 〈G〉. On line 11, we define

x = hj −
CTip(hj)

CTip(hi)
phiq.

Since hi and hj are elements of Hk, x is an element of 〈Hk〉 = 〈G〉. Hence
〈Hk+1〉 ⊆ 〈G〉. To see that 〈G〉 ⊆ 〈Hk+1〉, observe that

hj = x+
CTip(hj)

CTip(hi)
phiq.

This is an element of 〈Hk+1〉 because x and hi are elements of Hk+1. Hence
〈Hk+1〉 contains the set

{ h1, . . . , hn } ,

which is a generating set for 〈G〉 by our inductive assumption. This shows
that 〈G〉 = 〈Hk+1〉.

Now suppose that the set G is uniform. In order to show that the set H
produced by the algorithm is uniform, it is enough to show that the element

x = hj −
CTip(hj)

CTip(hi)
phiq

defined on line 11 is uniform. Clearly phiq is uniform. Moreover, we may
assume (inductively) that hj is uniform. Since Tip(hj) = pTip(hi)q, the
element x must also be uniform.

Finally, suppose that G is a Gröbner basis. Since hj is replaced with x on
line 13, the element Tip(hj) ∈ Tip(Hk) might not be contained in Tip(Hk+1).
However, Tip(hi) is still an element of Tip(Hk+1), so we see that

Tip(hj) ∈ 〈Tip(Hk+1)〉 ,

because Tip(hj) = pTip(hi)q. By induction, it follows that H is a Gröbner
basis.

We see that any finite generating set (or Gröbner basis) can be replaced
with a tip reduced uniform generating set (or Gröbner basis) by applying
Lemma 2.34 and Algorithm 2.2, in that order. Thus it is not unreasonable to
assume that the sets we’re working with are tip reduced and uniform. Such
sets are often more convenient to work with, one reason being that there
exists a criterion for determining if such a set is a Gröbner basis, as we will
see in the next subsection.
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2.4.2 Overlap relations

In the theory of Gröbner bases in commutative polynomial rings, there is a
concept called S-polynomials, which are used in the computation of Gröbner
bases. When working with path algebras, the analogous concept is that of
overlap relations, which we now define.

Definition 2.38. Let f and g be elements of Λ\ { 0 } (not necessarily dis-
tinct) and suppose that there exist paths p and q in Q such that the following
conditions hold:

(i) Tip(f)p = qTip(g) 6= 0.

(ii) Tip(f) does not divide q and Tip(g) does not divide p.

Then we say that f and g have a (p, q)-overlap, and their overlap relation
is

o(f, g, p, q) =
fp

CTip(f)
− qg

CTip(g)
.

�

Remark 2.39. If f ∈ Λ\ { 0 } is any nonzero element, then there exist ver-
tices v and w such that

Tip(f)v = wTip(f).

If Tip(f) is not a vertex, then this technically satisfies the definition of an
overlap. However, this is a rather trivial and uninteresting overlap, so in this
thesis we will always ignore this particular kind of overlap. �

Note that if condition (i) in Definition 2.38 is satisfied, then condition (ii)
is equivalent to assuming that l(p) < l(Tip(f)) and l(q) < l(Tip(g)). This
ensures that there really is an “overlap”, in the sense that if

Tip(f) = α1 . . . αm

and
Tip(g) = β1 . . . βn

for arrows αi and βj, then we must have

αl(q)+1 . . . αm = β1 . . . βn−l(p).

We illustrate this with an example.
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Example 2.40. We consider the following quiver.

Q : v1 v2 v3

α

β

γ

We give Q the left length-lex order with

v1 < v2 < v3 < α < β < γ.

Assume that char(K) = 0. Let f = γαβ + γ and g = 2αβα + α. The path
γαβ contains a factor αβ on the right, while αβα contains a factor of αβ on
the left. Hence f and g have an overlap, or more precisely an (α, γ)-overlap.
The overlap relation is

o(f, g, α, γ) = fα− 1

2
γg

= γαβα + γα− γαβα− 1

2
γα

=
1

2
γα.

Now let h = αβαβα−α. This element overlaps with itself in two ways: there
is both a (βαβα, αβαβ)-overlap and a (βα, αβ)-overlap. In both cases the
overlap relation is 0. �

We will now see how overlap relations can be used to check if a given
generating set is a Gröbner basis.

Theorem 2.41. Let G ⊆ Λ be a (possibly infinite) tip reduced uniform set.
Then the following are equivalent.

(i) G is a Gröbner basis for the ideal 〈G〉.

(ii) For all elements g1, g2 ∈ G\ { 0 } and all paths p and q in Q, if g1 and
g2 have a (p, q)-overlap, then

o(g1, g2, p, q)⇒G 0.

Proof. First assume that G is a Gröbner basis. For any g1, g2 ∈ G with a
(p, q)-overlap, the overlap relation is

o(g1, g2, p, q) =
g1p

CTip(g1)
− qg2

CTip(g2)
.
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This is an element of 〈G〉. As mentioned in Remark 2.22, there exists some
element r ∈ Λ such that

o(g1, g2, p, q)⇒G r.

But since G is a Gröbner basis, r must be the normal form (modulo the ideal
〈G〉) of the overlap relation, by Proposition 2.23. Since the overlap relation
is an element of 〈G〉, its normal form is zero, and hence r = 0, as desired.

Conversely, assume that all overlap relations of elements of G have re-
mainder zero under division by G. For the sake of contradiction, assume that
G is not a Gröbner basis. Then there exists some element x ∈ 〈G〉 \ { 0 }
such that Tip(x) /∈ 〈Tip(G)〉. Since x is an element of 〈G〉, we may write

x =
∑
i,j

aijpijgiqij (2.2)

for scalars aij ∈ K\ { 0 }, paths pij and qij in Q, and distinct elements
gi ∈ G. We may assume that pijgiqij 6= 0. Each gi may be written as a
K-linear combination of distinct paths γik:

gi =
∑
k

bikγik,

for scalars bik ∈ K\ { 0 }. We then get

x =
∑
i,j,k

aijbikpijγikqij. (2.3)

Let p∗ be the largest of the paths pijγikqij with respect to the ordering ≤,
and write p∗ = pijγikqij for some fixed i, j, and k. Since gi is uniform, we
have that pij Tip(gi)qij 6= 0, and hence

pijγikqij ≤ pij Tip(gi)qij.

It follows that γik = Tip(gi), and in particular, p∗ ∈ 〈Tip(G)〉. But we have
assumed that Tip(x) /∈ 〈Tip(G)〉, so p∗ 6= Tip(x). But then Tip(x) < p∗, so
the occurrences of p∗ in the right-hand side of (2.3) must cancel each other
out. Thus p∗ appears at least twice in (2.3), so there exist indices i, i′, j, j′
with (i, j) 6= (i′, j′) such that

p∗ = pij Tip(gi)qij = pi′j′ Tip(gi′)qi′j′ .

Write p = pij, g = gi, q = qij, a = aij, p′ = pi′j′ , g′ = gi′j′ , q′ = qi′j′ , and
a′ = ai′j′ .
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Out of all the possible ways to write x as in (2.2), we may assume that
we have chosen one such that p∗ is minimal with respect to the well-order ≤.
Moreover, once we have chosen a minimal value of p∗, we may assume that
the number of appearances of p∗ in the right-hand side of (2.3) is minimal.
Then we have the following possible cases.

1. l(p) = l(p′): It follows that p = p′, and hence Tip(g) contains Tip(g′)
as a subpath, or vice versa. But then one of them divides the other, so
since G is tip reduced, it follows that g = g′ and i = i′. We then also
have that q = q′. But then we can rewrite (2.2) by replacing the two
terms apgq and a′p′g′q′ with the one term (a+ a′)pgq. This produces
a version of (2.3) in which the number of occurrences of p∗ is one less
than before (or possibly two less, if a+ a′ = 02), which contradicts our
assumption about p∗.

2. l(p) < l(p′): Either l(q) = l(q′), l(q) < l(q′), or l(q) > l(q′).

2.1. l(q) = l(q′): Same as case 1.

2.2. l(q) < l(q′): Then Tip(g) contains Tip(g′) as a subpath. Since G
is tip reduced, we then get g = g′. But this is impossible, because

l(p∗) = l(p) + l(q) + l(Tip(g)) = l(p′) + l(q′) + l(Tip(g′)),

which contradicts the inequality l(p) + l(q) < l(p′) + l(q′).

2.3. l(q) > l(q′): Either l(p′) < l(pTip(g)) or l(p′) ≥ l(pTip(g)).

2.3.1. l(p′) < l(pTip(g)): Since we are assuming that l(p) < l(p′)
and l(q) > l(q′), there exist paths r and s in Q such that
q = rq′, p′ = ps, and Tip(g)r = sTip(g′). Notice that

l(Tip(g))− l(s) = l(Tip(g))−
(
l(p′)− l(p)

)
=
(
l(Tip(g)) + l(p)

)
− l(p′)

= l(pTip(g))− l(p′)

> 0.

It follows that Tip(g) contains s as a proper subpath. In par-
ticular, we have Tip(g) - s, and a similar argument shows that

2If a + a′ = 0 and p∗ appears exactly twice in (2.3), then p∗ would no longer appear
at all in (2.3) after we rewrite (2.2), which might seem like a problem. However, this is
actually impossible, because we have assumed that p∗ is minimal with respect to ≤.
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Tip(g′) - r. Hence by Definition 2.38, g and g′ have an (r, s)-
overlap, so we can consider the overlap relation o(g, g′, r, s).
Then

pgq

= pgq − CTip(g)

CTip(g′)
p′g′q′ +

CTip(g)

CTip(g′)
p′g′q′

= pgrq′ − CTip(g)

CTip(g′)
psg′q′ +

CTip(g)

CTip(g′)
p′g′q′

= CTip(g)p

(
gr

CTip(g)
− sg′

CTip(g′)

)
q′ +

CTip(g)

CTip(g′)
p′g′q′

= CTip(g)po(g, g′, r, s)q′ +
CTip(g)

CTip(g′)
p′g′q′. (2.4)

By assumption, o(g, g′, r, s) has remainder 0 under division by
G. It follows from the definition of remainders that o(g, g′, r, s)
can be written as a K-linear combination

o(g, g′, r, s) =
∑
l

clp̃lg̃lq̃l, (2.5)

for paths p̃l and q̃l in Q and elements g̃l ∈ G, where

Tip(p̃lg̃lq̃l) ≤ Tip(o(g, g′, r, s)) < Tip(g)r = sTip(g′).

By using (2.4) and (2.5), we get

apgq + a′p′g′q′

= a

(
CTip(g)po(g, g′, r, s)q′ +

CTip(g)

CTip(g′)
p′g′q′

)
+ a′p′g′q′

= a

(
CTip(g)p

(∑
l

clp̃lg̃lq̃l

)
q′ +

CTip(g)

CTip(g′)
p′g′q′

)
+ a′p′g′q′

= a′′p′g′q′ +
∑
l

c′lpp̃lg̃lq̃lq
′,

where a′′ = a CTip(g)
CTip(g′)

+ a′ and c′l = aCTip(g)cl. Hence we
can rewrite (2.2) by replacing the two terms apgq and a′p′g′q′
with the single term a′′p′g′q′, plus several terms of the form
c′lpp̃lg̃lq̃lq

′. Note that whenever c′lpp̃lg̃lq̃lq′ 6= 0, we have

Tip(c′lpp̃lg̃lq̃lq
′) = pTip(p̃lg̃lq̃l)q

′ < p(sTip(g′))q′ = p∗,
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so p∗ does not appear in c′lpp̃lg̃lq̃lq′. It follows that by rewriting
(2.2) in this way, we decrease the number of occurrences of p∗
in (2.3). But this contradicts our assumption about p∗.3

2.3.2. l(p′) ≥ l(pTip(g)): Then there exists some path r in Q such
that p′ = pTip(g)r and q = rTip(g′)q′. Write

g = cTip(g) +
∑
i

cipi

and
g′ = dTip(g′) +

∑
i

dip
′
i

for scalars c, ci, d, di and paths pi < Tip(g), p′i < Tip(g′).
Then we have that

pgq = pgrTip(g′)q′

= pgr

(
1

d
g′ − 1

d
g′ + Tip(g′)

)
q′

=
1

d
pgrg′q′ − pgr

(
1

d
g′ − Tip(g′)

)
q′

=
1

d
p

(
cTip(g) +

∑
i

cipi

)
rg′q′ − pgr

(∑
i

di
d
p′i

)
q′

=
c

d
pTip(g)rg′q′ +

∑
i

ci
d
ppirg

′q′ −
∑
i

di
d
pgrp′iq

′

=
c

d
p′g′q′ +

∑
i

ci
d
ppirg

′q′ −
∑
i

di
d
pgrp′iq

′.

Thus we can rewrite (2.2) by replacing the two terms apgq
and a′p′g′q′ with the one term (a′ + a c

d
)p′g′q′, plus a K-linear

combination of elements of the form ppirg
′q′ or pgrp′iq′. This

decreases the number of occurrences of p∗ in (2.3), because
Tip(ppirg

′q′) and Tip(pgrp′iq
′) are strictly smaller than p∗

with respect to the admissible order ≤. But this contradicts
our assumption about p∗.

3. l(p′) < l(p): Same as case 2.

3If a′′ = 0, then it might be the case that p∗ no longer appears in (2.3). But this again
leads to a contradiction of the minimality of p∗.
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Note that when proving the implication (i)⇒ (ii) in Theorem 2.41, we did
not need to use the assumption that G is tip reduced and uniform. Moreover,
our proof for this implication did not actually rely on the definition of the
overlap relation, but would have worked for any element of 〈G〉. In other
words, if G is an arbitrary Gröbner basis and y is an element of 〈G〉, then
y ⇒G 0.

The following examples show how the implication (ii) ⇒ (i) in Theo-
rem 2.41 may fail without the assumption that the set G is tip reduced and
uniform.

Example 2.42. Let Q denote the following quiver.

Q : v1 v2
α

We give Q an admissible order by declaring

v1 < v2 < α.

Let G = { α + v1 }. Then G is tip reduced, but not uniform. There are no
overlaps between elements of G, so the assumption that all overlap relations
have remainder zero is vacuously true. But G is not a Gröbner basis, because

v1 = v1(α + v1) ∈ 〈G〉 ,

but v1 is not divisible by α. �

Example 2.43. Let Q be the following quiver.

Q : v1 v2 v3 v4
α

δ

β γ

We give Q the left length-lex order with

v1 < v2 < v3 < v4 < α < β < γ < δ.

Let G = { γβα + δ, β }. The set G is uniform, but not tip reduced. There
are no overlaps between elements of G. However, G is not a Gröbner basis,
because

δ = (γβα + δ)− γβα ∈ 〈G〉 ,

but δ is not divisible by γβα or β. �

33



2.4.3 Computation and existence of finite Gröbner bases

We will now see how we can compute Gröbner bases. This is done by using
a variant of Buchberger’s algorithm. The original version of Buchberger’s
algorithm, which was introduced by Bruno Buchberger in his PhD thesis,
computes Gröbner bases in commutative polynomial rings. Algorithm 2.3
is an adaptation of this algorithm to the non-commutative setting of path
algebras. Recall that if S is a finite subset of Λ, then TipReduce(S) denotes
the tip reduced set that is obtained by applying Algorithm 2.2 to S. Also,
for an element y ∈ Λ, we denote by Remainder(y, S) the remainder of y
under division by S produced by Algorithm 2.1.
Algorithm 2.3: Buchberger’s algorithm for path algebras
Input: A finite, tip reduced, uniform subset { f1, . . . , fn } ⊆ Λ
Output: A finite Gröbner basis G for the ideal 〈f1, . . . , fn〉, if one

exists
1 G0 ← { f1, . . . , fn };
2 l← 0;
3 do
4 MODIFIED← False;
5 X ← ∅;
6 for g, h ∈ Gl do
7 for all paths p, q such that g and h have a (p, q)-overlap do
8 r ← Remainder(o(g, h, p, q), Gl);
9 if r 6= 0 then

10 X ← X ∪ { r };
11 MODIFIED← True;
12 end
13 end
14 end
15 if MODIFIED = True then
16 Gl+1 ← TipReduce(Gl ∪X);
17 l← l + 1;
18 end
19 while MODIFIED = True;
20 G← Gl;
21 return G;

The algorithm above is based on an algorithm presented in [Gre99]. How-
ever, there are two details in Algorithm 2.3 which were omitted in [Gre99],
possibly by accident. Firstly, the algorithm in [Gre99] does not assume that
the input set { f1, . . . , fn } is tip reduced. Secondly, it does not perform the
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tip reduction step on line 16 of Algorithm 2.3, and instead does the equiva-
lent of letting Gl+1 = Gl ∪ X. Before proving the correctness of Algorithm
2.3, we explain why these two details are necessary.

If the input set { f1, . . . , fn } were uniform but not tip reduced, and if
there were no overlaps between its elements, then Algorithm 2.3 would ter-
minate immediately, and would return the set { f1, . . . , fn }. However, Ex-
ample 2.44 shows that this set would not necessarily be a Gröbner basis. It
is therefore necessary to make sure that the input to the algorithm is tip
reduced.

The following example shows that the tip reduction step on line 16 is
necessary.

Example 2.44. Let Q denote the following quiver.

Q : v1 v2 v3 v4 v5 v6
α1

β1

α2

β2

α3 α4 α5

We give Q the left length-lex order with

v1 < v2 < v3 < v4 < v5 < v6 < α1 < α2 < α3 < α4 < α5 < β1 < β2.

We consider the following set of relations in KQ:

G0 = { α4α3 − β2, α3α2 − β1, α5β2α2α1 } .

The set G0 is tip reduced and uniform. Let us see what happens if we apply
Algorithm 2.3 to G0, but omit the tip reduction step on line 16. The only
overlap relation between elements of G0 is

o(α4α3 − β2, α3α2 − β1, α2, α4) = (α4α3 − β2)α2 − α4(α3α2 − β1)

= −β2α2 + α4β1.

Neither β2α2 nor α4β1 is divisible by any element of Tip(G0), so the overlap
relation is its own remainder under division by G0. We therefore add the
overlap relation to our set of relations, and since we do not perform a tip
reduction step, we obtain the set

G1 = { α4α3 − β2, α3α2 − β1, α5β2α2α1,−β2α2 + α4β1 } .

Note that Tip(−β2α2 + α4β1) = β2α2, which divides α5β2α2α1. Hence G1 is
not tip reduced.
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The only overlap between elements of G1 is the (α2, α4)-overlap between
α4α3 − β2 and α3α2 − β1. Since the corresponding overlap relation is an
element of G1, we have

o(α4α3 − β2, α3α2 − β1, α2, α4)⇒Gl
0.

Therefore we do not add any more elements to the generating set Gl, and
the algorithm terminates. However, G1 is not a Gröbner basis, because

α5α4β1α1 = α5β2α2α1 + α5(−β2α2 + α4β1)α1 ∈ 〈G1〉 ,

but α5α4β1α1 is not divisible by any element of

Tip(G1) = { α4α3, α3α2, α5β2α2α1, β2α2 } .

This shows that Algorithm 2.3 could produce an incorrect result if we were
to omit the tip reduction step. �

Let us now prove that Algorithm 2.3 does what it is supposed to. We will
need a few technical lemmas.

Lemma 2.45. Let { f1, . . . , fn } ⊆ Λ be a tip reduced uniform subset. Then
at any time during the execution of Algorithm 2.3, the set Gl is a tip reduced
uniform generating set for the ideal I = 〈f1, . . . , fn〉.

Proof.
The set Gl is clearly tip reduced. Moreover, if g, h ∈ Gl are elements that

have a (p, q)-overlap such that o(g, h, p, q)⇒Gl
r for some r ∈ Λ, then r is an

element of 〈Gl〉. It follows that the set Gl∪X in Algorithm 2.3 generates the
same ideal as Gl, and hence so does Gl+1, by Proposition 2.37. By induction,
we see that for every l, the set Gl is a generating set for I.

It remains to be shown that Gl is a uniform set for all l. This is clearly
true when l = 0. So suppose that l ≥ 1, and that Gl is uniform. The tip
reduction algorithm preserves uniform sets by Proposition 2.37, so in order
to show that Gl+1 is uniform, it suffices to show that if g, h ∈ Gl have a
(p, q)-overlap, then the element r computed on line 8 is uniform. Recall that
the overlap relation is given by

o(g, h, p, q) =
gp

CTip(g)
− qh

CTip(h)
.

Since g and h are both uniform, and because Tip(g)p = qTip(h), it follows
that the overlap relation is also uniform. Hence r is also uniform, because
the algorithm Remainder (Algorithm 2.1) produces a uniform remainder
whenever the input element is uniform.
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The following lemma will allow us to express an element of Gl+1 in terms
of elements of Gl∪X, where Gl, Gl+1, andX are the sets defined in Algorithm
2.3. This will be useful in the proof of Lemma 2.47.

Lemma 2.46. Let G be a finite uniform subset of Λ, and let H be the tip
reduced generating set for 〈G〉 that is obtained when applying the tip reduction
algorithm (Algorithm 2.2) to G. Let g 6= 0 be an element of G. Then there
exist elements yj ∈ H (not necessarily distinct), scalars cj ∈ K, and paths
uj and vj in Q such that the following conditions hold.

(i) g =
∑t

j=1 cjujyjvj.

(ii) Tip(ujyjvj) ≤ Tip(g).

(iii) There is only one index j such that Tip(ujyjvj) = Tip(g).

Proof.
Recall that Algorithm 2.2 produces a finite sequence H0, H1, H2, . . . of

generating sets for the ideal 〈G〉, and that the last set in this sequence is the
tip reduced set H.

In order to prove the lemma, we will prove that for each value of the
index k in the algorithm, there exist elements yj ∈ Hk, scalars cj, and paths
uj and vj such that

g =
t∑

j=1

cjujyjvj,

and such that conditions (ii) and (iii) are also satisfied. We first consider
the case k = 0. Since g is uniform, there exist vertices u and v such that
g = ugv. Hence we see that our claim is true for k = 0, since g is an element
of H0 = G.

Now let k ≥ 1, and assume inductively that the claim above is true for
all smaller values of k. Then there exist elements yj ∈ Hk−1, scalars cj, and
paths uj and vj such that g =

∑t
j=1 cjujyjvj, and such that conditions (ii)

and (iii) are satisfied. If each of the elements yj ∈ Hk−1 is also an element
of Hk, then we are done. So assume that yj /∈ Hk for some j. Since the set
Hk was obtained by replacing one element of Hk−1, there exists exactly one
element h ∈ Hk−1 such that h /∈ Hk. Recall from Algorithm 2.2 that there
must exist some element h′ ∈ Hk−1\ { h } and paths p and q in Q such that
Tip(h) = pTip(h′)q, and such that if h̃ is the element

h̃ = h− CTip(h)

CTip(h′)
ph′q,
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then h̃ ∈ Hk. Without loss of generality, we may assume that there exists
some index i such that

y1 = y2 = . . . = yi = h,

and such that yj 6= h for j > i. Then we may write g in the following way:

g =
t∑

j=1

cjujyjvj

=
i∑

j=1

cjujhvj +
t∑

j=i+1

cjujyjvj

=
i∑

j=1

cjuj

(
h̃+

CTip(h)

CTip(h′)
ph′q

)
vj +

t∑
j=i+1

cjujyjvj

=
i∑

j=1

cjujh̃vj +
i∑

j=1

c′j(ujp)h
′(qvj) +

t∑
j=i+1

cjujyjvj,

where c′j = cj
CTip(h)
CTip(h′)

. Since h̃, h′, and yj are elements of Hk (for j > i), we
see that this new expression for g has the desired form.

In order to complete the proof, we must show that conditions (ii) and
(iii) are satisfied. For i+ 1 ≤ j ≤ t, we know that

Tip(ujyjvj) ≤ Tip(g),

by the inductive assumption. Moreover, for 1 ≤ j ≤ i, we have

Tip(ujph
′qvj) = uj Tip(ph′q)vj = uj Tip(h)vj ≤ Tip(g)

and
Tip(ujh̃vj) = uj Tip(h̃)vj < uj Tip(h)vj ≤ Tip(g).

This shows that condition (ii) is satisfied. Moreover, because

Tip(ujh̃vj) < Tip(g)

and
Tip(ujph

′qvj) = Tip(ujhvj),

we have not increased the number of terms whose tip is equal to Tip(g).
Hence there is still only one such term, by the inductive assumption. This
shows that condition (iii) is satisfied.
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The following lemma is the key to proving that Algorithm 2.3 terminates
if a finite Gröbner basis exists. The statement of the lemma is based on a
brief comment preceding [Gre99, Proposition 2.8], where it was stated that
the lemma could be proven by modifying the proof of Theorem 2.41. For the
sake of completeness, I have developed a complete proof. However, this proof
turned out to be quite long and technical, so we delay it to an appendix.

Lemma 2.47. Let { f1, . . . , fn } ⊆ Λ be a tip reduced uniform subset, and
let I = 〈f1, . . . , fn〉. Let x be an element of the reduced Gröbner basis of I.
Then during the execution of Algorithm 2.3, there exists some l such that
Tip(x) ∈ Tip(Gl).

Proof. See Appendix A.

We can now prove that Algorithm 2.3 is correct, and in particular that it
terminates if a finite Gröbner basis exists.

Theorem 2.48. Let { f1, . . . , fn } ⊆ Λ be a finite, tip reduced, uniform sub-
set, and let I = 〈f1, . . . , fn〉 ⊆ Λ. Suppose I has a finite Gröbner basis. Then
Algorithm 2.3 terminates, and produces a finite Gröbner basis for I.

Proof. Let H be the reduced Gröbner basis of I. Since we are assuming that
I has a finite Gröbner basis, H is finite by Corollary 2.31. Hence we may
write

H = { x1, . . . , xm } .

For 1 ≤ i ≤ m, Lemma 2.47 tells us that there must exist some li such that
Tip(xi) ∈ Tip(Gli). It may be shown 〈Tip(Gl)〉 ⊆ 〈Tip(Gl+1)〉 for all l, so
we see that if we let L = max { l1, . . . , lm } , then Tip(H) ⊆ 〈Tip(GL)〉 . But
then GL is a Gröbner basis for I, so whenever elements g, h ∈ GL have a
(p, q)-overlap, we know that o(g, h, p, q)⇒GL

0, and this remainder is unique
by Proposition 2.23. Hence the do-while loop in the algorithm terminates,
and the algorithm outputs the finite Gröbner basis GL.

Algorithm 2.3 computes a finite Gröbner basis for an ideal, if one exists.
In the setting of commutative polynomial rings over a field, it can be shown
that all ideals have a finite Gröbner basis. However, this is not true for ideals
in path algebras, as the following example shows.

Example 2.49. Let Λ = K 〈x, y〉 be the free algebra on two generators,
which we may interpret as the path algebra of a quiver with one vertex and
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two loops. We give the monomials in Λ some arbitrary admissible order.
Consider the set

G = { xx, xyx, xyyx, xyyyx, . . . } .

It can be seen that G is the reduced Gröbner basis for the ideal 〈G〉. But the
reduced Gröbner basis has minimal cardinality among all Gröbner bases, so
this means that all Gröbner bases for 〈G〉 are infinite. �

In Example 2.49, the ideal 〈G〉 was given by an infinite generating set,
so it is perhaps not so surprising that it did not have a finite Gröbner basis.
However, the following example shows that even a finitely generated ideal
might only have an infinite Gröbner basis.

Example 2.50 ([Arn10]). Let Λ = K 〈x, y〉 be the free algebra on two gen-
erators, and give the monomials in Λ an arbitrary admissible order where
x > y. Let I be the ideal in Λ generated by xx−xy. Hence by construction,
I is a finitely generated ideal. We claim that the set

G = { xx− xy, xyx− xyy, xyyx− xyyy, . . . }

is the reduced Gröbner basis for I.
We first show that G is the reduced Gröbner basis for some ideal. Let

gn = xyn−1x− xyn.

Note that G is precisely the set of elements of the form gn for n ≥ 1. Also
observe that the tip of gn is xyn−1x, because x > y. It follows that the only
overlap relations between elements of G are those of the form

o(gi, gj, y
j−1x, xyi−1)

for i, j ≥ 1. Then a straightforward computation shows that

o(gi, gj, y
j−1x, xyi−1) = giy

j − gi+j, (2.6)

and moreover, the tips of giyj and gi+j are both less than or equal to the tip
of the overlap relation. This shows that

o(gi, gj, y
j−1x, xyi−1)⇒G 0.

Then it follows from Theorem 2.41 that G is a Gröbner basis for 〈G〉. Ad-
ditionally, since Tip(gi) = xyi−1x, which does not divide xyj−1x or xyj for
j 6= i, we see that G is a reduced Gröbner basis.
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Next we show that I = 〈G〉. Note that I ⊆ 〈G〉, because G contains the
generator xx − xy. To show that 〈G〉 ⊆ I, it suffices show that gn ∈ I for
all integers n ≥ 1. We proceed by induction on n. The base case n = 1 is
satisfied since g1 = xx− xy, so assume that n ≥ 1 is some fixed integer such
that gn ∈ I. By using (2.6) with i = n and j = 1, we see that

gn+1 = gny − o(gn, g1, x, xy
n−1),

which is an element of I because g1 ∈ I and gn ∈ I. This shows that I = 〈G〉.
We see that G is the reduced Gröbner basis of the ideal I, and conse-

quently all Gröbner bases of I are infinite. �

The fact that finite Gröbner bases are not guaranteed to exist even for
finitely generated ideals is rather unfortunate. Thankfully, it turns out that
a finite Gröbner basis for an ideal I always exists if Λ/I is finite-dimensional,
as the following result shows.

Theorem 2.51. Let I ⊆ Λ be an ideal such that the quotient algebra Λ/I is
finite-dimensional. Then I has a finite Gröbner basis.

Proof. By the construction of the reduced Gröbner basis given in the proof
of Proposition 2.28, it suffices to show that the ideal 〈Tip(I)〉 is generated
by a finite set of paths. Consider the set

X = (Q0 ∪ { αp | α ∈ Q1, p ∈ NonTip(I) }) ∩ Tip(I),

where Q0 and Q1 denote the set of vertices in Q and the set of arrows in Q,
respectively. We are assuming that Λ/I is finite-dimensional, so NonTip(I)
is a finite set by Proposition 2.13. Since Q0 and Q1 are also finite, we see
that the set X ⊆ Tip(I) is a finite set of paths.

We claim that X generates 〈Tip(I)〉 . Let t be an element of the minimal
monomial generating set of 〈Tip(I)〉. If t is a vertex, then t ∈ Q0 ∩ Tip(I),
and hence t ∈ X. If t is not a vertex, then there exists an arrow α and a
(possibly trivial) path p such that t = αp. Since t is a minimal monomial
generator of 〈Tip(I)〉, the path p cannot be an element of Tip(I). In other
words, we see that p ∈ NonTip(I), and hence t ∈ X. This shows that X
generates 〈Tip(I)〉.
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Chapter 3

Tensor products of algebras

In this chapter, we study tensor products of algebras. One reason why one
might be interested in this topic is bimodules. If M is a Λ-Γ-bimodule over
K-algebras Λ and Γ, then M can be turned into a left module over Λ⊗Z Γop

in a natural way. If in addition M is K-symmetric (that is, if the left K-
module structure that M inherits from Λ coincides with the right K-module
structure inherited from Γ), then M is also a Λ⊗K Γop-module. Thus we can
understand bimodules by studying left modules over tensor products. We
will not pursue this approach to bimodules in further detail in this thesis,
and mention it only as one possible source of motivation.

In Section 3.1, we briefly explain how the tensor product of algebras is it-
self an algebra. Then in Section 3.2, we show how tensor products of algebras
can be constructed using quivers. We prove a theorem (Theorem 3.13) that
shows how the tensor product Λ⊗K Γ can be realized as a quotient of a path
algebra when Λ and Γ are themselves quotients of path algebras. We then
generalize this to a new result (Theorem 3.18) that allows us to compute the
tensor product Λ⊗Σ Γ, where Σ is another algebra. In Section 3.3, we apply
Gröbner basis theory to the computation of tensor products. We prove a
result (Theorem 3.26) that shows how we can explicitly describe a Gröbner
basis for the ideal by which Λ⊗K Γ is a quotient. Unfortunately, we find that
this result does not extend in a nice way to the tensor product Λ⊗Σ Γ.

3.1 The ring structure of the tensor product
We begin this chapter by studying how the tensor product of algebras (or
of rings in general) may be given a ring structure. Let us first recall the
definition of the tensor product of modules over a ring.
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Definition 3.1. Let R be a ring (not necessarily commutative), let M be a
right R-module, and let N be a left R-module. Let A be an abelian group.
Then a map φ : M×N → A is called R-balanced if the following conditions
hold.

(i) φ is Z-bilinear, i.e.

φ(m,n+ n′) = φ(m,n) + φ(m,n′)

and
φ(m+m′, n) = φ(m,n) + φ(m′, n)

for all m,m′ ∈M and n, n′ ∈ N .

(ii) φ(mr, n) = φ(m, rn) for all m ∈M , n ∈ N , and r ∈ R.

�

Definition 3.2. Let R be a ring, let M be a right R-module, and let N be
a left R-module. Then a tensor product of M and N over R is an abelian
group M ⊗R N along with an R-balanced map φ : M ×N →M ⊗R N , such
that for every abelian group A and every R-balanced map ψ : M ×N → A,
there exists a unique group homomorphism f : M ⊗R N → A making the
following diagram commute:

M ×N M ⊗R N

A
ψ

φ

∃!f

�

It can be shown that a tensor product M ⊗R N always exists, and it is
unique up to isomorphism. Hence we may speak of the tensor product of M
and N . Given φ as in the definition above and for module elements m ∈ M
and n ∈ N , we typically denote the element φ(m,n) by m⊗n. Such elements
are often called elementary tensors. Not all elements ofM⊗RN have this
form, but every element can be written as a finite sum of elementary tensors.

In general, the tensor productM⊗RN is only an abelian group. However,
if N is an R-bimodule, then we may turn the tensor product into a right R-
module by defining

(m⊗ n)r = m⊗ (nr)

for elementary tensors m ⊗ n and ring elements r ∈ R. This ring action on
elementary tensors can be shown to be well defined by using the universal
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property of the tensor product, and it extends uniquely to a module structure
on M ⊗R N . Similarly, if M is an R-bimodule, then the tensor product can
be given a left R-module structure.

In this thesis, we will primarily be interested in tensor products of rings,
and in particular of K-algebras. Let A, B, and C be rings, and assume that
A and B are C-bimodules, so that we may form the tensor product A⊗C B.
We wish to turn the tensor product into a ring by defining

(a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′)

for elementary tensors a⊗ b and a′⊗ b′. The following lemma shows that we
can do this, as long as we impose an additional condition on the C-module
structures of A and B; we essentially need to assume that A and B are C-
algebras, although we should probably not use the term “algebras”, since C
is not necessarily commutative.

Lemma 3.3. Let A, B, and C be rings, and let f : C → A and g : C → B be
ring homomorphisms such that Im(f) ⊆ Z(A) and Im(g) ⊆ Z(B). View A
and B as C-bimodules via the homomorphisms f and g, respectively. Then
the tensor product A⊗C B is a ring, with multiplication given by(∑

i

ai ⊗ bi

)(∑
j

a′j ⊗ b′j

)
=
∑
i,j

(aia
′
j)⊗ (bib

′
j)

for ai, a′j ∈ A and bi, b′j ∈ B. Moreover, if A, B, and C are algebras over
a commutative ring R, and if f and g are R-linear, then A ⊗C B is an
R-algebra.

Proof. It is straightforward to verify that the ring axioms hold, so we omit
this step. However, we need to check that multiplication is well defined. Fix
elements a1, . . . , an ∈ A and b1, . . . , bn ∈ B. Consider the map

ψ : A×B → A⊗C B

(a, b) 7→
∑
i

aia⊗ bib.

The map ψ is clearly Z-bilinear. To see that ψ is C-balanced, we must show
that ψ(ac, b) = ψ(a, cb) for all a ∈ A, b ∈ B, and c ∈ C. Note that, since
the C-module structures of A and B are given by ring homomorphisms, we
have ai(ac) = (aia)c and c(bib) = (cbi)b. Moreover, because the image of g is
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contained in the centre of B, we have c(bib) = bi(cb). Hence we see that

ψ(ac, b) =
∑
i

ai(ac)⊗ bib

=
∑
i

(aia)c⊗ bib

=
∑
i

aia⊗ c(bib)

=
∑
i

aia⊗ bi(cb)

= ψ(a, cb).

Thus ψ is C-balanced, so by the universal property of the tensor product,
there exists a unique group homomorphism h : A ⊗C B → A ⊗C B such
that h(a ⊗ b) = ψ(a, b) for all elementary tensors a ⊗ b. Now suppose that
a′j, a

′′
k ∈ A and b′j, b

′′
k ∈ B are elements such that

∑
j a
′
j ⊗ b′j =

∑
k a
′′
k ⊗ b′′k.

Then we have

∑
i,j

aia
′
j ⊗ bib′j = h

(∑
j

a′j ⊗ b′j

)

= h

(∑
k

a′′k ⊗ b′′k

)
=
∑
i,k

aia
′′
k ⊗ bib′′k.

This shows that the multiplication in A⊗C B is well defined with respect to
the second operand. Similarly, it can be shown that multiplication is well
defined with respect to the first operand.

Finally, suppose that A, B, and C are algebras over a commutative ring R,
and suppose that f and g are algebra homomorphisms. Let φ : R→ A⊗C B
be the function given by

φ(r) = f(r · 1C)⊗ 1B,

or equivalently by
φ(r) = 1A ⊗ g(r · 1C),

for r ∈ R. Then φ can be seen to be a ring homomorphism, and Im(φ)
is contained in Z(A ⊗C B) because Im(f) ⊆ Z(A). Hence A ⊗C B is an
R-algebra.
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Remark 3.4. When proving that A⊗CB is an R-algebra, we did not actually
need to use the assumption that the maps f and g are R-linear. However,
this assumption ensures that the R-module structure of A⊗CB is compatible
with the R-module structures of A and B, in the sense that

r(a⊗ b) = (ra)⊗ b = a⊗ (rb).

This would not necessarily be true if the maps were not R-linear. �

If we do not assume that the images of f and g are contained in the
centres of A and B, respectively, then the multiplication in Lemma 3.3 will
typically not be well defined. We illustrate this with an example.

Example 3.5 (Inspired by [Wof21]). Consider the following two quivers.

Q : v1 v2
α

R : v1 v2

We may view KR as a subring of KQ. However, KR is not contained in
the centre of KQ, because v1α = 0 while αv1 = α. We consider the tensor
product KQ⊗KRKR, which we may identify with KQ via the identification
x ⊗ 1 = x for x ∈ KQ. For the sake of contradiction, assume that the
multiplication in Lemma 3.3 is well defined. Then we have

α = α⊗ 1

= αv1 ⊗ 1

= α⊗ v1

= (1⊗ v1)(α⊗ 1)

= (v1 ⊗ 1)(α⊗ 1)

= v1α⊗ 1

= 0,

which is a contradiction.
�

3.2 Constructing the tensor product of path al-
gebras

We will now see how we can construct the tensor product of (quotients of)
path algebras. Throughout this chapter, let (Q, ρ) and (R, σ) be quivers with
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relations (not necessarily admissible, or even finite), and let Λ = KQ/ 〈ρ〉
and Γ = KR/ 〈σ〉. We will first consider how we can construct the tensor
product of Λ and Γ over the field K, before generalizing to tensor products
over an algebra.

3.2.1 Tensor products over a field

We want to realize Λ ⊗K Γ as a quotient of a path algebra KP for some
quiver P . The first thing we need to do is to find out what this quiver P
should look like. Note that an arbitrary element of Λ⊗K Γ can be written as
a K-linear combination of elements of the form [p]⊗ [q] for paths p in Q and
q in R. The element [p]⊗ [q] can in turn be written as a product of elements
that have the form [v]⊗ [w], [v]⊗ [β], or [α]⊗ [w] for vertices v, w and arrows
α, β. This is similar to the fact that in a path algebra, every element can
be written as a linear combination of products of vertices and arrows. This
motivates our definition of product quivers.

Definition 3.6 ([Les94]). The product quiver of Q and R is the quiver
Q×R, with vertex set

(Q×R)0 = Q0 ×R0,

and arrow set
(Q×R)1 = (Q1 ×R0) ∪ (Q0 ×R1).

A pair (α,w) ∈ Q1 ×R0 is regarded as an arrow from (s(α), w) to (t(α), w),
and similarly for (v, β) ∈ Q0 ×R1. �

Note that although Definition 3.6 cites [Les94] (as that is the oldest source
for the concept of product quivers that I am personally aware of), the nota-
tion and terminology in said source is somewhat different from the one used
in our definition. A source with similar notation and terminology to that
used in this thesis can be found in [Her08].

Notation. Instead of using pair notation as in Definition 3.6, we use the
following notation: if v ∈ Q0, w ∈ R0 are vertices and α ∈ Q1, β ∈ R1 are
arrows, we denote the vertex (v, w) by v × w, and similarly we denote the
arrows (α,w) and (v, β) by α× w and v × β, respectively.

Given a sequence of composable arrows α1, α2, . . . , αn in Q, let p be the
path α1α2 . . . αn. Then for any vertex w in R, we define

p× w = (α1 × w)(α2 × w) . . . (αn × w).
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More generally, if
x =

∑
i

aipi ∈ KQ

is an arbitrary K-linear combination of paths from Q, and if w is any vertex
in R, we define

x× w =
∑
i

ai(pi × w) ∈ K(Q×R).

If v is a vertex in Q and y ∈ KR is an arbitrary element, we define v × y in
an analogous manner.

Note that we do not define x × y for arbitrary elements x ∈ KQ and
y ∈ KR, since this is ambiguous. For example, if α and β are arrows in Q
and R, respectively, then it is not clear if α× β should denote the path(

α× t(β)
)(
s(α)× β

)
,

or if it should instead denote the path(
t(α)× β

)(
α× s(β)

)
.

�

We illustrate the notion of product quivers with an example.

Example 3.7. Let Q and R denote the following quivers.

Q : v1 v2
α1

α2

R : w1 w2 w3
β1 β2

Then the product quiver Q×R is the following quiver:

Q×R :

v1 × w1 v1 × w2 v1 × w3

v2 × w1 v2 × w2 v2 × w3

v1×β1

α1×w1

v1×β2

α1×w2 α1×w3

v2×β1

α2×w1

v2×β2

α2×w2 α×w3

An example of a path in Q×R is

(v2 × β2β1)(α2
2α1 × w1) = (v2 × β2)(v2 × β1)(α2 × w1)2(α1 × w1).
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We can cross a vertex in Q with an arbitrary element of KR, and vice versa.
For example, we have

v2 × (3β2 − 5β2β1) = 3(v2 × β2)− 5(v2 × β2)(v2 × β1).

�

Remark 3.8. If p and p′ are composable paths in Q and w ∈ R0 is a vertex,
then it follows immediately from the definition of (pp′)× w that

(pp′)× w = (p× w)(p′ × w).

In fact, it is also true (and easy to verify) that

(xx′)× w = (x× w)(x′ × w)

for arbitrary elements x, x′ ∈ KQ. Similarly,

v × (yy′) = (v × y)(v × y′)

for all vertices v ∈ Q0 and elements y, y′ ∈ KR. �

We wish to express the tensor product Λ⊗K Γ as a quotient of the path
algebra K(Q×R), where [α]⊗ [w] should be the image of α×w for an arrow
α and a vertex w, and similarly for [v]⊗ [β]. Note that in Λ⊗K Γ, we have

[α]⊗ [β] =
(
[α]⊗ [t(β)]

)(
[s(α)]⊗ [β]

)
=
(
[t(α)]⊗ [β]

)(
[α]⊗ [s(β)]

)
.

We therefore need to impose relations on K(Q×R) that represent the above
equality. This leads us to the following definition.

Definition 3.9 ([Les94]). Let α and β be arrows in Q and R, respectively.
The commutativity relation of α and β is the element

Com(α, β) =
(
α× t(β)

)(
s(α)× β

)
−
(
t(α)× β

)(
α× s(β)

)
in K(Q×R). We let Com(Q,R) denote the set

Com(Q,R) = { Com(α, β) | α ∈ Q1, β ∈ R1 }

of all commutativity relations in K(Q×R). �
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Note that although the concept of commutativity relations is taken from
[Les94], the term “commutativity relation” itself is from [Ska11].

In the tensor product Λ⊗K Γ, we don’t just have the equality(
[α]⊗ [t(β)]

)(
[s(α)]⊗ [β]

)
=
(
[t(α)]⊗ [β]

)(
[α]⊗ [s(β)]

)
for arrows α and β, we also have(

[p]⊗ [t(q)]
)(

[s(p)]⊗ [q]
)

=
(
[t(p)]⊗ [q]

)(
[p]⊗ [s(q)]

)
for arbitrary paths p and q. The following lemma shows that this behavior
is already captured by our definition of commutativity relations.

Lemma 3.10. Let p and q be paths in Q and R, respectively. Then(
p× t(q)

)(
s(p)× q

)
≡
(
t(p)× q

)(
p× s(q)

)
(mod 〈Com(Q,R)〉).

Proof. If either p or q is a vertex, then the two sides of the congruence are
actually equal, and there is nothing to prove. So assume that p and q are
paths of length at least 1.

We proceed by induction on n = max{l(p), l(q)}. We have just seen that
the base case n = 0 holds, so assume that n > 0, and that the result is true
for all paths of length less than n. Since we are assuming that p and q are
not vertices, there exist arrows α ∈ Q1, β ∈ R1 and paths p′ in Q and q′ in
R such that p = αp′ and q = βq′. Then we get(

p× t(q)
)(
s(p)× q

)
=
(
αp′ × t(β)

)(
s(p′)× βq′

)
=
(
α× t(β)

)(
p′ × t(β)

)(
s(p′)× β

)(
s(p′)× q′

)
∗≡
(
α× t(β)

)(
t(p′)× β

)(
p′ × s(β)

)(
s(p′)× q′

)
†
≡
(
t(α)× β

)(
α× s(β)

)(
t(p′)× q′

)(
p′ × s(q′)

)
‡
≡
(
t(α)× β

)(
t(α)× q′

)(
α× s(q′)

)(
p′ × s(q′)

)
=
(
t(α)× βq′

)(
αp′ × s(q′)

)
=
(
t(p)× q

)(
p× s(q)

)
(mod 〈Com(Q,R)〉),

where the marked congruences are true for the following reasons:

∗ If n = 1, then p′ is a vertex and the congruence is actually an equality.
Otherwise, β and p′ both have length strictly less than n, and then the
congruence follows from the inductive assumption.
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† The congruence(
α× t(β)

)(
t(p′)× β

)
≡
(
t(α)× β

)(
α× s(β)

)
follows from the definition of Com(Q,R) and the fact that t(p′) = s(α).
The congruence(

p′ × s(β)
)(
s(p′)× q′

)
≡
(
t(p′)× q′

)(
p′ × s(q′)

)
follows the inductive assumption along with the fact that s(β) = t(q′).

‡ Similar to ∗, using the fact that s(β) = t(q′) and t(p′) = s(α).

Since Λ = KQ/ 〈ρ〉, we have

[x]⊗ [µ] = 0 (3.1)

in Λ⊗K Γ for all relations x ∈ ρ and elements µ ∈ KR. Similarly, we have

[λ]⊗ [y] = 0 (3.2)

for all λ ∈ KQ and y ∈ σ. We need to introduce relations in K(Q×R) that
represent these equalities. Note that

[x]⊗ [µ] = ([x]⊗ 1) (1⊗ [µ]) =

(∑
w∈R0

[x]⊗ [w]

)
(1⊗ [µ]) ,

so in order to represent (3.1), we only need relations for the case where µ
is a vertex in R. Similarly, to represent the equality (3.2), we only need to
consider the case where λ is a vertex in Q. This leads us to our definition of
inclusion sets. This concept is taken from [Les94], but the terminology and
notation are from [Ska11].

Definition 3.11 ([Les94]). Let X ⊆ KQ be an arbitrary subset. Then the
inclusion set of X in K(Q×R) is the set

Inc1(X) = { x× w | x ∈ X,w ∈ R0 } .

Similarly, for a subset Y ⊆ KR, we define

Inc2(Y ) = { v × y | y ∈ Y, v ∈ Q0 } .

�
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The following simple result is often convenient.

Lemma 3.12. Let w be a vertex in R, and let x, x′ ∈ KQ be elements such
that

x ≡ x′ (mod 〈ρ〉).

Then
x× w ≡ x′ × w (mod 〈Inc1(ρ)〉).

Similarly, if v is a vertex in Q and y, y′ ∈ KR are elements such that

y ≡ y′ (mod 〈σ〉),

then
v × y ≡ v × y′ (mod 〈Inc2(σ)〉).

Proof. We only prove the first statement; the second statement follows from
a similar argument.

By assumption, x − x′ is an element of 〈ρ〉. Hence there exist elements
zi ∈ ρ and λi, µi ∈ KQ such that x− x′ =

∑
i λiziµi. Then

x× w − x′ × w =
∑
i

(
λiziµi × w

)
=
∑
i

(λi × w)(zi × w)(µi × w),

which is an element of the ideal 〈Inc1(ρ)〉 because zi × w ∈ Inc1(ρ).

We can now state and prove the following theorem, which shows how we
can realize the tensor product Λ ⊗K Γ as a quotient of K(Q × R). Because
the tensor product is taken over the field K, we use the notation IK for the
ideal such that K(Q×R)/IK ∼= Λ⊗K Γ.

Theorem 3.13 ([Les94, Lemma 1.3]). Let IK be the ideal

IK = 〈Com(Q,R), Inc1(ρ), Inc2(σ)〉

in K(Q×R). Then the tensor product of Λ and Γ over K is

Λ⊗K Γ ∼= K(Q×R)/IK .

Proof.
Let φ : K(Q × R) → Λ ⊗K Γ be the unique K-linear map that satisfies

the following criteria:

• φ(v × w) = [v]⊗ [w] for all vertices v in Q and w in R.

• φ(α× w) = [α]⊗ [w] for any arrow α in Q and any vertex w in R.
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• φ(v × β) = [v]⊗ [β] for any vertex v in Q and any arrow β in R.

• If γ1, . . . , γn is a sequence of composable arrows in the product quiver
Q×R, then

φ(γ1 . . . γn) = φ(γ1) . . . φ(γn).

It can be seen that φ is a homomorphism of K-algebras. Moreover, φ is
surjective, because its image contains all elements of the form [v] ⊗ [w],
[α] ⊗ [w], or [v] ⊗ [β], and the set of such elements generates Λ ⊗K Γ as
an algebra.

We claim that IK ⊆ Kerφ. Let α : v → v′ and β : w → w′ be arrows
in Q and R, respectively. Then the commutativity relation of α and β is
contained in the kernel:

φ((α× w′)(v × β)− (v′ × β)(α× w))

= ([α]⊗ [w′])([v]⊗ [β])− ([v′]⊗ [β])([α]⊗ [w])

= [αv]⊗ [w′β]− [v′α]⊗ [βw]

= [α]⊗ [β]− [α]⊗ [β]

= 0.

This shows that Com(Q,R) ⊆ Kerφ. The fact that Inc1(ρ) and Inc2(σ)
are contained in the kernel is an immediate consequence of the fact that
Λ = KQ/ 〈ρ〉 and Γ = KR/ 〈σ〉. Hence IK ⊆ Kerφ.

Since IK ⊆ Kerφ, the map φ induces an algebra homomorphism

φ : K(Q×R)/IK → Λ⊗K Γ,

and this homomorphism is surjective. To complete the proof, we will show
that φ is an isomorphism by constructing an inverse map.

We will find an inverse of φ by using the universal property of the tensor
product. We therefore need to find a K-bilinear map from Λ× Γ to K(Q×
R)/IK . We first consider the map

ψ : KQ×KR→ K(Q×R)(
m∑
i=1

aipi,
n∑
j=1

bjqj

)
7→
∑
i,j

aibj(pi × t(qj))(s(pi)× qj),

where ai, bj ∈ K are scalars, and pi, qj are paths in Q and R, respectively.
The map ψ is clearly K-bilinear. Moreover, suppose that x is an element of
the ideal 〈ρ〉. Then we can write

x =
∑
i

aipixip
′
i
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for some scalars ai, paths pi and p′i in Q, and elements xi ∈ ρ. For each i,
write

xi =
∑
j

bijp
′′
ij,

where bij is a scalar and p′′ij is a path. Then for any path q in R, we have

ψ(x, q) = ψ

(∑
i,j

aibijpip
′′
ijp
′
i, q

)
=
∑
i,j

aibij
(
pip
′′
ijp
′
i × t(q)

)(
s(p′i)× q

)
=
∑
i

ai
(
pi × t(q)

)(∑
j

bijp
′′
ij × t(q)

)(
p′i × t(q)

)(
s(p′i)× q

)
=
∑
i

ai
(
pi × t(q)

)(
xi × t(q)

)(
p′i × t(q)

)(
s(p′i)× q

)
.

Since xi × t(q) ∈ Inc1(ρ), we see that ψ(x, q) ∈ 〈Inc1(ρ)〉 ⊆ IK . Since ψ is
K-bilinear, it follows that ψ maps 〈ρ〉 × KR into IK . A similar argument
shows that ψ also maps KQ× 〈σ〉 into IK .

The argument above shows that ψ induces a (well defined) K-bilinear
map:

ψ : (KQ/ 〈ρ〉)× (KR/ 〈σ〉)→ K(Q×R)/IK

(x+ 〈ρ〉 , y + 〈σ〉) 7→ ψ(x, y) + IK .

Now the universal property of the tensor product tells us that there is a
(unique) K-linear map

h : Λ⊗K Γ→ K(Q×R)/IK

such that h(x ⊗ y) = ψ(x, y) for all x ∈ Λ, y ∈ Γ. We will see that h is the
inverse of φ.

We claim that h is a homomorphism of K-algebras. To prove this claim,
it suffices to show that h is multiplicative on elementary tensors of the form
[p] ⊗ [q], where p and q are paths. So let p and p′ be paths in Q, and let q
and q′ be paths in R. Without loss of generality, assume that s(p) = t(p′)
and s(q) = t(q′). Then

h
(
([p]⊗ [q])([p′]⊗ [q′])

)
= h([pp′]⊗ [qq′])

= ψ([pp′], [qq′])

=
(
pp′ × t(q)

)(
s(p′)× qq′

)
+ IK .

54



On the other hand, we have

h
(
[p]⊗ [q]

)
h
(
[p′]⊗ [q′]

)
= ψ([p], [q])ψ([p′], [q′])

=
(
p× t(q)

)(
s(p)× q

)(
p′ × t(q′)

)(
s(p′)× q′

)
+ IK

=
(
p× t(q)

)(
t(p′)× q

)(
p′ × s(q)

)(
s(p′)× q′

)
+ IK

∗
=
(
p× t(q)

)(
p′ × t(q)

)(
s(p′)× q

)(
s(p′)× q′

)
+ IK

=
(
pp′ × t(q)

)(
s(p′)× qq′

)
+ IK ,

where the marked equality follows from Lemma 3.10. This shows that

h
(
([p]⊗ [q])([p′]⊗ [q′])

)
= h

(
[p]⊗ [q]

)
h
(
[p′]⊗ [q′]

)
,

as desired.
We can now show that h is the inverse of φ. We claim that

hφ(z + Ik) = z + IK (3.3)

for all z ∈ K(Q × R). To see that this is true, consider a vertex v × w in
Q×R. Then we have

hφ
(
v × w + IK

)
= h([v]⊗ [w])

= ψ(v, w) + IK

=
(
v × t(w)

)(
s(v)× w

)
+ IK

= (v × w)(v × w) + IK

= v × w + IK .

Moreover, for an arrow of the form α× w in Q×R, we have

hφ
(
(α× w) + IK

)
= h([α]⊗ [w])

=
(
α× t(w)

)(
s(α)× w

)
+ IK

=
(
α× w

)(
s(α)× w

)
+ IK

= α× w + IK .

Similarly, we have that

hφ
(
v × β + IK

)
= v × β + IK

for an arrow v×β. This shows that (3.3) holds as long as z is either a vertex
or an arrow. Because h ◦φ is a homomorphism of K-algebras, it follows that
(3.3) holds for all z ∈ K(Q× R), since an arbitrary element z is a K-linear
combination of products of arrows and vertices. Hence h ◦ φ is equal to the
identity on K(Q×R)/IK , so h is a left inverse of φ. Since φ is surjective, it
follows that h is also the right inverse of φ, and hence h and φ are mutually
inverse isomorphisms.
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Let us look at an example computation of tensor products using Theo-
rem 3.13.

Example 3.14. Suppose Q and R are the following quivers.

Q : v α2α1

R : w1 w2
β

Let ρ = { α3
1, α

3
2 } and σ = ∅. The product quiver Q × R is the following

quiver.

Q×R : v × w1 v × w2
v×β

α2×w1

α1×w1

α2×w2

α1×w2

Let us find the relations in K(Q×R) that give the tensor product of

Λ = KQ/ 〈ρ〉

and
Γ = KR/ 〈σ〉

over K. The set of commutativity relations is

Com(Q,R) = {(α1 × w2)(v × β)− (v × β)(α1 × w1),

(α2 × w2)(v × β)− (v × β)(α2 × w1)}.

The inclusion set of ρ in K(Q×R) is

Inc1(ρ) =
{
α3

1 × w1, α
3
1 × w2, α

3
2 × w1, α

3
2 × w2

}
,

and the inclusion set of σ is

Inc2(σ) = ∅.

Thus the tensor product of Λ and Γ is

Λ⊗K Γ ∼= K(Q×R)/ 〈X〉 ,

where X is the set

X = {(α1 × w2)(v × β)− (v × β)(α1 × w1),

(α2 × w2)(v × β)− (v × β)(α2 × w1),

α3
1 × w1, α

3
1 × w2, α

3
2 × w1, α

3
2 × w2}.

�
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3.2.2 Tensor products over an algebra

In Section 3.2.1, we saw how we can construct the tensor product Λ ⊗K Γ.
But what if we want to compute the tensor product of Λ and Γ over some
other algebra Σ? For example, it is conceivable that by computing Λ ⊗Σ Γ,
we could learn something interesting about the original algebras Λ and Γ
that we can’t easily learn by studying Λ⊗K Γ.1

We will use the construction of Λ ⊗K Γ in Theorem 3.13 as a starting
point for our construction of the tensor product over an algebra. Recall that
we have defined the algebras Λ = KQ/ 〈ρ〉 and Γ = KR/ 〈σ〉. Throughout
the rest of this section, let S be a quiver, and let Σ = KS. Suppose we are
given algebra homomorphisms

f : Σ→ Λ

and
g : Σ→ Γ

such that Im(f) ⊆ Z(Λ) and Im(g) ⊆ Z(Γ). These homomorphisms allow
us to view Λ and Γ as Σ-bimodules, and by Lemma 3.3, the tensor product
Λ⊗Σ Γ is a K-algebra.2

Observe that in the tensor product over Σ, we must have

xf(s)⊗ y = x⊗ g(s)y (3.4)

for all x ∈ Λ, y ∈ Γ, and s ∈ Σ. Hence we need to introduce relations in
K(Q×R) that represent this equality. Note that we have the following:

xf(s)⊗ y = (x⊗ y)(f(s)⊗ 1) = (x⊗ y)
∑

v∈Q0,w∈R0

[v]f(s)⊗ [w]

x⊗ g(s)y = (x⊗ y)(1⊗ g(s)) = (x⊗ y)
∑

v∈Q0,w∈R0

[v]⊗ g(s)[w]

In order to represent (3.4), it is therefore enough to add relations for the case
where x and y are cosets of vertices in Q and R, respectively. This leads us to
our definition of balancing relations. However, we first need some additional

1This possibility was part of the original motivation for studying tensor products over
an algebra when my advisor suggested the topic to me. In the end, I didn’t have time to
investigate this possibility in depth, but it remains a potential topic for future research.

2We could also consider the case where Σ = KS/ 〈τ〉 for a relation set τ . However, if
Λ and Γ are KS/ 〈τ〉-modules, then they are also KS-modules, and the tensor products
Λ⊗KSΓ and Λ⊗KS/〈τ〉Γ are isomorphic. It therefore suffices to consider the case Σ = KS.
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setup. For an element s ∈ Σ, we pick some fixed, arbitrary representative
f̃(s) ∈ KQ of the equivalence class f(s) ∈ KQ/ 〈ρ〉. This defines a function

f̃ : Σ→ KQ.

(This function is typically not a homomorphism). Similarly, we define a
function

g̃ : Σ→ KR.

Definition 3.15. A Σ-balancing relation (with respect to our choice of f̃
and g̃) is an element in K(Q×R) of the form

vf̃(s)× w − v × g̃(s)w,

where s ∈ Σ is either a vertex or an arrow, and where v and w are vertices
in Q and R, respectively.

We let BalΣ(Q,R) denote the set of Σ-balancing relations (with respect
to f̃ and g̃) in K(Q×R). �

Remark 3.16. If Σ ∼= K, then there is only one vertex in S, and no arrows.
Hence all balancing relations have the form

vf̃(1K)× w − v × g̃(1K)w.

Since f(1K) = 1Λ and g(1K) = 1Γ, it would be natural to choose representa-
tives in such a way that f̃(1K) = 1KQ and g̃(1K) = 1KR. Then we find that
all balancing relations are zero. �

The following result justifies Definition 3.15’s assumption that s is a ver-
tex or an arrow.

Lemma 3.17. Let v and w be vertices in Q and R, respectively, and let
s ∈ Σ be an arbitrary element (not necessarily a vertex or an arrow). Then

vf̃(s)× w ≡ v × g̃(s)w (mod 〈BalΣ(Q,R), Inc1(ρ), Inc2(σ)〉).

Proof. We first prove the case where s is a path p in the quiver S. If p is a
vertex, then the statement of the lemma is clearly true, by the definition of
BalΣ(Q,R). So suppose that p is a nontrivial path, i.e. that p = γ1 . . . γn for
some composable arrows γi in S. Since Im(f) is contained in the centre of
Λ, we have that

[v]f(γi) = [v2]f(γi) = [v]([v]f(γi)) = [v]f(γi)[v].
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Consequently, we get that

vf̃(γi) ≡ vf̃(γi)v (mod 〈ρ〉),

and by a similar argument

g̃(γi)w ≡ wg̃(γi)w (mod 〈σ〉).

By repeatedly applying this observation, we get the following congruences:

vf̃(s) ≡ vf̃(γ1) . . . f̃(γn) ≡ vf̃(γ1)v . . . vf̃(γn) (mod 〈ρ〉)
g̃(s)w ≡ g̃(γ1) . . . g̃(γn)w ≡ g̃(γ1)w . . . wg̃(γn)w (mod 〈σ〉) (3.5)

This gives us the following:

vf̃(s)× w ∗≡
(
vf̃(γ1)v . . . vf̃(γn)

)
× w

=
(
vf̃(γ1)× w

)
. . .
(
vf̃(γn)× w

)
†
≡
(
v × g̃(γ1)w

)
. . .
(
v × g̃(γn)w

)
= v ×

(
g̃(γ1)w . . . wg̃(γn)w

)
∗≡ v × g̃(s)w (mod 〈BalΣ(Q,R), Inc1(ρ), Inc2(σ)〉),

where the congruences marked with ∗ follow from (3.5) and Lemma 3.12,
and the congruence marked with † follows from the definition of balancing
relations. This proves the case where s is path.

We now prove the statement for an arbitrary element of Σ. Let

s =
∑
i

aipi ∈ Σ,

where each pi is a path in the quiver S. Then

vf̃(s)× w ≡
∑
i

ai(vf̃(pi)× w)

≡
∑
i

ai(v × g̃(pi)w)

≡ v × g̃(s)w (mod 〈BalΣ(Q,R), Inc1(ρ), Inc2(σ)〉).

We are now ready to prove the following generalization of Theorem 3.13.
Since we are taking the tensor product of Λ and Γ over the algebra Σ, we
denote by IΣ the ideal such that K(Q×R)/IΣ

∼= Λ⊗Σ Γ.
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Theorem 3.18. Let IΣ be the ideal

IΣ = 〈Com(Q,R), Inc1(ρ), Inc2(σ),BalΣ(Q,R)〉

in K(Q×R). Then the tensor product of Λ and Γ over Σ is

Λ⊗Σ Γ ∼= K(Q×R)/IΣ.

Proof. Recall that in the proof of Theorem 3.13, we saw that there was a
surjective algebra homomorphism

φ : K(Q×R)→ Λ⊗K Γ

given by φ(v×w) = [v]⊗ [w] for vertices v×w, and similarly for arrows v×β
and α×w. Note that the canonical map Λ× Γ→ Λ⊗Σ Γ is K-bilinear, and
hence there exists a K-linear map

t : Λ⊗K Γ→ Λ⊗Σ Γ

given by t(λ⊗K γ) = λ⊗Σ γ for elementary tensors λ⊗K γ in Λ⊗K Γ. It is
clear that t is a surjective algebra homomorphism, and hence the composition

K(Q×R)
φ−→ Λ⊗K Γ

t−→ Λ⊗Σ Γ

is also a surjective algebra homomorphism.
We claim that IΣ ⊆ Ker(t◦φ). In the proof of Theorem 3.13, we saw that

the sets Com(Q,R), Inc1(ρ), and Inc2(σ) are contained in Kerφ ⊆ Ker(t◦φ),
so it suffices to show that BalΣ(Q,R) ⊆ Ker(t ◦ φ). Suppose that v and w
are vertices in Q and R, respectively, and let s ∈ Σ be either a vertex or an
arrow. Then

tφ((vf̃(s)× w)− (v × g̃(s)w)) = [vf̃(s)]⊗ [w]− [v]⊗ [g̃(s)w]

= [vf̃(s)]⊗ [w]− [v]⊗ (g(s)[w])

= [vf̃(s)]⊗ [w]− ([v]f(s))⊗ [w]

= [vf̃(s)]⊗ [w]− [vf̃(s)]⊗ [w]

= 0,

which shows that BalΣ(Q,R) ⊆ Ker(t ◦ φ).
Since IΣ ⊆ Ker(t ◦ φ), there is an induced map

t ◦ φ : K(Q×R)/IΣ → Λ⊗Σ Γ,

and this map is a surjective algebra homomorphism. We will show that t ◦ φ
is an isomorphism by constructing an inverse map.
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As in Theorem 3.13, we let IK denote the ideal

IK = 〈Com(Q,R), Inc1(ρ), Inc2(σ)〉

in K(Q × R). Recall from the proof of Theorem 3.13 that there is a (well
defined) K-bilinear map

ψ : Λ× Γ→ K(Q×R)/IK

given by ψ([p], [q]) = (p× t(q))(s(p)× q) + IK for paths p and q in Q and R,
respectively. Consider the composition

Λ× Γ
ψ−→ K(Q×R)/IK

π−→ K(Q×R)/IΣ,

where π is the algebra homomorphism given by π(z + IK) = z + IΣ. Note
that π ◦ ψ is K-bilinear. Let us verify that it is also Σ-balanced, i.e. that

πψ(sλ, γ) = πψ(λ, sγ)

for λ ∈ Λ, γ ∈ Γ, and s ∈ Σ. It suffices to check the special case where
λ = [p] and γ = [q] for paths p and q. For an element s ∈ Σ, we have

πψ(s[p], [q]) = πψ
(

[f̃(s)p], [q]
)

=
(
f̃(s)p× t(q)

)(
s(p)× q

)
+ IΣ

∗
=
(
pf̃(s)× t(q)

)(
s(p)× q

)
+ IΣ

=
(
p× t(q)

)(
s(p)f̃(s)× t(q)

)(
s(p)× q

)
+ IΣ

†
=
(
p× t(q)

)(
s(p)× g̃(s)t(q)

)(
s(p)× q

)
+ IΣ

=
(
p× t(q)

)(
s(p)× g̃(s)q

)
+ IΣ

= πψ ([p], [g̃(s)q])

= πψ ([p], s[q]) ,

where the equality marked with ∗ is due to the fact that f(s) is contained in
the centre of Λ, while the equality marked with † follows from Lemma 3.17.
This shows that π ◦ ψ is a Σ-balanced map. Then by the universal property
of the tensor product, there exists a unique group homomorphism

h : Λ⊗Σ Γ→ K(Q×R)/IΣ

such that h(x⊗ y) = πψ(x, y) for x ∈ Λ and y ∈ Γ. Then h is the inverse of
t ◦ φ, by a similar argument to the one given in the proof of Theorem 3.13.
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Let us use Theorem 3.18 to compute a tensor product.

Example 3.19. Let Q, R, and S denote the following quivers.

Q :

v2

v1 v3

α2α1

α3

R : w1 w2
β

S : u γ

We let ρ = { α3α2α1 } and σ = ∅, and set Λ = KQ/ 〈ρ〉, Γ = KR/ 〈σ〉, and
Σ = KS. We let f : Σ→ Λ be the unique algebra homomorphism such that

f(γ) = [1 + α1α3α2 + α2α1α3],

and we let g : Σ→ Γ be the unique homomorphism such that g(γ) = 0. Note
that Im(f) ⊆ Z(Λ) and Im(g) ⊆ Z(Γ). Then the tensor product of Λ and Γ
over Σ is

Λ⊗Σ Γ ∼= K(Q×R)/ 〈Com(Q,R) ∪ Inc1(ρ) ∪ BalΣ(Q,R)〉 ,

where we have omitted Inc2(σ) because it is empty. The product quiver of
Q and R is the following quiver.

Q×R :

v1 × w1 v3 × w1

v2 × w1

v2 × w2

v1 × w2 v3 × w2

α1×w1

v1×β

α3×w1

v3×β

α2×w1

v2×β

α2×w2α1×w2

α3×w2

It can be seen that, for a natural choice of the functions f̃ and g̃, the set of
(nonzero) balancing relations is

BalΣ(Q,R) = {v1 × w1, v2 × w1 + α1α3α2 × w1, v3 × w1 + α2α1α3 × w1

v1 × w2, v2 × w2 + α1α3α2 × w2, v3 × w2 + α2α1α3 × w2}.
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Since the vertex v1 × w1 is an element of the set BalΣ(Q,R), we see that
[v1] ⊗ [w1] = 0 in Λ ⊗Σ Γ. But since α1α3α2 is a path that moves through
the vertex v1, we have

[α1α3α2]⊗ [w1] = ([α1]⊗ [w1])([v1]⊗ [w1])([α3α2]⊗ [w1]) = 0.

Since the element v2×w1 +α1α3α2×w1 is a balancing relation, we now find
that

[v2]⊗ [w1] = −[α1α3α2]⊗ [w1] = 0.

Similarly, we also have [v3]⊗ [w1] = 0, and a similar argument shows that

[v1]⊗ [w2] = [v2]⊗ [w2] = [v3]⊗ [w2] = 0.

But this means that all the vertices of Q× R have image zero in the tensor
product Λ⊗Σ Γ. It follows that

Λ⊗Σ Γ = 0.

�

Recall that if P is a quiver, then an ideal I ⊆ KP is called admissible
if there exists some integer m such that

JmP ⊆ I ⊆ J2
P ,

where JP is the ideal in KP generated by the arrows of P . In Example 3.19,
we saw that even if the ideals 〈ρ〉 ⊆ KQ and 〈σ〉 ⊆ KR are admissible,
the ideal IΣ might not be admissible, since in Example 3.19 we had IΣ =
K(Q×R). However, we will see that the ideal IΣ satisfies a weaker condition,
namely that of being “lower-admissible”, a term we now define.

Definition 3.20. Let P be any quiver, and let I ⊆ KP be an ideal. We
say that I is lower-admissible if there exists some integer m such that
JmP ⊆ I. �

Proposition 3.21. Suppose that the ideals 〈ρ〉 ⊆ KQ and 〈σ〉 ⊆ KR are
admissible. Then the ideal

IK = 〈Com(Q,R), Inc1(ρ), Inc2(σ)〉

is admissible, while the ideal

IΣ = 〈Com(Q,R), Inc1(ρ), Inc2(σ),BalΣ(Q,R)〉

is lower-admissible.
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Proof. Since ρ and σ are assumed to generate admissible ideals, there exist
integers m1 and m2 such that Jm1

Q ⊆ 〈ρ〉 ⊆ J2
Q and Jm2

R ⊆ 〈σ〉 ⊆ J2
R. Let

m = max{m1,m2}, and let p be a path in Q×R of length at least 2m. Then
there exist paths q in Q and r in R such that

p+ IK = [q]⊗ [r] = ([q]⊗ [t(r)])([s(q)]⊗ [r])

in the tensor product Λ⊗K Γ, which we identify with K(Q×R)/IK . In other
words, we have

p ≡
(
q × t(r)

)(
s(q)× r

)
(mod IK).

Since l(p) = l(q) + l(r) and l(p) ≥ 2m, we see that l(q) ≥ m or l(r) ≥ m.
Without loss of generality, assume that l(q) ≥ m. Then q ∈ JmQ ⊆ 〈ρ〉, so

q × t(r) ∈ 〈Inc1(ρ)〉 ⊆ IK ,

and hence
p ≡ 0 (mod IK).

In other words, p ∈ IK . This shows that J2m
Q×R ⊆ IK , and hence IK is lower-

admissible. To see that the upper bound IK ⊆ J2
Q×R is also satisfied, note

that Com(Q,R) is clearly contained in J2
Q×R, and so are Inc1(ρ) and Inc2(σ),

because ρ ⊆ J2
Q and σ ⊆ J2

R. Hence IK is an admissible ideal. Moreover, the
ideal IΣ is lower-admissible since IK ⊆ IΣ.

In Chapter 4, we will see how we can replace Q×R and IΣ with another
quiver P and an ideal I ⊆ KP such that K(Q × R)/IΣ

∼= KP/I, and such
that I is an admissible ideal.

3.3 A Gröbner basis for the tensor product
In Theorem 3.13 and Theorem 3.18, we saw how we could find ideals IK and
IΣ in the path algebra K(Q×R), such that

Λ⊗K Γ ∼= K(Q×R)/IK

and
Λ⊗Σ Γ ∼= K(Q×R)/IΣ,

where Λ = KQ/ 〈ρ〉 and Γ = KR/ 〈σ〉. It is of interest to represent the
algebras Λ⊗K Γ and Λ⊗Σ Γ on a computer, for instance using the package
QPA (Quivers and Path Algebras) for the programming language GAP. In
order to do this, we need to find Gröbner bases for IK and IΣ. Of course, we
could simply use an algorithm, such as Buchberger’s algorithm (Algorithm
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2.3), to compute Gröbner bases. However, this is potentially time-consuming,
especially because the quiver Q×R and the generating sets for IK and IΣ can
easily become quite large. It would therefore be nice if we could explicitly
describe Gröbner bases for IK and IΣ, assuming that we are given Gröbner
bases for 〈ρ〉 and 〈σ〉. In this section, we show that this can be done for the
ideal IK . Unfortunately, it seems that this is not possible for the ideal IΣ, as
we will see.

In order to find a Gröbner basis, we must first choose some admissible
order on the set of paths in Q × R. Throughout this section, assume that
the paths in Q and R are ordered according to the left length-lexicographic
ordering, as in Example 2.4.3 Let v, v′ ∈ Q0 and w,w′ ∈ R0 be vertices, and
let α, α′ ∈ Q1 and β, β′ ∈ R1 be arrows. We order the vertices and arrows in
Q×R as follows:

• v × w < v′ × w′ if v < v′, or if v = v′ and w < w′.

• Every vertex is smaller than every arrow. In other words, v×w < α×w′
and v × w < v′ × β.

• v × β < v′ × β′ if v < v′, or if v = v′ and β < β′.

• v × β < α× w.

• α× w < α′ × w′ if α < α′, or if α = α′ and w < w′.

We extend this to an admissible order on the set of paths in Q×R by using
the left length-lexicographic order.

Example 3.22. Let Q and R denote the following quivers.

Q : v1 v2

α1

α2

R : w1 w2
β

The product quiver of Q and R is the following quiver.

Q×R :

v1 × w1 v1 × w2

v2 × w1 v2 × w2

v1×β

α1×w1 α2×w1 α1×w2 α2×w2

v2×β

3One reason to use the length-lex order is the fact that this is the only order supported
by QPA.
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Suppose that the order on the vertices and arrows of Q is given by

v1 < v2 < α1 < α2,

and that the order on the vertices and arrows of R is given by

w1 < w2 < β.

Then the order on the vertices in Q×R is

v1 × w1 < v1 × w2 < v2 × w1 < v2 × w2,

while the order on the arrows in Q×R is

v1 × β < v2 × β < α1 × w1 < α1 × w2 < α2 × w1 < α2 × w2.

�

Let us start by finding a Gröbner basis for the ideal IK , which we used
to construct Λ⊗K Γ.

3.3.1 A Gröbner basis for the tensor product over a field

Recall that the ideal IK ⊆ K(Q×R) in Theorem 3.13 is given by

IK = 〈Com(Q,R), Inc1(ρ), Inc2(σ)〉 .

Let G and H be Gröbner bases for the ideals 〈ρ〉 ⊆ KQ and 〈σ〉 ⊆ KR,
respectively. Since 〈G〉 = 〈ρ〉 and 〈H〉 = 〈σ〉, it follows that the set

X = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H)

is a generating set for IK . It is natural to ask if X is a Gröbner basis. We will
see that the answer is affirmative, as long as we assume that Tip(G) ⊆ J2

Q

and Tip(H) ⊆ J2
R, where JQ and JR denote the ideals generated by the

arrows in Q and R, respectively. Note that this will always be true if G and
H generate admissible ideals.

We will prove that the set X is a Gröbner basis by reducing to the case
where G and H are reduced Gröbner bases and then using Theorem 2.41.
However, before we can apply Theorem 2.41, we must check that X satisfies
the hypothesis of said theorem. This brings us to the following lemma.

Lemma 3.23. Suppose G ⊆ KQ and H ⊆ KR are tip reduced uniform sets
such that Tip(G) ⊆ J2

Q and Tip(H) ⊆ J2
R. Then the set

X = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H)

is tip reduced and uniform.
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Proof. The set Com(Q,R) of commutativity relations is uniform, because
if α ∈ Q1 and β ∈ R1 are arrows, then Com(α, β) is a linear combination
of paths from s(α) × s(β) to t(α) × t(β). The inclusion sets Inc1(G) and
Inc2(H) are also uniform, because G and H are uniform. It follows that X
is a uniform set.

Let x, y ∈ X\ { 0 } be some nonzero elements. In order to show that X
is tip reduced, we must show that if Tip(x) | Tip(y), then x = y. So assume
that Tip(x) | Tip(y). We consider the following cases.

1. x, y ∈ Com(Q,R): Let α, α′ ∈ Q1 and β, β′ ∈ R1 be arrows such that
x = Com(α, β) and y = Com(α′, β′). Recall that commutativity rela-
tions have the form

Com(α, β) =
(
α× t(β)

)(
s(α)× β

)
−
(
t(α)× β

)(
α× s(β)

)
.

From our definition of the order on Q×R, it follows that

Tip(Com(α, β)) =
(
α× t(β)

)(
s(α)× β

)
.

Since we are assuming that Tip(x) | Tip(y), we see that(
α× t(β)

)(
s(α)× β

)
|
(
α′ × t(β′)

)(
s(α′)× β′

)
.

But this is clearly only possible if α = α′ and β = β′. Hence x = y.

2. x, y ∈ Inc1(G): Then there exist elements g, g′ ∈ G and vertices w,w′ ∈
R0 such that x = g × w and y = g′ × w′. Note that

Tip(g × w) = Tip(g)× w.

Since Tip(x) | Tip(y), it follows that(
Tip(g)× w

)
|
(

Tip(g′)× w′
)
.

This is only possible if w = w′ and Tip(g) | Tip(g′). Since we are
assuming that G is a tip reduced set, this implies that g = g′. Hence
x = y.

3. x, y ∈ Inc2(H): Similar to case 2.

4. x ∈ Com(Q,R), y ∈ Inc1(G): Let α ∈ Q1 and β ∈ R1 be arrows such
that x = Com(α, β), and let g ∈ G be an element and w ∈ R0 a vertex
such that y = g × w. Then(

α× t(β)
)(
s(α)× β

)
|
(

Tip(g)× w
)
,
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and in particular, (
s(α)× β

)
|
(

Tip(g)× w
)
.

But this is impossible.

5. x ∈ Com(Q,R), y ∈ Inc2(H): Similar to case 4.

6. x ∈ Inc1(G), y ∈ Com(Q,R): Let g ∈ G, w ∈ R0, α ∈ Q1, and β ∈ R1

such that x = g × w and y = Com(α, β). Then(
Tip(g)× w

)
|
(
α× t(β)

)(
s(α)× β

)
.

It follows that Tip(g) ∈ { α, t(α), s(α) }. But this contradicts our as-
sumption that Tip(G) ⊆ J2

Q.

7. x ∈ Inc1(H), y ∈ Com(Q,R): Similar to case 6.

8. x ∈ Inc1(G), y ∈ Inc2(H): Then there exist elements g ∈ G, h ∈ H and
vertices v ∈ Q0, w ∈ R0 such that x = g × w and y = v × h. Then(

Tip(g)× w
)
|
(
v × Tip(h)

)
.

This is only possible if Tip(g) = v and Tip(h) = w, which contradicts
our assumption that Tip(G) ⊆ J2

Q and Tip(H) ⊆ J2
R.

9. x ∈ Inc2(H), x ∈ Inc1(G): Similar to case 8.

Before we can prove that the set X is a Gröbner basis, we will need a few
more lemmas.

Lemma 3.24. Suppose G ⊆ KQ is a subset, y ∈ KQ is any element, and
w ∈ R0 is a vertex. If y has remainder 0 under division by G in KQ, then
y × w has remainder 0 under division by Inc1(G) in K(Q×R).

Similarly, suppose H ⊆ KR is a subset, x ∈ KR is an element, and
v ∈ Q0 is a vertex. If x has remainder 0 under division by H in KR, then
v × x has remainder zero under division by Inc2(H) in K(Q×R).

Proof. We only prove the first statement, as the second one follows from a
similar argument.

Assume that y ⇒G 0. Then by the definition of remainders (Defini-
tion 2.16), there exist elements gi ∈ G and ui, u′i ∈ KQ such that

y =
∑
i

uigiu
′
i,
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and such that Tip(uigiu
′
i) ≤ Tip(y). Then we also have that

y × w =
∑
i

(ui × w)(gi × w)(u′i × w).

Note that gi × w ∈ Inc1(G), and that

Tip((ui × w)(gi × w)(u′i × w)) = Tip(uigiu
′
i)× w

≤ Tip(y)× w
= Tip(y × w).

Hence y × w has remainder 0 under division by Inc1(G).

We also need the following technical result.

Lemma 3.25. Let α be an arrow in Q, and let

p = β1 . . . βn

be a nontrivial path in R, where each βi is an arrow. Then the following
equality holds:4(

α× t(p)
)(
s(α)× p

)
=
(
t(α)× p

)(
α× s(p)

)
+

n−1∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn

)
.

Moreover, the equality still holds if p is a vertex, as long as we define the
sum

∑n−1
j=0 (· · · ) to equal zero in this case.

Similarly, if β is an arrow in R and if q is a path in Q that is either a
vertex or a nontrivial path of the form

q = α1 . . . αn

for arrows αi, then the following equality holds:(
q × t(β)

)(
s(q)× β

)
=
(
t(q)× β

)(
q × s(β)

)
+

n−1∑
j=0

(
α1 . . . αj × t(β)

)
Com(αj+1, β)

(
αj+2 . . . αn × s(β)

)
.

4If j = 0, then we define t(α)× β1 . . . βj to be equal to 1. Similarly, if j = n− 1, then
s(α)× βj+2 . . . βn is also equal to 1.
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Proof. We only prove the first equality; the second one follows from a similar
argument.

We proceed by induction on n = l(p). The equality clearly holds if n = 0,
i.e. if p is a vertex.

If n = 1, then we have(
α× t(p)

)(
s(α)× p

)
=
(
α× t(β1)

)(
s(α)× β1

)
=
(
t(α)× β1

)(
α× s(β1)

)
+ Com(α, β1)

=
(
t(α)× β1

)(
α× s(β1)

)
+

0∑
j=0

Com(α, βj+1),

as desired.
Now suppose that n > 1, and assume that the lemma holds for all non-

trivial paths that are strictly shorter than p. Let p′ = β1 . . . βn−1. Then by
applying the inductive assumption to p′, we see that(

α× t(p)
)(
s(α)× p

)
=
(
α× t(p′)

)(
s(α)× p′

)(
s(α)× βn

)
=

((
t(α)× p′

)(
α× s(p′)

)
+

n−2∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn−1

))(
s(α)× βn

)
=
(
t(α)× p′

)(
α× t(βn)

)(
s(α)× βn

)
+

n−2∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn−1βn

)
. (3.6)

Also observe that(
t(α)× p′

)(
α× t(βn)

)(
s(α)× βn

)
=
(
t(α)× p′

)((
t(α)× βn

)(
α× s(βn)

)
+ Com(α, βn)

)
=
(
t(α)× p′βn

)(
α× s(βn)

)
+
(
t(α)× p′

)
Com(α, βn)

=
(
t(α)× p

)(
α× s(βn)

)
+
(
t(α)× β1 . . . βn−1

)
Com(α, βn). (3.7)
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Combining (3.6) and (3.7), we then get the following:(
α× t(p)

)(
s(α)× p

)
=
(
t(α)× p

)(
α× s(βn)

)
+
(
t(α)× β1 . . . βn−1

)
Com(α, βn)

+
n−2∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn

)
=
(
t(α)× p

)(
α× s(βn)

)
+

n−1∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn

)
,

which is what we wanted to show.

We are now ready to prove the following theorem, which is based on a
theorem from Helene Tuft Bjørshol’s bachelor thesis [Bjø21]. We present an
alternative proof to the one given by Bjørshol. The idea behind our proof is
somewhat similar to the one in Bjørshol’s thesis, in that we will show that
all overlap relations between elements x, y ∈ X have remainder zero, which
we will prove by considering different cases based on whether x and y are
elements of Com(Q,R), Inc1(G), or Inc2(H). However, the arguments given
in each case are quite different from the arguments given in [Bjø21], unless
otherwise noted.

Theorem 3.26 ([Bjø21, Theorem 5.4]). Suppose that G and H are Gröb-
ner bases for the ideals 〈ρ〉 ⊆ KQ and 〈σ〉 ⊆ KR, respectively, such that
Tip(G) ⊆ J2

Q and Tip(H) ⊆ J2
R. Then the set

X = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H)

is a Gröbner basis in K(Q×R).

Proof. Let G′ and H ′ be the reduced Gröbner bases for 〈G〉 and 〈H〉, respec-
tively. Then Tip(G′) ⊆ Tip(G) and Tip(H ′) ⊆ Tip(H) by Proposition 2.30.
Let X ′ denote the set

X ′ = Com(Q,R) ∪ Inc1(G′) ∪ Inc2(H ′).

Then we have

Tip(X ′) = Tip(Com(Q,R)) ∪ Tip(Inc1(G′)) ∪ Tip(Inc2(H ′))

= Tip(Com(Q,R)) ∪ Inc1(Tip(G′)) ∪ Inc2(Tip(H ′))

⊆ Tip(Com(Q,R)) ∪ Inc1(Tip(G)) ∪ Inc2(Tip(H))

= Tip(Com(Q,R)) ∪ Tip(Inc1(G)) ∪ Tip(Inc2(H))

= Tip(X).
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Since Tip(X ′) ⊆ Tip(X), and because X ′ and X generate the same ideal,
it suffices to show that X ′ is a Gröbner basis. We may therefore assume
throughout the rest of the proof that G and H are reduced Gröbner bases.
Then G and H are tip reduced and uniform by Proposition 2.36, which in
particular implies that the set X is tip reduced and uniform by Lemma 3.23.

Suppose x, y ∈ X are elements that have a (p, q)-overlap for some paths
p and q in Q × R. Since X is tip reduced and uniform, it suffices to check
that

o(x, y, p, q)⇒X 0,

as it then follows from Theorem 2.41 that X is a Gröbner basis. We have
the following possible cases.

1. x, y ∈ Com(Q,R): Then x = Com(α, β) and y = Com(α′, β′) for some
arrows α, α′ ∈ Q1 and α′, β′ ∈ R1. Since there is an overlap, we have

Tip(x)p = qTip(y),

or in other words(
α× t(β)

)(
s(α)× β

)
p = q

(
α′ × t(β′)

)(
s(α′)× β′

)
.

From the definition of overlaps, it follows that p and q are arrows in
the product quiver Q×R. But this implies that s(α)× β = α′× t(β′),
which is impossible. Hence such an overlap cannot exist.

2. x ∈ Com(Q,R), y ∈ Inc1(G): Then x = Com(α, β) for arrows α ∈ Q1

and β ∈ R1, and y = g×w for an element g ∈ G and a vertex w ∈ R0.
By assumption, we have(

α× t(β)
)(
s(α)× β

)
p = q(Tip(g)× w).

From the definition of overlaps, it follows that q must be an arrow, and
in particular q = α× t(β). Then we get(

s(α)× β
)
p = Tip(g)× w.

But this is impossible, since Tip(g) × w is a product of arrows which
are all of the form γ × w for γ ∈ Q1, and s(α) × β does not have this
form. Hence such an overlap cannot exist.

3. x ∈ Inc2(H), y ∈ Com(Q,R): Similar to case 2.
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4. x ∈ Inc1(G), y ∈ Inc2(H): Then x = g × w and y = v × h. We see
that Tip(x) = Tip(g) × w and Tip(y) = v × Tip(h). But then Tip(x)
and Tip(y) have no nontrivial subpaths in common, so such an overlap
cannot exist.

5. x ∈ Inc2(H), y ∈ Inc1(G): Similar to case 4.

6. x, y ∈ Inc1(G): Our argument for this case is based on the one given
in [Bjø21]. There exist elements g, g′ ∈ G and vertices w,w′ ∈ R0 such
that x = g × w and y = g′ × w′. By assumption, we have

(Tip(g)× w)p = q(Tip(g′)× w′).

We may write
Tip(g) = α1 . . . αm

and
Tip(g′) = α′1 . . . α

′
n

for some arrows αi, α′i. Then it follows from the definition of overlaps
that

q = (α1 . . . αk)× w
and

p = (α′l . . . α
′
n)× w′

for some integers 1 ≤ k < m and 1 < l ≤ n. Moreover, the vertices w
and w′ must be equal. Letting q̂ = α1 . . . αk and p̂ = α′l . . . α

′
n, we see

that
Tip(g)p̂ = q̂Tip(g′).

This satisfies the definition of an overlap, because Tip(g) - q̂ and
Tip(g′) - p̂. Hence an overlap in Inc1(G) ⊆ K(Q × R) gives rise to
an overlap in G ⊆ KQ.

Let a = CTip(g) and b = CTip(g′). Then the overlap relation in
K(Q×R) is

o(x, y, p, q) = a−1xp− b−1qy

= a−1
(
g × w

)(
p̂× w

)
− b−1

(
q̂ × w

)(
g′ × w

)
=
(
a−1gp̂− b−1q̂g′

)
× w

= o(g, g′, p̂, q̂)× w.

By assumption, G is a Gröbner basis, so

o(g, g′, p̂, q̂)⇒G 0
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in KQ. It follows from Lemma 3.24 that

o(x, y, p, q)⇒Inc1(G) 0

in K(Q×R), and hence

o(x, y, p, q)⇒X 0.

7. x, y ∈ Inc2(H): Similar to case 6.

8. x ∈ Com(Q,R), y ∈ Inc2(H): Then x = Com(α, β) for arrows α ∈ Q1

and β ∈ R1, and y = v × h for an element h ∈ H and a vertex v ∈ R0.
By assumption, we have(

α× t(β)
)(
s(α)× β

)
p = q(v × Tip(h)).

From the definition of overlaps, it follows that q must be an arrow, and
in particular q = α× t(β). Then we get(

s(α)× β
)
p = v × Tip(h).

Hence p must be a path of the form

p = (v × β1) . . . (v × βn)

for arrows βi in R, where n ≥ 1, and moreover, the vertex v must be
equal to s(α). It follows that

Tip(h) = ββ1 . . . βn.

Write

h = aTip(h) +
t∑
i=1

biri

for scalars a, bi ∈ K\ { 0 } and distinct paths ri < Tip(h) in R. Then
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the overlap relation is

o(x, y, p, q)

= 1 · xp− a−1qy

= Tip(x)p− qTip(y)−
(
t(α)× β

)(
α× s(β)

)
p− a−1q

∑
i

bi(v × ri)

= 0−
(
t(α)× β

)(
α× s(β)

)
p− a−1q

∑
i

bi(v × ri)

= −
(
t(α)× β

)(
α× t(β1)

)(
s(α)× p̂

)
−
∑
i

a−1bi
(
α× t(β)

)(
s(α)× ri

)
= −

(
t(α)× β

)(
α× t(β1)

)(
s(α)× p̂

)
−
∑
i

a−1bi
(
α× t(ri)

)(
s(α)× ri

)
, (3.8)

where p̂ = β1 . . . βn. Note that the last equality uses the fact that
t(β) = t(ri), which is true because h is uniform. In order to show
that o(x, y, p, q) ⇒X 0, we will rewrite (3.8) in a way that satisfies
Definition 2.16.

Whenever ri is a nontrivial path, we may write

ri = γi,1 . . . γi,mi
,

where mi ≥ 1 and each γi,j is an arrow in R. By applying the first part
of Lemma 3.25 to (3.8), we get

o(x, y, p, q)

= −
(
t(α)× β

)((
t(α)× p̂

)(
α× s(βn)

)
+

n−1∑
j=0

(
t(α)× β1 . . . βj

)
Com(α, βj+1)

(
s(α)× βj+2 . . . βn

))

−
∑
i

a−1bi

((
t(α)× ri

)(
α× s(ri)

)
+

mi−1∑
j=0

(
t(α)× γi,1 . . . γi,j

)
Com(α, γi,j+1)

(
s(α)× γi,j+2 . . . γi,mi

))
,

(3.9)
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where we define sums of the form
∑mi−1

j=0 (· · · ) to equal the empty
sum, i.e. zero, if ri is a vertex. For the sake of brevity, we introduce
the following notation:

uj = t(α)× ββ1 . . . βj

vj = s(α)× βj+2 . . . βn

ϕj = Com(α, βj+1)

u′ij = t(α)× γi,1 . . . γi,j
v′ij = s(α)× γi,j+2 . . . γi,mi

ψij = Com(α, γi,j+1)

Note that since h is uniform, s(ri) is equal to s(βn). By combining this
fact with the notation above, we can rewrite (3.9) in the following way:

o(x, y, p, q)

= −

(
t(α)×

(
βp̂+

∑
i

a−1biri

))(
α× s(βn)

)
−

n−1∑
j=0

ujϕjvj −
∑
i

mi−1∑
j=0

a−1biu
′
ijψijv

′
ij

= − a−1
(
t(α)× h

)(
α× s(βn)

)
−

n−1∑
j=0

ujϕjvj −
∑
i

mi−1∑
j=0

a−1biu
′
ijψijv

′
ij.

(3.10)

Since t(α)×h, ϕj, and ψij are elements ofX, we have written o(x, y, p, q)
in a way that satisfies item (i) in the definition of remainders (Defini-
tion 2.16). In order to show that o(x, y, p, q)⇒X 0, it now only remains
to check that item (ii) in Definition 2.16 also holds. In other words, we
must check that the tips of

(
t(α)×h

)(
α× s(βn)

)
, ujϕjvj, and u′ijψijv′ij

are all less than or equal to the tip of o(x, y, p, q).

We must first determine the tip of o(x, y, p, q). Recall that in (3.8), we
wrote the overlap relation as a linear combination of paths of the form(

t(α)× β
)(
α× t(β1)

)(
s(α)× p̂

)
or (

α× t(ri)
)(
s(α)× ri

)
.
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Since these paths are distinct and all have nonzero coefficients, the tip
of the overlap relation is simply the maximum of the paths:

Tip(o(x, y, p, q)) = max{
(
t(α)× β

)(
α× t(β1)

)(
s(α)× p̂

)
,(

α× t(r1)
)(
s(α)× r1

)
, . . . ,

(
α× t(rt)

)(
s(α)× rt

)
}.

Now observe that

Tip
((
t(α)× h

)(
α× s(βn)

))
=
(
t(α)× Tip(h)

)(
α× s(βn)

)
=
(
t(α)× β

)(
t(α)× p̂

)(
α× s(βn)

)
∗
<
(
t(α)× β

)(
α× t(β1)

)(
s(α)× p̂

)
≤ Tip(o(x, y, p, q)),

where the marked inequality follows from the definition of the left
length-lexicographic order, because the two paths being compared have
the same length and because t(α)× β1 < α× t(β1). By a similar argu-
ment, it can be shown that

Tip(ujϕjvj) ≤
(
t(α)× β

)(
α× t(β1)

)(
s(α)× p̂

)
≤ Tip(o(x, y, p, q))

and

Tip(u′ijψijv
′
ij) ≤

(
α× t(ri)

)(
s(α)× ri

)
≤ Tip(o(x, y, p, q)),

whenever ri is a nontrivial path. We have now shown that

o(x, y, p, q)⇒X 0,

as desired.

9. x ∈ Inc1(G), y ∈ Com(Q,R): This case is very similar to case 8, al-
though this is not immediately obvious. We therefore present a sketch
of how the argument given in case 8 can be adapted to the present case.

There exist an element g ∈ G, a vertex w in R, and arrows α and β such
that x = g×w and y = Com(α, β). Since x and y have a (p, q)-overlap,
we have (

Tip(g)× w
)
p = q

(
α× t(β)

)(
s(α)× β

)
.

It follows from the definition of overlaps that p = s(α)× β. Hence we
have

Tip(g)× w = q
(
α× t(β)

)
,
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and q is a path of the form

q =
(
α1 × w

)
. . .
(
αn × w

)
,

for arrows αi in Q and n ≥ 1. Moreover, w = t(β), and

Tip(g) = α1 . . . αnα.

We write

g = aTip(g) +
t∑
i=1

biri

for scalars a, bi ∈ K\ { 0 } and distinct paths ri < Tip(g) in Q. Then
the overlap relation of x, y, p, and q is

o(x, y, p, q)

= a−1xp− 1 · qy

= Tip(x)p− qTip(y) +
∑
i

a−1bi
(
ri × w

)
p+ q

(
t(α)× β

)(
α× s(β)

)
= 0 +

∑
i

a−1bi
(
ri × w

)
p+ q

(
t(α)× β

)(
α× s(β)

)
=
∑
i

a−1bi
(
ri × t(β)

)(
s(α)× β

)
+
(
q̂ × t(β)

)(
t(α)× β

)(
α× s(β)

)
=
∑
i

a−1bi
(
ri × t(β)

)(
s(ri)× β

)
+
(
q̂ × t(β)

)(
s(αn)× β

)(
α× s(β)

)
,

(3.11)

where q̂ = α1 . . . αn. Note that the last equality uses the fact that
s(α) = s(ri), which is true because g is uniform. Similarly to case 8,
we will rewrite this equation in a way that satisfies Definition 2.16.
Whenever ri is a nontrivial path, we can write

ri = γi,1 . . . γi,mi

for some arrows γi,j in Q and an integer mi ≥ 1. Then by applying the
second part of Lemma 3.25 to (3.11) and using an argument similar
to the one we used to show (3.10) in case 8, it can be shown that the
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following equality holds:

o(x, y, p, q)

= a−1
(
t(α1)× β

)(
g × s(β)

)
+

n−1∑
k=0

(
α1 . . . αk × t(β)

)
Com(αk+1, β)

(
αk+2 . . . αnα× s(β)

)
+
∑
i

a−1bi

mi−1∑
j=0

(
γi,1 . . . γi,j × t(β)

)
Com(γi,j+1, β)

(
γi,j+2 . . . γi,mi

× s(β)
)

As in case 8, we have now written o(x, y, p, q) in a way that satisfies
item (i) in Definition 2.16. The fact that item (ii) is also satisfied
follows from a similar argument to the one presented in case 8. This
shows that

o(x, y, p, q)⇒X 0.

Remark 3.27. The assumption that Tip(G) ⊆ J2
Q and Tip(H) ⊆ J2

R is
essential to the proof of Theorem 3.26. If this assumption is not satisfied,
then X will typically not be a tip reduced set,5 even in the special case where
G and H are reduced Gröbner bases, and hence we cannot use Theorem 2.41.
With that being said, I have not been able to find an example where X is
not a Gröbner basis, although I admittedly haven’t had much time to try to
find one. It is therefore plausible that the conclusion of Theorem 3.26 holds
even without the assumption that Tip(G) ⊆ J2

Q and Tip(H) ⊆ J2
R. However,

this would require a different proof. �

3.3.2 For the tensor product over an algebra

Recall that in Section 3.2.2, we turned Λ and Γ into modules over an algebra
Σ = KS (for some quiver S) by using algebra homomorphisms f : Σ→ Λ and
g : Σ→ Γ such that Im(f) ⊆ Z(Λ) and Im(g) ⊆ Z(Γ). We then constructed
the tensor product Λ⊗Σ Γ as a quotient of K(Q×R).

We have just seen that if G ⊆ KQ and H ⊆ KR are Gröbner bases that
satisfy a reasonable technical condition, then the set

X = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H)

5For example, if α ∈ Tip(G) and β ∈ R0 are arrows, then α × t(β) is an element of
Inc1(G) whose tip divides the tip of Com(α, β).
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is a Gröbner basis for the ideal IK ⊆ K(Q×R). With this in mind, we might
hope that the set

Y = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H) ∪ BalΣ(Q,R)

is a Gröbner basis for the ideal IΣ. Unfortunately, it turns out that this is
not generally true, as the following example shows.

Example 3.28. Let Q, R, and S denote quivers that each have one vertex
and a single loop, as shown below.

Q : v α R : w β S : u γ

Let G = { α4 } ⊆ KQ and H = { β4 } ⊆ KR. Then G and H are Gröbner
bases with respect to the unique admissible orders on Q and R, respectively.
We consider the algebras Λ = KQ/ 〈G〉, Γ = KR/ 〈H〉, and Σ = KS. Let
f : Σ→ Λ be the algebra homomorphism such that

f(γ) = [v + α + α3],

and let g : Σ→ Γ be the algebra homomorphism such that

g(γ) = [w].

Let Y be the set

Y = Com(Q,R) ∪ Inc1(G) ∪ Inc2(H) ∪ BalΣ(Q,R).

We will see that Y is not a Gröbner basis. Let us first find all the elements
of Y . The set of commutativity relations is

Com(Q,R) = { (α× w)(v × β)− (v × β)(α× w) } ,

while the inclusion sets are

Inc1(G) =
{
α4 × w

}
and

Inc2(H) =
{
v × β4

}
.

The set of balancing relations depends on which representatives f̃(s) ∈ KQ
and g̃(s) ∈ KR we choose for f(s) ∈ KQ/ 〈G〉 and g(s) ∈ KR/ 〈H〉, where
s = u or s = γ. It could conceivably happen that Y is a Gröbner basis
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for some choices of representatives but not for others, so let us consider all
possible choices of the functions f̃ and g̃. Since KQ is isomorphic to a
polynomial ring with one variable, every element of the ideal 〈α4〉 in KQ has
the form P (α)α4 for some polynomial P . Hence any choice of representatives
for f(u) and f(γ) must have the form

f̃(u) = v + P1(α)α4

and
f̃(γ) = v + α + α3 + P2(α)α4

for some polynomials P1 and P2. Similarly, we have

g̃(u) = w + P3(β)β4

and
g̃(γ) = w + P4(β)β4

for polynomials P3 and P4. Then it can be seen that the set of balancing
relations is

BalΣ(Q,R) =
{
P1(α)α4 × w − v × P3(β)β4,(
α + α3 + P2(α)α4

)
× w − v × P4(β)β4

}
.

Now observe that

α2 × w = (α× w)
((
α + α3 + P2(α)α4

)
× w

)
− ((v + P2(α)α)× w) (α4 × w),

which is an element of 〈X〉 because(
α + α3 + P2(α)α4

)
× w ∈ BalΣ(Q,R)

and
α4 × w ∈ Inc1(G).

However, α2 × w is clearly not divisible by any element of the set

Tip(Com(Q,R) ∪ Inc1(G) ∪ Inc2(H)),

nor is it divisible by any element of

Tip(BalΣ(Q,R)),

regardless of our choice of the polynomials P1, P2, P3, and P4. Hence the set
Y is not a Gröbner basis, regardless of how we choose representatives when
defining the functions f̃ and g̃. �
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It is conceivable that we could find a Gröbner basis for IΣ by choosing
a different generating set than Y (preferably one which can be computed
quickly), or by making some additional assumptions about the sets G and
H, or about the homomorphisms f and g. However, I have not found any
way to do this.

But this does not mean that our only option is to apply a naïve version
of Buchberger’s algorithm (Algorithm 2.3). After all, the set Y contains X
as a subset, and we know that X is a Gröbner basis. Recall that when we
use Buchberger’s algorithm to compute a Gröbner basis for Y , we repeatedly
compute remainders of overlap relations o(x, y, p, q). If we happen to know
that x and y are elements of X, then we know that o(x, y, p, q) ⇒X 0 (and
hence also o(x, y, p, q)⇒Y 0), so there is no need to compute a remainder in
this particular case. Thus we can exploit the fact that X is a Gröbner basis
by skipping some of the computations in Buchberger’s algorithm.

Actually, the preceding discussion elides an important detail. Buch-
berger’s algorithm does not simply add more elements to the generating set
Y ; it also tip reduces the resulting set. Thus we should be worried about
the possibility that an overlap relation o(x, y, p, q) that has remainder zero
under division by some set S does not have remainder zero under division by
the tip reduced set TipReduce(S). Thankfully, this is not an issue, as the
following lemma shows. Note that in this lemma (and in Algorithm 3.1, as
we will see), we make an exception to the notation used so far in this section,
as we do not assume that G and H are Gröbner bases in the path algebras
KQ and KR, respectively.

Lemma 3.29. Let Q be a quiver with an admissible order ≤ on the paths in
Q, and let G be a finite set of uniform elements of KQ. Let H be the result
of applying the tip reduction algorithm (Algorithm 2.2) to G. Let y ∈ KQ be
an element such that

y ⇒G 0.

Then we also have
y ⇒H 0.

Proof. By assumption, y has remainder 0 under division by G. Hence there
exist elements g1, . . . , gn ∈ G and elements ui, vi ∈ KQ such that

y =
n∑
i=1

uigivi,
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and such that Tip(uigivi) ≤ Tip(y). By Lemma 2.46, for each gi there exist
elements hij ∈ H, scalars cij, and paths pij and qij such that

gi =
∑
j

cijpijhijqij,

and such that Tip(pijhijqij) ≤ Tip(gi). Then we have

y =
n∑
i=1

ui

(∑
j

cijpijhiqij

)
vi =

∑
i,j

cijuipijhijqijvi.

Moreover,
Tip(uipijhijqijvi) ≤ Tip(uigivi) ≤ Tip(y).

By the definition of remainders, this shows that

y ⇒H 0.

The following algorithm incorporates the modifications to Buchberger’s
algorithm described in the discussion preceding Lemma 3.29. Aside from
some differences in notation, the only significant difference from Algorithm
2.3 is the fact that some overlap relations are skipped. (We also need to
tip reduce the generating set at the start, because we are not assuming that
the input is tip reduced.) The correctness of the algorithm follows from
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Lemma 3.29 along with the correctness of Algorithm 2.3.
Algorithm 3.1: Modified version of Buchberger’s algorithm
Input: A quiver Q with an admissible order ≤, a finite uniform

subset { f1, . . . , fn } ⊆ KQ, and a subset Z ⊆ { f1, . . . , fn }
such that Z is a Gröbner basis for the ideal 〈Z〉

Output: A finite Gröbner basis G for the ideal 〈f1, . . . , fn〉, if one
exists

1 G← TipReduce ({ f1, . . . , fn });
2 do
3 MODIFIED← False;
4 X ← ∅;
5 for g, h ∈ G do
6 if g /∈ Z or h /∈ Z then
7 for all paths p, q such that g and h have a (p, q)-overlap

do
8 r ← Remainder(o(g, h, p, q), G);
9 if r 6= 0 then

10 X ← X ∪ { r };
11 MODIFIED← True;
12 end
13 end
14 end
15 end
16 if MODIFIED = True then
17 G← TipReduce(G ∪X);
18 end
19 while MODIFIED = True;
20 return G;

When executing the algorithm above, we need to check if the elements g
and h are contained in the Gröbner basis Z. The most obvious way to do this
is to simply search through Z and check if we can find g and h. If we store Z
as an array and sort it according to some easily computable total order, then
we can perform such a search in time O(log(|Z|)) by using a binary search.
However, this would probably not be the most efficient option. Instead, we
can store a list of boolean flags [b1, . . . , bn]. At the start of the algorithm,
we set the flag bi to True if and only if fi is an element of Z. We then store
G as an ordered list, and whenever the ith element of G is modified during
the tip reduction step on line 17, we set the flag bi to False if i ≤ n. When
checking if g and h are elements of Z, we simply check if their corresponding
flags are set to True, which can be done in constant time. This will probably
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be faster than using a binary search on Z.6
An implementation of Algorithm 3.1 can be found in Appendix B, along

with the results from performance tests comparing it to an implementation
of Algorithm 2.3. The performance tests found that Algorithm 3.1 was more
efficient than Algorithm 2.3, at least for the examples that I used in the tests.
However, it turns out that it is even more efficient to use another algorithm
that uses free algebras. See the appendix for more details.

Once we have found generating sets X and Y for the ideals IK and IΣ,
respectively, where X is a Gröbner basis and X ⊆ Y , we can use Algorithm
3.1 to compute a Gröbner basis for IΣ.7 However, there is another possible
approach that may be more efficient. In Chapter 4, we will see how, given a
quiver P and a lower-admissible ideal I ⊆ KP , we can find another quiver
P ′ and an admissible ideal I ′ ⊆ KP ′, such that

KP/I ∼= KP ′/I ′.

If the ideals 〈ρ〉 ⊆ KQ and 〈σ〉 ⊆ KR are admissible, then we know that IΣ

is lower-admissible, but not necessarily admissible. We can therefore use the
methods in Chapter 4 to replace the lower-admissible quotient K(Q×R)/IΣ

with an isomorphic admissible quotient KP ′/I ′. The quiver P ′ and the
generating set for I ′ can potentially be a lot smaller than Q × R and Y ,
respectively, so it seems likely that it would often be more efficient to compute
P ′ and a Gröbner basis for I ′ than it would be to compute a Gröbner basis for
IΣ. However, I have not had time to implement the algorithms in Chapter 4,
so I have not been able to compare the performance of these two approaches.

6The latter approach may occasionally produce false negatives, since the flag bi may
be False even if the ith element of G happens to be an element of Z. However, this seems
like it should happen only rarely, so it would probably not have a significant impact on
performance.

7This requires that the set BalΣ(Q,R) is uniform. But this is not a problem, because
we can make sure that all balancing relations are uniform by choosing f̃ in such a way
that vf̃(s) = vf̃(s)v for vertices v and elements s ∈ Σ, and similarly for g̃.
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Chapter 4

From lower-admissible ideals to
admissible ideals

In Chapter 3, we studied the tensor product Λ ⊗Σ Γ of two algebras Λ and
Γ. Given that Λ = KQ/ 〈ρ〉 and Γ = KR/ 〈σ〉 for bound quivers (Q, ρ) and
(R, σ), we saw that the tensor product was given by

Λ⊗Σ Γ ∼= K(Q×R)/I

for an ideal I. If the ideals 〈ρ〉 and 〈σ〉 are admissible, then I is not neces-
sarily an admissible ideal, but by Proposition 3.21, it does satisfy the weaker
condition

JmQ×R ⊆ I

for some integer m. Recall that in Definition 3.20, we called such ideals
lower-admissible.

It is often convenient to work with admissible ideals. With the previous
paragraph as motivation, it is therefore natural to ask the following question:
Given a quiver Q and a lower-admissible ideal I ⊆ KQ, can we find another
quiver Q′ and an ideal I ′ ⊆ KQ′ such that

KQ/I ∼= KQ′/I ′,

and such that I ′ is an admissible ideal? In this chapter, we answer this
question in the affirmative. Parts of the chapter are based on [Ska11], which
presents an algorithm to find Q′ and I ′ in the special case where we also
assume that I ⊆ JQ.
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4.1 Lower-admissible to pre-admissible
We will first see how we can replace a lower-admissible quotient KQ/I with
an isomorphic quotient KQ′/I ′, where I ′ satisfies the condition

JmQ′ ⊆ I ′ ⊆ JQ′

for some integer m.

Definition 4.1 ([Ska11]). Let Q be a quiver, and let I ⊆ KQ be an ideal.
We say that I is pre-admissible if there exists some integer m such that

JmQ ⊆ I ⊆ JQ.

�

Let (Q, ρ) be a quiver with lower-admissible relations. Our strategy for
finding a quiver Q′ with a pre-admissible relation set ρ′ ⊆ KQ′ such that
KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉 is fairly simple. If there is a vertex v in Q and a
relation x ∈ ρ such that v appears in x, then we will simply remove v from
Q. For any relation y ∈ ρ, we remove all terms of y that are divisible by v.
The reason why this works is due to the following lemma.

Lemma 4.2. Let Q be a quiver, and let I ⊆ KQ be a lower-admissible ideal.
Let v be a vertex in Q, and suppose that there exists some element x ∈ I
such that v appears in x. Then v ∈ I.

Proof. Without loss of generality, we may assume that x = vxv, and we may
assume that the coefficient of v in x is 1. Then v − x ∈ JQ. Moreover,
v− (v−x) = x ∈ I, so v ≡ v−x (mod I). By assumption, there exists some
integer m such that JmQ ⊆ I. Then we have

v = vm ≡ (v − x)m ≡ 0 (mod I),

where the last congruence follows from the fact that (v − x)m ∈ JmQ . Hence
v ∈ I.

As mentioned above, whenever a vertex v appears in some relation x ∈ ρ,
we will remove those terms of elements of ρ that are divisible by v. The
following notation is therefore convenient.
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Definition 4.3 ([Ska11]). Let Q be a quiver, and let x ∈ KQ. Let p1, . . . , pn
be the unique paths and c1, . . . , cn the unique nonzero scalars such that

x =
n∑
i=1

cipi.

Then we let Terms(x) denote the set of terms cipi of x:

Terms(x) = { c1p1, . . . , cnpn } .

Moreover, if I ⊆ KQ is an ideal, then we let TermsI(x) denote the set of
terms of x that are contained in I, i.e.

TermsI(x) = Terms(x) ∩ I.

�

Using Algorithm 4.1, LowerAdmissibleToPreAdmissible(Q, ρ), we
can transform a lower-admissible quotientKQ/ 〈ρ〉 into a pre-admissible quo-
tient KQ′/ 〈ρ′〉. Note that for a set V of vertices in Q, we let Q\V denote
the subquiver of Q obtained by removing the vertices in V . More precisely,
the vertex set of Q\V is

(Q\V )0 = Q0\V,

while the arrow set is

(Q\V )1 = { α ∈ Q1 | s(α) /∈ V and t(α) /∈ V } .
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Algorithm 4.1: LowerAdmissibleToPreAdmissible(Q, ρ)

Input: A quiver Q and a finite lower-admissible subset ρ ⊆ KQ
Output: A quiver Q′ ⊆ Q and a finite pre-admissible subset

ρ′ ⊆ KQ′ such that KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉
1 V ← ∅; // Set of vertices to remove
2 for v ∈ Q0 do
3 if v appears in x ∈ ρ then
4 V ← V ∪ { v };
5 end
6 end
7 Q′ ← Q\V ;
8 ρ′ ← ∅;
9 for x ∈ ρ do

10 T ← Terms(x)\Terms〈V 〉(x);
11 y ←

∑
t∈T t;

12 ρ′ ← ρ′ ∪ { y }
13 end
14 return (Q′, ρ′);

In order to prove the correctness of Algorithm 4.1, we will need the fol-
lowing lemma.

Lemma 4.4. Let Q be a quiver and ρ ⊆ KQ a finite lower-admissible set of
relations. Let Q′ and ρ′ be the output produced when Algorithm 4.1 is applied
to Q and ρ. Then

〈ρ′〉 = KQ′ ∩ 〈ρ〉 ,

where 〈ρ′〉 denotes the ideal in KQ′ generated by ρ′, and 〈ρ〉 denotes the ideal
in KQ generated by ρ.

Proof. As in Algorithm 4.1, let V denote the set of vertices v ∈ Q0 such that
v appears in some element of ρ. Note that a path p in Q is contained in Q′ if
and only if p is not divisible by any elements of V . It follows that the ideal
〈V 〉 is spanned (as a vector space) by precisely those paths in KQ which are
not paths in Q′. In particular, we have KQ = KQ′ ⊕ 〈V 〉 as vector spaces.
Hence for any element λ ∈ KQ, we can let λ′ ∈ KQ′ and λ∗ ∈ 〈V 〉 denote
the unique elements such that λ = λ′ + λ∗.

Let z ∈ KQ′ ∩ 〈ρ〉. Since z ∈ 〈ρ〉, there exist elements fi, gi ∈ KQ and
xi ∈ ρ such that

z =
∑
i

fixigi.
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Then we see that

z =
∑
i

(f ′i + f ∗i )(x′i + x∗i )(g
′
i + g∗i )

=
∑
i

f ′ix
′
ig
′
i + w

for some element w of the ideal 〈V 〉. Note that
∑

i f
′
ix
′
ig
′
i ∈ KQ′, and hence

w = z∗, and z∗ = 0 because z ∈ KQ′. Moreover, observe that x′i is the sum
of those terms of xi which are not contained in 〈V 〉, and hence x′i ∈ ρ′ by the
construction of ρ′. Thus we have

z =
∑
i

f ′ix
′
ig
′
i ∈ 〈ρ′〉 .

This shows that KQ′ ∩ 〈ρ〉 ⊆ 〈ρ′〉.
To complete the proof, we show that 〈ρ′〉 ⊆ KQ′ ∩ 〈ρ〉. To prove this, it

is enough to show that ρ′ ⊆ 〈ρ〉. Let y be an element of ρ′. Then there exists
an element x ∈ ρ such that y = x′. Then we have

x− y = x∗ ∈ 〈V 〉 .

Now note that every vertex in the set V appears in some element of ρ, and
hence V ⊆ 〈ρ〉 by Lemma 4.2. But then x − y ∈ 〈ρ〉, and hence y ∈ 〈ρ〉.
Thus we see that ρ′ ⊆ 〈ρ〉.

Proposition 4.5. Algorithm 4.1 produces a correct result.

Proof. Let Q be a quiver and ρ ⊆ KQ a lower-admissible set of relations, and
let (Q′, ρ′) be the quiver with relations produced by Algorithm 4.1. Through-
out this proof, let 〈ρ′〉 denote the ideal in KQ′ generated by ρ′.

We need to show that 〈ρ′〉 is a pre-admissible ideal of KQ′. From our
construction of ρ′ in the algorithm, it is clear that no vertex of Q′ can appear
in an element of ρ′, and hence 〈ρ′〉 ⊆ JQ′ . Moreover, the ideal 〈ρ〉 ⊆ KQ is
lower-admissible by assumption, so there exists some m such that JmQ ⊆ 〈ρ〉.
It follows that JmQ′ ⊆ JmQ ⊆ 〈ρ〉, and in particular JmQ′ ⊆ KQ′ ∩ 〈ρ〉. Hence
JmQ′ ⊆ 〈ρ′〉 by Lemma 4.4, so 〈ρ′〉 is a pre-admissible ideal.

Lastly, we show that KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉. Since Q′ is a subquiver of Q,
there is an inclusion map

φ : KQ′ ↪→ KQ,

and this map is a non-unital algebra homomorphism. Note that 〈ρ′〉 ⊆ 〈ρ〉
by Lemma 4.4, so φ descends to a map

φ : KQ′/ 〈ρ′〉 → KQ/ 〈ρ〉 .
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We claim that φ is an algebra isomorphism. Let v ∈ Q0 be a vertex. If
v ∈ Q′0, then v + 〈ρ〉 = φ(v + 〈ρ′〉). Otherwise, we have that v ∈ 〈ρ〉 by
Lemma 4.2, and hence v+ 〈ρ〉 = 0. In either case, we see that v+ 〈ρ〉 ∈ Imφ.
If α ∈ Q1 is an arrow, then a similar argument shows that α + 〈ρ〉 ∈ Imφ.
Since the cosets of the vertices and arrows in Q generate KQ/ 〈ρ〉 as an
algebra, we see that φ is surjective. To see that φ is injective, let λ ∈ KQ′
be an element such that φ(λ + 〈ρ′〉) = 0, i.e. λ ∈ 〈ρ〉. Then λ ∈ KQ′ ∩ 〈ρ〉,
so λ ∈ 〈ρ′〉 by Lemma 4.4. This shows that Kerφ = 0, and hence φ is an
isomorphism.

Let us apply Algorithm 4.1 to an example.

Example 4.6. We consider the following quiver.

Q :

v3

v1 v2 v4

γ

δ

α

β

ε
ζ

Let ρ be the following lower-admissible set of relations in KQ.

ρ =
{
δ8, ζ8, α− γβ, δ3 + v3, ζ

2 + v4.
}

The vertices that appear in relations in ρ are v3 and v4. We therefore remove
these vertices from Q, and are left with the following quiver.

Q′ : v1 v2
α

After removing all terms that are divisible by v3 or v4, we obtain the relation
set ρ′ = { α }. Thus we see that

KQ/ 〈ρ〉 ∼= KQ′/ 〈α〉 ∼= K2.

�

Let (Q, ρ) be a quiver with lower-admissible relations, and let ≤ be an
admissible order on the set of paths in Q. Consider the quiver with relations
(Q′, ρ′) produced by Algorithm 4.1. Since Q′ is a subquiver of Q, we may
restrict ≤ to an order on the set of paths in Q′, which we also denote by
≤. This restricted order is still an admissible order. A question that then
naturally comes to mind is the following: If ρ is a Gröbner basis with respect
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to the order on Q, is ρ′ a Gröbner basis with respect to the restricted order
on Q′? We might expect that the answer is no, since some elements of Tip(ρ)
may disappear from the quiver when we remove vertices. However, it turns
out that the answer is actually yes, as the following result shows.

Proposition 4.7. Consider (Q, ρ), (Q′, ρ′), and ≤ as in the preceding para-
graph. Suppose that ρ is a Gröbner basis for the ideal 〈ρ〉 with respect to the
order ≤. Then ρ′ is a Gröbner basis for the ideal 〈ρ′〉 ⊆ KQ′ with respect to
the restricted order on Q′.

Proof. Let z 6= 0 be an element of 〈ρ′〉 ⊆ KQ′. Then z is also an element
of 〈ρ〉 ⊆ KQ by Lemma 4.4, so since ρ is a Gröbner basis there exists an
element x ∈ ρ such that Tip(x) | Tip(z). Let p and q be paths in Q such that
Tip(z) = pTip(x)q. Note that p, q, and Tip(x) are necessarily paths in the
subquiver Q′, since Tip(z) is a path in Q′. Let V denote the set of vertices
such that Q′ = Q\V , and let y ∈ ρ′ be the element such that

y =
∑
t∈T

t,

where T = Terms(x)\Terms〈V 〉(x). Since Tip(x) is a path in Q′, we have

CTip(x) Tip(x) /∈ Terms〈V 〉(x),

and hence Tip(y) = Tip(x). We see that

Tip(z) = pTip(y)q,

so Tip(y) | Tip(z) in the ring KQ′. This shows that ρ′ is a Gröbner basis.

4.2 Pre-admissible to admissible
Given a quiver Q with lower-admissible relations ρ ⊆ KQ, we have seen how
we can replace KQ/ 〈ρ〉 with an isomorphic quotient KQ′/ 〈ρ′〉, where ρ′ is
a pre-admissible relation set. Hence the problem of finding an admissible
path algebra quotient that is isomorphic to KQ/ 〈ρ〉 can be reduced to the
case where ρ generates a pre-admissible ideal. In this section, we present a
solution to this case that is due to Øystein Skartsæterhagen [Ska11].

Before presenting a precise algorithm, we give a less formal overview of
the idea behind the solution. Assume that (Q, ρ) is a quiver with uniform
pre-admissible relations. If ρ does not generate an admissible ideal, then
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there exists an arrow α in Q and an element z ∈ KQ such that α−z ∈ ρ (up
to a scalar multiple), and such that α does not appear in z. We then have

α ≡ z (mod 〈ρ〉).

Thus the arrow α is redundant, in the sense that the element of KQ/ 〈ρ〉
represented by α is also represented by z, so we can remove α from the
quiver. If there are relations in ρ that reference α, then we replace those
relations by substituting z for α. Having eliminated the arrow α, we then
repeat this process until we are left with an admissible set of relations.

However, there is a problem. We want to use the element z as a replace-
ment for α, but what if z has the form

z =
∑
i

bipi

for paths pi and scalars bi, where at least one of the paths pi contains α as
a subpath? Then our relation set would still contain references to α, even
after we substitute z for α. We solve this problem by repeatedly applying
the substitution

α 7→
∑
i

bipi

to z itself, until all references to α vanish modulo 〈ρ〉.
The notion of substitution in the previous paragraphs is made precise by

the following definition.

Definition 4.8 ([Ska11]). Let Q be a quiver, and let α be an arrow in Q.
An element z ∈ KQ is called α-uniform if z = t(α)zs(α). Given that z is
α-uniform, the substitution map

Subst(α,z) : KQ→ KQ

is the unique algebra homomorphism such that Subst(α,z)(v) = v for all
vertices v in Q, and such that

Subst(α,z)(β) =

{
z if β = α

β if β 6= α

for all arrows β in Q. �

Remark 4.9. It is clear that the homomorphism Subst(α,z) is unique, since
the vertices and arrows of Q generate KQ as an algebra. However, it is less
clear that such a homomorphism actually exists. To see that it does indeed
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exist, let f : KQ→ KQ be the unique K-linear map such that f agrees with
our definition of Subst(α,z) on the vertices and arrows of Q, and such that

f(β1 . . . βn) = f(β1) . . . f(βn)

for all arrows β1, . . . , βn for which β1 . . . βn 6= 0. Let us verify that f is an
algebra homomorphism. It is enough to check that f(pq) = f(p)f(q) for all
paths p and q. Note that since z is α-uniform, we have

f(p) = t(p)f(p)s(p), (4.1)

regardless of whether p is divisible by α.
First suppose that pq = 0. Then we have

f(pq) = f(0) = 0.

On the other hand, by using (4.1), we see that

f(p)f(q) = t(p)f(p)s(p)t(q)f(q)s(q) = 0,

because s(p) 6= t(q).
Now suppose that pq 6= 0. If p is a vertex, then p = t(q), and hence

f(pq) = f(q),

while
f(p)f(q) = f(t(q))f(q) = t(q)f(q) = f(q),

by (4.1). Hence f(pq) = f(p)f(q) if p is a vertex. A similar argument shows
that this also holds if q is a vertex. If neither p nor q is a vertex, then the
equality f(pq) = f(p)f(q) follows immediately from how we defined f on
nontrivial paths.

We see that f is an algebra homomorphism. Hence the homomorphism
Subst(α,z) described in Definition 4.8 really does exist, and it is equal to f . �

Algorithm 4.2, EliminateArrow(Q, ρ, α, x), eliminates all references to
a single arrow α in a relation set ρ, bringing us one step closer to obtaining an
admissible relation set. The notation Q\ { α } denotes the quiver obtained
by removing the arrow α from Q, i.e. the quiver whose vertex set is the same
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as that of Q, and whose arrow set is Q1\ { α }.
Algorithm 4.2: EliminateArrow(Q, ρ, α, x) ([Ska11, Algorithm
1])
Input: A quiver Q, a finite pre-admissible set ρ ⊆ KQ of uniform

relations, an arrow α ∈ Q1, and a relation x ∈ ρ such that α
appears in x

Output: A quiver Q′ = Q\ { α } and a finite pre-admissible set
ρ′ ⊆ KQ′ of uniform relations, such that
KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉

1 c← coefficient of α in x;
2 z0 ← α− c−1x;
3 i← 0;
4 while there is a term of zi that is divisible by α do
5 i← i+ 1;
6 zi ← Subst(α,z0)(zi−1);
7 T ← Terms(zi)\Terms〈ρ〉(zi);
8 zi ←

∑
t∈T t;

9 end
10 z ← zi;
11 Q′ ← Q\ { α };
12 ρ′ ←

{
Subst(α,z)(r) | r ∈ ρ

}
;

13 return (Q′, ρ′);

Remark 4.10. On line 7 of Algorithm 4.2, we remove those terms of zi which
are contained in the ideal 〈ρ〉. In order to do this, we need to be able to check
if an element of KQ is contained in said ideal. We can do this if we first
compute a finite Gröbner basis for ρ (with respect to some admissible order),
which is possible by Theorem 2.48 and Theorem 2.51 because KQ/ 〈ρ〉 is
finite-dimensional.

However, another approach is also possible. Instead of removing those
terms of zi which are contained in 〈ρ〉, we could just remove the terms that are
contained in the ideal JmQ , where m is some integer such that JmQ ⊆ 〈ρ〉. This
would not affect the correctness of the algorithm. Of course, this modified
version of the algorithm requires that we know some such value of m.

�

Note that since the relation set ρ is assumed to be uniform, z0 is an
α-uniform element, and hence the substitution map Subst(α,z0) is defined.
Observe that substitution preserves uniformity (and in particular it preserves
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α-uniformity), so the elements zi and zi are also α-uniform for all i. It follows
that the map Subst(α,z) is also defined, and that ρ′ is a uniform set.

Before we prove that Algorithm 4.2 is correct, we consider an example.

Example 4.11. Let Q denote the following quiver.

Q :

v2 v5

v1 v4 v6 v7

v3

α4

α5

α6
α3

α1

α7 α8

α9

α2

We consider the pre-admissible set

ρ =
{
α2α1 − α4α3, α6α5 − α4, α9α8α7α9 − α9, (α9α8α7)3

}
of relations in KQ. The relations preventing ρ from being admissible are
α6α5 − α4 and α9α8α7α9 − α9. We start by performing

EliminateArrow(Q, ρ, α4, α6α5 − α4),

which gives us the following quiver.

Q′ :

v2 v5

v1 v4 v6 v7

v3

α5

α6
α3

α1

α7 α8

α9

α2

Substituting α6α5 for α4, we get the set

ρ′ =
{
α2α1 − α6α5α3, α6α5 − α6α5, α9α8α7α9 − α9, (α9α8α7)3

}
of relations in KQ′. This is still not an admissible set, so we apply the
algorithm one more time, this time performing

EliminateArrow(Q′, ρ′, α9, α9α8α7α9 − α9).

We then get the following quiver.

Q′′ :

v2 v5

v1 v4 v6 v7

v3

α5

α6
α3

α1

α7 α8

α2
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In order to obtain a new set of relations, we must first find a suitable sub-
stitute for α9. We repeatedly perform the substitution α9 7→ α9α8α7α9, and
see that

α9 ≡ α9α8α7α9

≡ (α9α8α7α9)α8α7(α9α8α7α9)

= (α9α8α7)3α9

≡ 0 (mod 〈ρ′〉).

Thus we can substitute 0 for α9, and we obtain the admissible relation set

ρ′′ = { α2α1 − α6α5α3, α6α5 − α6α5 }

in KQ′′. �

We will now prove that Algorithm 4.2 is correct. In order to do this, we
will require some preliminary results. We start by showing that the algorithm
terminates.

Lemma 4.12 ([Ska11, Proposition 5.2]). Algorithm 4.2 terminates.

Proof. Consider a quiver Q, a set ρ ⊆ KQ, an arrow α, and a relation x ∈ ρ
such that the assumptions in Algorithm 4.2 are satisfied. For an element
y ∈ KQ, let Lα(y) denote the shortest length of a path appearing in y that
is divisible by α. In other words, Lα(y) is the infimum of the set

{ l(p) | p is a path appearing in y, and α divides p } ,

where we define Lα(y) =∞ if the set above is empty.
We claim that if p is any nontrivial path, then

Lα(Subst(α,z0)(p)) > l(p). (4.2)

We proceed by induction on the length of p. For the base case l(p) = 1, we
must have p = β for some arrow β. If β 6= α, then we have

Lα(Subst(α,z0)(p)) = Lα(β) =∞.

Otherwise, if p = α, we have

Subst(α,z0)(p) = z0,

and hence
Lα(Subst(α,z0)(p)) = Lα(z0) ≥ 2 > l(p),
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where Lα(z0) ≥ 2 because α does not appear in z0. This shows that the base
case for our claim holds.

Now suppose that l(p) ≥ 2, and assume that (4.2) holds for all paths that
are strictly shorter than p. Then we can write p = qq′ for nontrivial paths q
and q′. Now suppose that r is some path that appears in the element

Subst(α,z0)(p) = Subst(α,z0)(q) Subst(α,z0)(q
′),

such that α | r. Then r must have the form r = ss′, where s is a path
that appears in Subst(α,z0)(q) and s′ is a path that appears in Subst(α,z0)(q

′).
Furthermore, at least one of the paths s and s′ must be divisible by α.
Without loss of generality, assume that α | s. Then

l(r) = l(s) + l(s′)

≥ Lα(Subst(α,z0)(q)) + l(q′),

where we have used the fact that l(s) ≥ l(q′) because Subst(α,z0)(q
′) is a

linear combination of paths of length at least l(q′). Applying the inductive
assumption to q′, we see that

l(r) > l(q) + l(q′) = l(p),

and consequently
Lα(Subst(α,z0)(p)) > l(p),

as desired.
Now consider the sequence z0, z1, z2, . . . produced by the algorithm. If

Lα(zi) = ∞, then the algorithm will terminate after the ith iteration of the
while loop. Otherwise, there exists at least one path p appearing in zi such
that α divides p. Then by using (4.2), we see that

Lα(Subst(α,z0)(p)) > l(p) ≥ Lα(zi),

and hence Lα(zi+1) > Lα(zi). Since we obtain zi+1 by removing terms from
zi+1, we also see that

Lα(zi+1) ≥ Lα(zi+1) > Lα(zi).

Since 〈ρ〉 is assumed to be pre-admissible, there exists some integer m such
that JmQ ⊆ 〈ρ〉. By the preceding argumentation, there exists some j such
that Lα(zj) > m. Thus if p is a path that appears in zj and which is
divisible by α, then p ∈ 〈ρ〉. But by the construction of zj, none of the paths
appearing in zj are contained in 〈ρ〉, and hence none of the paths appearing
in zj are divisible by α. This shows that the algorithm terminates after the
jth iteration of the while loop.
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Next we show that substitution is compatible with the relation set ρ, in
the sense that the map Subst(α,λ) preserves equivalence classes modulo 〈ρ〉,
as long as α and λ belong to the same equivalence class.

Lemma 4.13 ([Ska11, Lemma 5.1]). Let Q be a quiver, and let I ⊆ KQ be
an ideal. Let α be an arrow in Q, and let λ ∈ KQ be an α-uniform element.
Furthermore, assume that α ≡ λ (mod I). Then for any element y ∈ KQ,
we have

y ≡ Subst(α,λ)(y) (mod I).

Proof. Since Subst(α,λ) is an algebra homomorphism, it suffices to check the
special case where y is a vertex or an arrow. If y is either a vertex or an
arrow different from α, then y is actually equal to Subst(α,λ)(y). Otherwise,
we have y = α, and hence

Subst(α,λ)(y) = Subst(α,λ)(α) = λ ≡ α = y (mod I).

As a consequence of Lemma 4.13, we have the following result.

Corollary 4.14 ([Ska11, Lemma 5.3]). Let (Q, ρ) be a quiver with relations,
let α be an arrow in Q, and let x ∈ ρ be a relation, such that the conditions in
Algorithm 4.2 are satisfied. If z is the element defined on line 10 of Algorithm
4.2, then we have

z ≡ α (mod 〈ρ〉).

Proof. We clearly have
z0 ≡ α (mod 〈ρ〉).

Moreover, we have
zi ≡ zi (mod 〈ρ〉)

for all i, because we obtain zi from zi by removing terms that are contained
in 〈ρ〉. We also have

zi ≡ zi−1 (mod 〈ρ〉)

by Lemma 4.13. By induction, it follows that

z ≡ α (mod 〈ρ〉).
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Lemma 4.15 ([Ska11, Lemma 5.4]). Let (Q, ρ) be a quiver with relations, let
α be an arrow in Q, and let x ∈ ρ be a relation, such that the conditions in
Algorithm 4.2 are satisfied. Let (Q′, ρ′) be the quiver with relations produced
by the algorithm. Then

〈ρ′〉 = KQ′ ∩ 〈ρ〉 ,

where 〈ρ′〉 denotes the ideal in KQ′ generated by ρ′, and 〈ρ〉 denotes the ideal
in KQ generated by ρ.

Proof. Let z ∈ KQ′ be the element defined on line 10 of the algorithm.
Recall that the relation set ρ′ is defined as

ρ′ =
{

Subst(α,z)(r) | r ∈ ρ
}
.

In order to show that 〈ρ′〉 ⊆ KQ′ ∩ 〈ρ〉, it therefore suffices to show that
Subst(α,z)(r) ∈ 〈ρ〉 for all r ∈ ρ. But by Corollary 4.14 and Lemma 4.13, we
have

Subst(α,z)(r) ≡ r ≡ 0 (mod 〈ρ〉),

i.e. Subst(α,z)(r) ∈ 〈ρ〉. This shows that 〈ρ′〉 ⊆ KQ′ ∩ 〈ρ〉 .
Now suppose that y ∈ KQ′ ∩ 〈ρ〉. Since y ∈ 〈ρ〉, there exist relations

ri ∈ ρ and elements fi, gi ∈ KQ such that

y =
∑
i

firigi.

Note that y = Subst(α,z)(y) because y ∈ KQ′, and hence

y = Subst(α,z)

(∑
i

firigi

)
=
∑
i

Subst(α,z)(fi) Subst(α,z)(ri) Subst(α,z)(gi).

Note that Subst(α,z)(ri) ∈ ρ′, while Subst(α,z)(fi) and Subst(α,z)(gi) are ele-
ments of KQ′. Thus the equality above shows that y ∈ 〈ρ′〉 ⊆ KQ′, and
hence KQ ∩ 〈ρ〉 ⊆ 〈ρ′〉.

We now have all the preliminary results we need in order to prove that
Algorithm 4.2 does what it is supposed to.

Proposition 4.16 ([Ska11, Proposition 5.5]). Algorithm 4.2 produces a cor-
rect result.
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Proof. Let Q be a quiver, ρ ⊆ KQ a finite pre-admissible set of uniform
relations, α an arrow in Q, and x ∈ ρ a relation such that α appears in x.
Let (Q′, ρ′) be the quiver with relations produced by Algorithm 4.2. We first
show that the ideal 〈ρ′〉 ⊆ KQ′ is pre-admissible. Since the ideal 〈ρ〉 ⊆ KQ
is pre-admissible by assumption, there exists some integer m such that

JmQ ⊆ 〈ρ〉 ⊆ JQ.

Then we see that 〈ρ′〉 ⊆ JQ′ , since our construction of ρ′ from ρ did not
introduce any vertices into the relations. Let p be a path in Q′ of length
m. Then p ∈ 〈ρ〉, so since we also have p ∈ KQ′, we see that p ∈ 〈ρ′〉 by
Lemma 4.15. Hence JmQ′ ⊆ 〈ρ′〉, so 〈ρ′〉 is pre-admissible.

Next we show that KQ′/ 〈ρ′〉 ∼= KQ/ 〈ρ〉. Recall that Q′ is the subquiver
of Q obtained by removing the arrow α, so there is an inclusion map

φ : KQ′ → KQ,

and this is a (unital) algebra homomorphism. We have 〈ρ′〉 ⊆ 〈ρ〉 by
Lemma 4.15, so φ induces a map

φ : KQ′/ 〈ρ′〉 → KQ/ 〈ρ〉 .

We claim that φ is an isomorphism. Using a similar argument to the one
given in the proof of Proposition 4.5, it can be shown that φ is injective. To
see that φ is surjective, let y ∈ KQ be an arbitrary element. Consider the
element z ∈ KQ′ defined on line 10 of the algorithm, and note that

z ≡ α (mod 〈ρ〉)

by Corollary 4.14. Let ỹ = Subst(α,z)(y) ∈ KQ′. Then

ỹ ≡ y (mod 〈ρ〉)

by Lemma 4.13, and hence

φ(ỹ + 〈ρ′〉) = ỹ + 〈ρ〉 = y + 〈ρ〉 .

Thus φ is surjective, and hence it is an isomorphism.

Algorithm 4.2 only eliminates a single arrow from a pre-admissible set
of relations. By repeating this process until there are no more arrows to
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remove, we eventually obtain an admissible set of relations. This is described
in Algorithm 4.3, PreAdmissibleToAdmissible(Q, ρ).
Algorithm 4.3: PreAdmissibleToAdmissible(Q, ρ) ([Ska11,
Algorithm 2])
Input: A quiver Q and a finite pre-admissible set ρ ⊆ KQ of

uniform relations
Output: A quiver Q′ and a finite admissible set ρ′ ⊆ KQ′ of

uniform relations such that KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉
1 Q′ ← Q;
2 ρ′ ← ρ;
3 while ρ′ contains an element in which an arrow appears do
4 Choose an element x ∈ ρ and an arrow α ∈ Q1 such that α

appears in x;
5 (Q′, ρ′)← EliminateArrow(Q′, ρ′, α, x);
6 end
7 return (Q′, ρ′);

Proposition 4.17 ([Ska11, Proposition 5.8]). Algorithm 4.3 produces a cor-
rect result.

Proof. In every iteration of the while loop, an arrow is removed from the
quiver Q′. Since there are only finitely many arrows, this means that the
algorithm must terminate. When the algorithm terminates, the set ρ′ must
generate an admissible ideal, for otherwise there would be more arrows to
remove from the quiver Q′. Finally, the fact that ρ′ is a uniform set and the
fact that KQ/ 〈ρ〉 ∼= KQ′/ 〈ρ′〉 both follow from the correctness of Algorithm
4.2.

It is now clear how we can replace a lower-admissible path algebra quo-
tient KQ/ 〈ρ〉 with an admissible one: we first use Algorithm 4.1 to obtain a
pre-admissible quotient, and then we apply Algorithm 4.3 to get an admissi-
ble quotient.

In Proposition 4.7, we saw that Algorithm 4.1 preserves Gröbner bases.
Our proof of this fact boiled down to showing that if x ∈ ρ is a relation in
the lower admissible set ρ ⊆ KQ, and if Tip(x) is contained in the subquiver
Q′ produced by the algorithm, then Tip(x) ∈ Tip(ρ′). If we could prove that
the analogous statement holds for Algorithm 4.2, then it would follow that
Algorithm 4.2 and Algorithm 4.3 also preserve Gröbner bases. Unfortunately,
the analogous statement does not hold. For let x be an element of a uniform
pre-admissible relation set ρ ⊆ KQ, and suppose that Tip(x) is contained
in the subquiver Q′ produced by Algorithm 4.3. If α is some arrow that is
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removed from the quiver and replaced with an element z during the execution
of the algorithm, then it may happen that

Tip(Subst(α,z)(x)) > Tip(x),

because some of the lower order terms of x may be replaced by terms that
are greater than Tip(x). It could also happen that Subst(α,z)(x) = 0. As a
consequence, Tip(x) will not necessarily be an element of Tip(ρ′). In particu-
lar, Algorithm 4.3 does not preserve Gröbner bases, as the following example
shows.

Example 4.18. Consider the following quiver.

Q :

v2

v1 v4

v3

β

ζ

γ

α

ε η

δ

We equip Q with the left length-lexicographic ordering (Example 2.4), with
the vertices ordered numerically and the arrows alphabetically, i.e.

v1 < v2 < v3 < v4

and
α < β < γ < δ < ε < ζ < η.

We let ρ denote the following pre-admissible set of relations in KQ:

ρ =
{
βαζ − ε, ηδγ − ηε, ζ3, η3, εζ2

}
.

Let us verify that ρ is a Gröbner basis. The set ρ is tip reduced and uniform,
so we can use Theorem 2.41. We have the following overlaps between elements
of ρ:

• βαζ − ε and ζ3 have a (ζ2, βα)-overlap.

• η3 and ηδγ − ηε have a (δγ, η2)-overlap.

• εζ2 and ζ3 have both a (ζ, ε)-overlap and a (ζ2, εζ)-overlap.

• ζ3 has both a (ζ, ζ)-overlap and a (ζ2, ζ2)-overlap with itself.

• Similarly, η3 has an (η, η)-overlap and an (η2, η2)-overlap with itself.
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We must check that all of the overlap relations have remainder zero under
division by ρ. The overlap relation of βαζ − ε and ζ3 is

o(βαζ − ε, ζ3, ζ2, βα) = (βαζ − ε)ζ2 − βαζ3

= −εζ2.

This element has remainder zero, because it is simply a scalar multiple of
εζ2 ∈ ρ. Next, the overlap relation of η3 and ηδγ − ηε is

o(η3, ηδγ − ηε, δγ, η2) = η3δγ − η2(ηδγ − ηε)
= η3ε,

which has remainder zero because it is divisible by η3 ∈ ρ. The overlap
relations corresponding to the rest of the overlaps are all zero, so we see that
ρ is a Gröbner basis.

Let us now see what happens when we replace the pre-admissible quotient
KQ/ 〈ρ〉 with an admissible quotient KQ′/ 〈ρ′〉. The relation preventing ρ
from being admissible is βαζ − ε, so we need to remove the arrow ε. We
obtain the following quiver.

Q′ :

v2

v1 v4

v3

β

ζ

γ

α

η

δ

We give Q′ an admissible order by restricting the order on Q to the set of
paths in Q′. By substituting βαζ for ε, we get the following admissible set
of relations in KQ′:

ρ′ =
{
ηδγ − ηβαζ, ζ3, η3, βαζ3

}
.

The set of tips of ρ′ is

Tip(ρ′) =
{
ηβαζ, ζ3, η3, βαζ3

}
.

Consider the element ηδγζ2. We have

ηδγζ2 = ηδγζ2 − ηβαζ3 + ηβαζ3

= (ηδγ − ηβαζ)ζ2 + η(βαζ3).

Since ηδγ−ηβαζ and βαζ2 are elements of ρ′, the element ηδγζ2 is contained
in the ideal 〈ρ′〉 ⊆ KQ′. But ηδγζ2 is not divisible by any element of Tip(ρ′),
so ρ′ is not a Gröbner basis. �
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Since Algorithm 4.3 does not preserve Gröbner bases, we will have to
find a Gröbner basis for ρ′ ⊆ KQ′ by some other means. Of course, we could
simply use Buchberger’s algorithm. However, this means that we would have
to compute a Gröbner basis both before and after running Algorithm 4.3,
which could be time-consuming. It would therefore be nice if we could devise
a modified version of Algorithm 4.3 that preserves Gröbner bases.

As suggested by the discussion preceding Example 4.18, it would be
enough to compute a relation set ρ′′ ⊆ KQ′ such that ρ′′ generates the
same ideal as ρ′, and such that if x ∈ ρ is an element whose tip is a path
in Q′, then Tip(x) ∈ Tip(ρ′′). However, this approach cannot work, because
such a set ρ′′ does not exist in general. For example, consider Example 4.18.
It can be shown (e.g. by using Buchberger’s algorithm) that the set

G =
{
ηδγ − ηβαζ, ζ3, η3, ηδγζ2

}
is a Gröbner basis for 〈ρ′〉. Consider the relation

x = ηδγ − ηε ∈ ρ.

The tip of x is ηδγ, which is a path in Q′. But this path is not divisible by
any element of Tip(G), so since G is a Gröbner basis, there does not exist
any element y ∈ 〈ρ〉 such that Tip(y) = Tip(x).

Of course, the fact that this specific approach is impossible does not
preclude the possibility that there is another way to modify the algorithm so
that it preserves Gröbner bases. However, because of time constraints, I was
unable to investigate this further in this thesis.
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Appendix A

A long proof

We will now provide a proof of Lemma 2.47, which we used to show that
Buchberger’s algorithm (Algorithm 2.3) terminates. Recall that Λ = KQ is
the path algebra of a quiver Q, and that we have fixed some admissible order
on Q.

Lemma 2.47. Let { f1, . . . , fn } ⊆ Λ be a tip reduced uniform subset, and
let I = 〈f1, . . . , fn〉. Let x be an element of the reduced Gröbner basis of I.
Then during the execution of Algorithm 2.3, there exists some l such that
Tip(x) ∈ Tip(Gl).

Proof.
We adapt the proof of Theorem 2.41. For the sake of contradiction,

assume that Tip(x) /∈ Tip(Gl) for all l. Fix an index l. Since x ∈ I and Gl

is a generating set for I, there exist distinct elements gi ∈ Gl, paths pij and
qij, and nonzero scalars aij such that

x =
∑
i,j

aijpijgiqij. (A.1)

We may assume that pijgiqij 6= 0. For each i, we can write

gi =
∑
k

bikγik,

where the bik are nonzero scalars and the γik are distinct paths. Then we get

x =
∑
i,j,k

aijbikpijγikqij. (A.2)

Let p∗ be the largest of the paths pijγikqij with respect to the admissible order
≤. Out of all possible choices for the index l, and out of all the possible ways
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to write x as in (A.1), we may assume that we have made our choice in such
a way that p∗ is minimal with respect to the well-order ≤. Moreover, once
we have chosen our minimal p∗, we may assume that we have chosen l and
our expression for x in (A.1) in such a way that the number of occurrences
of p∗ in the right-hand side of (A.2) is minimal.

Let i1, j1, and k1 be fixed indices such that p∗ = pi1j1γi1k1qi1j1 . Then
p∗ = Tip(pi1j1γi1k1qi1j1). Because gi1 is uniform and because we chose p∗
to be the largest path appearing in the sum in (A.2), it must be the case
that γi1k1 = Tip(gi1), and hence p∗ = pi1j1 Tip(gi1)qi1j1 . We claim that
Tip(x) 6= p∗. For if Tip(x) were equal to p∗, then Tip(x) would be divisible by
Tip(gi1). But gi1 is an element of I and x is an element of the reduced Gröbner
basis of I, so this would imply that Tip(x) = Tip(gi1), which contradicts our
assumption that Tip(x) /∈ Tip(Gl).

Since Tip(x) 6= p∗ and p∗ is the largest of the paths appearing in the
right-hand side of (A.2), the appearances of p∗ in (A.2) must cancel out. In
particular, p∗ must appear at least twice in the right-hand side, so there exist
indices i2, j2, and k2 such that (i1, j1, k1) 6= (i2, j2, k2) and

pi1j1 Tip(gi1)qi1j1 = pi2j2γi2k2qi2j2 .

Note that pi2j2 Tip(gi2)qi2j2 6= 0 because gi2 is uniform, and consequently
pi2j2γi2k2qi2j2 ≤ pi2j2 Tip(gi2)qi2j2 . Hence we have γi2k2 = Tip(gi2), and we get

pi1j1 Tip(gi1)qi1j1 = pi2j2 Tip(gi2)qi2j2 .

To simplify our notation, we write p = pi1j1 , g = gi1 , q = qi1j1 , a = ai1j1 ,
p′ = pi2j2 , g′ = gi2j2 , q′ = qi2j2 , and a′ = ai2j2 .

We are now in a similar situation to the proof of Theorem 2.41. Indeed,
most of the cases in that proof carry over to this proof with no modifications
needed. The only exception is case 2.3.1, whose proof in Theorem 2.41 used
an assumption that may not be satisfied in the present proof. Hence we only
need to check that we obtain a contradiction in this case. So assume that
l(p) < l(p′), l(q) > l(q′), and l(p′) < l(pTip(g)).

Then there exist paths r and s such that q = rq′, p′ = ps, and Tip(g)r =
sTip(g′). Just as in the proof of Theorem 2.41, we have Tip(g) - s and
Tip(g′) - r. Hence there is an (r, s)-overlap of g and g′. By using an argument
identical to the one given in the proof of Theorem 2.41, it can be shown that

pgq = CTip(g)po(g, g′, r, s)q′ +
CTip(g)

CTip(g′)
p′g′q′. (A.3)

Let w ∈ Λ be the element computed by the algorithm Remainder (Algo-
rithm 2.1) such that

o(g, g′, r, s)⇒Gl
w.
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Then there exist scalars cm ∈ K\ { 0 }, paths p̃m and q̃m in Q, and elements
g̃m ∈ Gl such that

o(g, g′, r, s) =
∑
m

cmp̃mg̃mq̃m + w, (A.4)

where
Tip(p̃mg̃mq̃m) ≤ Tip(o(g, g′, r, s)),

and where Tip(y) - p̂ whenever y ∈ Gl\ { 0 } and p̂ is a path that appears in
w.

By using (A.3) and (A.4), we get

apgq + a′p′g′q′

= a

(
CTip(g)po(g, g′, r, s)q′ +

CTip(g)

CTip(g′)
p′g′q′

)
+ a′p′g′q′

= a

(
CTip(g)p

(∑
m

cmp̃mg̃mq̃m + w

)
q′ +

CTip(g)

CTip(g′)
p′g′q′

)
+ a′p′g′q′

= a′′p′g′q′ +
∑
m

c′mpp̃mg̃mq̃mq
′ + bpwq′,

where a′′ = a CTip(g)
CTip(g′)

+ a′, c′m = aCTip(g)cm, and b = aCTip(g). Thus we
can rewrite (A.1) in the following way:

x =
∑
i,j

aijpijgiqij

=
∑

(i,j)6=(i1,j1),(i2,j2)

aijpijgiqij + a′′p′g′q′ +
∑
m

c′mpp̃mg̃mq̃mq
′ + bpwq′. (A.5)

This decreases the number of occurrences of p∗ by one.1 Unlike the proof
of Theorem 2.41, however, this does not immediately yield a contradiction,
because w is not an element of Gl, so our new expression for x would not
have the same form as (A.1). In order to obtain a contradiction, we will use
Lemma 2.46.

If w = 0, then we get a contradiction just as in the proof of Theorem 2.41.
So assume that w 6= 0. Then w will be added to the set X during the for loop
in Algorithm 2.3. The set Gl+1 is obtained by tip reducing the set Gl ∪X,

1This could actually decrease the number of occurrences of p∗ by two, if a′′ = 0. If p∗
occurred exactly twice in (A.1), then this would mean that p∗ no longer appeared at all.
But this would contradict the minimality of p∗ with respect to the admissible order.
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so by Lemma 2.46, there exist elements ht ∈ Gl+1, scalars dt, and paths ut
and vt such that

w =
∑
t

dtuthtvt,

where Tip(uthtvt) ≤ Tip(w), and such that Tip(uthtvt) = Tip(w) for only
one value of t. Similarly, since gi and g̃m are elements of Gl, they can be
written as

gi =
∑
t′

d′it′u
′
it′h
′
it′v
′
it′

and
g̃m =

∑
t′′

d̃mt′′ũmt′′h̃mt′′ ṽmt′′ ,

where we again assume that the other conditions in Lemma 2.46 are satisfied.
By combining this with (A.5), we obtain the following equality:

x =
∑

(i,j)6=(i1,j1),(i2,j2)

∑
t′

aijd
′
it′piju

′
it′h
′
it′v
′
it′qij

+
∑
t′

a′′d′i2t′p
′u′i2t′h

′
i2t′v

′
i2t′q

′

+
∑
m,t′′

c′md̃mt′′pp̃mũmt′′h̃mt′′ ṽmt′′ q̃mq
′

+
∑
t

bdtputhtvtq
′. (A.6)

Since h′it′ , h̃mt′′ , and ht are elements of Gl+1, we see that we have found a
new way to write x as in (A.1), except that we are using elements of Gl+1

instead of elements of Gl. We will see that this leads to a contradiction of
our minimality assumptions about p∗.

Since w is a remainder of o(g, g′, r, s), Lemma 2.20 tells us that

Tip(w) ≤ Tip(o(g, g′, r, s)).

Hence we see that

Tip(puthtvtq
′) ≤ Tip(pwq′)

≤ pTip(o(g, g′, r, s))q′

< pTip(g)rq′

= pTip(g)q

= p∗.
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Similarly, using the fact that Tip(p̃mg̃mq̃m) ≤ Tip(o(g, g′, r, s)), we see that

Tip(pp̃mũmt′′h̃mt′′ ṽmt′′ q̃mq
′) ≤ Tip(pp̃mg̃mq̃mq

′)

< pTip(g)rq′

= p∗.

This shows that p∗ does not appear in the terms

puthtvtq
′

or
pp̃mũmt′′h̃mt′′ ṽmt′′ q̃mq

′.

Moreover, it is straightforward to check that

Tip(piju
′
it′h
′
it′v
′
it′qij) ≤ p∗.

We see that all paths appearing in the terms in (A.6) are less than or equal
to p∗. In other words, p∗ is the largest of the paths appearing in (A.6). In
order to obtain a contradiction of our minimality assumptions, it is therefore
enough to show that the number of occurrences of p∗ in (A.6) is strictly
smaller than the number of occurrences of p∗ in (A.1).

We have seen that p∗ does not appear in terms of the form puthtvtq
′

or pp̃mũmt′′h̃mt′′ ṽmt′′ q̃mq′. It therefore suffices to consider terms of the form
piju

′
it′h
′
it′v
′
it′qij. Recall that by Lemma 2.46, we could choose the elements

u′it′ , h′it′ , and v′it′ in such a way that for any given index i, there is only one
value of t′ for which

Tip(u′it′h
′
it′v
′
it′) = Tip(gi),

i.e. for which
pij Tip(u′it′h

′
it′v
′
it′)qij = pij Tip(gi)qij

for any index j. In particular, if pij Tip(gi)qij = p∗, then there is exactly one
value of t′ such that p∗ appears in piju′it′h′it′v′it′qij; and if pij Tip(gi)qij 6= p∗,
then p∗ does not appear in piju′it′h′it′v′it′qij for any value of t′. This shows that
the number of terms of (A.6) in which p∗ appears is equal to the number of
occurrences of p∗ in (A.5), which is one less than the number of occurrences
of p∗ in (A.1). But this contradicts our assumption about p∗.
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Appendix B

Implementation of algorithms

This appendix contains implementations of some of the algorithms in this
thesis, written in the programming language GAP using the package QPA.
Appendix B.1 contains code related to the computation of Gröbner bases,
including the modified version of Buchberger’s algorithm presented in Chap-
ter 3. Appendix B.2 contains code for computing tensor products of algebras.
Appendix B.3 tests comparing the performance of implementations of Algo-
rithm 2.3 and Algorithm 3.1.

The source code displayed in this appendix is also available in the form of
PDF attachments. If you are viewing this thesis in a PDF reader, it should be
possible to access these attachments by clicking (or possibly double clicking
or right clicking) on the following items:

•

•

•

The source code may eventually also appear on my personal GitHub page,
which can be found at https://github.com/jonwanundsen.

B.1 Gröbner basis algorithms
Listing B.1 contains code for computing Gröbner bases, which can also be
found in the PDF attachment groebner_basis.g. The following are the
most important functions found in the code:

• TipReduceInPlaceWithoutFlags: Implements TipReduce (Algorithm
2.2).
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LoadPackage("qpa");

PathDivision := function(path, sub)
    # Returns a list [p, q], where p and q are paths such that path = p*sub*q,
    # or returns fail if no such paths exist.
    local index, p, q, path_walk, i;
    if not IsQuiverVertex(sub) then
        # Sub is a nontrivial path.
        index := PositionSublist(WalkOfPath(path), WalkOfPath(sub));
        if index = fail then
            return fail;
        else
            path_walk := WalkOfPath(path);
            p := SourceOfPath(path);
            for i in [1..(index - 1)] do
                p := p*path_walk[i];
            od;
            q := TargetOfPath(sub);
            for i in [(index + LengthOfPath(sub))..LengthOfPath(path)] do
                q := q*path_walk[i];
            od;
            return [p, q];
        fi;
    else
        # Sub is a vertex.
        if IsQuiverVertex(path) then
            if path = sub then
                return [sub, sub];
            else
                return fail;
            fi;
        else
            if SourceOfPath(path) = sub then
                return [sub, path];
            else
                path_walk := WalkOfPath(path);
                index := fail;
                p := SourceOfPath(path);
                for i in [1..Length(path_walk)] do
                    p := p*path_walk[i];
                    if TargetOfPath(path_walk[i]) = sub then
                        index := i;
                        break;
                    fi;
                od;
                if index <> fail then
                    q := sub;
                    for i in [(index + 1)..Length(path_walk)] do
                        q := q*path_walk[i];
                    od;
                    return [p, q];
                else
                    return fail;
                fi;
            fi;
        fi;
    fi;
end;

TipReduceInPlaceWithoutFlags := function(generators)
    local modified, i, j, generator1, generator2, pair, c;
    while true do
        modified := false;
        for i in [1..Length(generators)] do
            generator1 := generators[i];
            if not IsZero(generator1) then
                for j in [1..Length(generators)] do
                    generator2 := generators[j];
                    if j <> i and not IsZero(generator2) then
                        # "Divide" the tip of the second generator by the tip
                        # of the first generator:
                        pair := PathDivision(TipMonomial(generator2), TipMonomial(generator1));
                        if pair <> fail then
                            c := LeadingCoefficient(generator2)/LeadingCoefficient(generator1);
                            generators[j] := generator2 - c*(pair[1]*generator1*pair[2]);
                            modified := true;
                        fi;
                    fi;
                od;
            fi;
        od;
        if not modified then
            break;
        fi;
    od;
end;

TipReduceInPlaceWithFlags := function(generators, flags)
    local modified, i, j, generator1, generator2, pair, c;
    while true do
        modified := false;
        for i in [1..Length(generators)] do
            generator1 := generators[i];
            if not IsZero(generator1) then
                for j in [1..Length(generators)] do
                    generator2 := generators[j];
                    if j <> i and not IsZero(generator2) then
                        # "Divide" the tip of the second generator by the tip
                        # of the first generator:
                        pair := PathDivision(TipMonomial(generator2), TipMonomial(generator1));
                        if pair <> fail then
                            c := LeadingCoefficient(generator2)/LeadingCoefficient(generator1);
                            generators[j] := generator2 - c*(pair[1]*generator1*pair[2]);
                            if j <= Length(flags) then
                                flags[j] := true;
                            fi;
                            modified := true;
                        fi;
                    fi;
                od;
            fi;
        od;
        if not modified then
            break;
        fi;
    od;
end;

RemainderUnderDivision := function(y, dividing_set)
    local z, r, x, division_occurred, pair, c;
    r := 0*y; # Sets r to the zero element of the path algebra containing y
    z := y;
    while not IsZero(z) do
        division_occurred := false;
        for x in dividing_set do
            if not IsZero(x) then
                pair := PathDivision(TipMonomial(z), TipMonomial(x));
                if pair <> fail then
                    c := LeadingCoefficient(z)/LeadingCoefficient(x);
                    z := z - c*(pair[1]*x*pair[2]);
                    division_occurred := true;
                    if IsZero(z) then
                        break; # Break the for loop because z has become zero
                    fi;
                fi;
            fi;
        od;
        if not division_occurred then
            r := r + LeadingTerm(z);
            z := z - LeadingTerm(z);
        fi;
    od;
    return r;
end;

ComputeOverlaps := function(x, y)
    # This function computes a list of all pairs [p, q] of paths p and q
    # such that x and y have a (p, q)-overlap.
    local tip_x, tip_y, i, j, n, path_pairs, arrows_x, arrows_y, p, q;
    if IsZero(x) or IsZero(y) then
        return [];
    else
        tip_x := LeadingMonomial(x);
        tip_y := LeadingMonomial(y);
        if IsQuiverVertex(tip_x) or IsQuiverVertex(tip_y) then
            # Overlaps cannot exist if either of the tips is a vertex
            return [];
        else
            n := Minimum(LengthOfPath(tip_x), LengthOfPath(tip_y));
            arrows_x := WalkOfPath(tip_x);
            arrows_y := WalkOfPath(tip_y);
            path_pairs := [];
            for i in [1..n] do
                if arrows_x{[(Length(arrows_x) - i + 1)..Length(arrows_x)]} = arrows_y{[1..i]} then
                    # The last i arrows in the tip of x coincide with the first
                    # i arrows in the tip of y, so there is an overlap.
                    p := TargetOfPath(tip_x);
                    for j in [(i + 1)..Length(arrows_y)] do
                        p := p*arrows_y[j];
                    od;
                    q := SourceOfPath(tip_x);
                    for j in [1..(Length(arrows_x) - i)] do
                        q := q*arrows_x[j];
                    od;
                    Add(path_pairs, [p, q]);
                fi;
            od;
            return path_pairs;
        fi;
    fi;
end;

ComputeOverlapRelations := function(x, y)
    local overlap_relations, overlap, p, q, relation;
    overlap_relations := [];
    for overlap in ComputeOverlaps(x, y) do
        p := overlap[1];
        q := overlap[2];
        relation := (x*p)/LeadingCoefficient(x) - (q*y)/LeadingCoefficient(y);
        Add(overlap_relations, relation);
    od;
    return overlap_relations;
end;

ComputeGroebnerBasisWithKnowledge := function(generators, k)
    local groebner_basis, flags, remainders, i, j, ith_is_in_grb_basis,
        jth_is_in_grb_basis, overlap_relation, r;
    groebner_basis := ShallowCopy(generators);
    # Note that the variable groebner_basis will not actually be a Gröbner basis
    # until the algorithm terminates.
    flags := []; # A list representing which of the first k elements of the
                 # generating set have been modified by tip reduction.
    for i in [1..k] do
        flags[i] := false;
        # The flag is set to false because the corresponding element
        # has not yet been modified by tip reduction
    od;
    TipReduceInPlaceWithFlags(groebner_basis, flags);
    while true do
        remainders := [];
        for i in [1..Length(groebner_basis)] do
            # Check if the ith element is among the first k elements
            # and has not been modified by tip reduction:
            ith_is_in_grb_basis := (i <= k and not flags[i]);
            for j in [1..Length(groebner_basis)] do
                jth_is_in_grb_basis := (j <= k and not flags[j]);
                if not ith_is_in_grb_basis or not jth_is_in_grb_basis then
                    # The elements are not both contained in the Gröbner basis
                    # formed by the first k elements of the list given as an
                    # argument to this function, so we need to check overlaps
                    for overlap_relation in ComputeOverlapRelations(groebner_basis[i], groebner_basis[j]) do
                        r := RemainderUnderDivision(overlap_relation, groebner_basis);
                        if not IsZero(r) then
                            Add(remainders, r);
                        fi;
                    od;
                fi;
            od;
        od;
        if Length(remainders) <> 0 then
            Append(groebner_basis, remainders);
            TipReduceInPlaceWithFlags(groebner_basis, flags);
        else
            break;
        fi;
    od;
    return groebner_basis;
end;

ComputeGroebnerBasisWithoutKnowledge := function(generators)
    # This function requires that the generating set is uniform.
    local groebner_basis, remainders, i, j, overlap_relation, r;
    groebner_basis := ShallowCopy(generators);
    # Note that the variable groebner_basis will not actually be a Gröbner basis
    # until the algorithm terminates.
    TipReduceInPlaceWithoutFlags(groebner_basis);
    while true do
        remainders := [];
        for i in [1..Length(groebner_basis)] do
            for j in [1..Length(groebner_basis)] do
                for overlap_relation in ComputeOverlapRelations(groebner_basis[i], groebner_basis[j]) do
                    r := RemainderUnderDivision(overlap_relation, groebner_basis);
                    if not IsZero(r) then
                        Add(remainders, r);
                    fi;
                od;
            od;
        od;
        if Length(remainders) <> 0 then
            Append(groebner_basis, remainders);
            TipReduceInPlaceWithoutFlags(groebner_basis);
        else
            break;
        fi;
    od;
    return groebner_basis;
end;
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LoadPackage("qpa");

CrossVertexFirst := function(v, y, product_quiver_path_algebra)
    local y_terms, field, product_quiver, crossed_element, i, path,
        coefficient, crossed_path;
    product_quiver := QuiverOfPathAlgebra(product_quiver_path_algebra);
    field := LeftActingDomain(product_quiver_path_algebra);
    y_terms := CoefficientsAndMagmaElements(y);
    # y_terms is a list where the entries at odd indices are the paths
    # appearing in y, and the entries at even indices are the coefficients.
    crossed_element := Zero(product_quiver_path_algebra);
    for i in [1..(Length(y_terms)/2)] do
        path := y_terms[2*i - 1];
        coefficient := y_terms[2*i];
        crossed_path := IncludeInProductQuiver([v, path], product_quiver);
        crossed_element := crossed_element + coefficient*ElementOfPathAlgebra(
                                product_quiver_path_algebra, crossed_path);
    od;
    return crossed_element;
end;

CrossVertexSecond := function(x, w, product_quiver_path_algebra)
    local x_terms, field, product_quiver, crossed_element, i, path,
        coefficient, crossed_path;
    product_quiver := QuiverOfPathAlgebra(product_quiver_path_algebra);
    field := LeftActingDomain(product_quiver_path_algebra);
    x_terms := CoefficientsAndMagmaElements(x);
    # y_terms is a list where the entries at odd indices are the paths
    # appearing in y, and the entries at even indices are the coefficients.
    crossed_element := Zero(product_quiver_path_algebra);
    for i in [1..(Length(x_terms)/2)] do
        path := x_terms[2*i - 1];
        coefficient := x_terms[2*i];
        crossed_path := IncludeInProductQuiver([path, w], product_quiver);
        crossed_element := crossed_element + coefficient*ElementOfPathAlgebra(
                                product_quiver_path_algebra, crossed_path);
    od;
    return crossed_element;
end;

CommutativityRelation := function(a, b, product_quiver_path_algebra)
    local Q, path1, path2;
    Q := QuiverOfPathAlgebra(product_quiver_path_algebra);
    path1 := IncludeInProductQuiver([a, SourceOfPath(b)], Q)
            * IncludeInProductQuiver([TargetOfPath(a), b], Q);
    path2 := IncludeInProductQuiver([SourceOfPath(a), b], Q)
            * IncludeInProductQuiver([a, TargetOfPath(b)], Q);
    return ElementOfPathAlgebra(product_quiver_path_algebra, path1)
            - ElementOfPathAlgebra(product_quiver_path_algebra, path2);
end;

TensorProductOverField_Relations := function(A, B)
    local product_quiver, field, product_pa, tensor_relations, Q_A, Q_B, ideal,
        A_grb_basis, B_grb_basis, a, b, vertex, rel, tensor_ideal;
    Q_A := QuiverOfPathAlgebra(A);
    Q_B := QuiverOfPathAlgebra(B);
    product_quiver := QuiverProduct(Q_A, Q_B);
    field := LeftActingDomain(A);
    product_pa := PathAlgebra(field, product_quiver);
    tensor_relations := [];
    # Add commutativity relations:
    for a in ArrowsOfQuiver(Q_A) do
        for b in ArrowsOfQuiver(Q_B) do
            Add(tensor_relations, CommutativityRelation(a, b, product_pa));
        od;
    od;
    # Get (reduced) Gröbner bases for the ideals by which A and B are quotients:
    if IsQuotientOfPathAlgebra(A) then
        ideal := IdealOfQuotient(A);
        A_grb_basis := GroebnerBasisOfIdeal(ideal);
        if not HasIsCompletelyReducedGroebnerBasis(A_grb_basis) or not IsCompletelyReducedGroebnerBasis(A_grb_basis) then
            A_grb_basis := CompletelyReduceGroebnerBasis(A_grb_basis);
        fi;
    else
        A_grb_basis := [];
    fi;
    if IsQuotientOfPathAlgebra(B) then
        ideal := IdealOfQuotient(B);
        B_grb_basis := GroebnerBasisOfIdeal(ideal);
        if not HasIsCompletelyReducedGroebnerBasis(B_grb_basis) or not IsCompletelyReducedGroebnerBasis(B_grb_basis) then
            B_grb_basis := CompletelyReduceGroebnerBasis(B_grb_basis);
        fi;
    else
        B_grb_basis := [];
    fi;
    # Include the original relations:
    for vertex in VerticesOfQuiver(Q_A) do
        for rel in B_grb_basis do
            Add(tensor_relations, CrossVertexFirst(vertex, rel, product_pa));
        od;
    od;
    for vertex in VerticesOfQuiver(Q_B) do
        for rel in A_grb_basis do
            Add(tensor_relations, CrossVertexSecond(rel, vertex, product_pa));
        od;
    od;
    return [product_pa, tensor_relations];
end;

TensorProductOverField := function(A, B)
    local rels;
    rels := TensorProductOverField_Relations(A, B);
    return rels[1]/rels[2];
end;

BalancingRelation := function(v, w, s, f, g, product_quiver_path_algebra)
    # v and w are vertices, s is an element of KS (should be a vertex or arrow)
    local image_f, image_g;
    image_f := ImageElm(f, s);
    image_g := ImageElm(g, s);
    if IsElementOfQuotientOfPathAlgebra(image_f) then
        image_f := image_f![1];
    fi;
    if IsElementOfQuotientOfPathAlgebra(image_g) then
        image_g := image_g![1];
    fi;
    return CrossVertexSecond(v*image_f*v, w, product_quiver_path_algebra)
        - CrossVertexFirst(v, w*image_g*w, product_quiver_path_algebra);
end;

TensorProductOverAlgebra_Relations := function(A, B, f, g)
    local tensor_over_field, C, product_pa, relations, k, S, v, w, s, b;
    C := Source(f);
    if C <> Source(g) then
        ErrorNoReturn("The homomorphisms f and g must have the same source");
    fi;
    if Range(f) <> A or Range(g) <> B then
        ErrorNoReturn("The codomain of f must be A, and the codomain of g must be B");
    fi;
    if not IsPathAlgebra(C) then
        ErrorNoReturn("The source of f and g must be a path algebra");
    fi;
    tensor_over_field := TensorProductOverField_Relations(A, B);
    product_pa := tensor_over_field[1];
    relations := tensor_over_field[2];
    k := Length(relations); # We need to keep track of this for the modified
                            # version of Buchberger's algorithm.
    S := QuiverOfPathAlgebra(C);
    for v in VerticesOfQuiver(QuiverOfPathAlgebra(A)) do
        for w in VerticesOfQuiver(QuiverOfPathAlgebra(B)) do
            for s in Concatenation(VerticesOfQuiver(S), ArrowsOfQuiver(S)) do
                b := BalancingRelation(v, w, One(C)*s, f, g, product_pa);
                if not IsZero(b) then
                    Add(relations, b);
                fi;
            od;
        od;
    od;
    return [product_pa, relations, k];
end;

TensorProductOverAlgebra := function(A, B, f, g)
    local rels;
    rels := TensorProductOverAlgebra_Relations(A, B, f, g);
    return rels[1]/rels[2];
end;
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LoadPackage("qpa");

Read("groebner_basis.g");
Read("tensor_products.g");


time_high_level := function(path_algebra, relations)
    local start_time, gb;
    start_time := Runtime();
    gb := HighLevelGroebnerBasis(relations, path_algebra);
    return Runtime() - start_time;
end;

time_qpa_implementation := function(path_algebra, relations)
    local start_time, gb;
    start_time := Runtime();
    gb := GBNPGroebnerBasis(relations, path_algebra);
    return Runtime() - start_time;
end;

time_my_naive_implementation := function(path_algebra, relations)
    local start_time, gb;
    start_time := Runtime();
    gb := ComputeGroebnerBasisWithoutKnowledge(relations);
    return Runtime() - start_time;
end;

time_my_less_naive_implementation := function(path_algebra, relations, k)
    # Still pretty naïve, though.
    local start_time, gb;
    start_time := Runtime();
    gb := ComputeGroebnerBasisWithKnowledge(relations, k);
    return Runtime() - start_time;
end;

test_examples := function(examples, n)
    # n is the number of runs
    local i, e, tensor, results, name, avg, sum, x, variance, std;
    Print("Testing examples with ", n, " iterations\n\n");
    for e in examples do
        Print("Testing example:\n", e, "\n\n");
        results := rec(naive := [], less_naive := [], high_level := [], gbnp := []);
        for i in [1 .. n] do
            tensor := TensorProductOverAlgebra_Relations(e.A, e.B, e.f, e.g);
            Add(results.naive, time_my_naive_implementation(tensor[1], tensor[2]));
            Add(results.less_naive, time_my_less_naive_implementation(tensor[1], tensor[2], tensor[3]));
            Add(results.high_level, time_high_level(tensor[1], tensor[2]));
            Add(results.gbnp, time_qpa_implementation(tensor[1], tensor[2]));
        od;
        for name in RecNames(results) do
            avg := Float(Average(results.(name)));
            if n > 1 then
                # Compute the unbiased sample variance:
                sum := 0;
                for x in results.(name) do
                    sum := sum + (x - avg)^2;
                od;
                variance := sum/(n - 1);
                # Then take the square root to get the standard deviation:
                std := Sqrt(variance);
            else
                std := fail;
            fi;
            Print(name, "\n", "Mean: ", avg, " ms\n", "Standard deviation: ", std, " ms\n\n");
        od;
        Print("\n\n");
    od;
end;


EXAMPLES := [];
K := Rationals;
Q := Quiver(3, [ [1, 2, "a"], [2, 3, "b"], [3, 1, "c"] ]);
KQ := PathAlgebra(K, Q);

# Modulo paths of length at least 4:
A := KQ/NthPowerOfArrowIdeal(KQ, 4);
a := A.a;
b := A.b;
c := A.c;
S := Quiver(["u"], [ [1, 1, "x"], [1, 1, "y"], [1, 1, "z"] ]);
KS := PathAlgebra(K, S);
generators := [KS.u, KS.x, KS.y, KS.z];
images := [One(A), a*b*c, b*c*a, c*a*b];
f := AlgebraWithOneHomomorphismByImagesNC(KS, A, generators, images);
f!.generators := generators;
f!.genimages := images;
Add(EXAMPLES, rec(A:=A, B:=A, f:=f, g:=f));

# Modulo paths of length at least 8:
A := KQ/NthPowerOfArrowIdeal(KQ, 8);
a := A.a;
b := A.b;
c := A.c;
S := Quiver(["u"], [ [1, 1, "x"] ]);
KS := PathAlgebra(K, S);
generators := [KS.u, KS.x];
images := [One(A), a*b*c + b*c*a + c*a*b];
f := AlgebraWithOneHomomorphismByImagesNC(KS, A, generators, images);
f!.generators := generators;
f!.genimages := images;
Add(EXAMPLES, rec(A:=A, B:=A, f:=f, g:=f));

# Three vertices in a cycle; modulo paths of length 4? Or something else.
# Or even length 8...
# (For length 3 the centre is just K, so there's not much of interest.)

test_examples(EXAMPLES, 1000);
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• TipReduceInPlaceWithFlags: Implements TipReduce (Algorithm 2.2).
In addition to accepting a list of generators, this function also takes an
argument containing a list of k boolean flags, which correspond to the
first k generators. If the ith element of the generating list is modified
during the tip reduction process, the ith flag is set to true.

• RemainderUnderDivision: Implements Remainder (Algorithm 2.1).

• ComputeGroebnerBasisWithoutKnowledge: Implements Buchberger’s
algorithm (Algorithm 2.3).

• ComputeGroebnerBasisWithKnowledge: Implements the modified ver-
sion of Buchberger’s algorithm from Section 3.3.2 (Algorithm 3.1).

Listing B.1: Implementation of Gröbner basis algorithms in GAP
LoadPackage("qpa");

PathDivision := function(path, sub)
# Returns a list [p, q], where p and q are paths such that

path = p*sub*q,
# or returns fail if no such paths exist.
local index, p, q, path_walk, i;
if not IsQuiverVertex(sub) then

# Sub is a nontrivial path.
index := PositionSublist(WalkOfPath(path), WalkOfPath(

sub));
if index = fail then

return fail;
else

path_walk := WalkOfPath(path);
p := SourceOfPath(path);
for i in [1..(index − 1)] do

p := p*path_walk[i];
od;
q := TargetOfPath(sub);
for i in [(index + LengthOfPath(sub))..LengthOfPath(

path)] do
q := q*path_walk[i];

od;
return [p, q];

fi;
else

# Sub is a vertex.
if IsQuiverVertex(path) then

if path = sub then
return [sub, sub];

else
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return fail;
fi;

else
if SourceOfPath(path) = sub then

return [sub, path];
else

path_walk := WalkOfPath(path);
index := fail;
p := SourceOfPath(path);
for i in [1..Length(path_walk)] do

p := p*path_walk[i];
if TargetOfPath(path_walk[i]) = sub then

index := i;
break;

fi;
od;
if index <> fail then

q := sub;
for i in [(index + 1)..Length(path_walk)] do

q := q*path_walk[i];
od;
return [p, q];

else
return fail;

fi;
fi;

fi;
fi;

end;

TipReduceInPlaceWithoutFlags := function(generators)
local modified, i, j, generator1, generator2, pair, c;
while true do

modified := false;
for i in [1..Length(generators)] do

generator1 := generators[i];
if not IsZero(generator1) then

for j in [1..Length(generators)] do
generator2 := generators[j];
if j <> i and not IsZero(generator2) then

# "Divide" the tip of the second
generator by the tip

# of the first generator:
pair := PathDivision(TipMonomial(

generator2), TipMonomial(generator1))
;

if pair <> fail then
c := LeadingCoefficient(generator2)/

LeadingCoefficient(generator1);
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generators[j] := generator2 − c*(
pair[1]*generator1*pair[2]);

modified := true;
fi;

fi;
od;

fi;
od;
if not modified then

break;
fi;

od;
end;

TipReduceInPlaceWithFlags := function(generators, flags)
local modified, i, j, generator1, generator2, pair, c;
while true do

modified := false;
for i in [1..Length(generators)] do

generator1 := generators[i];
if not IsZero(generator1) then

for j in [1..Length(generators)] do
generator2 := generators[j];
if j <> i and not IsZero(generator2) then

# "Divide" the tip of the second
generator by the tip

# of the first generator:
pair := PathDivision(TipMonomial(

generator2), TipMonomial(generator1))
;

if pair <> fail then
c := LeadingCoefficient(generator2)/

LeadingCoefficient(generator1);
generators[j] := generator2 − c*(

pair[1]*generator1*pair[2]);
if j <= Length(flags) then

flags[j] := true;
fi;
modified := true;

fi;
fi;

od;
fi;

od;
if not modified then

break;
fi;

od;
end;
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RemainderUnderDivision := function(y, dividing_set)
local z, r, x, division_occurred, pair, c;
r := 0*y; # Sets r to the zero element of the path algebra

containing y
z := y;
while not IsZero(z) do

division_occurred := false;
for x in dividing_set do

if not IsZero(x) then
pair := PathDivision(TipMonomial(z), TipMonomial

(x));
if pair <> fail then

c := LeadingCoefficient(z)/
LeadingCoefficient(x);

z := z − c*(pair[1]*x*pair[2]);
division_occurred := true;
if IsZero(z) then

break; # Break the for loop because z
has become zero

fi;
fi;

fi;
od;
if not division_occurred then

r := r + LeadingTerm(z);
z := z − LeadingTerm(z);

fi;
od;
return r;

end;

ComputeOverlaps := function(x, y)
# This function computes a list of all pairs [p, q] of paths

p and q
# such that x and y have a (p, q)−overlap.
local tip_x, tip_y, i, j, n, path_pairs, arrows_x, arrows_y,

p, q;
if IsZero(x) or IsZero(y) then

return [];
else

tip_x := LeadingMonomial(x);
tip_y := LeadingMonomial(y);
if IsQuiverVertex(tip_x) or IsQuiverVertex(tip_y) then

# Overlaps cannot exist if either of the tips is a
vertex

return [];
else

n := Minimum(LengthOfPath(tip_x), LengthOfPath(tip_y
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));
arrows_x := WalkOfPath(tip_x);
arrows_y := WalkOfPath(tip_y);
path_pairs := [];
for i in [1..n] do

if arrows_x{[(Length(arrows_x) − i + 1)..Length(
arrows_x)]} = arrows_y{[1..i]} then
# The last i arrows in the tip of x coincide

with the first
# i arrows in the tip of y, so there is an

overlap.
p := TargetOfPath(tip_x);
for j in [(i + 1)..Length(arrows_y)] do

p := p*arrows_y[j];
od;
q := SourceOfPath(tip_x);
for j in [1..(Length(arrows_x) − i)] do

q := q*arrows_x[j];
od;
Add(path_pairs, [p, q]);

fi;
od;
return path_pairs;

fi;
fi;

end;

ComputeOverlapRelations := function(x, y)
local overlap_relations, overlap, p, q, relation;
overlap_relations := [];
for overlap in ComputeOverlaps(x, y) do

p := overlap[1];
q := overlap[2];
relation := (x*p)/LeadingCoefficient(x) − (q*y)/

LeadingCoefficient(y);
Add(overlap_relations, relation);

od;
return overlap_relations;

end;

ComputeGroebnerBasisWithKnowledge := function(generators, k)
local groebner_basis, flags, remainders, i, j,

ith_is_in_grb_basis,
jth_is_in_grb_basis, overlap_relation, r;

groebner_basis := ShallowCopy(generators);
# Note that the variable groebner_basis will not actually be

a Gröbner basis
# until the algorithm terminates.
flags := []; # A list representing which of the first k
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elements of the
# generating set have been modified by tip

reduction.
for i in [1..k] do

flags[i] := false;
# The flag is set to false because the corresponding

element
# has not yet been modified by tip reduction

od;
TipReduceInPlaceWithFlags(groebner_basis, flags);
while true do

remainders := [];
for i in [1..Length(groebner_basis)] do

# Check if the ith element is among the first k
elements

# and has not been modified by tip reduction:
ith_is_in_grb_basis := (i <= k and not flags[i]);
for j in [1..Length(groebner_basis)] do

jth_is_in_grb_basis := (j <= k and not flags[j])
;

if not ith_is_in_grb_basis or not
jth_is_in_grb_basis then
# The elements are not both contained in the

Gröbner basis
# formed by the first k elements of the list

given as an
# argument to this function, so we need to

check overlaps
for overlap_relation in

ComputeOverlapRelations(groebner_basis[i
], groebner_basis[j]) do
r := RemainderUnderDivision(

overlap_relation, groebner_basis);
if not IsZero(r) then

Add(remainders, r);
fi;

od;
fi;

od;
od;
if Length(remainders) <> 0 then

Append(groebner_basis, remainders);
TipReduceInPlaceWithFlags(groebner_basis, flags);

else
break;

fi;
od;
return groebner_basis;

end;
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ComputeGroebnerBasisWithoutKnowledge := function(generators)
# This function requires that the generating set is uniform.
local groebner_basis, remainders, i, j, overlap_relation, r;
groebner_basis := ShallowCopy(generators);
# Note that the variable groebner_basis will not actually be

a Gröbner basis
# until the algorithm terminates.
TipReduceInPlaceWithoutFlags(groebner_basis);
while true do

remainders := [];
for i in [1..Length(groebner_basis)] do

for j in [1..Length(groebner_basis)] do
for overlap_relation in ComputeOverlapRelations(

groebner_basis[i], groebner_basis[j]) do
r := RemainderUnderDivision(overlap_relation

, groebner_basis);
if not IsZero(r) then

Add(remainders, r);
fi;

od;
od;

od;
if Length(remainders) <> 0 then

Append(groebner_basis, remainders);
TipReduceInPlaceWithoutFlags(groebner_basis);

else
break;

fi;
od;
return groebner_basis;

end;

B.2 Tensor products
Listing B.2 contains an implementation of the construction of the tensor
product of algebras discussed in Chapter 3, more specifically in Theorem 3.13
and Theorem 3.18. This code can also be found in the PDF attachment
tensor_products.g. The most important functions are
TensorProductOverField, which computes the tensor product A ⊗K B for
K-algebras A and B, and TensorProductOverAlgebra, which computes the
tensor product A⊗C B for K-algebras A, B, and C.

Listing B.2: Implementation of tensor product of algebras in GAP
LoadPackage("qpa");
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CrossVertexFirst := function(v, y, product_quiver_path_algebra)
local y_terms, field, product_quiver, crossed_element, i,

path,
coefficient, crossed_path;

product_quiver := QuiverOfPathAlgebra(
product_quiver_path_algebra);

field := LeftActingDomain(product_quiver_path_algebra);
y_terms := CoefficientsAndMagmaElements(y);
# y_terms is a list where the entries at odd indices are the

paths
# appearing in y, and the entries at even indices are the

coefficients.
crossed_element := Zero(product_quiver_path_algebra);
for i in [1..(Length(y_terms)/2)] do

path := y_terms[2*i − 1];
coefficient := y_terms[2*i];
crossed_path := IncludeInProductQuiver([v, path],

product_quiver);
crossed_element := crossed_element + coefficient*

ElementOfPathAlgebra(
product_quiver_path_algebra,

crossed_path);
od;
return crossed_element;

end;

CrossVertexSecond := function(x, w, product_quiver_path_algebra)
local x_terms, field, product_quiver, crossed_element, i,

path,
coefficient, crossed_path;

product_quiver := QuiverOfPathAlgebra(
product_quiver_path_algebra);

field := LeftActingDomain(product_quiver_path_algebra);
x_terms := CoefficientsAndMagmaElements(x);
# y_terms is a list where the entries at odd indices are the

paths
# appearing in y, and the entries at even indices are the

coefficients.
crossed_element := Zero(product_quiver_path_algebra);
for i in [1..(Length(x_terms)/2)] do

path := x_terms[2*i − 1];
coefficient := x_terms[2*i];
crossed_path := IncludeInProductQuiver([path, w],

product_quiver);
crossed_element := crossed_element + coefficient*

ElementOfPathAlgebra(
product_quiver_path_algebra,

crossed_path);
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od;
return crossed_element;

end;

CommutativityRelation := function(a, b,
product_quiver_path_algebra)
local Q, path1, path2;
Q := QuiverOfPathAlgebra(product_quiver_path_algebra);
path1 := IncludeInProductQuiver([a, SourceOfPath(b)], Q)

* IncludeInProductQuiver([TargetOfPath(a), b], Q);
path2 := IncludeInProductQuiver([SourceOfPath(a), b], Q)

* IncludeInProductQuiver([a, TargetOfPath(b)], Q);
return ElementOfPathAlgebra(product_quiver_path_algebra,

path1)
− ElementOfPathAlgebra(product_quiver_path_algebra,

path2);
end;

TensorProductOverField_Relations := function(A, B)
local product_quiver, field, product_pa, tensor_relations,

Q_A, Q_B, ideal,
A_grb_basis, B_grb_basis, a, b, vertex, rel,

tensor_ideal;
Q_A := QuiverOfPathAlgebra(A);
Q_B := QuiverOfPathAlgebra(B);
product_quiver := QuiverProduct(Q_A, Q_B);
field := LeftActingDomain(A);
product_pa := PathAlgebra(field, product_quiver);
tensor_relations := [];
# Add commutativity relations:
for a in ArrowsOfQuiver(Q_A) do

for b in ArrowsOfQuiver(Q_B) do
Add(tensor_relations, CommutativityRelation(a, b,

product_pa));
od;

od;
# Get (reduced) Gröbner bases for the ideals by which A and

B are quotients:
if IsQuotientOfPathAlgebra(A) then

ideal := IdealOfQuotient(A);
A_grb_basis := GroebnerBasisOfIdeal(ideal);
if not HasIsCompletelyReducedGroebnerBasis(A_grb_basis)

or not IsCompletelyReducedGroebnerBasis(A_grb_basis)
then
A_grb_basis := CompletelyReduceGroebnerBasis(

A_grb_basis);
fi;

else
A_grb_basis := [];
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fi;
if IsQuotientOfPathAlgebra(B) then

ideal := IdealOfQuotient(B);
B_grb_basis := GroebnerBasisOfIdeal(ideal);
if not HasIsCompletelyReducedGroebnerBasis(B_grb_basis)

or not IsCompletelyReducedGroebnerBasis(B_grb_basis)
then
B_grb_basis := CompletelyReduceGroebnerBasis(

B_grb_basis);
fi;

else
B_grb_basis := [];

fi;
# Include the original relations:
for vertex in VerticesOfQuiver(Q_A) do

for rel in B_grb_basis do
Add(tensor_relations, CrossVertexFirst(vertex, rel,

product_pa));
od;

od;
for vertex in VerticesOfQuiver(Q_B) do

for rel in A_grb_basis do
Add(tensor_relations, CrossVertexSecond(rel, vertex,

product_pa));
od;

od;
return [product_pa, tensor_relations];

end;

TensorProductOverField := function(A, B)
local rels;
rels := TensorProductOverField_Relations(A, B);
return rels[1]/rels[2];

end;

BalancingRelation := function(v, w, s, f, g,
product_quiver_path_algebra)
# v and w are vertices, s is an element of KS (should be a

vertex or arrow)
local image_f, image_g;
image_f := ImageElm(f, s);
image_g := ImageElm(g, s);
if IsElementOfQuotientOfPathAlgebra(image_f) then

image_f := image_f![1];
fi;
if IsElementOfQuotientOfPathAlgebra(image_g) then

image_g := image_g![1];
fi;
return CrossVertexSecond(v*image_f*v, w,
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product_quiver_path_algebra)
− CrossVertexFirst(v, w*image_g*w,

product_quiver_path_algebra);
end;

TensorProductOverAlgebra_Relations := function(A, B, f, g)
local tensor_over_field, C, product_pa, relations, k, S, v,

w, s, b;
C := Source(f);
if C <> Source(g) then

ErrorNoReturn("The homomorphisms f and g must have the
same source");

fi;
if Range(f) <> A or Range(g) <> B then

ErrorNoReturn("The codomain of f must be A, and the
codomain of g must be B");

fi;
if not IsPathAlgebra(C) then

ErrorNoReturn("The source of f and g must be a path
algebra");

fi;
tensor_over_field := TensorProductOverField_Relations(A, B);
product_pa := tensor_over_field[1];
relations := tensor_over_field[2];
k := Length(relations); # We need to keep track of this for

the modified
# version of Buchberger’s algorithm.

S := QuiverOfPathAlgebra(C);
for v in VerticesOfQuiver(QuiverOfPathAlgebra(A)) do

for w in VerticesOfQuiver(QuiverOfPathAlgebra(B)) do
for s in Concatenation(VerticesOfQuiver(S),

ArrowsOfQuiver(S)) do
b := BalancingRelation(v, w, One(C)*s, f, g,

product_pa);
if not IsZero(b) then

Add(relations, b);
fi;

od;
od;

od;
return [product_pa, relations, k];

end;

TensorProductOverAlgebra := function(A, B, f, g)
local rels;
rels := TensorProductOverAlgebra_Relations(A, B, f, g);
return rels[1]/rels[2];

end;
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B.3 Performance tests
In this section, we compare the performance of the implementations of dif-
ferent versions of Buchberger’s algorithm found in Listing B.1, namely
ComputeGroebnerBasisWithoutKnowledge (which implements Algorithm 2.3)
and ComputeGroebnerBasisWithKnowledge (which implements Algorithm 3.1).
We also compare these implementations to two functions that are built into
QPA. The first of these is HighLevelGroebnerBasis, which is an implemen-
tation of a standard version of Buchberger’s algorithm, similar to Algorithm
2.3. The second is GBNPGroebnerBasis, which follows a different approach:
Given a quiver Q and a relation set ρ ⊆ KQ, it constructs another relation
set ρ′ in a free algebra K 〈x1, . . . , xn〉, computes a Gröbner basis for the ideal
〈ρ′〉 ⊆ K 〈x1, . . . , xn〉 by using the GAP package GBNP, and then translates
the result back to KQ to obtain a Gröbner basis for the ideal 〈ρ〉 ⊆ KQ.

In order to measure the performance of the implementations, we will need
some examples. We therefore consider the following quivers.

Q :

v2

v1 v3

βα

γ

S : u

x

yz

S ′ : w x′

Let K denote the field of rational numbers. We define the K-algebras Λ =
KQ/J4

Q, Λ′ = KQ/J8
Q, Σ = KS, and Σ′ = KS ′. We give Λ a Σ-module

structure through the algebra homomorphism f : Σ→ Λ given by

f(x) = [γβα], f(y) = [αγβ], f(z) = [βαγ].

Similarly, we give Λ′ a Σ′-module structure by using the algebra homomor-
phism f ′ : Σ′ → Λ′ given by

f ′(x′) = [γβα + αγβ + βαγ].

Note that the images of f and f ′ are contained in the centres of Λ and Λ′,
respectively.
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Our performance tests will measure how long it takes to compute the
tensor products Λ⊗Σ Λ and Λ′ ⊗Σ′ Λ

′. More precisely, we will measure how
long it takes to compute a Gröbner basis for the ideal

IΣ ⊆ K(Q×Q)

from Theorem 3.18, where K(Q×Q)/IΣ
∼= Λ⊗Σ Λ, and similarly for IΣ′ .

B.3.1 Code

Listing B.3 contains the code used in the performance tests. This code can
also be found in the PDF attachment timing.g.

Listing B.3: Code for performance tests in GAP
LoadPackage("qpa");

Read("groebner_basis.g");
Read("tensor_products.g");

time_high_level := function(path_algebra, relations)
local start_time, gb;
start_time := Runtime();
gb := HighLevelGroebnerBasis(relations, path_algebra);
return Runtime() − start_time;

end;

time_qpa_implementation := function(path_algebra, relations)
local start_time, gb;
start_time := Runtime();
gb := GBNPGroebnerBasis(relations, path_algebra);
return Runtime() − start_time;

end;

time_my_naive_implementation := function(path_algebra, relations
)
local start_time, gb;
start_time := Runtime();
gb := ComputeGroebnerBasisWithoutKnowledge(relations);
return Runtime() − start_time;

end;

time_my_less_naive_implementation := function(path_algebra,
relations, k)
# Still pretty naïve, though.
local start_time, gb;
start_time := Runtime();
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gb := ComputeGroebnerBasisWithKnowledge(relations, k);
return Runtime() − start_time;

end;

test_examples := function(examples, n)
# n is the number of runs
local i, e, tensor, results, name, avg, sum, x, variance,

std;
Print("Testing examples with ", n, " iterations\n\n");
for e in examples do

Print("Testing example:\n", e, "\n\n");
results := rec(naive := [], less_naive := [], high_level

:= [], gbnp := []);
for i in [1 .. n] do

tensor := TensorProductOverAlgebra_Relations(e.A, e.
B, e.f, e.g);

Add(results.naive, time_my_naive_implementation(
tensor[1], tensor[2]));

Add(results.less_naive,
time_my_less_naive_implementation(tensor[1],
tensor[2], tensor[3]));

Add(results.high_level, time_high_level(tensor[1],
tensor[2]));

Add(results.gbnp, time_qpa_implementation(tensor[1],
tensor[2]));

od;
for name in RecNames(results) do

avg := Float(Average(results.(name)));
if n > 1 then

# Compute the unbiased sample variance:
sum := 0;
for x in results.(name) do

sum := sum + (x − avg)^2;
od;
variance := sum/(n − 1);
# Then take the square root to get the standard

deviation:
std := Sqrt(variance);

else
std := fail;

fi;
Print(name, "\n", "Mean: ", avg, " ms\n", "Standard

deviation: ", std, " ms\n\n");
od;
Print("\n\n");

od;
end;
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EXAMPLES := [];
K := Rationals;
Q := Quiver(3, [ [1, 2, "a"], [2, 3, "b"], [3, 1, "c"] ]);
KQ := PathAlgebra(K, Q);

# Modulo paths of length at least 4:
A := KQ/NthPowerOfArrowIdeal(KQ, 4);
a := A.a;
b := A.b;
c := A.c;
S := Quiver(["u"], [ [1, 1, "x"], [1, 1, "y"], [1, 1, "z"] ]);
KS := PathAlgebra(K, S);
generators := [KS.u, KS.x, KS.y, KS.z];
images := [One(A), a*b*c, b*c*a, c*a*b];
f := AlgebraWithOneHomomorphismByImagesNC(KS, A, generators,

images);
f!.generators := generators;
f!.genimages := images;
Add(EXAMPLES, rec(A:=A, B:=A, f:=f, g:=f));

# Modulo paths of length at least 8:
A := KQ/NthPowerOfArrowIdeal(KQ, 8);
a := A.a;
b := A.b;
c := A.c;
S := Quiver(["u"], [ [1, 1, "x"] ]);
KS := PathAlgebra(K, S);
generators := [KS.u, KS.x];
images := [One(A), a*b*c + b*c*a + c*a*b];
f := AlgebraWithOneHomomorphismByImagesNC(KS, A, generators,

images);
f!.generators := generators;
f!.genimages := images;
Add(EXAMPLES, rec(A:=A, B:=A, f:=f, g:=f));

# Three vertices in a cycle; modulo paths of length 4? Or
something else.

# Or even length 8...
# (For length 3 the centre is just K, so there’s not much of

interest.)

test_examples(EXAMPLES, 1000);

B.3.2 Results of performance tests

Table B.1 shows the results I obtained when running the code from List-
ing B.3. I used version 4.11.0 of GAP, version 1.33 of QPA, and version 1.0.5
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of GBNP, and I ran the code on Debian GNU/Linux 11. Each of the numbers
in the table was obtained by performing the given computation 1000 times
and taking the average. The numbers are rounded to two decimal places.

Table B.1: The results of the performance tests

Tensor
product

Time for
standard
Buch-
berger
(ms)

Time for
modified
Buch-
berger
(ms)

Time for
high level
Gröbner
basis
(ms)

Time for
GBNP
(ms)

Λ⊗Σ Λ 30.98 30.18 34.77 4.50
Λ′ ⊗Σ′ Λ

′ 65.91 53.57 68.01 8.06

As we can see from the table, the implementation of the modified version
of Buchberger’s algorithm (Algorithm 3.1) is more efficient than the imple-
mentation of the standard version of the algorithm (Algorithm 2.3), although
the difference is quite small when computing Λ ⊗Σ Λ. High level Gröbner
basis is a bit slower than my own implementation. Finally, it turns out that
GBNP is significantly faster than any of the other implementations. I per-
sonally found this a bit surprising, since one might expect that the process
of translating between a path algebra and a free algebra would add some
overhead. Due to time constraints, I was unable to investigate why it is
so much faster to use GBNP, although I suspect that the version of Buch-
berger’s algorithm used by GBNP is more efficient than the more general
version for path algebras (Algorithm 2.3). It might be possible to improve
the performance of GBNP even further by modifying it in the same way that
we modified Algorithm 2.3 to obtain Algorithm 3.1, but it is unclear if this
would be worth the effort.
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