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Abstract

The bottleneck of many modern database systems has shifted to inefficient uti-
lization of CPU and memory resources, as most of the data now fits within the main
memory capacity. As a result, database research has focused on code generation
and runtime compilation to produce a more CPU-friendly execution environment.
Despite this growing interest in runtime compilation, MySQL has not taken any
action on this matter and is still affected by its interpreted engine’s poor CPU
utilization.

This thesis explores the nature of runtime compilation in MySQL and investi-
gates the possible performance impacts of compiling filter expressions. This work
aims to determine whether the MySQL ecosystem can improve its performance
by replacing the logic of expressions with native machine code and removing the
substantial amount of inflated instructions introduced by the current system for
expressions. We experiment by implementing a just-in-time compilation system in
MySQL using the LLVM compiler framework and provide performance details of
two conducted experiments. We achieve a 100x speedup on evaluating expressions
for extremely large queries and reduce the expression evaluation time by half on
business-oriented queries. The results from our work confirm that MySQL is indeed
affected by poor CPU utilization and gains substantial performance improvements
by compiling expressions.

In this thesis, we propose an approach to improve CPU and memory usage in
MySQL by compiling expressions at runtime and providing fresh insights into the
instruction overhead of MySQL expressions. We show that MySQL can gain sig-
nificant performance improvements from compiling expressions and further suggest
that MySQL should adopt the essence of runtime compilation to enhance perfor-
mance. This research lays the first steps for MySQL on compilation and code
generation, where we present an approach on how to adopt JIT compilation on
expressions in MySQL.



Sammendrag

Flaskehalsen til mange moderne databasesystemer har g̊att over til å være ineffektiv
utnyttelse av CPU- og minneressurser, ettersom de fleste dataene n̊a passer innenfor
kapasiteten til hovedminnet. Som et resultat har databaseforskning rettet fokuset
mot generering av kode og kompilering i kjøretid for å produsere et mer CPU-vennlig
eksekveringmiljø. Til tross for denne økende interessen for sanntidskompilering, har
ikke MySQL tatt noen grep i denne saken og er fortsatt i dag p̊avirket av den d̊arlige
CPU-utnyttelsen av spørringsmotoren.

Denne masteroppgaven utforsker mulighetene for sanntidskompilering i MySQL
og undersøker mulige ytelseseffekter av å kompilere filteringsuttrykk under eksekver-
ing. Dette arbeidet tar sikte p̊a å finne ut om MySQL-økosystemet kan forbedre
ytelsen ved å erstatte logikken for uttrykk med maskinkode, og fjerne en urimelig
mengde med oppbl̊aste instruksjoner introdusert av eksisterende uttrykkslogikk. Vi
eksperimenterer ved å implementere et ”just-in-time” kompileringssystem i MySQL
ved å bruke LLVM-kompilatorrammeverket og gir ytelsesdetaljer for to eksperi-
menter. Resultatene fra v̊art arbeid bekrefter at MySQL faktisk er p̊avirket av
d̊arlig utnyttelse av CPU-en og oppn̊ar betydelige ytelsesforbedringer ved å kom-
pilere uttrykk. Vi oppn̊ar en ytelsesforbedring p̊a 100x i evaluering av uttrykk for
ekstremt store spørringer og videre halverer uttrykksevalueringstiden p̊a forretning-
sorienterte spørringer.

I denne oppgaven legger vi fram en metode for å forbedre CPU- og minnebruken
i MySQL ved å kompilere uttrykk ved kjøring og gir ny innsikt i instruksjon-
soppbl̊asningen til uttrykk i MySQL. Vi viser at MySQL kan oppn̊a betydelige
ytelsesforbedringer ved å kompilere uttrykk og foresl̊ar videre at MySQL bør ta
i bruk essensen av sanntidskompilering for å forbedre ytelsen. Denne forskningen
legger de første stegene i kompilering og kode generering under kjøretid for MySQL,
der vi presenterer en metode for hvordan man kan ta i bruk sanntidskompilering av
uttrykk i databasesystemet.
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Chapter 1

Introduction

Many database systems were created at a time when I/O was a substantial bottle-
neck of execution. The bottleneck is a consequence of the architectural mindset of
early-day database systems. The assumption was that main memory was limited
in size, thus relying on heavy disk accesses. With the recent leap in hardware tech-
nology, the capacity of computer memory has increased substantially, allowing the
fitting of a large portion of the database into memory. Subsequently, the need for
frequent disk accesses was markedly reduced, making the CPU and main memory
latency the bottleneck of modern in-memory database systems [3].

However, many database systems have struggled to keep up with this trans-
formation, where their core architecture is still built around minimizing I/O. For
instance, many systems employ the traditional iterator model for executing queries,
consisting of an abstract operator interface that supports a chain of repeated calls
to virtual functions for processing the data. This paradigm exacerbates the un-
derutilization of CPU resources, making insufficient use of temporal and memory
locality, causing frequent memory accesses and inefficient CPU registers. Further-
more, it significantly increases the number of instructions used to execute a query
and is frequently outperformed by handwritten code. This indicates that optimiz-
ing for CPU-friendly execution has a great potential to increase the performance
of common-scaled memory systems by strengthening the principle of locality and
minimization of instructions.

Researchers began applying principles and techniques from compiler theory to
database query-planning methodologies to confront this growing CPU bottleneck.
The essence of the research consisted of compiling queries into native machine code
utilizing the extra information obtained at runtime. This entails generating query-
specific code, which eliminates the instruction overhead provided by traditional
execution engines and boosts execution performance. For instance, some early
researchers on this topic were the authors of HIQUE, a query engine that generates
custom code for a specific query [24]. In their paper, they were able to minimize the
number of function calls, reduce the number of instructions, improve cache locality,
and outperform interpretation-based commercial database systems by a substantial
factor [24, pg. 12].

Another research paper on this topic claims that the most significant way to
improve throughput by 10-100x is to dramatically reduce the number of instructions
executed by a query [13, pg. 2]. The paper introduces an in-memory database
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engine, Hekaton, which transforms SQL queries into machine code, and achieves
15x fewer instructions for a set of specific queries [13, pg. 8]. The authors stated
that a 90% reduction is needed to achieve a 10x improvement, which was impossible
by optimizing their traditional interpreted execution engine.

For this reason, there has been an increasing adoption of query compilation in
many commercial systems, such as Hekaton[13], Cloudera Impala [49], SingleStore
[6] and Spark [1], as well as a large portion of academic research and open-source
database systems, such as Hyper [23], MonetDB [46] and Postgres [16], which have
shown substantial performance improvements by applying this technique [13, 44,
22].

For MySQL, adopting query compilation is considered an enormous task and
would introduce significant changes to the existing query execution engine. On
the other hand, MySQL is a well-known relational database system that originates
from when I/O was the primary bottleneck and naturally adopted the iterator ar-
chitecture. In compliance with other such systems, MySQL is also troubled by
the poor CPU performance of the iterator model, affected by poor locality and
an inflated number of instructions. Postgres has an architectural nature similar
to MySQL, utilizing the Volcano-style iterator model. To combat their most sig-
nificant bottlenecks, Postgres enhanced just-in-time compilation using the LLVM
compiler framework to accelerate the evaluation of expressions and tuple deform-
ing, which has shown many promising performance improvements [5, 30]. A more
sensible approach would be to take small and similar steps as in Postgres, exploring
the possibilities for MySQL to compile similar bottlenecks and join the growth of
database systems compiling parts of the query plan.

Therefore, this thesis will investigate the possibilities of just-in-time (JIT) com-
piling filter expressions in MySQL, connecting the database with the research on
query code generation. The implementation of expressions in MySQL has simi-
larities with the behavior of the iterator model and includes many of the same
performance disadvantages. In addition, the evaluation of complicated expressions
can be a key bottleneck according to a research paper on choke points in the TPC-
H [45] benchmark [4]. This causes poor performance behaviors, as many parts of
query execution, such as filters, table scans, aggregations, and joins, rely on the
efficient evaluation of expressions.

Our JIT implementation in MySQL will excite notable runtime savings. We
speed up the expression evaluation process by 100x for huge queries and decrease
the evaluation time of business-oriented expressions by half. Furthermore, we show
that MySQL produces a significant amount of instruction overhead for evaluating
expressions, which we eliminate to a considerable extent, showing how query ex-
ecution in MySQL can benefit from compiling SQL expressions. This work will
demonstrate how MySQL can improve query performance by adopting JIT compi-
lation, where we build a prototype in MySQL using the LLVM compiler framework,
and show how the compilation of expression evaluation can coexist with the existing
interpreted engine.

The goal of this thesis is to look at the potential of JIT compiling filter ex-
pressions in MySQL, reveal its impacts on performance, and present how it can
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be conducted within the existing MySQL ecosystem. The work of this thesis will
therefore aim to answer the following research question:

RQ1. Is it possible to improve query performance in MySQL through JIT
compiling expressions?

This study aims to determine how these aspects are affected in a complete JIT
implementation of expressions in MySQL using the LLVM compiler framework. To
fully understand the essence of the research question, we further realize that a small
additional set of subquestions needs to be addressed:

RQ2. What is the expected performance impact of JIT compiling expressions in
MySQL?

RQ3. Under what circumstances is it considered beneficial to JIT compile an ex-
pression?

RQ4. Is the choice of using LLVM for JIT considered a good approach for MySQL?

This research focuses on enhancing expression evaluation in MySQL by adopting
JIT compilation and utilizing the LLVM compiler framework. We will determine the
answer to these questions by conducting experiments on our LLVM-designed JIT
prototype and further elaborate on our observations and empirical findings to un-
derstand the topic. We want to stress that we exclusively look at filter expressions,
and future mentions of expressions will also refer to filter expressions exclusively.

The remainder of the thesis will be structured as follows: Chapter 2 will strive
to provide the background knowledge that we consider essential to understanding
the remainder of this thesis, in addition to providing an overview of related work on
this topic. This will consist of a brief introduction to compiler theory, databases,
the internal workings of expressions in MySQL, a shallow presentation of the LLVM
compiler framework, and then a brief presentation of existing query compiler en-
gines. Afterward, Chapter 3 will discuss the possible approaches for adopting JIT
compilation in MySQL and then explain our JIT implementation for evaluating
expressions. Moving on, Chapter 4 will describe the experiments we conducted,
where we will evaluate and discuss our observations and findings in the same chap-
ter. Finally, in Chapter 5, we will draw the conclusion, provide an answer to the
research question, and further suggest future work on this topic for MySQL.

3



Chapter 2

Background

To grasp how JIT compilation can be conducted in MySQL, it becomes necessary
to understand the different theories and aspects of compilation and to know enough
about the internal workings of databases and MySQL. This chapter will provide an
overview of the relevant theory and research considered essential to understanding
the remainder of this thesis. Moreover, to follow our decisions and considerations
throughout this thesis, this chapter will also give an overview of related work in this
area, where we will briefly explore some other database systems that have adopted
query compilation on different levels of scale.

To start, in Section 2.1, we first briefly introduce compiler theory, explaining
the internal components of compilers and their similarities to databases. This in-
troduction will provide the necessary knowledge to help understand what it means
to compile and the internal steps for achieving native executable machine code. Af-
terward, in Section 2.2, we will focus on how this applies to databases and explain
the inner workings of a standard iterator model used in many database engines.
The idea is to explain how databases execute a query and show why their internal
workings are not necessarily considered CPU and memory friendly. Then, in Section
2.3, we will give a brief presentation on the internals of MySQL and how MySQL
implements expressions by code. This presentation will highlight how expressions
work within MySQL and underline its performance drawbacks. The following sec-
tion, 2.4, will present the LLVM compiler framework, which we use to implement
JIT in MySQL, described later in this thesis. The focal point of this section is to
provide a brief understanding of what LLVM is, how it works, and why we can use
it in our implementation.

The very last section of this chapter, Section 2.5, will describe some existing
database systems on this topic, where we focus on their approaches to adopting
JIT and their performance achievements.

2.1 Compilation, interpretation & just-in-time

To properly understand what our main research question tries to answer, it is es-
sential to understand what compilation is, especially in light of just-in-time (JIT)
compilation, and how implementing JIT compilation differs from traditional ap-
proaches.
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2.1.1 Compilation & Compilers

In computing, compilation is a general term that describes a process that takes
some language input (usually a programming language) and produces some output
of another language (usually machine code). Compilers are programs that use
compilation to produce some executable output. An example of a compiler is GCC
(GNU Compiler Collection) or Clang (C language frontend for LLVM). Compilers
can usually be divided into three conceptual parts: the frontend part, the optimizer
part and the backend part. [43, 42, 8]

Figure 2.1: Compiler conceptual overview

Figure 2.1 shows an overview of a typical compiler, showing the three mentioned
parts and the frontend in more detail. The frontend has the responsibility of inter-
facing with the source language and converting it to an intermediate representation
(IR) that can be used later internally in the compiler. The frontend achieves this
by first running a lexical analysis, also known as a scanner, which in turn outputs a
token stream. A token is quite simply a set of characters and a corresponding type
for those characters, where an example of this is “+=” with the corresponding type
“operator”. The token stream is then passed on to the parser. The parser turns the
token stream into a Abstract Syntax Tree (AST). The parser will iterate through
the token stream and create the AST as it goes along; meanwhile, reasoning about
the token stream and making sure it makes sense, for example, by checking that all
operators have the right number of operands. The semantic analyzer is responsible
for ensuring that the input makes sense for the language. It does this by having a
defined language “grammar” which determines what the language allows and keep-
ing track of variables in a symbol table. There will usually be several symbol tables
that each corresponds to a scope, be it global scope, function scope, or any other
scope. [43]
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Figure 2.2: Lex + Parser example

Figure 2.2 shows a simple model of the lexical analysis, parser and semantical
analysis steps that the frontend part goes through and what the internal data
structures could look like. An AST is a tree structure that contains a bunch of
information about each token and places it logically for creating IR. For example,
an operator in the AST would contain information about its operands and their
type so that the semantical analysis can reason about the types and make sure that
a result can be created. The AST also contains information about where each token
is found in the source. This information helps a compiler tell the programmer where
potential errors are located and mean that compiler errors are often underlined so
they can be found easily.
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Following the frontend part of the compiler is the optimizer part of the compiler.
The optimizer takes IR and uses it to do advanced transformations and optimiza-
tions. Typical optimizations include: loop optimization, dead code elimination and
global value numbering. IR typically looks closer to machine code than the source
language but retains the same machine independence as the source language. Be-
cause of this, the optimizer does not need to take hardware considerations when
optimizing the IR and can leave all the machine-dependent functions to the back-
end part of the compiler. At the end of the transformation and optimization, the
optimizer itself will output an improved version of the IR, representing the same
source code as the IR it was given.

Lastly, the backend part of the compiler takes the improved version of the IR
from the optimizer and turns it into machine-dependent machine code that can be
executed. One of the processes that the backend uses to achieve this is called register
allocation, which assigns the various values and variables to a limited number of
registers in the CPU. Register allocation results in better runtime performance since
the machine code can get rid of several expensive store and load operations towards
memory. What makes the backend machine-dependent is that it has to consider
the various architectures that the compiler supports. Different architectures could
have different instruction sets and different address byte lengths, different register
names, and register numbers.

2.1.2 Interpretation

Suppose the conceptual compiler presented above replaced backend with a more
straightforward machine-independent step that created a much closer-to-machine
code representation. And then, we distributed this as our program together with
a program that can read this close-to-machine code representation and execute it.
We have created a compiler interpreter combo for a source language supported by
the frontend.

This combination is found in the JDK and JVM for the Java programming
language. Where close-to-machine code representations called byte code are dis-
tributed as cross-platform programs that can be run on any architecture that has
a interpreter for the byte code. Another kind of interpretation is interpreting the
source language directly. Programming languages like Python and Javascript do
this. An interpreter works by executing the source byte code or language statement
by statement. Essentially an interpreter is much like a compiler. It takes one or
many source files, parses these, maybe runs some optimizations or JIT if it deter-
mines there can be a speed up, and passes the statements to an executor instead of
outputting to the file. Interpreters usually prioritize fast and frequent execution of
the statements. Usually, interpreters will be outperformed by pre-compiled bina-
ries, but they offer other benefits like memory efficiency and easier debugging. The
memory efficiency comes from not having to load huge chunks of code into memory
simultaneously, as pre-compiled binaries need to. The easier debugging comes from
the feedback the interpreter can give at runtime when it encounters errors. [43, 9]
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2.1.3 Just in time compilation

Just in time compilation (JIT) differs from interpretation in that with JIT, IR gets
compiled to actual machine-dependent machine code instead of byte code, more
in line with what a traditional compiler backend would do. In practical terms,
JIT means to do compiling at runtime. JIT is important as a concept since the
best compilation choices cannot always be taken ahead of time (AOT). For AOT
compiled languages like C, C++, or Rust, JIT becomes a tool to create more
optimized code at runtime that can surpass the performance of the AOT compiled
code. For interpreted languages like Java or Javascript, JIT becomes a tool for
compiling hot code paths, thus increasing performance and possibly increasing the
efficiency of the code. The downside of JIT is that compiling at runtime takes
time, so if applied wrong, using JIT can slow down the overall code execution time.
Another downside of JIT is that depending on how it is implemented; it can make
the program’s binary size much larger by having to include, at minimum, a simple
compiler and probably a simple linker.

Figure 2.3: IR without & with JIT example

Figure 2.3 shows a simple example of how knowing that c = 2 at runtime can
allow for much better optimization of a mathematical expression, thus simplifying
and speeding up the code. The figure shows that the code running in the loop
is decreased from seven lines of IR to three lines, which with a naive assumption
that the IR operations used to take the same amount of time to run would mean
that JIT could provide ∼2.3x speedup. The simplified code of the JIT block could
therefore provide a massive benefit if the loop runs for a long time.

2.1.4 Parallels with databases

A database management system (DBMS) is much like a compiler, as it takes an input
language, such as SQL, which it will then parse and create a logic of computation
for, in the form of a query plan. The parsing is much like a compiler frontend since it
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performs lexical and semantical analysis on the input query and ultimately outputs
an intermediate representation (IR) in the form of a parse tree. A parse tree differs
from an AST in that it represents the entire input and makes no considerations of
the language grammar. The difference means that for the input (x + 2), the parse
tree would include all the tokens, including the parenthesis. On the other hand, the
AST would omit the parenthesis as it would produce a node of ’+’ with ’x’ and ’2’
as children. The DBMS will then typically apply transformations and optimization
passes on the parse tree IR, ultimately converting it to a logical query plan. The
logical query plan describes a possible logical computational flow for the query.
Lastly, the DBMS converts the logical query plan into a physical query plan which
the DBMS can execute. The executor of the DBMS can be seen as a interpreter
that takes the physical query plan and executes it record by record. A record, or
tuple, is a row of data from the database. Sometimes the logical query plan can
be native machine code that the executor runs on each record. Another difference
from typical compilers lies in the input languages. Query languages like SQL tend
to be declarative, meaning the language describes the wanted result and not how to
get there. The declarative nature of SQL leaves the DBMS open to decide for itself
what the control flow for the query should be. [7]

2.2 Databases & Volcano

Before undertaking JIT compiling expressions in MySQL, it is essential to under-
stand what databases are and how they work. We decided to split this general
database theory from MySQL theory because understanding databases generally
will help give context to databases used in related work. Databases have long been
the foundation of everything from small-scale applications that use local databases
like SQLite to enterprise-scale applications. Databases allow developers to abstract
data storage and usually feature advanced data querying. This section will intro-
duce some of the more technical sides of databases, focusing on similarities in SQL
databases, such as MySQL and PostgreSQL. In addition, this section will describe
a generic approach to the various steps that SQL databases take when executing
a query. It should be noted that implementations will differ from this explanation
and that in actual implementations, steps might overlap more than this explanation
would make it appear. This section will also use MySQL terminology when present-
ing the different steps since this terminology is the most relevant to the research
question. Thus, some wording might seem slightly off compared to other databases.

Lastly, this section will introduce a traditional query evaluation system, Volano,
and present the benefits and drawbacks related to this thesis.

Structures Query Language (SQL) is a language for managing data in relational
databases. A query in SQL is declarative, which means it describes what the query
result should look like instead of the steps to get the result. Further, this means
that an SQL database needs to figure out the path to get the result on its own.

2.2.1 Steps from query to result

Generally speaking, any relational database will go through the same general main
steps when going from a query to a result. These steps are parse, prepare, optimize,
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and execute. However, when comparing a relational database to a compiler, the
parse and prepare steps become the same step; because for a database, this step
represents the step where the database resolves fields, which is equivalent to a
compiler’s semantic analysis step. Figure 2.4 gives an overview of these steps and
how they interact.

Figure 2.4: Generic SQL database step flow, showing how a query moves through
a database

When a query is sent to the database, the first step for the database to run
is the parse step. Parsing is the first step for the database to turn the plaintext
SQL query and turn it into something workable. The result from this step is a tree
structure representing the various parts of the query. Parsing in SQL databases is
much like parsing a programming language in that a tree structure is created to
represent the input language, and lexical analysis is run in addition to semantical
analysis. This similarity with a compiler’s parser step makes it comparable to a
compiler frontend part.

The next step for an SQL database is the prepare step. In this step, the database
will resolve fields and ensure the query can run. Resolving fields involves making
type inferences from table information on the various fields. Resolving also results
in binding the field nodes in the tree structure to actual row references with cor-
responding types. Another result of this resolving is that the database can give
feedback to the user if specific fields referenced in the query are not actually in a
corresponding table and cannot be resolved.

After resolving all the necessary fields for the query, the database applies some
optimizations. These optimizations make executing the query more efficient and
faster. Common optimizations include constant folding and dead code elimination.
These optimizations are also common compiler optimizations. Constant folding is
the process of computing constant expressions ahead of time. For example, given
the expression age = 20 + 25 constant folding would turn the expression into age

= 45; this can save a bunch of time during runtime especially if the expression is
used in a long-running loop. Dead code elimination is figuring out if a code path
can be removed if it can never actually run. For example, given the statement
if (20 > 30)then ... it is possible to deduce that the whole branch following the if

statement can be removed since 20 is never larger than 30. If drawing a parallel to
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compilers, this step is very similar to a compiler optimizer; the only real difference
is how a database will only apply optimizations that benefit their workload and not
general optimizations that a compiler would apply. Overall the prepare step is very
much like a compilers optimize step.

The next step a database takes is the optimize step. This step aims to create
a physical query plan, which means creating some data structure, usually a tree
structure, that can be used by the executor to get some result. The optimizer step
has to take the tree structure from the earlier step and figure out the best way
to get the client’s desired result. The resulting physical query plan will describe
how the executor should join which tables to be as fast and efficient as possible
for the execution. The process of figuring out which combinations of joins can be
exhaustive, but an exhaustive search quickly becomes unfeasible when the number
of joins increases. At this point, another approach, including genetic algorithms,
must be used to find a close-to-best physical query plan. The optimizer step used
in databases should not be confused with the optimizer step of compilers. The
database optimizer step is more like the compiler’s backend step; in that, it creates
some output that is ready to be executed.

Lastly, the database will execute the physical query plan through its execute
step. This step will then read and usually query the storage engine used by the
database to get rows that the physical query plan can use.

2.2.2 Volcano query evaluation system

Next, we will introduce a standard iterator model, Volcano. Since it is employed
in MySQL and has similar drawbacks to the implementation of expressions, we
consider it necessary to provide a brief overview of this system and its disadvantages.

Introduced in 1994 by Graefe, the Volcano query evaluation system has become
the standard for query evaluation systems in relational databases [18]. Volcano is
itself an infrastructure model for query evaluation. The model expresses a query as
a tree of relational algebra operators; these operators include join, selection, pro-
jection, and other operators that are domain-specific. Another important concept
in Volcano is the iterator interface. The iterator interface forces each operator to
implement the functions: open(), next(), and close(); this interface intentionally
makes each operator look like a typical file interface.

The way Volcano executes a query is by the root node of the operator tree
calling next() on its child node, which will, in turn, mean every operator until a
leaf node will also call next() on its child operators. The leaf node will usually
perform the actual retrieval of a row of data, and the data will then bubble up
through the various operators until it reaches the root node. This call chain forms
an operator pipeline. Thus, the pipeline has control flow from top to bottom and
data flow from bottom to top. Not all operators can process data a single row
at a time; these operators are called pipeline breakers and need to wait for child
operators to finish before they can start processing data. Operators that are pipeline
breakers include: joins, sort, and group by. The pipeline breakers mean many
queries, especially complex ones, must be represented as multiple pipelines. Each
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pipeline forms a materialization which can be thought of as a temporary table
including the resulting data from the pipeline, which can be used as input for other
operators in other pipelines. The materialization is buffered in a given pipeline
breaker operators internal state. Figure 2.5 shows an example operator tree with
pipelines grouped by dashed lines.

Figure 2.5: The relation between a query and its corresponding operator tree.

2.2.3 Advantages and disadvantages of Volcano

The Volcano model naturally comes with several advantages but also disadvantages.
One of the advantages is how extensible the system is; its use makes adding oper-
ators very simple by using the iterator interface. This extensibility is achieved by
the separation of concern when using an interface. When adding a new operator, it
does not have to consider any of the other operators’ implementation details.

The biggest downside of Volcano is the overhead created by making several
repeated calls to next(). Each time a function is called, more stack space must be
used. The program has to jump to another place in memory; this decreases temporal
and spatial locality, decreases CPU branch prediction and prevents inlining and
unused code deletion.

2.3 MySQL

To understand how WHERE expressions in MySQL can be compiled, it is vital to un-
derstand how MySQL works internally and how the existing expression evaluation
process is performed. This section will overview how MySQL represents expres-
sions and how they are evaluated. Furthermore, this section will also describe how
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MySQL internally executes a query from the beginning to the end. The primary
focus is on the life of WHERE expressions and how they fit within this process.

First, MySQL is a popular open-source relational database management system
that reads and mutates data in row-based table structures through SQL queries.
The entire project started in 1995 and is written in C++, which Oracle Corporation
mainly maintains at the time of writing. Since MySQL 8.0, the database system has
adopted the Volcano iterator model, which executes queries on a per-row basis using
iterators [39]. As in most traditional relational database systems, the query engine
consists of four main components: a parser, a prepare step, an optimizer and an
executor [39]. These four components are the core aspects of the query engine, where
they lay the work of transforming an SQL query into an internal executable format,
performing the execution, and making the results available. Filter expressions are
involved in all these components in which they are created, transformed, or used.

2.3.1 Expressions in MySQL

In MySQL, expressions are mostly compliant with the ISO SQL standard [34] and
are a collection of operators, values, and functions that can be reduced to a single
value. These expressions can be found at three different places in a read query, in
the projection list of the SELECT clause, in the selection list of the WHERE clause, and
in the HAVING clause for aggregated selections. In this thesis, we will focus mainly on
the filter expressions in the WHERE clause, which consists of expressions that evaluate
a single row at a time and are marked with 2○ in Figure 2.6.

Figure 2.6: An illustration of a query, highlighting the different sections where ex-
pressions are used. 1○ being the project list, 2○ and 3○ being the selection lists.

These filter expressions typically consist of a collection of arithmetic, logical,
and comparison operators that can be computed using operands. For example, a
typical expression found in the WHERE clause could be age = 26 AND name = ’Peter’.
In MySQL, these expressions are represented in the code by a tree of instances of
the C++ class called Item. The Item class is a base class for a whole family of
derivations, representing the different components of an expression, such as logical
operators, arithmetic operators, constant values, field references, and more. For
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example, an integer is represented by the Item_int class, which contains the value
of a constant integer. The equality operator (=) is represented by the Item_func_eq

class, which can calculate the equality of the value of two other Item references. By
the nature of these classes, it is possible to construct all types of expression in the
form of a tree of Items, where the root Item represents the full expression and the
leaf nodes are the operands. In particular, Figure 2.7 shows the Item tree of the
expression mentioned above. [33]

Figure 2.7: Visualization of an Item tree representing the expression age = 26 AND

name = ’Peter’.

To evaluate the expression represented by the Item tree in Figure 2.7, every Item

implements a set of virtual methods from the base class that are responsible for cal-
culating the value of the Item. The most notable one is the val_int() method, which
returns the value of the evaluated Item in the form of a 64 bit integer. In fact, there
exists a family of val_<TYPE> methods for the most primitive types, which computes
the evaluated value of the expression for the given type. For example, the val_int()

method of Item_func_eq computes the equality of two other child Items in the tree,
where the operands to be compared are extracted by calling the children’s val_int

() method. Code listing 2.1 shows an artificial implementation of Item_func_eq to
illustrate this concept. In such a manner, an expression is evaluated by calling the
root Item’s val_int() method, which starts a traversal of the entire tree by a chain
of val_int() function calls, where the final value is computed and returned by the
root Item. [33]

class Item_func_eq : public Item {

Item *a;

Item *b;

...

longlong val_int () {

auto a_val = a.val_int ();

auto b_val = b.val_int ();

return a_val == b_val ? 1 : 0;

}

...

}

Listing∼2.1: Artificial implementation of the Item_func_eq class, performing an
equality operation in the val_int() method.
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MySQL has a Item derivation for every supported data type, operation, and SQL
function. In this thesis only a few of them are significant to remember, and from
the large collection of Item derivations, the following are worth noting:

• Item_int - Represents a constant integer value in an expression.

• Item_string - Represents a constant string value in an expression.

• Item_field - Represents a column in a table. A call to the relevant val_<TYPE>()
method returns the column value for a given row.

• Item_func_eq - Represents the = operator.

• Item_func_gt - Represents the > operator.

• Item_cond_and - Represents the logical operator AND.

• Item_cond_or - Represents the logical operator OR.

2.3.2 Life of a query

To understand how expressions are evaluated, it is important to understand the
life of a query in MySQL. As mentioned, the MySQL query engine divides the
process of executing a query into four main steps: parsing, preparing, optimizing,
and execution [39]. Figure 2.8 illustrates the entire life of a query with all these
steps.

Parser

The life of a query begins when the server receives an SQL query from a client and
sends the query to the parser. The parser’s job is to transform the query text into
a structured format that characterizes the different parts of the query. In MySQL,
this format is a parse tree of C++ structures called Query_block. The parser uses the
same parsing techniques as compilers to build the Query_block structure, performing
lexical and semantic analysis on the query, where the parser represents frontend
from a compiler perspective. For the expressions found in the clauses WHERE, SELECT
and HAVING, the parser extracts the semantic meaning of these and constructs the
equivalent Item tree, which gets stored in the Query_block structure. The Items for
a given query are, thus, constructed at the very beginning of the entire execution
process. The other parts of the query, such as joins and table references, go through
a similar process of constructing a corresponding C++ data structure that defines
their characteristics and ends up within the Query_block structure. When the parser
finishes, the output is a full Query_block that describes all the different aspects of
the query. [38, pg. 167]
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Figure 2.8: The flow of the MySQL query engine, showing the relationship be-
tween the parser, the prepare step, the optimizer and the executor.

Prepare

The next step is preparation, which is the MySQL terminology for resolving and
transformation. At this point, the Query_block does not reference the storage loca-
tions of the tables and columns involved. These references will be resolved at this
step, where, for example, the Item_field instances are initialized to the first row of
the corresponding table, pointing to the storage location of the value of the first
column. Additionally, this is the point where type checks are also applied.

Another important aspect of the preparation step is transformation, which sim-
plifies the contents of the Query_block. The most important transformation to note
in this thesis is simplifying the Item-trees. The Item expressions can be optimized
to reduce the computational heights of the evaluation, for example, by applying
constant folding and dead code elimination. For instance, the Item-tree equivalent
of the expression age = 20 + 25 will compute 20+25 for every row, which is not nec-
essary. Instead, the MySQL query engine applies constant folding and reduces the
arithmetic expression to 45 before execution, reducing the computational burden at
runtime.

Another optimization technique MySQL uses is to eliminate dead code, removing
Item logic that is considered redundant. The redundant logic could be subexpres-
sions that always evaluate true, such as 20 > 10. There is no need to compute this
expression at runtime, and it can be removed from the Item tree before execution.
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This optimization also applies to the opposite example for expressions always evalu-
ated false. Such expressions make it possible to discard parts of the Item expression
or the entire query since a conditional expression that evaluates to false always
returns an empty set of rows. Moreover, these optimizations on Items are mainly
performed on expressions of the WHERE and HAVING clauses, as the selection has the
most impact on runtime performance. Figure 2.9 shows an example of the simpli-
fication of an Item-tree from the WHERE clause. After resolving and transforming the
different parts of the Query_block, the final output of this phase is called a logical
query plan [39].

Untransformed Transformed

Figure 2.9: Illustration of the Item-tree transformation of the expression 20 > 10

AND discount < 100 + 40 during prepare.

Optimizer

The next phase of the process is in the hands of the optimizer. As of MySQL version
8.0.28, there exist two optimizers; a default traditional optimizer and a new one
called hypergraph optimizer. Since the new one is considered the default optimizer
in the future [40], we have chosen to use the new one in this thesis. As a result, we
hereby refer to the hypergraph optimizer when talking about the optimizer.

The optimizer aims to produce a physical query plan, which is a tree of relational
algebra operators that the executor can execute [38, pg. 169]. The first step of this
process is to transform the Query_block into a tree of AccessPaths. An AccessPath

is a data structure that is used by the optimizer to represent a relational algebra
operator and is also used to build the tree that represents a possible query plan
[33]. In addition, the AccessPath related to the expressions of the WHERE clause is
called FILTER, which is an AccessPath containing a reference to an Item-tree.

The optimizer’s biggest challenge is to build an optimal query plan for this
structure in a reasonable amount of time. In MySQL terminology, a query is defined
by a set of joins and is considered the most expensive operation during execution
[38, pg. 172]. From a mathematical perspective, a join is a Cartesian product of
the MySQL tables, where the table’s records are extracted using different access
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techniques, such as key range lookups, full index scans, and full table scans. For
expressions of the WHERE clause, they are usually performed jointly with table scans,
which is one of the most time-consuming processes during execution. Therefore,
the optimizer must choose an optimal combination of access paths that minimizes
execution cost.

In simple terms, this is done in MySQL by representing the joins of a query as a
hypergraph. A hypergraph is a graph representation where relations are connected
through hyperedges, which connects a set of relations with another. For each rela-
tion, the optimizer investigates all possible access techniques to access the relation
and goes through all join orderings to join the relations, using a bottom-up ap-
proach. This way, the optimizer enumerates all possible join orderings and builds
up a table of candidate sub plans. The best plan is found by minimizing a cost
model that calculates the cost of each join and other cost properties, such as car-
dinality estimates. The MySQL optimizer searches through all the possible plans
and selects the one with the lowest cost for further execution.

This entire search is performed by constructing possible trees of AccessPaths.
In this process, the Item-trees are involved in estimating an evaluation cost of the
expression, where the root Items issues its execution cost to the optimizer. When
the optimizer has completed its search, the output represents the final execution
plan for the given query, in the form of a tree of AccessPaths, called a physical query
plan.

Execute

The last step is for the executor to execute the physical query plan. However, the
plan is not in its executable form at this point, as the AccessPath structures are only
used during planning. As mentioned, MySQL executes queries through the Volcano
iterator model [39], where every relational algebra operator is represented as an
iterator. In MySQL, there is a one-to-one mapping between a tree of AccessPaths

and a tree of iterators, and performing this mapping is the last step of the optimizer.

The iterators are built by a chain of Read() calls to the successive iterators, pro-
cessing one row at a time. An iterator that is important to note is the FilterIterator,
which is the iterator representing the relational algebra selection operation and has
the job of emitting rows that satisfy the conditional expression of a given Item-tree.
A call to Read() on a FilterIterator initiates a continuous loop on the rows of a
table and evaluates the Item expressions on each row [33]. This process ends when
there is a row that satisfies the expression, where each row is evaluated by calling
val_int() on the Item-tree.

The root iterator receives rows one-by-one from its successive iterators and stores
the results in a dedicated buffer pool that gets sent to the client when full. In total,
the executor executes the query by a chain of Read() calls from the root iterator
that repeats until there are no more records to process.

The life of Items

Since this thesis focuses on expressions in MySQL, we can summarize the life of
Items in the following steps:
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1. The incoming query is parsed by the parser, which extracts the semantics of
the expressions and constructs a tree of Items. The Items are then stored in
the Query_block structure.

2. In the prepare phase, the Items are transformed and optimized into less com-
putationally heavy representations. The most common optimizations are con-
stant folding and dead code elimination.

3. The Items is then barely used by the optimizer to find an optimal query plan,
where the Item-trees emit the expensiveness of their execution.

4. The Items representing the WHERE clause are put inside of an AccessPath rep-
resenting the selection operation. The original Items-tree from the parser
might be split into multiple AccessPaths, as subexpressions can be relevant for
different parts of a query plan.

5. The AccessPaths are transformed into FilterIterators, which references their
own Item-tree.

6. The referenced Item-trees are used during execution, where a call to the it-
erator’s Read() causes a loop of row-memory lookups where every row gets
evaluated by a call to val_int().

2.3.3 Drawbacks

Something worth noting is that the MySQL execution engine is far from perfect,
and there are some drawbacks to the presented implementation. With a focus on
expressions, one of these drawbacks is the implementation of Items, where some
derivations maintain their state. For example, Item_field internally maintains a
state for dealing with NULL values and implements reset mechanisms when switch-
ing between rows to be processed. Since Items are not necessarily stateless, it is
infeasible for multiple threads to work on the same Item tree, causing an obstacle
in evaluating expressions in parallel. MySQL does not support multithreading for
a single query, as the implementation of Item is considered one of the barriers.

Another drawback is the usage of the iterator model, which is considered CPU-
unfriendly due to the overhead produced by the chain of Read() calls. The same
argument can be used for the implementation of Items, since the evaluation process
also consists of a chain of val_int() calls. This chain of function calls introduces a
large set of overhead, as every function call introduces a set of expenses, such as
storing a return address to the stack, loading function parameters, and switching
program counter. A function call also amplifies cache misses, as the program code
of the function is not necessarily in the cache due to code locality and might initiate
extra memory accesses.

Moreover, this entire evaluation process is not considered CPU-friendly, as the
code is executed in a non-linear fashion. By using these Item trees, the evaluation
of an expression in MySQL introduces many additional instructions that slow down
the entire evaluation process, intensifying for every row that needs to be evaluated.
For this reason, this is where we see an opportunity to introduce JIT compilation.
By compiling the expressions, we can remove the need for the abstractions of Items
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by generating linear code for the expressions without performing any function calls.
This way, we can represent the expression without the additional bloat and execute
more CPU, cache, and memory-friendly code.

2.4 LLVM

A significant focus of this thesis is how we use the LLVM compiler framework to
JIT compile expressions in MySQL. Therefore, having some knowledge of LLVM is
considered necessary for understanding our work and the remainder of this thesis.
For this reason, this section will briefly introduce essential concepts relevant to this
thesis and how we can use them to achieve JIT compilation in MySQL.

LLVM began as a research project at the University of Illinois but has since
evolved into a large open-source collection of compiler-related tools. Notable mod-
ules of this collection will be presented later in this section. The modularity and
scope of the LLVM project mean it has become one of the go-to tooling collections
for several projects, all from open-source, commercial, and academic projects. One
of the notable users is Apple, which uses LLVM in everything from its operating
systems to its development environments. Another example of notable use cases
for LLVM is its use in programming languages; languages like Julia and Rust use
LLVM extensively. [28].

2.4.1 LLVM IR

At the core of LLVM is the intermediate representation (IR), called LLVM IR.
LLVM IR is an assembly near language optimized for applying transformations,
pointer modifications, and analysis [26]. LLVM IR is built up with its own instruc-
tion set that is platform-independent. It comes in three forms; it can be stored as
in-memory compiler IR, human-readable assembly language, or on-disk bitcode.

extern "C" int int_clause(bool clause , int a, int b) {

return clause ? a : b;

}

Listing∼2.2: Example C++ code

; Function Attrs: alwaysinline mustprogress nofree norecurse nosync

nounwind readnone ssp uwtable willreturn

define i32 @int_clause(i1 zeroext %0 , i32 %1 , i32 %2)

local_unnamed_addr #0 {

%4 = select i1 %0 , i32 %1 , i32 %2

ret i32 %4

}

Listing∼2.3: LLVM IR created by Clang from 2.2

2.4.2 Notable Parts of LLVM

LLVM Core - As the foundation of the LLVM project, LLVM Core includes li-
braries that most other modules of the LLVM project use. These libraries
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include the LLVM IR optimizer and code generation for several CPU archi-
tectures. The various libraries are meant to be used in conjunction with
LLVM IR. LLVM Core also includes helper methods and data structures to
help in LLVM IR generation and loading. LLVM Core could make up the
backbone of a complete compiler; from the frontend, optimizer, and backend.
The libraries can also be used when creating a JIT implementation.

Clang - Clang is the LLVM project’s answer to GCC. It is a complete C/C++
compiler and competes on compilation speed with GCC. Clang has become
the default C/C++ compiler on MacOS. The goal of Clang is to provide a fast
compiler that can give better and more insightful warning and error messages
than GCC can provide.

LLDB - LLDB is the LLVM project’s answer to the GNU Debugger (GDB) and
aims to be a faster and better memory efficiency code debugger than GDB.

2.4.3 Use cases

The use case of LLVM that is the most prominent is probably to use LLVM to create
frontends for programming language compilers; Rust, Swift, and Haskell have com-
piler frontends written with LLVM. LLVM is a popular choice for creating compiler
frontends because it allows language creators to focus on the language itself and
outsource creating an efficient compiler optimizer/backend to LLVM. Outsourcing
work to LLVM allows more and more languages to create very performant binaries
with advanced optimizations that before would only be possible for large teams
with very specialized programmers.

2.4.4 LLVM for JIT

A use case of LLVM that is relevant for this thesis is JIT. When tooling like LLVM
exists that can do all the work of a compiler optimizer/backend, creating a JIT
system becomes doable for many projects. Essentially, creating a JIT system means
creating a compiler frontend that runs at runtime and utilizes knowledge only known
at runtime to create more efficient binaries than would otherwise be possible. The
difference between a compiler frontend and a JIT system is that the JIT system
creates IR and only stores it in memory instead of into a file. The system then
needs to link any function calls outside the created IR dynamically. After linking
and compiling, the system can execute compiled functions by getting their place in
memory. Fundamentally, the JIT system has only skipped the writing to file step
of compilation and could use runtime knowledge to optimize the code further.

How to JIT

In this thesis, we use the collection of LLVM libraries called On Request Compilation
(ORC) to implement our JIT. In LLVM, a JIT engine is a pipeline built based on
layers, where typical layers are a compiler layer and a linking layer. Such layers are
connected to create an entire pipeline that inputs LLVM IR and outputs a specific
target code. This flow is illustrated in Figure 2.10, and in the context of this thesis,
the target code is native machine code that is stored in memory for later execution.
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Figure 2.10: The layers of a typical LLVM JIT engine.

Creating such a JIT engine starts with an entity called ExecutionSession, which
represents a JIT-compiled program. This entity is responsible for the memory
associated with the compiled code and contains the symbol table for the program’s
symbols. The symbol table is represented by the entity JITDylib.

Moreover, ExecutionSession is known to all layers in the JIT engine and is used
to produce the final target code, which will be available from the ExecutionSession.
It is important to note that the ExecutionSession triggers the entire pipeline. A
symbol lookup in this entity will eagerly initiate the compiler layer, which compiles
the code, then initiates the linking layer, and finally outputs some representation of
the looked-up symbol. In this thesis, this symbol will always be a function, where
the output is a function pointer to a function created in LLVM IR.

To be able to use the JIT engine, our system needs to be able to generate
LLVM IR. LLVM provides a target-independent code generator in the form of a
C++ library called IR Builder. The IR Builder makes it possible to create and
mutate an LLVM IR module in code, which is an in-memory representation of the
IR. This library makes it easy to generate LLVM instructions in an existing program
and conveniently integrates with an LLVM JIT engine.

The JIT system presented in this thesis uses the LLVM components described
here. We use the IRBuilder to generate LLVM IR, and our JIT engine is built
around the ExectionSession entity, a compiler layer, and a linking layer. With
these components, the LLVM compiler framework makes implementing a JIT inside
MySQL a feasible task, where most of the complexity is handled by LLVM.

2.5 Existing solutions / state of the art

Database research is an actively researched field, and query compilation has seen in-
creasing adoption and advances. In this section, existing solutions and the state-of-
the-art of query compilation will be presented. The section will explore how various
databases have implemented JIT and the experience gained from the implementa-
tion. Various strategies have been utilized with varying strengths and weaknesses,
from Microsoft and their Hekaton database to MySQL’s probably largest competi-
tor PostgreSQL to Umbra and Impala. This section will present a novel approach
to JIT execution engines created by [23]. Research on how to compile query plans
to get faster execution has been ongoing since about 2011 [35]. This research is
increasingly relevant because as more and more data can fit in memory; databases
are shifting the performance bottleneck from IO-operations to CPU performance
[13, pg. 1]. Ultimately, this section will help understand how compilation is being
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used to increase query performance and provide ideas on how compilation could
help get better query performance in MySQL. There are, however, several valuable
contributions to this field we will not look at in more detail but have been influential
in understanding how JIT can be implemented in databases. These contributions
include commercial databases such as Hekaton, Cloudera Impala, SingleStore, and
Spark. They include several academic research and open-source database systems
like Vectorwise, Hyper, Hique, Resql, Dbtoaster, Legobase, and MonetDB. [13, 49,
6, 1, 41, 12, 24, 17, 2, 22, 47, 31, 35, 44, 23, 46]

2.5.1 PostgreSQL

Several papers have focused on implementing JIT in PostgreSQL [5, 30], but this
section will focus on the implementation that is part of the main PostgreSQL reposi-
tory. As one of the largest competitors to MySQL and a comparable database, many
choices are probably relevant for a MySQL implementation. PostgreSQL began im-
plementing JIT in December 2016 when Andres Freund was looking into getting
faster expression processing and tuple deforming. PostgreSQL has chosen to base
its JIT implementation on the LLVM toolchain, but they have taken the precau-
tion of creating an LLVM-independent JIT wrapper to change it out later on if
necessary. In doing so, they also support pre-compiling C functions as LLVM IR
templates using Clang. [15].

Why did they decide to JIT

Freund [15] describes that while working on “batched execution”, he concluded that
the method did not create a large enough benefit towards the performance of large
queries, and he describes that expression evaluation and tuple deforming are massive
bottlenecks that need to be addressed. Freund explains how tuple deforming uses
unpredictable branching, mostly because of having to deal with a bunch of different
field types. He also explains that expression evaluation before JIT in PostgreSQL
puts much pressure on the stack because of its recursive nature, which means it has
to make many indirect function calls. Any LLVM-dependent code is included as
a shared library loaded on-demand by an LLVM-independent wrapper. This way,
it is relatively easy to swap out LLVM with different JIT tooling should that be
wanted. [16]

Where is JIT applied & how does it work

PostgreSQL has implemented two operations that JIT compilation can accelerate at
the time of writing. One is expression evaluation, and the other is tuple deforming.
Expression evaluation is the function of taking expressions like WHERE field > 2 and
evaluating them for every row to check if the row should be part of the result or not.
For PostgreSQL, JIT compilation on expression evaluation will compile WHERE
clauses, target lists, aggregates, and projections. Tuple deformation is taking an
on-disk tuple (or row) and transforming it into the in-memory representation of that
tuple. The tuple deformation will use information about the table being queried and
the columns it contains, which is only known at runtime. The JIT implementation
in PostgreSQL also supports inlining smaller function calls made in a query as
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a bonus JIT optimization if the estimated cost of the query is higher than a set
variable.

How PostgreSQL decides if it should JIT

PostgreSQL has defined three variables that determine if it should apply JIT to a
query. These variables are: jit_above_cost, jit_optimize_above_cost and jit_inline_above_cost

which are compared against the estimated cost of the query. PostgreSQL uses these
variables as thresholds to choose if it should use JIT or not. These thresholds work
by comparing the variables with cost estimates for the query. Setting thresholds
like this is not easy, as some will perform better with certain queries than others.
By default, some thresholds are chosen that should, in most cases, allow JIT to
perform better, but this should be tested with the given workloads being used. The
default thresholds work quite well for TPC-H, with no obvious downside.

Why LLVM

PostgreSQL states that their reasoning for choosing LLVM is that LLVM is being
developed and used by several large corporations, making it unlikely to become
discontinued. The LLVM license is also compatible with PostgreSQL’s, and lastly,
that LLVM IR can be generated from C code using the Clang compiler. IR from C
generation, in turn, allows for inlining functions not specifically made for the JIT
implementation. [16]

Results

Over the TPC-H benchmark PostgreSQL consistently shows that having JIT en-
abled gives a speedup of about 20% on scale factor 10. In the case of query 14, JIT
gave an incredible speedup of about 90%. [20]

Summary & how this is relevant to the research question

PostgreSQL has implemented JIT with LLVM tooling and uses a couple of vari-
ables to determine when to apply JIT. This form of implementation is perhaps
the most straightforward implementation of the existing solutions we are looking
at. PostgreSQL and MySQL are pretty similar. They both use a volcano evalua-
tion system, so we consider the speedup shown through JIT benchmarks made on
PostgreSQL to be achievable in MySQL. Because of this, the benchmarks made on
PostgreSQL become a goal for our JIT implementation and a way to compare if
our implementation achieves the performance we hypothesize should be possible.

2.5.2 Hekaton

Hekaton is a database management system (DBMS) optimized for memory-resident
data and OLTP (Online Transaction Processing) and is fully integrated into Mi-
crosofts SQL Server. OLTP is data processing consisting of executing numerous
transactions concurrently. The team behind Hekaton noticed a trend where main
memory became less expensive, and CPU usage across multiple cores increasingly
became the bottleneck in DBMSs. Therefore, Hekaton was created to take full
advantage of large main memory and many-core CPU systems.
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Implementation goals

Hekaton sought to achieve massive speedups in the magnitude of 10-100x. Early
analysis of throughput improvement showed that reducing instructions was the only
optimization that could be implemented to reach these performance goals. [13]

How does Hekatons JIT work

Hekatons JIT implementation is quite different from the other databases this thesis
presents. It is different in that it does not use an IR close to machine code but
instead uses C code as the intermediate step, which is compiled by the Microsoft
Visual C/C++ compiler. This choice can utilize many of the existing toolsets that
Microsoft has created around their SQL server. Hekaton reuses the SQL server T-
SQL compiler stack (metadata, parser, name resolution, type derivation, and query
optimization) and the already mentioned Microsoft Visual C/C++ compiler. [13,
10]

The codebase of Hekaton is written in C/C++, which allows it to inject callback
functions to the query engine in SQLServer, which they have reused. Injecting the
callback functions means Hekaton supports hybrid execution, meaning running code
that has not been part of the JIT process alongside code that has. Hybrid execution
makes it easier to implement JIT compilation as not everything has to be rewritten
for it all to work. [13, 10]

Results

The compiled code could reduce the number of instructions by up to 10x. Hekaton
was not tested on TPC-H but instead on their benchmark. Over the various bench-
marks and number of cores used, the compiled code increases throughput by over
an order of magnitude. [13, 10]

Summary & how this is relevant to the research question

The research on Hekaton focuses on the importance of reducing the number of
instructions of a query and shows how JIT compilation can help achieve this. It also
shows an approach to this problem that allows hybrid execution. Since MySQL is
also written in C++, this approach seems optimal as it would allow a much easier
transition to a complete JIT implementation. Hybrid execution allows a rolling
release of the implementation where the more manageable parts can be released
before all the more difficult-to-develop parts are ready. Furthermore, using this
system also allows parts of the MySQL query not to have a JIT implementation if
it does not make sense in a performance or maintenance consideration.

2.5.3 Cloudera Impala

Cloudera Impala is a Massively Parallel Processing (MPP) database made for use
in the Hadoop framework. Hadoop is a framework for distributed processing of
large datasets across clusters of computers. Impala does runtime code generation
using LLVM. Impala generates query-specific functions at runtime, meaning it can
make optimizations based on knowledge only available at runtime, like knowledge
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about column types and expression operators. Because Impala is meant to be used
on tables with trillions of rows, even a few saved instructions will have a massive
impact on the overall performance of the query. Impala is also meant to be used for
analytic workloads instead of OLTP (Online Transaction Processing), meaning it is
made for performing complex, long-running, CPU-bound queries instead of several
concurrent queries [49, 48].

Why LLVM

Impala uses LLVM because it allows Impala to perform JIT compilation within
a running process, with all the benefits that come from a modern compiler and
optimizer. LLVM also supports several different architectures [49].

Where does Impala apply JIT

Impala applies JIT on “inner loop” functions, meaning functions run several times as
part of a loop. JIT compilation is applied explicitly to these “inner loop” functions
because they make up most of the total instructions run and time spent executing a
query. An example of such a function is a function used for tuple-deforming, which
parses the on-disk record into the in-memory format used by Impala [49]. Impala
also applies JIT to remove conditionals, propagate constant offsets and pointers,
and lastly, inlining of virtual function calls [48].

UDFs

Impala also supports User-Defined Functions (UDFs), allowing users to create cus-
tom functions for queries. The UDFs are defined as C++ functions. Impala can
therefore use another feature of the LLVM ecosystem, which is to use Clang to
compile these C++ functions into LLVM IR. Which, in turn, can be inlined and
optimized alongside the other LLVM IR generated code [49, 48]. The IR templat-
ing allows users to write functions without worrying about slowing down the query
execution with added complexity through abstraction.

Results

Impala tested their JIT implementation on the TPC-DS benchmark on a scale
factor of 1 terabyte. Results are shown as a compilation of the queries in this
benchmark and query execution time with JIT turned off and turned on. On such
a large scale factor it is expected that JIT should always be able to outperform the
interpreted alternative, and in their results, this is confirmed. Impala is in their
tests consistently faster with JIT enabled. The authors even describe how the JIT
results could be even faster and are being held back by not every code path being
able to take advantage of code generation.

Summary & how this is relevant to the research question

In summary, Impala has shown how LLVM can be used as a tool for JIT in
databases. They have shown that for long-running CPU-bound queries utilizing
JIT on “inner loop” functions can make a massive difference to the overall perfor-
mance of the query. Impala has also shown a strategy for implementing JIT through
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C/C++ templates that can be compiled into LLVM IR, thus making it easier to
debug JIT functions since debugging LLVM IR can be pretty tricky.

2.5.4 Adaptive execution

Kohn, Leis, and Neumann [23] presents a framework for adaptive execution of com-
piled queries. The framework builds upon HyPer, which is an in-memory DBMS.
HyPer produces LLVM IR for a query and compiles the query before execution,
meaning it already supports a form of JIT built on LLVM. Before the JIT im-
plementation, every query must be compiled through LLVM. When a query is
computer-generated and thus lengthy, compiling it could take several seconds. Hy-
Per would also have to compile queries when JIT would be slower than an inter-
preted approach. The adaptive execution framework tries to solve this problem by
introducing interpretation to HyPer. [23]

Execution modes

The framework makes the most of JIT by only spending compilation time on the
query parts that benefit from it instead of compiling the entire query. The frame-
work divides each query up into several morsels, which are small pieces of work
needed to execute on a row. Each morsel can be executed in three different execu-
tion modes, and the framework will shift which morsels are run on which execution
mode to optimize the runtime. The three execution modes the framework introduces
are:

bytecode - This execution mode provides the quickest way for the framework to
take a query and start executing it. The morsel is quickly compiled into
bytecode which Kohn, Leis, and Neumann wrote a custom VM to achieve.
The bytecode compiler was made to compile the morsel fast and thus only
implements a few handpicked linear optimizations that do not take long to
apply to the bytecode.

Unoptimized compiled code - This execution mode provides the “golden mid-
dle way” between fast-to-execution and fast-execution morsel execution. The
morsel is compiled using LLVM with only a few handpicked linear optimiza-
tions applied.

Optimized compiled code - This execution mode provides the fastest execution
of all the modes at the cost of compile time. This time a morsel is also com-
piled using LLVM but has several optimizations. Some of these optimizations
are also super-linear, meaning they do not scale linearly with the amount of
code needed to compile.

How the framework determines which execution mode to choose

The adaptive framework will always start executing morsels in the bytecode execu-
tion mode. Always executing with bytecode first ensures that the framework will
start working on the query as quickly as possible. Then while running, the frame-
work will look at how much time each morsel uses and how often they are run to
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Figure 2.11: Adaptive Execution Framework Overview

determine if JIT should be applied to the morsel. Since HyPer is multithreaded, the
framework will use a single thread for compilation while running morsels in what-
ever execution mode that is available and faster than the other available modes.
The result is that the framework can dynamically change the execution mode of a
morsel when other faster execution modes are available. The framework is tuned
on TPCH, so it is unclear how their chosen limits for execution mode choice would
be affected on other benchmarks. [23]

What optimizations are applied

Kohn, Leis, and Neumann [23] had to make special considerations when choosing
what optimizations to apply on the LLVM IR. They argue that many optimizations
do not benefit database query execution, so they can be ignored with little effect on
the overall performance. Another consideration Kohn, Leis, and Neumann brings
up is how in a JIT environment where compilation time makes a massive difference
to the usefulness of the feature optimizations that do not scale linearly have to be
applied with care. Thus, an adaptive execution framework needs to consider the
amount of time compiling a morsel takes so that the compilation itself does not take
excessive time. Excessive is when more time is spent compiling than the time gained
from running the compiled code versus the interpreted code, ultimately removing
any performance benefit that JIT can bring. This problem is critical to solving for
a JIT implementation that has to decide before execution if it should apply JIT, an
example of this being PostgreSQL. Since deciding to JIT a query that takes long
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to compile could mean that the user has to wait longer for compilation than the
amount of time, the query would execute in the interpreted execution mode.

Results

The framework was tested on the TPCH benchmark. On scale factors ranging from
0.01 to 30. Kohn, Leis, and Neumann measured the median query time, and on that
metric, the adaptive execution framework consistently beat all the other test setups
running exclusively on a single execution mode. On the smallest scale factor (0.01),
the framework spent equivalent time as the exclusively interpreted execution mode,
which was expected. The framework should not expect any benefit from applying
JIT on such a small dataset and thus not do it. Between scale factors 0.1 and
1, there was a crossing point between interpretation and unoptimized compilation
exclusive execution modes. However, at that crossing point, the adaptive execution
framework beat interpretation and unoptimized compilation. It beat both because
it could apply unoptimized compilation to only some morsels instead of all. It
results in less time compiling than the unoptimized compilation exclusive execution
mode.

Summary & how this is relevant to the research question

The framework shows that building a system that circumvents the need for volcano-
based execution by interchangeably interpreting and compiling IR is possible. The
result of that system is a more performant query system since the system can better
utilize the CPU, which ultimately means more of the speed capacity of the storage
system can be used. For our research question, the reasoning and results gathered
by Kohn, Leis, and Neumann on what optimizations to use when applying JIT are
especially relevant. They shed light on the problem of how optimizing too much
will ultimately reduce overall performance when applying JIT. Thus, testing how
optimizations affect performance becomes essential for us to see what performance
JIT can bring for MySQL correctly.

2.5.5 Umbra

The trend of falling DRAM pricing, which allowed for vast amounts of memory to
be used by databases, fueled the creation of the HyPer database, an exclusively
in-memory database. Since then, however, falling DRAM pricing has stopped, and
pricing for fast storage, SSDs, is becoming cheaper and cheaper. These falling
prices have created new possibilities for high-performance databases, which Umbra
takes advantage of. Umbra is an evolution on HyPer and gets the most out of high-
memory fast-storage systems by taking advantage of the performance an in-memory
working set brings and the scalability of SSD storage.

Implementation goals

Umbra takes the adaptive runtime approach introduced in Kohn, Leis, and Neu-
mann [23] for HyPer. The most significant difference between Umbra and HyPer
is that Umbra will always compile code and does not use an interpreter. Umbra
achieves this by not always using LLVM to compile but instead using a custom

29



backend called Flying Start. Flying Start is optimized to compile Umbra IR fast.
Using this approach, Umbra does not waste time transpiling between its custom
IR and LLVM IR before execution, as HyPer would need. Umbra also differs from
HyPer in dividing the work needed for a query.

How does Umbra JIT work

Consider a query like SELECT COUNT(*)FROM supplier GROUP BY s_nationkey, this query
consists of two pipelines. The first pipeline scans the supplier table and does a GROUP

BY operation on the result. The second pipeline will scan the output from the first
pipeline and output the query result [36]. Umbra will separate these pipelines into
smaller steps that it can compile separately. The Umbra query executor can choose
which steps to run with the Flying Start backend and which steps benefit from
further optimization through LLVM compilation [36].

Results

The results shown in Kersten, Leis, and Neumann [21] show that combining Umbra
IR and Flying Start significantly reduces query latency compared to HyPer. Over
the 22 TPC-H queries, Umbra has significantly higher queries per second, and Flying
Start compilation beats databases that do not spend time compiling code even on
scale factor 0.001.

Summary & how this is relevant to the research question

Umbra can be described as an evolution of HyPer and the adaptive framework it
employs. It takes the ideas introduced in HyPer and refines them. The architecture
of Umbra is designed to take full advantage of high memory in combination with
fast storage, in line with the trend of lower and lower SSD costs. Combined with
the custom compiler backend Flying Start, Umbra IR allows Umbra to achieve
a quick time-to-query execution start while maintaining most of the benefits of
running compiled code for query execution. Umbra shows us that JIT is very
applicable when taking advantage of what modern systems can provide. Moreover,
that interpretation can be beaten on small datasets if some thought is put into
crafting a custom IR and compiler backend optimized for databases.
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Chapter 3

MySQL JIT implemention

This chapter will describe our implementation of just-in-time compiling expressions
in MySQL using the LLVM compiler framework. First, we will discuss different
methods for implementing JIT based on existing work and argue what approach is
best for MySQL and why we chose LLVM. Further, we will explain how our just-
in-time implementation fits within the ”life of a query” in MySQL and the existing
query optimizer. The focal point is to show how the implementation interacts with
the existing code concepts and entities. Afterward, the following section will explain
the code generation process from Item expressions to LLVM IR. The last section will
describe the compilation step and how the compiled code is run during execution.

This chapter aims to provide a detailed description of our implementation and
a good understanding of why certain things were done the way they were. The
purpose is to show how just-in-time compilation of expressions can be done within
the complicated system of MySQL and express the possible performance outcomes
of such an implementation.

3.1 Evaluating existing work

The existing work presented in 2.5 gives us a clear idea of both the challenges
and possibilities of implementing JIT in a database. The Hekaton implementation
[13] makes it clear that the most critical factor determining performance increase
is the decrease in instructions run. Thus, instruction count can be viewed as an
essential metric to track. A decrease in instruction count on account of our JIT
execution will likely also indicate an increase in performance. PostgreSQL, Impala,
and HyPer (used by the adaptive execution framework) show that LLVM can be
used to implement JIT in databases and give a solid performance boost. Impala
also shows that JIT should be focused on code that runs several times, like in “inner
loop” functions.

Overall the state-of-the-art has shown just how important it can be for databases
to utilize JIT, especially where large datasets are involved. The implementations
show how JIT can be implemented so that it does not hurt the performance of
queries where an interpreted approach would perform better. PostgreSQL shows
how LLVM is a good choice for implementing JIT since it is maintained by several
large companies and organizations that ensure LLVM sticks around and has the
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development capacity needed to maintain its features. PostgreSQL also shows that
LLVM can be used in a way that does not make the database codebase inherently
dependent on LLVM. PostgreSQL shows that a JIT implementation can be made
so that any compiler tooling could be used if anything should happen to the LLVM
project or the needs of PostgreSQL shift away from what LLVM can offer.

Interpretation alongside JIT

One approach in existing solutions is to utilize the created IR alongside a VM that
can directly run the IR or a language similar to the IR. This approach generally
allows for a more straightforward JIT implementation since the two execution modes
utilize the same IR. HyPer, Umbra, and LegoBase use this approach. LLVM has a
VM built-in that can run LLVM IR, but as HyPer showed, using that VM is very
slow and not very efficient for use in a DBMS. HyPer also explained that LLVM IR
is not very good at being interpreted by a VM, so for a DBMS, it is much better to
use a custom-made IR that can be transpiled to or from LLVM IR. Umbra took this
approach further by not transpiling from LLVM IR like HyPer but instead creating
custom IR from the get-go that is then transpiled into LLVM IR for compilation.
Creating custom IR from the get-go removes the time needed to transpile LLVM
IR into the custom IR, resulting in less time before query execution starts. The
results from running interpretation alongside JIT speak for themselves; being able
to start executing the query quickly by interpreting and then using JIT to get better
performance when applicable means the system gets the best of both worlds.

MySQL already has an interpretation-style execution mode through its volcano-
based execution mode. However, unlike HyPer and Umbra (and possibly Legobase),
MySQL does not use an assembly-like IR, meaning that compilable IR must be
generated from existing data structures instead of a predefined language. If MySQL
were to solve the problem of having state intertwined with these data structures,
MySQL could implement a similar system to HyPer and Umbra.

For optimal performance, however, MySQL should also multithread query ex-
ecution, allowing for using a thread for JIT compilation. Creating a system for
multithreading for MySQL would also be significantly helped by separating state
from the IR data structures.

In summary, while a system implemented in HyPer and Umbra would give the
best performance and should be considered a long-term goal for MySQL, it is not
feasible for this thesis. We also do not consider such a system integral to answering
the research question.

Why LLVM

To implement JIT into a database, IR is needed, and a compiler for this IR is
needed. Most existing solutions we have looked at use already-made tools for this.
Impala and PostgreSQL use LLVM exclusively. Hekaton reuses the SQL server
T-SQL compiler stack and the Microsoft Visual C/C++ compiler. The adaptive
execution framework for HyPer and Umbra both use a combination of LLVM for
their highest execution speed but longest compilation time and custom-written spe-
cialized solutions for quicker compilation but slower execution time. The choice for

32



HyPer and Umbra to use LLVM for their highest performance modes shows perhaps
the biggest reason for not choosing to implement a custom IR and compiler from
scratch. LLVM has shown itself to be good at optimizations and creating code that
executes fast.

Moreover, being an open-source project with sponsors like Apple and Google
[27], the project is likely to continue to grow and thrive. Thus, using LLVM can
provide excellent performance, which requires significant effort to reproduce and
maintain. The downside of LLVM is that it changes rapidly, and there are often
breaking changes between versions, which adds the need for a bunch of maintenance
and keeping track of how different versions of LLVM has to be used to achieve the
same result. The downside of breaking versions is especially relevant for a JIT
implementation in MySQL since MySQL provides eight years of support for a given
released version. We want to show how JIT affects performance in MySQL and
where it makes sense for MySQL to use it. So for this thesis, it makes more sense to
use a toolchain that we know can provide excellent performance, making our results
independent of our ability to create a performant IR and compiler system. Another
upside to using LLVM for answering our research question is that it is already in
use in production JIT systems in databases and has been for many years, meaning
it is battle-tested.

Should MySQL ultimately decide to implement JIT, they would also need to
determine if the license LLVM uses, the Apache 2 license, is compatible with their
product. They would also have to figure out how to bundle LLVM with MySQL.
PostgreSQL solves the bundling issue by not requiring LLVM. PostgreSQL has also
wrapped its JIT implementation in an independent wrapper so that LLVM could
be swapped out for another toolchain should the need arise.

Templating IR

From the existing implementation we looked at, we found that some use templating
of IR to simplify IR generation. LLVM templating would involve using C or C++
as the higher-level language and Clang to output LLVM IR files as templates.
Templating, practically, means writing functions in a higher-level language and
then compiling this to IR at compile time.

In our initial testing, JIT with templates performed worse than the API ap-
proach, even though the templates included the same IR as the API approach
created to our knowledge. We never discovered why the performance difference ex-
isted as we prioritized our time elsewhere since we did not consider templating an
essential aspect of answering the research question. Ultimately, we did not do any
templating and generated all our IR through the LLVM C++ API. However, we
used the C functions and the resulting LLVM IR template files to inspire our LLVM
API usage. By running the template files through all the possible optimizations in
LLVM, we had a very optimized IR to base our generation on, resulting in our
generator creating a very optimized IR at runtime.
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Benchmarking on TPCH

There are several database benchmarks out there that test various aspects of databases.
From looking at the existing solutions we presented, (all/most) of them use the
TPCH benchmark. TPCH allows for creating datasets of a set scale equivalent to
the gigabytes needed to store the dataset. This benchmark is ubiquitous in the
industry as it provides a real-world benchmark for a typical company selling prod-
ucts. For our testing, TPCH includes a variety of queries that can show various
aspects of how applying JIT can affect query performance.

From all these state-of-the-art implementations, we can derive a list of goals
that our implementation should strive to achieve:

• Our implementation should decrease the number of instructions run in query
execution

• Our implementation should only apply optimizations that make sense for the
code we generate and thus not waste time on non-linear optimizations that
do not make a huge difference to the performance

• Our implementation should be able to apply different optimizations based on
metrics or configuration so that huge queries have an unreasonable compile
time

• Our implementation should be able to compile parts of an expression and
not only the entire expression. Compiling only parts of a query will help
implementation since it would allow for a partial JIT implementation, and it
could allow for only applying JIT to the parts of the expressions where it can
make a difference.

• Our implementation should strive to be independent of LLVM or at least be
built in a way where swapping out LLVM is straightforward and would not
need a major refactor of the entire codebase.

3.2 The implementation flow of JIT

The main objective of our implementation is to transform the WHERE clause of a
query into highly efficient machine code. The machine code should resolve to fewer
instructions than the existing system and be available for execution inside the same
process. Since the WHERE clause in MySQL gets transformed into one or several
Item trees, our implementation consists of generating LLVM IR for each Item tree
and letting LLVM handle the rest. In our implementation, we convert each Item

tree into an LLVM IR module, and use ExecutionSession in LLVM to transform the
module into native machine code and link it to the same process. However, the
entire execution of filters in MySQL revolves around dealing with Items, and uses
the Item::val_int() function call to decide if a row satisfies the WHERE expression in
the query. Therefore, our implementation is entirely restricted to the existing logic
of Items, where the just-in-time compiled code is run for each table row to evaluate.

MySQL is a database that supports many data types, such as integers, strings,
dates, and complex geometry types, like points and polygons. Many of these types
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introduce a certain amount of complexity regarding their behavior in expressions.
For instance, strings support different character sets and collations that must be
handled correctly according to their standards. Therefore we think most of the data
types and features inside MySQL are considered out of scope. Supporting all these
data types, operators, functions, and different features supported by MySQL would
not necessarily be of any substantial value for this research, in addition to being
too time-consuming. We want to show how just-in-time compiling expressions can
give any performance impact on MySQL by removing overhead from Items.

We have restricted our implementation to a few basic data types and operators,
focusing on simplicity and those commonly used in many realistic queries. For that
reason, our implementation will support the following types: INT, CHAR, and VARCHAR.
Regarding the operators, we have chosen to support the basic logical operators of
AND, OR, NOT, in addition to supporting the basic comparison operators of >=?, <=?,
BETWEEN, !=, = and LIKE. We think this restriction indicates if a given JIT expression
implementation in MySQL would benefit performance on realistic business-focused
queries.

3.2.1 The life of a jitted expression

Our implementation introduces a set of extensions to the life of a query described
in Section 2.3.2. As described, the MySQL parser transforms the WHERE clause of an
input query into one or several Item trees stored inside a Query_block. From there,
the prepare phase might make additional transformations on Items for optimization
purposes, such as constant folding, which reduces the computational work for the
given expressions. These Item trees are later referenced in AccessPaths, representing
the different possible query plans for the query. The optimizer uses these referenced
Items in calculating the cost of the plan and, in the end, chooses a final AccessPath
that is suboptimal, or potentially optimal, for performance. Subsequently, the
chosen AccessPath is converted into the form of Iterators, which is the data structure
used during execution.

Here, the referenced Items from the WHERE clause are placed in instances of
FilterIterators, which uses the Item::val_int() call on the root Item of the tree
to determine if the current row satisfies the expression. This means that the Item

trees referenced in FilterIterators preferably need to be compiled at some point
before the val_int() call. Since modifications are made in Items during optimiza-
tion and are later used in the search for a decent query plan. We believe that the
best place to apply our logic for just-in-time compiling the Items is after the final
AccessPath is chosen and during the creation of the Iterators. No further references
to the Items are being used at this point in the query execution, making it the ideal
location. The optimizer then completes all optimizations, and the Item trees will
not be further changed, thus avoiding possible recompilations.
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Figure 3.1: The important events for Items during the execution of a query

3.2.2 The building blocks

To implement this flow using the LLVM compiler framework, we have chosen to in-
troduce some new entities into the play field: JITExecutionEngine, JITBuilderContext
and Item_compiled.

The JITExecutionEngine is the entity that stands for the compiling of the Items,
in addition, to handling the linking and storing the compiled functions in a symbol
table. It is a wrapper around the set of LLVM entities and, most notably, contains a
JIT session object, ExeuctionSession, that does eager in-memory compilation. The
job of this entity is to receive LLVM IR modules, JIT compile the IR in memory,
and make the final compiled function available for future lookups.

Next, the JITBuilderContext is a data object containing the required data for
generating LLVM IR for a given Item. An instance of this entity is passed to every
Item in an Item tree when compiled and is used during code generation.

Lastly, the most important entity of our implementation is the Item_compiled

entity. Item_compiled is itself another derivation of Item and is a part of the Item

family. It represents a JIT-compiled Item expression and can replace other Item

references in the existing execution engine, such as the reference in a FilterIterator.
This entity is a wrapper over an existing Item and contains a final function pointer
representing the JIT-compiled code. For each Item expression that will be compiled,
there will be created an Item_compiled instance for that tree, which will also replace
all future references of that tree. This way, our implementation fits within the
bounds of the existing logic for executing expressions in MySQL.

An instance of Item_compiled interacts closely with the other mentioned enti-
ties, JITExecutionContext and JITBuilderContext. Item_compiled creates and owns an
instance of JITBuilderContext, and independently generates the LLVM IR for the
wrapped Item and passes the product to an instance of the JITExecutionContext.
With these three entities, we have a simple and intuitive API for building our JIT
within the borders of MySQL.
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3.2.3 Putting it all together

At this point, we have to some extent, described the where, when, and how of our
implementation. Putting it all together, the main flow for just-in-time compiling
expressions in MySQL goes as follows:

1. The parser will parse the incoming query and create a single Item tree for the
expression in the WHERE clause.

2. The produced Query_block by the parser will be passed to the optimizer and
start the resolving step - initializing table and column references in the Item

tree and other internal variables.

3. The optimizer will further run a set of optimization passes on the Items to see if
the expression can be simplified and turned into something less computational
heavy. Constant folding and dead code elimination is typical optimizations
here.

4. Further, the optimizer will use these Items in the search for a final AccessPath
structure. Here, the Item tree expression can be split into multiple Item trees
based on several filtering steps in the final query plan.

5. After choosing the final AccessPath, the optimizer will convert the AccessPath

into a tree of Iterators. When creating a FilterIterator, we check if “JIT
has been initialized” for the given query session. If not, we will allocate and
initialize a JITExecutionContext for the given query session, stored globally in
the thread-local storage, which means that each query session gets allocated
its JITExecutionContext lazily for compiling all expressions in the query. We
also do other initialization steps required by the LLVM compiler framework.
The framework needs to know which environment and machine architecture
to create code for and how it should link the JIT-compiled code correctly.
Choosing the right environment and architecture is achieved by simply using
a set of provided initialization functions from the core LLVM library.

6. Following the initialization step, the Item tree referenced in the AccessPath

will be checked if it is compilable and supported by our implementation. If
that is the case, we create a new instance of Item_compiled, wrapping the Item,
and proceed with the process of generating code and JIT compiling the Item

expression into a single function pointer. The compilation is done in collabo-
ration with the newly allocated JITExecutionContext. The new Item_compiled

will be stored inside the newly created FilterIterator instead of the original
Item, and iterator is now ready for execution.

7. However, there is a chance that the whole Item tree is not compilable and
supported by our implementation, but a subtree is. To support the compiling
of these subtrees, we have developed a system that allows rolling updates,
where we incrementally compile one subtree at a time. When the root Item

indicates it is not compilable, we traverse the entire tree to check if any
subtrees are compilable. If there are any such cases, we create a new instance
of Item_compiled for each subtree and replace the child reference in the parent
Item. This way, we can support partial JIT compiling of expressions and
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do not necessarily need to support the full expression. The need for partial
compilation arises, for example, when a part of the WHERE clause consists of
an internal SQL function, such as EXISTS(...) and LEN(...), which we do not
support.

Figure 3.2: Example of compiling only a subset of the entire expression tree.

8. The next step is execution, where every call to FilterIterator::Read() will
execute the Item::val_int() call on our Item_compiled instance, which calls
upon the internal function pointer representing the JIT compiled code. During
a full table scan, this Read() call is done for every row in the table.

9. After execution, the used memory allocated by the JITExecutionContext and
Item_compiled is freed during the existing clean-up procedure for the query ses-
sion. The Item_compiled instance is allocated using the built-in arena allocator
for the query session and will be freed with the rest of the session.

The hypergraph optimizer

This flow describes how our implementation works in terms of entities and exist-
ing system concepts in MySQL. However, it is worth mentioning that the MySQL
query engine supports multiple flows for executing a query. It supports multiple
optimizer switches for toggling different optimizer behaviors defined by the opti-
mizer, and one of them is the hypergraph optimizer. Currently, MySQL unofficially
supports hypergraph-based query optimization [11], which is the concept of utiliz-
ing hypergraphs during the search for an optimal query plan, where each table in
the query is represented as a node in the graph. The outcome of this feature is po-
tentially a more efficient technique for finding a good query plan, often producing a
better plan than the flow without it. Due to its better capabilities, we have decided
to utilize this flow for our JIT implementation and measurement of all performance
benchmarks. In addition, it is also planned to be the main MySQL optimizer in the
future [40], which makes it a natural choice.

However, it is worth mentioning that at the time of writing, the hypergraph
optimizer is still an experimental feature in MySQL (v8.0.28) and has not been
officially launched. Nevertheless, from our experience, the hypergraph optimizer
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has mainly produced better query plans than the original flow and is stable for this
research.

3.3 Code generation (types, restrictions)

This section will describe how we compile MySQL Item trees down to LLVM IR.
As mentioned in previous Section 3.2, this logic for code generation happens inside
the Item_compiled entity, as it already contains a reference to the original Item.

The code generation job involves transforming an Item tree into a function in
LLVM IR, containing generated code equivalent to the logic in the tree. A call
to this function should return exactly the same output as a call to Item::val_int

() in the original Item. Since the output of Item::val_int() is long long, a 64 bit
signed integral type, our generated LLVM IR function needs to output a 64-bit
integer as well. However, in MySQL, the default integer data type, INT, is 32 bits
wide, meaning stored integer types might have different sizes from what we want
to output. Since MySQL also officially supports 64-bit integers, such as BIGINT and
others, we have chosen to restrict our implementation only to utilize this length.
It makes our implementation simpler and should not have any significant impact
on performance. This choice means all stored data types less than 64-bit must be
type-coerced into 64-bit. Since we have restricted ourselves only to support INT and
STRING like data types, this is a straightforward implementation.

(a) Item for adding two numbers

define i64 @my_add () {

%1 = add i64 33, 36

ret i64 %1

}

(b) The generated LLVM IR

Figure 3.3: A simple illustration of an Item tree and its generated LLVM IR

Another critical aspect of the implementation is how we support the different
data types and operators mentioned in Section 3.2. Before we decide if we should
compile an Item tree or not, we need to determine if the Item can be compiled based
on the restricted data types and operators we have chosen. Determining this is done
by having every Item have their implementation of a can_compile() method, which
determines if the Item and the entire tree below it can be JIT-compiled or not.
For instance, Item_and’s implementation of this method checks if all its children can
compile by calling upon the children’s can_compile() method and conjuncts them
through a logical AND and ending up traversing the entire tree. If it turns out that the
entire tree can be compiled, we proceed by creating a new instance of Item_compiled
for that given Item.

However, if the entire tree is not compilable, we benefit from our rolling update
system. We traverse the tree and check if any subtrees are compilable, using the
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same call to can_compile(). If any subtrees are compilable, we replace that subtree
with a new instance of Item_compiled and immediately initiate code generation and
compilation. The output is an Item tree consisting only of Item_compiled or some
leaf nodes being of type Item_compiled. A call to the root’s Item::val_int() method
will, in a successful implementation, output the same result as before, using JIT-
compiled code.

3.3.1 Generating LLVM IR

Our implementation revolve around having every Item in the tree generate their own
LLVM IR, based on the type of the Item. For instance, Item_int generates LLVM IR
for representing a 64 bit integer value, but Item_and generates LLVM IR for doing
a logical AND operation on two or more child expressions. To generate LLVM IR for
the entire tree, our implementation works similar to having each Item implement
their own virtual codegen() method, where Items containing children also calls their
corresponding codegen() method.

However, our implementation does not utilize this kind of virtual method over-
loading on Items due to technical difficulties. Instead we ended up utilizing a re-
cursive codegen_item(Item *item, ...) function that detects the type of the input
Item in runtime to determine which IR to generate. Here, we utilize dynamic_cast

in C++ to determine the type, which is less good for performance than virtual
method overloading. However, we have not experienced any worthy performance
change with such an approach and have decided that the outcome is negligible.

On the other hand, our entire implementation to generate LLVM IR consists of
passing around an instance of JITBuilderContext into the recursive function, contain-
ing an LLVMmodule, an in-memory representation of LLVM IR. Thismodule will be
mutated by using one of LLVM’s built-in libraries, the IRBuilder, which provides a
simple API to generate different logical operations in LLVM IR. Everything needed
to generate the code for a given Item is contained within the JITBuilderContext.
With this, we can describe the flow for generating LLVM IR for an Item in the
following way:

1. The optimizer wants to convert an AccessPath contaning an Item into a
FilterIterator.

2. We first check if the given Item is compilable by calling can_compile(). If
the Item is compilable, we create a new instance of Item_compiled and makes
it the referenced Item in the FilterIterator. If the item is not compilable,
we traverse the tree and check if any subtree is compilable and replaces the
subtree with a new Item_compiled if any exists.

3. Next, for every created instance of Item_compiled, we call upon Item_compiled

::codegen_item() method. This call initiates code generation for that given
Item and starts by creating a new LLVM IR function definition, returning an
i64. Since we might have multiple instances of Item_compiled, these functions
must have a unique name, as the function name is used in the symbol table
when linked into the running process and, for that reason, has to be unique.
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Therefore, every instance of Item_compiled gets its own randomly generated
name of 12 characters, which is used in the generated function definition.

4. Further, we want to generate the body of the function. This is done by call-
ing upon our recursive function, codegen_item(Item *item, JITBuilderContext

*context), which passes the reference Item and the JITBuilderContext as argu-
ments. Every Item generates its own LLVM IR and also invokes codegen_item

(...) for its own children. This generates the IR for the entire body, and is
finalized by the Item_compiled instance. At this step, all generation of LLVM
IR is completed and stored in-memory in the LLVM module inside of the
JITBuilderContext instance.

Generating IR for comparison operators

The generation of LLVM IR for the different comparison operators is quite simi-
lar and only differentiates between the operation for comparison. The operators
involved here are >=?, <=?, =, <>, LIKE, and BETWEEN. The code generation consists
of generating the IR for two or more child Items, putting the resulting values into
their own registers, and performing a specific operation on those registers. Most of
these operators are binary operators and are, therefore, quite simple. If we restrict
ourselves to integer types, our implementation can be described with the following
pseudocode:

...

auto first_child_value = jit:: codegen_item(first_child ,

context);

auto second_child_value = jit:: codegen_item(second_child ,

context);

auto cmp = context ->builder ->my_cmp_func(first_child_value ,

second_child_value);

...

(a) Pseudocode for generating the LLVM IR

define i64 @my_func () {

...

%first_child = i64 33

%second_child = i64 36

%3 = icmp my_cmp_func i64 %first_child , %second_child

...

}

(b) Possible generated pseudo LLVM IR

Figure 3.4: Illustrating code generating for comparison operators.

In figure 3.4 we generate LLVM IR for an arbitrary comparison Item containing
two instances Item_int. In simple terms, we assign the value of each Item_int child
into its own registers, and then uses the icmp <cond> syntax to define a comparison
instruction on these two values. The illustrated LLVM IR above is not 100% correct
semantically, but illustrates the point that the value of each child Item will get
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allocated to its own register. This works for all the supported comparison operators
involving integers, excepted for BETWEEN. The BETWEEN condition in MySQL checks if
an operand is within the inclusive range of two other operands. This means that
multiple binary instructions are necessary for proper evaluation, and we ended up
conducting the following IR for this condition, combining >=, <= and AND:

define i64 @my_func () {

...

%1 = icmp sge i64 %operand1 , %operand2

%2 = icmp sle i64 %operand1 , %operand3

%3 = and i1 %1 , %2

...

}

Figure 3.5: LLVM IR for the BETWEEN condition

Generating IR for logical operators

For the logical operators, such as AND, OR, and NOT, the approach for generating
LLVM IR is not as straightforward compared to the comparison operators. A quick
look at the logic of Item_cond_and, the Item representing the AND operation, there
are at least one or more Item expressions that needs to be evaluated and conducted
by the AND operation. The logic becomes increasingly complex when we start to
introduce two or more expressions to evaluate. The reason for this is short circuit
evaluation. We want to avoid unnecessary computation when the final value of the
expression can be determined early. For instance, a long chain of AND operations
can be stopped at the first argument evaluating to false, as computing the rest of
the chain is at that point redundant.

In other words, this logic introduces branching, as the code needs to determine
if it can skip the rest of the circuit after evaluating a subexpression. This concept
of minimal evaluation is mostly relevant for the AND and OR operators and is quite
an important step in reducing the number of instructions needed to execute. When
looking at the val_int() method for Item_cond_and the following pseudocode comes
to light:

longlong Item_cond_and :: val_int () {

for(Item *item : argument_list) {

if(!item ->val_bool ()) {

return 0;

}

}

return 1;

}

Listing∼3.1: Pseudocode of the short circuit evaluation implementation in
Item_cond_and.

This introduces the concept of control flow and branching into our generated
LLVM IR code. Control flow and branching in LLVM IR is done similarly to
branching in an assembly language, utilizing jumps between basic blocks. In our
implementation, we want to mirror the pseudocode in the listing 3.4 with LLVM
IR. With only two Item expressions, both an AND or OR operation can be constructed
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with three basic blocks, one for calculating the first argument, one for evaluating
the second argument, and a final block for conducting the final evaluation.

Figure 3.6: Control flow graph of Item_cond_and with two child expressions.

Figure 3.6 shows a control-flow graph (CFG) of a possible LLVM IR representa-
tion of the AND operator on two subexpressions, using three basic blocks. The first
two blocks evaluate the value of the subexpressions, and the last block needs to
figure out the final value based on the predecessor of the current block. Figuring
out the final value is done using the LLVM phi instruction, which represents the ϕ
statement in single static assignment (SSA) form, and is what LLVM IR is based
on. This instruction makes it possible to choose a value based on the path to the
current block. Regarding native machine instructions, the phi instruction ensures
the predecessor blocks assign their values into the same register. The alternative
would be to do an extra stack allocation and load the evaluated values onto the same
location on the stack. This way, we keep most of our variables in registers and only
do memory allocation onto the stack if no registers are available. This control-flow
is what we use in our implementation for the AND and OR operations. However, for
more than two arguments, the amount of basic blocks grows, correlated with the
number of operands within the operation. For three arguments to evaluate, such as
EXPR1 AND EXPR2 AND EXPR2, we would need four basic blocks, one for each argument
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and one for doing the phi instruction. In other words, the number of basic blocks
n is equal to n = m + 1 for m >= 2 where m is the number of operands. With a
growing number of branches, the higher the chance for branch misprediction is the
highest cost here but is also negligible compared to evaluating all the expressions
regardless of their outcome. The code below in figure 3.2 shows the LLVM IR we
generate for an Item_cond_and with three arguments:

define i64 @zZyZPaGzk5EN () {

entry:

%1 = <first expression >

br i64 %1 , label %end_or , label %else

else: ; preds = %entry

%2 = <second expression >

br i64 %2 , label %end_or , label %else2

else2: ; preds = %else

%3 = <third expression >

br label %end_or

end_or: ; preds = %else2 , %else ,

%entry

%itmp = phi i64 [ 1, %entry ], [ 1, %else ], [ %3, %else2 ]

ret i64 %itmp

}

Listing∼3.2: The LLVM IR for Item_cond_and with three arguments

Generating IR for Item_field

In MySQL, WHERE clause expressions containing references to columns in tables are in
an Item tree represented by the Item_field class. The role of this class is to know the
memory location of a specific column in a specific row and offer val_TYPE methods to
extract the value of that location. Internally, this is done by maintaining a reference
to the current row and a column offset. When the row changes during execution,
the reference pointer automatically updates by pointing to the new row. In other
words, Item_field maintains a pointer that always points to the data we want to
extract.

Using this pointer in our implementation, we do not have to duplicate the logic
of maintaining the correct reference ourselves. Therefore, when generating the
LLVM IR for extracting a value from a given column, we load the number of bytes
representing the size of the type we are working with from the internal pointer
in Item_field. However, some types are stored in a particular way and do not
necessarily represent a primitive data structure, such as integers, floats, and chars.
For example, a TEXT string has a pointer to the string, in addition to its length,
stored in the row. Dealing with such data types would increase the complexity of
the generated code, as it would need different logic to read the different types.

However, since we are mainly restricting ourselves to a few data types in our
implementation, we have only extracted data from the column pointer for integers.
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Character-based data types also involve some complexity added to loading from
storage and will be explained in more detail in Section 3.3.1.

With this said, for generating the LLVM IR for loading an integer value from
a column, we use a pointer to a pointer that points to the current row, p1, and
loads the value of this pointer from memory to obtain the pointer that points at
the current row, p2. Then, by adding the column offset to p2, we know the exact
location of the value we want to extract and then do an additional load operation to
get the wanted value. This way, when the pointer of the current row, p2, is updated,
our LLVM IR does not need to change and remains the same, as p1 points to the
updated pointer of p2. In other words, our generated IR consists of the following
steps:

1. Do a load operation on p1 to get the pointer to the current row p2. p1 is found
within Item_field.

2. Extract the column offset from Item_field and add it to p2. We now have a
pointer pointing to the value we want to extract, which we can call p3.

3. Lastly, we do another load operation on p3 in the form of a 32-bit integer,
since MySQL INT is 32-bit, and store the value in a register. Since we have
restricted our implementation to only work with 64-bit integers, we need to
cast the loaded value to 64-bit.

define i64 @EItfcnVTOebi () {

...

%p2 = load i64*, i64 <<P1 >>, align 8

%p3 = add i64* %p2 , i64 <<offset >>

%column_value = load i32 , i64* %p3 , align 4

%final_value = zext i32 %column_value to i64

...

}

Listing∼3.3: LLVM IR for extract an 32 bit integer from a column in a row

Generating IR for strings

String data types are a typical type that is heavily used in most business-oriented
database schemas and is considered essential in any database system. If MySQL
decides to officially support the JIT compilation of expressions, an important aspect
would be to figure out an excellent way to support these string data types. For this
reason, we find it essential to support it in our implementation when compiling
expressions.

MySQL has many vital features around these types that need to be supported,
which carry much complexity on its shoulders. The most relevant features are its
support for character sets and collations, which define how the different characters
should be encoded, in addition to defining a set of rules for how the characters
should be compared and sorted in relation to each other.

When comparing string types, for instance, with the = and >= operators, a stan-
dard byte-to-byte comparison is not the correct approach for doing this evaluation.
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For instance, the default character set in MySQL is utf8mb, which represents the
UTF-8 variable-width character encoding and stores a character within one to four
bytes. MySQL already has support for a wide range of character sets and collations,
which in code is a significant complexity that needs to be well maintained. Suppose
we mirror this logic when generating LLVM IR. In that case, it will produce a large
set of duplicated logic that needs to be maintained in parallel with the existing
logic, decreasing the code quality of the codebase.

For this reason, we believe it makes sense to use the existing code in MySQL to
handle the comparison situations concerning strings, as we think it would be best for
MySQL in terms of maintainability and consistency. Such an approach integrates
existing C++ code into the generated LLVM IR through function pointers, calling
on functions in MySQL that deal with string comparisons. However, this approach
comes with a set of disadvantages:

1. Calling existing code would introduce the extra overhead of a function call,
which is what we want to eliminate in the first place.

2. The functions we call might include extra, unnecessary checks for types and
collation rules which we already know during runtime. Generating the LLVM
IR from scratch eliminates this extra work.

3. Running optimization passes on LLVM IR with an external function call will
not be able to do the same level of optimization as if the code was integrated
into the IR, meaning we might lose some additional optimization and perfor-
mance possibilities.

In other words, this approach is not necessarily the optimal choice for perfor-
mance. However, there is a trade-off between performance and maintainability in
this case, where some minor performance gains come with a hefty cost for main-
tainability. We believe that the performance gains are not significant enough to
outweigh the damages it causes to the codebase, as it would be more difficult and
time-consuming to change and improve a larger and more complex MySQL. With
this said, we believe that the best choice for MySQL would be to integrate less
straightforward evaluation logic into the generated LLVM IR in the form of func-
tion pointers to existing C++ code and instead make a slight compromise in value
for better maintainability.

We want to support comparing strings with the operators of =, >=?, <=?, and
LIKE, as they are commonly used on string data types. To generate the LLVM IR
for this approach, we need to modify the logic for generating IR on the comparison
operators. When we generate code for a comparison Item, such as Item_func_eq, our
implementation solves this by checking if the type of each child is of type STRING_ITEM

, meaning it represents a string data type. If this is the case, we generate LLVM IR
for doing a function call on an internal compare function inside of the comparison
Item. This function call would trigger the normal flow for comparing the two Items

within the existing system and return the result as a 32-bit integer that we further
cast to 64-bit. This function call can be described with the following pseudocode:
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...

// Handle strings

if(first_child ->type() == STRING_ITEM || second_child ->type

() == STRING_ITEM) {

...

auto value = context ->builder ->CreateCall(<FUNC_TYPE >,

<FUNC_PTR >, [<ARGUMENTS >]);

return context ->builder ->CreateCast(<i64 >, value);

...

}

// Normal procedure

auto first_child_value = jit:: codegen_item(first_child ,

context);

auto second_child_value = jit:: codegen_item(second_child ,

context);

auto cmp = context ->builder ->my_cmp_func(first_child_value ,

second_child_value);

...

(a) Pseudocode for generating the LLVM IR for comparison operators, including sup-
port for string data types.

define i64 @naXPLPr3A7S0 () {

entry:

...

%0 = call addrspace (64) i64 <FUNCTION_ADDRESS >(i64 <

ARGUMENTS >)

...

}

(b) Generated IR for doing a function call to existing C++ functions.

Figure 3.7: Illustrating code generating for comparing string data types.

3.4 Compiling (where, how?)

This section will elaborate on the compiling part of our implementation. At this
point, LLVM IR is generated, and everything is stored within the Item_compiled

instance, where the IR is stored as amodule in the JITBuilderContext. Compiling the
IR to native machine code starts immediately after the code generation process and
involves the thread-global JITExecutionContext instance. The JITExecutionContext

deals with compiling, optimizing, linking, and executing our generated LLVM IR.
It is built upon the LLVM ORCv2 JIT API [37], a modular API for building JIT
compilers, and consists of the following LLVM entities:

1. ExecutionSession - The context for executing the just-in-time compiled
code. It owns the memory associated with the compiler IR and is where the
final function pointer to our compiled code points to.

2. JITDylib - An asynchronous symbol table used in synchronization with the
ExecutionSession.
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3. RTDyldObjectLinkingLayer - A linking layer that is responsible for link-
ing produced program objects by a compiler into our JIT ExecutionSession.

4. ConcurrentIRCompiler - A thread-safe LLVM IR compiler that compiles
IR to native machine code object, and adds the final program representations
to the JITDylib, using the RTDyldObjectLinkingLayer.

Using these top-level building blocks provided by the LLVM libraries, we can
conduct JIT compilation of our generated IR without any complications. Provid-
ing our IR module to the ConcurrentIRCompiler allows the entities to handle the
entire process of compiling and linking. The final output is made available by
JITDylib’s symbol table, where the code itself is located within the memory of the
ExecutionSession.

We can execute the final code by doing a lookup in the symbol table, which pro-
vides an address representing the function pointer to our generated code and doing
a normal function call on that address. Our implementation of this process is very
standard, contains no custom modifications, and is very similar to the set up in the
official guidelines provided by the LLVM maintainers [32]. Our JITExecutionContext

is just an abstraction over these LLVM entities, and is used by the Item_compiled

instance to extract the function pointer address and use it during calls to the Item

::val_int() method. Our abstraction makes the JIT implementation fairly simple,
which is why we believe LLVM is a good choice for MySQL.

With this said, every compiled Item tree will, in the end, be represented in-
memory simultaneously until the query execution has finished and the JITExecutionContext
is freed. To avoid having to free up added memory by the compiled code in the
ExecutionSession for every query, we have a JITExecutionContext for every query ses-
sion freed once the query completes. This choice was made due to simplicity. We
have not considered this choice’s impact on memory and performance compared to
maintaining a global JITExeuctionContext dealing with multiple query session simul-
taneously.

3.4.1 Optimizations

Another essential step in compiling our code is optimization. The generated code
constructed by the code generation step is not necessarily the most optimal way
to do what it is set to do. For instance, some instructions are perhaps redundant,
like some other part of the code makes those instructions unnecessary. Some other
instructions may only contain constant values, which can be pre-executed once
and reduced into a single constant. In other words, reducing the generated LLVM
IR program to fewer and faster instructions might be possible, producing a more
efficient program.

For this reason, we apply optimizations on our LLVM IR right before the com-
piling step, utilizing the optimization libraries within LLVM. However, these opti-
mizations are time-consuming and add extra overhead to the compilation step. For
large IR programs, this optimization step might consume more time than executing
the query without JIT compiling anything at all. Therefore, there will be cases
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where we do not want to apply optimizations to the IR, and, as a consequence, we
have chosen to make applying optimizations an optional step.

The optimization step consists of mutating the IR inside an LLVM module us-
ing the built-in LLVM optimization libraries for IR. These optimizations are im-
plemented through passes that traverse the IR, collect information, and perform
transformations on the program when possible [29]. These libraries also provide
flexibility in which passes should be performed, giving us full control over the op-
timization step. Choosing optimizations means it is possible to do different levels
of optimizations based on the predicted execution time of the query. The fewer
optimization passes we apply to our IR, the less the overhead of the total compile
time becomes.

We want to run optimizations as long as the total query time improves, which
might not always be the case when running a large number of optimizations. There-
fore, it makes sense to introduce different levels of optimizations, for instance semi-
optimization, running some optimizations, and full-optimization, running all rel-
evant optimization passes. However, we figured that introducing these levels of
optimization is out of the scope of this research due to time restrictions, and we
have chosen to restrict ourselves to two modes of IR, unoptimized and optimized,
where the latter applies all relevant optimization passes. With this said, we ended
up choosing these four main optimization passes:

• Instruction Combining Pass - Pass for combining redundant instructions
to a fewer set of instructions, in additional to doing algebraic simplifications.
A typical example for such a combination could be:

// Before:

%P = add i32 %Q , 2

%M = add i32 %P , 4

// After combining:

%M = add i32 %Q , 6

• Reassociate Pass - A pass for doing reassociation on commutative expres-
sions, which facilitate doing constant propagation. A simple example could
be the following algebraic expression: (33 + x) + 36 → x + (33 + 36), where
(33 + 36) can now be constant folded into 69.

• Global Value Numbering - A pass for removing entirely and partially
redundant instructions.

• CFG Simplification and Aggressive Dead Code Elimination - Per-
forms dead code elimination and simplifies the CFG by merging basic blocks
where possible.

In our implementation, these optimization passes are run inside of the Item_compiled
instance before we start the compilation process in the JITExecutionContext, and are
implemented using the FunctionPassManager entity provided by the LLVM libraries
for doing optimization passes on functions. Since the generated IR we produce only
consists of a single function, we found using only the FunctionPassManager relevant
for our use case.
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To give an example of how these optimizations affect our query-based LLVM IR,
consider the following WHERE clause: COLUMN1 = 17000 OR COLUMN1 = 18000. This query
will generate some load instructions to load the row value of COLUMN1 and generate
some branching logic for dealing with the short circuit evaluation regarding the OR

operation:

define i64 @qJqmX0NZI9mR () {

entry:

%column1_row_ptr = load i64*, i64 140265580035984 , align 8

%column1_column_ptr = add i64* %column1_row_ptr , i64 16

%column1_value = load i32 , i64* %column1_column_ptr , align

4

%0 = zext i32 %column1_value to i64

%2 = icmp eq i64 %0 , 17000

%3 = zext i1 %2 to i64

br i64 %3, label %end_or , label %else

else: ; preds =

%entry

%column1_row_ptr1 = load i64*, i64 140265580035984 , align 8

%column1_column_ptr1 = add i64* %column1_row_ptr1 , i64 16

%column1_value1 = load i32 , i64* %column1_column_ptr1 ,

align 4

%4 = zext i32 %column1_value1 to i64

%5 = icmp eq i64 %4 , 18000

%6 = zext i1 %5 to i64

br label %end_or

end_or: ; preds =

%else , %entry

%itmp = phi i64 [ 1, %entry ], [ %6, %else ]

ret i64 %itmp

}

Listing∼3.4: The generated IR for COLUMN1=17000 OR COLUMN1=18000

The IR illustrated above (3.4) represents the code generated IR for the ex-
pression COLUMN1=17000 AND COLUMN2=18000. Here, each subexpression, COLUMN1=<INT>,
gets its basic block, where they both include logic for loading the value of COLUMN1.
Meaning we unnecessarily do the same set of instructions for loading COLUMN1 twice,
which is due to having every Item generate their IR independently of each other.
Illustrating that the IR that gets generated might be far from optimal. However,
by applying the set of optimization passes mentioned above, we get the following
result:

define i64 @mm9Lweda00o8 () {

entry:

%column1_row_ptr = load i64*, i64 140265580035984 , align 16

%column1_column_ptr = add i64* %column1_row_ptr , i64 16

%column1_value = load i32 , i64* %column1_column_ptr , align

4

%cmp = icmp eq i32 %column1_value , 17000

%0 = zext i1 %cmp to i64

%cmp2 = icmp eq i32 %column_value , 18000

%narrow = select i64 %0 , i1 true , i1 %cmp2

%itmp = zext i1 %narrow to i64

ret i64 %itmp
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}

Listing∼3.5: The optimized IR for COLUMN1=17000 OR COLUMN1=18000

The code listing 3.5 shows an optimized version of the IR in the code listing
3.4. Here, we see a far more optimal evaluation of the example clause, where the
number of instructions has been reduced from 16 to 9, in addition to having the
branches removed. The optimization passes detected the unnecessity of loading
the same variable twice from memory but also decided to remove the branching
logic for short circuit evaluation. It was decided that the extra branching was more
costly than simply evaluating the second expression, which is now optimized down
to one single icmp eq instruction. Doing this kind of optimization also makes sense
for these small queries, as branch mispredictions are much more costly than using
a few CPU cycles to evaluate one instruction.

However, this is not the case for slightly larger expressions, such as COLUMN1

=17000 OR COLUMN1=18000 OR COLUMN1=19000. From what we have seen, the optimiza-
tion passes do not remove any branches for these larger queries and decide that
evaluating the later subexpressions are more costly than the cost of branching.
Still, it detected duplicated loads of COLUMN1 and reduced a significant number of
redundant instructions by performing a single load. Since these example queries
contain subexpressions that are evaluated on the same column, these optimizations
are, therefore, very rewarding. However, for more extensive and complex expres-
sions containing different columns, the same kind of optimization is not achievable
at the same level. Performing optimizations might not give any noticeable differ-
ence, depending on the query expression.

Altogether, from what we have experienced, the most rewarding optimization
passes have been on small expressions and on expressions that contain multiple
references to the same column. These pieces of information can be further used to
evaluate if optimizations are worth doing before the Item trees are compiled.

51



Chapter 4

Evaluation MySQL JIT
implementation

In this chapter, we will perform a thorough evaluation of our JIT implementation
in MySQL and use it to attempt to resolve several aspects of our research questions.
The focal point of our research is the impact JIT compiling expressions can have on
performance in the MySQL ecosystem, which we believe our implementation can
give an excellent indication of. This chapter aims to give a good understanding of
the performance of our JIT implementation and further give an in-depth evaluation
of the JIT system per the research questions. To be able to answer the main research
question, RQ1, we also need to have a good understanding of RQ2, RQ3 and RQ4,
which can be described as follows:

• RQ2: What is the expected performance impact of jitting expres-
sions in MySQL? This question focuses on the scale our implementation can
provide in terms of performance and to what extent it can reduce the over-
head within MySQL for evaluating expressions. Is such an implementation
beneficial for realistic business-oriented queries, and for what data types and
expression sizes is it promising performance-wise to compile expressions? Al-
together, the question emphasizes the actual speedup of the implementation
in different scenarios regarding different queries and workloads.

• RQ3: When is it considered beneficial to JIT compile an expres-
sion? As stated in several other existing JIT systems, such as Postgres[50],
Impala [49], and Hyper [23], JIT is not always beneficial due to the extra
time-overhead introduced by compiling. Systems like Hyper [23] makes up
their mind about compiling the query during execution, utilizing the extra
information gathered while executing. However, since MySQL currently al-
locates only a single thread for each query session, doing such evaluation in
the background is not realizable. Therefore, making this decision ahead of
execution is what we believe is the most feasible approach for MySQL, which
is the same approach as Postgres [50] and Impala [49] in this regard. The
different factors relevant to making this decision can, for instance, be the size
of the workload and the size and the complexity of the expression. With this
said, it is essential to figure out how MySQL can use these factors to decide
when it is beneficial to compile. Furthermore, determining in what circum-
stances it is beneficial to perform additional optimizations before compiling
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is also an essential aspect of this problem, as optimizations add delay to the
total execution time. The focal point is to figure out how MySQL can use
the available factors in the query to make the choice that provides the best
performance benefit for the given query, either by jitting or not.

• RQ4 Is the choice of utilizing LLVM for JIT a promising approach
for MySQL? Does our approach for compiling expressions with LLVM seems
like a good approach for MySQL? Is it able to provide the essence of perfor-
mance and maintainability, in addition to supporting the different require-
ments that MySQL sets for dependencies?

To answer the above questions, we will describe a set of conducted experiments
on our MySQL JIT implementation. These experiments consist of a collection of
benchmark tests measuring performance metrics on MySQL with and without the
JIT implementation. The results of these benchmarks will be used to answer the
three questions above, which will further imply an answer to the main research
question. The experiments will resolve the questions in the following way:

• Performance: The performance question will be answered through a set
of benchmarks on different expressions, mostly different expression sizes and
involved data types, which will be compared to the same MySQL bench-
mark without utilizing the new JIT implementation. Here we will see the
performance changes introduced by JIT on these different kinds of expres-
sions and indicate how well applying optimizations affects the result. Similar
benchmarks will be run on realistic business queries provided by the TPC-H
benchmark to get an idea of how the JIT implementation will affect real use
cases.

• When to JIT: This question will be attempted to be answered through a set
of benchmarks revolving around different dataset sizes, workloads, expression
sizes, and expression complexity. These results will give an idea of which
factors affect the performance of JIT and when it is beneficial to JIT compile
expressions. Additionally, different queries will be tested to see how jitting
expressions affect different kinds of queries, such as join-heavy queries and
queries involving subqueries. These tests will also be conducted with/without
optimizations to determine when running optimization might be applicable.

• LLVM: To answer the question about whether LLVM is a good choice for
MySQL, we will do an empirical evaluation based on our implementation and
reflect on what we believe is an approach for MySQL based on the results
of the experiments. Regarding this, we will discuss what we see as valuable
aspects for MySQL and whether utilizing LLVM is a scalable approach to
support all the existing and possible future features regarding expressions in
the MySQL ecosystem.

In its first section, this chapter will describe the experiments in more detail and
thoroughly explain the setup and why certain choices were made. The description
consists of the tools used, the hardware setup, the dataset, and the different test
suites. Furthermore, the second section will describe the first experiment, which we
will name the expression experiment. This section will provide the most important
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results of the experiment and discuss how these results apply to the performance
questions above. The following section will outline the results of the third exper-
iment, which we have named the TPC-H experiment. Here, we will discuss the
performance impacts of running our JIT implementation on the TPC-H bench-
mark, which represents the effect of jitting expressions on business-oriented ad hoc
queries. Lastly, we will summarize our findings and condense our observations from
the experiments with the research questions in mind.

4.1 Experimental setup

The two experiments we conducted focus on the performance of the expression eval-
uation part of the execution. The time spent evaluating rows is considered the key
metric in this research. Therefore we have chosen to carry out a set of different
test suites testing the evaluation process in different ways, utilizing our JIT imple-
mentation. In this section, we will first explain the setup of software and hardware
specifications. Next, we will explain the expression experiment and describe in detail
how the experiment was carried out and measured. Furthermore, we will explain
the TPC-H experiment, where we have done a similar TPC-H benchmark to what
recent work has been done on Postgres [30], and Hyper [23] when measuring the
performance of their JIT systems. The goal is to understand better the different
details of the experiments and how they were conducted.

4.1.1 Hardware & software

During this thesis, we performed all of our experiments with MySQL Server ver-
sion 8.0.28, the latest MySQL version when we started. This version was chosen
because of the belief that it would provide the best performance, especially with
the most up-to-date version of the hypergraph optimizer. This version of MySQL
was used to implement our JIT system for expressions, where some modifications
were applied to the existing code, and a new JIT library was added. Our JIT im-
plementation uses LLVM version 13.0.1, the latest version of the project when the
thesis began. Therefore, the entire MySQL project was locally compiled with most
default configuration flags, except for the flag to enable the hypergraph optimizer.

All experiments described in this thesis are run on a Linux computer (Ubuntu,
v21.04). This computer consists of a 4-core Intel Core i7-7700 CPU (3.6 GHz)
processor and 32 GB of system memory. With this memory capacity, we can keep
most of the test data in memory as most of the data never exceed 30 GB. However,
the data MySQL keeps in memory is controlled by the size of the buffer pool, which
is configurable and set to 128M by default. To ensure that most of our experiments
are CPU bound and not highly affected by disk reads, we have chosen to set this
buffer pool size to 10GB, as most of our datasets are 10GB or less. Moreover,
one of our datasets is 30GB making the experiments using this dataset more disk-
bound, as the entire dataset does not fit within the buffer pool. As a result, we
tested both CPU-bound and disk-bound environments, depending on the size of
the dataset, which produced results that indicate the performance impact of JIT in
both scenarios.
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4.1.2 Introduction to the expression experiment

The purpose of the experiment benchmark is to measure the performance impact
our JIT implementation has on evaluating expressions. For instance, we want to be
able to determine how much instruction overhead JIT compiling a single equality
expression is capable of reducing and how this question applies to more complex
expressions and overall performance. Therefore, this experiment runs a collection of
simple table scan queries containing different kinds of expressions in size and data
types. Since our JIT implementation only supports INTEGER and STRING based data
types, we chose to introduce three types of expressions: integer-only, string-only
and a mix of both integers and strings. With this, we can compare the performance
outcome between generated code that includes function calls to existing C++ code
and code isolated from the rest of the MySQL codebase. These expressions are
generated based on a table with 16 columns evenly divided between integer-based
columns and string-based columns. Since we want to test the performance of the jit-
ted code, we want to ensure that we run the entire expression and avoid instances of
short-circuit evaluation. Therefore, every expression is generated to always evaluate
to false and only consists of the = operator, comparing the equality of a row-column
and a constant value. The complexity of the expressions is also fairly low and only
consists of a certain sized OR chain, where the size can be found within the collection
of {1, 10, 25, 50, 100, 250, 500, 1000}. By running this experiment, we expected to
achieve a greater understanding of the following concepts:

• An indication about if compiled expressions prove to be faster than the exist-
ing evaluation logic using Item trees.

• How large and complex does an expression need to be for JIT compiling to
be beneficial for performance?

• How much time does it take to compile an expression, given its size and
complexity?

• How much time does it take to optimize the LLVM IR generated for an Item

tree, given its size and complexity?

• How many instructions are we removing by compiling the expression? Is the
reduction at the level of something noteworthy?

• The impact of applying optimizations has on performance at expression and
query level.

Measurements and setup

In this experiment, we chose to extract the following measurements:

• Total query execution time: the time it takes to execute an entire query,
from the client’s perspective.

• Total time used on ::val_int calls: the sum of all time measurements
to evaluate the expressions. To clarify, evaluating the expression for JIT
compiled expressions is done by calling upon Item_compiled’s val_int method,
which is the same behavior as for non-compiled Item trees.
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• Total codegen time: The time it takes to generate the LLVM IR for a given
Item tree.

• Total compiled time: The time it takes to compile the generated LLVM
IR.

• Total optimization time: The time it takes to optimize the generated
LLVM IR.

• Total instructions used on ::val_int() execution: The number of hard-
ware instructions executed on the CPU during the execution of the ::val_int()
methods.

To carry out these measurements, a MySQL Server with the JIT implementa-
tion and a MySQL client were run locally on the same machine. The total query
execution time was extracted from the client side, timing millisecond precision. For
the other measures, these require timing logic within the existing MySQL system.
Fortunately, MySQL already provides a profiling tool to show in which parts of the
execution MySQL spends time, called EXPLAIN ANALYZE. This tool supplies measure-
ments for time and number of processed rows for varying parts of the execution
plan, which is handed to the client after execution. We decided that extending
this profiling tool to measure the metrics of our JIT implementation was a feasible
approach for extracting the desired performance measurements. However, it is im-
portant to note that EXPLAIN ANALYZE includes extra logic to time different Iterators

of the query plan, making the total execution time slower, and is therefore not a
good approach for measuring the total execution time of the query. On that note,
a large portion of this benchmark consisted of running EXPLAIN ANALYZE queries, and
extracting the result from the query output. For example, to get measurements re-
garding ::val_int() calls, we added timing logic within the FilterIterator::Read()

method, between the call to ::val_int():

int FilterIterator ::Read() {

...

start = now();

bool matched = item_condition ->val_int ();

end = now();

...

}

(a) Pseudocode to illustrate how ::val_int() calls are timed

-> Filter: Item_compiled [...]( codegen=X compile=Y opt=Z)(<EXPR >)

... (time_spent_on_val_int_calls=W instruction_count=P) ...

-> Table scan on <TABLE > ...

(b) Simplified output of EXPLAIN ANALYZE, containing time spent on ::val_int() calls, W.

Figure 4.1: Showing how ::val_int() calls are measured and outputted by the
EXPLAIN ANALYZE profiling tool.

As shown in Figure 4.1, the time spent evaluating the expression is outputted by
the EXPLAIN ANALYZE profiling tool, together with the other measurements relevant to
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the compilation process. For timing the total execution time, this internal timing
logic was disabled to ensure all overhead introduced by timing was nonexistent.

All queries benchmarked in this experiment were run multiple times in different
execution mode configurations: nJIT, JIT, and JITOPT. nJIT represents the non-JIT
execution mode, which executes queries without JIT compilation of any expressions.
JIT compiles all expressions in the query unless our implementation does not support
the expression. JITOPT behaves similarly to JIT but also applies optimizations on the
LLVM IR before compiling. These execution modes are set by applying a predefined
group of runtime variables, which toggles different features regarding JIT. With this
approach, we are easily able to collect comparable measurements that can be used
to analyze the different aspects of our JIT system.

4.1.3 Introduction to the TPC-H experiment

This experiment consisted of running the TPC-H benchmark on our MySQL JIT
implementation. The TPC-H benchmark is a popular decision support benchmark,
which specifies a dataset and a suite of business-oriented ad hoc queries for or-
ganizational decision-making activities [45]. According to the specification, the
benchmark is chosen to be of industry-wide relevance, illustrating decision support
with a set of high-degree complex queries that answer critical business questions.
We chose this benchmark because it provides a collection of realistic and diverse
expressions, which would be a great help in understanding the possible performance
benefits of our JIT system in real-world scenarios. The specification provides a set
of 22 queries and is scalable to different scale factors. However, in this experiment,
we have restricted ourselves to 17 queries, as some of these queries introduced some
technical difficulties.

This benchmark was conducted by generating the TPC-H dataset in different
scale factors to see how our JIT system impacts performance on different workloads.
The benchmark indicates whether increasing workload makes expression compila-
tion more beneficial, measuring how large workload is as a factor. However, since
we restricted our JIT system to a few select data types, the data model specified in
the benchmark was modified to only utilize data types based on INT and STRING. We
had to convert dates and decimal types into integers to achieve this. Converting
the data types also means that the 22 queries specified in the TPC-H benchmark
were modified by transforming the dates and decimals to their integer equivalents.
Furthermore, these queries also consist of other features that our JIT system does
not support, such as functions as EXISTS and SUBSTRING. For the four queries, this
involves, the system will automatically find that their Item equivalent is not sup-
ported and will not compile them. For the final mutation that we performed, the
TPC-H queries also introduce some IN expressions, which we have transformed into
a chain of OR operators. This change was done because we wanted to support most
expressions as much as possible.

We expected to gain the following information about our JIT system by con-
ducting this experiment:

• The impact of JIT compiling expression has on performance for realistic
business-oriented queries. It is intended to provide an idea of what perfor-
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mance expectations can be made for a typical jitted business-oriented query in
our system. This benchmark will also provide information about how speeding
up expression evaluation will impact the total query execution time.

• The benchmark will also provide information on the performance impact of
JIT scales with different workloads. Since we are testing with different scale
factors within the interval of 0.1GB to 30GB, we might be able to get an indica-
tion of the workloads at which the compilation time is large enough to make
the compilation of expressions disadvantageous.

• The impact of running optimizations on realistic business-oriented queries.
Since the expressions specified in the TPC-H benchmark come with some
complexity, it is interesting to see to what extent the optimizations can reduce
the number of instructions to execute.

Measurement & setup

When running this benchmark, we decided to extract the same measurements as
stated in the list in Section 4.1.2 regarding the the expression experiment. These
measurements consist of the time used on ::val_int() calls, the compilation time,
the codegen time, the optimization time, and the total query time. All these mea-
surements are also extracted in the same way, using EXPLAIN ANALYZE when applicable
and evaluating the total query time on the client-side. Every query in the bench-
mark is also run in the same set of execution modes mentioned in Section 4.1.2,
benchmarking MySQL without JIT, with JIT, and with JIT, including optimiza-
tions.
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4.2 Evaluating the expression experiment

The following section will present and discuss the different results of expression
experiment. First, we will focus on the performance of the expression evaluation,
where we present the results of each expression type and discuss our observations.
Afterward, we will examine our compilation time observations, considering factors
like complexity, expression size, and how applying optimizations is affected by these
factors. Lastly, we will show the results of the instruction count measurements and
consider whether applying JIT affects the existing instruction overhead of Items in
MySQL in a positive manner.

4.2.1 The performance of expression evaluation

In this experiment, the resulting data show promising results in terms of perfor-
mance. This experiment consists of various test suites, such as different expression
sizes, execution modes, and involving data types. We will start by introducing the
result of INT based expressions due to their simple form and complete isolation from
existing MySQL code. Afterward, we will provide the results of the rest of the
expression types, involving the STRING expressions and a mixture of both. In this
experiment, we ran on a table with approximately 18 million rows, equivalent to
3GB in size.

The results of the INT based expressions

By conducting the experiment on expressions that consisted only of INT based data
types, we got the following results:

Figure 4.2: The time used on evaluation expressions on INT based exp ressions by
size.
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Expression Experiment - results in ms - Data type int
nJIT JIT JITOPT

Size total val int total val int codegen compile total val int codegen compile opt
1 4194 452 4042 300 0.01 1.35 4045 296 0.01 1.33 0.24
10 7836 2998 5099 332 0.04 2.21 5098 321 0.04 2.01 0.46
25 13746 7508 6506 429 0.08 3.34 6554 409 0.08 2.92 0.73
50 19963 13541 6633 557 0.14 5.31 6547 485 0.14 4.32 1.21
100 30375 22805 7138 678 0.27 9.28 7060 586 0.27 7.02 2.17
250 49039 40832 7475 834 0.63 21.3 7336 702 0.63 15.03 4.94
500 83680 75244 7756 1105 1.41 43.17 7531 910 1.41 29.46 9.76
1000 139239 130878 8375 1656 3.69 94.4 8022 1328 3.67 61.93 19.12

Table 4.1: The results of all modes on INT based expressions.

Average ::val_int() time per row (ms)

Expr size nJIT JIT JITOPT JIT Speedup JITOPT Speedup

1 0.0000251 0.0000166 0.0000164 50.88% 52.81%

10 0.0001666 0.0000184 0.0000178 802.12% 831.71%

25 0.0004172 0.0000238 0.0000227 1647.71% 1733.70%

50 0.0007524 0.0000309 0.0000269 2328.78% 2688.17%

100 0.0012671 0.0000376 0.0000325 3261.29% 3787.41%

250 0.0022689 0.0000463 0.0000390 4790.31% 5711.44%

500 0.0041810 0.0000614 0.0000506 6703.94% 8161.23%

1000 0.0072724 0.0000920 0.0000738 7802.00% 9749.56%

Table 4.2: Time used on expression evaluation per row for INT based expressions.

The results in both Figure 4.2 and Table 4.1 show a great performance benefit
from JIT compiling expressions. Figure 4.2 shows the time used on ::val_int() calls
for all different expression sizes with a logarithmic y-axis, which measures the time
of expression evaluation alone. This shows that evaluating expressions with existing
MySQL Item logic is much slower than applying JIT. For a single COLUMN = <INT>

expression, JIT seems to apply a 50% speed-up when evaluating the expression
on all 18 million rows. For the largest expression of 1000 COLUMN = <INT> OR ...

subexpressions, the speed-up of JIT seems to be around 7800%. This indicates
that JIT can remove much overhead related to Items for these simple INT based
expressions. We also observe that the performance benefit of JIT increases with
the number of expressions to evaluate, evidently due to the accumulating overhead
of the Item expressions. Looking at Table 4.2, this growth in speed-up provided by
applying JIT seems to be growing in a logarithmic fashion for this simple INT based
expression.

The results show that the expression evaluation process takes a more significant
portion of the total query execution workload as the expression size grows. For
example, an expression of size 1 without JIT consumes around 10% of the total
execution time. When the expression size reaches the size of 25, the expression
evaluation absorbs approximately 50% of the total execution time and reaches 90%
with a size of 1000. This indicates that the expression size greatly impacts the
total query time, which makes speeding up the expression evaluation process more
critical to reduce the overall query execution. Therefore, by applying JIT compiling
on these expressions, the total query execution time has been drastically reduced.
For an expression of size 1000, JIT improves the performance of the query by around
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17x. However, most realistic queries do not contain expressions of these sizes and
empirically exist between 1 and 10 subexpressions. For these smaller sizes, our test
results show an improvement in performance in the total query time between 4%
and 53%, where expression evaluation has been accelerated between 50% and 800%,
according to Figure 4.2. Since queries usually consist of joins and aggregations,
expression evaluation typically takes a smaller portion of the execution time. These
numbers are a much more realistic outcome of JIT compiling expressions.

Another interesting topic to present is the JITOPT execution mode, which applies
optimizations to the LLVM IR before compiling. Figure 4.2 shows that this execu-
tion mode provides a non-existent performance benefit for the smallest expression
of size 1 but becomes more and more beneficial as the expression size grows. For
example, Table 4.2 shows a speed-up almost identical to the JIT execution mode,
with a speed-up around 50%. However, for larger expression sizes, such as 10 and
greater, applying optimizations seems to speed up expression evaluation to a greater
extent, ranging from 4% to 25% additional improvement to the JIT execution mode.
This is not surprising, as larger expressions add more room for optimizations. As
mentioned in Section 3.4.1, the most common optimizations to use on the generated
LLVM IR is the removal of duplicated memory loads to the same column, remov-
ing unnecessary casts to i64, and removal of branching. During this test suite, we
observed that most of the optimizations made were removing duplicated loads to
the same column in memory, which we find to be the best optimization of the al-
ternatives. This is also considered sensible, as the table in this experiment consists
of only 7 INT-based columns, making the generated expressions consist of the same
column more than once. We consider this the best optimization because memory
accesses are slow. By removing many of these unnecessary memory accesses, more
of the data can be found within the CPU registers, making execution generally more
efficient. Furthermore, Table 4.3 shows that we were able to reduce the size of the
generated code from 10% to 38% for the four smallest expressions, showing that the
application of optimization can greatly benefit the performance of the expression
evaluation process.

# of LLVM IR lines by execution mode
Expression size JIT JITOPT reduction (%)

1 10 9 10%
10 95 68 28%
25 230 152 34%
50 455 278 38%

Table 4.3: Caption

Despite these excellent results, it is worth mentioning that the performance
boost of applying optimizations was achieved mainly due to the generated expres-
sions consisting of multiple instances of the same column. For example, for all
columns in the expression of size 25, the same column appears within 2− 6 times,
which is an unlikely scenario for most realistic human-written queries. However,
this might not be so uncommon for large machine-generated queries from business
intelligence tools, as these queries can become extremely large and far from optimal
(e.g., 1MB SQL of text, according to the authors of Hyper [23]). Therefore, this
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implies that running optimizations can provide a significant performance benefit for
queries using the same columns multiple times but might not be that applicable for
queries that contain few duplicated columns.

The results of the STRING based expressions

For the expressions consisting of a chain of STRING based comparisons, the JIT-
compiled versions utilize function calls to the existing MySQL C++ codebase, which
strongly differs from the INT based expressions of this experiment. With this said,
we got the following results from the STRING based benchmark:

Figure 4.3: The time used on ::val_int() calls for STRING based expressions
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Figure 4.4: The speedup of applying JIT for STRING based expressions

Expression Experiment - results in ms - Data type str
nJIT JIT JITOPT

Size total val int total val int codegen compile total val int codegen compile opt
1 5214 1056 5252 1067 0.01 1.31 5196 1061 0.01 1.26 0.19
10 16953 11172 15880 10144 0.03 2.3 15921 10151 0.02 2.27 0.28
25 31862 25111 28891 22111 0.04 3.57 28786 22059 0.04 3.69 0.38
50 51487 44566 46999 40156 0.07 5.68 46998 40166 0.07 5.62 0.6
100 90066 82932 84483 77321 0.13 9.86 84050 76903 0.13 9.82 1
250 238808 230462 211377 203148 0.3 22.63 210968 202845 0.31 22.37 2.19
500 472141 463549 426049 417398 0.77 44.34 425327 416697 0.76 44.32 4.32
1000 938135 929233 844213 835233 2.88 101 845274 836285 2.5 93.37 10.19

Table 4.4: The results of all modes on STRING based expressions.

Average ::val_int() time per row (ms)

Expr size nJIT JIT JITOPT JIT Speedup JITOPT Speedup

1 0.0000586 0.0000593 0.0000589 -1.04 % -0.46%

10 0.0006207 0.0005637 0.0005640 10.12% 10.06%

25 0.0013953 0.001228 0.0012257 13.57% 13.84%

50 0.0024763 0.0022313 0.0022319 10.98% 10.95%

100 0.0046082 0.0042964 0.0042732 7.26% 7.84%

250 0.0128058 0.0112881 0.0112712 13.44% 13.61%

500 0.0257575 0.0231931 0.0231542 11.06% 11.24%

1000 0.0516338 0.0464106 0.0464690 11.25% 11.11%

Table 4.5: Time used on expression evaluation per row for STRING based expres-
sions.

The results shown in Figure 4.3, Figure 4.4, Table 4.4 and Table 4.5 show that
the performance impact of JIT differs greatly from the INT benchmark. For example,
from Figure 4.3 we can observe that there is barely any difference between nJIT as the
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execution mode and JIT as the execution mode, especially compared to the INT-based
expression benchmark. For a single STRING-based comparison expression, the time
difference with or without JIT is considered negligible. However, for an expression of
size 10, we get better results with a speed-up of around 10%. From there, an increase
in the expression size does not affect the performance of expression evaluation in
any way, keeping the speed increase at approximately 10%. These results are not
surprising, as the code generation for the STRING based expressions mainly consists
of function calls to existing C++ to deal with the string comparison. The LLVM IR
consists of many function calls, similar to the behavior of the existing Item evaluation
process. One of the main purposes of JIT compiling an expression is to reduce the
number of virtual function calls, as a function call introduces additional instruction
overhead and stack accesses. By making the generated LLVM IR call upon the
existing C++ code, the extra overhead of function calls remains, making the point
of compiling these types of expressions useless, as we execute the same instructions
as the Item-tree equivalent. However, from this conclusion, one might further wonder
why we still get a speed-up of approximately 10% for expressions with sizes larger
than 10. This speed-up means that we can still reduce some overhead by compiling
the expression. One possible example of this reduction is that we do not call upon
the val_int() function of the string comparison Item, but instead directly call the
internal comparison function, avoiding one extra function call. Furthermore, the
::val_int() call consists of additional logic to deal with NULL values and other edge
cases, which we considered out of the scope of this thesis. This might explain why
there is a speed-up with JIT as the execution mode, although the instructions to
evaluate the expressions are nearly identical.

# of LLVM IR lines by execution mode
Expression size JIT JITOPT reduction (%)

1 5 5 0%
10 45 45 0%
25 105 105 0%
50 205 205 0%

Table 4.6: The number lines of the generated LLVM IR for the different modes
for STRING-based expressions

When it comes to the effects of applying optimizations to these STRING-based
expressions, the results show insignificant performance improvements. The per-
formance of the expression evaluation process with the JITOPT execution mode is
considered equal to the performance of the JIT execution mode. The JIT system
could not significantly optimize the generated IR to any extent. Table 4.6 shows
the number of lines of the final LLVM IR by the different execution modes, and,
unlike the INT based results of Table 4.3, there is no change between the execution
modes JIT and JITOPT. When manually comparing the generated LLVM IR for these
two modes, the IR is completely identical as they only consist of function calls to
existing C++ code. Meaning that for the data types of strings, there is nothing
to optimize, and applying optimization is considered unnecessary. This further im-
plies that, for all data types that our JIT system can support by calling existing
C++ code, the application of optimizations would not be beneficial, in addition
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to not producing any significant performance improvements by JIT compiling the
expression.

The results of the MIX based expressions

The MIX-based test suite is the benchmark of expressions with both data types,
integers, and strings. The following results were obtained with these expressions:

Figure 4.5: The time used on ::val_int() calls for MIX-based expressions

Expression Experiment - results in ms - Data type mix
nJIT JIT JITOPT

Size total val int total val int codegen compile total val int codegen compile opt
1 4206 458 4073 300 0.01 1.36 4045 298 0.01 1.32 0.24
10 11985 5552 9657 3272 0.04 2.36 9670 3269 0.04 2.28 0.45
25 18854 11780 11508 4591 0.08 3.57 11484 4578 0.08 3.37 0.75
50 31862 21866 16831 7845 0.13 5.64 16819 7816 0.14 5.26 1.23
100 51958 41662 23641 14358 0.25 9.91 23514 14234 0.25 9.1 2.22
250 78082 66797 27965 17680 0.57 21.88 27888 17563 0.56 19.17 5.19
500 116287 104655 33756 23365 1.35 43.26 33427 22973 1.34 38.04 10.44
1000 181427 169821 44010 33415 3.58 89.44 43659 33076 3.57 78.08 20.33

Table 4.7: The results of all modes on MIX based expressions.
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Average ::val_int() time per row (ms)

Expr size nJIT JIT JITOPT JIT Speedup JITOPT Speedup

1 0.0000254 0.0000166 0.0000165 52.48% 53.51%

10 0.0003085 0.0001818 0.0001816 69.69% 69.83%

25 0.000654 0.0002551 0.0002544 156.58% 157.31%

50 0.0012150 0.0004359 0.0004343 178.71% 179.75%

100 0.0023150 0.0007978 0.0007909 190.17% 192.69%

250 0.0037116 0.0009824 0.0009759 277.80% 280.31%

500 0.0058153 0.0012983 0.0012765 347.90% 355.55%

1000 0.009436 0.0018567 0.0018379 408.22% 413.42%

Table 4.8: Time used in evaluating expressions per row for MIX based expressions.

Unsurprisingly, the results for this test suite reflect a combination of the previ-
ous test suites of INT and STRING. Figure 4.5 shows an improvement in performance
for expression evaluation, much better than the STRING test suite, but significantly
worse than the INT test suite. This is obviously due to the fact that these kinds
of expressions are affected by the drastic reduction in instruction overhead by the
INT-based expressions but, in contrast, do not get any notable benefits from the
STRING-based expressions. However, in most realistic query expressions, there is
often a combination of multiple data types, such as integers and strings, making
the expressions from this test suite represent more common use cases to a greater
extent. This means that the results from this test suite are a more accurate rep-
resentation of what one can expect regarding performance by JIT compiling such
simple expressions. From Tables 4.7 and 4.8, we observe an increase in speed from
approximately 50% to 400%, where most of the speed comes presumably from the
generated code for the INT-based expressions. This implies that the combination of
external C++ function calls and generated IR logic works well together and that
JIT compiling expressions consisting of such different data types is still worth doing
in regards to performance, despite containing other data types and expressions that
provide no significant benefit by being compiled.

# of LLVM IR lines by execution mode
Expression size JIT JITOPT reduction (%)

10 80 69 14%
25 210 161 23%
50 410 316 23%

Table 4.9: The number lines of the generated LLVM IR for the different modes
for MIX-based expressions

When applying optimizations, the optimized IR behaves unsurprisingly similar
to the previous two test suites. Looking at the optimized IR, the same optimiza-
tions as mentioned in the INT test suite are performed, where unnecessary memory
accesses for reused columns are removed, and some unneeded casts are removed
64-bit integers. For the STRING-based subexpressions in this test suite, there are no
optimizations to be applied, similar to the STRING test suite. In other words, the
only optimizations performed are related to the logic of the INT-based subexpres-
sions. Looking at Table 4.9, the optimizations performed have been able to reduce
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the IR generated from 14% to 23% for these medium-sized expressions. However,
looking at Table 4.7, the JITOPT execution mode has not been able to provide any
notable performance improvement compared to the JIT execution mode and the
performance benefit of optimizations can be considered negligible. Therefore, from
these results, it is possible to argue that applying optimizations is not necessarily
worth doing in this scenario, where around 50% of the subexpressions generate un-
optimizable code. For that reason, this shows that when deciding whether to apply
optimizations, it is important to consider the data types used in the expressions
and whether they are optimizable. The results of this test suite show that having
expressions with 50% unoptimizable subexpressions does not provide any signifi-
cant improvement for small and medium-sized expressions and barely provides any
improvement for larger unrealistic-sized expressions. Altogether, this implies that
the size of the expressions and the ability to optimize the different data types play
a big role in whether applying optimizations is considered beneficial and should be
used in the evaluation process of whether to run the JITOPT execution mode under
these circumstances.

4.2.2 Compilation times

Regarding compilation times, the experiment measured the different aspects of
transforming an Item tree into executable machine code. The different aspects
consist of code generation, optimization, and compilation. The following results on
compilation times were achieved during the different test suites of the experiment:
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JIT compilation times (ms)
X =(total compile time)/(nJIT val_int - JIT val_int) rows
Expr size codegen opt compile X

int
1 0.0124 0 1.3482 N/A
10 0.0425 0 2.2118 N/A
25 0.0798 0 3.3375 8687
50 0.1389 0 5.3093 7551
100 0.2743 0 9.2797 7770
250 0.6316 0 21.2998 9867
500 1.4139 0 43.1746 10823
1000 3.6921 0 94.4005 13661

str
1 0.0094 0 1.3072 N/A
10 0.0264 0 2.3042 N/A
25 0.04 0 3.5678 21641
50 0.0695 0 5.6844 23478
100 0.1261 0 9.8625 32035
250 0.3008 0 22.6304 15109
500 0.7655 0 44.3444 17590
1000 2.8771 0 101.9389 20067

mix
1 0.0125 0 1.3585 N/A
10 0.0382 0 2.3575 N/A
25 0.0794 0 3.5732 9143
50 0.1328 0 5.6428 7413
100 0.2479 0 9.9065 6692
250 0.5712 0 21.8823 8227
500 1.3476 0 43.2593 9875
1000 3.5788 0 89.4411 12272

Table 4.10: Compilation times of the different test suites in the expression experi-
ment for the JIT execution mode
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JITOPT compilation times (ms)
X =(total compile time)/(nJIT val_int - JIT val_int) rows
Expr size codegen opt compile X

int
1 0.0125 0.2393 1.327 N/A
10 0.0422 0.4602 2.0086 N/A
25 0.0795 0.7281 2.9214 9452
50 0.1403 1.207 4.3154 7805
100 0.2665 2.169 7.0185 7657
250 0.6279 4.9422 15.0253 9236
500 1.4082 9.7557 29.4608 9835
1000 3.6653 19.1165 61.9303 11767

str
1 0.0092 0.1907 1.2626 N/A
10 0.0246 0.282 2.2713 N/A
25 0.0395 0.3842 3.6872 24241
50 0.0694 0.6035 5.6185 25733
100 0.127 1.0043 9.825 32704
250 0.3095 2.1944 22.3717 16210
500 0.7606 4.3166 44.3155 18972
1000 2.4957 10.1851 93.3706 20533

mix
1 0.0127 0.2388 1.3172 N/A
10 0.038 0.4504 2.2806 N/A
25 0.079 0.7496 3.37 10491
50 0.1366 1.2278 5.2633 8489
100 0.2474 2.2171 9.0959 7585
250 0.5619 5.1926 19.169 9110
500 1.3408 10.441 38.0382 10976
1000 3.5703 20.3337 78.0809 13421

Table 4.11: Compilation times of the different test suites in the expression experi-
ment for the JITOPT execution mode

69



Code generation and compile time

Taking into account the results of Table 4.10, it shows significantly low compilation
times, where most of these results are below a 10 millisecond mark. The time used
on code generation is something to consider first, where we observe consistent per-
formance across the different sizes and involving data types. Generating the LLVM
IR typically takes less than 1 milliseconds, except for the two largest expressions
with sizes of 500 and 1000. For both execution modes, JIT and JITOPT, the time
of code generation seems to scale roughly linearly with the size of the expression.
However, with an edge case for the expression size of 1 and 1000, and by adding
code generation times for some larger sizes, we can see from Figure 4.6 that it
scales superlinear, with small margins for the smallest expressions. Implying that
the code generation process does not significantly impact the total execution time
of a query until we reach unrealistic expression sizes, which are most likely only to
be generated by business intelligence tools.

Figure 4.6: Time used on code generation based on expression size (LOG)

Figure 4.13 shows the geometric mean of the expression evaluation speed-up of
all queries in the experiment. This figure makes it easy to observe a consistent
speed-up among all the scale factors conducted. We can speed up the expression
evaluation process by 60% for all query workload sizes. Suggesting that the size of
the workload does not affect the potential speed-up, which is not unsurprising, as the
time it takes to evaluate a single row is considered nearly constant. The expression
evaluation time scales linearly with the number of rows in the table, which complies
with the results of a previous project, where we prototyped a simplified replica of
the MySQL Item tree, and JIT compiled the tree with LLVM [20]. This prototype
showed that the expression evaluation time scaled linearly in proportion to the
workload scale when evaluating TPC-H query 6 [20]. However, more importantly,
this work also showed that the size of the workload affected the performance of the
total execution time when applying JIT in Postgres. Compilation time introduces
an extra delay to the total execution time, and it might be faster to execute the
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query without compilation if the workload is small enough.

Figure 4.7: Time used on code compilation based on expression size (LOG)

Compilation time vs. workload

An essential aspect of manifesting is whether compiling a query’s expressions is
performance-wise beneficial for a given workload. How many rows must be pro-
cessed before a compiled version exceeds the performance of a non-compiled version?
In this experiment’s context, queries are made up of a single, simple expression of
a specific size. An estimation of how many rows are to be processed can be made
by solving for X in this equation:

JIT val int time per row∗X+total compilation time = nJIT val int time per row
(4.1)

This equation describes the number of rows X for the two different execution
modes nJIT and JIT when their time used on expression evaluation becomes equal.
Solving for X would give a rough idea of how many rows must be processed for the
JIT execution mode to give any improvement. Tables 4.10 and 4.11 provide these
values for X for each size, in the context of the very simple expressions from this
experiment. Some of these values are marked as N/A due to the lack of accurate
time measurement per row for low-sized expressions, as the time precision is not
considered reliable enough. On the other hand, considering INT based expressions
only, the results show values of X for the larger expressions that span an interval of
8−13 thousands of rows. It is possible to observe that the larger the expression, the
larger the workload needs to be for the JIT execution mode to become beneficial,
which we believe is due to the superlinear increase in compilation time. On the other
hand, for STRING based expressions, the values ofX are unstable since compiling such
expressions do not give any significant performance boost, as previously mentioned.
Furthermore, for the expression consisting of both data types, we see similar growth
as the INT based expressions, growing superlinearly in proportion to the size of the
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expression. These results imply that the larger the expression, the more time needs
to be used to compile, which requires a larger workload for JIT compiling to be
considered beneficial.

The effects of optimizations

An interesting observation is how applying optimizations has affected compilation
times. Applying optimizations has provided extra time by optimizing the IR, shown
as opt in Tables 4.10 and 4.11. As mentioned in Section 4.2.1, there are not many
optimizations that can be made in the generated IR unless the expression contains
frequent references to the same column. The lack of optimizations that can be
applied is reflected in the results, where the optimization times are less than a 1
millisecond for the smaller expressions and grow from 2 milliseconds to 20 millisec-
onds for the larger expressions. These times are not significantly impactful and are
a fraction of the compilation time. With these low compilation times, the thresh-
old for applying optimization is considered low and might be applicable in most
scenarios.

Figure 4.8: Time used on code compilation based on expression size (LOG) for
JIT and JITOPT execution modes (LOG)

On the other hand, the optimization time becomes more impactful for the largest
expressions, reaching up to 20 milliseconds. However, an important observation is
how applying optimizations has affected the compilation time. The total compi-
lation time without optimizations for the INT based expression with a size of 1000
is approximately 98 milliseconds. However, optimizations have reduced the total
compilation times to 84 milliseconds! This 15% reduction is due to how optimiza-
tions can reduce the LLVM IR to the extent that the compilation time has been
significantly reduced. As a consequence of this phenomenon, applying optimiza-
tions might not necessarily increase the total compilation time but reduce it. It
can be beneficial to optimize, considering only the expression size as a factor. By
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comparing the total compilation times between the execution modes JIT and JITOPT,
shown in Figure 4.8, we observe that the execution mode JITOPT achieves a smaller
compilation time than the execution mode JIT for the larger queries, due to this
phenomenon. This implies that for the expressions that our JIT system generates,
there exists a point where the expression can become large enough that applying
optimization is considered significantly more favorable regardless of other factors.
In this experiment, this point exists around the size of 100, which is a size that is
considered unrealistic for human written queries. However, suppose our JIT system
was to expand to support more complex data types and reimplement them with
LLVM IR. In that case, the generated code might grow large enough to reach this
point with more common queries, as long as the IR is reducible in similarity to
this experiment. In other words, these results indicate that this phenomenon of
applying optimization to achieve reduced compilation times is currently only ap-
plicable to large queries created by business intelligence tools. Additionally, the
most important implication is that this phenomenon mainly depends on the size of
the expression and the compressibility of the generated IR. In contrast, the latter
depends on the properties of the expression itself.

4.2.3 Reduced overhead

This section will provide the instruction count for the expression evaluation process
from the different test suites. These results are obtained through a specific Linux
system call, called perf_event_open, which causes the CPU to count the number of
hardware instructions executed. By performing this system call during the different
test suites of this experiment, we obtained the following results:

Figure 4.9: The average instruction count for expression evaluation by expression
size, showing the data for INT based expressions
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Average instruction count of val_int calls
Expr size nJIT JIT JITOPT JIT reduction JITOPT reduction

int

1 2.12E+09 5.76E+08 5.76E+08 72.88% 72.88%
10 2.60E+10 1.08E+09 9.54E+08 95.85% 96.33%
25 6.26E+10 1.86E+09 1.53E+09 97.02% 97.56%
50 1.05E+11 2.78E+09 2.24E+09 97.36% 97.87%
100 1.66E+11 4.08E+09 3.11E+09 97.54% 98.13%
250 2.64E+11 6.19E+09 4.55E+09 97.66% 98.28%
500 4.21E+11 9.56E+09 6.80E+09 97.73% 98.39%
1000 7.34E+11 1.63E+10 1.13E+10 97.78% 98.46%

str
1 1.00E+10 1.02E+10 1.02E+10 -1.62% -1.62%
10 1.27E+11 1.19E+11 1.19E+11 5.84% 5.84%
25 2.79E+11 2.61E+11 2.61E+11 6.52% 6.52%
50 5.11E+11 4.75E+11 4.75E+11 7.08% 7.08%
100 9.77E+11 9.05E+11 9.05E+11 7.39% 7.39%
250 2.37E+12 2.19E+12 2.19E+12 7.61% 7.61%
500 4.69E+12 4.33E+12 4.33E+12 7.68% 7.68%
1000 9.32E+12 8.60E+12 8.60E+12 7.73% 7.73%

mix
1 2.12E+09 5.76E+08 5.76E+08 72.88% 72.88%
10 5.66E+10 3.70E+10 3.69E+10 34.59% 34.72%
25 1.10E+11 5.55E+10 5.53E+10 49.64% 49.83%
50 1.87E+11 9.20E+10 9.16E+10 50.72% 50.93%
100 3.33E+11 1.68E+11 1.67E+11 49.57% 49.77%
250 4.71E+11 2.03E+11 2.02E+11 56.87% 57.12%
500 6.74E+11 2.64E+11 2.62E+11 60.82% 61.08%
1000 1.07E+12 3.72E+11 3.69E+11 65.12% 65.41%

Table 4.12: The instruction count of the different execution modes, divided by the
int, str and mix expression types.

From the results shown in Figure 4.9 and Table 4.12, we observe a huge reduction
in the number of instructions executed for the execution modes JIT and JITOPT. By
simply JIT compiling a single integer-based comparison expression, the instruction
count of the evaluation process has been reduced by approximately 73%, and for
larger expressions converges towards a 98% reduction. This strongly implies that by
JIT compiling an expression, one can remove a large amount of instruction overhead,
given that all of the logic of the expression is compiled down. On the other hand,
looking at the results for the STRING based expressions in Table 4.12, they do not
reflect the same reduction as for INT based expressions. This is not a huge surprise,
as these expressions execute injected C++ functions of the existing MySQL system
and execute approximately the same amount of instructions compared to the nJIT

execution mode. However, by skipping over some virtual function calls, our JIT
system can still reduce roughly 5% to 8% of the instruction overhead, giving an
idea of how large the overhead a function call provides. Moreover, the instruction
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reduction for the expressions containing both data types is smaller than that for
the integer expressions due to the string-based subexpressions. For these kinds of
expressions, the overall instruction overhead is reduced by 50 to 60 percent, showing
that our JIT system can still reduce a huge amount of instruction overhead even
by including injected MySQL code.

As mentioned earlier, these queries with mixed data types represent an everyday
use case. Since we believe a complete JIT implementation would consist of a mix-
ture of injected C++ functions and generated IR code. We consider the result of
the mix test suite to be a more accurate representation of what instruction reduction
can be expected for more ordinary queries. Overall, these results strongly indicate
that compiling expressions is an effective way to remove unnecessary overhead in-
troduced by the MySQL ecosystem, implying that MySQL would greatly benefit
from conducting JIT compiling of their Item trees. Despite these promising results,
it is essential to note that our JIT implementation does not consider all the different
edge cases supported by MySQL, such as NULL values. Meaning that our JIT system
might provide a smaller reduction in instructions when expanding to support all the
features within MySQL. However, our results still indicate considerable potential
for MySQL in eliminating the instruction overhead of the system and achieving a
significant amount of speed-up.

Furthermore, the results from Table 4.12 comply with our time-measurement
results for expression evaluation, where we achieved almost 100x speed-up with
the JITOPT execution mode, at best. According to the authors of Hekaton, to go
90x faster, one must execute 90% fewer instructions [13]. To go 100x faster, one
must execute 99% fewer instructions. Our JIT system seems to act according to
these statements, where we achieved 98.5% fewer instructions compared to the nJIT

execution mode, which allowed us to achieve the 100x speed-up. Looking further
at our results, we obtained approximately 50% speed-up with 72% reduction of
instructions and achieved 8x speed-up with 95%. Between an instruction reduction
of 95% to 98%, our results show speed-ups between 8x and 100x. With this, we
observe that the speed-up scales are superlinear in proportion to the number of
instructions reduced, where the growth starts to escalate around a reduction of 70%.
This implies that a significant reduction in the number of executed instructions is
essential to achieve notable speed-ups, which is why our STRING based expressions
did not show any significant acceleration.
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4.3 Evaluating the TPC-H experiment

In this section, we will show the results of the TPC-H experiment. The goal is to
understand how our JIT system compiles Item expressions to impact the perfor-
mance of more realistic business-oriented queries. To begin, we will first provide
the results of the different queries in the TPC-H benchmark with a scale factor of
3, corresponding to roughly 3GB of data, and discuss our observations. Next, we
will reveal the instruction counts produced by the different execution modes and
discuss the relevant changes compared to the nJIT execution mode. Lastly, we will
provide the results of the different scale factors and show how our system is affected
by different workload sizes.

4.3.1 The performance of expression evaluation

Figure 4.10: The average speedup of expression evaluation time by TPCH query -
scale 3

These results show a positive impact on the performance of expression evaluation by
JIT compiling the expressions. Figure 4.10 shows that most queries have improved
the time to evaluate the rows from 20% to 130%. This indicates that our JIT system
is capable of reducing the overhead of Items in many realistic query expressions.
However, for some other queries, such as query 2, 11, 13 and 18, the evaluation
processes have not really given any significant impact on performance. For these
queries, we consider the benefit negligible, as the numbers show barely any or
negative improvements. This implies that our JIT system affects queries differently
and that JIT compiling the expressions of a query is not necessarily beneficial for
all types of queries. This means that the queries need to be analyzed in more depth
to truly know what is going on.
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Analyzing the queries

We start by looking at the queries without notable performance improvement,
queries 2, 11, 13, and 18. What these queries have in common is that the MySQL
optimizer forms a query plan where the WHERE clause is split into multiple expres-
sions, creating a FilterIterator for each of them. Some of these expressions are not
compilable by our system. They are instead evaluated by an Item tree, making the
entire expression evaluation process consist of both JIT-compiled and uncompiled
expressions. These queries show slight improvement due to having most of the work
allocated to the uncompiled expressions, where the compiled expressions do only a
tiny fraction of the entire evaluation process. For example, query 11 consists of three
different FilterIterators, where two are compiled STRING expressions, and the last
represents a sum filter, filtering by the sum of two columns from a subquery. Most
of the evaluation process consists of evaluating these sums. Since the other two
expressions have compiled STRING expressions, which do not benefit much from JIT
compiling, the overall performance improvement is considered non-existent. Both
queries 2 and 18 have similar stories, but query 13 is slightly different. It contains a
single FilterIterator, where the Item condition has been compiled but represents a
single expression based on the STRING data type. Since STRING-based expressions ex-
ecute the same C++ code as the existing MySQL engine, the differences are minor
and do not benefit JIT compiling to any considerable extent. With this informa-
tion, these queries imply that not all WHERE expressions show favorable improvements
when compiling, further indicating that analyzing the expression before compiling
can help avoid compiling expressions that do not provide any benefit.

For the rest of the queries in the benchmark, we observe a significant performance
improvement in the expression evaluation process. What all of these queries have
in common is that all FilterIterators in the query plan contains a JIT compiled
Item tree, making the entire expression evaluation process compiled, drastically
reducing the number of virtual function calls. Moreover, an interesting question
to manifest is why there is a huge difference in improvement between queries, as
there is a speedup gap of more than 100% between the best and worst of these
queries. Looking more closely, the queries providing the best performance consist
heavily of INT based expressions, and the queries of lower performance consist of
expressions based on a mix of both INT and STRING, where the worst leans towards
containing more expressions based on STRING. This suggests that the expressions
that are actually compiled by using generated LLVM IR are those that drive the
performance boost. Therefore, from these observations, it is simple to argue that
the more data types this JIT system is able to compile, without injecting existing
C++ functions, the more likely we are to improve the performance of the expression
evaluation process.
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Evaluating the total exeuction time

Figure 4.11: The average speedup of total execution time by TPCH query - scale
3

TPCH Benchmark Results - Scale 3 - in milliseconds
Mode: nJIT JIT JITOPT
Query total val int total val int codegen compile total val int codegen compile opt

1 26810 523 26592 323 0.01 1.37 26581 324 0.01 1.38 0.25
2 337 153 335 148 0.02 3.7 335 148 0.03 3.66 0.56
3 6796 274 6555 182 0.03 3.46 6546 181 0.03 3.44 0.56
4 1952 156 1864 77.77 0.02 1.59 1865 77.22 0.02 1.47 0.3
5 1939 154 1867 78.76 0.04 3.86 1860 77.8 0.03 3.65 0.62
6 4881 838 4408 364 0.03 1.99 4396 358 0.03 1.75 0.38
7 3789 60.33 3761 35.01 0.04 5.13 3768 34.97 0.04 5.07 0.81
8 1903 125 1847 78.29 0.02 2.49 1857 78.55 0.02 2.43 0.4
10 1937 155 1851 77.97 0.02 1.6 1847 77.93 0.02 1.52 0.31
11 1137 515 1140 517 0.02 2.63 1140 517 0.02 2.54 0.38
12 9995 2337 9523 1883 0.04 2.22 9492 1874 0.04 2.09 0.41
13 8324 1735 8388 1746 0.01 1.51 8392 1750 0.01 1.36 0.25
14 5060 666 4718 343 0.02 1.58 4697 321 0.02 1.48 0.31
16 1301 350 1227 274 0.05 3.49 1226 274 0.06 3.22 0.64
18 22950 16064 22861 15879 0.02 1.46 22905 15895 0.02 1.41 0.25
19 8687 2664 8306 2284 0.15 10.06 8323 2293 0.15 9.26 1.74
21 8862 653 8644 474 0.05 6.86 8641 475 0.05 6.64 1.05

Table 4.13: The benchmark results of the TPC-H experiment for scale factor 3 in
milliseconds.

Another interesting question to manifest is how the performance improvements in
expression evaluation affect the total query time. Figure 4.11 shows the average
speed-up in the total query execution time for the scale factor. Compared to the
expression experiment, these numbers are less significant, but still considered satis-
factory. Despite achieving a 100% speedup in expression evaluation, most of these
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provide a small 4 − 5% speedup in total execution time, where the best provide a
11% speedup. The time used on compilation is also considered extremely low, as
shown in Table 4.13, where the average compilation time is approximately 3 ms,
the worst being 10 ms. These compilation times are considered negligible compared
to the actual time used to evaluate the expressions. This further suggests that the
process of evaluating expressions is not necessarily the most cost-intensive part of
the query execution for these queries.

Expression evaluation % of
total query time

Q val int % Q val int %

1 1.95% 11 45.36%

2 45.34% 12 23.39%

3 4.04% 13 20.84%

4 8.03% 14 13.18%

5 7.99% 16 26.95%

6 17.17% 18 70.00%

7 1.59% 19 30.67%

8 6.59% 21 7.37%

10 8.04%

Table 4.14: The expression evaluation time % of total query time for each query
in JIT execution mode.

Table 4.14 shows how much time of the total query time is devoted to evaluating
expressions. These numbers confirm that the time used on ::val_int() is not nec-
essarily significant for most queries. Some exceptions are the queries 2, 11 and 18,
where expression evaluation represents atleast 45% of the total execution time, but
also does not benefit greatly from JIT compiling. The queries that actually benefit
from JIT compiling devote only approximately 4% to 20% of the total query time
to evaluating the expressions, which suggests that the total query time speed-up is
relatively low due to the small workload. The queries that benefit the most from
JIT compiling are very simple queries, where the WHERE clause is a bigger part of
the query, since GROUP BYs and ORDER BYs are either very small or nonexistent. For
example, queries 6, 14, and 19 consist mainly of a WHERE clause and an aggregated
projection. Unsurprisingly, these results imply that the total speed-up of queries by
JIT compiling expressions rely both on the speed-up of evaluating the expressions
and the time used on the other parts of the query. This suggests that JIT compil-
ing expressions do not necessarily provide more speed-up than 2% to 10% for many
typical business-oriented queries, but is a result that we still consider satisfactory.

4.3.2 Reduced instructional overhead

Since our results in Figure 4.10 and Table 4.13 show clear performance improve-
ments in expression evaluation, it is apparent that the acceleration will be reflected
in the instruction count of val_int() calls. By measuring the instruction counts for
each query, we got the following results:
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Figure 4.12: The average instruction count of the sum of val_int calls per TPC-H
query.

Average instruction count for val_int calls

Query nJIT JIT JITOPT JIT reduction JITOPT reduction

1 7.68E+08 2.10E+08 2.04E+08 72.65% 73.43%

2 5.21E+08 5.08E+08 5.08E+08 2.67% 2.67%

3 4.48E+08 2.08E+08 2.06E+08 53.51% 54.11%

4 2.69E+08 5.25E+07 5.85E+07 80.45% 78.21%

5 2.69E+08 5.25E+07 5.85E+07 80.45% 78.21%

6 1.87E+09 2.36E+08 2.22E+08 87.34% 88.1%

7 8.94E+07 2.35E+07 2.24E+07 73.68% 74.9%

8 2.18E+08 5.70E+07 5.40E+07 73.79% 75.17%

10 2.69E+08 5.25E+07 5.85E+07 80.45% 78.21%

11 1.81E+07 1.81E+07 1.81E+07 0% 0%

12 8.13E+09 6.82E+09 6.81E+09 16.18% 16.23%

13 7.50E+09 7.45E+09 7.45E+09 0.68% 0.7%

14 1.32E+09 2.17E+08 2.34E+08 83.54% 82.22%

16 1.38E+09 1.15E+09 1.15E+09 16.21% 16.29%

18 1.13E+09 6.17E+08 6.14E+08 45.56% 45.83%

19 9.45E+09 8.27E+09 8.27E+09 12.51% 12.52%

21 1.24E+09 9.31E+08 9.28E+08 25.17% 25.42%

Most of the queries show an impressive reduction in the number of executed
instructions by JIT compiling expressions. Many queries show a significant reduc-
tion of 70% to 86%, and others show a reduction of almost nothing up to 45%. As
stated in the expression experiment 4.2.3, to achieve a speed-up of 10x, a reduction
in the number of instructions of 90% must be achieved. The results of this men-
tioned experiment show a reduction in the number of instructions from 70% to 80%,
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which provided a speed-up around 50% to 100%. This complies with the speed-up
achieved in this benchmark, where all queries with a reduction greater than 70%
show a speed-up between 60% and 100%. A suggestion of why we are not achieving
larger reductions is simply the fact that we are limiting ourselves when injecting
calls to existing C++ functions for STRING based expressions. Most of these queries
contain expressions that compare STRINGS in some way, and by using the same code
to evaluate these expressions, the unwanted overhead from the MySQL ecosystem
does not disappear. In addition, for queries containing only INT based expressions,
we further suggest that the expressions are not large enough to exceed a greater
reduction in the number of executed instructions. As shown in the previous exper-
iment 4.2.3, the larger the expression, the more overhead there is to remove, the
greater the reduction in the number of instructions. This implies that for a typical
business-oriented query, the reduced overhead might not exceed much further than
these results, given the typical expression sizes and the containment of unsupported
data types. However, for larger queries, such as those created by business intelli-
gence tools, we believe that the expressions could be large enough to exceed these
results and could achieve similar speed-ups as the expression experiment.

4.3.3 Workload sizes

This section will provide test results for how our JIT system affects the performance
of different workload sizes. During this experiment, we ran the TPC-H benchmark
on different scale factors, ranging from approximately 100 MB to 30GB. The data
were generated by a TPC-H data generation tool and inserted into the MySQL
server instance as a separate database for each scale factor.

Our results from the expression benchmark, in Section 4.2.1, suggest a particular
speed-up for the relevant queries introduced in that experiment. The experiment
results were run on a dataset similar to the TPC-H scale factor 3, roughly a table
with 3GB. If we were to run that experiment on different scale factors, where the
time used in evaluating a single row is considered quite stable, we would presumably,
and unsurprisingly, achieve the same speed-up regardless of the table size we are
processing. The only thing that would affect the speed-up would be the time it takes
to compile the expressions, which is considered fairly low in both experiments. We
assert that this impression of how the speed-up is little affected by the table size
also applies to the TPC-H experiment, which the following results can show:
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Figure 4.13: The geometric mean of the expression evaluation speed-up of all
queries in the TPC-H benchmark.

Figure 4.13 shows the geometric mean of the expression evaluation speed-up of
all queries in the experiment. This figure makes it easy to observe a consistent
speed-up among all the scale factors conducted. We can speed up the expression
evaluation process by 60% for all query workload sizes. Suggesting that the size of
the workload does not affect the potential speed-up, which is not unsurprising, as the
time it takes to evaluate a single row is considered nearly constant. The expression
evaluation time scales linearly with the number of rows in the table, which complies
with the results of a previous project, where we prototyped a simplified replica of
the MySQL Item tree, and JIT compiled the tree with LLVM [20]. This prototype
showed that the expression evaluation time scaled linearly in proportion to the
workload scale when evaluating TPC-H query 6 [20]. However, more importantly,
this work also showed that the size of the workload affected the performance of the
total execution time when applying JIT in Postgres. Compilation time introduces
an extra delay to the total execution time, and it might be faster to execute the
query without compilation if the workload is small enough.
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Figure 4.14: The geometric mean of the total query execution speed-up of all
queries in the TPC-H benchmark.

As shown in Figure 4.14, despite the acceleration in expression evaluation, the
performance of the total query execution time decreases for the scale factor 0.1,
which corresponds to approximately 100MB. However, applying JIT shows positive
performance impacts for the scale factor of 1, suggesting that the compilation time
is too large for the scale factor of 0.1 compared to the total execution time, implying
that applying JIT is not considered beneficial for this workload. Further indicating
that concerning these types of queries, there is a point between the scale factor of
0.1 and 1 where applying JIT becomes beneficial. Moreover, from these results, it
is easy to argue that when MySQL evaluates if it should compile an expression,
the size of the workload plays a role in the final performance outcome and must be
considered.

As shown in Table 4.10 from the expression experiment, there are not many
rows needed in a table before the time saved by applying JIT exceeds the total
compilation time. From these results, the number of rows where this typically
occurs presumably seems to be around a couple of tens of thousands of rows. This
result differs significantly from the earlier experiment with Postgres, where this
point seemed to lie between scale factors 1 and 2 [20]. Postgres compiles much
more than presented in this thesis and has much larger compilation times than
shown here, which explains the difference. This is due to the assumption that a
complete JIT implementation includes more of the different features and data types
that MySQL provides and therefore increases the generated code’s size, further
increasing the compilation time. With this, we believe that the point in workload
size where JIT becomes beneficial shifts towards larger sizes for a complete JIT
implementation in MySQL. Consequently, this would decrease the performance for
smaller workloads to a greater extent, which would be the TPC-H scale factor of
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0.1 in this scenario. Therefore, when evaluating when to JIT compile expressions
in MySQL, workload size must be considered carefully. This, again, intensifies the
need for a good cardinality estimator, which has been mentioned as a critical factor
in performance in several research studies [25] and is what Postgres depends on
when evaluating whether to JIT.

4.4 Final evaluation and summary

At the beginning of this chapter, we focused on how we can use our JIT imple-
mentation to establish an answer to the research question. We summarized the
three additional research questions that we believe are important to understand
to conclude, in which our conducted experiments were to create the fundamental
basis for that understanding. The first question asked about the performance ex-
pectations of JIT compiling expressions in MySQL, where our experiments indicate
what to expect. Moreover, the second question raised the problem of understanding
when it is considered beneficial to JIT an expression and what factors are essential.
Our experiments have developed several implications for these factors and their
significance under different circumstances. The third question concerns LLVM and
whether it is a good choice for MySQL. We can now draw some conclusions from
what we have observed in our experiments.

4.4.1 Performance impact of jitting expressions in MySQL

Reduced overhead

Our JIT system has shown great capabilities to remove the overhead introduced
by the MySQL ecosystem, such as unnecessary virtual function calls and extra
code to handle all functional cases. For simple queries containing only expressions
based on integers, the system was able to reduce over 95% of the instructions to
evaluate the expressions by utilizing the extra information provided at runtime.
For more realistic business-oriented queries, the system was able to reduce over
80% of these instructions for the cases where the JIT system was used to its full
potential. This suggests that there is great potential for MySQL to accelerate the
expression evaluation process by eliminating a lot of the overhead that seems to
exist. However, this reduction in the number of instructions does not seem to pay
off until it reaches at least 80%, which is something we believe from our results to
be a common achievement in a complete JIT implementation in MySQL for most
typical business-oriented queries.

For very large expressions, we achieved a 100x speed-up in evaluating the ex-
pressions. For business-oriented queries, the speedup was more commonly found
within 60 − 100%. The two experiments conducted suggest that larger queries in-
troduces a lot more overhead than smaller queries, which can be further removed
by JIT compiling and give greater reduction numbers. The TPC-H benchmark rep-
resents a group of smaller queries that is a more common and realistic use case, and
therefore gives a more accurate view over the expectations by JIT compiling ex-
pressions in MySQL. For that reason, we believe that at least 80% reduction in the
number of instruction is what we can expect from this JIT implementation on WHERE
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expressions. The results showing lower reduction numbers were due to the lack of
using the JIT system to its full potential, where the existing Item system was used
to evaluate larger parts of the expressions. We realize that injecting C++ functions
that evaluate entire expressions is probably not the most optimal approach to sat-
isfy this potential, as the overhead we want to eliminate persists. We also realize
that we lose a lot of the potential for optimizing the generated code, missing out
the possibility of achieving better performance.

LLVM templating

However, we recognize that there is an alternative approach for avoiding duplicating
the logic of complex data types: LLVM templating. For instance, by generating
the LLVM IR for string comparisons in advance as a template from the existing
C++ code alone, we can represent the evaluation of STRING based expressions in
the LLVM IR without having to maintain two different codebases for the same
logic. Templating also allows us to optimize where we can remove more unnecessary
overhead known at runtime. Similar JIT systems, such as Postgres [14, 30], Impala
[49] and others [24, 44] already use this, where backend functions are precompiled
and loaded into memory on start up, and then used to generate code for the specific
expressions. By utilizing this dynamic template expansion approach to generate the
IR, it is easier to support the different data types and features in MySQL and, at
the same time, remove some of the overhead and preserve code maintainability. We
decided not to do this due to time restrictions and early technical challenges. We
see it as a missed opportunity for this thesis and a fascinating investigation for
future work.

Speed-up of total exeuction time

An important observation from our result is to what extent the speed-up of ex-
pression evaluation affects the total query execution time. Speeding up expression
evaluation by 100% seems to only accelerate the total execution time by 10% to be
optimistic. The typical business-oriented queries provided by the TPC-H bench-
mark use a larger part of the execution time on other parts of the query, besides
from expression evaluation, such as aggregations and sorting. This suggests that we
are not compiling enough to achieve a greater reduction in the number of instruc-
tions. Other research papers experimenting with JIT compiling in Postgres have
shown between 20 − 30% speedup on TPC-H query 1, where they have compiled
both filter expressions and aggregate projections (SUM, COUNT... etc.) [30, 5]. Our
implementation barely achieves 1% speed-up for query 1, as we only compile filter
expressions that consist of less than 2% of the entire execution, as shown in Table
4.14. Query 1 is very heavy on aggregations, which occupies 76% of the execution
time in Postgres, according to one of these studies [5]. Since MySQL has an ar-
chitectural nature similar to that of Postgres, it is therefore feasible to argue that
MySQL has similar potential for performance improvement by compiling aggrega-
tions in runtime. Since MySQL implements aggregations as Items, proceeding with
this idea is something we consider a natural expansion of our JIT implementation.
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The performance of MySQL with the JIT

Altogether, this shows that MySQL has great potential in achieving sufficient speed-
ups by JIT compiling expressions, and could achieve greater results than presented
in this thesis by supporting aggregations and dynamic template expansion of LLVM
IR. We acknowledge that our implementation is not complete and therefore would
not be an accurate representation of what to actually expect performance-wise
by a complete implementation. However, our implementation shows that MySQL
introduces a lot of overhead created by the interpreter and the Item logic, which
can be easily removed by JIT compiling the Item expressions into native machine
code in runtime. When our JIT system is used close to its full potential, the
total query time speed-up seems to be around 4 − 10%, which we find to be a
satisfactory improvement for many long-running CPU-bound queries. For extremely
large expressions, we were able to achieve a 100x speedup, which might be relevant
for machine-generated queries, such as those created by business intelligence tools.
We achieved these results by specifically compiling integer-based expressions into
native machine code, which have shown positive results for most queries. We believe
that there is much room for improvement for MySQL in terms of performance in
this area, as the current Item implementation appears to be insufficient for many
modern CPU-bound queries.

4.4.2 When to JIT in MySQL?

An essential aspect of JIT compiling is considering when it is beneficial to compile,
as the overhead of compilation time might be higher than the time that can be saved.
Since the compilation time also increases based on the size of the expression, we
note that the size and complexity of the expressions are also important to consider.
Additionally, our experiments imply that compilation might not be beneficial if any
of the expressions consist of injected C++ function calls to the existing MySQL
ecosystem, such as implemented for string operations in this thesis. In other words,
depending on the implementation, the different types of expressions are essential
to consider whether they contribute to reducing the number of instructions and
whether the different data types drastically increase the compilation times due to
extra complexity. Based on our results and observations from the experiments of
this thesis, we suggest considering the following factors when determining whether
to implement JIT compilation in MySQL:

• Workload size - Our experiments showed that JIT compiling expressions
was not beneficial for small-running queries, as the table size was relatively
small. The lack of benefit can be explained by the overhead of the compilation
time being higher than what the system can speed up and is therefore not
considered sufficient for such small sizes.

• Estimated compilation time - To consider what workload sizes are appli-
cable, a rough estimate of the actual time used to compile is needed. This
estimation should, for example, be based on expression sizes, as the results
from the expression experiment clearly show that the compilation time grows
superlinear in proportion to the expression size. Moreover, another factor
that plays a role is the complexity of the different operators and data types.
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The results from the experiments show that simple integer expressions in-
troduce short compilation times. However, we realize that for more complex
data types, such as string expressions, there is a lot more complexity and
code in hand that needs to be compiled, which can increase the compilation
time to different levels. The increased compilation time due to more complex
expressions can be reflected in a Postgres research paper for JIT, showing
compilation times almost 40 times higher for TPC-H query 1 [5] due to the
added complexity by aggregation expressions.

• Estimated code reduction by optimizations - As shown in the expression
experiment, Section 4.2.2, applying optimizations might be able to reduce
the number of the generated code lines significantly. To the extent where
the actual compilation time for that code is much lower than the original
compilation time, even with the extra time optimizing. The result of this is
that applying optimizations might be a way to reduce the total compilation
time and therefore make the compiling of the expression worth doing. For
instance, in the context of our JIT implementation, if an expression repeatedly
references the same set of columns, reducing the number of times the column
is read from memory will reduce the number of instructions that need to be
compiled. However, we recognize that this might be a difficult task to do
right, especially with the various operations and data types. Furthermore,
this phenomenon may not be accurate for more complex filter expressions,
as several research studies have implied a more rapid exponential growth for
optimization times in the number of instructions compared to compilation
time [23, 21]. Therefore, this factor needs to be thoroughly studied in a
complete implementation before it can be applied. However, our test results
show that this phenomenon exists and could be considered for sizeable integer-
based filter expressions.

With these factors, a further question is how can we apply them to MySQL?
The results of our JIT implementation show that JIT is sufficient in most scenarios,
as the compilation time is considered extremely low. Unsurprisingly, this is be-
cause the system hardly compiles any code, as most of the compiled code is native
integer operations and function calls. Therefore, we recognize that our thesis can-
not provide an accurate description of how MySQL should decide to compile since
our JIT system does not represent a complete implementation. A complete system
would presumably introduce more considerable and more various compilation times,
making it difficult to suggest any specific numbers in this thesis.

On the other hand, on the basis of our observations, we are able to elaborate
on which approach MySQL should take in this regard. The simplest and most
natural approach for MySQL is to make this decision at plan time, before the
actual execution. The existing optimizer engine (Hypergraph) already utilizes a cost
model based on cardinality estimation, estimating the total number of rows to be
processed at the different levels of the query plan, and other factors. These estimates
are useful for determining the potential workload size, which we believe is the most
crucial factor to consider when deciding whether to JIT. The JIT implementation in
Postgres (as of version 14) determines whether JIT compilation should be applied
by using the total estimated cost of the query and a configurable threshold [50].
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This cost value is based on different aspects of the query, such as disk reads, filter
operation costs, and cardinality estimates. For this reason, using the total estimated
cost value to decide whether to JIT is something we consider a suboptimal choice,
as the final cost value does not necessarily directly reflect the cost of what the
JIT is actually compiling, and therefore can not be considered a 100% reliable
measurement. Furthermore, many database systems suffer from poor cardinality
estimates, producing poor query plans and large errors between the estimated cost
and the actual cost[25]. From this, incidents have occurred where Postgres JIT
has caused many queries to run significantly slower [19], especially due to added
optimization times. Therefore, adopting the same model in MySQL is something
we consider an unreasonable approach.

Alternatively, we suggest using a separate cost model for MySQL, where the fac-
tors mentioned above are the focal components of the model. This model focuses
on the actual cost of the expressions and the potential cost of JIT. Such a model
still relies on cardinality estimates to measure workload sizes but also requires a
foundation for estimating compilation time for different operations and data types.
The latter requires a study of the potential cost that the different operations and
data types might introduce. An estimated time for optimizations is also helpful
in calculating the total potential compilation time, which might be challenging to
estimate. However, an empirical analysis is something we consider a reasonable
approach. However, several research studies imply that relying on cardinality esti-
mates can lead to poor query plans. A more reliable approach is to determine the
query plan parameters at runtime [25, 12, 23, 31]. For instance, Hyper’s adaptive
execution engine decides whether to JIT compile at runtime, where runtime statis-
tics is the basis of the decision, achieving low latency and high throughput for most
queries[23]. A research study on adaptive execution in NoisePage does a similar
approach, performing metric sampling to modify the execution behavior of JIT-
compiled components at runtime[31]. Such a runtime analysis requires allocating
multiple threads for executing a single query, which currently does not fit within
the MySQL thread model and implementation [38, 33], where there is one thread
per connection. For this reason, we believe the best approach for MySQL in its
current state is to make this decision ahead of execution, analyzing the expressions
of the query and making a decision based on cardinality estimates, compile-time
estimates, and estimated evaluation time.

Based on what we have observed from our JIT implementation, for simple inte-
ger filter expressions, JIT compiling is also considered sufficient for short-running
queries, as the compile time is significantly low. However, when introducing more
complex operations and data types, we state that the compile times will increase,
making JIT sufficient only for long-running CPU-bound analytical queries, which
Postgres [50] and Impala [49] already suggest. The more features, operations, and
data types in MySQL we compile, the more accurate we find this statement.

4.4.3 Is a good choice LLVM for MySQL?

The results of our experiments show that LLVM is an excellent candidate to help
MySQL achieve performance gains and reduce some of the overhead of the MySQL
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ecosystem. LLVM provides very efficient compilation times, which have been roam-
ing around a couple of milliseconds in this thesis. The observed fast compilation
times are a strong argument for utilizing LLVM as the compiler, as it achieves low
latency and makes compilation more applicable for small workload sizes. Further-
more, from our experience, the LLVM target-independent code generator integrates
exceptionally well with the existing Item system and has not introduced any sub-
stantial complications to the existing codebase. The nature of Items fits very well
for a code generation process, where each Item can generate its code independently
of others. The process of generating IR and ending up with the native code equiva-
lent works seamlessly, as all the complications get offloaded to the LLVM toolchain,
where MySQL only needs to focus on generating the IR and calling the compiled
output function. All of this shows that LLVM is highly suited for the job where the
goal is performance, and we state that LLVM is a perfect candidate in this regard.
From work done with LLVM and MySQL throughout this thesis, we have found the
following advantages of utilizing LLVM for JIT compiling expressions in MySQL:

1. Maintainability - By using a library such as LLVM, MySQL can offload
a large amount of compiler complexity. We believe it would be unwise for
MySQL to maintain its compiler library for JIT, as it would require main-
taining a complex codebase for different machine targets, architectures, and
specialized optimizations. Maintaining such a compiler system requires much
attention, and we do not see it worth spending time on for a database system.
We suggest that offloading the work of JIT to a library is the best approach for
MySQL in this regard, where we believe that LLVM is the library that best fits
MySQL, as other large-scale alternatives are not as flexible and efficient[35].

2. Performance - Research indicates that LLVM provides slightly better-optimized
code performance and lower compilation times compared to GCC, the second
most goto open-source alternative that fits the C-like code environment of
MySQL [35]. Their findings also comply with the results of this thesis, where
LLVM shows low compilation times and provides good performance.

3. Flexibility - The LLVM provides a large set of flexibility concerning JIT,
especially for optimizations. Having control over which optimizations to apply
is a substantial benefit for LLVM, whereas applying optimizations can be
time-consuming and applicable at different levels depending on the cost of
the expressions. Moreover, not all optimizations are considered relevant for
the generated IR and are not worth spending time on. Therefore, we state
that LLVM is a good choice for a query compiler, as the various queries require
different optimization levels depending on the circumstances.

However, there are also some drawbacks to using LLVM in MySQL. LLVM
receives major updates every six months, which might introduce breaking changes
requiring extra attention and maintenance. In addition, we have found that LLVM
is a huge dependency, where the binary size of the MySQL Server used in this thesis
increased by 10x when statically compiled. The increased binary size might not be
acceptable for all systems, and there may be some platforms that MySQL supports
but LLVM does not support, which means that there are other challenges to using
LLVM in addition to the functional aspects. Such as support and licensing, which
we find out of the scope of this thesis to make any conclusions regarding.
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We believe that LLVM is the most obvious choice for MySQL when adopting JIT
compiling of expressions, as it provides good performance, low compilation times,
flexibility, and low maintenance. MySQL might achieve better performance by cre-
ating its JIT system but must pay a considerable maintenance cost and spend time
supporting different target platforms and architectures. For this reason, offloading
the complications of JIT to an external library would be considered reasonable,
where we find LLVM to be a very suitable candidate.
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Chapter 5

Conclusion & Future Work

In this last chapter, we summarize our findings and contributions from this thesis
and give a final answer to the research question, RQ1, ”Is it possible to improve
query performance in MySQL through JIT compiling expressions?”. To support
our answer, we will also provide our answer to RQ2, RQ3, and RQ4 based on
our findings in this thesis. Finally, we will suggest future work on JIT compiling
expressions in MySQL.

5.1 Conclusion

Throughout our work in this thesis, we have revealed that the internal workings of
evaluating expressions in MySQL introduce excessive instruction overhead. Fortu-
nately, we have also shown that a large portion of this overhead can be significantly
reduced by compiling the Item-trees into native machine code at runtime, substan-
tially increasing the evaluation process’s performance.

This instruction overhead shows that it is possible to improve query performance
in MySQL by JIT compiling expressions, which answers the main research question,
RQ1. However, to better understand why this is the case, we also need to conclude
our answers to the other research questions, where RQ2 answers the performance
question, RQ3 addresses when it should be applied, and RQ4 addresses the usage
of LLVM. Therefore, the following sections will answer these questions one by one,
and we will also provide our conclusion at the end.

5.1.1 RQ2: The Impact on Performance

In the expression experiment, in Section 4.2.1, we found that for simple integer
expressions, it is possible to achieve a 100x speed-up for massive and long-running
CPU-bound queries. However, for more typical queries, we have deduced that a
compiled expression can double the evaluation performance, given the typical size
and complexity.

Moreover, in the TPC-H experiment in Section 4.3, we found that while gain-
ing a speed-up of about 10% by just evaluating filter expressions, we believe that
there is potential for even greater speed-ups. Compiling filter expressions alone
still leaves much overhead, which could be further improved by JIT compilation.
Filter expressions are only a tiny part of the total execution for most queries. We
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consider the 10% speed-up a satisfactory result, as MySQL can still compile a more
significant part of the query execution, such as aggregate expressions. The ability
to compile a more significant part of the query execution implies that MySQL has
excellent potential to reduce the number of instructions executed and improve the
query performance by JIT compiling expressions.

We also found that injecting function calls to existing C++ evaluation code into
the compiled expressions does not provide any notable performance benefits, as the
instruction overhead remains. However, we recognize that this technique is a way
of supporting complex operations and data types that are difficult to compile and
contributes to avoiding situations of having to compile an Item-tree into multiple
programs. However, for complex operators and data types, we suggest that MySQL
attempt to support them through dynamic templating techniques, where the IRs of
these operators are precompiled and optimized before the start of the query engine.
Supporting operators through dynamic templating incentivizes better support for
operators, maintainability, optimization, and performance.

There might be cases where templating is considered insufficient due to high code
complexity, such as complex math functions. In these cases, we consider injection
of function calls to existing C++ functions to be a more reasonable approach.

Our answer to RQ2 on the performance impact of JIT compiling expressions
boils down to the fact that it can vary. The expression’s size, complexity, and scale
of the filter compared to the rest of the query affect the total query performance.
Our results reveal that 10% speed-up in total query performance is likely for most
business-oriented queries but can also reach 16x for large, long-running machine-
generated analytical queries. Since there is also more that can be compiled, this
suggests that more performance improvements be made, as more of the overhead
provided by unsupported operators can be reduced.

5.1.2 RQ3: Considering when to JIT

During the TPC-H experiment from Section 4.3, we verified that JIT compiling is
not necessarily sufficient for performance under all circumstances due to the added
time delay of compiling. We observe that the compilation time varies according to
workload size, expression size, and operator and data type complexity; due to the
inflated number of instructions these factors supply. In Section 4.2.3 we have shown
that expression sizes and complexity strongly influences compilation time.

Consequently, we propose estimating the compilation time before execution and
using these factors to predict whether JIT compilation would provide performance
benefits that outweigh the cost. This proposal is based on the information obtained
from the expression experiment. We demonstrated that simple integer expressions
provide extremely low compilation times but also scaled superlinearly in proportion
to the expression size. Furthermore, previous research has also stated that the
compilation time increases superlinearly with the number of instructions [23], which
will be the case when expanding to support more complex operations and data types
beyond integers.

To answer RQ3, we want to stress that a complete JIT implementation on
expressions in MySQL should attempt to estimate the compilation time to ensure
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improvement and avoid harming the performance. This estimation time should also
be considered together with the workload size to predict whether the performance
benefits of JIT outweigh the cost. We recognize that this thesis cannot provide exact
numbers but instead reveal the different factors that affect whether JIT compilation
is beneficial for a given query.

5.1.3 RQ4: LLVM and MySQL

Based on experiences and observations throughout this thesis, we claim that LLVM
is a good candidate for MySQL when adopting JIT compilation, considering per-
formance and simplicity. LLVM provides MySQL with low compilation times, fast
execution, a feasible integration process, and the automatic benefit of future com-
piler improvements with little effort. However, we recognize that there are some
other drawbacks to adopting LLVM, such as providing years of technical support
for MySQL, and we find drawing any conclusion in regards to this outside the scope
of this thesis. Despite this, based on what has been mentioned, our answer to RQ4
is that we consider LLVM a promising approach for JIT compiling expressions in
MySQL.

5.1.4 RQ1: Final conclusions

The work done throughout this thesis provides a significant first step towards achiev-
ing runtime compilation in MySQL. Our work has revealed that MySQL has excel-
lent potential to increase its performance by adopting JIT for expressions due to
the interpreted nature of Items. From this statement, we want to answer RQ1 and
conclude that MySQL can indeed improve performance by JIT compiling expres-
sions.

We believe that JIT compilation would make MySQL a stronger competitor in
terms of performance and help MySQL keep up with modern database research. We
propose that MySQL adopt JIT compiling expressions with the LLVM compiler
framework to obtain better query performance. We also suggest using dynamic
templating to support the different operators and data types in MySQL in order
to get the most of the performance benefits of JIT compiling. Lastly, to avoid
performance loss for simple short-running queries, evaluating the circumstances
and estimating the compilation time are crucial and go hand in hand with a JIT
compiling database system.

5.2 Future work

This thesis has contributed to one of the first steps for achieving a JIT-supported
query engine in MySQL. In the short time we had, we managed to implement
a system for incrementally introducing JIT to the various Item classes. We also
used this system to implement JIT on codeItem classes concerning integers and
strings. The Item class JIT implementations we made allowed us to demonstrate
the benefits MySQL can see from a full JIT implementation. Therefore, in this
section, we suggest future work and further research on this topic that we see as
further relevant steps to advance our research.
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5.2.1 Complete the implementation

The implementation presented in this thesis was restricted to a few simple data
types and operators, where only integer expressions were fully supported. Some
string expressions were also supported through injection of function calls to exist-
ing MySQL code, which we found was not an optimal solution performance-wise.
Therefore, it would be interesting to expand the support to more operators and data
types where the level of complexity is a little higher than integers. Expanding the
support and introducing more complexity to the generated code can affect overall
performance and compilation time. We find this to be the next step of this work, as
we can better understand how JIT compilation can affect performance in MySQL.

Here, it would be logical to investigate the usage of dynamic templating, where
the different operations and data types in MySQL can be supported through pre-
compiled IR templates. It is interesting to see what would be a good implementation
model for dynamic templating in MySQL, for instance, if these templates should
be linked into the generated program lazily or prior to the execution.

Furthermore, it would be sensible to expand to support aggregate expressions
and compile the entire SELECT clause to increase the total query performance. By
expanding to compile aggregate expressions, more of the interpreted overhead of
Items can be removed, affecting performance and reducing the number of executed
instructions. The interesting aspect to investigate here is the level of overhead
produced by these expressions and further compare it to the overhead of filter
expressions. It is also interesting to see at what scale this overhead can be removed
by JIT compiling at runtime.

5.2.2 Measure compilation costs

This thesis stresses the importance of evaluating the compilation cost of the different
operators and data types in a complete JIT implementation in MySQL. Therefore,
a future study can address the cost of compiling the different components of the
expression and further build a cost model that can be used to estimate the compi-
lation time of the different expressions in the query. Such a model would be crucial
to determine whether compiling an expression would exceed the cost of compilation
time and benefit performance and should therefore be carefully studied.

Moreover, it would be interesting to investigate the cost of utilizing dynamic
templating and applying optimizations for the different components in an expression
versus the cost of simply injecting function calls. For instance, there might be cases
where the complexity of an operator makes it too costly to compile and should
instead be supported through function calls to existing C++ code. These cases
also apply to optimizations, where the optimization cost can differ significantly
between the different operators and should therefore be studied to understand the
optimization time better.

5.2.3 Removing state in expressions

In Section 2.3, we argue that MySQL faces a hurdle when it comes to achieving query
parallelism, where state in Items are considered one of the difficulties. In this regard,
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it would be interesting to investigate how the JIT compilation of expressions can
contribute to removing this state and making Items a stateless entity. As mentioned,
state is, for example, used to manage NULL values of rows or other similar behaviors,
which would require refactoring of the existing Item behaviors to remove.

With this said, when generating code for an Item, it is possible to generate code
that makes the evaluation of each row stateless, which can further open up the
possibilities of parallelizing this process. We believe that MySQL can achieve ex-
treme performance improvements by parallelizing the table scan and the evaluation
of expressions. Therefore, it would be an interesting study to investigate how JIT
compiling can be used to eliminate the state in Items and achieve parallelism in
expressions.

5.2.4 Investigate adaptive execution

Our last suggestion for future work on this subject is the possibility of adopting an
adaptive execution strategy in MySQL. In Section 2.5.4, we introduce the adaptive
query execution strategy employed in Hyper, where they achieve low latency and
high throughput by transitioning between different execution modes at runtime
[23]. When compiling ahead of execution, the system sacrifices low query latency,
which they avoid in Hyper by starting the compilation process while the query is
already running. A JIT implementation on expressions in MySQL would also suffer
from the latency of the ahead-of-execution compilation. It could also benefit from
employing a similar adaptive strategy for the compilation of expressions.

For this reason, we suggest researching the possibilities of employing such a
strategy in MySQL for expression-based compilation. What are the possibilities in
MySQL for compiling an Item-tree while the existing interpreter is already running
and switching to the compiled code when the compilation is complete? This exe-
cution model would require additional worker threads for a given query, which is
currently restricted to one, as of MySQL version 8.0.28. Investigating the possibil-
ities for increasing the thread count for a single query to adopt such an adaptive
execution strategy can be a worthwhile investment to reduce the latency cost of
compilation and, at the same time, improve query performance.
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Appendix A

Source code of MySQL JIT
implementation

The source code of our JIT implementation described in Chapter 3 can be found
in two ways. A repository containing the source code can be found at the following
URL: https://github.com/Andorr/mysql-server-jit. It can also be found in the form
of a git patch in the file jitimpl.patch, added as an attachment to this thesis.
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Appendix B

Source code of experiments

The source code of the conducted experiments can be found in the attachments, in
which we have provided the following Python and SQL files:

• main.py - The main script for running the experiments. Handles the connection
to the MySQL server, runs the benchmarks, and performs all client-side time
measurements.

• utils.py - Utility file for extracting, visualizing, and transforming measure-
ments.

• gen_query.py - A script to generate large queries that were used in the expres-
sion experiment.

• convert.py - Script to convert the unsupported columns of the raw TPC-H
data into integers.

• tables.py - Utility file that contain metadata information about TPC-H tables.

• tests.py - Script to verify that the benchmark results and EXPLAIN ANALYZE

output is consistent between runs and execution modes.

• queries_int - The converted TPC-H queries that were used in the TPC-H
experiment.

• queries_where - The queries generated that were used in the expression exper-
iment.
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