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Abstract

The nearby Lagrangian conjecture predicts that any closed exact Lagrangian
𝐿 in the cotangent bundle of a closed manifold 𝑀 is Hamiltonian isotopic to the
zero section. Via a theorem of Sikorav [4], the conjecture predicts that 𝐿 admits a
generating function. As shown by Giroux [11] and Latour [18], having a generating
function is equivalent to the stable Gauss map of 𝐿 being nullhomotopic.

A weaker class of objects, called twisted generating functions, were introduced
in the recent paper [TGNL] by M. Abouzaid, S. Courte, S. Guillermo and T. Kragh.
The authors prove an existence result for such twisted functions, and perform a dou-
bling trick to be able to do Morse theory in this context. As shown by Abouzaid,
Kragh, Fukaya, Seidel, Smith, Nadler and more recently Guillermo, the map in-
duced by projecting in the cotangent bundle gives a homotopy equivalence 𝜋 ∶
𝐿 → 𝑀 . A Morse theoretic consequence of this equivalence is extracted, and
this is combined with Böksted’s theorem in algebraic K-theory to conclude that the
stable Gauss map is trivial on homotopy groups.

This thesis aims to provide additional details, background material and alterna-
tive viewpoints to the the results in [TGNL]. The thesis has three main parts:

1. Properties of the classifying space𝐵(𝐹 ,𝑄) associated to a topological monoid
𝑄 acting on a space 𝐹 .

2. An alternative proof of the homotopy lifting property of transversal Lagrangians
under symplectic reduction.

3. Details on the Morse theory of the twisted generating function and a spectral
sequence argument.
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1 Introduction
The nearby Lagrangian conjecture is an important conjecture in symplectic topology
which has recently inspired new techniques in the field. Recall that for any smooth 𝑛-
manifold𝑀 , the cotangent bundle 𝑇 ∗𝑀 has a natural symplectic structure given by the
derivative of the Liouville form 𝜆. An immersion 𝑙 ∶ 𝐿 → 𝑇 ∗𝑀 of another smooth
𝑛-manifold 𝐿 is called Lagrangian if 𝑙∗𝜆 is a closed 1-form, and exact Lagrangian if
𝑙∗𝜆 is exact. When both 𝑀 and 𝐿 are closed manifolds, an exact Lagrangian embed-
ding 𝑙 ∶ 𝐿 → 𝑇 ∗𝑀 is called nearby Lagrangian. The nearby Lagrangian conjecture
postulates that any nearby Lagrangian embedding is Hamiltonian isotopic to the zero
section 𝑀0 in 𝑇 ∗𝑀 . The status of this conjecture is far from settled. In fact it has only
been shown when 𝑀 is 𝑆1, 𝑆2, ℝ𝑃 2 or 𝑇 2 [5], [2], [16]. The techniques used in these
cases are uniquely 2-dimensional (Riemann mapping) or 4-dimensional (positivity of
intersections), so they bear no hope of solving the conjecture for arbitrary 𝑀 . The best
general result so far states that restricting the bundle projection 𝜋𝑀 ∶ 𝑇 ∗𝑀 → 𝑀 to
the image of 𝐿 gives a simple homotopy equivalence 𝜋 ∶ 𝐿 →𝑀 . This has both been
shown using pseudoholomorphic techniques [1], [9], and more recently using microlo-
cal sheaves [12]. Both of these proofs take the approach that to study the symplectic
topology of 𝑇 ∗𝑀 , we should study some associated triangulated category. In the pseu-
doholomorphic approach, the associated category is some version of a derived Fukaya
category 𝐃𝖥𝗎𝗄(𝑇 ∗𝑀), and in the microlocal case one studies the derived category of
sheaves 𝐃𝑏(𝑅𝑀×ℝ). These two categories are related by the singular support functor
which is almost an equivalence of categories [26].

The present thesis is meant as a companion piece to the recent paper [TGNL] by
M. Abouzaid, S. Courte, S. Guillermo and T. Kragh, in which generating functions are
used to study nearby Lagrangians. A generating function for an exact Lagrangian 𝐿 ∈
𝑇 ∗𝑀 is a function 𝑓 ∶ 𝑀 × ℝ𝑘 → ℝ such that the fiberwise critical set embeds into
the cotangent bundle

Σ𝑓 = {(𝑥, 𝑣) ∈𝑀 ×ℝ𝑘
| 𝜕𝑣𝑓 (𝑥, 𝑣) = 0} ⟶ 𝑇 ∗𝑀 (1.1)

(𝑥, 𝑣) ⟼ (𝑥, 𝜕𝑥𝑓 (𝑥, 𝑣))

with image 𝐿. These objects are related to sheaves by taking the fiberwise homology
of the sublevel sets of 𝑓 (see [26, p. 9.1.2]), but seem to be more rigid than the cor-
responding sheaves. A fundamental motivation for studying generating functions for
nearby Lagrangians is a classical result of Sikorav [4] which states that having a gener-
ating function is invariant under Hamiltonian isotopy. The zero section clearly admits
a generating function, so the nearby Lagrangian conjecture predicts that any nearby
Lagrangian also admits a generating function.

We will not cover all of [TGNL] in this thesis, but instead focus our energy on
three areas where we feel that additional details and background material would be
enlightening, or where we have found alternative viewpoints. These three areas define
the three main sections of this thesis, and can be summed up as follows.

Section 2: The construction and properties of the simplicial space 𝐵(−, 𝑄) expanding on
sections A.2 and A.3 of [TGNL].
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Section 3: The proof of the homotopy lifting property for transversal Lagrangians under
symplectic reduction, following sections 2.1 and 2.2 of [TGNL].

Section 4: The homology computation and related arguments from section 3.3 of [TGNL].
Each section has a distinct “flavour” due to the different techniques and inspirations
at play. While we will provide some of the relevant context connecting these areas,
many details that can be found in [TGNL] will be omitted. This structure might make
for a somewhat disjointed experience if this thesis is read in isolation, which is why it
should rather be read alongside with [TGNL]. In this introduction we will give some
motivation to the study of twisted generating functions, before we give a roadmap of
the three sections.

A starting point for the study of generating functions in [TGNL] is the following
classical result proven independently by E. Giroux [11] and F. Latour [18].
Theorem 1.1 (Giroux–Latour). A nearby Lagrangian embedding 𝐿→ 𝑇 ∗𝑀 admits a
generating function if and only if the stable Gauss map𝐿→ Λ0(ℂ∞)1 is nullhomotopic.

The key to proving this theorem is a fibration result, which is essentially a linear
version of the aforementioned result of Sikorav, and which we prove as Proposition
3.26. It states that we have a fibration (up to stabilization)

 ⟶ Λ𝑉 (𝐸) ⟶ Λ0(𝐸). (1.2)
The two rightmost terms are Grassmanians consisting of linear Lagrangian subspaces
of a symplectic vector space 𝐸, while  is a topological monoid of quadratic forms.
Roughly speaking, a lift to the space Λ𝑉 (𝐸) is the linear information required to con-
struct a generating function.

A key idea in [TGNL] is that the fibration (1.2) is in some sense -equivariant.
If we could mod out the action of , we could turn this fibration into a homotopy
equivalence, so that all maps, not only nullhomotopic maps, may be lifted. This requires
coming up with a particular model for the homotopy quotient Λ𝑉 (𝐸)∕. The model we
will use is the simplicial space 𝐵(Λ𝑉 (𝐸),), a generalization of the bar construction
used to construct classifying spaces 𝐵𝐺 of topological groups. The construction and
properties of this model will be explained in section 2. Our contributions to this part
of the material is mainly gathering up different results from the literature and giving
accessible, rigorous proofs. The material corresponds to appendix A of [TGNL], and
the techniques are mainly simplicial. For sake of convenience we recall some standard
facts and establish some notation concerning simplicial sets and spaces in subsection
2.1.

In section 3 we will define the notion of twisted generating function. As we will see,
the definition is closely related to the information contained in a map𝑀 → |𝐵(Λ𝑉 (ℂ∞),)|.
The properties of the bar construction proved in section 2 will allow us to show that the
fibration (1.2) induces a homotopy equivalence

|𝐵
(

Λ𝑖ℝ
∞

∞ (ℂ∞),
)

| ≃ Λ0(ℂ∞).
1While 𝑈∕𝑂 is a more standard notation for the stable Lagrangian Grassmanian, we use Λ0(ℂ∞) to stay

consistent with later notation.
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This has the following consequence, which can be seen as an adaptation of Theorem
1.1 to twisted generating functions.
Theorem 1.2. An exact Lagrangian immersion𝐿→ 𝑇 ∗𝑀 admits a twisted generating
function if and only if the stable Gauss map factors through the projection 𝜋 ∶ 𝐿→𝑀
up to homotopy.

We will, as mentioned, reprove the fibration (1.2). Our proof is based on the proof
given in [TGNL], but uses direct manipulation of Lagrangians and symplectic relations
rather than quadratic forms. We will also provide some more details on the various
homotopy equivalences involved, as well as provide a different proof for lemma 2.22 of
[TGNL]. The techniques of this section are rooted in (symplectic) linear algebra.

Section 4 is concerned with the Morse homological consequenes of having a gen-
erating function. Using the fact that 𝜋 ∶ 𝐿 → 𝑀 is a homotopy equivalence for any
nearby Lagrangian, it is clear that nearby Lagrangians admit twisted generating func-
tions. This result, however, is not very sharp, since many immersed exact Lagrangians
also admit twisted generating functions, see for instance figure 2. One way to exploit
the hypothesis that 𝐿 is embedded is the doubling trick, which is explained in section 3
of [TGNL]. This allows for the construction of a more rigid kind of generating function
to which we can apply Morse theory. In particular we perform a computation involving
a spectral sequence, resembling the one appearing in [9]. The main result is
Theorem 1.3. For a nearby Lagrangian𝐿→ 𝑇 ∗𝑀 , the 𝑠-double of𝐿 admits a twisted
generating function 𝑓 such that for all 𝑥 ∈ 𝑋, 0 is a regular value of the function 𝑓𝑥
and for all sufficiently large 𝑎, the homology of the fiberwise sublevel set is

𝐻∗({𝑓𝑥 ≤ 0}, {𝑓𝑥 ≤ −𝑎}) = ℤ[𝑑].

We provide a substantial amount of details omitted in [TGNL] and as mentioned
we argue using spectral sequences and local systems rather than derived sheaves and
derived functors. We consider our proof of Theorem 1.3 as one of the main original
contributions of this thesis.
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2 Classifying spaces and monoids
The theory of principal𝐺-bundles for a topological group𝐺 is well known. As one can
show, a principal 𝐺-bundle on a space 𝑋 is determined by an open cover 𝑈𝑖 of 𝑋, and
a Čech cocycle of clutching functions 𝑈𝑖𝑗 → 𝐺. The space 𝐵𝐺 is a classifying space
for such cocycles in the sense that equivalence classes of cocycles are in one to one
correspondence with homotopy classes of maps to 𝐵𝐺. The punchline is that studying
the topology of 𝐵𝐺 can teach us a lot about 𝐺-bundles. The goal of this section is to
recover parts of this theory when we replace the topological group𝐺 with a topological
monoid 𝑄. We begin with specifying some notation and recalling some standard facts
from the theory of simplicial spaces and sets, before we move on to constructing our
classifying spaces.

2.1 Simplicial sets and spaces
Simplicial objects are objects that are built up from smaller objects fitting together like
triangles and tetrahedra. To make this precise, we define the simplex category.
Definition 2.1. The simplex category Δ is the category whose objects are the ordered
sets

[𝑛] = {0 < 1 < ... < 𝑛 − 1 < 𝑛}

and whose morphisms are nondecreasing maps 𝛼∶ [𝑛] → [𝑚].
There are two especially important classes of morphisms in Δ, namely the faces and

degeneracies.
Definition 2.2. The 𝑖th face map is the unique nondecreasing injection

𝜕𝑛𝑖 ∶ [𝑛 − 1] ⟶ [𝑛]

whose image does not contain 𝑖. The 𝑖th degeneracy is the unique nondecreasing sur-
jection

𝑠𝑛𝑖 ∶ [𝑛 + 1] ⟶ [𝑛]

hitting 𝑖 twice.
To increase readability, we will omit the superscript. One can check explicitly (and

tediously) that these maps satisfy the simplicial identities
𝜕𝑖𝜕𝑗 = 𝜕𝑗−1𝜕𝑖 for 𝑖 < 𝑗
𝑠𝑖𝑠𝑗 = 𝑠𝑗+1𝑠𝑖 for 𝑖 ≤ 𝑗

𝜕𝑖𝑠𝑗 = 𝑠𝑗+1𝜕𝑖 for 𝑖 < 𝑗
𝜕𝑖𝑠𝑖 = 𝜕𝑖+1𝑠𝑖 = 𝑖𝑑
𝜕𝑖𝑠𝑗 = 𝑠𝑗𝜕𝑖−1 for 𝑖 > 𝑗 + 1.

(2.1)

Remark 2.3. The face and degeneracy maps are special in the sense that all other mor-
phisms can be obtained by composing maps of these two types. We will not prove
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this here, but remark that the proof consists of factoring any nondecreasing map 𝛼 as
𝛼 = 𝑒◦𝑚 for some surjection 𝑒 and some injection 𝑚. Then one can write 𝑒 as a product
of 𝑠𝑖’s and 𝑚 as a product of 𝜕𝑖’s.
Definition 2.4. A simplicial object𝐸 in a category  is a contravariant functor𝐸 ∶ Δ →
. We will often write 𝐸𝑛 for 𝐸([𝑛]) and 𝛼∗ ∶ 𝐸𝑛 → 𝐸𝑚 for 𝐸(𝛼) where 𝛼∶ [𝑚] → [𝑛]
is a nondecreasing map.

This thesis will be mainly concerned with the cases where  = 𝖲𝖾𝗍 or  = 𝖳𝗈𝗉.
Simplicial objects in these categories will be referred to as simplicial sets and simplicial
spaces respectively. We will always view simplicial sets as special cases of simplicial
spaces by interpreting a set as a discrete space.
Example 2.5. For a simplicial space𝑋, we call𝑋0 the space of vertices of𝑋. To access
the 𝑖th vertex of an 𝑛-simplex we pull back by the map 𝑣𝑛𝑖 ∶ [0] → [𝑛], 𝑣𝑖(0) = 𝑖. As we
can see, any 𝑛-simplex 𝜎 has 𝑛 + 1 (not necessarily distinct) vertices 𝑣∗0𝜎, 𝑣∗1𝜎, ..., 𝑣∗𝑛𝜎.

We call 𝑋1 the edges of 𝑋. For 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, we have edge maps 𝑒𝑛𝑖,𝑗 ∶ [1] → [𝑛]
sending 0 to 𝑖 and 1 to 𝑗. The pullback with this map sends a simplex to the edge “going
from the 𝑖th vertex to the 𝑗th vertex.” Note that the edge inherits an orientation from
the order on [𝑛].

Together, the edges and vertices of a simplicial set will form a directed graph. In
many cases we will use this directed graph as a visualization of a simplicial set. In fact,
the structures we wish to classify will turn out to only depend on what happens at the
levels 𝑋0, 𝑋1 and 𝑋2, so very little is lost in such visualizations.

One could equivalently define a simplicial object in  as a collection of objects
indexed by the natural numbers, with specified face and degeneracy morphisms in 
satisfying an analogue of the identities (2.1). In view of remark 2.3, any nondecreasing
map can be described as a composition of the faces and degeneracies, so functionality
on all maps is equivalent to functoriality on faces and degeneracies.
Definition 2.6. A simplicial map of simplicial spaces is a natural transformation 𝑓 ∶ 𝑋 →
𝑌 . In other words, we have for each 𝑛 ∈ ℕ a continuous map 𝑓𝑛 ∶ 𝑋𝑛 → 𝑌𝑛, such that
for each nondecreasing 𝛼∶ [𝑛] → [𝑚] the following diagram commutes.

𝑋𝑚 𝑌𝑚

𝑋𝑛 𝑌𝑛

𝑓𝑚

𝑋(𝛼) 𝑌 (𝛼)

𝑓𝑛

Our main purpose will be to use simplicial spaces and sets as combinatorial models
for topological spaces. The idea of a geometric realization will make this explicit. First,
we need to define what a geometric 𝑛-simplex is.
Definition 2.7. The geometric 𝑛-simplex is the topological space

Δ𝑛 =

{

(𝑡0, 𝑡1, ..., 𝑡𝑛) ⊂ [0, 1]𝑛
|

|

|

|

𝑛
∑

𝑖=0
𝑡𝑖 = 1

}
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with the subspace topology. For any map 𝛼∶ [𝑛] → [𝑚], there is a natural continuous
map

𝛼∗ ∶ Δ𝑛 ⟶ Δ𝑚

(𝑡0, ..., 𝑡𝑛) ⟼ (𝑠0, ..., 𝑠𝑚)

where
𝑠𝑗 =

∑

𝑖∈𝛼−1(𝑗)

𝑡𝑖.

The idea is now to turn a simplicial space into a topological space by associating
each “abstract” 𝑛-simplex 𝜎 ∈ 𝐸𝑛 to a geometric 𝑛-simplex, and to use the face and
degeneracy maps to glue these together.
Definition 2.8. For a simplicial space 𝐸, the geometric realization is the topological
space

|𝐸| =

(

∐

𝑛∈ℕ
𝐸𝑛 × Δ𝑛

)

/

∼,

where (𝛼∗𝜎, 𝑡) ∼ (𝜎, 𝛼∗𝑡) for all nondecreasing 𝛼. We denote the quotient map of this
equivalence relation by 𝑟. The 𝑛-skeleton of the geometric realization is the image of
the zero through 𝑛-simplices under this quotient map, namely

|𝐸|𝑛 = 𝑟

( 𝑛
∐

𝑘=0
𝐸𝑛 × Δ𝑛

)

.

Note that 𝐸𝑛 ×Δ𝑛 is equipped with the product topology, and that this definition works
equally well for simplicial sets when we interpret a set as a discrete topological space.
A simplicial map 𝑓 ∶ 𝑋 → 𝑌 gives rise to a continuous map |𝑓 |∶ |𝑋| → |𝑌 | defined
by (𝜎, 𝑡) → (𝑓 ∗𝜎, 𝑡) which glues correctly due to the naturality condition on 𝑓 .

While the degeneracies of a simplicial set give rise to a richer combinatorial struc-
ture which will be useful later, it can sometimes (especially when dealing with geomet-
ric realizations) be easier to get rid of them.
Definition 2.9. A simplex 𝜎 ∈ 𝐸𝑛 is called degenerate if it is in the image of 𝑓 ∗ for some
𝑓 ∶ [𝑛] → [𝑚] with 𝑚 < 𝑛. A simplex is called nondegenerate if it is not degenerate.
We denote the space of nondegenerate 𝑛-simplices in 𝐸 by 𝐸𝑛𝑑𝑛 .

This gives rise to a useful description of the underlying set of the geometric real-
ization of a simplicial space.
Lemma 2.10. There is a bijection

∐

𝑛∈ℕ
𝐸𝑛𝑑𝑛 × int(Δ𝑛) ≃ |𝐸|.

Proof. Any simplex factors through a unique maximal nondegenerate simplex. Points
in 𝐸𝑛𝑑𝑛 × int(Δ𝑛) are not identified with any other points of this form under the quotient
since the points in int(Δ𝑛) are not in the image of any 𝑓∗ where 𝑓 ∶ [𝑚] → [𝑛], 𝑚 <
𝑛.

9



We now give som illustrative examples of simplicial spaces and their geometric
realizations.
Example 2.11. The combinatorial 𝑛-simplex is the simplicial setΔ[𝑛] = HomΔ(−, [𝑛]).In other words,

Δ[𝑛]𝑘 = {𝑓 ∶ [𝑘] ⟶ [𝑛] nondecreasing}
with morphisms given by precomposing. We leave it as an exercise to show that |Δ[𝑛]| ≃
Δ𝑛, but remark that Δ[𝑛]𝑛𝑑𝑛 = {𝑖𝑑[𝑛]}, and that any simplex clearly factors through this
one.
Example 2.12. For a topological space 𝑋, we define a simplicial set Sing𝑋 by setting

Sing𝑋𝑛 = Hom𝖳𝗈𝗉(Δ𝑛, 𝑋),

and letting 𝑓 ∶ [𝑚] → [𝑛] give rise to the map

𝑓 ∗ ∶ (Δ[𝑛]
𝜎

←←←←←←←←←←←←←←←←←→ 𝑋) ⟼ (Δ[𝑚]
𝑓∗

←←←←←←←←←←←←←←←←←←←←←→ Δ[𝑛]
𝜎

←←←←←←←←←←←←←←←←←→ 𝑋).

A standard part of the theory is the fact that up to homotopy the functor Sing is adjoint
to the geometric realization functor. In particular, the natural map

|Sing𝑋| ⟶ 𝑋
(𝜎, 𝑡) ⟼ 𝜎(𝑡)

is a weak homotopy equivalence [19, Proposition 16.2].
Example 2.13. Any topological space 𝑋 can be turned in to a simplicial space by
considering the constant functor valued at𝑋. We call this the constant simplicial space
at 𝑋, and denote it (somewhat abusively) by 𝑋. It has 𝑋𝑛 = 𝑋 for all 𝑛, and all face
and degeneracies given by the identity on 𝑋. The only nondegenerate simplices are
𝑋0 = 𝑋, so it is easily seen that the geometric realization is just 𝑋.
Definition 2.14. A bisimplicial object in  is a contravariant functor

𝑋 ∶ Δ × Δ ⟶ .

That is, for each (𝑛, 𝑚) ∈ ℕ2, an object 𝑋𝑛,𝑚 in , and for each pair of nondecreasing
morphisms 𝑓 ∶ [𝑛] → [𝑘], 𝑔∶ [𝑚] → [𝑙] a morphism

(𝑓, 𝑔)∗ ∶ 𝑋𝑘,𝑙 ⟶ 𝑋𝑛.𝑚.

For a bisimplicial space 𝑋, there are three a priori different ways to take the geo-
metric realization, corresponding to the following three simplicial spaces

Diag𝑋𝑛 = 𝑋𝑛,𝑛

𝑋𝐼
𝑛 = |𝑋∙,𝑛| (𝑋∙,𝑛)𝑚 = 𝑋𝑚,𝑛

𝑋𝐼𝐼
𝑛 = |𝑋𝑛,∙| (𝑋𝑛,∙)𝑚 = 𝑋𝑛,𝑚.

Fortunately taking geometric realizations of these three amount to the same thing, as
made precise by the following result [23, p. 86].
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Proposition 2.15. For a bisimplicial space 𝑋, there are functorial homeomorphisms

|Diag𝑋| ≃ |𝑋𝐼
| ≃ |𝑋𝐼𝐼

|.

We now give some examples of why this is useful.
Example 2.16. For two simplicial spaces𝑋 and 𝑌 , we define their product as the diag-
onal of the bisimplicial space (𝑋⊗𝑌 )𝑛,𝑚 = 𝑋𝑛×𝑌𝑚. We leave it as an exercise to check
that this serves as a product in the category of simplicial spaces. Using Proposition 2.15
we see that

|𝑋 × 𝑌 | = |𝑋| × |𝑌 |.

Example 2.17. To replace a simplicial space𝑋 with a simplicial set, we first define the
bisimplicial set Sing𝑋 by

Sing𝑋𝑛,𝑚 = (Sing𝑋𝑚)𝑛 Hom𝖳𝗈𝗉(Δ𝑛, 𝑋𝑚),

and with maps given in an obvious way. Developing the geometric realization with 𝑚
fixed yields |𝑆𝑖𝑛𝑔(𝑋𝑚)| ∼ 𝑋𝑚, like in 2.12. One can ask if this levelwise weak equiva-
lence is enough to combine with Proposition 2.15 to conclude that |Diag Sing𝐸| → |𝐸|
is at least a weak equivalence. The following results (combined with CW-approximation)
will show that under some mild conditions this holds.

Unsurprisingly we want to turn the weak equivalences we have encountered so far
into homotopy equivalences. To achieve this, we work in the category of spaces ho-
motopy equivalent to a CW-complex. Since it will make no difference to us, we do not
distinguish between spaces that are actual CW-complexes and spaces that are just ho-
motopy equivalent to CW-complexes; we refer to both as CW-complexes. It would be
useful to have conditions for when the realization of a simplicial space is a CW-complex.
Note that while the realization of a simplicial set must always be a CW-complex, the
same cannot be true in general for simplicial spaces since we can take the constant sim-
plicial space at some pathological space. One useful notion in this regard is that of a
good simplicial space as defined in [24].
Definition 2.18. We call a simplicial space 𝐸 good if for all 𝑛 ∈ ℕ and 0 ≤ 𝑖 ≤ 𝑛 − 1,
the map 𝑠𝑖 ∶ 𝐸𝑛−1 → 𝐸𝑛 is a cofibration.
Lemma 2.19. Let 𝐴 and 𝐵 be good simplicial spaces, and 𝑓 ∶ 𝐴 → 𝐵 a simplicial
map such that all 𝑓𝑛 ∶ 𝐴𝑛 → 𝐵𝑛 are homotopy equivalences. Then the induced map on
realizations is a homotopy equivalence 𝑓 ∶ |𝐴| → |𝐵|.

Proof. See [24, Appendix A].
We now use this to give a sufficient condition for 𝐸 to have the homotopy type of a

CW-complex.
Corollary 2.20. Let 𝐸 be a good simplicial space such that all 𝐸𝑛 are CW-complexes.
Then |𝐸| is a CW-complex.
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Proof. Consider the simplicial space (𝑆𝑖𝑛𝑔𝐸)𝐼𝑛 = |𝑆𝑖𝑛𝑔(𝐸𝑛)|. Since the inclusion of
𝜕𝑖Δ𝑛 ↪ Δ𝑛 is a cofibration, this simplical space is good. Since 𝐸𝑛 is a CW-complex,
each component of the simplicial map |Sing(𝐸𝑛)| → 𝐸𝑛 from Example 2.17 is a homo-
topy equivalence. Since both spaces are good, Lemma 2.19 and 2.15 yields a homotopy
equivalence |Diag Sing𝐸| ≃ |𝐸|. Since Diag Sing𝐸 is a simplicial set, its realization
is a CW-complex, and so is |𝐸|.

Another useful construction on simplicial sets is the cone, which is inspired by the
familiar cone construction 𝐶𝑋 = 𝑋 × [0, 1]∕𝑋 ×{1} on topological spaces. In fact we
will see that there is homeomorphism |𝐶𝑋| → 𝐶|𝑋|.
Definition 2.21. The cone of a simplicial set 𝑋 is given by

(𝐶𝑋)𝑛 = {(𝜎, 𝑘) | 𝑘 = 0, ..., 𝑛, 𝜎 ∈ 𝑋𝑛−𝑘}

𝜕𝑖(𝜎, 𝑘) = (𝜎, 𝑘 − 1) for 𝑖 < 𝑘
𝜕𝑖(𝜎, 𝑘) = (𝜕𝑖−𝑘, 𝑘) for 𝑖 ≥ 𝑘
𝑠𝑖(𝜎, 𝑘) = (𝜎, 𝑘 + 1) for 𝑖 < 𝑘
𝑠𝑖(𝜎, 𝑘) = (𝑠𝑖−𝑘𝜎, 𝑘) for 𝑖 ≥ 𝑘

Note that for the definition to make sense we will define 𝑋−1 =∗ and for every
vertex 𝑣 ∈ 𝑋0, 𝜕0𝑣 =∗. Then the "tip" of the cone will be the vertex (∗, 1). This could
of course be avoided by adding special definitions for (𝐶𝑋)0, but this would arguably
make notation less clear. The intuition here is that we are adding a single new vertex
(∗, 1), and then using the number 𝑘 to keep track of how many of the verticies degenerate
to this vertex. It is not hard to see that the nondegenerate simplices are

(𝐶𝑋)𝑁𝑑𝑛 =
{

(𝜎, 𝑘) | 𝑘 = 0, 1 𝜎 ∈ 𝑋𝑁𝑑
𝑛−𝑘

}

.

In particular, a nondegenerate 𝑛-simplex in 𝐶𝑋 is either a nondegenerate simplex in𝑋,
or it is "spanned" by a nondegenerate 𝑛 − 1-simplex and the tip (∗, 1).
Lemma 2.22. |𝐶𝑋| is contractible.

Proof. We omit a proof, but remark that this can be seen using simplicial homotopy, or
directly in the geometric realization.

A particularly well behaved class of simplicial sets, inspired by the combinatorial
simplices, is the class of directed simplicial sets.
Definition 2.23. A simplicial set𝑍 is called directed if the set𝑍0 of verticies is equipped
with a partial order ≤ such that for any simplex 𝜎,

𝑣∗0𝜎 ≤ 𝑣∗1𝜎 ≤ ... ≤ 𝑣∗𝑛𝜎 (2.2)
and such that for all 𝑛 ∈ ℕ, the map

𝑍𝑛 ⟶ 𝑍𝑛+1
0

𝜎 ⟼ (𝑣∗0𝜎, 𝑣
∗
1𝜎, ..., 𝑣

∗
𝑛𝜎)

is injective.
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(a) Not directed (b) Not directed (c) Directed
Figure 1: Three (non)examples of directedness at the 𝑍1 level.

One of the nice things about directed simplicial sets is that a simplex 𝜎 ∈ 𝑍𝑛 is
nondegenerate if and only if

𝑣∗0𝜎 < 𝑣
∗
1𝜎 < ... < 𝑣

∗
𝑛𝜎.

To see this, just assume that 𝑣∗𝑖 𝜎 = 𝑣∗𝑖+1𝜎. Then 𝜎 and 𝑠𝑖𝜕𝑖+1𝜎 have the same verticies,
so by injectivity they must be equal.

2.2 Classifying simplicial cocycles
Our construction of 𝐵𝑄 will be based on the simplicial methods introduced in the pre-
vious subsection. We will start by coming up with a classifying object for simplicial
cocycles, and then later translate these into Čech cocycles. We start by making the
notion of a cocycle valued in a monoid precise.
Definition 2.24. A topological monoid is a topological space 𝑄 together with a con-
tinuous, associative binary operation − ⋅ −∶ 𝑄 ×𝑄 → 𝑄 with a two sided unit 𝑒 ∈ 𝑄.
We call 𝑄 discrete if 𝑄 is a discrete topological space. We call 𝑄 commutative if
𝑞1 ⋅ 𝑞2 = 𝑞2 ⋅ 𝑞1 for all 𝑞1, 𝑞2 ∈ 𝑄.
Definition 2.25. For a simplicial space𝐸, and a topological monoid𝑄, a map ℎ∶ 𝐸1 →
𝑄 is called a 1-cocycle if for any 𝜎 ∈ 𝐸2

ℎ◦𝑒0,2(𝜎) = ℎ◦𝑒0,1(𝜎) ⋅ ℎ◦𝑒1,2(𝜎),

and for any 𝑣 ∈ 𝐸0
ℎ◦𝑠0(𝑣) = 𝑒.

The following picture illustrates the graph of some 2-simplex. We will use labels on
the edges to indicate the value of the edge under ℎ.
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q1 · q2

q1 q2

We see that the first condition applied to a degenerate 2-simplex implies that
(ℎ◦𝑠0◦𝑣0) ⋅ ℎ = ℎ = ℎ ⋅ (ℎ◦𝑠0◦𝑣1).

This shows that there is no conflict between the two requirements. The second require-
ment is mostly important to get uniqueness later. Note that there could be several ele-
ments in𝑄 satisfying the above equation. We could equivalently have defined a cocycle
as a map from the nondegenerate 1-simplices, and later extended to all 𝐸1 by sending
degenerate edges to 𝑒.
Lemma 2.26. If ℎ∶ 𝐸1 → 𝑄 is a 1-cocycle, then for any 0 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛

ℎ ⋅ 𝑒𝑛𝑗,𝑘 =
∏

𝑗<𝑖≤𝑘
ℎ◦𝑒𝑛𝑖−1,𝑖

as maps 𝐸𝑛 ∶ → 𝑄. Note that we take the empty product to equal the unit 𝑒.

Proof. We will prove this by induction on 𝑛. The base case is 𝑛 = 2 where the equation
is just the cocycle condition (note also that this takes care of the degenerate edges). We
will further assume that 𝑗 = 0 and 𝑘 = 𝑛, since if not, we could factor through 𝐸𝑘−𝑗 by
the injective map 𝑓 ∶ [𝑘 − 𝑗] → [𝑛] with image 𝑗, 𝑗 + 1, ..., 𝑘 − 1, 𝑘. This satisfies

𝑒𝑛𝑗,𝑘 = 𝑓 ∗◦𝑒𝑘−𝑗0,𝑘−𝑗

𝑒𝑛𝑗+𝑖−1,𝑗+𝑖 = 𝑓 ∗◦𝑒𝑘−𝑗𝑖−1,𝑖,

so the result for 𝑛′ = 𝑘 − 𝑗 already takes care of this case. We therefore consider the
map

𝑔∶ [2] ⟶ [𝑛 + 1]
0 ⟼ 0
1 ⟼ 𝑛
2 ⟼ 𝑛 + 1.

One can now check the following factorizations
𝑒𝑛+10,𝑛+1 = 𝑒20,2◦𝑔

∗

𝑒𝑛+10,𝑛 = 𝑒20,1◦𝑔
∗

𝑒𝑛+1𝑛,𝑛+1 = 𝑒21,2◦𝑔
∗.
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Applying the coycle condition then yields
ℎ◦𝑒𝑛+10,𝑛+1 = ℎ◦𝑒20,2◦𝑔

∗

= ((ℎ◦𝑒20,1) ⋅ (ℎ◦𝑒
2
1,2))◦𝑔

∗

= (ℎ◦𝑒𝑛+10,𝑛 ) ⋅ (ℎ◦𝑒𝑛+1𝑛,𝑛+1)

=
∏

0<𝑖≤𝑛
ℎ◦𝑒𝑛+1𝑖−1,𝑖 ⋅ ℎ◦𝑒

𝑛+1
𝑛,𝑛+1 =

∏

0<𝑖≤𝑛+1
ℎ◦𝑒𝑛+1𝑖−1,𝑖,

which completes the induction step.
We now want to come up with a simplicial space 𝐵𝑄 such that simplicial maps

𝐸 → 𝐵𝑄 are in one to one correspondence with 1-cocycles ℎ∶ 𝐸1 → 𝑄. Clearly we
should let 𝐵𝑄1 = 𝑄, but how should we define 𝐵𝑄𝑛? Lemma 2.26 shows that the
value of a cocycle ℎ on the edges of an 𝑛-simplex 𝜎 is determined by the value of ℎ on
the 𝑛 consecutive edges 𝑒𝑖−1,𝑖𝜎. The idea is to let an 𝑛-simplex in 𝐵𝑄 also be uniquely
determined by 𝑛 elements in 𝑄 corresponding to the 𝑛-consecutive edges. The maps
will be chosen in a way that enforces the cocycle condition.
Definition 2.27. For any topological monoid 𝑄, let 𝐵𝑄 be the simplicial space with
objects

(𝐵𝑄)𝑛 = 𝑄𝑛

and maps
𝛼∗ ∶ 𝑄𝑛 ⟶ 𝑄𝑛

(𝑞1, ..., 𝑞𝑛) ⟼ (𝑝1, ..., 𝑝𝑚),

where
𝑝𝑘 =

∏

𝛼(𝑘−1)<𝑗≤𝛼(𝑘)
𝑞𝑗 .

(Again, empty products equal 𝑒.) Equivalently we could define the faces and degenera-
cies

𝜕𝑘(𝑞1, ..., 𝑞𝑛) = (𝑞1, ..., 𝑞𝑘−1, 𝑞𝑘 ⋅ 𝑞𝑘+1, 𝑞𝑘+2, ...𝑞𝑛) 1 ≤ 𝑘 ≤ 𝑛 − 1
𝜕0(𝑞1, ..., 𝑞𝑛) = (𝑞2, ..., 𝑞𝑛)
𝜕𝑛(𝑞1, ..., 𝑞𝑛) = (𝑞1, ..., 𝑞𝑛−1)
𝑠𝑘(𝑞1, ..., 𝑞𝑛) = (𝑞1, ..., 𝑞𝑘, 𝑒, 𝑞𝑘+1, ..., 𝑞𝑛) 0 ≤ 𝑘 ≤ 𝑛.

We leave it as an exercise to check that these two definitions agree, and that they satisfy
the simplicial identities.

The upshot is that this definition accomplishes exactly what we wanted it to.
Proposition 2.28. A 1-cocycle ℎ∶ 𝐸1 → 𝑄 extends uniquely to a simplicial map
𝐻 ∶ 𝐸 → 𝐵𝑄.
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Proof. For existence, define the extension
𝐻𝑛 = (𝐻1

𝑛 , ...,𝐻
𝑛
𝑛 )∶ 𝐸𝑛 ⟶ 𝑄𝑛

by 𝐻𝑘
𝑛 = ℎ◦𝑒𝑛𝑘−1,𝑘. To show that this map is simplicial, consider any nondecreasing

𝛼∶ [𝑛] → [𝑚]. We need to show that the following diagram commutes.

𝐸𝑚 𝑄𝑚

𝐸𝑛 𝑄𝑛
𝛼∗

𝐻𝑚

𝛼∗

𝐻𝑛

One can check explicitly that 𝑒𝑛𝑘−1,𝑘◦𝛼∗ = 𝑒𝑚𝛼(𝑘−1),𝛼(𝑘), so by Lemma 2.26,
𝐻𝑘
𝑛 ◦𝛼

∗ = ℎ◦𝑒𝑛𝑘−1,𝑘◦𝛼
∗

= ℎ◦𝑒𝑚𝛼(𝑘−1),𝛼(𝑘)

=
∏

𝛼(𝑘−1)<𝑗≤𝛼(𝑘)
ℎ◦𝑒𝑚𝑗−1,𝑗 .

By definition of 𝛼∗ ∶ 𝑄𝑚 → 𝑄𝑛, we see that this is precisely the 𝑘th component of
𝛼∗◦𝐻𝑚, so the diagram commutes.

For uniqueness, assume we have a simplicial map𝐺∶ 𝐸 → 𝐵𝑄with𝐺1 = ℎ. Then
for each 0 ≤ 𝑘 ≤ 𝑛, the following diagram commutes.

𝐸𝑛 𝑄𝑛

𝐸1 𝑄

𝑒𝑛𝑘−1,𝑘

𝐺𝑛

𝑒𝑛𝑘−1,𝑘

ℎ

One can easily check that in 𝐵𝑄, the map 𝑒𝑛𝑘−1,𝑘 corresponds to projection to the 𝑘th
factor. Hence 𝐺𝑘𝑛 = ℎ◦𝑒𝑛𝑘−1,𝑘 = 𝐻𝑘

𝑛 , so 𝐻 = 𝐺.

2.3 Associated bundles
We are now ready to move on to associated bundles. We start with an example from
the theory of 𝐺-bundles.
Example 2.29. Let 𝐹 → 𝐸 → 𝑋 be a bundle with structure group 𝐺. This means that
𝐺 acts continuously on the fiber 𝐹 . The clutching functions of 𝐸 determine a principal
𝐺-bundle 𝑃 , and we can equivalently write 𝐸 as 𝑃 ×𝐺 𝐹 . The principal bundle 𝑃 is
defined by an open cover 𝑈𝑖 of 𝑋, and clutching functions 𝑔𝑖𝑗 ∶ 𝑈𝑖𝑗 → 𝐺. Over each
𝑈𝑖, a local section of 𝐸 is just a map 𝑓𝑖 ∶ 𝑈𝑖 → 𝐹 . A collection of such local sections
can be glued into a global section if and only if we have

𝑓𝑗(𝑥) = 𝑓𝑖(𝑥) ⋅ 𝑔𝑖𝑗(𝑥) ∀𝑥 ∈ 𝑈𝑖𝑗 .
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Even though we have not actually defined total spaces and sections for 𝑄-bundles,
we want to generalize the above by coming up with a classifying space for such sections.
Definition 2.30. Denote a continuous right-action of 𝑄 on a space 𝐹 by.

𝐹 ×𝑄⟶ 𝐹
(𝑥, 𝑞) ⟼ 𝑥 ⋅ 𝑞,

A 𝑄-twisted map to 𝐹 from a simplicial space 𝐸 is given by a map
𝑓 ∶ 𝐸0 ⟶ 𝐹

and a 1-cocycle
ℎ∶ 𝐸1 ⟶ 𝑄,

such that for any edge 𝜎 ∈ 𝐸1,
𝑓◦𝑣1(𝜎) = 𝑓◦𝑣0(𝜎) ⋅ ℎ(𝜎).

The following picture shows the values on the graph of a 2-simplex.

x · q1 · q2x q1 · q2

q2q1

x · q1

The construction of the classifying space for such structures is very similar to the
construction of 𝐵𝑄, except that we use the vertices to keep track of where in 𝐹 we are.
Since the value at vertices with inbound edges are determined by the above relations,
we only need to keep track of a single point in 𝐹 which will correspond to the value of
𝑓 at the 0th vertex.
Definition 2.31. For any topological monoid 𝑄, and right 𝑄 space 𝐹 , let 𝐵(𝐹 ,𝑄) be
the simplicial space with objects

𝐵(𝐹 ,𝑄)𝑛 = 𝐹 ×𝑄𝑛,

and maps
𝛼∗ ∶ 𝐹 ×𝑄𝑛 ⟶ 𝐹 ×𝑄𝑚

(𝑥; 𝑞1, ..., 𝑞𝑛) ⟼ (𝑥′; 𝑝1, ..., 𝑝𝑚),

where
𝑝𝑘 =

∏

𝛼(𝑘−1)<𝑗≤𝛼(𝑘)
𝑞𝑗 and 𝑥′ = 𝑥 ⋅

∏

1≤𝑗≤𝛼(0)
𝑞𝑗 .
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Equivalently we could define the faces and degenracies
𝜕𝑘(𝑥; 𝑞1, ..., 𝑞𝑛) = (𝑥; 𝑞1, ..., 𝑞𝑘−1, 𝑞𝑘 ⋅ 𝑞𝑘+1, 𝑞𝑘+2, ...𝑞𝑛) 1 ≤ 𝑘 ≤ 𝑛 − 1

𝜕0(𝑥; 𝑞1, ..., 𝑞𝑛) = (𝑥 ⋅ 𝑞1; 𝑞2, ..., 𝑞𝑛)

𝜕𝑛(𝑥; 𝑞1, ..., 𝑞𝑛) = (𝑥; 𝑞1, ..., 𝑞𝑛−1)

𝑠𝑘(𝑥; 𝑞1, ..., 𝑞𝑛) = (𝑥; 𝑞1, ..., 𝑞𝑘, 𝑒, 𝑞𝑘+1, ..., 𝑞𝑛).

We leave it as an exercise to check that these two definitions agree, and that they satisfy
the simplicial identities. It is also an instructive exercise to see how these identities play
out in the above picture of a 2-simplex.
Remark 2.32. When the space 𝐹 is discrete, we can think of 𝐵(𝐹 ,𝑄) is as the nerve
of a certain category. Define (𝐹 ,𝑄) to be the category whose objects are elements of
𝐹 , and whose morphisms are given by

Hom( ,)(𝑥, 𝑦) = {𝑞 ∈ 𝑄 | 𝑦 = 𝑥 ⋅ 𝑞}.

Then 𝐵(𝐹 ,𝑄) is precisely the nerve of (𝐹 ,𝑄), and |𝐵(𝐹 ,𝑄)| is the classifying space
of (𝐹 ,𝑄).

As for 𝐵𝑄 we get the desired classification property pretty much by construction.
Proposition 2.33. A 𝑄-twisted map to 𝐹

𝑓 ∶ 𝐸0 ⟶ 𝐹
ℎ∶ 𝐸1 ⟶ 𝑄

determines a unique simplicial map 𝐻 ∶ 𝐸 → 𝐵(𝐹 ,𝑄) with 𝐻0 = 𝑓 , 𝐻1 = 𝑓 × ℎ.

Proof. We define a map
𝐻𝑚 = (𝐻0

𝑚,𝐻
1
𝑚, ...,𝐻

𝑚
𝑚 )∶ 𝐸𝑚 ⟶ 𝐹 ×𝑄𝑚

by

𝐻𝑘
𝑚 =

{

ℎ◦𝑒𝑚𝑘−1,𝑘 1 ≤ 𝑘 ≤ 𝑚
𝑓◦𝑣0 𝑘 = 0

.

For any nondecreasing 𝛼∶ [𝑛] → [𝑚], we need to show that the following diagram
commutes.

𝐸𝑚 𝐹 ×𝑄𝑚

𝐸𝑛 𝐹 ×𝑄𝑛
𝛼∗

𝐻𝑚

𝛼∗

𝐻𝑛

On the 𝑛-copies of 𝑄 the proof that this commutes is exactly the same as the proof for
𝐵𝑄. For the 𝐹 factor, we have

(𝑓◦𝑣0) ⋅

(

∏

1≤𝑘≤𝛼(0)
(ℎ◦𝑒𝑗−1,𝑗)

)

= (𝑓◦𝑣0) ⋅ (ℎ◦𝑒𝑚0,𝛼(0)) = 𝑓◦𝑣𝛼(0),
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where we have used both Lemma 2.26 and the twisting condition. Unwinding the def-
initions, this shows that the diagram commutes. As in the proof of Proposition 2.28,
uniqueness can be checked by considering the commutative diagrams obtained by tak-
ing 𝛼 = 𝑒𝑛𝑘−1,𝑘 and 𝛼 = 𝑣𝑛0.

We are now ready to state and prove some results concerning the homotopy theory
of |𝐵(𝐹 ,𝑄)|. In many ways these result generalize appropriate results for classifying
spaces for groups. The first result is a good pointer that in many ways, |𝐵(𝐹 ,𝑄)| is a
homotopy model for the quotient of 𝐹 by the action of 𝑄.
Lemma 2.34. The space |𝐵(𝑄,𝑄)| is contractible.

Proof. The idea for this proof will be to define a 𝑄-twisted map to 𝑄 on 𝐵(𝑄,𝑄) ×
Δ[1], so that when we extend this bundle as in Lemma 2.33. We then get a simplicial
map 𝐵(𝑄,𝑄) × Δ[1] → 𝐵(𝑄,𝑄) which restricts to the identity and a constant map on
opposite ends of Δ[1]. In view of Example 2.16, passing to geometric realizations this
map will provide a contraction of |𝐵(𝑄,𝑄)|.

We have (𝐵(𝑄,𝑄) × Δ[1])𝑖 = 𝐵(𝑄,𝑄)𝑖 × Δ[1]𝑖. We only need to specify values
at 𝑖 = 0 and 𝑖 = 1. Δ[1]0 consists of the two vertices 0 and 1, which are explicitly the
obvious constant maps [0] → [1]. Δ[1]1 consists of three edges, namely two degenerate
edges 𝑠0(0) and 𝑠0(1) coming from the constant maps [1] → [1], and the nondegenerate
edge Δ1 coming from 𝑖𝑑 ∶ [1] → [1]. We now define our twisted cocycle by

𝑓 ∶ 𝑄 × Δ[1]0 ⟶ 𝑄
(𝑞0, 0) ⟼ 𝑒
(𝑞0, 1) ⟼ 𝑞0

and
ℎ∶ 𝑄2 × Δ[1]1 ⟶ 𝑄
(𝑞0, 𝑞1, 𝑠0(0)) ⟼ 𝑒
(𝑞0, 𝑞1, 𝑠0(1)) ⟼ 𝑞1
(𝑞0, 𝑞1,Δ1) ⟼ 𝑞 ⋅ 𝑞1.

The following picture illustrates the above definition at the subset {(𝑞0, 𝑞1)} × Δ[1]1.

e e

q 0
· q 1

q0 q0 · q1q1

e

As we can see from this graph, our definition satisfies the twisting condition. The two
“missing edges” in this picture are covered by the definition applied to the degenerate
edges 𝑠0◦𝑣0(𝑞0, 𝑞1) = (𝑞0, 𝑒) and 𝑠0◦𝑣1(𝑞0, 𝑞1) = (𝑞0 ⋅ 𝑞1, 𝑒). To check the cocycle
condition, we similarly consider {(𝑞0, 𝑞1, 𝑞2)} × Δ[1]2. Here we have to deal with the
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four possible maps [2] → [1]. The following picture shows the graphs of these four
2-cells.

e e

q0 q0q1

q1
q2

e

q
2

q0q1q2

e

e e

q1

q
0 q

1 q
2

q0q
1q 0

q 1
q 2

Each of the rectangular sides of the triangular prism is constructed from the definition
of 𝑓 and ℎ at each of the edges of the 2-cell. As is apparent from the picture, the cocycle
condition is satisfied on all four triangles. We omit a symbolic proof of this, but remark
that this technique is inspired by the definition of simplicial homotopy. For a more
detailed reference on simplicial homotopy, we refer to [19].

By Proposition 2.33 we can uniquely extend this cocycle to a simplicial map𝐵(𝑄,𝑄)×
Δ[1] → 𝐵𝑄. It should be clear that restricting this map to 1 gives the identity on
𝐵(𝑄,𝑄), while restricting to 0 gives a constant map.

The analogue of𝐵(𝐹 ,𝑄) for groups is the associated bundle𝐸𝐺×𝐺𝐹 . It is naturally
a fiber bundle

𝐹 → 𝐸𝐺 ×𝐺 𝐺 → 𝐵𝐺.

This also explains the above result since
𝐸𝐺 ×𝐺 𝐺 ≅ 𝐸𝐺 ≃∗ .

With monoids, we do not have enough structure to get a fiber bundle, not even a fibra-
tion. However, under certain assumptions we get the weaker notion of a quasifibration.
Definition 2.35. A quasifibration 𝑝∶ 𝐸 → 𝐵 is a continuous map to a path connected
𝐵 such that for all 𝑏 ∈ 𝐵, 𝑥0 ∈ 𝑝−1(𝑏) and 𝑖 ∈ ℕ, the induced homomorphism

𝑝∗ ∶ 𝜋𝑖(𝐸, 𝑝−1(𝑏), 𝑥0) ⟶ 𝜋𝑖(𝐵, 𝑏)

is an isomorphism.
All fibrations are quasifibrations, but not conversely. However one can show that a

quasifibration gives rise to a long exact sequence in homotopy groups which is equiv-
alent to the regular fibration sequence when the map is an actual fibration. Relative
homotopy groups have some Mayer–Vietoris like properties which allows one to prove
the following lemma.
Lemma 2.36. A map 𝑝∶ 𝐸 → 𝐵 is a quasifibration if and only if any of the following
conditions are satisfied
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a) 𝐵 can be decomposed as a union of open sets 𝑉1 and 𝑉2 such that the restrictions
of 𝑝 to 𝑝−1(𝑉1), 𝑝−1(𝑉2) and 𝑝−1(𝑉1 ∩ 𝑉2) are all quasifibrations.

b) 𝐵 can be decomposed as the union of an increasing sequence of subspaces 𝐵1 ⊂
𝐵2 ⊂ ... with the property that any compact subspace 𝐾 ∈ 𝐵 is contained in
some 𝐵𝑛 and such that the restriction of 𝑝 to each 𝑝−1(𝐵𝑛) is a quasifibration.

c) There is a deformation 𝐹𝑡 of 𝐸 into a subspace 𝐸′ covering a deformation 𝑓𝑡 of
𝐵 into a subspace 𝐵′ such that 𝑝 restricted to𝐸′ is a quasifibration and such that
the restriction 𝐹1 ∶ 𝑝−1(𝑏) → 𝑝−1(𝑓1(𝑏)) is a weak equivalence.

Proof. See [15, Lemma 4K.3].
The following lemma highlights one of the difficulties of working with monoids

rather than groups. For a group 𝐺 acting on 𝐹 , any 𝑔 ∈ 𝐺 induces a homeomorphism
𝐹

⋅𝑔
←←←←←←←←→ 𝐹 since a continuous inverse is given by acting with 𝑔−1. This is not necessarily

the case for monoid actions, which is why we need to include extra assumption that
𝐹

⋅𝑞
←←←←←←←←→ 𝐹 is a homotopy equivalence.

Lemma 2.37. Let 𝑇 → 𝐸
𝑝
←←←←←←→ 𝐹 be a 𝑄-equivariant quasifibration of right 𝑄-spaces

𝐸 and 𝐹 . If for all 𝑞 ∈ 𝑄, acting with 𝑞 induces weak equivalences on 𝐸 and 𝐹 , then
the induced map

|𝐵(𝐸,𝑄)| ⟶ |𝐵(𝐹 ,𝑄)|

is a quasifibration with fiber 𝑇 .

Proof. This proof is a very modest generalization of [14, Lemma D.1]. To identify the
fiber, we decompose the geometric realizations as in Lemma 2.10. In these coordinates,
the induced map is

(𝑒, 𝑞1, ..., 𝑞𝑛, 𝑡0, ..., 𝑡𝑛) ⟼ (𝑝(𝑒), 𝑞1, ..., 𝑞𝑛, 𝑡0, ..., 𝑡𝑛) (2.3)
so the fiber over any point is homeomorphic to 𝑇 . To prove the map is a quasifibration,
we will use Lemma 2.36. To begin the proof, decompose |𝐵(𝑄,𝐹 )| as the increasing
union of skeleta |𝐵(𝑄, 𝑓 )|0 ⊂ |𝐵(𝑄,𝐹 )|1 ⊂ .... By 2.36 b), it suffices to show that
each |𝐵(𝐸,𝑄)|𝑛 → |𝐵(𝐹 ,𝑄)|𝑛 is a quasifibration. Assume for induction that we have
a quasifibration at the 𝑛 − 1-skeleta. If we fix an 𝜀-neighborhood 𝑈 of 𝜕Δ𝑛 in Δ𝑛, we
can set

𝑉1 = 𝑟(𝐵(𝐹 ,𝑄)𝑛 × 𝑈 )
𝑉2 = 𝑟(𝐵(𝐹 ,𝑄)𝑛 × int(Δ𝑛)).

Then 𝑉1 and 𝑉2 are open by def of the quotient topology, and 𝑉1 ∪ 𝑉2 = |𝐵(𝐹 ,𝑄)|𝑛.Over 𝑉2 and 𝑉1∩𝑉2, the induced map is just 𝑝×𝑖𝑑 as in (2.3), so here our map is a quasi-
fibration by assumption. By 2.36.𝑎) it now suffices to prove that 𝑝 is a quasifibration
over 𝑉2. For sufficiently small 𝜀, this neighborhood, and a corresponding neighborhood
of |𝐵(𝐸,𝑄)|𝑛−1 in |𝐵(𝐸,𝑄)|𝑛 deform onto the respective 𝑛 − 1-skeleta, over which 𝑝
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is a quasifibration by the induction hypothesis. Therefore it suffices by 2.36 c) to prove
that these retractions induce a weak equivalence

𝐹1 ∶ 𝑝−1(𝑏) ⟶ 𝑝−1(𝑓1(𝑏)).

In our representation, the retraction happens only in the simplicial coordinates 𝑡0, ..., 𝑡𝑛.At 𝑓1, at least one of these are zero. This point is identified with (𝛼∗(𝑓, 𝑞1, ..𝑞𝑛), 𝑡′0, ..., 𝑡′𝑘)for a unique nondecreasing 𝛼∶ [𝑘] → [𝑛] such that all 𝑡′𝑖 ≠ 0. Importantly, the same 𝛼
applies in |𝐵(𝐸,𝑄)|, so for any 𝑒 ∈ 𝑝−1(𝑏)

𝐹1(𝑒, 𝑞0, ..., 𝑞𝑛, 𝑡0, ..., 𝑡𝑛) = (𝛼∗(𝑒, 𝑞0, ..., 𝑞𝑛), 𝑡′0, ..., 𝑡
′
𝑘).

Since the effect of 𝛼 on the 𝑞𝑘’s is the same in |𝐵(𝐸,𝑄)| and |𝐵(𝐹 ,𝑄)|, and the effect
of 𝛼 on 𝑒 and 𝑓 is acting on the right with a fixed 𝑞 ∈ 𝑄, we have up to canonical
identification that

𝐹1 = ⋅𝑞∶ 𝑝−1(𝑓 ) ⟶ 𝑝−1(𝑏 ⋅ 𝑞).

Now consider the map of quasifibration sequences

𝑝−1(𝑏) 𝐸 𝐹

𝑝−1(𝑏 ⋅ 𝑞) 𝐸 𝐹

⋅𝑞

𝑝

⋅𝑞 ⋅𝑞

𝑝

Since the two right hand maps are weak equivalences by assumption, applying the five
lemma to the long exact sequence of homotopy groups shows that 𝐹1 is a weak equiv-
alence.

We now give some immediate consequences.
Corollary 2.38. Let 𝐹 be a right 𝑄 space. If for all 𝑞 ∈ 𝑄, the map ⋅𝑞∶ 𝑄 → 𝑄 is a
weak equivalence, then there is a quasifibration

𝐹 ⟶ |𝐵(𝐹 ,𝑄)| ⟶ |𝐵𝑄|.

Proof. It is easily seen from the definition that |𝐵𝑄| is just |𝐵(∗, 𝑄)|, and interpreting
∗ as a trivial 𝑄 space, Lemma 2.37 applied to the equivariant fibration 𝐹 →∗ gives the
result.

Even for CW-complexes, the notion of a quasifibration is strictly weaker than a Serre
fibration. However, knowing that the spaces involved are CW-complexes allows us to
conclude that each fiber is homotopy equivalent to the homotopy fibre. As we will soon
show, this can be quite useful. We begin by stating sufficient conditions for |𝐵(𝐹 ,𝑄)|
to be a CW-complex. All the spaces appearing in subsequent sections will satisfy the
hypothesis of this lemma, therefore we will also assume this hypothesis throughout the
remainder of this section.
Lemma 2.39. If𝐹 is a CW-complex and𝑄 is a locally finite CW-complex, then |𝐵(𝐹 ,𝑄)|
is also a CW-complex.
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Proof. The goal is to satisfy the hypothesis of Corollary 2.20. Since 𝑄 is locally finite,
all the products 𝐹 ×𝑄𝑛 are CW-complexes. It remains to show that all the maps

𝐹 ×𝑄𝑛−1
𝑠𝑖

←←←←←←←←←←←←←←←←←←←→ 𝐹 ×𝑄𝑛 (2.4)
(𝑥, 𝑞1, ..., 𝑞𝑛−1) ⟼ (𝑥, 𝑞1, ..., 𝑞𝑖−1, 𝑒, 𝑞𝑖, ..., 𝑞𝑛−1) (2.5)

are closed cofibrations. The closed part is obvious since {𝑒} is closed. Since𝑄 is a CW-
complex, the inclusion point 𝑒 is a neighbourhood deformation retract (NDR). Hence
there is a neighbourhood 𝑁 and a homotopy 𝑋 × 𝐼 → 𝑋 whose restriction to 𝑁 takes
𝑖𝑑𝑁 to the constant map at 𝑒. Extending this homotopy trivially on the other factors
gives an obvious deformation retraction

𝐹 ×𝑄𝑖−1 ×𝑁 ×𝑄𝑛−𝑖−1 ⟶ 𝐹 ×𝑄𝑖−1 × {𝑒} ×𝑄𝑛−𝑖−1.

This shows that 𝑠𝑖 is equivalent to the inclusion of a NDR, so a cofibration.
Corollary 2.40. Let 𝐹 and 𝐹 ′ be right 𝑄-spaces. If 𝐹 → 𝐹 ′ is a 𝑄-equivariant ho-
motopy equivalence, then the induced map |𝐵(𝐹 ,𝑄)| → |𝐵(𝐹 ′, 𝑄)| is a homotopy
equivalence.

Proof. A homotopy equivalence is just a fibration with contractible fiber. By Lemma
2.37 we get a quasifibration

∗⟶ 𝐵(𝐹 ,𝑄) ⟶ 𝐵(𝐹 ′, 𝑄).

Passing to the exact sequence of homotopy groups, we see that the induced map gives
isomorphism on all homotopy groups, so by Whitehead’s theorem it is a homotopy
equivalence.

We also prove the following two technical lemmas concerned with the interaction
of certain categorical constructions and the classifying space construction.
Lemma 2.41. Let 𝑄 be a topological monoid. Let 𝐹 = colim

(

𝐹1 → 𝐹2 → ...
)

be a
colimit of right 𝑄-spaces where each map in the colimit is 𝑄-equivariant. If all 𝐹𝑘 and
𝑄 are compactly generated Hausdorff spaces, then |𝐵(𝐹 ,𝑄)| ≅ colim

(

|𝐵(𝐹1, 𝑄)| →
|𝐵(𝐹2, 𝑄)| → ...

)

.

Proof. The proof is purely formal. Since the product functor is a left adjoint in the
category of CGHD spaces, it preserves colimits. Hence we have for all 𝑛 that

𝐹 ×𝑄𝑛 × Δ𝑛 ≅ colim
(

𝐹1 ×𝑄𝑛 × Δ𝑛 ⟶ 𝐹2 ×𝑄𝑛 × Δ𝑛 ⟶ ...
)

.

To construct the geometric realization from these spaces, all we need is to take pushouts.
The pushouts are over attatching maps coming from simplicial relations. The-equivariance
of the maps 𝐹𝑘 → 𝐹𝑘+1 implies that thesee colimits commute.
Lemma 2.42. Given a cospan of topological spaces 𝐷

𝑔
←←←←←←→ Λ

𝜌
←←←←←←← 𝐹 where 𝐹 is a right

𝑄-space and 𝜌 is 𝑄-invariant, we have a natural 𝑄-action on the pullback 𝑔∗𝐹 and a
canonical isomorphism

𝑔∗|𝐵(𝐹 ,𝑄)| ≅ |𝐵(𝑔∗𝐹 ,𝑄)|
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Proof. Recall that the pullback can be constructed as
𝑔∗𝐹 = {(𝑥, 𝑓 ) ⊂ 𝐷 × 𝐹 | 𝑔(𝑥) = 𝜌(𝑓 )}

with the obvious projections to 𝐹 and 𝐷. Now we define a right action of 𝑄 on 𝑔∗𝐹 by
setting (𝑥.𝑓 )⋅𝑞 = (𝑥, 𝑓 ⋅𝑞). This is well defined since 𝜌 is invariant. It is now easily seen
that the projection to 𝐹 is equivariant with respect to the actions, while the projection
to 𝐷 is invariant. This means that they descend to maps making the following diagram
commute

|𝐵(𝑔∗𝐹 ,𝑄)| |𝐵(𝐹 ,𝑄)|

𝐷 Λ

𝜌

𝑔

So we see that |𝐵(𝑔∗𝐹 ,𝑄)| comes with the required maps to satisfy the universal prop-
erty of 𝑔∗|𝐵(𝐹 ,𝑄)|. It remains to show that any other such diagram factors through the
above. This should be apparent by considering the disjoint union composition of the
geometric realizations from Lemma 2.10, and we omit this part of the proof.

2.4 Monoid maps and group completions
This section is not essential for the following. Its main purpose was to verify the claim
𝐵ℤ ≃ 𝐵ℕ made in Lemma 2.22 of [TGNL]. While we prove this in the present section,
we ended up using an alternative proof for Lemma 2.22 which does not rely on this
result. We chose to include this section anyways since it provides some intuition.

For discrete groups𝐺 it is well known that |𝐵𝐺| is an Eilenberg–MacLane space of
type𝐾(𝐺, 1), i.e. a CW-complex with all homotopy groups trivial except for𝜋1(𝐾(𝐺, 1)) =
𝐺. From a monoid𝑀 , one can construct a group completion𝑀∗ with a canonical map
𝜙∶ 𝑀 → 𝑀∗. It is natural to ask what the relationship between |𝐵𝑀| and |𝐵𝑀∗

|

is. It was in fact conjectured that these should be homotopy equivalent. It turns out
that the map is at least a 1-equivalence, but also that any finite homotopy type can be
realized as |𝐵𝑀| for some discrete monoid𝑀 . For instance there exists a five element
monoid 𝑃 with |𝐵𝑃 | ≃ 𝑆2, which can clearly not be a 𝐾(𝑃 ∗, 1) [8]. However the
equivalence |𝐵𝑀| ≃ |𝐵𝑀∗

| will hold in some favourable cases which we will explore
in this subsection.

Consider a map 𝑓 ∶ 𝑁 →𝑀 of topological monoids. By first applying 𝑓 and then
multiplying, we get an action of 𝑀 on 𝑁 . Our first goal will be to prove that (under
certain homotopy equivalence conditions as before) we have a quasifibration

|𝐵(𝑁,𝑀)| ⟶ |𝐵𝑀| ⟶ |𝐵𝑁|.

To prove this result we will exploit the fact that 𝑁 acts on 𝑀 both on the left and on
the right. These two actions commute by associativity. To exploit both these actions
we will need to define a version of 𝐵(𝐹 ,𝑄) for left actions. To distinguish between left
and right we temporarily denote 𝐹 ∕∕𝑄∶ = 𝐵(𝐹 ,𝑄).
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Definition 2.43. For a left 𝑄 space 𝐹 , let 𝑄 ∖∖ 𝐹 be the simplicial space given by
𝑄 ∖∖ 𝐹𝑛 = 𝑄𝑛 × 𝐹 with maps

𝜕𝑘(𝑞1, ..., 𝑞𝑛; 𝑥) = (𝑞1, ..., 𝑞𝑘−1, 𝑞𝑘 ⋅ 𝑞𝑘+1, 𝑞𝑘+2, ...𝑞𝑛; 𝑥) 1 ≤ 𝑘 ≤ 𝑛 − 1
𝜕0(𝑞1, ..., 𝑞𝑛; 𝑥) = (𝑞2, ..., 𝑞𝑛; 𝑥)
𝜕𝑛(𝑞1, ..., 𝑞𝑛; 𝑥) = (𝑥; 𝑞1, ..., 𝑞𝑛−1; 𝑞𝑛 ⋅ 𝑥)
𝑠𝑘(𝑞1, ..., 𝑞𝑛; 𝑥) = (𝑞1, ..., 𝑞𝑘, 𝑒, 𝑞𝑘+1, ..., 𝑞𝑛; 𝑥).

We can immediately see that with this definition we have𝑄∖∖ ∗≃ 𝐵𝑄. It is also clear
that most of our results about |𝐵(𝐹 ,𝑄)| have direct analogues in for𝑄∖∖𝐹 . For instance,
|𝑄 ∖∖𝑄| is contractible, and under obvious assumptions we have a quasifibration 𝑇 →
|𝑄 ∖∖ 𝐸| → |𝑄 ∖∖ 𝐹 |.

If a space 𝐹 has commuting actions of 𝑀 on the left and 𝑁 on the right, we get an
induced left action of 𝑀 on |𝐹 ∕∕𝑁| defined at the simplicial level by

𝐹 ×𝑁𝑘 𝑚⋅
←←←←←←←←←←←←←←←←←←←←←→ 𝐹 ×𝑁𝑘

(𝑓, 𝑛1, ..., 𝑛𝑘) ⟶ (𝑚 ⋅ 𝑓, 𝑛1, ..., 𝑛𝑘)

for all 𝑚 ∈𝑀 . Likewise we get an induced right action of 𝑁 on |𝑀 ∖∖ 𝐹 ||.
Lemma 2.44. The spaces |𝑀 ∖∖ |𝐹 ∕∕𝑁|| and ||𝑀 ∖∖ 𝐹 | ∕∕𝑁| are naturally homeo-
morphic.

Proof. These can be seen as the two of the different realizations of the bisimplicial
space

(𝑀 ∖∖ 𝐹 ∕∕𝑁)𝑚, 𝑛 =𝑀𝑚 × 𝐹 ×𝑁𝑛

with the obvious maps. This is well defined since the actions of 𝑀 and 𝑁 commute.
Proposition 2.15 then gives the result.

One application of this is the following
Proposition 2.45. If 𝑓 ∶ 𝑀 → 𝑁 is a continuous map of monoids and for all 𝑚 ∈𝑀 ,
the action map |𝐵(𝑁,𝑀)|

𝑚⋅
←←←←←←←←←←→ |𝐵(𝑁,𝑀)| is a homotopy equivalence, then we have a

quasifibration

|𝐵(𝑁,𝑀)| ⟶ |𝐵𝑀|

|𝐵𝑓 |
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |𝐵𝑁|.

If |𝐵(𝑁,𝑀)| is contractible, |𝐵𝑓 | is a homotopy equivalence.

Proof. Consider the following commutative diagram.
|𝐵𝑀| |𝐵𝑁|

||𝑁 ∖∖𝑁| ∕∕𝑀| ||𝑁 ∖∖𝑁| ∕∕𝑁|

|𝑁 ∖∖ |𝑁 ∕∕𝑀|| |𝑁 ∖∖ |𝑁 ∕∕𝑁||

|𝑁 ∕∕𝑀| |𝑁 ∖∖ |𝑁 ∕∕𝑀|| |𝐵𝑁|
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All the vertical maps are homotopy equivalences, and the bottom row is a quasifibration
by Lemma 2.37. In the case where |𝑁∕∕𝑀| is contractible, we get a levelwise homotopy
equivalence in the third row.

To use this result we will now develop sufficient conditions for |𝐵(𝑀,𝑁)| to be
contractible. Our motivation for this will be to show that the inclusion ℕ → ℤ induces
equivalence |𝐵ℕ| → |𝐵ℤ|. We will use a couple monoid theoretic definitions.
Definition 2.46. A monoid 𝑀 is called left cancellative if for all 𝑚,𝑚1, 𝑚2 ∈𝑀

𝑚 ⋅ 𝑚1 = 𝑚 ⋅ 𝑚2 ⟹ 𝑚1 = 𝑚2,

and right cancellative if for all 𝑚,𝑚1, 𝑚2 ∈𝑀

𝑚1 ⋅ 𝑚 = 𝑚2 ⋅ 𝑚 ⟹ 𝑚1 = 𝑚2.

Definition 2.47. A submonoid 𝑁 ⊂ 𝑀 is called filtering if for any 𝑚1, 𝑚2 ∈ 𝑀 there
exists 𝑚 ∈𝑀 and 𝑛1, 𝑛2 ∈ 𝑁 such that

𝑚1 = 𝑚 ⋅ 𝑛1 and 𝑚2 = 𝑚 ⋅ 𝑛2.

The goal of the next lemmas will be to prove that when 𝑁 ⊂ 𝑀 is a filtering
submonoid of a left cancellative discrete monoid, |𝐵(𝑀,𝑁)| is contractible. One way
to prove this is to note that these conditions are exactly the ones required for (𝑀,𝑁) to
be a filtered category. It is a standard result of the classifying spaces of categories that
this is contractible. Here we present a less categorical proof of the same fact building
on the theory we already have.
Lemma 2.48. Let 𝐸 be a simplicial set with 𝐸0 finite and let 𝑀 be a left cancellative
monoid with a filtering submonoid 𝑁 . Then any simplicial map

𝑓 ∶ 𝐸 ⟶ 𝐵(𝑀,𝑁) (2.6)
extends to a simplicial map

𝑓 ∶ 𝐶𝑋 ⟶ 𝐵(𝑀,𝑁).

Proof. In this proof we will repeatedly use Proposition 2.33, and work with 𝑁-twisted
𝑀-bundles on 𝐸 instead of simplicial maps. The moral of the proof is that the filtering
property of 𝑁 ⊂ 𝑀 will allow us to connect more and more vertices to the tip of
the cone, while left cancellation in 𝑀 will ensure that we do not create any higher
dimensional holes during this process.

We will induct on the vertices 𝐸0 = {𝑥0, ..., 𝑥𝑁}, so we set
𝐸𝐾𝑛 = {𝜎 ∈ 𝐸𝑛 | 𝑣𝑖(𝜎) ∈ {𝑥0, ..., 𝑥𝑘} ∀𝑖 = 0, ..., 𝑛},

and assume we have 𝑓𝑘 ∶ 𝐶𝐸𝑘 → 𝐵(𝑀,𝑁) extending 𝑓 |𝐸𝑘 . We denote
𝑚𝑖 = 𝑓 (𝑥𝑖) ∈𝑀 for 𝑖 = 1, ..., 𝑘 + 1
𝑚 = 𝑓𝑘((∗, 1)) ∈𝑀

(𝑚, 𝑛𝑖) = 𝑓𝑘((𝑥𝑖, 1)) ∈𝑀 ×𝑁 for 𝑖 = 1, ..., 𝑘.
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Now we know from our characterizations of the simplicial structure on 𝐵(𝑀,𝑁) that
the map 𝑓𝑘 can only be simplicial if 𝑚𝑖 = 𝑚 ⋅ 𝑛𝑖 for all 𝑖 = 1, ..., 𝑘. Moreover if 𝑒 ∈ 𝐸𝑘1is any edge from 𝑥𝑖 to 𝑥𝑗 with 𝑓 (𝑒) = (𝑚𝑖, 𝑛𝑒) then the cocycle condition on the 2-cell
(𝑒, 1) implies that 𝑛𝑗 = 𝑛𝑖 ⋅ 𝑛. We summarize our information in the following picture.

m

mi ne mj

....
mk mk+1

ni nj nk

Now since 𝑁 is filtering, we know that there exists 𝑚′ ∈ 𝑀 , 𝑛, 𝑛′𝑘+1 ∈ 𝑁 such that
𝑚 = 𝑚′ ⋅ 𝑛 and 𝑚𝑘+1 = 𝑚 ⋅ 𝑛′𝑘+1. Using this data, we define a new extension

𝑓𝑘+1((∗, 1)) = 𝑚′

𝑓𝑘+1((𝑚𝑖, 1)) = (𝑚′, 𝑛 ⋅ 𝑛𝑖) for 𝑖 = 1, ..., 𝑘
𝑓𝑘+1((𝑚𝑘+1, 1)) = (𝑚′, 𝑛′𝑘+1)

summarized in the following picture.

m

mi ne mj

....
mk mk+1

ni nj nk

n

n′
k+1

m′

It is now obvious from our construction that 𝑓𝑘+1 satisfies the twisting condition. The
cocycle condition is clearly still satisfied on any (𝜎, 0) for 𝜎 ∈ 𝐸2 since we are extending
𝑓 . For 2-cells of the form (𝑒, 1) as above, we have

𝑛𝑗 = 𝑛𝑖 ⋅ 𝑛𝑒 ⟹ 𝑛 ⋅ 𝑛𝑗 = 𝑛 ⋅ 𝑛𝑖 ⋅ 𝑛𝑒,

so the cocycle condition still holds. It remains to check this when 𝑒 is some edge going
to or from 𝑥𝑘+1. If 𝑓 (𝑒) = (𝑚𝑘+1, 𝑛𝑒) we have

𝑚′ ⋅ 𝑛 ⋅ 𝑛𝑖 = 𝑚𝑖 = 𝑚𝑘+1 ⋅ 𝑛𝑒 = 𝑚′ ⋅ 𝑛′𝑘+1 ⋅ 𝑛𝑒,
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so by cancelling 𝑚′ we get 𝑛 = 𝑛′𝑘+1 ⋅ 𝑛𝑒 which is exactly what we need. A similar
argument shows the case when 𝑒 goes from 𝑥𝑖 to 𝑥𝑘+1. This concludes the induction
step. The base case is trivial, so since 𝐸0 was finite this concludes the proof.
Proposition 2.49. If𝑁 is a filtering submonoid of the discrete left cancellative monoid
𝑀 , the inclusion induces a homotopy equivalence |𝐵𝑁| → |𝐵𝑀|.

Proof. If we can show that 𝜋𝑛(|𝐵(𝑀,𝑁)|) = 0 for all 𝑛, the result will follow from
Lemma 2.45 and Whitehead. To that end let [𝑓 ] ∈ 𝜋𝑛|𝐵(𝑀,𝑁)|. Since the monoids
are discrete, 𝐵(𝑁,𝑀) is a simplicial set, and so simplicial approximation implies that
𝑓 is homotopic to |𝐹 | for some simplicial map 𝐹 ∶ 𝐸 → 𝐵(𝑁,𝑀), where 𝐸 is a
simplicial set with |𝐸| ≃ 𝑆𝑛. Now by compactness of 𝑆𝑛, we may assume 𝐸0 is finite,
so by Lemma 2.48 we can extend 𝐹 to a simplicial map 𝐹 ∶ 𝐶𝐸 → 𝐵(𝑀,𝑁). By
Lemma 2.22, the geometric realization of this map gives a homotopy |𝐹 | ∼∗.
Example 2.50. There are several different settings in which 𝑁 ⊂ 𝑀 turns out to be a
filtering submonoid. One example is to take𝑁 to be left cancellative and commutative,
and to let 𝑀 be the group completion. One can show that since 𝑁 is cancellative, the
group completion map 𝜙∶ 𝑁 → 𝑁∗ is injective, so it is equivalent to the inclusion of
a submonoid. To show that it is filtering, just write any pair of elements 𝑛1, 𝑛2 ∈ 𝑁∗ as

𝑛1 = 𝑛+1 − 𝑛−1 and 𝑛2 = 𝑛+2 − 𝑛−2

for 𝑛±𝑖 ∈ 𝑁 , and take 𝑚 = −𝑛−1 − 𝑛−2 . This gives
𝑛1 = 𝑚 + 𝑛+1 + 𝑛−2 and 𝑛2 = 𝑛+2 + 𝑛−1 .

In particular this shows that ℕ is a filtering submonoid of the left cancellative ℤ, so we
get the desired equivalence |𝐵ℕ| → |𝐵ℤ|.

2.5 MV maps
So far we have been working with cocycles and twists on simplicial spaces. This does
not quite match the definition of an actual principal bundle, where we need an open
cover and a Čech 1-cocycle. The purpose of this subsection is to introduce a tool to
translate between these two concepts. We will state the relevant definitions and results
from [TGNL, Appendix A], but we leave out all proofs. One thing to note is that we
really need a procedure to create directed simplicial sets. To see why, consider the
following attempt to define a nontrivial ℕ-cocycle.

a

??

Note that the cocycle condition applied to the degenerate 2-simplex above is 𝑎+ 𝑏 = 0.
For 𝑎, 𝑏 ∈ ℕ this is only possible if 𝑎 = 𝑏 = 0 which is very boring.

With this in mind we define
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Definition 2.51. A directed open cover of a topological space 𝑋 is given by a partially
ordered index set (𝐼,≤) and an open cover (𝑈𝑖)𝑖∈𝐼 , such that for all 𝑥 ∈ 𝑋 the set

𝐼𝑥 = {𝑖 ∈ 𝐼 | 𝑥 ∈ 𝑈𝑖}

is finite and totally ordered by ≤, and such that each 𝑈𝑖 is non empty.
Directed open covers can be pulled back over continuous maps if we take care to

discard any indices giving empty preimages. In particular we can restrict the cover to
any subspace of 𝑋. For any nondecreasing sequence 𝑖0 ≤ 𝑖1 ≤ ... ≤ 𝑖𝑛, we denote

𝑈𝑖0,𝑖1,...,𝑖𝑛 =
𝑛
⋂

𝑘=0
𝑈𝑖𝑘 .

From a directed open cover we construct a directed simplicial set as follows.
Definition 2.52. Let (𝐼,≤) index the directed open cover (𝑈𝑖)𝑖∈𝐼 . The Mayer–Vietoris
blow up of (𝑈𝑖) is a simplicial space which we denote by 𝑀𝑉 (𝑈∙). Its 𝑛-simplicies are
given by

𝑀𝑉 (𝑈∙)𝑛 =
∐

𝑖0≤𝑖1≤...≤𝑖𝑛

𝑈𝑖0,...,𝑖𝑛 ,

and any nondecreasing 𝛼∶ [𝑛] → [𝑚] induces 𝛼∗ via the inclusions
𝑈𝑖0,...,𝑖𝑚 ↪ 𝑈𝑖𝛼(0),𝑖𝛼(1),...,𝑖𝛼(𝑛) .

In particular the face map 𝜕𝑛𝑘 is given by the inclusions
𝑈𝑖0,...,𝑖𝑘,...,𝑖𝑛 ↪ 𝑈𝑖0,...,𝑖𝑘,...,𝑖𝑛 .

To see that𝑀𝑉 (𝑈∙) is ordered, we label any 𝑛-simplex as (𝑥, 𝑖0, ..., 𝑖𝑛) where 𝑖0 ≤ ... ≤
𝑖𝑛 and 𝑥 ∈ 𝑈𝑖0,...,𝑖𝑛 . The vertex set then inherits the order from 𝐼 by setting (𝑥, 𝑖) ≤ (𝑦, 𝑗)
if and only if 𝑖 ≤ 𝑗. Now the vertex maps are 𝑣𝑘(𝑥, 𝑖0, ..., 𝑖𝑛) = (𝑥, 𝑖𝑘), so (2.2) is satisfied
by definition. It should also be easy to see that a simplex is uniquely determined by its
vertices.
Example 2.53. The following table illustrates the 𝑀𝑉 (𝑈∙) construction for a simple
open cover of 𝑋 = [0, 1].
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𝑈∙

𝑀𝑉 (𝑈∙)0

𝑀𝑉 (𝑈∙)𝑁𝐷1

|𝑀𝑉 (𝑈∙)|

There is an obvious map |𝑀𝑉 (𝑈∙)| → 𝑋 given by the inclusions 𝑈𝑖0,...,𝑖𝑛 ↪ 𝑋.
(One can think of this as a simplicial map to the constant simplicial space at 𝑋). In
[TGNL] the following result concerning this map is shown.
Lemma 2.54. For any directed open cover (𝑈𝑖)𝑖∈𝐼 of𝑋, the natural map |𝑀𝑉 (𝑈∙)| →
𝑋 is a homotopy equivalence.

With these definitions it should be apparent that a Čech cocycle on an open cover
𝑈∙ of 𝑋 is the same as a simplicial cocycle on 𝑀𝑉 (𝑈∙). With this in mind, we make
the following definition.
Definition 2.55. Let 𝑆 be a simplicial space. An MV-map from 𝑋 to 𝑆 is specified by
a directed open cover 𝑈∙ of 𝑋 and a simplicial map 𝑀𝑉 (𝑈∙) → 𝑆.

The topologically meaningful information connected to an MV map is contained
in the homotopy class of the geometric realizations. It is therefore clear that we can at
least factor out the following equivalence.
Definition 2.56. Two MV-maps 𝑓 ∶ 𝑀𝑉 (𝑈∙) → 𝑆 and 𝑔∶ 𝑀𝑉 (𝑉∙) → 𝑆 are equiv-
alent if there exists an MV-map 𝐹 ∶ 𝑀𝑉 (𝑊∙) → 𝑆 over 𝑋 × [0, 1] that restricts to 𝑓
and 𝑔 on opposite ends of [0, 1].

In fact, this is precisely the equivalence relation we want, as stated in the following
result which can be extracted from [TGNL, Corollary A.11].
Proposition 2.57. Let 𝑋 be a space and 𝑆 a simplicial space. Then Geometric real-
ization induces a bijection

{

Equivalence classes of MV-
maps over X to S

}

⟶

{

Homotopy classes of maps
𝑋 ⟶ |𝑆|

}

.
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In particular, we are interested in combining this with Proposition 2.33.
Definition 2.58. Let 𝑄 be a topological monoid acting on a space 𝐹 . A 𝑄 bundle on a
space 𝑋 is given by a directed open cover (𝑈𝑖)𝑖∈𝐼 and for each 𝑖 < 𝑗, a continuous map
𝑞𝑖𝑗 ∶ 𝑈𝑖,𝑗 → 𝑄 satisfying the cocycle condition

𝑞𝑖𝑘(𝑥) = 𝑞𝑖𝑗(𝑥) ⋅ 𝑞𝑗𝑘(𝑥) for all 𝑖 < 𝑗 < 𝑘 ∈ 𝐼 and 𝑥 ∈ 𝑈𝑖,𝑗,𝑘.

A 𝑄-twisted map to 𝐹 over 𝑋 consits of a 𝑄-bundle (𝑈𝑖, 𝑞𝑖𝑗) as above, and in addition,
for each 𝑖 ∈ 𝐼 , a map 𝑓𝑖 ∶ 𝑈𝑖 → 𝐹 satisfying the twisting condition

𝑓𝑗(𝑥) = 𝑓𝑖(𝑥) ⋅ 𝑞𝑖𝑗(𝑥) for all 𝑖 < 𝑗 ∈ 𝐼 and 𝑥 ∈ 𝑈𝑖𝑗 .

For both these structures we define equivalence similarly to equivalence of MV-maps.
Note that results about 𝑄-twisted maps to 𝐹 automatically carry over to results about
𝑄-bundles by taking 𝐹 to be a point.
Remark 2.59. Allowing some informal yet suggestive notation, we can now see how
this definition relates to example 2.29. The cocycle 𝑞𝑖𝑗 defines something like a princi-
pal  bundle which we could denote  → 𝑃 → 𝑋. The twisting condition implies that
the maps 𝑓𝑖 glue together to a section of 𝐹 → 𝑃 × 𝐹 → 𝑋.
Corollary 2.60. There is a bijection

{

Equivalence classes of 𝑄-
twisted maps to 𝐹 over 𝑋

}

⟶

{

Homotopy classes of maps
𝑋 ⟶ |𝐵(𝐹 ,𝑄)|

}

.

Proof. Unwinding the definitions, a 𝑄-twisted maps to 𝐹 over 𝑋 is precisely the same
as a simplicial𝑄-tiwsted map to 𝐹 over𝑀𝑉 (𝑈∙) for some directed open cover 𝑈∙. The
result then follows immediately from Proposition 2.33 and Proposition 2.57.

One way to obtain an equivalent MV-map is by refining the open cover. This is a
useful tool since it will give us the flexibility to find sufficiently well behaved MV-maps
within a specified equivalence class.
Definition 2.61. A refinement of a directed open cover (𝑈𝑖)𝑖∈𝐼 is another directed open
cover (𝑉𝑗)𝑗∈𝐽 and a map 𝛾 ∶ 𝐽 → 𝐼 such that 𝑉𝑗 ⊂ 𝑈𝛾(𝑗) for all 𝑗 ∈ 𝐽 , and such that
the restriction 𝛾𝑥 ∶ 𝐽𝑥 → 𝐼𝑥 is nondecreasing for all 𝑥 ∈ 𝑋.

The proof of the following lemma paraphrases [TGNL, Lemma A.10].
Lemma 2.62. If 𝑓 ∶ 𝑀𝑉 (𝑈∙) → 𝑆 is an MV-map over𝑋, and 𝑉∙ is a refinement of 𝑈∙,
then the map defined on𝑀𝑉 (𝑉∙) by including 𝑉𝑗0,...,𝑗𝑛 ↪ 𝑈𝛾(𝑗1),...𝛾(𝑗𝑛) and then applying
𝑓 is equivalent to 𝑓 .

The following two results are concerned with applying refinements to find well be-
haved MV-maps. The proofs can be found in [TGNL, Appendix A].
Lemma 2.63. If 𝑋 is a smooth manifold, any directed open cover refines to a directed
cover indexed by a totally ordered 𝐼 .

Lemma 2.64. If 𝑋 is s smooth manifold, and 𝐹 and 𝑄 are smooth with 𝑄 acting
smoothly on 𝐹 , then any 𝑄-twisted map to 𝐹 over 𝑋 is equivalent to a smooth one.
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3 A twisted Giroux–Latour theorem
This section is concerned with section 2 of [TGNL]. The goal is to use the theory of
classifying spaces to generalize Theorem 1.1. We will start by setting up some relevant
definitions, then go on to give an outline of Giroux’ proof from [11]. We will then
briefly explain some of the differences between [TGNL] and [11], which will stake out
the course for the rest of this section. We will focus our energy on giving an alterna-
tive proof of the homotopy lifting property of symplectic reduction, and on utilizing the
results from section 2. Most of the material in this section is concerned with a care-
ful study of the underlying linear algebra. A standard reference on linear symplectic
geometry is [21].

3.1 Generating functions
Exact Lagrangians in 𝑇 ∗𝑀 can also be seen as Legendrians in the 1-jet bundle 𝐽 1(𝑀),
which we now explain.
Definition 3.1. Let 𝑀 be a smooth 𝑛-manifold. The 1-jet bundle of 𝑀 is the space
𝐽 1(𝑀) = 𝑇 ∗𝑀 ×ℝ. It is equipped with a standard contact structure given by the form
𝛼 = 𝑝∗1𝜆 − 𝑝∗2d𝑧 where 𝜆 = 𝑝d𝑞 is the Liouville form on 𝑇 ∗𝑀 , and where 𝑧 is the
natural coordinate on ℝ.
Definition 3.2. Let 𝑁 and 𝑀 be smooth 𝑛-manifolds. An immersion 𝜑 × 𝑧∶ 𝐿 →
𝑇 ∗𝑀 ×ℝ = 𝐽 1(𝑀) is called Legendrian if (𝜑 × 𝑧)∗𝛼 = 0.
Remark 3.3. If 𝜑∶ 𝐿 → 𝑇 ∗𝑀 is an exact Lagrangian, we have by definition that
𝜑∗𝜆 = d𝑓 for some function 𝑓 → ℝ. It is easily seen that 𝜑 × 𝑓 ∶ 𝐿 → 𝐽 1(𝑀) is
Legendrian. Dually, if we have some Legendrian 𝜑 × 𝑧∶ 𝐿→ 𝐽 1(𝑀), forgetting the 𝑧
factor gives an exact Lagrangian 𝜑∶ 𝐿→ 𝑇 ∗𝑀 .
Example 3.4. For any smooth function 𝑓 ∶ 𝑀 → ℝ, the 1-jet graph of 𝑓 is the em-
bedding 𝑗1𝑓 ∶ 𝑀 → 𝐽 1(𝑀) defined by 𝑥 ↦ (𝑥, d𝑥𝑓, 𝑓 (𝑥)). This is easily seen to be
Legendrian. This construction is the first example of a generating function of a Leg-
endrian immersion. To allow for more interesting Legendrians we will allow functions
that take in a fixed number of external variables, namely functions defined on an open
subset in 𝑀 ×ℝ𝑘.
Definition 3.5. A generating function is a triple (𝑛, 𝑈, 𝑓 ) where 𝑛 is a natural num-
ber, 𝑈 ⊂ 𝑀 × ℝ𝑛 is an open subset, and 𝑓 ∶ 𝑈 → ℝ is a smooth function such that
d𝑓 ⫛ 𝑇 ∗𝑀 × ℝ𝑛. Note that we interpret ℝ𝑛 as the zero section in 𝑇 ∗ℝ𝑛 ≃ ℂ𝑛, so
the latter condition can also be seen as the derivative with respect to 𝑣 ∈ ℝ𝑛 vanishing
transversely. The intersection d𝑓 ∩ 𝑇 ∗𝑀 ×ℝ𝑛 is the singular set

Σ𝑓 = {(𝑥, 𝑣) ∈ 𝑈 | 𝜕𝑣(𝑥, 𝑣) = 0} (3.1)
which comes with a natural Legendrian immersion

𝑖𝑓 × 𝑓 ∶ Σ𝑓 ⟶ 𝑇 ∗𝑀 ×ℝ
(𝑥, 𝑣) ⟼ (𝑥, 𝜕𝑥𝑓 (𝑥, 𝑣), 𝑓 (𝑥, 𝑣)).
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We say that the Legendrian immersion 𝜑 × 𝑧∶ 𝐿 → 𝐽 1(𝑀) admits the generating
function (𝑛, 𝑈, 𝑓 ) if 𝜑 × 𝑧 factors through 𝑖𝑓 × 𝑓 via a diffeomorphism 𝜓 ∶ 𝐿→ Σ𝑓 .
Example 3.6. When 𝑛 = 0, the singular set is all of 𝑀 , and 𝑖𝑓 × 𝑓 agrees with 𝑗1𝑓 . In
other words, (0,𝑀, 𝑓 ) is a generating function for 𝑗1𝑓
Example 3.7. In low dimension, we can visualize a generating function as a Cerf di-
agram. Figure 2 uses this technique to show a generating function for a Legendrian
unknot in 𝐽 1(ℝ) = ℝ3.

ℝ

ℝ𝑘

𝑀

(a) The generating function can be viewed as a smooth family of functions
indexed by 𝑀 . The critical set Σ𝑓 is formed by the critical points of the
indivdual functions in this family.

ℝ

𝑀
(b) The front projection of the Legen-
drian is the Cerf diagram of the family.

𝑇 ∗𝑀

0

𝑀
(c) The Lagrangian picture is the
derivative of the front.

Figure 2: A generating function for the Legendrian unknot.

The Cerf diagram 2b is defined by tracking only the critical values over the points of
𝑀 . It is equal to the image of the Legendrian under the front projection 𝐽 1(𝑀) → ℝ.
The Lagrangian 2c is the image of the Legendrian under the projection 𝐽 1(𝑀) → 𝑇 ∗𝑀 .
Since the contact form looks like d𝑧−𝜆, the Lagrangian being the derivative of the front
is precisely the condition for being Legendrian.

Note how the cusps in the Cerf diagram 2b correspond to birth/death of critical
points in the family of functions 2a. Note also that at such a birt/death event, the critical
point of higher critical value must have higher index than the one of lower critical value.
Example 3.8. Quadratic forms are functions with very simple singular sets. These
will allow us to construct new generating functions from existing ones. Let (𝑛, 𝑈, 𝑓 )
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be a generating function, and let 𝑞 be a nondegenerate quadratic form on ℝ𝑘 (or more
generally, let 𝑞 be a map from𝑀 to the space of nondegenerate quadratic forms on ℝ𝑘).
We then claim that (𝑛+𝑘, 𝑈 ×ℝ𝑘, 𝑓 ⊕𝑞) is also a generating function for 𝑖𝑓 ×𝑓 ∶ Σ𝑓 →

𝐽 1(𝑀). To see this, we use coordinates (𝑥, 𝑣, 𝑢) ∈ 𝑈×ℝ𝑘, and note that the only critical
point of a nondegenerate quadratic form is 0, where the value is also 0. Hence

Σ𝑓⊕𝑞 = Σ𝑓 × {0}.

The map (𝑥, 𝑣) ↦ (𝑥, 𝑣, 0) gives the required diffeomorphism, and the fact that 𝑓 (𝑥, 𝑣) =
𝑓 (𝑥, 𝑣) + 𝑞(0) = 𝑓 ⊕ 𝑞(𝑥, 𝑣, 0) implies that 𝑖𝑓 × 𝑓 factors through this map.

3.2 The Stable Gauss map
We denote the projection 𝑇 ∗𝑀 → 𝑀 by 𝜋𝑀 and the composition by 𝜋 = 𝜋𝑀◦𝜑
By definition, the bundle 𝑇𝑇 ∗𝑀 is a symplectic vector bundle. If we were working
with embeddings, we could consider d𝜙(𝑇𝐿) ⊂ 𝑇𝑇 ∗𝑀|𝜑(𝐿) as a subbundle. For im-
mersions we need to work with the pullback bundle 𝐸 = 𝜙∗𝑇𝑇 ∗𝑀 instead. This
symplectic bundle has a Lagrangian Grassmanian bundle Λ0(𝐸) defined by the fiber

Λ0(ℂ𝑛) = {Lagrangian vector subspaces ofℂ𝑛} = 𝑈 (𝑛)∕𝑂(𝑛)

and the same underlying principal 𝑈 (𝑛)-bundle as 𝐸. This bundle comes with two
sections:

• The vertical section 𝑉 (𝑥) = ker(d𝜑(𝑥)𝜋 ∶ 𝑇𝜑(𝑥)𝑇 ∗𝑀 → 𝑇𝜋(𝑥)𝑀).
• The Gauss section 𝐺𝜑(𝑥) = im(d𝑥𝜑∶ 𝑇𝑥𝐿→ 𝑇𝜋(𝑥)𝑀).

We now want to construct a map which measures the stable difference between these
two sections. To define stabilization, we will first trivialize the bundle 𝐸. We omit the
specifics of this stabilization, but summarize the salient facts in the following lemma.
Lemma 3.9. For any symplectic vector bundle 𝐸 over a compact base 𝐿, there exists
a trivial symplectic bundle 𝐿 × ℂ𝑛 with a morphism 𝐸 → 𝐿 × ℂ𝑛 which renders 𝐸 as
a symplectic subbundle and a direct summand. Moreover there is a map of Lagrangian
Grassmanians

Λ0(𝐸) ⟶ Λ0(𝐿 × ℂ𝑛) ≃ 𝐿 × Λ0(ℂ𝑛)
which maps the vertical subbundle of 𝐸 to the vertical of 𝐿 × ℂ𝑛.

Proof. We omit the proof, which can be found in [TGNL].
To stabilize, we wish to pass to the colimit Λ0(ℂ∞) which we now define.

Definition 3.10. If 𝐿 ⊂ ℂ𝑛 is Lagrangian, then so is ℝ ⊕ 𝐿 ⊂ ℂ𝑛+1. This defines a
smooth map of Lagrangian Grassmanians, and we set

Λ0(ℂ∞) = colim
(

Λ0(ℂ1)
ℝ⊕−

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Λ0(ℂ2)
ℝ⊕

←←←←←←←←←←←←←←←←←←←←←←←←←→ ⋯
)

.

The stable Gauss map is now defined by the composition

𝑔𝜑 ∶ 𝐿
𝐺𝜑

←←←←←←←←←←←←←←←←←←←←←←←→ Λ0(𝐸) ⟶ 𝐿 × Λ0(ℂ𝑛)
𝑝𝑟2

←←←←←←←←←←←←←←←←←←←←←←←←→ Λ0(ℂ𝑛) ⟶ Λ0(ℂ∞). (3.2)
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3.3 Symplectic reduction and stabilization
We give definitions of symplectic reduction and show how this is related to generating
functions.
Definition 3.11. Let (𝐸,𝜔) be a symplectic vector space. Recall that a (linear)subspace
𝐹 is called coisotropic if 𝐹𝜔 ⊂ 𝐹 , where 𝐹𝜔 denotes the symplectic compliment.
A standard construction of symplectic geometry is the symplectic reduction over 𝐹 ,
defined as the quotient 𝐹∕𝐹𝜔. The symplectic form 𝜔 descends to a symplectic form
on 𝐹∕𝐹𝜔, and if 𝐿 ⊂ 𝐸 is Lagrangian, then

𝜌𝐹 (𝐿) =
(𝐿 ∩ 𝐹 ) + 𝐹𝜔

𝐹𝜔
⊂ 𝐹∕𝐹𝜔

is also Lagrangian.
While the above definition gives a function Λ(𝐸) → Λ(𝐹∕𝐹𝜔), the intersection

operation is not well behaved enough to get a continuous map. However, we can restrict
the domain to the set of transversal Lagrangians denoted

Λ𝐹 (𝐸) = {𝐿 ∈ Λ0(𝐸) | 𝐿 ⫛ 𝐹 },

to get a smooth map 𝜌𝐹 ∶ Λ𝐹 (𝐸) → Λ0(𝐹∕𝐹𝜔).
Example 3.12. We have actually seen symplectic reduction at work already! At the
Linear level it is exactly what happens when we construct a Lagrangian immersion
from a generating function. If (𝑛, 𝑈, 𝑓 ) is a generating function, then the singular set
is precisely the transverse intersection between graph(d𝑓 ) and the coisotropic subman-
ifold 𝑇 ∗𝑀 × ℝ𝑛 in 𝑇 ∗(𝑀 × ℝ𝑘). Let 𝜓 ∶ 𝐿 → Σ𝑓 be the diffeomorphism factoring
𝜑 × 𝑧. At the level of Lagrangian tangent spaces, we have for any (𝑥, 𝑣) ∈ Σ𝑓 that

𝑇(𝑥,𝑣)Σ𝑓 ≃ graph(d(𝑥,𝑣)𝑓 )
⋂

(

𝑇𝑥𝑇
∗(𝑀) ×ℝ𝑘) ⊂ 𝑇(𝑥,𝑣)𝑇

∗(𝑀 ×ℝ𝑘).

It is easily seen that the symplectic compliment of 𝐹 = 𝑇𝑥𝑇 ∗𝑀 ×ℝ𝑘 is 𝐹𝜔 = 0 ×ℝ𝑘,
hence modding out𝐹𝜔 is precisely the projection to 𝑇𝑥𝑇 ∗𝑀 , which agrees with d(𝑥,𝑣)𝑖𝑓 .

We state and prove two technical lemmas about symplectic reduction. The first
describes iterated symplectic reduction, while the second shows how symplectomor-
phisms interact with reduction.
Lemma 3.13. Let 𝐸 be a symplectic vector space, and 𝑉 ⊂ 𝑊 two nested coisotropic
subspaces. Then 𝑉 ′ = 𝑉 ∕𝑊 𝜔 is coisotropic in 𝑊 ∕𝑊 𝜔 and

𝜌𝑉 = 𝜌𝑉 ′◦𝜌𝑊 .

Proof. The coisotropic part is ok since 𝑉 𝜔 ⊂ 𝑉 ⟹ 𝑉 𝜔∕𝑊 𝜔 ⊂ 𝑉 ∕𝑊 𝜔, and
(𝑉 ∕𝑊 𝜔)𝜔 = 𝑉 𝜔∕𝑊 𝜔 by definition of the symplectic structure on 𝑊 ∕𝑊 𝜔. Since
𝑉 ⊂ 𝑊 ⟹ 𝑊 𝜔 ⊂ 𝑉 𝜔, we have that
(𝐿 ∩𝑊 +𝑊 𝜔

𝑊 𝜔

⋂ 𝑉
𝑊 𝜔 + 𝑉 𝜔

𝑊 𝜔

)/ 𝑉 𝜔

𝑊 𝜔 =
(𝐿 ∩ 𝑉 + 𝑉 𝜔

𝑊 𝜔

)/ 𝑉 𝜔

𝑊 𝜔 = 𝐿 ∩ 𝑉 + 𝑉 𝜔

𝑉 𝜔 .

Unwinding the definitions this is exactly 𝜌𝑉 = 𝜌𝑉 ′◦𝜌𝑊 .
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Lemma 3.14. Let 𝐸 and 𝐸′ be symplectic vector spaces, and Ψ ∶ 𝐸 → 𝐸′ a linear
symplectomorphism. If 𝐹 ⊂ 𝐸 is coisotropic, then so is Ψ(𝐹 ) ⊂ 𝐸′. Furthermore Ψ
induces a symplectomorphism

Ψ′ ∶ 𝐹
𝐹𝜔

→
Ψ(𝐹 )
Ψ(𝐹 )𝜔

,

satisfying
𝜌Ψ(𝐹 )(Ψ(𝐿)) = Ψ′(𝜌𝐹 (𝐿))

for all Lagrangians 𝐿 ∈ 𝐸.

Proof. The key fact is that Ψ(𝐹𝜔) = Ψ(𝐹 )𝜔, which we now show.
Ψ(𝐹𝜔) = {Ψ(𝑦) | 𝜔(𝑦, 𝑥) = 0 ∀𝑥 ∈ 𝐹 }

=
{

𝑦′ | 𝜔
(

Ψ−1(𝑦′), 𝑥
)

= 0 ∀𝑥 ∈ 𝐹
}

=
{

𝑦′ | 𝜔
(

Ψ−1(𝑦′),Ψ−1(𝑥′)
)

= 0 ∀𝑥′ ∈ Ψ(𝑥)
}

=
{

𝑦′ | 𝜔′(𝑥′, 𝑦′) = 0 ∀𝑥′ ∈ Ψ(𝑥)
}

= Ψ(𝐹 )𝜔

Specifically, this means that the kernel of the composition

𝐹
Ψ

←←←←←←←←←←←←←←←←←←←→ Ψ(𝐹 ) ⟶
Ψ(𝐹 )
Ψ(𝐹 )𝜔

is exactly 𝐹𝜔, so we get an induced symplectomorphism as required. To see the part
about reduction of Lagrangians, consider

Ψ (𝐿 ∩ 𝐹 + 𝐹𝜔)
Ψ(𝐹 )𝜔

=
Ψ(𝐿) ∩ Ψ(𝐹 ) + Ψ(𝐹 )𝜔

Ψ(𝐹 )𝜔
= 𝜌Ψ(𝐹 )(Ψ(𝐿)).

By definition of Ψ′, the leftmost term computes the image Ψ′ (𝜌𝐹 (𝐿)
).

Generating functions are special in that they always produce Lagrangians that are
graphical over the zero section in 𝑇 ∗(𝑀 × ℝ𝑛). Being graphical is equivalent to being
transversal to the vertical subbundle 𝑉 . This motivates the following definitions.
Definition 3.15. For a symplectic vector space 𝐸, and a Lagrangian subspace 𝑉 ⊂ 𝐸,
we define Λ𝑛(𝐸) to be the space of Lagrangians in 𝐸 ×ℂ𝑛 transverse to the coisotropic
𝐸 ×ℝ𝑛. (This explains our insistence to denote the “regular” Lagrangian Grassmanian
by Λ0.) We set

Λ(𝐸) =
∐

𝑛∈ℕ
Λ𝑛(𝐸).

We denote by Λ𝑉𝑛 (𝐸) the subset of Λ𝑛(𝐸) of Lagrangians who are also transverse to
𝑉 × 𝑖ℝ𝑛, and set

Λ𝑉 (𝐸) =
∐

𝑛∈ℕ
Λ𝑉𝑛 (𝐸).

Nondegenerate quadratic forms are like generating functions over 𝑀 =∗, and they
will play an important role in the following sections.
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Definition 3.16. Let 𝑛 be the smooth manifold of nondegenerate quadratic forms on
ℝ𝑛. We set

 =
∐

𝑛∈ℕ
𝑛.

The direct sum operation
𝑞1 ⊕ 𝑞2(𝑢1, 𝑢2) = 𝑞1(𝑢1) + 𝑞2(𝑢2)

turns  into a topological monoid. The unit is the unique form on ℝ0 = {0}.
We want to define left and right actions of  on Λ(𝐸) paralleling Example 3.8.

Since 𝑞 is quadratic, the assignment 𝑢 ↦ d𝑢𝑞 is a linear map ℝ𝑛 → (ℝ𝑛)∗. The standard
symplectic structure on ℂ𝑛 identifies (ℝ𝑛)∗ with 𝑖ℝ𝑛, and so graph(d𝑞) ∈ ℂ𝑛 is an 𝑛-
dimensional linear subspace transverse both to 𝑖ℝ𝑛 and ℝ𝑛. It is a standard result of
symplectic geometry that this graph is Lagrangian, and moreover actually defines an
isomorphism

graph(d−)∶ 𝑛 ⟶ Λ0
𝑛(0).

The idea is now to let 𝑞 act on Λ(𝐸) by direct sum with graph(d𝑞). To make sure we
get Lagrangians in 𝐸 × ℂ𝑘, and not ℂ𝑘 × 𝐸 we need to be a little careful when acting
from the left.
Definition 3.17. For any 𝑛 ∈ ℕ, let 𝜎𝑛 denote the linear isomorphism

𝜎 ∶ 𝐸 ⊕ ℂ𝑛 ⟶ ℂ𝑛 ⊕𝐸.

We then define a right action by
Λ𝑛(𝐸) ×𝑠 ⟶ Λ𝑛+𝑠(𝐸)

(𝐿, 𝑞) ⟼ 𝐿⊕ graph(d𝑞),

and a left action by
𝑟 × Λ𝑛(𝐸) ⟶ Λ𝑛+𝑟(𝐸)

(𝑞, 𝐿) ⟼ 𝜎−1𝑛+𝑟
(

graph(d𝑞)⊕ 𝜎𝑛(𝐿)
)

.

From the structure of 𝜎 it should be easy to see that these actions are compatible. More-
over, it should be clear that 𝜎 preserves transversality in such a way that the above
actions restrict to

 × Λ𝑉 (𝐸) × ⟶ Λ𝑉 (𝐸).

For purposes of stabilization which will soon become apparent, we will fix a single
quadratic form, namely the form ℎ(𝑥1, 𝑥2) = 𝑥1 ⋅ 𝑥2 on ℝ2.
Definition 3.18. We denote the 𝑘-fold stabilizations of 𝐺𝜑 and 𝑉 respectively by

𝐺𝑘𝜑 = ℎ𝑘 ⋅ 𝐺𝜑 and 𝑉 𝑘 = ℎ𝑘 ⋅ 𝑉 .
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3.4 Outline and comparison with the classical result
We are now ready to state the precise version of theorem 1.1 as it appears in [11].
Proposition 3.19 (Giroux—Latour). Let 𝐿 and 𝑀 be closed smooth 𝑛-manifolds. An
exact Lagrangian immersion 𝜑∶ 𝐿 → 𝑇 ∗𝑀 admits a generating function if and only
if the sections 𝑉 𝑘 and 𝐺𝑘𝜑 are homotopic for some 𝑘.

The hypothesis of this theorem is not precisely the one we will use, but Proposition
2.6 of [TGNL] shows that it is equivalent to the hypothesis that the stable Gauss map is
nullhomotopic. This result will eventually be encompassed by the results of [TGNL],
but we will now give a rough sketch since this will inform our approach in the rest of
this section.
Proof sketch. The problem is first reduced to closed Lagrangians in ℂ𝑛 by embedding
𝑀 in ℝ𝑛. This allows reinterpreting the sections 𝐺𝜑 and 𝑉 as maps. Moreover the
Lagrangian Grassmanian is connected, so 𝑉 can be replaced by any constant map. In
our approach this step is replaced by trivialization of the tangent bundle as in Lemma
3.9.

Assume first that (𝑘, 𝑈, 𝑓 ) is a generating function for 𝜑. As in Example 3.12, we
get a lift of 𝐺𝜑 to Λ𝑖ℝ𝑛+𝑘 (ℂ𝑛) with respect to symplectic reduction. By definition of
stabilization, 𝐺𝑘𝜑 is also a lift of 𝐺𝜑. This is summarized in the following diagram
which commutes only for maps to Λ0(ℂ𝑛).

Λ𝑖ℝ𝑛𝑘 (ℂ𝑛)

Λ𝑘(ℂ𝑛)

𝐿 Λ0(ℂ𝑛)

𝜌

𝐺𝜑

d𝜓

𝐺𝑘𝜑

(3.3)

The rest of the proof now has two crucial ingredients
1. The map 𝜌∶ Λ𝑘(ℂ𝑛) → Λ0(ℂ𝑛) is a homotopy equivalence.
2. The inclusion Λ𝑉𝑘 (ℂ

𝑛) ↪ Λ𝑘(ℂ𝑛) is nullhomotopic.
From these it is easily seen that 𝐺𝑘𝜑 is nullhomotopic.

For the other direction we assume that 𝐺𝑘𝜙 is nullhomotopic. The crucial result is
now that the vertical composition in (3.3) is a fibration up to further stabilization. This
means that if we take let 𝐻 ∶ 𝐿 × 𝐼 → Λ𝑘(𝐸) be a homotopy of 𝐺𝑘𝜙 with a constant
map, we can lift the constant end, and stabilize to some Λ𝑉𝑘+𝑗(ℂ𝑛) where we can actually
lift the entire homotopy, and in particular the stabilized Gauss map.
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The lift of the Gauss map gives us the information we need about tangent spaces. To
find an actual manifold with these tangent spaces, we fix an embedding 𝜓 ′ ∶ 𝐿 → ℝ𝑙,
and consider the isotropic embedding

𝜑⊕ (𝜓 ′ × 0) × 𝑧∶ 𝐿⟶ (𝑇 ∗𝑀 ⊕ 𝑇 ∗ℝ𝑘) ×ℝ = 𝐽 1(𝑀 ×ℝ𝑘).

After further stabilization we get enough flexibility to homotope the lifted Gauss
map so that it is actually tangent with this embedding. The Weinstein theorem from
contact geometry then allows us to integrate to get the graph of our generating function.
We will not go into this part of the procedure in this thesis, but refer to steps 2 and 3 of
[TGNL, section 2.3].

The approach in [TGNL] differs in a couple of ways from this outline. First, it
packages the stabilization at the level of spaces, as defined in 3.28, to get a genuine
fibrationΛ𝑉∞(𝐸) → Λ0(𝐸). Second, it notes that the fiber of this is homotopy equivalent
to the space of nondegenerate quadratic forms (again with some stabilization) as shown
in 3.27.2 The idea is then to get rid of this fiber by applying the techniques from section
2, yielding a homotopy equivalence |𝐵(Λ𝑉∞(𝐸),)| ≃ Λ0(𝐸) in Corollary 3.30. A third
difference is, as we have already remarked, that we also pass to the limit𝐸 = ℂ∞, where
the homotopy equivalence actually becomes |𝐵(ℕ,)| ≃ Λ0(ℂ∞).

A fourth difference is that instead of lifting the Gauss map 𝐿 → 𝑈∕𝑂 directly,
it aims to factor through 𝜋 ∶ 𝐿 → 𝑀 up to homotopy. While Giroux and Latour are
only concerned with a local generating function defined on a potentially tiny neighbour-
hood of 𝐿, [TGNL] aims to eventually construct a global object where this difference
is meaningful. The restrictiveness of this factorization is well suited to the study of
nearby Lagrangians, since it is known that when 𝐿 is nearby Lagrangian, 𝜋 ∶ 𝐿 → 𝑀
is a homotopy equivalence [1].

2The proof of this gives part of the proof that 𝜌 from 3.3 is a homotopy equivalence; removing one transver-
sality condition identifies the fiber of 𝜌 with the affine space of (not necessarily nondegenerate) quadratic
forms, which is contractible.
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3.5 Linear symplectic relations and the homotopy lifting property
The goal of this section is to prove that symplectic reduction is a fibration up to sta-
bilization. The main ingredient of the proof is a fundamental technique in the study
generating functions, namely the symplectomorphism

Ψ∶ ℂ𝑛 × ℂ𝑛 ⟶ 𝑇 ∗ℝ2𝑛 ≃ ℂ2𝑛 (3.4)
(𝑥1 + 𝑖𝑦1, 𝑥2 + 𝑖𝑦2) ⟼ (𝑥2, 𝑦1, 𝑦2 − 𝑦1, 𝑥1 − 𝑥2).

One can check that this is a symplectomorphism, and that it sends the diagonal Δℂ𝑛 to
the zero section ℝ2𝑛. In ℂ𝑛×ℂ𝑛, transversal Lagrangians correspond to graphs of sym-
plectomorphisms, while in ℂ2𝑛, they correspond to generating functions. This means
that Ψ gives us a way to associate a generating function to a symplectomorphism. This
assignment has some desirable properties that we will demonstrate using the language
of symplectic relations. This will give us an alternative version of the proof found in
[TGNL].
Definition 3.20. A relation 𝑓 “from” 𝑌 to𝑋 is a subset 𝑓 ⊂ 𝑋 × 𝑌 . If 𝑓 ⊂ 𝑋 × 𝑌 and
𝑔 ⊂ 𝑌 ×𝑍, we define a new relation 𝑓◦𝑔 ⊂ 𝑋 ×𝑍 by

𝑓◦𝑔 = {(𝑥, 𝑧) ∈ 𝑋 ×𝑍 | ∃𝑦 ∈ 𝑌 s.t. (𝑥, 𝑦) ∈ 𝑓 and (𝑦, 𝑧) ∈ 𝑔}.

Alternatively, we could define composition by taking the intersection (𝑓 ×𝑔)∩(𝑋×
Δ𝑌 ×𝑍) and then projecting this set to 𝑋 × 𝑌 .
Example 3.21. Functions are special cases of relations. To view a function 𝑓 ∶ 𝑌 → 𝑋
as a relation, just consider

graph(𝑓 ) = {(𝑓 (𝑦), 𝑦) | 𝑦 ∈ 𝑌 } ⊂ 𝑋 × 𝑌 }.

With these definitions, composition of relations is compatible with composition of func-
tions, namely

graph(𝑓 )◦ graph(𝑔) = graph(𝑓◦𝑔).

Example 3.22. If we take 𝑍 to be a singleton ⋆, any subset 𝑆 ⊂ 𝑌 defines a relation
𝑆 × ⋆ ⊂ 𝑌 × ⋆. If we have any function 𝑓 ∶ 𝑌 → 𝑋, one can check that

𝑓 (𝑆) × ⋆ = graph(𝑓 ) ◦ (𝑆 × ⋆).

In later examples of this phenomenon we will suppress the ⋆.
To generalize structure preserving maps we replace arbitrary subsets with structured

subsets.
Definition 3.23. Let𝐸 and 𝐹 be symplectic vector spaces. A linear symplectic relation
from 𝐹 to 𝐸 is a linear Lagrangian subspace 𝜓 ⊂ 𝐸 ⊕ 𝐹 .

The first thing to note is that this is the right definition to generalize symplectomor-
phisms since the graph of any such is Lagrangian in 𝐸 ⊕ 𝐹 . The second is to note
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that composing linear symplectic relations 𝜓 ⊂ 𝐸 ⊕ 𝐹 and 𝜑 ⊂ 𝐹 ⊕ 𝐺 is equivalent
to the symplectic reduction of 𝜓 ⊕ 𝜑 ⊂ 𝐸 ⊕ 𝐹 ⊕ 𝐹 ⊕ 𝐺 over the coisotropic sub-
space 𝐸⊕Δ𝐹 ⊕𝐺. Since reduction sends Lagrangians to Lagrangians, this shows that
composition is well defined. As before, symplectic reduction is only continuous if we
restrict ourselves to Lagrangians transversal to 𝐸 ⊕ Δ𝐹 ⊕ 𝐺. This will always be the
case if either 𝜓 or 𝜑 is the graph of a symplectomorphism.

We are now ready to state and prove a crucial lemma, which will be the key to
proving the homotopy lifting property. The statement here is almost identical to [11,
Lemma II.7].
Lemma 3.24. For every 𝑛, 𝑘 ∈ ℕ, there exists an open neighbourhood𝑈0 of the identity
in𝑈 (𝑛), and a smooth 𝜏𝑛,𝑘 ∶ 𝑈0×Λ𝑉𝑘 (ℂ

𝑛) → Λ𝑉𝑘+2𝑛(ℂ
𝑛) such that the following diagram

commutes:
𝑈0 × Λ𝑖ℝ𝑛𝑘 (ℂ𝑛) Λ𝑖ℝ𝑛𝑘+2𝑛(ℂ

𝑛)

𝑈0 × Λ0(ℂ𝑛) Λ0(ℂ𝑛).

𝜏𝑛,𝑘

𝑖𝑑×𝜌 𝜌 (3.5)

Where the bottom map is the action (𝜃, 𝐿) ↦ 𝜃(𝐿). Moreover, 𝜏𝑛,𝑘 is equivariant
with respect to the right-action of  on Λ𝑉 (ℂ𝑛) in the sense that for 𝑞 ∈ 𝑗 we have
𝜏𝑛.𝑘+𝑗(𝜃, 𝐿 ⋅ 𝑞) = 𝜏𝑛,𝑘(𝜃, 𝐿) ⋅ 𝑞.

Proof. For all 𝑛, 𝑘, define a symplectomorphism Ψ𝑛,𝑘

Ψ𝑛,𝑘 = 𝑖𝑑ℂ𝑛 ⊕Ψ⊕ 𝑖𝑑ℂ𝑘 ∶ ℂ𝑛 ⊕ ℂ𝑛 ⊕ ℂ𝑛 ⊕ ℂ𝑘 ⟶ ℂ𝑛 ⊕ ℂ2𝑛 ⊕ ℂ𝑘

where Ψ is as in equation (3.4). We claim that we may take
𝜏𝑛,𝑘(𝜃, 𝐿) = Ψ𝑛,𝑘

(

graph(𝜃)⊕𝐿
)

.

This map is clearly smooth, and the following computation shows that the required
diagram commutes. To increase readability, we temporarily denote 𝜌𝑊 (𝐿) = 𝐿

𝑊
.

𝜌(𝜏𝑛,𝑘(𝜃, 𝐿)) =
Ψ𝑛,𝑘

(

graph(𝜃)⊕𝐿
)

ℂ𝑛 ⊕ℝ2𝑛+𝑘
=

graph(𝜃)⊕𝐿

ℂ𝑛 ⊕ Δℂ𝑛 ⊕ℝ𝑘

=
graph(𝜃)⊕ 𝜌ℂ𝑛⊕ℝ𝑘 (𝐿)

ℂ𝑛 ⊕ Δℂ𝑛
= 𝜃(𝜌(𝐿)).

The first equality follows by lemma 3.14 since Ψ𝑛,𝑘 is the identity on the first ℂ𝑛 factor,
and since Ψ maps the diagonal to ℝ2𝑛. The second equality follows from Lemma 3.13
applied to ℂ𝑛 ⊕ Δℂ𝑛 ⊕ ℝ𝑘 ⊂ ℂ3𝑛 ⊕ ℝ𝑘, and the third follow from example 3.22. It
remains to show that the correct transversalities are satisfied. To check transversality
with ℂ𝑛 ⊕ℝ2𝑛+𝑘, we use that

Ψ−1
𝑛,𝑘(ℂ

𝑛 ⊕ℝ2𝑛+𝑘) = ℂ𝑛 ⊕ Δℂ𝑛 ⊕ℝ𝑘,
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and instead check that
(

graph(𝜃)⊕𝐿
)

⫛
(

ℂ𝑛 ⊕ Δℂ𝑛 ⊕ℝ𝑘).

This follows from 𝜃 being an isomorphism, and from𝐿 ⫛ (ℂ𝑛⊕ℝ𝑘). To check transver-
sality with the vertical, we use

Ψ−1
𝑛,𝑘

(

𝑖ℝ3𝑛+𝑘) = 𝑖ℝ𝑛 ⊕ℝ𝑛 ⊕ 𝑖ℝ𝑛 ⊕ 𝑖ℝ𝑘,

which reduces the problem to
(graph(𝜃)⊕𝐿) ⫛ 𝑖ℝ𝑛 ⊕ℝ𝑛 ⊕ 𝑖ℝ𝑛 ⊕ 𝑖ℝ𝑘 ⟺ graph(𝜃) ⫛ 𝑖ℝ𝑛 ⊕ℝ𝑛 and 𝐿 ⫛ 𝑖ℝ𝑛+𝑘.

The 𝐿 part is always true since 𝐿 ∈ Λ𝑖ℝ𝑛𝑘 (ℂ𝑛), but the condition on graph(𝜃) is not
satisfied for all unitary matrices. It is however true if

𝜃 ∈ 𝑈0 = {𝐴 ∈ 𝑈 (𝑛) | 𝐴(ℝ𝑛) ⫛ 𝑖ℝ𝑛},

which we take as our open neighbourhood of the identity.
The increase in number of auxiliary variables from 𝑘 to 𝑘+ 2𝑛 in this lemma is the

part that adds the up to stabilization caveat to the fibration statement. For the proof in
[11], this lemma is sufficient, but in our approach a bit more care is needed. In particular
we need the stabilization to be compatible with the inclusion 𝑈 (𝑛) → 𝑈 (𝑛 + 1) which
we will use to pass to the limit ℂ∞. The following lemma shows that we can modify
the construction to achieve this.
Lemma 3.25. For all 𝑛, 𝑘 ∈ ℕ there exists a smooth-equivariant map 𝜏′𝑛,𝑘 ∶ Λ𝑖ℝ𝑛𝑘 (ℂ𝑛) →
Λ𝑖ℝ𝑛𝑘+2𝑛(ℂ

𝑛) making diagram (3.5) commute, and additionally satisfying

𝜏′𝑛,𝑘(𝑖𝑑, 𝐿) = ℎ𝑛 ⋅ 𝐿 for all 𝐿 ∈ Λ𝑖ℝ
𝑛

𝑘 (ℂ𝑛).

Proof. We will achieve this by defining
𝜏Φ𝑛,𝑘(𝜃, 𝐿) = Φ◦Ψ𝑛,𝑘

(

graph(𝜃)⊕𝐿
)

where Φ is in the group 𝐺 of symplectomorphisms Φ∶ ℂ3𝑛+𝑘 → ℂ3𝑛+𝑘 satisfying
Φ
(

ℂ𝑛 ⊕ℝ2𝑛+𝑘) = ℂ𝑛 ⊕ℝ2𝑛+𝑘 (3.6)
Φ
(

𝑖ℝ3𝑛+𝑘) = 𝑖ℝ3𝑛+𝑘 (3.7)
𝜋ℂ𝑛◦𝜓|ℂ𝑛⊕ℝ2𝑛+𝑘 = 𝜋ℂ𝑛 . (3.8)

The conditions (3.6) and (3.7) together imply that 𝜏Φ𝑛,𝑘 satisfy the right transversalities.
Condition (3.6) also puts us in the situation described in 3.14, and it should be clear
from (3.8) that the induced map on the symplectic quotient is 𝑖𝑑𝑛ℂ. This means we are
free to replace 𝜏𝑛,𝑘 with 𝜏Φ𝑛,𝑘 in diagram (3.5). One way to find matrices in G is to
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symplectisize matrices in GL(ℝ3𝑛+𝑘) since these by definition satisfy (3.7) and almost
(3.6). The symplectization of any 𝐴 ∈ GL(ℝ𝑁 ) is

𝐴𝜔 =
(

𝐴 0
0 (𝐴−1)𝑇

)

∶ ℝ𝑁 ⊕ 𝑖ℝ𝑁 ⟶ ℝ𝑁 ⊕ 𝑖ℝ𝑁 .

This is the unique symplectomorphism of ℂ𝑁 covering 𝐴. To satisfy ensure condi-
tion(3.6), and also satisfy (3.8), we act with matrices of the form

𝐴 =
(

1 0
𝐵 𝐶

)

∶ ℝ𝑛 ⊕ℝ2𝑛+𝑘 ⟶ ℝ𝑛 ⊕ℝ2𝑛+𝑘.

These have inverse transpose of the form

(𝐴−1)𝑇 =
(

1 ∗
0 ∗

)

∶ ℝ𝑛 ⊕ℝ2𝑛+𝑘 ⟶ ℝ𝑛 ⊕ℝ2𝑛+𝑘.

The 0 in the lower left corner of (𝐴−1)𝑇 implies that 𝐴𝜔(𝑖ℝ𝑛) ⊂ ℂ𝑛 ⊕ℝ2𝑛+𝑘. The 1 in
the upper left corners imply condition (3.8).

The goal is now to find a smooth map 𝐿 → 𝐴(𝐿) where 𝐴(𝐿) has the above form
for all 𝐿 ∈ Λ𝑖ℝ𝑛 (ℂ𝑛), such that

𝐴(𝐿)𝜔(𝜏𝑛,𝑘(𝜃, 𝐿)) = ℎ𝑛 ⋅ 𝐿.

To find such a map, we represent our Lagrangians as graphs of a symmetric matrices in
the standard basis. To see how our group acts on these representatives, we consider a
Lagrangian 𝐿 = (1+ 𝑖𝑆)(ℝ𝑁 ) for some𝑁 ×𝑁 real symmetric matrix 𝑆, and calculate

𝐴𝜔(𝐿) = 𝐴𝜔 (1 + 𝑖𝑆) (ℝ𝑁 )

=
(

𝐴 + 𝑖(𝐴−1)𝑇𝑆
)

𝐴−1(ℝ𝑁 )

=
(

1 + 𝑖(𝐴−1)𝑇𝑆𝐴−1) (ℝ𝑁 ).

If we consider only the symmetric matrix representatives, we get the action
(𝐴,𝑆) ⟼ 𝐴 ⋅ 𝑆 = (𝐴−1)𝑇𝑆𝐴−1. (3.9)

The only thing left is to sit down and explicitly compute the symmetric matrices rep-
resenting ℎ𝑛 ⋅ 𝐿 and 𝜏𝑛,𝑘(𝜃, 𝐿). We omit this computation here, but remark that the
required map is exactly the one described in [TGNL, equation 2.24]. Note that this map
is of the form described above.
Proposition 3.26. Let 𝐷 be a compact smooth manifold, and assume we are given a
smooth map 𝑔∶ 𝐷 × [0, 1] → Λ0(𝐸). We denote 𝑔0 = 𝑔◦𝑖0 ∶ 𝐷 → Λ0(𝐸). Then there
exists 𝑁 ∈ ℕ and a smooth map

Θ∶ 𝑔∗0Λ
𝑉 (𝐸) × [0, 1] ⟶ 𝑔∗Λ𝑉 (𝐸)

covering the identity on 𝐷 × [0, 1], such that;
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1. Θ(𝑥, 𝐿, 0) = ℎ𝑁 ⋅ 𝐿.

2. Θ is right -equivariant.

Proof. We fix an identification 𝐸 ≃ ℂ𝑛 such that 𝑉 corresponds to 𝑖ℝ𝑛. Since 𝑈 (𝑛) →
Λ0(ℂ𝑛) ≃ 𝑈 (𝑛)∕𝑂(𝑛) is a smooth fiber bundle, we may pick a smooth 𝜃∶ 𝐷× [0, 1] →
𝑈 (𝑛) which is the identity over𝐷×{0}, and such that 𝑔(𝑥, 𝑡) = 𝜃(𝑥, 𝑡)(𝑔0(𝑥)). Consider
the map

𝑇 ∶ 𝐷 × [0, 1] × [0, 1] ⟶ 𝑈 (𝑛)

(𝑥, 𝑡, 𝑠) ⟼ 𝜃(𝑥, 𝑡) ⋅ 𝜃(𝑥, 𝑠)−1.

Since 𝑇 (𝐷 × Δ) = 𝑖𝑑, the preimage of 𝑈0 is an open neighbourhood of 𝐷 × Δ. Since
𝐷 is compact, a basis for the neighbourhoods of 𝐷 × Δ is given by sets of the form
𝐷 × (𝑥 − 𝑡, 𝑥 + 𝑡) × (𝑥 − 𝑠, 𝑥 + 𝑠). This means we can find an open cover of 𝐷 × Δ
by such sets, all contained in 𝑇 −1(𝑈0). By compactness of 𝐷 × Δ we pass to a finite
subcover. Reindexing we use this cover to find a partition 0 = 𝑡0 < 𝑡1 < ... < 𝑡𝑀 = 1
such that 𝑇 (𝑥, 𝑡, 𝑡𝑘) ∈ 𝑈0 for all 𝑥 ∈ 𝐷 whenever 𝑡 is in a fixed open neighbourhood
𝑈𝑘 of [𝑡𝑘, 𝑡𝑘+1]. With this partition we define maps 𝜃𝑘 ∶ 𝐷 × [0, 1] → 𝑈0 by

𝜃𝑘(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑖𝑑 𝑡 < 𝑡𝑘
𝑇 (𝑥, 𝑡, 𝑡𝑘) 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1]
𝑇 (𝑥, 𝑡𝑘+1, 𝑡𝑘) 𝑡 > 𝑡𝑘+1.

The three partial definitions glue together to a continuous map. To make it smooth, we
modify both 𝜃𝑘 and 𝜃𝑘+1 in the neighbourhood 𝑈𝑘 ∩ 𝑈𝑘+1 of 𝑡𝑘+1, giving the smooth
fragmentation

𝜃(𝑥, 𝑡) = 𝜃𝑀 (𝑥, 𝑡) ⋅ 𝜃𝑀−1(𝑥, 𝑡) ⋅ ... ⋅ 𝜃0(𝑥, 𝑡). (3.10)
Combining this with the definition of 𝜃 gives

𝑔(𝑥, 𝑡) = 𝜃𝑀 (𝑥, 𝑡) ⋅ 𝜃𝑀−1(𝑥, 𝑡) ⋅ ... ⋅ 𝜃0(𝑥, 𝑡)(𝑔0(𝑥)).

We now inductively apply 𝜏′𝑛 to get our map. Explicitly, if (𝑥, 𝐿) ∈ 𝑔∗0Λ
𝑖ℝ𝑛 (ℂ𝑛), i.e.

𝑔0(𝑥) = 𝜌(𝐿), we take
Θ(𝑥, 𝐿, 𝑡) = (𝑥, 𝑡, 𝜏′𝑛(𝜃𝑀 (𝑥, 𝑡), 𝜏′𝑛(𝜃𝑀−1(𝑥, 𝑡), ...𝜏′𝑛(𝜃0(𝑥, 𝑡), 𝐿)...).

At t=0, all the 𝜃𝑘’s are 𝑖𝑑, so by Lemma 3.25 each application of 𝜏′𝑛 stabilizes by ℎ𝑛.
This means that taking 𝑁 =𝑀 ⋅ 𝑛 is sufficient.

The following lemma identifies the fiber of 𝜌. It appears as Lemma 2.15 in [TGNL],
and we cite it here without proof.
Lemma 3.27. If 𝐿 ∈ Λ0(𝐸), then the map

 ⟶ 𝜌−1(𝐻)
𝑞 ⟼ 𝐿 ⋅ 𝑞

is a homotopy equivalence.
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To get a genuine fibration, the idea is now to get rid of the ℎ𝑁 factor above by
passing to a colimit where this action is the invertible.
Definition 3.28. We let Λ𝑉∞(𝐸) and ∞ denote the following colimts.

Λ𝑉∞(𝐸) = colim
(

Λ𝑉 (𝐸)
ℎ⋅

←←←←←←←←←←←←←←←←←←←←→ Λ𝑉 (𝐸)
ℎ⋅

←←←←←←←←←←←←←←←←←←←←→ ...
)

∞ = colim
(


ℎ⋅

←←←←←←←←←←←←←←←←←←←←→ 
ℎ⋅

←←←←←←←←←←←←←←←←←←←←→ ...
)

Note that since 𝜌 is invariant with respect to both actions of , it descends to the
colimit giving a map 𝜌∶ Λ𝑉∞(𝐸) → Λ0(𝐸). Note also that the left and right actions of
 on Λ𝑉 (𝐸) commute, as does the actions on . Therefore we get right actions of 
on both the colimits. With these definitions we can turn the “homotopy lifting up to
stabilization” statement of Proposition 3.26 into a genuine Serre fibration.
Corollary 3.29. The map 𝜌∶ Λ∞(𝐸) → Λ0(𝐸) is a Serre fibration with fiber homotopy
equivalent to ∞.

Proof. Assume we are given the following commutative diagram.
𝐷𝑛 Λ𝑉∞(𝐸)

𝐷𝑛 × [0, 1] Λ0(𝐸)

𝑖0

ℎ0

𝜌

𝑔

(3.11)

Since 𝐷𝑛 is compact, ℎ0 factors through some finite step of the colimit. As we have
remarked, reduction is invariant with respect to the maps of the colimit, so we get the
following diagram.

𝐷𝑛 Λ𝑉 (𝐸) Λ𝑉∞(𝐸)

𝐷𝑛 × [0, 1] Λ0(𝐸)

𝑖0

ℎ̃0

𝜌
𝜌

𝑔

(3.12)

We see that ℎ̃0 is a lift of 𝑔0, so by definition it is a section of 𝑔∗0Λ𝑉∞(𝐸). By Proposition
3.26 we have a map Θ∶ 𝑔∗0Λ

𝑉 (𝐸) → 𝑔∗Λ𝑉 (𝐸), so we consider the following diagram.

𝐷𝑛 Λ𝑉 (𝐸) Λ𝑉∞(𝐸)

𝑔∗0Λ
𝑉 (𝐸) × [0, 1] 𝑔∗Λ𝑉 (𝐸)

𝐷𝑛 × [0, 1] Λ0(𝐸)

𝑖0

ℎ̃0

𝜌
𝜌Θ

𝑔

ℎ̃0×𝑖𝑑

(3.13)
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This diagram does not quite commute, since the two parallel arrows 𝐷𝑛 → Λ𝑉 (𝐸)
differ by a factor ℎ𝑁 coming from Θ. This difference can be killed off by including at
different steps of the colimit Λ𝑉∞(𝐸), so the diagram displays the required lift. It is clear
from Lemma 3.27 that the fiber of 𝜌∶ Λ𝑉∞(𝐸) → Λ0(𝐸) must be homotopy equivalent
to ∞.

We are now ready to apply the classifying space construction to get rid of the fiber
∞. The two main properties we will need is the fact that Θ from Proposition 3.26 is
-equivariant, and the fact that the functor |𝐵(−, 𝑄)| is well behaved with respect to
certain categorical constructions. We also remark that the monoid  is locally a finite
dimensional manifold, and hence a locally finite CW-complex. All the right -spaces
are manifolds or colimits of manifolds, and hence CW-complexes. In other words, the
hypothesis of Lemma 2.39 is satisfied, so all |𝐵(𝐹 ,𝑄)|’s appearing in this section are
CW-complexes.
Corollary 3.30. The map |𝐵(Λ𝑉∞(𝐸),)| → Λ0(𝐸) induced by symplectic reduction
is a Serre fibration with contractible fibers, and hence a homotopy equivalence.

Proof. For the fibration statement one can repeat the proof for Corollary 3.29 with
appropriate modifications; starting with a diagram similar to (3.11), we use Lemma
2.41 to factor ℎ0 through some |𝐵(Λ𝑉 (𝐸),)|, so we get a diagram similar to 3.12.
Since Θ from Proposition 3.26 is -equivariant, we can apply Lemma 2.42 thrice, to
get the following diagram.

𝑔∗0 |𝐵(Λ
𝑉 (𝐸),)| × [0, 1] 𝑔∗|𝐵(Λ𝑉 (𝐸),)|

|𝐵(𝑔∗0Λ
𝑉 (𝐸)) × [0, 1],)| |𝐵(𝑔∗Λ𝑉 (𝐸)),)|

≅

Θ′

≅

|𝐵(Θ,)|

One can check that Θ′ satisfies appropriate conditions to give a diagram similar to
(3.13).

By the invariance of 𝜌, the inclusion of any fiber 𝜌−1(𝐿) ↪ 𝐹 is an equivariant
map, and it is not hard to see that passing this to |𝐵(−,)| gives an isomorphism
|𝐵(𝜌−1(𝐿),)| ≅ (𝜌′)−1(𝐿). Thus by Lemma 3.27 we know the fiber of 𝜌′ is homotopy
equivalent to |𝐵(∞,)|. By Lemma 2.41 we have that,

|𝐵(∞,)| = colim
(

|𝐵(,)| ⟶ |𝐵(,)| ⟶ ...
)

.

Each |𝐵(𝑄,𝑄)| is contractible by Lemma 2.34, so the colimit is also contractible.

As with the stable Gauss map, we pass to the limit ℂ∞.
Definition 3.31. Paralleling Definition 3.10, we let

Λ𝑖ℝ
∞

∞ (ℂ∞) = colim
(

Λ𝑖ℝ∞ (ℂ)
ℝ⊕−

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Λ𝑖ℝ
2

∞ (ℂ2)
ℝ⊕−

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ...
)

Note that when we act with ℝ⊕ − we do not use the permutation 𝜎 of definition 3.17.
This means that the left actions ℝ⊕ − and ℎ ⋅ − commute.
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Each square
Λ𝑖ℝ𝑛∞ (ℂ𝑛) Λ𝑖ℝ𝑛+1∞ (ℂ𝑛+1)

Λ0(ℂ𝑛) Λ0(ℂ𝑛+1)

ℝ⊕−

𝜌 𝜌

ℝ⊕−

commutes, so 𝜌 descends to a map Λ𝑖ℝ∞
∞ (ℂ∞) → Λ0(ℂ∞) which we will also denote

by 𝜌. It is a purely formal result that this map is also a Serre-fibration with fiber ∞.
The maps ℝ ⊕ − are also -equivariant, so we get a natural -action on Λ𝑖ℝ∞

∞ (ℂ∞).
By Lemma 2.41, applying |𝐵(−,)| commutes with equivariant colimits, so Corollary
3.30 also carries over. We summarize these results in the following corollary.
Corollary 3.32. The map

𝜌∶ Λ𝑖ℝ
∞

∞ (ℂ∞) ⟶ Λ0(ℂ∞)

is a  invariant Serre-fibration with fiber ∞. The induced map

|𝐵(Λ𝑖ℝ
∞

∞ (ℂ∞),)| ⟶ Λ0(ℂ∞)

is a homotopy equivalence.

The next results are concerned with computing the homotopy type of the spaces
involved. The first two will be important in the sequel, while the latter shows how the
theorems so far are related to Bott periodicity.
Lemma 3.33. For all 𝑛, 𝑚 ∈ ℕ, the space Λ𝑖ℝ𝑚𝑛 (ℂ𝑚) is (𝑚 − 1)-connected, and so the
colimit Λ𝑖ℝ∞

𝑛 (ℂ∞) is contractible.

Proof. The space Λ𝑖ℝ𝑚+𝑛0 (ℂ𝑚+𝑛) is isomorphic to the affine space of quadratic forms on
ℝ𝑛+𝑚. The space Λ𝑖ℝ𝑚𝑛 (ℂ𝑚) is a submanifold which is isomorphic to the set of quadratic
forms whose graphs are transverse to ℂ𝑚 ⊕ ℝ𝑛. We claim that the compliment of
this set is contained in a submanifold of codimension 𝑚 + 1. To see this, note that
ℂ𝑚 + ℝ𝑛 + graph(d𝑞) is the image of a (3𝑚 + 2𝑛) × (2𝑚 + 2𝑛) matrix. The dimension
of this image is equal to the rank of the matrix, and we have transversaility if and only
if this rank is 2𝑚+2𝑛. If the rank is not maximal, the determinant of all the (𝑚+2(𝑚+𝑛)2(𝑚+𝑛)

)

maximal minors must vanish. It is well known that𝑚+1 ≤
(𝑚+𝑘
𝑘

), so the non transversal
set is contained in a set cut out by at least 𝑚 + 1 smooth functions.

Now for 𝑘 ≤ 𝑚−1, let 𝑎 ∈ 𝜋𝑘(Λ𝑖ℝ
𝑚

𝑛 (ℂ𝑚)). By Whitney approximation, we can pick
a smooth representative 𝑎 = [𝑓 ]. Since Λ𝑖ℝ𝑛+𝑚0 is affine, 𝑓 is smoothly contractible in
this space, i.e. it extends to a smooth map 𝑓 ∶ 𝐷𝑘+1 → Λ𝑖ℝ𝑛+𝑚0 . Since 𝑘 + 1 ≤ 𝑚 <
𝑚 + 1, standard transversality theory implies that this map can be modified relative to
the boundary to avoid the set of codimension 𝑚 + 1 from before, giving an extension
𝑓 ′ ∶ 𝐷𝑛 → Λ𝑖ℝ𝑚𝑛 (ℂ𝑚), showing that 𝑎 = 0.

This gives the following immediate consequence
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Corollary 3.34. Λ𝑖ℝ∞
∞ (ℂ∞) is homotopy equivalent to 𝑍 as right  spaces, where 

acts on ℤ by 𝑛 ⋅ 𝑞 = 𝑛 + dim(𝑞).

Proof. Since the maps defining the colimts commute, we have an isomorphism

Λ𝑖ℝ
∞

∞ (ℂ∞) ≅
(

∐

𝑚∈ℕ
Λ𝑖ℝ

𝑚
(ℂ𝑚) × ℕ

)

∕∼.

Where the equivalence relation is generated by (𝐿, 𝑖) ∼ (ℝ ⊕ 𝐿, 𝑖) and (𝐿, 𝑖) ∼ (ℎ ⋅
𝐿, 𝑖 + 1). Consider the maps

Λ𝑖ℝ
𝑚
(ℂ𝑚) × ℕ ⟶ ℤ (3.14)

(𝐿, 𝑖) ⟼ dim(𝐿) − 𝑚 − 2𝑖.

These descend to the above quotient since dim(ℝ ⊕ 𝐿) = dim(𝐿) + 1 and dim(ℎ ⋅
𝐿) = dim(𝐿) + 2. Moreover the map is  equivariant since dim(𝐿 ⋅ 𝑞) = dim(𝐿) +
dim(𝑞) = dim(𝐿) ⋅ 𝑞. An explicit computation shows that the preimage of any 𝑎 ∈
ℤ is homeomorphic to Λ𝑖ℝ∞

𝑛 (ℂ∞) for some 𝑛 ∈ ℕ, which is contractible by Lemma
3.33.

We also state the following lemma which is not strictly necessary, but which allows
relating the result to Bott-periodicity.
Lemma 3.35. There is a homotopy equivalence ∞ → ℤ × ℤ × 𝐵𝑂.

Proof. We give a somewhat informal proof of this lemma. As in the proof of 3.34, we
identify the colimit as

∞ =
(

 ×𝑁
)

∕∼
where (𝑞, 𝑖) ∼ (ℎ ⋅ 𝑞, 𝑖 + 1). Consider the maps

 ×𝑁 ⟶ ℤ
(𝑞, 𝑖) ⟼ dim(𝑞) − 2𝑖

and
 ×𝑁 ⟶ ℤ
(𝑞, 𝑖) ⟼ ind(𝑞) − 𝑖.

Both of these respect the above equivalence relation since dim(ℎ) = 2 and ind(ℎ) = 1,
so they descend to maps ∞ → ℤ. We also get a map

𝐸− ∶ ∞ ⟶ 𝐵𝑂

by mapping any 𝑞 ∈  to its negative eigenspace (of its symmetric matrix represen-
tative). Formally this is an element of the Grassmanian 𝐆𝐫

(

ind(𝑞). dim(𝑞)
), but we

include it into the colimit 𝐵𝑂. Now the usual stabilizations defining 𝐵𝑂 from 𝐆𝐫(𝑛, 𝑚)
are not compatible with the action of ℎ, but this can be resolved by a change of basis.
To show that this map is a fibration, we use the fact that the action 𝑂(𝑛) → 𝐆𝐫(𝑘, 𝑛) is
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a fibration. We then associate any quadratic form to its symmetric matrix, and let 𝑂(𝑛)
act on 𝑛 by conjugation. This satisfies

𝐸−(𝑆𝐴𝑆𝑇 ) = 𝑆(𝐸−(𝐴)),

so each 𝑄𝑛 →
∐

𝑘𝐆𝐫(𝑘, 𝑛) is a fibration. This induces a fibration 𝑄∞ → 𝐵𝑂 in the
colimit. We claim that the fiber of this map over any point is homotopy equivalent to
the fiber of 𝐸− ∶ 𝑘𝑛 → 𝐆𝐫(𝑘, 𝑛), where 𝑘𝑛 is the space of nondegenerate quadratic
forms on ℝ𝑛 with index 𝑘 for some 𝑛, 𝑘 ∈ ℕ. This should be believable since the two ℤ
factors keep track of the stable index and dimension, its just an issue of choosing 𝑖 and
representative in 𝐵𝑂 compatibly.

To see that this fiber is contractible, note that it consists of a contractible choice of
compliment 𝐸+, as well as a contractible choice of eigenvalues. To be more precise,
fix a single compliment 𝑉 . Then the space of compliments is in bijection with the
space of linear transformations 𝑉 → 𝐸−, which is contractible. Just as in the preceding
paragraph, the map𝐸+ is a fibration, so we can lift a contraction to get a retraction of our
fiber onto a subspace of matrices whose eigenvector decompositions respect 𝐸+⊕𝐸−.
The space of possible eigenvalues in our fiber is (−∞, 0)𝑘 × (0,∞)𝑛−𝑘, which is also
contractible. If we contract this to (−1, ...,−1, 1, ..., 1), we get a contraction of our fiber
to the unique quadratic form given by the matrix diag(−1, ...,−1, 1, ..., 1).

A corollary of the last few results is that the fibration sequence
∞ ⟶ Λ𝑖ℝ

∞

∞ (ℂ∞) ⟶ 𝑈∕𝑂

from Corollary 3.29 is actually the fibration
𝐵𝑂 × ℤ × ℤ ⟶ ℤ ⟶ 𝑈∕𝑂.

The following map of fiber sequences then shows Ω(𝑈∕𝑂) ≃ 𝐵𝑂 ×ℤ, which is one of
the eight homotopy equivalences of real Bott periodicity.

Ω(𝑈∕𝑂) ∗ 𝑈∕𝑂

𝐵𝑂 × ℤ × ℤ ℤ 𝑈∕𝑂

In [18], the arguments of this section are modified to actually prove all ten homotopy
equivalences of real and complex Bott periodicity.

We make one last refinement of the results, namely switching ℤ for ℕ. This will be
important when we define twisted generating functions in the next subsection.

Lemma 3.36. The map ℤ
+2
←←←←←←←←←←←→ ℤ induces a map |𝐵(ℤ,)| → |𝐵(ℤ,)| homotopic

to the identity. Furthermore the inclusion ℕ → ℤ induces a homotopy equivalence
|𝐵(ℕ,)| → |𝐵(ℤ,)|.
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Proof. Consider the diagram

Λ𝑖ℝ𝑘 (ℂ𝑘) Λ𝑖ℝ𝑘 (ℂ𝑘) ⋯

Λ𝑖ℝ𝑘 (ℂ𝑘) Λ𝑖ℝ𝑘 (ℂ𝑘) ⋯ .

ℎ⋅

ℎ⋅

ℎ⋅

ℎ⋅

ℎ⋅ ℎ⋅

Since this commutes, we get an induced map in the colimit Λ𝑖ℝ𝑘∞ (ℂ𝑘). As we remarked
in definition 3.10, the left action of ℎ is compatible with passing to the limit ℂ∞, so
we get a map of Λ𝑖ℝ∞

∞ (ℂ∞). In the notation of the proof of Corollary 3.34, this map
is equivalent to (𝐿, 𝑖) ↦ (ℎ ⋅ 𝐿, 𝑖), which in view of equation (3.14) covers ℤ +2

←←←←←←←←←←←→ ℤ.
We now apply |𝐵(−,)| to get the following diagram where the vertical arrows are
homotopy equivalences.

|𝐵(ℤ,)| |𝐵(ℤ,)|

|𝐵(Λ𝑖ℝ∞
∞ (ℂ∞),)| |𝐵(Λ𝑖ℝ∞

∞ (ℂ∞),)|

Λ0(ℂ∞) Λ0(ℂ∞)

+2

dim

ℎ⋅

𝜌

dim

𝜌

𝑖𝑑

By inserting homotopy inverses in this digram, we get the first part of the statement.
Let 𝐷 be any compact CW-complex. We use the bijection of 2.60 to define a map

[𝐷, |𝐵(ℤ,)| → [𝐷, |𝐵(ℕ,)|]. In view of the preceding calculation, we can stabilize
any -twisted map to ℤ by +2 without changing the homotopy class. Since 𝐷 is com-
pact, we can refine within the homotopy class to a finite cover, so by stabilizing a finite
number of times we get a -twisted map to ℕ. It should be clear that this map is inverse
to the map [𝐷, |𝐵(ℕ,)|] → [𝐷, |𝐵(ℤ,)|] induced by the inclusion. In particular,
taking 𝐷 = 𝑆𝑛 we get a weak equivalence, which by Whitehead must be a homotopy
equivalence.
Remark 3.37. We have included this alternative proof of Lemma 2.22 of [TGNL] since
we were not quite able to verify the proof given there. In [TGNL] the following diagram
is displayed, and is claimed to be a map of (quasi-)fibrations

|𝐵(ℕ,)| |𝐵| |𝐵ℕ|

|𝐵(ℤ,)| |𝐵| |𝐵ℤ|.

𝑖𝑑

In view of Example 2.50, the rightmost map is a homotopy equivalence. If the rows
were quasi-fibrations we could pass to the long exact sequence in homotopy groups,
and use the five lemma to conclude that |𝐵(ℕ,)| → |𝐵(ℤ,)| is a weak equivalence.
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The best result we were able to find concerning this quasi-fibration is Proposition 2.45,
which requires the extra assumption that any 𝑛 ∈ ℕ gives a homotopy equivalence

|𝐵(ℕ,)|
+𝑛

←←←←←←←←←←←←←←←←←←←←←←→ |𝐵(ℕ,)|.

This is not argued in [TGNL], and we were not able to come up with a direct proof of
this.

3.6 Twisted generating functions
We are now ready to define twisted generating functions, and to state the main theorem
of this section. We will give an outline of the proof, focusing on the parts concerned
with the linear level, but we leave the details to [TGNL].
Definition 3.38. A twisted generating function on a manifold𝑀 consists of the follow-
ing data:

• A directed open cover (𝑀𝑖)𝑖∈𝐼 of 𝑀 .
• For each 𝑖 ∈ 𝐼 , a generating function (𝑛𝑖, 𝑈𝑖, 𝑓𝑖) on 𝑀𝑖

• For each 𝑖 < 𝑗, a map 𝑞𝑖𝑗 ∶ 𝑀𝑖𝑗 → 𝑛𝑗−𝑛𝑖 .
Note that this implicitly requires 𝑖 < 𝑗 ⟹ 𝑛𝑖 ≤ 𝑛𝑗 . We use the notation 𝑛𝑖𝑗 = 𝑛𝑗 −𝑛𝑖.We will require a twisting condition and a cocycle condition. To make the twisting well
defined, we require that for all 𝑖 < 𝑗, 𝑈𝑗 ∩ (𝑀𝑖𝑗 × ℝ𝑛𝑗 ) ⊂ (𝑈𝑖 ∩ (𝑀𝑖𝑗 × ℝ𝑛𝑖 )) × ℝ𝑛𝑖𝑗 .
Then the twisting condition is that for all 𝑖 < 𝑗,
𝑓𝑗(𝑥, 𝑣, 𝑢) = 𝑓𝑖(𝑥, 𝑣)⊕ 𝑞𝑖𝑗(𝑥)(𝑢) for (𝑥, 𝑣, 𝑢) ∈ 𝑈𝑗 ∩ (𝑀𝑖𝑗 ×ℝ𝑛𝑗 ) ⊂ 𝑀𝑖𝑗 ×ℝ𝑛𝑖 ×ℝ𝑛𝑖𝑗 .

The cocycle condition is that for all 𝑖 < 𝑗 < 𝑘,
𝑞𝑖𝑘(𝑥) = 𝑞𝑖𝑗(𝑥)⊕ 𝑞𝑗𝑘(𝑥) for 𝑥 ∈𝑀𝑖𝑗𝑘.

Each of the generating functions (𝑛𝑖, 𝑈𝑖, 𝑓𝑖) defines a singular manifold Σ𝑓𝑖 and a
Legendrian immersion 𝑖𝑓𝑖 × 𝑓𝑖 ∶ Σ𝑓𝑖 → 𝐽1(𝑀). Since each nondegenerate quadratic
form 𝑞𝑖𝑗(𝑥) has a unique critical point at 0, the relation 𝑓𝑗 = 𝑓𝑖 ⊕ 𝑞𝑖𝑗 implies that

Σ𝑓𝑗 ∩ (𝑀𝑖𝑗 ×ℝ𝑛𝑗 ) =
(

Σ𝑓𝑖 ∩ (𝑀𝑖𝑗 ×ℝ𝑛𝑖 )
)

× {0}.

This means that we can take the union over all these spaces to get a manifold Σ𝑓 . Since
the critical value of 𝑞𝑖𝑗 is zero, we have moreover that 𝑓𝑖 = 𝑓𝑗 on the above sets. This,
together with 𝑓𝑗 = 𝑓𝑖⊕𝑞𝑖𝑗 implies that we can glue together all the 𝑖𝑓𝑖×𝑓𝑖’s to a Legen-
drian immersion 𝑖𝑓 ∶ Σ𝑓 → 𝐽 1(𝑀). As before we say that a given Legnedrian immer-
sion 𝜑 × 𝑧∶ 𝐿 → 𝐽 1(𝑀) admits the twisted generating function (𝑀𝑖, 𝑛𝑖, 𝑈𝑖, 𝑓𝑖, 𝑞𝑖𝑗) if
there exists a diffeomorphism 𝜓 ∶ 𝐿→ Σ𝑓 giving the factorization 𝜑×𝑧 = (𝑖𝑓 ×𝑓 )◦𝜓 .
Before we state the main result, we indicate how allowing twisting with a cocycle of
quadratic forms can remove obstructions to having a generating function.
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Example 3.39. Consider the following front diagram and corresponding Lagrangian
over 𝑀 = 𝑆1.

𝑆1

ℝ

𝑖

𝑖 − 1

𝑖 + 1

(a) The front projection of a Legendrian in 𝐽 1(𝑆1) with an attempt to coherently assign
indices.

𝑆1

𝑇 ∗𝑆1

(b) The corresponding Lagrangian.
Figure 3: A Legendrian immersion that does not admit a generating funciton.

Imagine we wanted to find a generating function for this Legendrian. The index of
the fiberwise critical points would have to be constant along the smooth branches of the
front, and at each cusp, we would expect a birth/death event like in figure 2a. As we
can see from the failed attempt to assign indices to such a function in a coherent way in
figure 3a, it seems impossible to come up with a generating function for this Legendrian.
Indeed, looking at the Lagrangian 3b, we can see that the “loop” represents a nontrivial
Gauss map; when we go once around 𝑆1, the tangent space also spins around one time.

The problem of coherent indices can be solved in this instance by allowing a twisted
generating function. By locally adding a quadratic form of index 2 to the left hand side
of this picture, we could at least have some hope of finding a generating function. The
next theorem will formalize this intuition.

Note that the above example does not constitute a counterexample to the nearby La-
grangian conjecture since the Lagrangian projection is not embedded. This also high-
lights an interesting feature of the conjecture; while it is easy to construct Legendrians
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with nontrivial invariants that guarantee they cannot be isotopic to zero, there is no
way to guarantee that the Lagrangian projection is embedded. In particular there is no
Whitney trick for Lagrangians, since the dimension must always be half of the ambient
dimension.
Proposition 3.40. Let𝐿 and𝑀 be closed, smooth, 𝑛-dimensional manifolds. A Legen-
drian immersion 𝜑 × 𝑧∶ 𝐿 → 𝐽 1(𝑀) admits a twisted generating function if and only
if the stable Gauss map factors through 𝜋 ∶ 𝐿→𝑀 up to homotopy. In other words, if
there exists ℎ∶ 𝑀 → Λ0(ℂ∞) such that ℎ◦𝜋 is homotopic to 𝑔𝜑.

Outline of proof. Assume first that𝜑×𝑧 admits a twisted generating function. The open
cover𝑀𝑖, the integers 𝑛𝑖 and the quadratic forms define precisely a -twisted map to ℕ
over 𝑀 , or equivalently (see Proposition 2.57) a simplicial map 𝑀𝑉 (𝑀∙) → 𝐵(ℕ,).
Denote 𝐿𝑖 = 𝜋−1(𝑀𝑖), 𝜑𝑖 = 𝜑|𝐿𝑖 and 𝐸𝑖 = 𝐸|𝐿𝑖 . Then the generating function
𝑓𝑖 ∶ 𝑈𝑖 → ℝ and the diffeomorphism 𝜓|𝐿𝑖 define a lift 𝜙𝑖 as in Example 3.12.

Λ𝑉𝑛𝑖 (𝐸𝑖)

𝐿𝑖 Λ0(𝐸𝑖)

𝜌𝜙𝑖

𝐺𝜑𝑖

The relations 𝑓𝑗 = 𝑓𝑖 ⊕ 𝑞𝑖𝑗 imply that on the tangent space level, we have 𝜙𝑗 =
𝜙𝑖⊕ graph(d𝑞𝑖𝑗) = 𝜙𝑖 ⋅ 𝑞𝑖𝑗 on the double intersection 𝐿𝑖𝑗 . After trivializing the bundle
𝐸 and passing to the colimits, the sections 𝜙𝑖 turn into maps 𝜙′ ∶ 𝐿𝑖 → Λ𝑖ℝ∞

∞ (ℂ∞). We
define new maps 𝑞′𝑖𝑗 ∶ 𝐿𝑖𝑗 →  by 𝑥↦ 𝑞𝑖𝑗(𝜋(𝑥))These give a cocycle on𝐿∙, and satisfy
the twisting condition 𝜙′

𝑗 = 𝜙′
𝑖 ⋅ 𝑞

′
𝑖𝑗 . By construction each 𝜙𝑖 lifts the stable Gauss map,

i.e. 𝜌◦𝜙′
𝑗 = 𝑔𝜑𝑖 . Together, the 𝜙′

𝑖’s and 𝑞′𝑖𝑗’s give precisely the data of a -twisted map
toΛ𝑖ℝ∞

∞ (ℂ∞), or equivalently a simplicial map (𝜙′
∙, 𝑞∙∙)∶ 𝑀𝑉 (𝐿∙) → 𝐵(Λ𝑖ℝ∞

∞ (ℂ∞),),
which again lifts 𝑔𝜑 over symplectic reduction. Considering the explicit form of the
homotopy equivalence dim∶ Λ𝑖ℝ∞

∞ (ℂ∞) → ℤ given in equation (3.14), it should be ap-
parent that dim ◦𝜙′

𝑖 = 𝑛𝑖. All of the above information is summarized in the following
commutative diagram of simplicial spaces, where arrows labeled “∼” become homo-
topy equivalences after passing to geometric realizations, and where𝑀 , 𝐿 and Λ0(ℂ∞)
are seen as constant simplicial spaces.

𝑀 𝑀𝑉 (𝑀∙) 𝐵(ℕ,) 𝐵(ℤ,)

𝐿 𝑀𝑉 (𝐿∙) 𝐵(Λ𝑖ℝ∞
∞ (ℂ∞),)

Λ0(ℂ∞)

∼ 𝑛∙ ∼

𝑔𝜑

𝜋

∼ 𝜙∙

∼

𝜌∼

Passing to geometric realizations and picking homotopy inverses where necessary gives
the required map ℎ∶ 𝑀 → Λ0(ℂ∞).
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For the opposite direction, we assume that ℎ∶ 𝑀 → Λ0(ℂ∞) factors the stable
Gauss map up to homotopy. We composeℎwith a homotopy inverse of 𝜌∶ |𝐵(Λ𝑖ℝ∞

∞ (ℂ∞),)| →
Λ0(ℂ∞). Since 𝑀 is compact, and by using Lemma 3.28 we can represent this map at
a finite step of the colimits, giving a map 𝑀 → |𝐵(Λ𝑖ℝ𝑚 (ℂ𝑚),)|. We assume here
that 𝑚 is sufficiently large that 𝑔𝜑 also factors through some 𝑔′1 ∶ 𝑀 → Λ0(ℂ𝑚). By
Proposition 2.57 this gives a directed open cover (𝑀𝑖)𝑖∈𝐼 of 𝑀 , and a -twisted map
to Λ𝑖ℝ𝑚∞ (ℂ𝑚) over this cover. By Lemma 2.64 we may assume this is given by smooth
maps 𝜙𝑖 ∶ 𝑀𝑖 → Λ𝑖ℝ𝑚𝑛𝑖

(ℂ𝑚) and 𝑞𝑖𝑗 ∶ 𝑀𝑖𝑗 → 𝑛𝑖𝑗 , and by Lemma 2.63 we may as-
sume 𝑀𝑖 is finite and totally ordered. We now pull this data back along 𝜋 by defining
𝐿𝑖 = 𝜋−1(𝑀𝑖), 𝜙′

𝑖 = 𝜙𝑖◦𝜋|𝐿𝑖 and 𝑞′𝑖𝑗 = 𝑞𝑖𝑗◦𝜋|𝐿𝑖𝑗 . The way we have constructed these
maps, 𝜃′𝑖 are not quite lifts of 𝑔′, but since everything commutes up to homotopy, the
maps 𝜌◦𝜃′𝑖 glue together into a map 𝑔′0 ∶ 𝐿 → Λ0(ℂ𝑚) which is homotopic (at least
after potentially increasing 𝑚) to 𝑔′1. To remedy this, we use the smooth homotopy lift-
ing property from Proposition 3.26. Letting 𝑔′ be a homotopy from 𝑔′0 to 𝑔′1, we get a
smooth -equivariant map

Θ∶ (𝑔′0)
∗Λ𝑖ℝ

𝑚
(ℂ𝑚) × [0, 1] ⟶ (𝑔′)∗Λ𝑖ℝ

𝑚
(ℂ𝑚).

We can view each 𝜙′
𝑖 as a local section of (𝑔′0)

∗Λ𝑖ℝ𝑚0 (ℂ𝑚), so composing each such
section with Θ1, we get new local sections

𝜙′′
𝑖 = Θ(𝜙′

𝑖, 1)∶ 𝐿𝑖 ⟶ (𝑔′1)
∗Λ𝑖ℝ

𝑚
(ℂ𝑚).

By definition these maps are local lifts of 𝑔1. By the equivariance of Θ, the twisting
condition 𝜙′′

𝑗 = 𝜙′′
𝑖 ⋅ 𝑞′𝑖𝑗 is still satisfied. It now remains to undo the trivialization;

we need to turn the maps 𝜃′′𝑖 into local sections of Λ𝑉 (𝐸) lifting the Gauss section
𝐺𝜑 ∶ 𝐿 → Λ0(𝐸). We have been intentionally vague about the exact procedure of
trivializations, so we will not go into the details of this. Suffice it to say that this can be
done at the cost of adding 𝑚 extra auxiliary variables.

The goal is now to turn each 𝜃′′𝑖 into a genuine function. We note that a generating
function (𝑘, 𝑈, 𝑓 ) for a Legendrian immersion 𝜑∶ 𝐿 → 𝐽 1(𝑀) is equivalent (through
the association 𝑓 ↦ 𝑗1𝑓 ) to an embedded Legendrian submanifold of 𝐽 1(𝑀 × ℝ𝑘)
which is graphical over 𝑈 ⊂ 𝑀 × ℝ𝑘, and which meets 𝐽 1(𝑀) × ℝ𝑘 transversally
along an embedding of 𝐿. The idea for acheiving this is to use the Whitney embedding
theorem to fix a map 𝜓 ′ ∶ 𝐿 → ℝ𝑘 for some 𝑘 ∈ ℕ such that 𝜓 = 𝜋 × 𝜓 ′ ∶ 𝐿 →
𝑀 × ℝ𝑘 is an embedding. Then 𝜃 = 𝜑 × 𝜓 ′ × 𝑧 is an isotropic embedding of 𝐿 in the
contact manifold 𝐽 1(𝑀 ×ℝ𝑘). Now the Weinstein neighborhood theorem for isotropic
submanifolds of contact manifolds states that given a distribution of Legendrian planes
tangent to an isotropic embedding, we can integrate to a Legendrian embedding. The
goal is therefore to modify each of the lifts 𝜙′′

𝑖 ∶ 𝐿𝑖 → Λ𝑉
𝑘+𝑛′′𝑖

(𝐸) to be tangent to the
embedding 𝜑 × 𝜓 ′ × 0 × 𝑧∶ 𝐿𝑖 → 𝐽 1(𝑀 × ℝ𝑘 × ℝ𝑛′′𝑖 ), while keeping the reduction
constant, and the twisting condition satisfied. The inductive procedure for doing this is
detailed in [TGNL], and is based on the method found in [11]. For us it suffices to say
that this is possible at the cost of further stabilization, and that the induction is possible
since we took 𝑀𝑖 to be a totally ordered finite cover.
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To conclude this section we state the following immediate corollary which will be
the starting point for the following section.
Corollary 3.41. Any nearby Lagrangian 𝜑∶ 𝐿 → 𝑇 ∗𝑀 admits a twisted generating
function.

Proof. By definition of exact Lagrangian, the embedding 𝜑 × 𝜑∗𝜆∶ 𝐿 → 𝐽 1(𝑀) is
Legendrian. By [1] the map 𝜋 ∶ 𝐿 → 𝑀 is a homotopy equivalence, so if we pick a
homotopy inverse 𝑟∶ 𝑀 → 𝐿 and define ℎ = 𝑔𝜑◦𝑟, the hypothesis of Proposition 3.40
is satisfied.
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4 Morse Homology
Using the Morse homology of a generating function to extract geometric information
about the Lagrangian is a fundamental technique in symplectic topology. It has for
instance been used to put topological bounds on Lagrangian intersections as in [7]. In
the case of nearby Lagrangians we are especially interested in the Morse theory of each
𝑓𝑥. Passing to this homology can be seen as the passage from a generating function for
𝐿 to a microlocal sheaf with singular support𝐿 [26]. Techniques from microlocal sheaf
theory have shown great promise for proving theorems about symplectic topology [13].
In [TGNL], many of the homological computations of section 3 are carried out in the
context of derived sheaves, which is natural considering the aforementioned connection.
We will opt for a different yet formally equivalent argument, using the perhaps more
well known language of spectral sequences and local systems.

Throughout this section we fix closed 𝑛-manifolds 𝐿 and𝑀 , and a Legendrian em-
bedding 𝜑× 𝑧 → 𝐽 1𝐿 covering a Lagrangian embedding 𝜑∶ 𝐿→ 𝑇 ∗𝑀 . From Corol-
lary 3.41, we know that 𝜑 × 𝑧 admits a twisted generating function. There are several
obstructions to doing Morse theory on such functions. First of all we only constructed
local generating functions defined on open subsets 𝑈𝑖 ⊂ 𝑀𝑖 × 𝑅𝑘𝑖 . Extending each 𝑓𝑖to a function which is well behaved at infinity is done by the so called doubling trick. A
second problem is the twisting. To do global computations we would like to “untwist”
the functions 𝑓𝑖 ∶ 𝑀𝑖 × 𝑅𝑘𝑖 to form a single function 𝐹 ∶ 𝑀 × ℝ𝑘 → ℝ. This might
not be possible directly, but after passing to the difference functions 𝛿𝑓𝑖 and stabilizing
by quadratic forms, we will be able to untwist. The structure of the difference func-
tion means that we can still extract homological information about (𝑓𝑖)𝑥 from 𝐹𝑥. The
setup of all this will mostly be deferred to [TGNL], but we will give a brief summary
in Subsection 4.2. In Subsection 4.3, we will use the Morse–Bott theory to show that

𝐻∗({𝐹 ≤ −4𝑠1}, {𝐹 ≤ ∞};ℤ) = 𝐻∗+𝑑(𝑀 ;ℤ).

We will also set up a fibration ({𝐹 ≤ −4𝑠1}, {𝐹 ≤ ∞}) →𝑀 and use the Serre spectral
sequence of this fibration to draw the desired conclusions. Some of our computations
are sensitive to both compactness and actions of 𝜋1(𝑀), so we will need to be a bit
careful. In particular we will use the Galois theory of covering spaces 𝑝∶ 𝑀̃ → 𝑀 to
come up with suitable finite covers. This theory is introduced in subsection 4.1. The
finiteness of covers requires that we use coefficients in ℤ∕𝑃 rather than ℤ. Lemma 3.26
of [TGNL] will allow us to carry our results back to ℤ coefficients.
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4.1 Covers and local systems

When 𝐸 𝑝
←←←←←←→ 𝐵 is a Serre fibration of CW-complexes with a simply connected base,

the fibration condition and the connectedness of 𝐵 imply that all the fibers 𝑝−1(𝑥) are
homotopy equivalent. To see this, consider a path 𝛾 connecting 𝑥 to 𝑦, and apply the
homotopy lifting property to the following diagram.

𝑝−1(𝑥) 𝐸

𝑝−1(𝑥) × 𝐼 𝐼 𝐵

𝑖0 𝑝
𝐺𝛾

𝑝𝑟2 𝛾

The commutativity of the diagram implies that restricting 𝐺𝛾 to 𝑝−1(𝑥) × {1} gives a
map𝐺𝛾1 ∶ 𝑝−1(𝑥) → 𝑝−1(𝑦). The homotopy lifting property also implies that homotopic
maps give homotopic lifts. If we consider the reversed path 𝛾−1, both the composed
paths 𝛾−1◦𝛾 and 𝛾◦𝛾−1 are homotopic to constant paths, so we can see that 𝐺𝛾−11 is a
homotopy inverse of 𝐺𝛾1 . Moreover the simply connectedness of 𝐵 implies that the in-
duced isomorphism (𝐺𝛾1)∗ ∶ 𝐻∗(𝑝−1(𝑥);𝑅) → 𝐻∗(𝑝−1(𝑦);𝑅) is independent of choice
of path. This information allows proving the existence of a homological Serre spectral
sequence

𝐸2
𝑝,𝑞 = 𝐻𝑞(𝐵;𝐻𝑞(𝐹 ;𝑅)) ⇒ 𝐻𝑝+𝑞(𝐸;𝑅)

where 𝐹 denotes an arbitrary fiber. If we however drop the simply connected assump-
tion and only assume that 𝐵 is connected, we get something slightly more complicated.
The induced isomorphisms (𝐺𝛾1)∗ are still independent of the homotopy class of the
path 𝛾 , but when 𝐵 is not simply connected there might exist several such homotopy
classes. The preceding discussion essentially shows that the homology of all the fibers
with coefficients in the ring 𝑅 defines a local coefficient system of 𝑅-modules.
Definition 4.1. A local coefficient system  of 𝑅-modules on a space 𝑋 consists of:

• For every point 𝑥 ∈ 𝑋, an 𝑅-module 𝑥.
• For any path 𝛾 ∶ [0, 1] → 𝑋, a module homomorphism 𝛾∗ ∶ 𝛾(0) → 𝛾(1).

The morphisms are subject to the conditions that the constant path at 𝑥 induces 𝑖𝑑𝑥 ,
and that (𝛾 ⋅ 𝛾 ′)∗ = 𝛾∗◦𝛾 ′∗. This data is equivalent to a functor ∶ Π1(𝑋) → 𝑅-mod,
where Π1(𝑋) denotes the fundamental groupoid of 𝑋.

For path connected spaces𝑋 we work with the monodromy representation of a local
system. This is given by a single𝑅-module𝐿 and for every point 𝑥 ∈ 𝑋 a representation
𝜋1(𝑋, 𝑥) → Aut(𝐿) together with compatible transfer morphisms for any path 𝛾 .

It is possible to define the homology of a space 𝑋 with coefficients in a local co-
efficient system. If one denotes the local system associated to a fibration by ∗(𝐹 ;𝑅)there is a spectral sequence

𝐸2
𝑝,𝑞 = 𝐻𝑞(𝐵;𝑞(𝐹 ;𝑅)) ⇒ 𝐻𝑝+𝑞(𝐸;𝑅).
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Remark 4.2. It is also possible to get a Serre spectral sequence in relative homology.
If 𝐹 → 𝐸 → 𝐵 and 𝐹 ′ → 𝐸′ → 𝐵 are fibrations, and we have a cofibration 𝐸′ → 𝐸
covering the identity on 𝐵, the relative homology ∗(𝐹 , 𝐹 ′;𝑅) defines a local system
on 𝐵, and we have a spectral sequence

𝐸2
𝑝,𝑞 = 𝐻𝑞(𝐵;𝑞(𝐹 , 𝐹 ′;𝑅)) ⇒ 𝐻𝑝+𝑞(𝐸,𝐸′;𝑅).

This statement appears as exercise 5.6 in [20].
In our approach we will try to avoid working with homology of local systems. The

only fact we will need is that if the monodromy 𝜋1(𝑋, 𝑥) → Aut(𝐿) is trivial, then
the associated homology theory coincides with ordinary homology with coefficients in
𝐿. To turn any local system into a trivial one, we will use the following relationship
between covers and 𝜋1(𝑋, 𝑥) representations.
Proposition 4.3. Let 𝑋 be path connected and locally simply connected. Fix a base-
point 𝑥 ∈ 𝑋 The functor 𝐹 𝑖𝑏𝑥 sending a covering space 𝑝∶ 𝑋̃ → 𝑋 to the fiber
𝑝−1({𝑥}) induces an equivalence of categories between the category of covers and the
category of left 𝜋1(𝑋, 𝑥) sets. Connected covers correspond to sets with a transitive
𝜋1(𝑋, 𝑥) action.

Proof. See [25, Theorem 2.3.4].
The following corollary extracts the part of the above that will be relevant to us.

Corollary 4.4. Let 𝑋 be path connected and locally simply connected. For any sub-
group 𝐻 ⊂ 𝜋1(𝑋, 𝑥), there exists a connected cover 𝑝∶ 𝑋𝐻 → 𝑋 such that 𝑝−1(𝑥) ≅
𝜋1(𝑋, 𝑥0)∕𝐻 (the set of left cosets of 𝐻). Moreover, for a choice of basepoint 𝑥̃0 ∈
𝑝−1(𝑥0) we have 𝑝∗(𝜋1(𝑋̃, 𝑥0) = 𝐻 .

Proof. The action 𝑔1 ⋅(𝑔𝐻) = (𝑔1𝑔)𝐻 is clearly transitive, so by 4.3 we get a connected
cover 𝑝∶ 𝑋𝐻 → 𝑋. The statement about 𝑝∗(𝜋1(𝑋̃, 𝑥0)) can be seen from the long exact
sequence of the fibration 𝑝, whose bottom terms are

0 → 𝜋1(𝑋𝐻 , 𝑥̃0)
𝑝∗
←←←←←←←←←←→ 𝜋1(𝑋, 𝑥) → 𝜋1(𝑋, 𝑥)∕𝐻 → 0. (4.1)

Definition 4.5. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map, and let  be a local system
on 𝑌 . Define a local system 𝑓 ∗ on 𝑋 by (𝑓 ∗)𝑥 = 𝑓 (𝑥) for any 𝑥 ∈ 𝑋. The
pushforward along any path 𝛾 ∶ 𝐼 → 𝑋 is given by the pushforward in  along the
composition 𝑓◦𝛾 ∶ 𝐼 → 𝑌 . If the spaces are connected and 𝜙∶ 𝜋1(𝑌 , 𝑦) → Aut(𝐿) is a
monodromy representation of , it should be clear that the monodromy representation
of the pullback 𝑓 ∗ is given by the composition

𝜋1(𝑋, 𝑥)
𝑓∗
←←←←←←←←←←→ 𝜋1(𝑌 , 𝑦)

𝜙
←←←←←←←→ Aut(𝐿) (4.2)

for any 𝑥 ∈ 𝑓−1(𝑦).
We call a local system finite if each ∗ is a finite module.
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Corollary 4.6. If is a finite local system on a path connected locally simply connected
space 𝑋, then there exists a finite cover 𝑝∶ 𝑋̃ → 𝑋 such that 𝑝∗ is trivial.

Proof. Let  have the monodromy representation 𝜙∶ 𝜋1(𝑋, 𝑥) → Aut(𝐿). Since 𝐿 is
a finite module, Aut(𝐿) is a finite group. Now ker(𝜙) is a subgroup of 𝜋1(𝑋, 𝑥), and
the first isomorphism theorem gives 𝜋(𝑋, 𝑥)∕ ker(𝜙) ≅ Aut(𝐿). Applying Corollary
4.4 to this situation we get a finite cover 𝑝∶ 𝑋̃ → 𝑋. Since 𝑝∗(𝜋1(𝑋̃, 𝑥̃)) = ker(𝜙), the
composed mondromy representation (4.2) is trivial.

In the special case of local systems of the form ∗(𝐹 ) for a fibration 𝐹 → 𝐸 → 𝐵,
we can further characterize the pullback along a map.
Lemma 4.7. Consider the following pullback of fibrations of CW-complexes where 𝐵
and 𝐵′ are connected.

𝐹 𝐹

𝑓 ∗𝐸 𝐸

𝐵′ 𝐵

𝑝′ 𝑝

𝑓

Then for any ring 𝑅, the local system associated to the fibration 𝑓 ∗𝐸 → 𝐵′ is isomor-
phic to the pullback 𝑓 ∗∗(𝐹 ;𝑅).

Proof. Since the spaces are connected we work with monodromy representations. The
homotopy lifting property of 𝑓 ∗𝐸 is defined in terms of the universal property of the
pullback, so looking back at the construction of ∗(𝐹 ) we get the following commuta-
tive diagram.

(𝑝′)−1(𝑥) 𝑓 ∗𝐸 𝐸

(𝑝′)−1(𝑥) × 𝐼 𝐵′ 𝐵

𝑖0

𝛾◦𝑝𝑟2 𝑓

The left dotted arrow computes the action of 𝛾 ∶ 𝐼 → 𝐵′ on 𝐻∗(𝑝−1(𝑥);𝑅), while the
right arrow computes the action of 𝑓◦𝛾 on 𝐻∗(𝑝−1(𝑓 (𝑥))). The commutativity shows
that the isomorphism (𝑝′)−1(𝑥) → 𝑝−1(𝑓 (𝑥)) induces an isomorphism of the required
local systems.

4.2 The doubling trick
In this subsection, we explain the passage from a local twisted generating function of 𝐿
to a globalized difference function 𝐹 . Smooth functions have good extension proper-
ties, so we can always extend any 𝑓 ∶ 𝑈 → ℝ to a smooth function 𝑓 ∶ 𝑀 ×ℝ𝑘 → ℝ.
The problem is that this operation tends to create a lot of new critical points, so 𝑓 might
generate a Legendrian that is larger than the one we started with. The doubling trick is
a trick to control these extra critical points, while also guaranteeing good behaviour at
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infinity. Specifically it turns a local generating function for 𝜑× 𝑧 into a global generat-
ing function which is linear at infinity for the 𝑠0-double 𝜑×(𝑧±𝑠0)∶ 𝐿∐

𝐿→ 𝐽 1(𝑀)
for a sufficiently small constant 𝑠0. This is carried out in Lemma 3.11 of [TGNL]. To
recover 𝐿 from its double. we wish to pull these two copies apart so that we can restrict
our attention to a single copy. This is one of the places where the hypothesis that 𝜑 is
an embedding is crucial; if any 𝜑 × (𝑧 ± 𝑠) has a double point, then the projection to
𝑇 ∗𝑀 must be a double point of 𝜑. Such a homotopy can be extended to an ambient
compactly supported contact isotopy [10]. In [7] a homotopy lifting property for gen-
erating functions is shown. It can be modified slightly to show that having a generating
function linear at infinity is invariant under compactly supported contact isotopy. When
𝑀 is compact we can pick a 𝑠1 such that 𝜑 × (𝑧 + 𝑠1) is contained in 𝑇 ∗𝑀 × (0,∞),
while 𝜑 × (𝑧 − 𝑠1) is contained in 𝑇 ∗𝑀 × (−∞, 0). The whole construction so far is
outlined in Figure 4. Explicitly, the doubled function is

𝑓 𝑡(𝑥, 𝑣,𝑤) = 𝑓 (𝑥, 𝑣) +𝑤 +
(1
4
+ 𝑡

)

𝛼(𝑥, 𝑣)(𝐷(𝑤) −𝑤),

where 𝑓 is an arbitrary extension of 𝑓 , 𝛼(𝑥, 𝑣) is a smooth bump function which is 1
near Σ𝑓 and 0 near Σ𝑓 − Σ𝑓 , and 𝐷(𝑤) is a smooth interpolation of 𝑤 and 𝑤3 − 3𝑤 as
illustrated in (4c). This function is linear at infinity since it is of the form

𝑓 (𝑥, 𝑣,𝑤) = 𝑤 + 𝑔(𝑥, 𝑣) + 𝜀(𝑥, 𝑣,𝑤)

where supp(𝜀) →𝑀 is proper [TGNL, Definition 3.1]
Extra care is needed to make all of this work for twisted generating functions. To

even define a twisted generating function linear at infinity, one needs to modify the
action of  on functions by defining ⊕𝑏 in such a way that 𝑔 ⊕𝑏 𝑞 is linear at infinity
when 𝑔 is. There is also some work needed to show that there is a homotopy lifting
property for twisted functions under contact isotopy (see [TGNL, Theorem 3.9]).

We now describe the untwisting. For any function 𝑔∶ 𝑀 × ℝ𝑘, we define the dif-
ference function

𝛿𝑔(𝑥, 𝑣1, 𝑣′1, ..., 𝑣𝑘, 𝑣
′
𝑘) = 𝑔(𝑥, 𝑣1, ..., 𝑣𝑘) − 𝑔(𝑥, 𝑣′1, ..., 𝑣

′
𝑘).

After further modifying ⊕, one can show that by applying the above construction to
each 𝑔𝑖 in a twisted generating function, we can find quadratic forms 𝑄𝑖 such that the
functions 𝛿𝑔𝑖 ⊕𝛿

𝑏 𝑄𝑖 glue together to a single function 𝐺∶ 𝑀 × ℝ𝑘 → ℝ [TGNL,
Lemma 3.19]. Now the specific structure of the difference function allows a very ex-
plicit computation in Morse homology, essentially relating the homology computed by
𝑔𝑥 and 𝛿𝑔𝑥. Specifically, [TGNL, Lemma 3.20] states that if the critical points of 𝑔 are
contained in (−2𝑐,−𝑐) ∪ (𝑐, 2𝑐) for some 𝑐 > 0 (which is the case for the 3𝑠1-double
with 𝑐 = 2𝑠1), then there exists a chain complex 𝐶 such that

𝐻∗({𝛿𝑔𝑥 < 2𝑐}, {𝛿𝑔𝑥 < −∞}) ≃ 𝐻∗({𝑔𝑥 < 𝑐}, {𝑔𝑥 < −∞})⊗𝐋 𝐶. (4.3)
Note that⊗𝐋 denotes the total left derived functor of the tensor product (see [27, section
10.6]). Lemma 3.26 of [TGNL] will allow us to get rid of this 𝐶 later, and it also allows
us to work with field coefficientsℤ∕𝑝, since𝐻∗(𝑋,𝐴;ℤ∕𝑝) ≃ 𝐻∗(𝑋,𝐴;ℤ)⊗𝐋ℤ∕𝑝[0].
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ℝ

𝑀 ×ℝ𝑘

𝑈
Σ𝑓

(a) Alocal generating function.

ℝ

𝑀 ×ℝ𝑘

Σ𝑓

(b) An arbitrary extension with more
critical points.

𝐷(𝑤)

𝑤

(c) The auxilliary function 𝐷(𝑤)

ℝ

𝑀 ×ℝ𝑘

Σ𝑓 𝑡𝑤

(d) The doubled generating function 𝑓 𝑡

ℝ

𝑀 ×ℝ𝑘+𝑁

0

(e) After the isotopy pulling the copies
of 𝐿 apart

Figure 4: The doubling trick illustrated.
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4.3 Proof of the main result
We are now ready to state and prove the following, which is a precise formulation of
Theorem 1.3.
Theorem 4.8. Let 𝐿 and 𝑀 be closed smooth 𝑛-manifolds, and let 𝜑 × 𝑧∶ 𝐿 →
𝐽 1(𝑀) be a Legendrian embedding covering a Lagrangian embedding 𝜑. Then for
sufficiently large 𝑠 > 0, the 𝑠-double 𝜑 × (𝑧 ± 𝑠) admits a twisted generating function
(𝑏,𝑀𝑖, 𝑛𝑖, 𝑓 𝑠𝑖 , 𝑞𝑖𝑗) such that for all 𝑖 and all 𝑥 ∈𝑀𝑖

𝐻∗
({

(𝑓 𝑠𝑖 )𝑥 ≤ −4𝑠1
}

,
{

(𝑓 𝑠𝑖 )𝑥 ≤ −∞
}

;ℤ
)

= ℤ[𝑑𝑖].

Proof. Step 1: Doubling and identifying critical points

By Corollary 3.41, 𝜑 × 𝑧 admits a local twisted generating function. Theorem 3.13 of
[TGNL] states that we can apply the doubling trick to each 𝑓𝑖 in a compatible way to
get a twisted generating function linear at infinity for the 𝑠0-double 𝜑 × (𝑧 ± 𝑠0). Now
let 𝑠1 > max𝑥∈𝑀 (|𝑧(𝑥)|). As remarked before, the hypothesis that 𝜑 is an embedding
implies that

(𝐿
∐

𝐿) × [0, 3𝑠1 − 𝑠0]
𝜑×(𝑧±(𝑠0+𝑡))
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝐽 1(𝑀)

is a homotopy of Legendrian embeddings. By the isotropic isotopy extension theorem
[10, Theorem 2.41], this extends to a compactly supported ambient contact isotopy.
Then by the homotopy lifting property for twisted functions linear at infinity [TGNL,
Lemma 3.7], we get a twisted generating function (𝑏,𝑀𝑖, 𝑛𝑖, 𝑓

3𝑠1
𝑖 , 𝑞𝑖𝑗) linear at infinity

for the 3𝑠1-double. Now consider one of the difference functions 𝛿𝑓 3𝑠1
𝑖 (𝑥, 𝑣, 𝑣′) =

𝑓 3𝑠1
𝑖 (𝑥, 𝑣) − 𝑓 3𝑠1

𝑖 (𝑥, 𝑣′). Critical points (𝑥, 𝑣) of this function satisfy the system

𝜕𝑥𝑓
3𝑠1
𝑖 (𝑥, 𝑣) = 𝜕𝑥𝑓

3𝑠1
𝑖 (𝑥, 𝑣) (4.4)

𝜕𝑣𝑓
3𝑠1
𝑖 (𝑥, 𝑣) = 0 (4.5)

−𝜕𝑣𝑓
3𝑠1
𝑖 (𝑥, 𝑣′) = 0. (4.6)

Equations (4.5) and (4.6) imply that both (𝑥, 𝑣) and (𝑥, 𝑣′) are fiber-wise critical points
of 𝑓 3𝑠1

𝑖 , i.e., points in Σ
𝑓3𝑠1
𝑖

. This critical set is diffeomorphic to 𝐿𝑖∐𝐿𝑖 through some
𝜓𝑖 ∶ 𝐿𝑖 → Σ

𝑓 3𝑠1
𝑖

satisfying 𝜑 × (𝑧 ± 3𝑠1) = 𝑖
𝑓 3𝑠1
𝑖

◦𝜓𝑖. Equation (4.4) implies that

𝑖
𝑓 3𝑠1
𝑖

(𝑥, 𝑣) = 𝑖
𝑓 3𝑠1
𝑖

(𝑥, 𝑣′),

so we must have 𝜑(𝜓−1
𝑖 (𝑥, 𝑣)) = 𝜑(𝜓−1

𝑖 (𝑥, 𝑣′)). Since 𝜑∶ 𝐿𝑖∐𝐿𝑖 → 𝑇 ∗𝑀 is an
embedding on each copy of 𝐿𝑖, we know that 𝜓−1

𝑖 (𝑥, 𝑣) and 𝜓−1
𝑖 (𝑥, 𝑣) are actually the

same point 𝑝 in 𝐿𝑖, but potentially living in different components of the disjoint union.
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This implies that 𝑓 3𝑠1
𝑖 (𝑥, 𝑣) = 𝑧(𝑝) ± 3𝑠1 = 𝑓 3𝑠1

𝑖 (𝑥, 𝑣′). The possible critical values of
𝛿𝑓 3𝑠1

𝑖 are then
𝑧(𝑝) + 3𝑠1 − (𝑧(𝑝) + 3𝑠1) = 0
𝑧(𝑝) − 3𝑠1 − (𝑧(𝑝) − 3𝑠1) = 0
𝑧(𝑝) + 3𝑠1 − (𝑧(𝑝) − 3𝑠1) = 6𝑠1
𝑧(𝑝) − 3𝑠1 − (𝑧(𝑝) + 3𝑠1) = −6𝑠1.

For any point 𝑝 ∈ 𝐿𝑖 we denote 𝑝+ and 𝑝− for the corresponding points in each copy
of 𝐿𝑖∐𝐿𝑖, with 𝑧(𝑝±) = 𝑧 ± 3𝑠1. We write the diffeomorphism 𝜓 as 𝜓(𝑝±) =
(𝜋(𝑝), 𝑣(𝑝±)). (The 𝜋 that appears here must be the 𝜋 ∶ 𝐿 → 𝑀 from before as one
can easily check.) It should now be apparent that the critical points of 𝛿𝑓 3𝑠1

𝑖 with crit-
ical value ≤ −4𝑠1 form an embedded copy of 𝐿𝑖. Concretely, an embedding is given
by

𝐿𝑖 →𝑀 ×ℝ𝑘𝑖 ×ℝ𝑘𝑖

𝑝↦ (𝜋(𝑝), 𝑣𝑖(𝑝−), 𝑣𝑖(𝑝+)).

We now apply [TGNL, Lemma 3.19] to pick quadratic forms 𝑄𝑖 ∶ ℝ𝑘𝑖 → ℝ and glue
together the functions 𝛿𝑓 3𝑠1

𝑖 ⊕𝛿
𝑏 𝑄𝑖 → ℝ to a single function 𝐹 , which is 𝛿-linear at

infinity [TGNL, Definition3.15]. Since the critical sets and values are unaffected by
adding quadratic forms (up to adding 0 in the last 𝑘𝑖-coordinates), we can glue together
the above embeddings to a single embedding

𝐿→𝑀 ×ℝ𝑘 ×ℝ𝑘 (4.7)
𝑝↦ (𝜋(𝑝), 𝑣(𝑝−), 𝑣(𝑝+)),

rendering 𝐿 as a critical submanifold of 𝐹 .

Step 2: Fibration

Throughout this step, we let 𝑎 = −4𝑠1 or −∞. We wish to show that {𝐹 ≤ 𝑎} → 𝑀
is a fibration. We will begin by showing that the map is a submersion. The Ehresmann
fibration theorem [6, Theorem 8.5.10] tells us that any proper surjective submersion is a
locally trivial fibration. The specific structure of the function 𝐹 at infinity will allow us
to adapt the proof of the Ehresmann theorem found in [6] to our situation, even though
the projection is definitely not proper.

For this computation we write the domain of 𝐹 as (𝑥, 𝑣, 𝑣′) ∈ 𝑀 × ℝ𝑘 × ℝ𝑘, and
denote the projection to 𝑀 by 𝑝𝑟𝑀 . On the full domain, 𝑝𝑟𝑀 is trivially a submersion,
so the same is true on the interior of the codimension 0 submanifold {𝐹 ≤ 𝑎}. On the
boundary {𝐹 = 𝑎} we need to be more careful. The tangent space is ker(d𝐹 ), which,
since 𝑎 is a regular value, has codimension 1. The restriction of 𝑝𝑟𝑀 is a submersion if
and only if this tangent space is transversal to the fibers ℝ2𝑘 of 𝑝𝑟𝑀 . The only way this
transversality can fail is if 𝑇𝑝ℝ2𝑘 ⊂ ker(d𝑝𝐹 ) at some point 𝑝 = (𝑥, 𝑣1, 𝑣2) ∈ {𝐹 = 𝑎}.
This again is equivalent to 𝑝 being a fiberwise critical point of 𝐹 .
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Since 𝐹 locally looks like 𝛿𝑓 3𝑠1
𝑖 ⊕𝛿

𝑏𝑄𝑖, we know 𝑝 = (𝑥, (𝑣′1, 0), (𝑣
′
2, 0)) where 𝑝′ =

(𝑥, 𝑣′1, 𝑣
′
2) is a fiberwise critical point of 𝛿𝑓 3𝑠1

𝑖 , and moreover that𝐹 (𝑝) = 𝛿𝑓 3𝑠𝑖
𝑖 (𝑝′). The

situation now mirrors the computation of the critical values of 𝐹 in Step 1, except that
we have slightly less control. In particular, fiberwise critical points need only satisfy
equations (4.5) and (4.6). This means (𝑥, 𝑣1) and (𝑥, 𝑣2) are fiberwise critical points of
𝑓 3𝑠1
𝑖 , not necessarily embedding in the same cotangent fibre. Still, by definition of 𝑠1,

𝑓 3𝑠1
𝑖 (𝑥, 𝑣1), 𝑓

3𝑠1
𝑖 (𝑥, 𝑣1) ∈ (−4𝑠1,−2𝑠1) ∪ (2𝑠1, 4𝑠1),

which implies
𝛿𝑓 3𝑠1

𝑖 (𝑥, 𝑣, 𝑣′) = 𝑓 3𝑠1
𝑖 (𝑥, 𝑣1) − 𝑓

3𝑠1
𝑖 (𝑥, 𝑣1) ∈ (−8𝑠1,−4𝑠1) ∪ (−2𝑠1, 2𝑠1) ∪ (4𝑠1, 8𝑠1).

This shows that {𝐹 = 𝑎} cannot contain any fiberwise critical points, and so we have
our submersion.

The key to adapting the Ehresmann theorem to our situation is using that 𝐹 is 𝛿-
linear at infinity [TGNL, Definition 3.15, Lemma 3.19]. We therefore now write the
domain of 𝐹 as (𝑥,𝑤,𝑤′, 𝑣, 𝑣′) ∈𝑀 ×ℝ ×ℝ ×ℝ𝑘 ×ℝ𝑘, and assume 𝐹 has the form

𝐹 (𝑥,𝑤,𝑤′, 𝑣, 𝑣′) = 𝑤 −𝑤′ + 𝐺(𝑥, 𝑣, 𝑣′) + 𝜀(𝑥,𝑤, 𝑣) − 𝜀′(𝑥,𝑤′, 𝑣′),

where supp(𝜀) →𝑀 and supp(𝜀′) →𝑀 are proper. We may take some ball𝐵 ⊂ ℝ2+2𝑘

such that both supports are contained in 𝑀 × 𝐵, and consider the diffeomorphism
𝑀 × (ℝ × [0,−∞) ×ℝ2𝑘 − 𝐵′) ⟶ {𝐹 ≤ 𝑎} −𝑀 × 𝐵 (4.8)

(𝑥, 𝑡, 𝑤′, 𝑣, 𝑣′) ⟼ (𝑥,𝑤′ + 𝑎 + 𝐺(𝑥, 𝑣, 𝑣′) − 𝑡, 𝑤′, 𝑣, 𝑣′).

This shows that outside the compact subset 𝑀 × 𝐵 the sublevel set is a trivial fiber
bundle. On the compact set𝑀 ×𝐵, the arguments of the Ehresmann theorem are valid.
We will provide some more details on how this proof is adapted, but we encourage the
reader to skip ahead if they are comfortable.

Let 𝑓 ∶ 𝑀 → 𝑁 be a proper surjective submersion. The proof of the Ehresmann
theorem found in [6] can be summed up as follows.

1. Cover each fiber 𝑓−1(𝑝0) by charts 𝑈𝑝 on which 𝑓 looks like a projection. Since
𝑓 is proper, we may pass to a finite subcover. Intersecting the images of 𝑈𝑝, we
may fix a single chart 𝑈 around 𝑝0 such that 𝑓 ∶ 𝑈𝑝 → 𝑈 is a projection in these
coordinates for all 𝑝. This reduces the situation to 𝑁 = ℝ𝑛.

2. Lift the vector fields 𝜕𝑥𝑖 on ℝ𝑛 to each coordinate chart 𝑈𝑝. Glue these lifts
together to vector fields𝑋𝑖 on𝑀 using a partition of unity. The 𝜕𝑥𝑖 have globally
defined flows at all times, and since 𝑓 is proper we can show that the same holds
for 𝑋𝑖.

3. In ℝ𝑛, any point (𝑡1, 𝑡2, ..., 𝑡𝑛) can be flowed to 0 by first flowing along −𝜕𝑥𝑖 for
time 𝑡1, then along −𝜕𝑥2 for time 𝑡2 and so on. In 𝑀 , restricting the flows along
−𝑋𝑖 to 𝑓−1(𝑡1, 𝑡2, ..., 𝑡𝑛), and flowing for the same times as before, gives a dif-
feomorphism 𝑓−1(𝑡1, 𝑡2, ..., 𝑡𝑛) → 𝑓−1(0). All these glue together to a diffeomor-
phism 𝑀 → ℝ𝑛 × 𝑓−1(0).

64



Note that while [6] assumes there is no boundary, this can easily be fixed when we
assume 𝑓 ∶ 𝜕𝑀 → 𝑁 is a submersion; just lift the 𝜕𝑥𝑖’s to vector fields on 𝜕𝑀 , and
then smoothly extend to a lifts on 𝑀 tangent to the boundary.

The two places where compactness is essential in this proof is to find a finite cover
of each fiber by submersion charts, and to guarantee global existence of flows. The first
can be remedied in our case by first choosing a finite subcover of 𝑝0×𝐵∩{𝐹 ≤ 𝑎}, and
then using the chart from (4.8). For existence of flows of 𝑋𝑖, [6, Lemma 7.3.6] tells us
that if the flow from a point 𝑞 is not defined for all 𝑡 ∈ ℝ, then the flowline must leave
every compact set in finite time. This means the flowline from 𝑞 must exit 𝑀 × 𝐵 a
last time, and since the fibration is trivial outside 𝑀 × 𝐵, all flows exist here, giving a
contradiction. Hence the flow of each 𝑋𝑖 is defined for all 𝑡 ∈ ℝ, and the rest of the
above proof goes through.

Step 3: Morse–Bott theory

We show that 𝐿 is a Morse–Bott critical submanifold for 𝐹 . For any of the generating
functions 𝑓 = 𝑓 3𝑠1

𝑖 ∶ 𝑀 ×ℝ𝑘 → ℝ, the Hessian of the difference function 𝛿𝑓 is

𝐻𝛿𝑓 (𝑥, 𝑣, 𝑣′) =
⎛

⎜

⎜

⎝

𝜕𝑥𝜕𝑥𝑓 (𝑥, 𝑣) − 𝜕𝑥𝜕𝑥𝑓 (𝑥, 𝑣′) 𝜕𝑥𝜕𝑣𝑓 (𝑥, 𝑣) −𝜕𝑥𝜕𝑣𝑓 (𝑥, 𝑣′)
𝜕𝑥𝜕𝑣𝑓 (𝑥, 𝑣) 𝜕𝑣𝜕𝑣𝑓 (𝑥, 𝑣) 0
−𝜕𝑥𝜕𝑣𝑓 (𝑥, 𝑣′) 0 𝜕𝑣𝜕𝑣𝑓 (𝑥, 𝑣′)

⎞

⎟

⎟

⎠

.

At the embedded critical submanifold 𝐿𝑖, the tangent bundle splits as
𝑇 (𝑀 ×ℝ2𝑘) = 𝑇𝐿𝑖 ⊕𝑁𝐿𝑖.

The hessian is a bilinear form on 𝑇 (𝑀𝑖×ℝ2𝑘). It is a standard part of the theory that𝐻𝛿𝑓
vanishes on 𝑇𝐿𝑖 [3], so it induces a bilinear form ℎ𝛿𝑓 on 𝑁𝐿𝑖 ≅ 𝑇 (𝑀𝑖 × ℝ2𝑘)∕𝑇𝐿𝑖.The critical submanifold is said to be Morse–Bott if ℎ𝛿𝑓 is nonsingular.

Some linear algebra shows that the induced form ℎ𝛿𝑓 must have the same rank as
𝐻𝛿𝑓 since we are quotienting out a subspace of the kernel of 𝐻𝛿𝑓 . In our case the rank
of both 𝑇𝐿𝑖 and 𝑇𝑀𝑖 is 𝑛, so the rank of 𝑁𝐿 is 2𝑘. Since 𝑓 is a generating function,
0 is a regular value of the function (𝑥, 𝑣) ↦ 𝜕𝑣𝑓 (𝑥, 𝑣) ⊂ (ℝ𝑘)∗. As we argued in part
1, any critical point (𝑥, 𝑣, 𝑣′) of 𝛿𝑓 has 𝜕𝑣𝑓 (𝑥, 𝑣) = 𝜕𝑣𝑓 (𝑥, 𝑣′) = 0, so these are regular
points. The derivatives must therefore have rank 𝑘, and they have the form

𝑑(𝑥,𝑣)(𝜕𝑣𝑓 ) =
(

𝜕𝑥𝜕𝑣𝑓 (𝑥, 𝑣) 𝜕𝑣𝜕𝑣𝑓 (𝑥, 𝑣)
)

which we recognize in the bottom 2𝑘 rows of the Hessian, and whose transpose we
recognize in the last 2𝑘 columns of 𝐻𝑓 . We may perform row operations in the middle
𝑘-rows and column operations in the final 𝑘-columns of 𝐻𝛿𝑓 to get 2𝑘 pivots. We then
have

2𝑘 ≤ rank(𝐻𝛿𝑓 ) = rank(ℎ𝛿𝑓 ) ≤ rank(𝑁𝐿𝑖) = 2𝑘.

Henceℎ𝛿𝑓 must be nonsingular, and so𝐿𝑖 is Morse–Bott. If𝑄 is a nonsingular quadratic
form, it is not hard to see that 𝐿𝑖 × {0} becomes a Morse–Bott critical submanifold of
𝛿𝑓 ⊕𝑄. Since 𝐹 has this form near the critical submanifold 𝐿, it must be Morse–Bott.
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We now wish to compute 𝐻∗({𝐹 ≤ −4𝑠1}, {𝐹 ≤ −∞}) by adapting a standard
Morse theoretic argument (see for instance [22, Theorem 3.14]) to the situation at hand.
Since 𝐹 is 𝛿-linear at infinity, we fix a pseudo-gradient vector field𝑋 which agrees with
𝜕𝑤 outside a compact set. Let 𝑊 −

𝐿 denote the unstable manifold of 𝐿. As in [22] we
use the negative gradient flow and a tubular neighbourhood to retract {𝐹 ≤ 4𝑠1} onto
{𝐹 ≤ −∞} ∪𝑊 −

𝐿 . Since 𝐿 is Morse–Bott, it has a well defined negative eigenbundle
𝜈−𝐿 ⊂ 𝑁𝐿 of rank 𝑑 = ind(𝐿). We denote the disc and sphere bundle of 𝜈−𝐿 by 𝐷(𝜈−𝐿)and 𝑆(𝜈−𝐿) respectively. Note that any flowline in 𝑊 −

𝐿 reaches {𝐹 ≤ −∞} in finite
time, since any such line must enter the subspace where 𝑋 = 𝜕𝑤 in finite time. The
Morse–Bott lemma then gives a parametrization 𝐷(𝜈−𝐿)

≅
←←←←←←←→ 𝑊 −

𝐿 ∩ {𝐹 ≥ −∞}, such
that 𝐷(𝜈−𝐿) ∩ {𝐹 ≤ −∞} = 𝑆(𝜈−𝐿) up to identifications. If 𝜈−𝐿 is orientable, we get the
following isomorphisms of integral homology groups.

𝐻∗({𝐹 ≤ −4𝑠1}, {𝐹 ≤ −∞}) ≅ 𝐻∗(𝐷(𝜈−𝐿), 𝑆(𝜈
−
𝐿)) ≅ 𝐻∗+𝑑(𝐿) ≅ 𝐻∗+𝑑(𝑀).

The first isomorphism follows from excision. The second isomorphism is the Thom
isomorphism for an orientable rank 𝑑 vector bundle, and the final isomorphism follows
from the homotopy equivalence 𝜋 ∶ 𝑀 → 𝐿. If 𝜈−𝐿 is not orientable, 𝐿 has a double
cover such that the pullback of 𝜈−𝐿 to this cover is orientable. The passage to such a
cover is a process we will need several times, so we formulate it as a lemma, the proof
of which we postpone.
Lemma 4.9. Any finite connected cover of either 𝐿 or 𝑀 induces a finite connected
cover of the other such that the following square commutes

𝐿̃ 𝑀̃

𝐿 𝑀.

𝜋̃

𝑝

𝜋

Moreover, if we set

𝑝∗𝐹 ∶ 𝑀̃ ×ℝ𝑘 → ℝ
(𝑥, 𝑣) ↦ 𝐹 (𝑝(𝑥), 𝑣)

then crit≤−4𝑠1 (𝑝
∗𝐹 ) is an embedded copy of 𝐿̃ and a Morse–Bott critical submanifold.

Moreover, for any regular value, the projection {𝑝∗𝐹 ≤ 𝑎} → 𝑀̃ is the pullback of the
fibration {𝐹 ≤ 𝑎} →𝑀 , so by Lemma 4.7 there is an isomorphism of local systems

𝑝∗𝐻∗({𝐹𝑥 ≤ −4𝑠1}, {𝐹𝑥 ≤ −∞};𝑅} ≅ 𝐻∗({𝑝∗𝐹𝑥 ≤ −4𝑠1}, {𝑝∗𝐹𝑥 ≤ −∞};𝑅})

for any ring 𝑅.

Step 4: Spectral sequence

For this step, we assume that 𝑀 is orientable. If it is not, we make the necessary
replacements as in Lemma 4.9 so that 𝑀 is replaced with an orientable cover. For any
prime 𝑃 , the pair of fibrations

({𝐹 ≤ −4𝑠1}, {𝐹 ≤ −∞}) →𝑀
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defines a local system in homology with ℤ∕𝑃 coefficients which we denote 𝐺∗ for
convenience. Since 𝐹 is 𝛿-linear at infinity, the critical points of 𝐹𝑥 are contained
in a compact set, so the homology is finitely generated. Since 𝑍∕𝑃 is a finite ring,
this means that 𝐺∗ is a finite local system. If this local system is not trivial, we use
corollaries 4.6 and 4.9 and make the necessary replacements so that the local system
becomes constant. Assume now that the smallest nonzero degree of 𝐺∗ is 𝑎, while the
largest nonzero degree is 𝑏. Since we have only passed to finite connected covers, 𝑀 is
still a closed, connected and orientable 𝑛-manifold, which means that 𝑀 has Poincare
duality. The 𝐸2 page of the relative homology Serre spectral sequence is shown below.

⋮

𝑏 + 1 0 0 ⋯ 0 0 0 ⋯

𝑏 𝐺𝑏 𝐻1(𝑀 ;𝐺𝑏) ⋯ 𝐻𝑛−1(𝑀 ;𝐺𝑏) 𝐺𝑏 0 ⋯

⋮

𝑑 𝐺𝑑 𝐻1(𝑀 ;𝐺𝑑) ⋯ 𝐻𝑛−1(𝑀 ;𝐺𝑑) 𝐺𝑑 0 ⋯

⋮

𝑎 𝐺𝑎 𝐻1(𝑀 ;𝐺𝑎) ⋯ 𝐻𝑛−1(𝑀 ;𝐺𝑎) 𝐺𝑎 0 ⋯

𝑎 − 1 0 0 ⋯ 0 0 0 ⋯

⋮

0 1 ⋯ 𝑛 − 1 𝑛 𝑛 + 1

Note that since this converges to 𝐻∗+𝑑(𝑀 ;ℤ∕𝑃 ), the only total degrees that can have
surviving nonzero elements are 𝑑 through 𝑛+ 𝑑. The differentials go up and to the left,
so the highlighted 𝐺𝑎 placed at 𝐸2

0,𝑎 will survive. Its total degree is 𝑎, so this implies
𝑎 ≥ 𝑑. Likewise, the highlighted 𝐺𝑏 placed in 𝐸2

𝑛,𝑏 will survive, but has total degree
𝑛 + 𝑏. This implies 𝑏 ≤ 𝑑. All this means that 𝐺∗ is concentrated in degree 𝑑, and
so the spectral sequence collapses at 𝐸2. By considering total degree 𝑑, we get that
𝐺𝑑 ≅ 𝐻0(𝑀 ;ℤ∕𝑃 ) = ℤ∕𝑃 . If we combine this with [TGNL, Lemma 3.20], we have
that for all primes 𝑃 , all 𝑖 ∈ 𝐼 and all 𝑥 ∈𝑀𝑖, there exists a bounded chain complex 𝐶
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such that
𝐻∗({(𝑓

3𝑠1
𝑖 )𝑥 ≤ 0}, {(𝑓 3𝑠1

𝑖 )𝑥 ≤ −∞};ℤ)⊗𝐋 𝐶 ⊗𝐋 ℤ∕𝑃

≃𝐻∗({(𝛿𝑓
3𝑠1
𝑖 )𝑥 ≤ −4𝑠1}, {(𝛿𝑓

3𝑠1
𝑖 )𝑥 ≤ −∞};ℤ∕𝑃 )

≃𝐻∗({𝐹𝑥 ≤ −4𝑠1}, {𝐹𝑥 ≤ −∞};ℤ∕𝑃 )[𝑟𝑖] = 𝐺∗[𝑟𝑖] = ℤ∕𝑃 [𝑑 + 𝑟𝑖].

Note that the shift by 𝑟𝑖 appears since adding the quadratic form
𝐹𝑥 = (𝛿𝑓 3𝑠1

𝑖 )𝑥 ⊕𝛿
𝑏 𝑄𝑖

has the effect of suspending the sublevel set by ind(𝑄𝑖) = 𝑟𝑖. We are also using that
𝐻∗(𝑋,𝐴;𝑍)⊗𝐋 ℤ∕𝑃 ≃ 𝐻∗(𝑋,𝐴;ℤ∕𝑃 )

by definition. Setting 𝑑𝑖 = 𝑑 + 𝑟𝑖 and applying [TGNL, Lemma 3.26] to this situation
gives

𝐻∗({(𝑓
3𝑠1
𝑖 )𝑥 ≤ 0}, {(𝑓 3𝑠1

𝑖 )𝑥 ≤ −∞};ℤ) = ℤ[𝑑𝑖]
which is the desired result for 𝑠 = 3𝑠1. It is easily seen that the computation remains
valid for any 𝑠 ≥ 3𝑠1.

Step 5: Proof of Lemma 4.9

Let 𝑝∶ 𝑀̃ →𝑀 be a cover. We define
𝑝∗𝐹 ∶ 𝑀̃ ×ℝ𝑘 → ℝ

(𝑥, 𝑣) ↦ 𝐹 (𝑝(𝑥), 𝑣)

Since 𝑝 is a local diffeomorphism, it should be clear that (𝑥, 𝑣) is a critical point of 𝑝∗𝐹
if and only if (𝑝(𝑥), 𝑣) is a critical point of 𝐹 . This means that we have the following
pullback square.

crit≤−4𝑠1 (𝑝
∗𝐹 ) crit≤−4𝑠1 (𝐹 )

𝑀̃ 𝑀

𝑝×𝑖𝑑

𝑝𝑟𝑀̃ 𝑝𝑟𝑀

𝑝

The pullback of a cover is a cover, so 𝑝 × 𝑖𝑑 is a covering map with the same discrete
fiber as 𝑝. Considering the explicit form of the embedding in (4.7) it is clear that the
following commutes.

𝐿 crit≤−4𝑠1 (𝐹 )

𝑀

≅

𝜋
𝑝𝑟𝑀

In particular, 𝑝𝑟𝑀 must be a homotopy equivalence. This means that the pullback 𝑝𝑟𝑀̃is also a homotopy equivalence. In summary, the critical points of 𝑝∗𝐹 form a cover
𝐿̃ → 𝐿 which is homotopy equivalent to 𝑀̃ . Note that by picking a homotopy inverse
of 𝜋 we could just as well have started with a cover of 𝐿.
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Remark 4.10. The spectral sequence in Step 4 of this proof bears some resemblance
to the one appearing in [17]. which is given by

𝐸∗,∗
2 = 𝐻∗(𝑀 ;𝐻𝐹∗(𝐿, 𝑇 ∗

𝑥 )) ⇒ 𝐻𝐹∗(𝐿,𝐿).

Here, 𝑇 ∗
𝑥 denotes the cotangent fiber over 𝑥 ∈𝑀 , and 𝐻𝐹∗(−,−) denotes Floer inter-

section homology. Note that when 𝑀 is not simply connected, 𝐻𝐹∗(𝐿, 𝑇 ∗
𝑥 ) defines a

local system on𝑀 . In the proof of the Conley–Zehnder theorem found in [21], a gener-
ating function appears as a finite dimensional approximation of the action functional on
the loop space, allowing one to replace fixpoint Floer homology with Morse homology
of the generating function. Therefore it is a natural question to ask what the relation-
ship between 𝐻𝐹∗(𝐿, 𝑇 ∗

𝑥 ) and the local system 𝐺∗ appearing in our proof is. Maybe
there is a concrete way to view the Morse homology of ({𝐹𝑥 ≤ 0}, {𝐹𝑥 ≤ −∞}) as a
finite dimensional approximation to this Floer homology. In that case, the above proof
could be replaced with a direct appeal to the computation in [17], rather than using the
homotopy equivalence 𝜋 ∶ 𝐿→ 𝐿.

4.4 From homology to geometry
What can the homological result 4.8 tell us about the geometry of𝐿? In sufficiently high
dimension, the H-cobordism theorem holds, and this certainly gives one procedure to
turn homological results in to geometric ones. This procedure will be explained in more
detail below, and will show that we can homotope each (𝑓𝑖)𝑥 to have the simple form
𝐷⊕𝑄, where𝐷 is the function from 4c, and𝑄 is a quadratic form. If one could perform
this homotopy for all 𝑓𝑥 simultaneously, we could actually untwist. Specifically, assume
that we have functions

𝐹𝑖 ∶ [0, 1] × 𝑈𝑖 ×ℝ𝑘𝑖 → ℝ

such that:
1. 𝐹𝑖 ⊕ 𝑞𝑖𝑗 = 𝐹𝑗 on 𝑈𝑖𝑗 .
2. 𝐹𝑖||𝑡=0 = 𝑓𝑖

3. 𝐹𝑖||𝑡=1 = 𝐷⊕𝑄𝑖 for some 𝑄𝑖 ∶ 𝑈𝑖 → .
The twisting condition at 𝑡 = 1 implies that 𝑄𝑖⊕𝑞𝑖𝑗 = 𝑄𝑗 . Up to reordering, we could
now define a new twisted generating function by (𝑈𝑖, 𝑓𝑖 ⊕ −𝑄𝑖, 𝑞𝑖𝑗 ⊕ −𝑞𝑖𝑗). Perform-
ing an argument similar to the proof of [TGNL, Lemma 3.19], it now seems we could
untwist this function.

The obstruction to turning the fiberwise homotopies into a simultaneous homotopy
comes from higher parametric Morse theory. At the present time the possibility of this
is unclear. In section 4 of [TGNL] however, the machinery of algebraic K-theory of
spaces is applied to the situation. The main result obtained from this is that the stable
Gauss map vanishes on homotopy groups.

Up to stabilizing with an appropriate quadratic form, we may assume that each 𝑓 =
(𝑓 𝑠𝑖 )𝑥 ∶ ℝ𝑛𝑖 → ℝ has 𝑛𝑖 ≥ 6, and that no critical points have index 0, 1, 𝑛𝑖 − 1 or 𝑛𝑖.This means that using techniques from [22], we can smoothly modify 𝑓 on a compact
subset of {𝑓 ≤ 0} away from 𝑓−1(0) to achieve the following:
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1. Make 𝑓 self indexing.
2. Perform handle slides and pick orientations such that the critical points give a

basis of 𝐶∙(𝑓 ) in which all the Morse differentials 𝜕𝑛 are diagonal with only 1 or
0 on the diagonal.

3. Cancel corresponding critical points from the bottom up leaving only the critical
point of index 𝑑𝑖 generating the homology.

Note that by flipping the function, everything we have done so far for ({𝑓 𝑠𝑖 ≤ 0}, {𝑓 𝑠𝑖 ≤
−∞}) can be repeated for ({𝑓 𝑠𝑖 ≥ 0}, {𝑓 𝑠𝑖 ≥ ∞}). All this shows that we can modify
(𝑓 𝑠𝑖 )𝑥 smoothly through functions linear at infinity for which 0 is a regular value to a
function with precisely two critical points, which must have indices 𝑑𝑖 and 𝑑𝑖 + 1 since
ℝ𝑛𝑖 is contractible. We are now very close to showing that 𝑓 𝑠𝑖 is of tube type.
Definition 4.11. A function 𝑓 ∶ ℝ×ℝ𝑘 → ℝ is of tube type if there is a function linear
at infinity 𝐹 ∶ [0, 1] ×ℝ ×ℝ𝑘 → ℝ and a quadratic form 𝑄∶ ℝ𝑘 → ℝ such that for all
𝑡, 0 is a regular value of the function (𝑥,𝑤) ↦ 𝐹 (𝑡, 𝑤, 𝑥), and such that the restrictions
of 𝐹 to 0 and 1 are 𝑓 and 𝐷⊕𝑏 𝑄 respectively.
Definition 4.12. A twisted generating function of tube type is a twisted generating
function linear at infinity such that all fiberwise functions (𝑓𝑖)𝑥 are of tube type.

The final details needed to show the following can be found in [TGNL, Proposition
3.23].
Corollary 4.13. For any sufficiently large 𝑠, let 𝑓 𝑠𝑖 be a twisted generating function
linear at infinity for the 𝑠-double of a Legendrian embedding covering a Lagrangian
embedding as in theorem 4.8. Then there exists some integer 𝑁 such that ℎ𝑁 ⊕𝑓𝑖 is of
tube type.

In section 4 of [TGNL], this corollary is linked to algebraic K-theory by Wald-
hausen’s spaces of tubes. A space  of functions of tube type is defined. This space
has compatible right and left actions of  defined by the modified direct sum operation
− ⊕𝑏 𝑞. Stabilization in  is defined by left acting with ℎ as before, and the colimit
over this is denoted ∞. A stable -equivariant dimension map ∞ → ℤ is defined
analogously to the proof of Lemma 3.34. Since ℤ is discrete, this map is a fibration.
In [TGNL, p. 4.2] it is shown that for all 𝑞 ∈ , the action ∞

⋅𝑞
←←←←←←←←→ ∞ is a homotopy

equivalence, and so Lemma 2.37 gives a quasifibration of classifying spaces
|𝐵(∞,)| ⟶ |𝐵(ℤ,)|. (4.9)

By taking the level set at 0, we get a map from  to Waldhausen’s space  . The ele-
ments of are hypersurfaces in someℝ×ℝ𝑘 isotopic to the space obtained by attaching
a trivial handle to {0}×ℝ𝑘. A linear subspace 𝑉 ⊂ ℝ𝑘 determines such a hypersurface
by attaching a tube along the unit circle in 𝑉 , resulting in maps 𝑟 ∶ 𝐆𝐫(𝑖, 𝑘) →  .
Two commuting stabilizations on  are defined in a way that is compatible with the
stabilizations 𝐆𝐫(𝑖, 𝑘) → 𝐆𝐫(𝑖 + 1, 𝑘) and 𝐆𝐫(𝑖, 𝑘) → 𝐆𝐫(𝑖, 𝑘 + 1) under the map 𝑟.
The resulting map on colimts is called the rigid tube map 𝑟 ∶ 𝐵𝑂 → ∞.
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Böksted’s theorem is a deep result of algebraic K-theory which states that 𝑟 is a
rational homotopy equivalence. In [TGNL, section 4.2] it is argued by considering the
eight different homotopy groups of 𝐵𝑂 that Böksted’s theorem actually implies 𝑟 is
injective on homotopy groups.

It is further argued that the fiber of ∞ → ℤ (and hence of (4.9),) is homotopy
equivalent to ∞×ℤ, and that the fiber of ∞ → ℤ is homotopy equivalent to𝐵𝑂×ℤ.
Moreover, it is shown that the map ∞ → ∞ defined by right-acting on 𝐷 determines
the following map of fibration sequences.

∗

𝐵𝑂 × ℤ |𝐵(∞,)| |𝐵(ℤ,)|

∞ × ℤ |𝐵(∞,)| |𝐵(ℤ,)|

∼

𝑟×𝑖𝑑 𝑖𝑑

This induces a map of long exact sequences of homotopy groups, so for any 𝑘 > 0 we
have the following diagram with exact rows.

0 𝜋𝑘|𝐵(ℤ,)| 𝜋𝑘−1𝐵𝑂 0

𝜋𝑘|𝐵(∞,)| 𝜋𝑘|𝐵(ℤ,)| 𝜋𝑘−1∞ 𝜋𝑘−1|𝐵(∞,)|

𝑟∗
𝛼 𝛽 𝛾

By commutativity, we have 𝛾◦𝑟∗ = 0, so by exactness 𝑟∗ factors through 𝛽. Since
𝛽 factors 𝑟∗, which is injective, 𝛽 must also be injective. Exactness then implies that
im(𝛼) = ker(𝛽) = 0, so 𝛼 = 0. Since |𝐵(ℤ,)| is connected the argument is trivial at
𝑘 = 0, and we have shown that the map |𝐵(∞,)| → |𝐵(ℤ,)| vanishes on homotopy
group. Pretty much by definition of  , Corollary 4.13 implies that we can lift the stable
Gauss map of any nearby Lagrangian along this map up to homotopy. Thus the stable
Gauss map must be trivial on homotopy groups.
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