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Abstract

Text documents such as news and encyclopedia articles often contain tremendous
amounts of information about real-world events. However, there is a challenge to
extract the most relevant snippets of information from millions of lengthy doc-
uments. Semantics can be extracted as annotations from the text using Natural
Language Processing tools. These annotations can contain entities such as per-
sons, organizations, and locations, as well as temporal and numerical expressions.
Moreover, some annotations describing numerical, temporal, and geographical
expressions can represent uncertain information, e.g., the phrase “1990s” refer-
ring to a ten-year interval. This thesis presents an approach to support full-text
semantic search over text documents and their extracted annotations, with cap-
abilities of spatial restrictions on the uncertainty-aware interval annotations. This
is presented as the indexing system NASH. The annotated documents are stored
using inverted indexes in a layered data model. Each layer represents one an-
notation type, and all layers share the positional information of the tokens. To
support efficient retrieval, the numerical, temporal, and geographical expressions
are reduced to one dimension by using Z-order curves, which translate the two-
dimensional values into one-dimensional hashes. These hashes are stored as part
of the layered index to allow for full-text semantic search with spatial query capab-
ilities. Different optimizations are implemented to make the range-based queries
over the Z-order curves more efficient. The system is evaluated using a set of se-
mantic range queries, measuring the time used from query creation to the posting
list retrieval. The queries are executed using different configurations of range sizes
and search precision over three annotated document collections of differing sizes.
The results demonstrate a functioning system and indicate that the system scales
well with increasing collection sizes. Slight differences in result-set sizes and ex-
ecution times between levels of search precision indicate that the range search
optimizations are working well, with a small loss of precision, while increasing
recall of the search.
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Sammendrag

Tekstdokumenter som nyhetsartikler og encyklopediartikler inneholder ofte sto-
re mengder informasjon om ekte hendelser. Det er likevel en utfordring å kun-
ne hente ut de mest relevante delene av informasjon fra millioner av større do-
kumenter. Semantikk kan trekkes ut som annoteringer av teksten ved å bruke
Natural Language Processing (NLP) verktøy. Disse annoteringene kan inneholde
entiteter som personer, organisasjoner, og lokasjoner, så vel som tidsmessige og
numeriske uttrykk. For øvrig kan noen annotasjoner som beskriver numeriske,
tidsmessige, og geografiske uttrykk representere usikker informasjon, for eksem-
pel frasen “1990-tallet” som referer til et ti-års intervall. Denne oppgaven pre-
senterer en tilnærmingsmetode for å støtte fulltekst semantisk søk over tekstdo-
kumenter og deres ekstraherte annotasjoner, med mulighet for romlige restrik-
sjoner på usikre annotasjoner. Dette presenteres som indekseringssystemet NASH.
De annoterte dokumentene er lagret ved bruk av inverterte indekser som en del
av en lagvis datamodell. Hvert lag representerer en annotasjonstype, mens alle
lagene deler posisjonsinformasjon for toknene. For å effektivisere søking etter nu-
meriske, tidsmessige, og geografiske uttrykk, reduseres uttrykkene til én dimen-
sjon ved bruk av Z-ordenskurver, som oversetter de to-dimensjonale verdiene til
en-dimensjonale hasjer. Hasjene lagres som en del av den lagvise indeksen for
å tillate fulltekst semantisk søk med område-baserte søkemuligheter. Forskjellige
optimeringsmetoder brukes for å gjøre de område-baserte spørringene mer effek-
tive over Z-ordenskurven. Systemet evalueres ved å bruke et sett av semantiske
intervall-spørringer over numeriske og tidsmessige annotasjoner, og måler tiden
det tar fra spørringskonstruksjon til listen av treff er mottatt. Spørringene kjøres
med forskjellige konfigurasjoner av intervallstørrelse og søkepresisjon over tre an-
noterte dokumentsamlinger av forskjellige størrelser. Resultatene demonstrerer et
funksjonelt system og indikerer at system skalerer godt med økende størrelse på
samlingene. Små forskjeller i treffstørrelser og kjøretid mellom nivåer av søkepre-
sisjon, indikerer at optimaliseringene for intervallsøket fungerer bra, med et lite
tap av presisjon mens treffandelen til søket økes.
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Chapter 1

Introduction

1.1 Motivation

The amount of text data available digitally has significantly grown over time. Doc-
ument collections such as news archives and encyclopedias contain detailed in-
formation on real-world events from both the recent and historical past. Many text
analysis tasks require searching over such documents to extract relevant event-
oriented information. This includes searching for relevant text regions which con-
tain temporal, numerical, and geographical expressions. The text may additionally
mention named entities such as persons, and organizations. Advancements in Nat-
ural Language Processing (NLP) have made it possible for computers to interpret
deeper meanings in text than what is represented by the words themselves. By ex-
tracting the entity mentions and combining them with traditional full-text search,
greater capabilities can be achieved when searching for event-oriented queries.

Important events contained in news archives and encyclopedic resources form
an important aspect of our collective historical past. Being able to query such
large collections of factual documents efficiently can be of great importance for
journalists, historians, and lawyers, that require the capability to extract relev-
ant sections from the text. Existing full-text search engines enable searching for
combinations of keywords and text phrases to retrieve matching documents. If a
user searches for the phrase “European wars during the 18th century”, the search
engine will retrieve documents matching these words in some manner. However,
a document mentioning “The Seven Years’ War (1756-1763) was a global conflict
between Great Britain and France for global pre-eminence.” is less likely to be a
good match for the query as very few words match between the document and the
query. Even though the user wants results mentioning wars during the 100-year
span from 1700 to 1799, the search engine only matches the search phrase “18th
century” with no understanding of an actual temporal range. The words Britain
and France can be stored as word tokens in the search engine index, but there
is no knowledge present that indicates that these tokens represent locations, or
that they are part of the continent of Europe. It is clear that being able to extract
such ranges for geographical, temporal, and numerical expressions will increase

1



Chapter 1: Introduction 2

the capabilities of a text-oriented only search engine. Furthermore, by storing the
positions of these annotations, a search engine can extract specific text regions
which match the query.

Executing spatial queries over geographical data is a well-researched area.
Customised database systems, called Geographic Information Systems (GIS) [1],
are developed and optimized to search for such data. These systems often utilise
special indexing techniques to support very specific operations and are thus not
compatible with other types of data, nor applicable in a full-text search context.
However, a spatial indexing technique called Geohashes [2] represents points on
Earth at varying accuracy, as a single string of text using space-filling curves [3].
This means that the two-dimensional data is transformed into a one-dimensional
representation while still supporting spatial queries. Because the data is one-
dimensional, simple inverted index structures can be utilised to search the geo-
graphical data related to documents. This motivated the research into how a sim-
ilar approach could be used to index numerical and temporal interval expressions,
and thus allow for spatial queries over time, numbers, and locations, as part of a
semantic full-text search system.

1.2 Contributions

The work of the thesis explores how documents and accompanying annotations
can be indexed to support semantic full-text search. Semantic full-text search here
refers to search allowing for positional matching over a combination of annota-
tions and words. Multiple types of annotations can be indexed, but the main con-
cern is the indexing of ambiguous, and multi-dimensional annotations such as
geographical locations, temporal, and numerical expressions, that enable event
extraction based on proximity in space and time. The focus of the work is on
indexing and retrieval of temporal and numerical ranges, but the location an-
notations are included for completeness. The research question is formulated as
follows:

How can full-text semantic search over large, annotated document collec-
tions be implemented, while supporting proximity-based range queries
over numerical, temporal, and geographical annotations?

This includes the design and implementation of a data model, query operations,
and an index infrastructure. This will result in a functional search engine with the
required range-based search capabilities over temporal and numerical annota-
tions. The focus of the implementation is on the utilisation of the space-filling
curve to achieve the desired range-based query operations.

The main contribution of this thesis is the indexing of multidimensional an-
notations, such as geographical, temporal and numerical expressions which in
combination with words enables full-text semantic search. To do so, space-filling
curves are used to transform such annotations to one-dimensional values, which
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can then be stored in an inverted index structure. The approach is implemented in
the proposed index system called NASH. Specifically, the Z-order curve is used to
support range queries over temporal and numerical intervals, by pre-computation
a minimum set of covering Z-order values which cover the search range. To fur-
ther speed up the query processing, a set of different optimizations for the Z-order
range searches are implemented and evaluated.



Chapter 2

Related Work

This chapter starts by describing fundamental concepts for traditional full-text
and semantic search. The remaining sections are devoted to describing underlying
concepts and related work regarding indexing and querying of multi-dimensional
data.

2.1 Information Retrieval

Information retrieval (IR) deals with the storage and access to informational items
such as text and documents, with the intent to provide the user with easy access
to the parts which are of interest [4]. This section briefly introduces some of the
core concepts from the field of IR which are utilized in the research.

2.1.1 Document

A document in the information retrieval setting can be defined as a single unit
of textual information [4]. The document is usually structured in some way fol-
lowing a syntax. This thesis uses the term document to describe the largest unit
of data which is to be indexed and queried, such as news articles or entries in an
encyclopedia.

2.1.2 Indexing

One of the most basic ways of searching documents is through sequential search,
reading each document one after, word after word, looking for conditions match-
ing the query. This works fast when all the documents fit in main memory, how-
ever, when document collections outgrow the available memory in the system,
sequential scans over the data are limited by the speed of the secondary storage.
To make the search more efficient, indexes are needed. The index speeds up the
search by storing the most relevant information of each document in optimized
data structures and uses compression techniques to decrease the storage space
needed. Most of the classical IR models index documents based on their words or

4
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groups of consecutive words, called index terms. This can be all individual words
present in the document, or the words that best describe the document based on
some measure such as frequency distributions.

The Inverted Index

The inverted index is the most used indexing technique to speed up query pro-
cessing [4]. Figure 2.1 illustrates an inverted index. It consists of two elements:
vocabulary and occurrences. For basic text indexing, the vocabulary is the set of
all different words appearing in the text, and the occurrences, or posting lists, are
lists of documents (represented by document IDs) in which the term occurs. The
terms of the vocabulary can be determined by some tokenization process which
breaks the text into separate regions of text. For example, words can be defined as
a sequence of letters followed by a separator (e.g., a whitespace). The vocabulary
terms can however be any type of information related to the documents, such as
extracted annotations. In addition to document IDs, the posting list can contain
positional information of where in the document the term occurs. For example,
Figure 2.1 shows that the term “lorem” appears in document four at position one,
and in document 12 at positions 42 and 120.

amet

dolor

lorem

p1, p5d1 p4, p24, p47d5

p3d36 p62, p97, ...d49

p1d4 p42, p120, ...d12

Vocabulary Posting List

Figure 2.1: The vocabulary with terms on the left, points to document entries
as posting lists to the right. The document entries have token positions stored to
support positional queries.

2.1.3 Searching the Inverted Index

The inverted indexes can be used to support full-text search. The user formulates
a query of index terms, and the search engine looks up each query term in the
index to retrieve posting lists of relevant documents.
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Word Queries

Single terms can be directly looked up in the index and the posting list of oc-
currences is retrieved. If the query consists of multiple terms, the posting lists of
each term can be joined to find the relevant documents for conjunctive queries
or merged for disjunctive queries. The cost of looking for a word in the index is
dependent on which data structure is used to implement the index. Data struc-
tures such as the B-trees, hashing, and tries give O(m) search cost, where m is the
number of terms in the search query [4]. There is also a cost of joining the post-
ing lists, especially if the search terms are present in many documents resulting
in large posting lists.

Context Queries

To search for multiple words in a specific order, or that are close to each other.
Phrase queries can find matches based on a sequence of words. This can be im-
plemented by storing positional data for each word in the inverted index, and
verifying that the positions are in the correct order. The phrase query can also
be relaxed to a proximity query, where there can be a set number of words or
characters between the search terms which do not match.

Range and Prefix Queries

More advanced queries such as prefix and range search can also be supported by
an inverted index. Prefix queries match documents based on if words in the docu-
ment start with the search term. This type of search can be made more efficient by
indexing prefixes of each word (e.g., dog is indexed with tokens d do dog). Range
search retrieves all documents with words which lie between two search terms in
lexicographical order. The efficiency of this can be dependent on the index data
structure, and how the terms are ordered when stored.

2.1.4 The Boolean Model

IR systems utilise different models to determine which documents should be re-
trieved. The three classic retrieval models are the Boolean, the vector, and the
probabilistic model [4]. The implementation of this research is only concerned
with if a document matches or if it does not, i.e., there is no ranking of the docu-
ments or partial matching. The Boolean model then fits this requirement well, as
it only retrieves documents fully matching the query.

The Boolean model is a simple model based on set theory and Boolean algebra.
The model considers each index term as either present or absent in a document,
i.e., a binary representation. The query language consists of three connective op-
erators: not, and, or. A query can be built up of a combination of these Boolean
operators between terms (tn) or other sub-queries. The AND (t1 ∧ t2) operator is
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used for conjunctive queries. Each term is looked up in the index, and the post-
ing list for each matching term is intersected, resulting in documents containing
all these terms being returned. The OR (t1 ∨ t2) operator is used in disjunctive
queries, returning documents with at least one of the terms present in the inverted
index. The posting list for each matching term is merged. The NOT (¬t1) operator
returns documents which do not contain the query term. All these three operators
can be combined to allow for more advanced queries.

For example, to search for a query such as David ∧Hil ber t ∧ paper ∧¬1891,
the query processor looks up posting lists for each search term in the inverted
index and returns those documents mentioning David Hilbert paper, and not the
word 1891. If positional data is stored in the index, the order of the terms can be
restricted as well.

2.1.5 Retrieval Evaluation

There are different ways of evaluating an IR system based on the produced results.
Two of the most widely used metrics to evaluate retrieval quality are recall and
precision. These metrics are defined as follows: where, A is the set of retrieved
documents based on the query, and R is the total set of all relevant documents in
the database:

Precision= p =
|R∩ A|
|A|

(2.1)

Recall= r =
|R∩ A|
|R|

(2.2)

Precision is the fraction of the retrieved documents which are of relevance,
and recall is the fraction of all relevant documents in the database which were
retrieved. E.g., receiving 50 documents from the IR system, of which 20 are relev-
ant equals a precision of p = 20

50 = 0.4. If five other relevant documents exist but
were not retrieved, the recall is given by r = 20

25 = 0.8. The retrieved documents
can also be ranked by some metric before being presented to the end-user, but for
the Boolean model, a ranking between the results is meaningless as all documents
must match the query.1

2.2 Semantic Search

The term semantic search has different definitions depending on the context but
can be defined as “search with meaning” [5]. In this thesis, it is used to define
full-text semantic search. This implies an inverted index model to search for text
phrases in documents, but with the additional capability of interpreting semantic

1For disjunctive queries (OR), you could increase the score based on how many of the disjunctive
terms matched, but this is not utilised in this thesis.
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information of the text. The semantic information can be represented by annota-
tions extracted from document contents.

2.2.1 Natural Language Processing

Documents contain natural language text that can easily be understood by hu-
mans, but not by machines. Nowadays, Natural Language Processing (NLP) tools
can be used to interpret the semantics of words, allowing machines to obtain a
deeper understanding of the document contents. With the ability to annotate doc-
uments using NLP tools, one can automate rule-based information extraction.

NLP tools can do basic transformations of the text data, such as tokeniza-
tion, splitting the tokens into sentences, lowercasing the tokens, removing stop
words, lemmatization, etc. Additionally, more advanced tasks such as Part-of-
Speech (PoS) tagging, sentence parsing, Named Entity Recognition (NER), and
constructing word vectors can be done [5]. Many of these transformations can be
used in combination with the indexing of words to increase the number of relevant
documents retrieved.

One of the NLP tasks that is important for the work in this thesis, is NER.
NER recognizes word sequences in the text which constitute an entity (usually
a proper noun). An entity can be a person, organization, location, etc. The NER
process can also be linked to a knowledge base with synonyms and variations of
the entity names, as well as the entity’s relations to other entities. More advanced
NER techniques can detect co-reference mentions, i.e., multiple word phrases in
the same context can refer to the same entity. For example, in the sentence “Joe
Biden is the president of the USA. He was elected in 2020”, the term “he” refers
to the previous mentioned named entity and can be determined automatically.

2.2.2 Implementing Semantic Search

Bast et al. [5], categorize research on semantic search into different categories
based on the data type and search paradigm used. Data types include text, know-
ledge bases, and combined data. The search paradigms are keyword, structured, and
natural language search. This thesis is concerned with keyword search over com-
bined data, which in this case is a combination of text and entity annotations. The
search also supports retrieving phrases as text regions. Knowledge bases [6] can
add further information to the annotations, however, such implementations are
out of scope for this thesis.

Existing Systems

Keyword search on combined data, or semantic full-text search, is often imple-
mented using inverted indexes [5]. One way of doing this is by adding artificial
words to the index which describes the annotation. For example, to mark the text
“Alan Turing” as an entity, the phrase entity:Alan_Turing can be added to the index,
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which makes searching for entities as simple as looking up entries in the inver-
ted index. Tablan et al. [7] add further artificial words such as type:computer_-
scientist to be able to conduct more complex queries. If the extra tokens retain
the positional information of the word token(s) they describe, annotations and
text phrases can be combined in positional queries. For example, a query such as
t ype : computer_scientist ∧ ar t icle ∧ 1930s can be formulated to match with
all entities of the computer_scientist type. The Broccoli search engine [8] uses a
more entity-focused implementation, receiving matching entities which occur in
the document collection, without needing to retrieve the documents themselves.
This is done by inserting entities in the inverted index for each semantic context it
appears. A semantic context is a collection of words belonging together, such as a
clause in a sentence. GYANI [9, 10] uses a layered data model of text and annota-
tions, utilising inverted and direct indexes to store the positions of annotations,
text tokens, and combinations of these, allowing queries with regular expressions
over annotations and word sequences. They also implement direct indexes to store
sentence boundaries such that queries can be restricted to text regions within sen-
tences.

Existing approaches allow for entity matches which are mentioned close to-
gether in the text. However, none of the approaches allows for range-based quer-
ies over multi-dimensional geographical, temporal, and numerical expressions as
part of the full-text search.

2.3 Multi-dimensional Data

Multidimensional data consist of observations having attribute values in more
than one dimension. These values can be of the same or different types, both spa-
tial and non-spatial. In this thesis, only spatial values of the same type are con-
sidered, which can be described in the two-dimensional (2-D) Euclidean space. To
be able to retrieve documents based on the multi-dimensional points, the range
of values in each dimension needs to have an ordering between them. For nu-
merical attributes, they can be ordered by their value, and for text attributes a
lexicographical ordering can be used.

2.3.1 Locational Data

For locational data, each attribute is of the same type and unit, the distance in
space. Spatial values can be represented as part of a Cartesian coordinate system,
where each attribute of the spatial value describes its position in the coordinate
system of that dimension. For two dimensions, X and Y are often used as labels
to describe the two axes. Figure 2.2 shows a visual representation of the two-
dimensional points in a coordinate system. Point A represents the attributes x = 1
and y = 2. These spatial values allow for proximity-based queries [11] to find
data which is similar to each other. To be able to query such objects efficiently, the
data model used in indexing must be taken into consideration.



Chapter 2: Related Work 10

x

y

0 1 2 3 4 5
0

1

2

3

4

5

A

B

C
D

Figure 2.2: The figure illustrates a set of two-dimensional points and a geometry
as part of a coordinate system.

The coordinate system can also be used to visualise geometrical shapes. A
shape is in this case a two-dimensional area limited by a boundary of points. A
closed polygon can be represented by an ordered list of these points, with the start
point equalling the endpoint. To represent rectangles, only two points are needed:
its minimum (l1, l2), and maximum (u1, u2) corners. Such a rectangle is called a
Minimum Bounding Rectangle (MBR), as it describes the smallest rectangle which
includes both points. In Figure 2.2, B = (1, 3) is the lower bound of values and
C = (3,4) is the upper bound of values of such a rectangle. The two other corners
can be extracted from the minimum and maximum values.

2.3.2 Range and Interval

The term range can be used to describe the mathematical interval between two
numbers which describes the upper (u) and the lower bound (l) of the interval.2

The interval is the set of real numbers, where each number x satisfies the condition
l ≤ x ≤ u. The inclusive interval is formulated as [l, u], where the lower and
upper bound are included in the interval. For example, a range of values from
zero to ten is depicted by [0, 10]. A range can have multiple dimensions, and is
depicted as two individual ranges representing each dimension, [l1, u1], [l2, u2],
or the ranges can be combined, [l1, u1, l2, u2]. Each range of the multi-dimensional
range thus implies upper and lower bounds for a single dimension. There is a clear
connection between two-dimensional intervals and MBRs. As the MBR defines
upper and lower bounds, it directly translates to a two-dimensional interval.

The term “maximum range” is used to describe the largest possible range for
a dimension, denoting the upper and lower bound of all sub-ranges within the

2Interval and range are used to describe the same concept; however, the term range is more
common in IR and search.
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dimension. That is, the maximum range represents the universe of possible values
for a given dimension.

Range Queries

A range query searches over intervals, or ranges of values lying within an upper
and a lower bound. This can be applied to a single, or multiple dimensions. For
a two-dimensional search, any point which lies within the two ranges defined by
[l1, u1] [l2, u2] is returned. This type of range search can be represented by the
corresponding MBR. The MBR corners correspond to the lower (l1, l2), and upper
(u1, u2) bounds of each dimension. In Figure 2.2, B = (1,3) is the lower bound of
values and C = (3,4) is the upper bound of values of such a rectangle. This means
any point where 1 ≤ x ≤ 3 and 3 ≤ Y ≤ 4 is contained in this rectangle and will
be returned by the range search. That is, it is a 2-D search over intervals where
x ∈ [1, 3] and x ∈ [3,4]. In this case, the point D = (2,3.5) is contained by the
rectangle and is thus returned by the range search.

2.3.3 Spatial Queries

Chang [1] lists three basic spatial queries on geometries and points. A spatial
query consists of a search geometry and a set of indexed geometries represented
by one or more points. In this thesis, a search geometry is represented by an MBR
with the points (x l , yl) and (xu, yu), denoting the lower and upper bounds of the
X and Y in a two-dimensional range search. The indexed geometries can also be
represented by an MBR, (x1, y1) and (x2, y2). Points can be indexed in the same
manner with the restriction that x1 = x2 and y1 = y2.

Containment Queries Selects indexed geometries where the search geometry
contains the object, or selects indexed geometries in which the search geo-
metry is fully contained by . For a search MBR to contain a stored geometry,
the smaller bounds of the indexed MBR must be larger than or equal to
the search MBR’s lower bounds, and the upper bounds of the indexed MBR
must be smaller than or equal to the search MBR: x l ≤ x1, yl ≤ y1 for the
lower values, and y2 ≤ yu, x2 ≤ xu for the upper values. The contained by
relation is the reverse, where it is the indexed MBR which must contain the
search MBR.

Intersect Queries Selects geometries that intersect with the search geometry,
meaning at least one of the indexed MBR corners are within the search
MBR boundaries.

Proximity Queries Selects geometries that are close or adjacent to the search
geometry. For MBR ranges, this can be achieved by increasing the size of
the search MBR, i.e., subtracting from the lower bounds, and/or adding to
the upper bounds, to cover a larger search area within a defined distance.
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2.3.4 Indexing of Point Data

The inverted index can be applied to 2-D point data by constructing an inverted
index for each of the attributes. Range queries over multiple attributes can then
be done by doing a separate range query on the index of each attribute and in-
tersecting the results. This is however wasteful, in the sense that two different
indexes must be searched, which can result in an expensive intersection if the
result set of each index is large. Other specialized data structures exist which are
more efficient for searching multi-dimensional data points [11]. However, many
of these approaches utilize indexing structures which are more complex in their
implementations compared to the inverted index, and thus less compatible with
full-text search. Such structures might also not be as readily available as the in-
verted indexing infrastructure in existing search engines and databases with other
required capabilities in terms of scalability and performance.

Instead of introducing new data structures, another approach is to reduce the
dimensionality of the document data. This way, existing data structures and al-
gorithms optimized for one-dimensional data, such as the inverted index, can be
utilised. Related to full-text semantic search, this means that the same indexing
structure can be used for both one-dimensional and multidimensional annota-
tions, as well as text.

2.4 Space-Filling Curves

One way of linearizing multidimensional values into a one-dimensional repres-
entation is through space-filling curves. G. Peano proved in 1890 [3] that there
exists a curve passing through every point of a two-dimensional region (such as
the unit square). These curves are called Peano curves, or space-filling curves. One
year later, D. Hilbert recognized a general geometrical generating procedure that
allowed for creating a wide variety of space-filling curves [3]. The space-filling
curve also extends to n dimensions. Because the space-filling curve goes through
every point of the n-dimensional region, it can be used to map multidimensional
data to a location on the curve. Thus, any n-dimensional point in a region can
be reduced to the position on the curve going through that region, resulting in
a one-dimensional representation. This thesis is concerned with the applications
in two dimensions, and further discussion will regard the space-filling curve in a
two-dimensional space.

2.4.1 The Quadtree

The Quadtree [12] is a common technique used for spatial indexing. Even though
the quadtree is not directly related to the space-filling curve, they share some
characteristics which are helpful when explaining the space-filling curve in more
detail. This includes how the space is divided into regions and how they both have
hierarchical characteristics which can be visualised as a tree structure. Because of
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their similarities, space-filling curves can be used to construct quadtrees [13].
The quadtree is a generalization of the binary tree for treating data of two

dimensions. A binary tree recursively splits a one-dimensional space in two, res-
ulting in a maximum of 2n nodes at each level, starting with n = 0 at the top
level. In the quadtree each dimension is split in two, resulting in four total chil-
dren, and thus 4n nodes of each level. The region quadtree is a variant of the
quadtree where the space is divided into equal size regions. Each region then rep-
resents a two-dimensional range, i.e., a minimum bounding rectangle. All points
in the two-dimensional space will then belong to one of these regions, or buck-
ets. Figure 2.3a shows how a two-dimensional space can be broken into smaller
quadrants with the corresponding tree representation.

The tree representation also illustrates the hierarchical characteristics of the
quadtree. The parent-child relationship of nodes means that all child nodes of
the same parent are all contained by the parent MBR. In Figure 2.3, A is at level
0 (root) and represents the entire space. The next level breaks the space into
four quadrants: B, C, D, and E. Each of these can be further divided into smaller
quadrants, having the larger quadrant as its parent. Retrieving the root, A, would
then return the entire space while retrieving K would return 1/16 of the entire
space.

Each region can be described by their position in space. As each node can
have four children, the position of the children within the parent region can be
described by their intercardinal directions: northeast (NE), southeast (SE), south-
west (SW), and northwest (NW). In Figure 2.3a, B is the northwest, C the north-
east, D the southwest, and E the southeast quadrant of the common parent A.

2.4.2 Visualising Space-filling Curves

For space-filling curves, the two-dimensional space can be divided similarly to
the region quadtree. The space is recursively divided into four equal size non-
overlapping regions. The space-filling curve moves through these partitions in
some manner, only moving in and out of a partition once. Each partition then
has a unique position on the curve, and as the curve is linear the position can be
represented by a one-dimensional value. Figure 2.4 illustrates an implementation
of a space-filling curve where the space is divided once in each dimension, res-
ulting in four regions. The curve goes through each region exactly once, giving
a unique value for each region. Figure 2.5a partitions the dimensions four times
each, resulting in 16 total partitions. The figure illustrates how each point in the
coordinate system (X , Y ∈ [0, 3]) is mapped to a single region and a single point
on the curve.

2.4.3 The Z-order Curve

One of the most used implementations of the space-filling curve is the Morton
curve [14], also called the Z-order curve. The curve gets its name from the way
the curve travels through the n-dimensional space in a ‘Z’ fashion, as shown in
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Figure 2.3: The tree representation of the same search
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Figure 2.4. This order can be achieved by bitwise interleaving the bits of X and Y
which covers a region, starting with the most significant bit (MSB) of the Y-value.
Each such unique bit-string represents a region in the 2-D space. The "curve" is
thus a set of discrete values, akin to the quadtree regions or nodes. These values
describing a partition are called Z-order values, or Z-order hashes.

Figure 2.4 illustrates how the Z-order hashes are calculated and how the order
of the curve is determined. As the space is partitioned once in each dimension, two
bits are needed to represent the position on the curve. The number of partitions
is decided by the equation p = 2b, where b is the bit length and p, the number of
partitions. The northwest quadrant (0,0) has a 0 as the bit-value for both X and Y.
Interleaving these two bits, starting with the Y bit, results in a hash of 002 = 010
(the subscript show the number base) which indicates the first position. The next
value on the curve is then (0, 1), as the X and Y bits of this point equals 012 = 110.

X:

Y:
0 1

0
1

0 0 0 1

1 11 0

Figure 2.4: Z-order curve in two dimensions using 2 bits.

Figure 2.5a increases the number of bits by one for each dimension, to a total
of 4 bits. The number of partitions is then increased to 16, hence the curve consists
of 16 unique values. Comparing Figure 2.5a and Figure 2.4 makes the hierarchical
properties of the Z-order curve apparent. Removing the last two bits of any 4-
bit hash results in a position on the 2-bit curve. That is, the length of the hash
determines which level of the tree representation the hash is a part of. Removing
two of the rightmost bits equates to travelling up one level in the quadtree. Figure
2.5b illustrates travelling down the tree, by adding two bits to the hash in the
rightmost position. Looking at the first partition in the northwest corner (00002),
one can recursively partition it further into four new smaller quadrants by adding
two bits to the Z-order representation.

There exist many other variants of space-filling curves which travel through
space in different manners [15]. One such curve is the Hilbert curve [16], which
like the Z-order curve can be seen in multiple applications. The Hilbert curve can
give greater locality preservation but at the cost of more complex calculations
[17].



Chapter 2: Related Work 16

X:

:Y

0 1 2 3

0
1

2
3

00 01 10 11

11
10

01
00

0 00 0 0 00 1 0 01 0 0 01 1

0 10 10 10 0 0 11 0 0 11 1

1 01 11 01 01 00 11 00 0

1 10 0 1 10 1 1 11 0 1 11 1

(a) Implementation of a space-filling curve using Z-order in two dimensions with four
bits.

X:

:Y

0 1 2 3

0
1

2
3

00 01 10 11

11
10

01
00

0 00 0 0 00 1 0 01 0 0 01 1

0 10 10 10 0 0 11 0 0 11 1

1 01 11 01 01 00 11 00 0

1 10 0 1 10 1 1 11 0 1 11 1

X:

:Y 000 001

00
0

00
1

0 00 0 0 0 0 00 0 0 1

0 00 0 1 0 0 00 0 1 1

0.5

0

0

0.
5

(b) By increasing or decreasing the number of bits in the Z-order value, a smaller or larger
area is covered.

Figure 2.5: Figures showing Z-order curves in two dimensions.
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2.4.4 Hashing Points and Polygons to Z-order values

By utilising the Z-order curve on a coordinate system, each point in the coordin-
ate system will belong to one of the Z-order partitions, or rather Z-order val-
ues. Figure 2.6a shows several points and a polygon in a coordinate system with
X , Y ∈ [0, 15]. A four-bit z-order curve fills this space, resulting in 16 Z-order val-
ues. To calculate the Z-order value of a point, the value of each dimension (X and
Y) is recursively compared against half the maximum range of its dimension. For
example, the Z-order value of point C (11,6) can be calculated by first checking if
the Y-value (6) is less than half of 15, if so the first bit is 0. Otherwise, if Y is equal
to or larger than the mid-point, the first bit-value is set to 1. As 6 is less than 7.5,
the first Y-bit is set to 0. Then the value is compared against half of 7.5, resulting
in the second Y-bit being set to 1 (6 ≥ 3.75). Similarly, the X-value is recursively
compared against half the maximum X-range, resulting in X-bits of 1 and 0. The Y
(012) and the X (102) values are then interleaved to give the Z-order value 01102.
Polygons can be hashed by calculating the Z-order value of each point represent-
ing it. In Figure 2.6a the polygon F has four corners, and the area of the polygon
span four different Z-order values. The polygon will therefore be broken down
into a set of regions, or rather Z-order values, which cover the area. A greater
bit-precision of the Z-order curve will result in a more precise representation by
including more and smaller Z-order regions, but the region will always be built
up of smaller rectangles, like pixels in a digital image.

2.4.5 Accuracy

As the Z-order curve naturally partitions the space into quadrants, a useful ap-
plication is to utilise the Z-order curve as a bucketing tool similar to the quadtree,
where each non-overlapping partition functions as a hashing bucket. As the space
is broken down into discrete regions, the accuracy of values on the curve is given
by the size of the smallest possible region, i.e., each value in the same region has
the same Z-order hash. The size of the regions is determined by the number of bits
and the size of the possible dimension values. To illustrate, Figure 2.6a shows a
range of [0,15] describing each dimension, and a total of four bits for the Z-order
curve. This means the range of each dimension is recursively halved twice. Each
partition (one Z-order value) then represents a range of four values in each di-
mension ([0,4), [4,8), etc.). It is then clear that both point B and point C in Figure
2.6a are hashed to the same Z-order value, as they are both a part of the same
X-partition [8, 12), and Y-partition [4,8). From this, each Z-order value represents
a sub-range with a size given by:

Range Size=
(t − s)

2n
(2.3)

Where [s, t] describes the interval of possible values for a dimension and n,
the number of bits for that dimension.
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2.4.6 Locality Preservation

Figure 2.6a illustrates the localisation preserving characteristics of the Z-order
curve. Most points close together in the two-dimensional space will also be close
on the Z-order curve. However, there are some edge cases. Points C and E are
close together in space, and their Z-order values (6 and 7) are also next to each
other with no values in between. However, point D can also be said to be close in
space to E, but on the Z-order curve, there are five values between them (8 to 12).
For more bits and partitions, the distance on the Z-order curve grows even larger.
For each split of the dimensions, such discrepancies will occur, with the first splits
resulting in the largest jumps in values. As Figure 2.6a demonstrates, the biggest
jump is the first horizontal split along the Y-axis. The worst case is then if two
points are near the origin, but one point is in the northwest region, and the other
is in the southeast region.

Related to the inverted index, if an index consists of Z-order values, 2-D points
which are close in proximity in the 2-D space, are also generally close in the index
(when sorted by indexing key). This means proximity searches using the Z-order
values are more efficient as the points are kept close together in the main memory
on disk.

2.4.7 Searching the Z-Order Curve

One benefit of the Z-order curve in indexing is that the hash values can be used
in spatial queries without decoding them. As the Z-values are 1-dimensional, the
spatial queries translate one-dimensional range searches over the values.

Naive Approach

The naive approach would be to do a one-dimensional range search over all the
Z-order values, i.e., translate the lower and upper bound of the search into the
equivalent Z-order values, and retrieve every Z-order value between these values.
However, because of the edge cases present in the locality preservation, the values
returned could include several values outside of the actual two-dimensional range.
Figure 2.6b illustrates an MBR range search from point S (6,5) to point T (13,11),
depicted by a green rectangle. The blue area depicts which Z-order values should
be returned based on the range search. Point E will also be returned, as the Z-
order regions of the search are larger than the actual search MBR and includes
the region where point E is hashed. First, the two points are translated into their
Z-order values. Using the naive approach, any point hashed to a Z-order value
between the Z-order values of S (3) and T (13) is returned. As can be seen, this
includes several non-relevant regions, depicted by the red rectangles. In this case,
point G would also be returned even though it is outside of the search MBR. The
search is thus more inclusive than necessary, and the resulting search precision
is lower. Still, it does include all relevant regions, meaning the search recall is
kept consistent. The Z-order value can therefore be utilised as a granular filtering
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(a) Points and shapes can be represented by their Z-order value(s) in the 2-D plane.
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method. Lee et al. [18] utilise this characteristic for finding candidate matches of
geographical queries.

BIGMIN and LITMAX

Tropf and Herzog [19] implemented a more sophisticated approach for range
searches using the Z-order curve. The authors do this by iterating through the
stored objects, sorted by the Z-order value, just as with the naive approach. How-
ever, when they detect an object which is outside of the search range (e.g., point G
of Figure 2.6b, they initiate a calculation to find the largest previous Z-order value
within the range (LITMAX) and the next smallest Z-order value within the range
(BIGMIN). Any value between LITMAX and BIGMIN is then outside the search
range, and the search can then continue in two sub-ranges: from the range min-
imum code to LITMAX, and from BIGMIN to the range maximum point. This is
done recursively until all values of the range have been searched. The authors cal-
culate these values by using a lookup table of 3-bit combinations, each bit being
the MSB of the dividing, range minimum, and range maximum codes.

Using Figure 2.6b as an example, the records of the search from S to T (ignor-
ing F) would be G, B, C, E, and D in that order. When reaching G, there is a split in
the search area. BIGMIN is the next Z-order value inside the search range, larger
than the current record value, in this case, 01102. LITMAX is the largest Z-order
value inside the search area, but less than the value of the current record, in this
case, 00112. The search is broken down into a search from the lower bound (S)
to LITMAX, and from BIGMIN to the upper bound (T), i.e., the search [3, 13] is
broken into searches [3,3] and [6, 13]. Each time a record with a Z-order value
outside of the search range is encountered, new BIGMIN and LITMAX values are
calculated, and the search is further split in two. No other values are outside of
the index, so the search would stop when point D is reached.

2.4.8 Existing Systems

Even though the discovery of space-filling curves was done two centuries ago, the
applications are more recent. The transformation of multidimensional data into
1-D representations is useful in indexing and searching as it makes it possible to
keep using existing algorithms and data structures independent of dimensionality.
When utilized in indexing the number of entries for a multidimensional data object
can be reduced, and in turn, potentially reduce search execution time.

As mentioned, Tropf and Herzog [19] used Z-order curves for multi-dimen-
sional range search in dynamically balanced trees. The experiments indicate a
logarithmic time complexity with the number of records. Lawder and King [20]
present different approaches of using space-filling curves for multi-dimensional
indexing. This was done over a triple store, using a similar approach as BIG-
MIN and LITMAX, over the Hilbert Curve. GeoWave [21] utilised space-filling
curves to reduce the dimensionality of geospatial data to index in key-value stores.
MD-HBase [22] uses Z-order curves for multi-dimensional indexing over HBase.
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Figure 2.7: Temporal and numerical expressions can be modelled as a quadruple
T = (bl , bu, el , eu) denoting the lower and upper bounds of the time interval be-
ginning and end point values.

Haverkort and Walderveen [23] test different variants of the space-filling curve
and their efficiency in organising the space into bounding-box hierarchies. Geo-
hash.org [2] provides an API for encoding latitude, and longitude pairs into base32
Z-order values, called Geohashes. Similar approaches have been used in many
open-source and commercial NoSQL database systems such as MongoDB [24] and
Elasticsearch [25]. Lee et al. [18] used Geohashes to index spatial data in HBase,
supporting fundamental spatial queries by utilising the hierarchical characteristics
determined by the length of the Geohash.

2.5 Uncertainty-Aware Model

Temporal expressions such as “in the 1930s” have an inherent uncertainty. The
phrase does not specify when exactly in the 1930s it is taking place and could
be any yearly values in the interval [1930, 1939]. The same holds true for nu-
merical expressions. “400 million USD” can represent any value in the interval
[400M-499M]. This can be modelled by imposing lower and upper bounds of the
beginning and end of the intervals. The uncertainty-aware time model [26] can
be used to represent temporal expression with inherent uncertainty present. The
temporal expressions are part of a discrete time domain with timestamps t ∈ Z,
each timestamp describing the number of time units since a reference time point.
The temporal unit is the lowest discrete point in the model, such as seconds, days,
or years. The temporal expression is modelled as a quadruple,

T = (bl , bu, el , eu), (2.4)
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where bl and bu denote the respectively lower and upper bound of the begin-
ning boundary of the time interval. Similarly, el and eu denote the lower and
upper bound of the end boundary of the time interval. Any expression can then
be modelled as a time interval [b, e] having b ∈ [bl , bu] and e ∈ [el , eu], with
the constraint that b ≤ e. Figure 2.7 illustrates this time model. The blue square
shows the range of possible values represented by a temporal expression. The red
area illustrates the area outside of the constraints of the time model. As is evident
from the illustration, the time model represents a minimum bounding rectangle,
or square, where one corner is given by the lower bounds for each dimension, and
the other corner is given by the upper bounds. For example, “the 1930s” translates
to the quadruple [1930, 1939,1930, 1939], being modelled as the time interval
[1930, 1939]. This can be represented by the MBR with representative corners
(1930, 1930) and (1939, 1939). The MBR then spans any time interval following
the constraints of the time model. The same holds true for any numerical range
with the same restrictions.

Using temporal information in indexing has been done in works such as [27,
28]. In [27], the authors index timestamp versioned web-based document col-
lections. They utilize a partition-based approach to split posting lists correspond-
ing to different timestamps enabling quick execution of timepoint-based queries.
Anand et al. [28] build on this by proposing a query optimization framework able
to query time intervals with I/O constraint.
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NASH

This chapter describes how the annotated documents are modelled in a system to
support full-text semantic search with range-search capabilities over two-dimen-
sional annotations. The system is called NASH, derived from Numerical and Hash,
signifying the core concepts of the system. The query operations the system sup-
ports, and how the index is designed to support these operations efficiently are
described. Then, the hashing implementation using Z-order curves is explained in
detail with related range search optimizations.

3.1 Data Model

This section describes the data model used for indexing document collections and
their annotations. NASH builds on the annotated text model used by Gupta and
Berberich [9, 10]. The documents can be represented by a layered model of text
and annotations as seen in Figure 3.1. Each document d in a collection D is mod-
elled as a collection of annotation layers dL:

dL = 〈l[i, j] ... l[p,q]〉 (3.1)

3.1.1 One-dimensional Values

Each annotation l is one of the entity types available in the entity type vocabu-
lary
∑

L. NASH uses the following types {PERSON, ORGANIZATION, LOCATION, TIME,
NUMBER}, and corresponds to the course-grained annotation types extracted from
NLP entity extraction. Each of the annotation layers above shares this positional
information as well: l[i, j] decorates a contiguous word sequence 〈w[i, j], ... w[p,q]〉
in the word layer dW . The word layer can be treated as an annotation layer as well,
consisting of words drawn from the vocabulary of the entire document collection
∑

V . The entity layer describes the entity types of word tokens if they have one.
For example, the words “Alan Turing” is in positions 0 and 1, and the entity type
layer has a PERSON token in the same positions. The named entity layer represents

23
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Words

Entity Type

Alan Turing published seven papers during the 1930s

PERSON NUMBER TIME

Numerical
Values

[7.0, 7.0]

Temporal
Expressions

[1930, 1939]

0 1 2 3 4 5 6 7

LOCATION

Locations

[49.674, -14.015517, 61.061, 2.0919117]

in the

6 7

UK

7

3303030003

1323, 1322, 3101, 3100

0003000333

Entity Type
alan_turing united_kingdom

Figure 3.1: The data model representing the document text and its annotations.
The model is inspired by the work of Gupta and Berberich [9, 10].

a normalized token of the named entities, such that if an entity is described with
different words, it still has the same normalized token in the named entity layer.
The layer thus describes unique instances of named entities.

3.1.2 Two-dimensional Values

For numerical and temporal values, the textual representation is converted into
respectively its number- and time-value intervals. As the figure shows, “the 1930s”
is represented by a ten-year temporal range, and "seven" is represented by a zero-
length interval. Furthermore, “the 1930s” translates to the quadruple [1930, 1939,
1930, 1939] when using the time model described in Section 3.1 with the year
zero as a reference point and a one-year temporal unit. For positional phrase quer-
ies, only a year-level precision is utilised for simplicity and efficiency. For any ex-
tracted temporal expression, bl = el and bu = eu. Thus, the expression can be
modelled as a single spatial point in a two-dimensional coordinate system where
the x-axis represents the lower bound of the interval, and the y-axis represents
the upper bound. The phrase “the 1930s” is then represented as the point (1930,
1939) in the year temporal coordinate system. The same logic is true for the nu-
merical annotations, but with different levels of precision (described in Section
4.3.1). As these intervals are represented by a single point, they can be translated
to a single Z-order hash, which preserves the spatial properties of the annotations.
These hashes are shown beneath the numerical/temporal values in Figure 3.1.

The geographical modelling itself is of secondary concern but is included to
show how applicable the hashing approach is for different annotation types. A
simplified Minimum Bounding Rectangle (MBR) approach is used to represent
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geographical areas. As locations are represented by an MBR and not single points,
it cannot (always) be reduced to a single Z-order hash and still be precise. A
process analogous to a Z-order range search (described in Section 3.4) has to be
done on the MBR to calculate the minimum Z-order hashes which cover the area,
which are all stored at the location layer.

The key contribution of the data model is that the annotation layers keep
the positional information of the word tokens, they describe. As the positional
information between the layers is kept consistent, queries can be formulated by
combining tokens from all layers as part of a single query.

3.2 Query Operators

A set of query operators is needed to support full-text semantic search over the
annotated document collection. This includes searching with positional spans for
tokens and annotations, within a text region. The smallest region is in this case
sentences. This means that matches are only found within the tokens of a sentence
or spanning multiple sentences. A search over the index is a function with the
query Q as input, and a posting list of documents {d1, d2, ..., dk} matching the
query as output.

3.2.1 Text Tokens and One-Dimensional Annotations

The Boolean operators (Section 2.1.4) are used to search over tokens and an-
notations, as well as combining sub-queries. The AND (∧) operator is used to
match all terms in the query. For example, for word tokens this can be a query
such as david∧ hilbert∧ wrote ∧ a ∧ paper to match a text phrase. A text phrase
is a sequence of tokens which are one after the other, with consecutive positional
spans. To simplify the notation, this can be combined into a single bracket: [david
hilbert wrote a paper]. A text phrase can also span across multiple layers, e.g., the
annotation layer can be used in a query such as [(PERSON) wrote a paper], being
more general than the former query.

To combine annotations with text tokens, a Stack Operator [9] is used. An-
notations from an annotation layer can be stacked on top of the text layer tokens,
such that the positional spans of the text token and the annotation token are the
same. The STACK(⊕) operator represents this operation. For example, to search
for a specific text phrase annotated as a person, a query such as (PERSON)⊕
[david hilbert] can be constructed. Brackets indicate a text phrase (one or more
tokens next to each other), and parenthesis indicates an annotation. Text tokens
can have multiple annotations, and especially the location annotations can have
multiple associated Geohashes in the location annotation layer.

The Span Operator(δ)1 supports queries with wildcard tokens between the
query terms. The span operator determines how many tokens (words/annota-
tions) can be between the query terms, and it still is a match in the document.

1The naming is inspired by the span query of Elasticsearch/Lucene, with similar semantics.
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The operator is associated with an integer number, the slop, indicating the num-
ber of tokens the matching text phrase can span. A slop of zero then translates to a
phrase query, i.e., the tokens have to be next to each other and in order. A negative
number indicates that the match can span the entire document. Additionally, the
span operator can be used to indicate if the match should be within a sentence, or
between a specified maximum number of sentences. For example, to find matches
within a sentence context, a query such as δ〈 [david hilbert] [wrote paper] (TIME)
〉 can be constructed. The angled brackets indicate that the slop is between every
phrase (square bracket) and tokens/annotations within the brackets. This query
matches any text regions in documents where david hilbert, wrote paper, and a
text phrase annotated as TIME is within the same sentence.

3.2.2 Range Queries

To support spatial range-based queries (see Section 2.3.3 over numerical, tem-
poral, and location annotations, the Range Operator(∆[bl , bu, el , eu](a)) is used.
This operator is always connected to one of the applicable annotation types, a:
TIME, NUMBER, or LOCATION, and a search MBR. The operator allows for match-
ing with indexed hash tokens of the same annotation type, which are spatially
within a certain two-dimensional range. The operator thus defines a range with
lower bounds (l) and upper bounds (u), for the begin (b) and end (e) of the in-
terval, equalling a search MBR. Any sub-interval within the search range is found
as a hit. For example, the query 〈 ∆[1885, 1885, 1895, 1895](TIME) 〉 matches
text regions with temporal expressions between 1885 to 1895. The three types of
range-based operations defined in Section 2.3.3 can be implemented using range
queries:

contain(l) = {d ∈ D|l ′ ∈ dL ∧ l ′ ∩ l = l ′}, (3.2)

intersect(l) = {d ∈ D|l ′ ∈ dL ∧ l ′ ∩ l ̸= ;}, (3.3)

proximity(l) = {d ∈ D|l ′ ∈ dL ∧ l ′ ∩ l =∆}, (3.4)

where ∆ is a a proximity interval defined by the range operator.

3.2.3 Range Search MBR Construction

The approach used for calculating search MBRs differs slightly between the tem-
poral and numerical hashes compared to the location hashes. The indexed loca-
tion annotations are represented by a polygon and can thus have multiple hashes
associated with it of varying lengths. Comparably, the numerical and temporal
annotations are represented as single points. The range-based queries are thus
more expensive for location annotations as more hashes are computed and must
be searched. Spatial queries over geographical Z-order hashes are also explored
in previous works [18, 21]. The rest of this thesis focuses on the numerical and
temporal hashes only. Figure 3.2 visualises the MBRs generated for the temporal
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Figure 3.2: An example of how the generated MBRs for the search range B ([2,
5], [2,5]) can be visualised for numerical and temporal annotations.

and numerical annotations for each type of range-based query. The illustrative
search/index range is illustrated by point B, where X ∈ [2, 5] and Y ∈ [2,5], over
the maximum range X , Y ∈ [0,7]. The MBR construction is defined as follows:

Contains The contains query searches for the two-dimensional range where X ∈
[bx , ex] and Y ∈ [by , ey], with the additional restriction, that X ≤ Y . The
MBR has corners with coordinates (bx , by) in the northwest corner and
(ex , ey) in the southeast corner. Any indexed point (representing a range)
where bx ≤ X ≤ ex and by ≤ Y ≤ ey matches the query. Figure 3.2 illus-
trates the contains MBR as the green area with the MBR (2,2), (5,5). Any
point to the northeast of the indexed point will have a larger X (begin) value
and a smaller Y (end) value than the range [2,5]. As can be seen, the range
is likely to have multiple hashes in the invalid area which can be ignored by
the range search. Intuitively this makes sense as points near the diagonal
line will have X and Y values close together, indicating a smaller range.

ContainedBy The containedBy query is used to find the indexed annotations that
cover the search range. As all indexed ranges (points) have the same lower
and upper bounds for both dimensions, i.e., bx = by and ex = ey , the search
MBR needs to have the same restriction. The search range can be represen-
ted by the range [b, e], indicating shared bounds between the two dimen-
sions. The containedBy query searches the two-dimensional range where
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X ≤ b and Y ≥ e. The lower bound for X and the upper bound for Y are
the lower and the upper bound of the Z-order curve, respectively. Figure 3.2
illustrates the containedBy MBR with the yellow shaded area for the search
range [2,5]. Any indexed range which contains the range [2,5] will be in
the southwest direction as any point to the southwest of the search range,
point B, will have a large Y value and a smaller X value than B.

Intersect The intersect query matches any indexed range which overlaps with
the search range. Again, using the fact that indexed ranges are bound by
X , Y ∈ [b, e], the intersect query equals a range search with restrictions
X ≤ e and Y ≥ b. Similarly, the lower and upper bounds are limited by the
maximum Z-order ranges. Figure 3.2 shows the resulting search MBR for the
range [2,5] as the blue area. The intersect query is thus the most inclusive,
including all values from both the contains, and containedBy queries, in
addition to those that overlap the search range partly.

Proximity Proximity between hashes can be calculated in different ways. Here,
the proximity is based on the Euclidean distance in space, i.e., the shortest
possible distance between indexed ranges. With the query point given by
[b, e], and the distance ∆, the proximity MBR equals point (b −∆, e −∆)
in the northwest corner and point (b +∆, e +∆) in the southeast corner.
For example, finding points within a distance of one of B (range of [2,5])
in Figure 3.2 creates a search MBR with corners (1,4) and (3,6). For sim-
plicity, the distance is uniform in every direction but could differ based on
the proximity needs. For example, one could search for events near a date
with more results from recent years by having a greater distance in the Y-
direction (end) compared to the X-direction (begin).

For smaller distances, the proximity search can be more restrictive than the
other range-based queries. This can be a benefit to narrow down the number
of hits. Compared to the intersect query, the results can be a combination of
both containedBy and contains matches but can also match with intervals
not overlapping but which are still nearby.

The range-based queries can also be combined with each other simply by
simply adding to or subtracting from the resulting MBR hashes. For example, to
find intersect results without any ranges being fully contained by the other, the
hashes for contains and containedBy can be calculated and subtracted from the
intersect hashes. As all the hashes can be calculated at the client-side, no extra
computation is needed when searching the index.

3.3 Index Design

To support full-text semantic search, inverted indexes are utilised. This allows
for scalability and reliability, as well as compatibility with many existing data-
bases and storage solutions. As all two-dimensional annotations are linearized to
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a single dimension, no modifications to the inverted index are needed. Each of
the layers in the data model can be seen as an inverted index, but the positional
information is kept consistent between them.

3.3.1 Combining Words and Annotations

Using an inverted index over the text field, and storing the document id and
term positions along with the terms enables searching for both single words and
phrases of multiple words. Annotations are stored similarly in their own inverted
indexes, sharing the same token positions as the words they describe. An annota-
tion spanning more than one-word token will share the same start token posi-
tion and have a token length attribute equal to the number of words it describes.
Figure 3.3 displays a conceptual model of the index and how the positions are
stored. For example, David Hilbert can be indexed as two tokens, David, and Hil-
bert, with positions 0 and 1. The two tokens are together marked as a PERSON
entity type, stored as a separate term at position 0. Similarly, the combined en-
tity instance david_hilbert is also indexed at position 0. In the same manner, the
token 1891 at position 6 has an associated entity type TIME, and the temporal
hash 33000300304

2 at the same position. This representation is equal for all the
other layers not shown. The sharing of index positions allows for the stack oper-
ator to efficiently be executed by restricting tokens and their annotations to be at
the same position in the search.

DOC0:   David  Hilbert  published  a  paper  in  1891

0 1 2 3 4 5 6

david [docID=0,  position=0], ....
hilbert [docID=0, position=1], ...
published [docID=0,  position=2], ...
a [docID=0, position=3], ...
paper [docID=0, position=4], ...

PERSON [docID=0,  position=0, positionLength=2], ...

in [docID=0, position=5], ...
TIME [docID=0, position=6], ...
1891 [docID=0, position=6], ...

Term Posting List

3300030030 [docID=0, position=6], ...

david&hilbert [docID=0,  position=0, positionLength=2], ....

Figure 3.3: A model of the index for annotations and text.

2Indexed annotations for temporal and numerical values have equal lower and upper bounds for
both dimensions, resulting in hashes consisting mostly of 0s (00) and 3s (11) in a base 4 encoding.
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3.3.2 Sentence Regions

Having the positional information stored in the index allows for extracting rel-
evant text regions matching the search, i.e., that the last matching token should
be at most n positions away from the first matching token. NASH also support a
sentence-level region search, such that the matches are kept within single sen-
tences. This is achieved by using a positional jump of 10,000 values between the
end of one sentence to the beginning of the next. To only allow matches within a
sentence context, the maximum position gap of the span operator is set to 10,000.
No tokens from different sentences can be within 10,000 positions of each other,
and they can thus never match in the same region. Using a 20,000 search-span
extends this to a two-sentence search region, etc.

3.3.3 Z-Order Hashes

To be able to utilise the hierarchical properties of the Z-order hashes and the
range query operator, prefix searches are used. To make this kind of search more
efficient, each of the hash annotations also stores its prefixes as part of the inverted
index. For example, for the hash 3300030030 corresponding to the range [1890,
1890], each prefix 330003003, 33000300, 3300030, etc. is indexed at the same
position.

Z-Order Hash Calculation

Algorithm 1 shows the procedure of the calculation of Z-order hashes. The equi-
valent Java code implementation can be found in Appendix A.1.1. The procedure
is the same as described in Section 2.4.4. However, the bits are calculated dir-
ectly one at a time instead of interleaving them at the end. The algorithm takes
an X, and Y coordinate pair, the max ranges for each dimension, and the desired
precision as input. The Z-order value is calculated one bit at a time, starting with
the MSB. This represents the first Y-value of the hash. A counter, (b), is used to
indicate the current bit position. If the position is even, the current bit represents
a part of the Y-value, and if not, it represents a part of the X-value. The calculation
of the current bit is the same for both dimensions. The mid-point of the current
dimension is calculated and compared against the mid-point of the current range
for that dimension. It starts as the X and Y dimension bounds and is halved for
each bit being calculated. If the value is larger than or equal to the midpoint, the
current bit position is set to 1, and if not, it stays at zero. The range of the current
dimension is then halved, keeping the half containing the value. This is done al-
ternately for the X and Y dimension, until the desired number of bits, or precision,
is reached.

Decoding of the hash is done in a similar manner, but in reverse. Starting with
the MSB, if the bit is a 1, the maximum range of the dimension (starting with Y)
is split into the upper half, and if the bit is 0, into the lower half. This is done for
each bit, each time halving the range for the current dimension looked at. The
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Algorithm 1 Calculate the Z-order value/hash of a point given by the X and Y
coordinates.
Input: X-coordinate x , Y-coordinate y , Range of X XR, Range of Y Y R, Precision p
Output: h: the calculated Z-order value
1: procedure CALCULATEHASH(x , y, XR, Y R, p)
2: h← bit string with zero-bits, length of p ▷ 00...
3: b← 0 ▷ Current bit position
4: while b < p do
5: if b is even then ▷ Y-dimension
6: mid ← (Y R[0] + Y R[1])/2
7: if Y ≥ mid then
8: Y R[0] = mid
9: h← set current bit of h to 1

10: else
11: Y R[1] = mid

12: else ▷ X-dimension
13: mid ← (XR[0] + XR[1])/2
14: if X ≥ mid then
15: XR[0] = mid
16: h← set current bit of h to 1
17: else
18: XR[1] = mid

19: // next bit
20: b← b+ 1
21: h← left shift h by 1

22: return h
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result is a range for each dimension, indicating the region the hash covers, with
the size of the range given by Equation 2.3.

As the range search over the Z-order curve is at minimum done at two bits at a
time, a base 4 encoding is used. This means each base 4 character represents one
partition in both the X and the Y dimensions. This results in a shorter textual rep-
resentation while still allowing for the finest precision reduction or increment by
adding or moving to the hash. The encoding is as simple as translating each X, and
Y pair into its base 10 representation. 002 → 010, 012 → 110, 102 → 210, 112 →
310. As two and two bits are encoded together, this results in a base 4 encoding.

3.4 Z-Order Range Search

The range search over the Z-order curve is done by recursively splitting the search
range into Z-order ranges which are continuous at the current recursion level (re-
cursion level, tree depth, and bit-length/precision can be treated as describing the
same concept). This is done by utilising a modified version of the previously men-
tioned BIGMIN and LITMAX approach described by Tropf and Herzog [19] (see
Section 2.4.7). Their approach iterates through indexed Z-order objects and ini-
tiates a sub-range search if an object is found to be outside of the current search
range. This means the calculation is done as part of the query processing, and
only when an invalid value is encountered. The approach used in NASH is to com-
pute the relevant Z-order values before the search, which allows for normal term-
based matching in the index. However, to keep the search from enumerating all
the hashes of a search range at the finest possible precision, three methods are
combined to reduce the number of hashes and their length. The concept of con-
tinuous Z-order values is used to stop the search at a given depth, resulting in
shorter hashes and a minimum set of Z-order hashes which cover the search re-
gion. Additionally, a method for searching ranges at a lower accuracy is implemen-
ted which calculates the minimum Z-order precision given a maximum allowed
range deviation. Lastly, the boundary restrictions of temporal and numerical in-
tervals (X ≤ Y ) are used to stop the search if it moves into an invalid area.

3.4.1 Optimizations

Continuous Z-Order Values

The first method to reduce the number of search hashes is to check if the lower
and upper Z-order values of the search are continuous. Two Z-order values being
continuous is defined as every Z-order value laying between the interval defined
by the two values, are inside the search region. E.g, in Figure 3.4a, the hash values
for S and T are not continuous, as there are four Z-order values (at the current
precision level) between them which are outside of the search range. Region 25
to 28 on the other hand is continuous, as travelling through them in order does
not produce a value outside of the range [25, 28].
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The bit-characteristics of Z-order values can be used to check if two hashes
are continuous. First, the number of common MSBs between the two hashes is
calculated. This can be done by a bitwise XOR operation between the hashes and
counting the number of leading zeroes. The number of common MSBs indicates
the current precision level (or depth in the tree) that is being searched. For ex-
ample, zero common bits mean that the two hashes are in different quadrants
at the lowest precision level. Then, the remaining bits after the common bits are
checked. The Z-order value of the lower bound must have all zeroes after the
common bits, indicating that it is the first quadrant of the sub-range being in-
vestigated. The upper bound must have all one-bits following the common bits,
indicating that it is the last quadrant of the same sub-range. If this is the case, the
two hashes are continuous, and only the common MSBs are needed to represent
that region. As all Z-order computations in this thesis are done at least two bits at a
time (both X and Y), a continuous Z-order interval will necessarily travel through
all four quadrants of a region, meaning that they can be represented by the parent
region. For example, the range from 25 to 28 in Figure 3.4b can be represented by
the single value L as the quadrants cover the entire region, resulting in a shorter
hash.

Range Search Accuracy

Another way to make the range search more efficient is to reduce the precision of
the curve as much as possible while still being within a minimum range accuracy.
The accuracy of a single dimension on the curve is given by Equation 2.3. Solving
this equation for n and rounding up to the nearest integer gives the minimum
number of bits needed to be certain that any hashes calculated are not deviating
more than the allowed maximum for that dimension. This results in Equation 3.5.
As the range search is done over two dimensions, the calculated precision must
be multiplied by two. If the dimensions differ in required accuracy, the precision
required for the most accurate of the dimensions can be used. The calculated
precision (hash length) is only the maximum precision needed and can be lowered
for continuous hashes.

(t − s)
2n

≤ Deviation (3.5)

For larger ranges, potentially more hashes will be returned from the Z-order
curve, as the MBR is more likely to cover multiple quadrants of different levels.
At the same time, searches over larger areas often naturally require less precision.
For example, if searching for temporal annotations in the range [1900, 1900] to
[1999, 1999], having a potential ±10 year deviation in each end is not of as great
concern, compared to if the search was from [1990, 1990] to [1999, 1999]. This
is exploited by defining the maximum allowed deviation as a percentage of the
input search range. A larger search range allows for a greater deviation, and a
smaller search range requires a smaller deviation. For example, by multiplying
the smallest of the input ranges by 0.1, a 10% deviation is achieved in the worst
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case. The larger range [1900, 1900] to [1999, 1999]would then potentially allow
for a ± 10 year accuracy, while the smaller range [1990, 1990] to [1999, 1999]
results in a ± 1 year accuracy.

Pruning Invalid Hashes

For temporal and numerical expressions, the restrictive characteristics of their
lower and upper bounds can be utilised to reduce the number of resulting Z-order
hashes from the search. Recalling from Section 2.5, there are constraints on which
points in the coordinate system are allowed for the time model, and the same holds
true for the numerical values. Only points where X ≤ Y are valid, indicated by
the non-shaded area in Figure 2.7. This fact can be utilised in the Z-order range
search by ignoring any sub-range which fully takes place in the invalid area. The
initial search starts with both hashes for the MBR outside of the invalid area, but
when the MBR is split into new sub-ranges to be searched, some sub-ranges may
be entirely within this area and the sub-range search can safely be stopped. As the
northwest corner of the MBR is inside the invalid area, so is the southeast corner
and thus the entire MBR, meaning only the northwest value must be checked.

The values of the invalid area follow a recursive pattern. At the topmost level,
the entire northeast quadrant can be ignored along with two smaller triangles.
These triangles can recursively be broken down into smaller quadrants until the
hashes covering the entire invalid area are found. The topmost northeast quadrant
is given by the hash 012. Any value having this as its prefix is then invalid and can
be ignored. For example, in Figure 2.3a, the entire region C can be ignored. The
same is done for the two remaining triangles. Moving one level down in the south-
east quadrant, D, the hash for the northeast region O is 11012. Similarly, moving
down in level in region B yields a northeast hash of 00012. Each invalid hash can
be calculated in this way, by individually adding 002 (northwest quadrant) and
112 (southeast quadrant) to the end of all ignored values of the previous level.
The number of ignored values at each level thus grows at a rate of 2n, where n
is the current level, starting at 0. The total number of ignored values for a given
level of precision is then 2n+2n−1+2n−2+ ...+20 =

∑n
i=0 2n−i = 21+n−1. These

values are stored in a lookup table. As part of the range search of temporal and
numerical hashes, an additional check is done by seeing if the northwest hash of
the current sub-range is in this table, meaning the search in the current region
can be stopped and ignored, resulting in fewer hashes.

3.4.2 Range Search Algorithm

Combining the described optimizations with the modified BIGMIN LITMAX ap-
proach yields the Z-order range search algorithm (1). The equivalent Java code
can be found in Appendix A.1.2. The input of the search consists of the two hashes
corresponding to the corners of the MBR covering the search area, a list of hashes
calculated so far (starting with none), the set of the starting maximum range for
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each dimension, and the maximum allowed precision of the curve. The input max-
imum precision can be calculated using the previously described deviation (Equa-
tion 3.5) approach. Using the Z-order model as in Figure 2.6b, this translates to a
search from the northwest to the southeast corner of the MBR. The calculation of
BIGMIN and LITMAX is used to skip any hashes outside of the search area. These
calculated values result in a split of the search over two new sub-ranges. The al-
gorithm is thus recursive as it breaks the range search into smaller and smaller
sub-ranges, like moving down levels of a quad-tree. The traversal stops when one
of the stop-conditions is reached, either that the current sub-range is continuous,
or that the maximum precision is reached.

Algorithm 2 Calculates the minimum set of Z-order hashes covering a search area

Input: Northwest MBR point NW, Southeast MBR point SE, List of hashes H (initially
empty), and maximum Precision p

Output: A minimum set of hashes H covering the input MBR
1: procedure RANGESEARCH(NW, SE, H, p)
2: cb← number of common MSBs between NW and SE
3: if NW and SE are continuous then ▷ range within MBR
4: h← bitstring equal to the common MSBs
5: H.add(h) ▷ hash shorter than p
6: return H
7: if cb = p then ▷ at lowest level
8: H.add(NW ) ▷ Single partition, max hash length
9: return H

10: // Calculate BIGMIN B and LITMAX L
11: if cb is even then
12: B, L← calculateBigminLi tmax([NW.X , SE.X ], [NW.Y, SE.Y ], 1)
13: else
14: B, L← calculateBigminLi tmax([NW.Y, SE.Y ], [NW.X , SE.X ], 0)

15: rangeSearch(NW, L, H) ▷ West/North split
16: rangeSearch(B, SE, H) ▷ East/South split
17: return H

The algorithm starts by finding the number of common MSBs (line 2). This is
used to check if the NW and SE hashes are continuous. If they are continuous, the
search can stop, and the common MSBs can be added to the return hash set (line
5). For example, searching from point C to point E in Figure 2.6a at a four-bit
precision means no splits of the search are necessary. C = 01102 and E = 01112,
i.e., they have three common MSBs, 0112. The next bit(s) for C is a single 0, and for
E is a single 1, indicating that the two values are continuous. However, if the bit-
precision of the curve was increased, they would no longer be continuous as their
hashes would no longer have all zeroes or ones. The defined maximum deviation
and continuous values thus function together to limit the number of hashes. If the
number of common bits is equal to the maximum bit-precision, the search stops at
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the current recursion as the two hashes are seen as equal for the given precision,
and the common bits are added to the return hashes (line 9). If none of the two
stop conditions are true, the BIGMIN and LITMAX calculation must be done to
find the X and Y values for splitting the range search (lines 10-14). Based on the
calculated values, the search is split into two sub-ranges with MBR corners (NW,
LITMAX) and (BIGMIN, SE).

Calculating BIGMIN and LITMAX

The BIGMIN LITMAX algorithm (1) calculates the two new MBR corners of the
split (the old northwest and southeast corners are kept). The equivalent Java code
can be found in Appendix A.2. The split is either horizontal or vertical, which is
indicated by the number of common bits. An even number indicates that the next
bit not in common is a Y-value (horizontal split), and an odd number indicates
that the next bit is an X-value (vertical split). This means that either the X-values
or the Y-values of the new corners are already known. The algorithm calculates
the values of the unknown dimension and combines them with the values of the
known dimension into the new search corners. A horizontal split means that the
search is split along the Y-axis and that the current X-values are within the search
range and part of the new corners. The BIGMIN, LITMAX calculation is then done
to find the Y-values of the regions just north, and south of this line. Similarly, a
vertical split means a split along the X-axis, and the calculation is done to find the
X-values of the regions just to the left and to the right of the line.

The algorithm takes as input both the values of the known dimension as one
pair and the values of the unknown dimension as another. For example., a hori-
zontal split takes as input the X-bits for both the corners as the known values and
the Y-bits for both the corners as the unknown values. Additionally, the algorithm
takes as input a value indicating which dimension the calculations are to be done
for (the unknown values), 1 indicating the Y-dimension. The algorithm outputs
the LITMAX and BIGMIN values which respectively correlates with the southeast
corner of the lower sub-range, and the northwest corner of the upper sub-range.

The calculation itself is done by simply appending a set of pre-defined bits
(masks) to the end of the common MSBs of the unknown values (lines 3-6). First,
the common MSBs of the unknown values are found. The common bits indic-
ate at which precision level the dividing line of the split is. The BIGMIN mask is
calculated by adding a 1 followed by zeroes (1000...2), until the maximum bit-
precision is reached. The 1 indicates the south/east (BIG) side of the split, and the
zeroes indicate the minimum (MIN) of these values. Similarly, the LITMAX mask
is calculated by appending a 0 followed by ones (0111...) until the maximum bit-
precision is reached. The 0 indicates the north/west (LIT) side of the split, and
the ones indicate the maximum (MAX) of these values. The final LITMAX and
BIGMIN values are calculated by interleaving the values from the known dimen-
sion with the calculated LITMAX and BIGMIN masks for the unknown dimension
(lines 7-12). LITMAX is interleaved with the largest of the known values, and BIG-
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MIN with the smallest. The starting value of the final hash is always the Y-value,
and the dimension indicator shows which dimension is the unknown and which
is known to get the correct bit in the MSB position (line 7).

Algorithm 3 Calculates BIGMIN and LITMAX values
Input: Tuple of values for known dimension K , Tuple of values for unknown dimension

U , Boolean indicator of unknown dimension d
Output: Calculated values for unknown dimension l i tMax and bigMin
1: procedure CALCULATEBIGMINLITMAX(K , U , d)
2: cb← number of common MSB between U[0] and U[1]
3: l i tMask← bit-string equal to 011..., total length equal cb
4: bigMask← bit-string equal to 100..., total length equal cb
5: l i tMask← first cb MSBs of U[0] followed by l i tMask
6: bigMask← first cb MSBs of U[1] followed by bigMask
7: if d = 0 then ▷ Unknown dimension is Y
8: l i tMax ← bit interleave l i tMask and K[1], starting with mask
9: bigMin← bit interleave bigMask and K[0], starting with mask

10: else ▷ Unknown dimension is X
11: l i tMax ← bit interleave K[1] and l i tMask, starting with K
12: bigMin← bit interleave K[0] and bigMask, starting with K

13: return l i tMax , bigMin

Range Search Example

Figure 3.4a illustrates how the range search is divided into smaller sub-ranges.
The two-dimensional range search is done from point S to point T equals a Z-order
range search from the hash in quadrant 25 (0110002) to the hash of quadrant 54
(1101012), over a 6-bit Z-order curve (only the four-bit hashes are shown). S and
T are not continuous, as shown by the quadrants shaded red. The algorithm finds
the number of common bits, which is zero, meaning a horizontal split and un-
known Y-values. The extracted Y-bits from quadrant 25’s hash is 0102 and from
quadrant 54 1002. As the current Y-values share no common bits, the Y-bits for
BIGMIN (the BIGMIN mask) is simply 1002, and for LITMAX, 0112. Interleav-
ing 1002 with the (known) X-bits of quadrant 25 (1002) results in a BIGMIN of
1100002, which is in quadrant 49. Similarly, interleaving 0112 with the X-values
of quadrant 54 (1112) yields a LITMAX of 0111112, quadrant 32. Based on these
values, the search range is split into two sub-ranges shown by the red line in Fig-
ure 3.4a. The new ranges are quadrant 25 to quadrant 32, and quadrant 49 to
quadrant 54.

The search from quadrant 25 (011002) to quadrant 32 (01111121) is done in
the same manner. However, this time the range is continuous. The hashes share
three common bits, with the northwest hash having all zeroes following the com-
mon bits, and the southeast hash having all ones following the common bits.
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(b) Tree representation of the Z-order range search

Figure 3.4: Range search over the Z-order curve done by recursively splitting the
search area into Z-order sub-regions. The calculation of BIGMIN and LITMAX is
used to find where the range should be split.
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No further searching is then needed, and the hash (0112) is added to the result
hashes. The same does not apply for the search from 49 to 54, as the quadrants
51 and 52 are outside the search range, but between the Z-order interval. The
number of common bits between quadrants 49 and 54 is three (1102), indicat-
ing a vertical split and unknown X-values. The X-bits of quadrant 49 are 1002,
and 1112 for quadrant 54. They share one common bit, resulting in a BIGMIN
mask of 1102 and a LITMAX mask of 1012. Interleaving the BIGMIN mask with
the Y-bits of quadrant 49 (1002) yields the BIGMIN value 1101002 (quadrant 53).
Similarly, interleaving the LITMAX mask with the Y-values of quadrant 54 (1002)
yields 1100012 (quadrant 50). The new search ranges are then from quadrant 49
to 50, and from 53 to 54. The split is indicated by the blue vertical line in Figure
3.4a. Both these new ranges are found to be continuous as they share common
bits, followed by all ones and all zeroes. The hashes added to the result are then
110002 and 110102. However, NASH will only allow continuous ranges which have
an even bit length, such that the prefix properties can be utilised in a base 4 en-
coding. This would result in two further vertical splits, and the hashes for 49, 50,
53, and 54 would be added individually.

Figure 3.4b shows the different levels of the search in a quadtree. Only the
visited sub-trees are included. The red lines illustrate the first range split, and the
blue lines the second split. The green lines and nodes indicate where the search
terminated, and are the hashes added to the result set. The yellow nodes show the
quadrants which were not visited as they were within a continuous range. As can
be seen, a total of 12 leaf nodes are included in the search, but only 6 are needed to
represent the entire range (four if allowing odd hash lengths). If allowing for some
precision loss, even fewer hashes could be included in the results. For example,
only the hashes for E and C could be included, however, it would come at a cost
of decreased search accuracy.
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Implementation Details

This chapter describes the platforms, annotators, and other off-the-shelf tools util-
ised for implementing NASH.

4.1 Platforms and Annotators

This section describes the tools used to implement NASH.

4.1.1 Source Code

Java [29] is used as the programming language of choice for all implementations
of the system. It is a well-established and performant language providing the ne-
cessary tools needed to implement NASH. Java SE Development Kit 8 (version 1.8)
was used because of its wide compatibility with all needed libraries and frame-
works.

4.1.2 Stanford CoreNLP

The Stanford CoreNLP toolkit [30] provides a pipeline for core natural language
processing tasks in Java. It is open-source and widely used by both commercial
and government actors. The processing pipeline takes raw text as input and runs
it through multiple annotators to produce a final set of annotations. These include
parts of speech, named entities, dependency parses, co-reference, etc.

Version 4.4.0 of Stanford CoreNLP was used for all needed basic annotations.
The Named Entity Recognition (NER) pipeline is the most crucial benefit of this
library, providing the recognition of entity types for organizations, numerical val-
ues, persons, locations, and temporal values. The temporal interval annotations
are made available through the SUTime library [31]. Especially important for the
NASH system is the capability of recognising partially specified times, such as “the
nineties”.

40
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4.1.3 Elasticsearch

Elasticsearch is used to create, store, and query the index. Elasticsearch is a NoSQL-
like database built for large amounts of data of different types while being scalable
and fault-tolerant [32]. It is built on top of the open-source search library, Apache
Lucene [33], providing a set of data structures and methods for text-based search.
This means Elasticsearch can provide full-text search from the get-go. Another
benefit is the easy-to-use REST (Representational State Transfer) API Application
Programming Interface) which makes it straightforward to create complex queries
without having to resort to low-level implementations. Elasticsearch also provides
a Java client library, making the integration with the rest of the implementation
seamless.

4.2 System Overview

The system is built on a client-server architecture as illustrated in Figure 4.1. The
client end of the system is a set of modules written in Java, and the server end is an
instance of Elasticsearch with custom configurations and mappings. The client is
given the task of annotating documents using CoreNLP, calculating Z-order values,
and interacting with the database over HTTP (Hypertext Transfer Protocol). This
includes the insertion of annotated documents and creating search requests for
said documents. The server, or database, is a running instance of Elasticsearch. The
server stores all annotated documents and creates the indexes to allow querying
of the data. No changes to the Elasticsearch source code are needed, but a custom
index mapping was created to define the index fields and characteristics.

4.3 Java Client

The client application has four main tasks represented by individual modules: an-
notation, indexing, querying, and Z-order curve operations. The annotation and
indexing modules are utilised in the pre-processing and indexing of the docu-
ments. The query module constructs the query operations, handles query requests
to the server, and received the response. The Z-order module is utilised in both
the pre-processing and the querying.

4.3.1 Annotation Module

The annotation module is tasked with reading the raw text documents and extract-
ing the needed annotations. CoreNLP is utilised for this purpose. A pipeline is built
using the annotators1: tokenize which tokenizes the text into roughly "words" suit-
able for further processing, ssplit which splits a sequence of tokens into sentences,
pos which labels tokens with part-of-speech, lemma which creates word lemmas

1All CoreNLP annotators and descriptions can be found at https://stanfordnlp.github.io/
CoreNLP/annotators.html

https://stanfordnlp.github.io/CoreNLP/annotators.html
https://stanfordnlp.github.io/CoreNLP/annotators.html
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Server

Doc1

Text: [Alan  (23 January 1862 – 14 February 1943) ...   
Persons: David Hilbert   
Timeranges: ([hash: 3033330003, start pos ...], ...)   
Locations:  ...   

Doc2

Text: [Michael Hilbert (23 January 1862 – 14 February 1943) ...   
Persons: David Hilbert   
Timeranges: ([hash: 3033330003, start pos ...], ...)   
Locations:  ...   

...

...

Doc3

Text: [david hilbert, 23, january, 1862, 14, february, 1943, ...]   
Annotations: [(PERSON, tokenpos),  (TIME, tokenpos), ...]   
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Figure 4.1: The architecture of the full system.
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for the tokens, and ner which recognizes named, numerical, and temporal entit-
ies. The input text moves through one annotator at a time, utilising the output
from the annotators before it, ending in the NER annotator.

Entity Extraction

The NER annotator is configured to extract three main types of entities: named
(persons, organizations, locations), numerical (money and numbers) and tem-
poral. The SUTime is part of the NER annotator and is configured to mark ranges
from the temporal annotations. A text string such as “1990s” will then be annot-
ated as the time interval [1990-01-01, 1999-31-12]. Numerical annotations can
include range as well, e.g., “5-7 million dollars” can be marked with the range
[5.0E7, 7.0E7]. The entity mentions are also marked with their entity type. The
entity types used are those mentioned in Section 3.1. Each annotation also in-
cludes the positional span of the tokens the annotation describes.

After extracting annotations using the CoreNLP library, the temporal, numer-
ical, and named location annotations are further processed utilising components
from the Z-order module. To be able to support two-dimensional spatial queries
over such annotations, they are linearized using Z-order curves over their spatial
coordinate system. The entity type annotations do not need further processing.

Numerical Annotations

The numerical annotations can span ranges of large size differences. For instance,
one sentence might mention precise measurements at a decimal point precision,
while another mentions estimates in the billions. A single Z-order curve covering
the entire maximum range of numerical values would have to consist of many bits
to be able to get a high enough accuracy (small enough partitions) to distinguish
the smaller ranges from each other. Therefore, the maximum range of numerical
values is broken into sub-ranges or levels of accuracy. For indexing the documents,
four levels are used for the numerical ranges. The first level curve encodes all
intervals with the upper bound less than a 100, the second level encodes values
more than a 100 and less than 10 000, the third level values more than 10 000 and
less than 10 million, and the fourth level all values greater than 10 million and less
than a billion. A limit of using the Z-order curve is that there always must be some
upper limit, and in this case, every number above a billion is grouped into the same
curve. Each level uses a 20-bit precision, but as the maximum range grows larger
for each level, the accuracy of the curve gets lower. The size of the most accurate
range in each curve can be calculated using Equation 2.3. The first level curve has
a maximum accuracy of 100−0

210 = 1×10−8 in each dimension (beginning and end).

The fourth level curve has an accuracy of 1×109−1×107

210 ≈ 1× 104. However, high
valued numbers in text documents are often inherently less accurate than lower
value numbers, e.g., “the government spent 66 billion on military defence” has a
precision level of±1×109, i.e., it represents a range of [66, 67) billion. This means
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a high-level accuracy is not needed to sufficiently represent the large numbers.
The maximum range for the Z-order curves can also be increased at a higher rate
between each level because the accuracy becomes less and less important.

The Z-order hashes are then encoded at base four, meaning two and two bits
are represented by a character in the set {0, 1, 2 ,3}. The base 4 encoding makes
it possible to fully utilise the hierarchical characteristics by increasing and de-
creasing the length of the hash while halving the length compared to the bit-
representation.

Temporal Annotations

The temporal annotations are also hashed to Z-order values. The bounds of the
X and Y dimensions for the temporal values are set to X , Y ∈ [1100,2100]. Each
point in this coordinate system then represents the lower and upper bounds of a
numerical interval, just as with numerical annotations. Using a 20-bit precision
for the Z-order curve yields an accuracy of 2100−1100

210 = 0.98, given by Equation
2.3. Thus, each Z-order value represents a two-dimensional range of one-year
in each direction. The one-year precision was chosen as a compromise between
accuracy and efficiency. The lower and upper bounds for the X and Y dimensions
were chosen such that all temporal annotations of recent time will be indexed. If
a more precise proximity measure were needed, a similar approach to that of the
numerical hashes could be utilised, by using multiple curves with different size
ranges. Another approach would be to increase the number of bits in the hash,
with the consequence of needing to match longer prefixes. Like the numerical
hashes, the temporal hashes are encoded to base 4 strings.

Location Annotations

The location entities returned from the annotation pipeline simply consist of their
textual representation, i.e., their names. A separate lookup table of location names
and MBRs was used to find the southwest and northeast corner (latitude, longit-
ude) of the smallest rectangular area spanning the location. Country MBRs were
gathered from Natural Earth [34]. The cities are not represented by MBRs, but
are rather represented by a single point, and were gathered from GeoNames [35]
for cities with a population over 500. This is to keep the complexity of the geo-
graphical queries at a low level. To find the minimum number of Z-order hashes
covering the MBR, a Z-order range search is conducted using the MBR coordin-
ates. The bit-precision for the hashes varies depending on the size of the MBR,
with larger areas typically having shorter hashes. The maximum bit-length was
set to 20. As the latitude values span an interval from -90 to 90, the accuracy is
given by 90−(−90)

210 = 0.18. The longitude spans an interval from -180 to 180, giving

an accuracy of 180−(−180)
210 = 0.35. Combined, the accuracy is roughly an area of

40 kilometres on Earth.
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4.3.2 Z-Order Module

The Z-order Module implements the related algorithms for Z-order curves. This
includes hash calculation and range search utilising BIGMIN and LITMAX with
optimizations to reduce the number of hashes. The Z-order implementations were
made without third-party modules, to have full control over the Z-order values,
the precision, and the X and Y dimension boundaries. Most of the operations were
implemented through Java bit-wise operators and primitives. The hash itself is
represented by the Java primitive long, storing 64 bits in total. The max length
of a hash is thus 64 bits using this implementation, however at most 20 bits were
used. The algorithms themselves are described in Chapter 3.

Range Search

Searching over the Z-order curve is an important part of the implementation, as
it allows for queries over two-dimensional temporal, numerical, and location an-
notations as a part of the full-text semantic search. The implementation details
are covered in Section 3.4. The range search results in a set of hashes which are
utilised as part of the queries to the index. The range search is also used when
calculating the minimum covering hashes for the MBR of a geographical location
used in the indexing module. For location annotations, there are multiple hashes
and varying lengths. The maximum precision of the search is defined such that the
length of the search hashes is never longer than the length of the hashes which is
to be matched.

4.3.3 Index Module

The index module is responsible for preparing the data returned by the annotation
module and sending the final data to the server for indexing.

Tokenization

To keep the token positions consistent between the different layers, special con-
siderations must be taken as part of the tokenization process. The documents are
tokenized at the client-side to ensure an equal length of the layers and correct
token positions. A textual representation of each layer is composed by utilising
the text and annotations from the CoreNLP pipeline, which also contains posi-
tional information. From these tokens, the different layers are put together. All
layers are initialized as lists of the same length, where each position is filled with
an <EMPTY> token. The tokens are iterated through and placed in the correct
layer and position based on their annotation type. For numerical, temporal, and
location annotations, the hashes are included in separate hash layers. As tokens
can have the same position, multiple layers may have a token at any given position
at the same time. For layers which can have multiple tokens at the same position,
new tokens are appended and separated by an ‘&’ symbol but are split again when
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indexed. After each token is iterated through, the resulting layers consist of a set
of<EMPTY> and text tokens either representing a word or annotation. The layers
are then ready to be sent to the Elasticsearch server for indexing.

Algorithm 4 Constructs each of the annotation layers and the text layer.

Input: List of text and annotation tokens T
Output: The set of all annotations and text layers L
1: procedure CREATELAYERS(T)
2: // Initialize layer token lists with < EM PT Y > tokens, length equal to max token
3: position of T .
4: t l ← [< EM PT Y >, ...,< EM PT Y >] ▷ Text layer
5: el ← [< EM PT Y >, ...,< EM PT Y >] ▷ Entity type layer
6: th← [< EM PT Y >, ...,< EM PT Y >] ▷ Timehash layer
7: nh← [< EM PT Y >, ...,< EM PT Y >] ▷ Numberhash layer
8: lh← [< EM PT Y >, ...,< EM PT Y >] ▷ Locationhash layer
9: for t in T do ▷ Iterate tokens

10: p← t.posi t ion ▷ integer position of current token
11: if t is entity type then
12: el[p]← t.value
13: else if t is time then
14: th[p]← t.value
15: else if t is number then
16: nh[p]← t.value
17: else if t is location then
18: if lh[p] =< EM PT Y >p) then
19: lh[p]← t.value
20: else
21: lh[p]← lh[p] +&+ t.value

22: else ▷ Not an annotation
23: t l[p]← t.value

24: L← {t l, el, th, nh, lh}
25: return L

Index Insertion

Documents are inserted in the Elasticsearch index after going through the annota-
tion processing and pre-tokenization. The index module reads documents from
the disk, creates the text and annotation layers, and sends the layers as part of a
JSON document in an HTTP request to the server. The Elasticsearch bulk API is
utilised to speed up the insertion. The server can also handle multiple indexing
requests in parallel.
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4.3.4 Query Module

The query module implements the query operations from Section 3.2 by combin-
ing different methods available through the Elasticsearch Java Client API [36],
making the Query DSL operations easily accessible through Java. Most import-
antly is the Intervals query. This query allows combining a set of matching queries,
returning intervals of terms that match the specified queries.

Building the Query Operators

The base building block of the intervals query is the Match query. This takes as in-
put a set of terms, the maximum allowed number of positions (max gap) between
the tokens, and a Boolean value indicating if the matching tokens need to be in
order. The query matches any tokens based on the max gap and the order. This
translates to a combination of both the Boolean Operator and the Slop Operator.

The max gap attribute can also be used to only match within a sentence con-
text, by setting the gap to the same values as the jump of positions between the
last token of one sentence, and the first token of the next sentence.

The Stack Operator is supported through an Interval filter as part of the Match
query. This allows filtering based on another Intervals query and its positional re-
lation to the Match query. The interval filter query can be after, before, contained
by, contain, etc. in relation to the outer Match query. The stack operator is imple-
mented by doing a Match query on the phrase which should have an annotation,
and filtering with a query on the relevant annotation layer with a “containing”
relation. The reverse order is also possible, by having the annotation layer as the
outer layer and filtering on the text layer with a “contained by” relation. The Inter-
vals query also allows for Prefix sub-queries, which are used in combination with
hashes to support the Range Operator.

Supporting Spatial Queries

The spatial queries of Section 2.3.3, containment, intersect, and proximity, are as
explained supported through range searches over the Z-order curve at the client-
side. The index lookup at the server-side uses prefix matching, as the indexed
values are at maximum precision and often not the same lengths as the search
hashes. The prefix queries are combined with the Boolean OR operator for tem-
poral and numerical searches, as only one of the hashes needs to match for it to
be retrieved.

4.4 Elasticsearch Server

The server end of the system is an instance of Elasticsearch and provides the index-
ing, search, and storage capabilities of the system. This section describes how the
indexes were configured and implemented in Elasticsearch. An overview of how
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the query operators from Section 3.2 are defined using queries from the Elastic-
search Query DSL (Domain Specific Language) [37] is also given. Elasticsearch
gives the benefit of using already efficient and optimized index structures, as well
as a well-developed query language. Additionally, it demonstrates how the index-
ing of NASH applies to a well-established and popular search engine.

4.4.1 Indexing

Elasticsearch is built on top of Apache Lucene, utilising inverted indexes to support
full-text search. As such, there are no needed changes to be made to the underlying
database system for it to fit the data and indexing models of the system. The main
configurations are done through the mapping, or schema, describing the different
fields of the documents, and how they should be analysed when indexed. Data is
stored as JSON (JavaScript Object Notation) documents, where a set of keys, or
fields, is connected to their corresponding values. Each field describes its type, and
how it should be indexed. The different types of fields are indexed using different
data structures, which for all fields used in this implementation is the inverted
index.

The input JSON documents are produced by the client pre-processing. These
consists of the text and the extracted annotations from the CoreNLP pipeline. The
final document is produced by the indexing module, consisting of just two main
fields. This is the "title" field describing the title of the document, and a "sentences"
field. The sentences field consists of an array of text strings, each describing the
data layers for that sentence. Since the sentences are separated, a token position
jump between sentences can be stored to support searching over sentence regions.
As the sentences field is a single text string with all layers, it must be further
processed and analysed before indexing. This is defined in the mapping.

4.4.2 Mapping

The full mapping found be found in Appendix A.3. As the query operations require
interval queries over multiple fields at a time, the Elasticsearch fields attribute
must be utilised. The fields attribute defines multiple “child ” fields for the “par-
ent” field. Each of the child fields uses the same textual input for indexing as the
parent field, but they can utilise different analysers to determine how the input is
processed before indexing. The fields attribute allows for each of the child fields to
be regarded as a single field (but with their own inverted indexes) when it comes
to interval queries, such that positional spans between them can be combined.

The parent field is corresponding to the "sentences" field of the input JSON
document, and each of the child fields is a different layer in the data model. Each of
the child fields has specific analysers which extract only the relevant layer, which
is done using regular expressions. The tokens from the index module in the client
are separated by a symbol, which in this case is a whitespace character (" ") (it
is ensured that no indexed tokens contain whitespace). Therefore, the analyser
of each field separates the tokens by splitting the sentence on the whitespace
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character. For the text layer, no further processing is needed. All the other fields
remove the <EMPTY> tokens, replacing them with a token without text. The
entity type layer is then ready to be indexed as well. The numerical, temporal,
and location annotation fields also index prefixes up to the maximum length of a
hash. As the location annotations can have multiple entries at the same position,
they are split on their separator character.

4.4.3 Searching the Index

The server receives HTTP requests from the client for queries searching over the
index. Based on the queries it utilised the inverted indexes for the different fields
to match the queries. As all queries are of a Boolean characteristic, scoring of
the results is not necessary. The lookup in the index itself and any optimizations
happen behind the scenes, meaning the search process mostly functions as a black
box. The posting list of matching documents is returned to the client as an HTTP
response after the query is complete.



Chapter 5

Evaluation

This section describes the experimental evaluation of NASH. NASH was evaluated
to measure the end-to-end query execution time with a set of queries involving
temporal and numerical range expressions over three document collections.

5.1 Experimental Setup

This section describes the setup used to conduct the experiments.

5.1.1 Hardware Setup

The experiments were run on a single server-grade machine, equipped with Intel
Xeon CPU E5-2640 @ 2.60GHz with 128GB of RAM. Both the client and the Elast-
icsearch server were running in separate local instances on the machine. Elastic-
search version 8.2 was utilised for the server, with one index shard for each doc-
ument collection in a single node setup. The Elasticsearch server was given 32GB
of heap size. The server was equipped with a set of indexes, implemented as de-
scribed in Chapter 4 with inverted indexes for text, entity types (person, location,
organization, time, number), named entities (persons, locations, organizations),
and Z-order hash annotations for two-dimensional range annotations (numerical,
temporal, and location). The documents are pre-processed in the client applica-
tion using Stanford CoreNLP to extract annotations, and Z-order curves to linear-
ize range annotations, before being indexed using the custom mapping defined in
Appendix A.3.

5.1.2 Document Collections

Three document collections of varying sizes were used for the experimental tasks.
The largest collection is the entire English Wikipedia [38] document collection,
which is made public by the Wikimedia Foundation [39]. The second-largest docu-
ment collection is the New York Times (NYT) annotated corpus [40], consisting of
more than 1.8 million news articles over 20 years, from 1987 to 2007. The third
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document collection is the smallest and consists of all articles from the Simple
English Wikipedia [41] also made available by the Wikimedia Foundation [39].
All documents from the three collections are processed through the annotations
pipeline at the client-side, before being inserted into an Elasticsearch index for
each collection. The benefit of these documents is that they are written using a
consistent and well-structured language, and the content is often related to real-
world events. The number of documents, the collection and index size are shown
in Table 5.1. The table also displays the number of extracted sentences and words
from the annotation process. Table 5.2 shows the type and number of annotations
in each document collection.

Table 5.1: Document collection sizes, and index sizes in Elasticsearch with num-
ber of documents, sentences, and words.

Collection Size (GB) Index Size (GB) Documents Sentences Words

EnglishWiki 131.3 140.9 6,472,306 238,175,120 3,228,003,978
NYT 35 32.4 1,878,536 50,424,170 1,088,588,407
SimpleWiki 1.9 1.7 217,116 3,756,866 46,757,033

Table 5.2: The number of annotations of different types resulting from the
CoreNLP annotation pipeline.

Collection Annotations ORG. LOCATION TIME NUMBER PERSON

EnglishWiki 685,152,972 87,082,080 99,987,478 177,601,488 115,510,910 204,971,016
NYT 117,274,731 13,585,339 17,095,985 21,001,298 20,567,430 45,024,679
SimpleWiki 7,109,691 916,509 1,289,143 1,840,103 995,099 2,068,837

5.2 Evaluation Task

The system is tested in its capability and efficiency in semantic full-text search
with range search over temporal and numerical annotations. The performance is
measured in end-to-end query execution time. This includes a set of queries built
from the query operations in Section 3.2, combing text phrases and annotations
of the different layers. The focus is on the temporal and numerical annotations,
to test the performance impact of expanding temporal and numerical ranges used
in the search.

5.2.1 Queries

The evaluation query set is gathered from the test bed related to semantic search
used by Gupta and Berberich in GYANI [9]. From these, the subset of queries hav-
ing either a temporal or a numerical expression is gathered. The queries with
at least two terms are used. This results in a total of 1698 unique queries, and
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a sample of 100 queries is used for the benchmark. An excerpt can be seen in
Appendix A.5. The queries consist of a set of text phrases and their annotations,
combined with the Boolean AND operator. Numerical annotations are represented
as single values or intervals, and the temporal annotations are written as intervals
within a single year. The annotation types used are PERSON, ORGANIZATION, LOC-
ATION, NUMBER, and TIME. For terms with person and ORGANIZATION annotations,
the terms are used as-is and translated to the equivalent Elasticsearch Query DSL
operations, using the Stack Operator. An example query defined as an Elastic-
search JSON query can be found in Appendix A.4 using numerical and temporal
ranges without any text phrases. The queries are translated into the Span Oper-
ator as defined in Section 3.2, detecting spans in a sentence context. They are
executed with a minimal span approach, meaning that only the shortest match-
ing spans are returned. Using the query operators of Section 3.2, an example
query can be formulated as 〈∆(T I M E)⊕[easter] ∧∆(NU MBER)⊕[1, 600]〉 This
query matches sentences with spans containing the terms “easter” and “1,600”,
indexed as entity types TIME and NUMBER. To include ranges, the query can be
formulated by using the Range Operator: 〈∆[1910, 1916,1919, 1919](T I M E)
∧∆[1500,1500, 1700,1700](NU MBER)〉, for matching any spans with a tem-
poral expression in the range [1910, 1919], and numerical expression in the range
[1500, 1700].

5.2.2 Evaluation Approach

The query set is run in a cold and a warm cache configuration. The warm cache
configuration runs a query once without recording the time, before running it
three more times in a row for evaluation. The cold cache configuration runs each
query once in a random order, which is repeated three times. The warm cache
configuration makes so that the relevant documents are kept in main memory
(cache), while the cold cache configuration makes it more like that some sections
of the index must be loaded from secondary memory. The results show the mean
end-to-end query execution time in seconds for the three runs, together with the
standard deviation. The same execution approach is used for all query tasks.

5.2.3 Query Tasks

The queries are executed using four different range intervals for numerical and
temporal annotations. All query configurations are run with three different Z-
order deviation percentages as defined in Equation 3.5, 0.5%, 1%, 10%, and 50%.
That is, the ranges are expanded by a percentage in each direction using the prox-
imity spatial query. As many of the annotations in the query set have a range size
of 0, the range expansions used are a percentage of the maximum ranges for the
applicable Z-order curve instead of the input range. For example, for the temporal
hashes having a 1000-year maximum range, a 10% expansion equals ±100 years.
As the maximum ranges are large compared to most indexed intervals, the per-
centage extensions are mostly kept at a low level. The 0.5%, 5%, and 10% range
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extensions represent more realistic queries, while the 50% extension is included
to test the performance when the query range almost covers the entire maximum
ranges, as at least one of the boundaries would be at the maximum range bound-
ary. Additionally, the intersect query is included to test another more expensive
execution. This is run after extending the range by 5% such that it does not only
return the contain and containedBy MBRs. The queries run can be summarized as
follows:

1. No range extension: percentage deviation not applicable.
2. 0.5% range expansion
3. 5% range expansion
4. 10% range expansion
5. 50% range expansion
6. Intersect with 5% range expansion

Because of limitations in Elasticsearch, only the posting list of matching docu-
ments is retrieved, however all (minimal) matching spans are found in the index
before the results are returned to the client.

5.3 Results

The results for all the runs are shown in Table 5.3, with the mean execution time
over the three runs over the different query tasks. The time is measured in seconds,
along with the standard deviation.

5.3.1 Discussion

The results show an increased execution time for larger collections. The Simple
Wikipedia collection has a short execution time for all queries without much vari-
ation, but it also retrieves by far the least results. This is not very surprising, as the
size of the collection is 83 times smaller than English Wikipedia and 19 times smal-
ler than English Wikipedia. This makes it easier for the Simple Wikipedia index
to fit entirely in memory. It does however demonstrate that for smaller document
collections, the range approach doesn’t seem to have a significant performance
impact compared to using no ranges. Comparably, English Wikipedia is 4.3 times
larger than NYT. The highest execution time for the realistic queries over Eng-
lish Wikipedia is 1.52 seconds for the 10% range query at a 1% deviation. This is
also the longest execution time for NYT, at 0.36 seconds. For this query, NYT on
average performs the execution 4.2 times faster than NYT, while being 4.3 times
smaller. Other queries show similar ratios of execution time and index size, which
suggests that the execution times scale linearly.

The intersect query will generally cover the greatest ranges (apart from very
large range expansions), as it expands either the lower or upper bound to the
maximal range of the dimension. This aligns with the fact that it generally has one
of the highest execution times of queries in Table 5.3, even if only tested for a 5%
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Table 5.3: Results for the benchmark queries over three different document col-
lections, with warm and cold cache configurations, five levels of range expansion,
the intersect query, and two levels of deviation. The mean execution times with
the standard deviation are presented in seconds.

Data Range %
Mean Hits Cold Warm

1% 10% 1% 10% 1% 10%

En
gl

is
h

W
ik

ip
ed

ia

None 0 0 0.07± 0.10 0.07± 0.10 0.04± 0.05 0.04± 0.05

0.5 352 379 0.18± 0.60 0.18± 0.63 0.13± 0.50 0.12± 0.54

5 782 799 0.30± 1.02 0.27± 1.04 0.22± 0.88 0.21± 0.91

10 940 947 0.34± 1.18 0.30± 1.12 0.25± 1.02 0.23± 1.00

Intersect 908 1000 0.41± 1.05 0.35± 1.08 0.29± 0.89 0.26± 0.93

50 1069 1125 0.39± 1.27 0.35± 1.28 0.29± 1.10 0.26± 1.12

N
ew

Yo
rk

Ti
m

es

None 0 0 0.03± 0.03 0.03± 0.03 0.02± 0.01 0.02± 0.01

0.5 37 59 0.04± 0.08 0.05± 0.10 0.03± 0.06 0.03± 0.08

5 183 185 0.08± 0.25 0.07± 0.26 0.06± 0.23 0.05± 0.23

10 206 207 0.09± 0.27 0.07± 0.26 0.06± 0.24 0.06± 0.24

Intersect 234 262 0.13± 0.26 0.09± 0.26 0.09± 0.23 0.07± 0.24

50 217 230 0.10± 0.28 0.08± 0.28 0.07± 0.25 0.06± 0.25

Si
m

pl
e

W
ik

ip
ed

ia

None 0 0 0.01± 0.00 0.01± 0.00 0.00± 0.00 0.00± 0.00

0.5 6 6 0.02± 0.01 0.02± 0.00 0.01± 0.00 0.01± 0.00

5 11 11 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.01± 0.01

10 13 13 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.01± 0.01

Intersect 12 13 0.04± 0.03 0.02± 0.01 0.03± 0.02 0.01± 0.01

50 14 15 0.03± 0.02 0.02± 0.01 0.02± 0.01 0.01± 0.01
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range extension. The number of hits from the intersect query can be affected by
the number of indexed interval values in the collection. More intervals compared
to points means that the intersect query can potentially make more intersections,
outside of those included by the contain and containedBy queries.

The large standard deviation time for most results is caused by the fact that a
considerable number of queries will result in no or very few hits, as the Boolean
retrieval model does not retrieve partial matches. Looking at the average number
of hits, all collections match with an average of 0 (rounded) documents for the
no-range query. This implies the sample queries and ranges are too restrictive to
find many matches by themselves. Moving only to a ±0.5 percentage increase
(for temporal expressions ±5 years) increases the number of documents retrieved
significantly.

Furthermore, the results indicate that searching at a high precision level (1%
deviation) and a low precision level (10% deviation) generally does not have a
meaningful impact on the execution time. This could be caused by the resulting
range search hashes not differing much, as the Z-order range search will often
terminate before reaching a maximum precision, causing shorter hashes for both
approaches. Thus, this could indicate that the other optimizations are working
well. The deviation percentage does increase the number of documents received
somewhat, with a greater relative increase of hits for the smaller range expansions.
This could be caused by the fact that the deviation is determined by the maximum
Z-order range and is thus a greater relative increase for the smaller ranges than for
the larger ranges. The smaller ranges will also often result in longer Z-order hashes
from the range search, as the sub-ranges of the search are less likely to cover entire
Z-order regions at lower precision levels (shorter hash). Thus, the lowering of the
Z-order precision has a greater impact than for larger ranges where the hashes
are more likely to be short, to begin with. It could therefore be beneficial to use a
higher accuracy for more precise range searches, however, as the results indicate,
the trade-off in retrieval precision might not be worth a minuscule reduction in
execution time. Using Z-order curves of a higher precision might lead to more
significant results.

If the 1% maximum deviation is interpreted as close to a 100% search recall
and precision, the deviation will not impact the recall (Equation 2.2), as the extra
hits is a super-set of the more precise results. The search precision (Equation 2.1)
is then for the realistic queries between 0.93 and 0.99 for the English Wikipedia
collection, and 0.63 to 0.99 for the NYT document collection. The extra hits are
however not completely irrelevant in the sense that they are a result of the local-
isation properties of the Z-order search and will be in close spatial proximity. The
range searches can therefore be said to increase the overall recall of the search
compared to not using range expansions. The deviation could be used as a rough
proximity search, but the results could be skewed by the Z-order curve edge cases.
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Limitations of Elasticsearch

The results show the impact of different interval sizes for the range searches, as
well as the difference between using a more precise (1%) and less precise (10%).
As these are a direct consequence of the Z-order implementation, it makes it dif-
ficult to implement sufficient baselines with the same capabilities as NASH, while
keeping within the scope of the thesis. Elasticsearch/Lucene brings many benefits
in ease of use and optimizations. However, the abstraction level makes it harder
to modify and develop query-processing at a deeper level with more control. The
current approach is limited by the Elasticsearch Intervals query, which only allows
for minimum span matching, and utilising the REST API introduces limitations on
transfer sizes of data. Still, this shows some of the usefulness of the Z-order hash
approach for range queries. No modifications are needed to the underlying code,
and the spatial queries can be implemented in an off-the-shelf search system.
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Conclusion

The goal of this thesis was to develop a system capable of full-text semantic search
using spatial queries over numerical and temporal expressions. The indexing sys-
tem NASH was proposed and implemented, using layers of inverted indexes over
annotations and text, based on the work done by Gupta and Berberich [9, 10].
Annotations were extracted from the documents using Stanford CoreNLP [30].
The system indexed annotations for entities of the types: {PERSON, ORGANIZA-
TION, LOCATION, TIME, NUMBER}. The numerical and temporal expressions were
indexed as two-dimensional points representing an interval of values. The loca-
tion annotations were indexed as MBRs. The intervals and MBRs were linearized
using Z-order curves, creating a unified data model between all annotation types
and text. The spatial queries were implemented using Z-order curves, with custom
implementations and optimizations to be able to pre-compute and minimize the
Z-order hashes of the range-based search. These were combined with the layered
data model, allowing for range search over the inverted index without any modi-
fication to the underlying data structures. Using four levels of range extensions
for numerical and temporal expressions, and two levels of minimum accuracy,
NASH was tested over three data sets of differing sizes. The results show that the
proximity-based query scales well over different sized data sets and search range
intervals. There is also an indication that the deviation level does not impact the
execution performance significantly. The search precision stays high across differ-
ent search ranges and deviation percentages, which indicates that the optimiza-
tions are working as intended.

6.1 Future Work

The work in this thesis allows for spatial queries over temporal, numerical, and
location annotations. One area of future work is to extend this type of spatial
search to other annotation types. Additionally, the queries using the location an-
notations could be optimized and evaluated. Named entities such as persons and
organizations can be connected to a knowledge base to extract relation informa-
tion to other entities and categories. For example, a person entity can be of the
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type "actor", which is an "occupation" etc. This information share some of the same
hierarchical properties as the Z-order curve, but the translation to a coordinate sys-
tem is not as straight forward. This could also allow for other information retrieval
tasks outside of semantic querying, such as relation extraction and fact spotting.

Another area for which can be improved upon is to implement a similar in-
dexing approach in a distributed setting. Other types of storage systems, such as
column stores could reveal benefits or struggles of the indexing approach. When
the data is distributed across multiple nodes, the location preserving properties
of the space-filling curve might have a greater impact. Additionally, a lower-level
server implementation with more control of the indexing and optimization pro-
cess could be beneficial to fully utilise the hash indexing. For example, it would
be easier to optimize the prefix search depending on the spatial query to be con-
ducted. Some queries only require a single prefix match, while others require all
hashes to match, but such restrictions are hard to optimize through high level APIs.
With lower-level control, the Z-order range search could perhaps also be included
as part of the query processing on the server side, instead of the pre-computation
approach used by NASH.

This thesis uses the Z-order curve as the linearizing method to reduce the
two-dimensional annotations two one dimension. Optimizations and different ap-
proaches of indexing and querying interval values are presented, but other ap-
proaches can be implemented and tested as well. For example, the numerical in-
tervals use a tiered Z-order curve approach, and it could be tested with different
cut-off points. Additionally, the number of tiers can be decreased/increased, and
testing can be done to see what the trade-off between a longer hash-length and
more Z-order curves is. The numerical and temporal hashes are indexed using a
20-bit precision, and a longer hash might make the max. deviation optimization
more significant. Additionally, other space-filling curves can be tested and com-
pared, such as variations of the Hilbert curve, e.g., compact Hilbert indices [42].
Curves with a better localisation preserving characteristic might reduce the num-
ber of splits needed in the range search. Linearization or dimensionality reducing
methods other than space-filling curves can also be explored. A comparison of
different techniques would be useful for deciding the best approach and see how
the approach used in NASH compares.
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Appendix

A.1 Java Implementations

A.1.1 Z-order Hash Calculation

public ZOrderCurve ( in t b i t P r e c i s i o n , double [ ] xRange , double [ ] yRange ){
th i s . BIT_PRECISION = Math . min( b i t P r e c i s i o n , MAX_BIT_PRECISION ) ;
th i s . X_RANGE = xRange ;
th i s . Y_RANGE = yRange ;
th i s . X_ERROR = (X_RANGE[1] − X_RANGE[0 ]) /
(Math . pow(2 , Math . f l o o r ( BIT_PRECISION / 2.0) + 1) ) ;
th i s . Y_ERROR = (Y_RANGE[1] − Y_RANGE[0 ]) /
(Math . pow(2 , Math . c e i l ( BIT_PRECISION / 2.0) + 1) ) ;

}

public long generateHash ( double X_VALUE , double Y_VALUE){
byte s i g n i f i c a n t B i t s = 0;
long b i t s = 0L ;
boolean evenBi t = true ;
// i n t b i t P o s i t i o n = 0;
double [ ] tempXRange = X_RANGE . c lone ( ) ;
double [ ] tempYRange = Y_RANGE . c lone ( ) ;
while ( s i g n i f i c a n t B i t s < th i s . BIT_PRECISION ){

i f ( evenBi t ){
b i t s = encodeBit (Y_VALUE , tempYRange , b i t s ) ;

} else {
b i t s = encodeBit (X_VALUE , tempXRange , b i t s ) ;

}
s i g n i f i c a n t B i t s++;
evenBi t = ! evenBi t ;

}
b i t s <<= (MAX_BIT_PRECISION − BIT_PRECISION ) ;
return b i t s ;

}
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protected s t a t i c long encodeBit ( double value ,
double [ ] range , long b i t s ){

double mid = ( range [0] + range [1 ]) / 2;
b i t s <<= 1;
i f ( value >= mid){

b i t s = b i t s | 0x1 ;
range [0] = mid ;

} else {
range [1] = mid ;

}
return b i t s ;

}

A.1.2 Range Search

public Set<Str ing> rangeSearch ( long northWestHash ,
long southEastHash ,
Set<Str ing> ranges ){

th i s . c a l l s++;
in t commonBits = commonMSB( northWestHash ,

southEastHash , th i s . curve . getBIT_PRECISION ( ) ) ;

// The range i s in the i n v a l i d area
i f ( commonBits%2 == 0 && commonBits >1 &&

checkPrune ( northWestHash , commonBits ) ){
return ranges ;

}
// The two corners c o n s t i t u t e s a
// cont inuous range on the Z−order curve
i f ( cont inuous ( northWestHash , southEastHash ,

commonBits ) && ( commonBits%2 == 0)){
ZOrderCurve tempCurve = new ZOrderCurve ( commonBits ,

curve . getX_RANGE () , curve . getY_RANGE ( ) ) ;
S t r i ng base4 = tempCurve . toBase4 ( northWestHash ) ;
ranges . add( base4 ) ;
return ranges ;

}
// No more s p l i t s p o s s i b l e −−> s i n g l e po int on the Z−order curve
i f ( commonBits == curve . BIT_PRECISION ){

S t r ing base4 = curve . toBase4 ( northWestHash ) ;
ranges . add( base4 ) ;
return ranges ;

}

// I f none of the two stop cond i t i ons apply
// we must s p l i t the range v e r t i c a l l y and h o r i z o n t a l l y

long [ ] nw = b i tUntang le ( northWestHash , th i s . curve . BIT_PRECISION ) ;
long [ ] se = b i tUntang le ( southEastHash , th i s . curve . BIT_PRECISION ) ;

long l i tMax ;
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long bigMin ;
long [ ] maxMin ;

// y−value −> h o r i z on t a l s p l i t
i f ( commonBits % 2 == 0) {

maxMin = ca lcu la teL i tMaxBigMin (new long [ ] {nw[0 ] , se [0 ] } ,
new long [ ] {nw[1 ] , se [1 ] } ,
th i s . curve . BIT_PRECISION/2 , 1) ;

} else { // X−value −−> v e r t i c a l s p l i t
maxMin = ca lcu la teL i tMaxBigMin (new long [ ] {nw[1 ] , se [1 ] } ,

new long [ ] {nw[0 ] , se [0 ] } ,
th i s . curve . BIT_PRECISION/2 , 0) ;

}

a s s e r t maxMin != nul l ;
l i tMax = maxMin [0 ] ;
bigMin = maxMin [1 ] ;

rangeSearch ( northWestHash , l i tMax , ranges ) ; // L e f t /North s p l i t
rangeSearch ( bigMin , southEastHash , ranges ) ; // Right /South s p l i t

return ranges ;
}

A.2 BIGMIN and LITMAX calculation

private long [ ] ca lcu la teL i tMaxBigMin ( long [ ] knownDimension ,
long [ ] unknownDimension , in t bi tLength , in t dimension ){

long commonMask = 0xFFFFFFFFFFFFFFFFL ; // 11111 . . .
long l itMaxMask = 0x7FFFFFFFFFFFFFFFL ; // 01111 . . .
long bigMinMask = 0x8000000000000000L ; // 10000 . . .

long min = knownDimension [0 ] ;
long max = knownDimension [1 ] ;
long l itMaxD ;
long bigMinD ;
in t commonBitsCount = commonMSB( unknownDimension [0 ] ,
unknownDimension [1 ] , th i s . curve . getBIT_PRECISION ( ) ) ;
i f ( commonBitsCount == b i tLength ){

return nul l ;
}

// S h i f t i n g masks to adhere with the b i t _ p r e c i s i o n and
// number of common b i t s
litMaxMask >>>= curve . MAX_BIT_PRECISION − b i tLength +
commonBitsCount ;
litMaxMask <<= curve . MAX_BIT_PRECISION − b i tLength +
commonBitsCount ;
bigMinMask = bigMinMask >>> commonBitsCount ;

// S h i f t i n g two times in case commonBitsCount = 0 ,
// and no s h i f t would happen
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commonMask >>>= curve . MAX_BIT_PRECISION − commonBitsCount −1;
commonMask >>>= 1;
commonMask <<= curve . MAX_BIT_PRECISION − commonBitsCount −1;
commonMask <<= 1;

litMaxMask >>>= commonBitsCount ;

long commonDBits = unknownDimension [0] & commonMask ;

litMaxD = commonDBits | litMaxMask ;
bigMinD = commonDBits | bigMinMask ;

long l i tMax ;
long bigMin ;
i f ( dimension == 0) {

l i tMax = b i t I n t e r l e a v e ( litMaxD , max , b i tLength ) ;
bigMin = b i t I n t e r l e a v e ( bigMinD , min , b i tLength ) ;

} else {
l i tMax = b i t I n t e r l e a v e (max , litMaxD , b i tLength ) ;
bigMin = b i t I n t e r l e a v e (min , bigMinD , b i tLength ) ;

}
return new long [ ] { l i tMax , bigMin } ;

}

A.3 Elasticsearch Mapping

1 {
2 " s e t t i n g s " : {
3 " a n a l y s i s " : {
4 " ana lyzer " : {
5 " t e x t _ana l y ze r " : {
6 " type " : " custom " ,
7 " t oken i ze r " : " max_length_whitespace " ,
8 " c h a r _ f i l t e r " : [ " t e x t _ l a y e r " ]
9 } ,

10 " annota t ion_ana lyzer " : {
11 " type " : " custom " ,
12 " t oken i ze r " : " max_length_whitespace " ,
13 " c h a r _ f i l t e r " : [ " annota t ion_ layer " ] ,
14 " f i l t e r " : [ " r e p l a c e _ e m p t y _ f i l t e r " ]
15 } ,
16 " t imehash_analyzer " : {
17 " type " : " custom " ,
18 " t oken i ze r " : " max_length_whitespace " ,
19 " c h a r _ f i l t e r " : [ " t imehash_layer " ] ,
20 " f i l t e r " : [ " r e p l a c e _ e m p t y _ f i l t e r " ]
21 } ,
22 " numberhash_analyzer " : {
23 " type " : " custom " ,
24 " t oken i ze r " : " max_length_whitespace " ,
25 " c h a r _ f i l t e r " : [ " numberhash_layer " ] ,
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26 " f i l t e r " : [ " r e p l a c e _ e m p t y _ f i l t e r " ]
27 } ,
28 " geohash_analyzer " : {
29 " type " : " custom " ,
30 " t oken i ze r " : " max_length_whitespace " ,
31 " c h a r _ f i l t e r " : [ " geohash_layer " ] ,
32 " f i l t e r " : [
33 " r e p l a c e _ e m p t y _ f i l t e r " , " e n t i t y _ f i l t e r " ,
34 " r emove_anno ta t i on s_ f i l t e r " , " r e m o v e _ n u l l _ f i l t e r "
35 ]
36 } ,
37 " e n t i t y _ a n a l y z e r " : {
38 " type " : " custom " ,
39 " t oken i ze r " : " whitespace " ,
40 " c h a r _ f i l t e r " : [ " e n t i t y _ l a y e r " ] ,
41 " f i l t e r " : [
42 " r e p l a c e _ e m p t y _ f i l t e r " , " e n t i t y _ f i l t e r " ,
43 " r emove_anno ta t i on s_ f i l t e r " , " r e m o v e _ n u l l _ f i l t e r "
44 ]
45 }
46 } ,
47 " f i l t e r " : {
48 " t i m e F i l t e r " : {
49 " type " : " pa t te rn_capture " ,
50 " pa t t e rn s " : [ " ( TA_[0−3]+) " ]
51 } ,
52 " e n t i t y _ f i l t e r " : {
53 " type " : " pa t te rn_capture " ,
54 " pa t t e rn s " : [ " ( [̂ &]+) " ]
55 } ,
56 " r emove_anno ta t i on s_ f i l t e r " : {
57 " type " : " pa t t e rn_ rep l a ce " ,
58 " pa t t e rn " : "( .+&.+) "
59 } ,
60 " g e o h a s h _ f i l t e r " : {
61 " type " : " pa t te rn_capture " ,
62 " pa t t e rn s " : [ " ( LA_ [0−9b−hjkmnp−z ]+) " ]
63 } ,
64 " numberFi l ter " : {
65 " type " : " pa t te rn_capture " ,
66 " pa t t e rn s " : [ " (NA[1−4]_ [0−3]+) " ]
67 } ,
68 " a n n o t a t i o n F i l t e r " : {
69 " type " : " pa t te rn_capture " ,
70 " pa t t e rn s " : [ " (\\ ( ( ? :PERSON|LOCATION|ORGANIZATION|TIME|NUMBER

|MONEY) [ )̂( ]*\\) ) " ]
71 } ,
72 " r e p l a c e _ e m p t y _ f i l t e r " : {
73 " type " : " pa t t e rn_ rep l a ce " ,
74 " pa t t e rn " : " (\\ [EMPTY\\ ] ) "
75 } ,
76 " r e m o v e _ n u l l _ f i l t e r " : {
77 " type " : " s top " ,
78 " ignore_case " : t rue ,
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79 " stopwords " : [ " " ]
80 }
81 } ,
82 " c h a r _ f i l t e r " : {
83 " t e x t _ l a y e r " : {
84 " type " : " pa t t e rn_ rep l a ce " ,
85 " pa t t e rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5

#<(.*)>#5 6#<(.*)>#6) " ,
86 " replacement " : " $2 "
87 } ,
88 " annota t ion_ layer " : {
89 " type " : " pa t t e rn_ rep l a ce " ,
90 " pa t t e rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5

#<(.*)>#5 6#<(.*)>#6) " ,
91 " replacement " : " $3 "
92 } ,
93 " t imehash_layer " : {
94 " type " : " pa t t e rn_ rep l a ce " ,
95 " pa t t e rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5

#<(.*)>#5 6#<(.*)>#6) " ,
96 " replacement " : " $4 "
97 } ,
98 " numberhash_layer " : {
99 " type " : " pa t t e rn_ rep l a ce " ,

100 " pa t te rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5
#<(.*)>#5 6#<(.*)>#6) " ,

101 " replacement " : " $5 "
102 } ,
103 " geohash_layer " : {
104 " type " : " pa t t e rn_ rep l a ce " ,
105 " pa t te rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5

#<(.*)>#5 6#<(.*)>#6) " ,
106 " replacement " : " $6 "
107 } ,
108 " e n t i t y _ l a y e r " : {
109 " type " : " pa t t e rn_ rep l a ce " ,
110 " pa t te rn " : " ( 1#<(.*)>#1 2#<(.*)>#2 3#<(.*)>#3 4#<(.*)>#4 5

#<(.*)>#5 6#<(.*)>#6) " ,
111 " replacement " : " $7 "
112 }
113 } ,
114 " t oken i ze r " : {
115 " max_length_whitespace " : {
116 " type " : " whitespace " ,
117 " max_token_length " : " 1048576 "
118 }
119 }
120 }
121 } ,
122 " mappings " : {
123 " dynamic " : f a l s e ,
124 " p r o p e r t i e s " : {
125 " t i t l e " : {
126 " type " : " t e x t "
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127 } ,
128 " sentences " : {
129 " type " : " t e x t " ,
130 " s t o r e " : f a l s e ,
131 " index " : f a l s e ,
132 " f i e l d s " : {
133 " t e x t " : {
134 " type " : " t e x t " ,
135 " ana lyzer " : " t e x t _ana l y ze r " ,
136 " pos i t ion_ increment_gap " : 10000 ,
137 " index_phrases " : t rue
138 } ,
139 " annota t ions " : {
140 " type " : " t e x t " ,
141 " pos i t ion_ increment_gap " : 10000 ,
142 " ana lyzer " : " annota t ion_ana lyzer "
143 } ,
144 " t imehashes " : {
145 " type " : " t e x t " ,
146 " ana lyzer " : " t imehash_analyzer " ,
147 " pos i t ion_ increment_gap " : 10000 ,
148 " i ndex_p re f i x e s " : {
149 " min_chars " : 3 ,
150 " max_chars " : 19
151 }
152 } ,
153 " numberhashes " : {
154 " type " : " t e x t " ,
155 " ana lyzer " : " numberhash_analyzer " ,
156 " pos i t ion_ increment_gap " : 10000 ,
157 " i ndex_p re f i x e s " : {
158 " min_chars " : 4 ,
159 " max_chars " : 19
160 }
161 } ,
162 " geohashes " : {
163 " type " : " t e x t " ,
164 " ana lyzer " : " geohash_analyzer " ,
165 " pos i t ion_ increment_gap " : 10000 ,
166 " i ndex_p re f i x e s " : {
167 " min_chars " : 3 ,
168 " max_chars " : 19
169 }
170 } ,
171 " e n t i t i e s " : {
172 " type " : " t e x t " ,
173 " ana lyzer " : " e n t i t y _ a n a l y z e r " ,
174 " pos i t ion_ increment_gap " : 10000
175 }
176 }
177 }
178 }
179 }
180 }
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A.4 Example Query

1 {
2 " query " : {
3 " bool " : {
4 " f i l t e r " : [
5 {
6 " i n t e r v a l s " : {
7 " sentences " : {
8 " a l l _ o f " : {
9 " ordered " : t rue ,

10 " max_gaps " : 10000 ,
11 " i n t e r v a l s " : [
12 {
13 " match " : {
14 " query " : " TIME " ,
15 " ana lyzer " : " whitespace " ,
16 " u s e _ f i e l d " : " sentences . annota t ions " ,
17 " f i l t e r " : {
18 " conta in ing " : {
19 " p r e f i x " : {
20 " p r e f i x " : " TA_33 " ,
21 " u s e _ f i e l d " : " sentences . t imehashes "
22 }
23 }
24 }
25 }
26 } ,
27 {
28 " any_of " : {
29 " i n t e r v a l s " : [
30 { " p r e f i x " : {
31 " p r e f i x " : "NA1_03000 " ,
32 " u s e _ f i e l d " : " sentences . numberhashes "
33 } } ,
34 { " p r e f i x " : {
35 " p r e f i x " : "NA1_003 " ,
36 " u s e _ f i e l d " : " sentences . numberhashes "
37 } } ,
38 { " p r e f i x " : {
39 " p r e f i x " : "NA1_01220 " ,
40 " u s e _ f i e l d " : " sentences . numberhashes "
41 } }
42 ,
43 { " p r e f i x " : {
44 " p r e f i x " : "NA1_02100 " ,
45 " u s e _ f i e l d " : " sentences . numberhashes "
46 } } ,
47 { " p r e f i x " : {
48 " p r e f i x " : "NA1_02111 " ,
49 " u s e _ f i e l d " : " sentences . numberhashes "
50 } } ,
51 { " p r e f i x " : {
52 " p r e f i x " : "NA1_02110 " ,
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53 " u s e _ f i e l d " : " sentences . numberhashes "
54 } } ,
55 { " p r e f i x " : {
56 " p r e f i x " : "NA1_01202 " ,
57 " u s e _ f i e l d " : " sentences . numberhashes "
58 } } ,
59 { " p r e f i x " : {
60 " p r e f i x " : "NA1_01200 " ,
61 " u s e _ f i e l d " : " sentences . numberhashes "
62 } } ,
63 { " p r e f i x " : {
64 " p r e f i x " : "NA1_02110 " ,
65 " u s e _ f i e l d " : " sentences . numberhashes "
66 } } ,
67 { " p r e f i x " : {
68 " p r e f i x " : "NA1_01222 " ,
69 " u s e _ f i e l d " : " sentences . numberhashes "
70 } } ,
71 { " p r e f i x " : {
72 " p r e f i x " : "NA1_02101 " ,
73 " u s e _ f i e l d " : " sentences . numberhashes "
74 } }
75 ]
76 }
77 }
78 ]
79 }
80 }
81 }
82 }
83 ]
84 }
85 }
86 }

A.5 Evaluation Queries Excerpt

(richard m. nixon)#PERSON ^ (united states)#LOCATION ^
(new york city)#LOCATION ^ (37th)#37.0 ^ (81)#81.0

(pat tillman)#PERSON ^ (afghanistan)#LOCATION ^ (multimillion-dollar)#$1000000.0

(zacarias moussaoui)#PERSON ^ (americans)#MISC ^ (sept.
11)#[2005-09-11 , 2005-09-11]

(bp)#ORGANIZATION ^ (gulf of mexico)#LOCATION ^ (11)#11.0

(george washington)#PERSON ^ (franklin house)#ORGANIZATION ^
(new york city)#LOCATION ^ (first)#1.0

(natchez miss.)#LOCATION ^ (200)#~200.0

(easter)#[1916-04-23 , 1916-04-23] ^ (1,600)#1600.0
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