
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Tobias Thorvaldsen

Design of sensor system for slump
test of fresh concrete

Master’s thesis in Electronic Systems Design
Supervisor: Dag Roar Hjelme
Co-supervisor: Dominik Osinski
June 2022

M
as

te
r’s

 th
es

is

Tobias Thorvaldsen

Design of sensor system for slump test
of fresh concrete

Master’s thesis in Electronic Systems Design
Supervisor: Dag Roar Hjelme
Co-supervisor: Dominik Osinski
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Getting a measure of the consistency of concrete is essential to identify whether a
particular batch of fresh concrete is appropriate for construction operations. The
slump test is one of many existing methods for finding the consistency of fresh
concrete and is the most used method in Norway. Businesses in the construction
industry now seek a digital solution to replace the standard slump test to facilitate
the conduction of the test and increase its efficiency. To this end, a measurement
concept using an accelerometer to measure the impact of an object falling into the
fresh concrete was created, and a prototype was designed to examine whether the
measurement concept works as an equivalent to the standard slump test. The sensor
system implements an accelerometer, with an output data rate of 1600 Hz and a
measurement range of ± 200 g, with an Arduino Nano 33 BLE. A python script
that runs on a nearby laptop handles control of the sensor system and storage of
the sampled data, allowing it to be appropriately analyzed. Preliminary tests were
conducted, giving valuable insight into how further testing should be carried out,
albeit raising more questions than giving answers. No definite conclusion could be
made on whether the developed measurement concept could function as a way of
measuring the consistency of fresh concrete.

i

Sammendrag

Å f̊a et mål p̊a konsistensen til fersk betong er essensielt for en bygningsarbeider for
å vite om et spesifikt parti med betong kan brukes. Slumptesten er en av mange
eksisterende metoder for å måle konsistensen til fersk betong og er den mest brukte
metoden i Norge. Bedrifter innenfor bygg- og anleggssektoren søker n̊a en mulig
digital løsning som kan erstatte slumptesten, med formål om å øke effektiviteten
og gjøre det enklere å ta konsistensmålinger av fersk betong. Et målekonsept som
bruker et akselerometer til å måle støtet som oppst̊ar n̊ar et objekt faller ned i
betongen ble laget, og en prototype ble konstruert for å teste ut om målekonseptet
kan fungere som en ekvivalent til slumptesten. Sensorsystemet er bygget opp av et
akselerometer, med en utdatahastighet p̊a 1600 Hz og et m̊aleomr̊ade p̊a ± 200 g, og
en Arduino Nano 33 BLE. Et script skrevet i Python som kjøres p̊a en nærst̊aende
bærbar PC kontrollerer sensorsystemet og lagrer dataen fra målingene slik at de
kan analyseres i etterkant. Innledende tester ble gjennomført som ga god innsikt i
hvordan fremtidig testing burde gjennomføres, selv om de resulterte i at man stod
igjen med flere spørsmål enn svar. Ingen definitiv konklusjon kunne tas p̊a om det
utviklede målekonseptet kan fungere til å måle konsistensen av fersk betong.

ii

Acknowledgements

I would like to thank Dominik Osinski at NTNU for all the help he has given me
throughout the project. I would also like to thank Gunrid Kjellmark and Natalia
Iakymenko at SINTEF for giving me the fantastic opportunity to work on such
an exciting project. I want to give thanks to Yannick Martin Anton at SINTEF
for allowing me to come visit and conduct testing of the prototype at SINTEF’s
concrete laboratory. I am very grateful to Kari Aarstad at Unicon AS for setting up
and giving Dominik and me a guided tour around one of Unicon’s concrete factories.
I must also thank Olav Aleksander Myrvang at NTNU for helping me with finding
components for and creating the prototype. I would also like to thank the people at
the electronics and prototype laboratory at NTNU for soldering the circuit. I am
also extremely grateful to Erling Bakken, Christer Nesset and Morten Ekeberg at
NTNU for constructing the housing for the sensor system. Making the prototype
would never have been completed without their help. Lastly, I would like to thank
all the concrete experts who helped provide valuable information about concrete
and feedback on the measurement concept.

iii

Table of Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Digital transformation in the construction industry 1

1.1.2 SiteCast . 2

1.1.3 Sensor system for slump test of concrete 2

1.2 Client . 2

1.3 Problem description . 3

1.4 Delimitation . 3

1.5 Report Structure . 3

2 Theory 4

2.1 Basics of concrete . 4

2.2 Workability and consistency of fresh concrete 5

2.3 Tests for measuring consistency and workability of fresh concrete . . . 5

2.3.1 Slump test . 5

2.3.2 Slump flow test . 7

2.3.3 Kelly ball test . 8

3 Methodology 9

3.1 Developing the measurement concept 9

3.2 Making a prototype . 11

3.2.1 Hardware . 11

3.2.2 Software . 13

3.2.3 Designing the housing . 15

iv

3.3 Finished prototype . 15

3.4 Testing . 18

3.4.1 Sensor setup . 19

3.4.2 Testing day 1 . 19

3.4.3 Testing day 2 . 19

4 Results 22

4.1 Results from testing day 1 . 22

4.2 Results from testing day 2 . 22

5 Discussion 28

5.1 Lessons learned from testing . 28

5.2 Test setup . 30

5.3 Analyzing the results . 30

5.4 Housing . 30

5.5 Software . 31

5.6 Chosen components . 32

5.7 Taking inspiration from the Kelly ball test 32

5.8 Source criticism . 32

5.9 General reflections on the project . 33

6 Conclusion 34

Bibliography 35

A Sampling program - Main script 38

B Sampling program - Accelerometer functions 44

C Sampling program - ADXL372.cpp header file 49

D Processing program 53

v

List of Figures

2.1 Different types of slump [19]. 6

2.2 Slump flow test concrete spread. 8

2.3 Kelly ball [21]. 8

3.1 Illustration of measurement setup for ideal complete sensor solution. . 10

3.2 Top layout of EVAL-ADXL372Z, snippet from [39]. 12

3.3 Picture of sensor system circuit, without battery. 13

3.4 Circuit diagram of sensor system wire-connections. 14

3.5 Flowcharts for both programs. 16

3.6 Marking buoy used as starting point for sensor housing. 17

3.7 Pictures of sensor housing and finished prototype 17

3.8 Picture of finished prototype, circuit half. 18

3.9 Picture of prototype when closed. 18

3.10 Picture of concrete mixer the prototype was dropped into during testing. 20

3.11 Picture of 20 L bucket with fresh concrete the prototype was dropped
into during testing. 21

4.1 Total acceleration measured on test 7, testing day 2. 23

4.2 Total acceleration measured on test 8, testing day 2. 24

4.3 Total acceleration measured on test 9, testing day 2. 24

4.4 Total acceleration measured on test 10, testing day 2. 25

4.5 Total acceleration measured on test 11, testing day 2. 25

4.6 Total acceleration measured on test 12, testing day 2. 26

4.7 Total acceleration measured on test 13, testing day 2. 26

vi

4.8 Total acceleration measured on test 14, testing day 2. 27

vii

List of Tables

2.1 Slump classes [29]. 6

2.2 Flow classes [29]. 7

3.1 Noteworthy specifications for Arduino Nano 33 BLE [37]. 11

3.2 Noteworthy specifications for ADXL372 [38]. 12

3.3 Relevant accelerometer settings for testing setup. 19

3.4 Testing day 2 bucket drops height for the 8 last tests of the day. . . . 20

viii

List of abbreviations

Abbreviations and acronyms Definition

g Gravitational acceleration
BLE Bluetooth low energy
IoT Internet of things
RAM Random access memory
SRAM Static random access memory
I/O Input/output
PWM Pulse width modulation
UART Universal asynchronous receiver-transmitter
SPI Serial peripheral interface
I2C Inter-integrated circuit
ADC Analog-to-digital converter
DAC Digital-to-analog converter
RMS Root mean square
ODR Output data rate
HPF High-pass filter
LPF Low-pass filter
CNC Computer numerical control
CSV Comma-separated values
FIFO First in first out
MSB(s) Most significant bit(s)
LSB(s) Least significant bit(s)
LiPo Lithium-polymer

ix

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background

1.1.1 Digital transformation in the construction industry

Productivity in the construction industry has declined in several countries since
2000. Statistics Norway [1] did calculations back in 2018 which indicated that
the productivity in the construction industry had decreased with 10%, whereas
the productivity in all other market-oriented businesses in mainland Norway had
increased by 30% in the same period (2000 – 2016). Productivity is defined as gross
product at constant prices per hour worked. The inability of construction businesses
to adopt process and technology innovations has been viewed as one of the main
reasons for this. Compared to almost all other big industries, the construction
industry is one of the least digitized. A digital transformation is required to meet
the increasing demand of housing and infrastructure, at the same time as contractors’
financial returns are often low and volatile. Digital transformation can be defined
as the implementation of advanced technologies and ways of working to enhance the
development and delivery of projects [2, 3, 4, 5].

Construction projects going over budget and taking longer to finish than planned
has also become a common occurrence. Over the last couple of years, many busi-
nesses have made digital transformation attempts, but several of the attempts have
been unsuccessful. The main problem is that businesses have worked on digital
transformation separately instead of cooperating. A typical construction project in-
volves a multitude of independent contractors and suppliers, and projects are never
identical, making it difficult to implement digital solutions that all involved parties
are willing to adopt, which can also be used on future projects. Cooperation across
the value chain is reportedly the the only way to achieve digital transformation [3,
4, 5, 6].

Implementing sensor technology to improve the efficiency and the accuracy of ex-
isting methods and procedures is one of the many areas being analyzed to address
the negative trend in productivity. The last couple of years have seen a signific-
ant increase in IoT technology being used in a vast number of applications like

Page 1 of 57

CHAPTER 1. INTRODUCTION

smart housing, manufacturing, agriculture, energy management and many more.
This makes it reasonable that the construction industry also seeks possible ways to
implement IoT into their value chain cost-efficiently. A prerequisite for investing
in sensor technology is that it improves existing procedures and methods, meaning
that in-depth studies are required to identify what can be improved with the use of
sensors [3, 4, 5, 6].

1.1.2 SiteCast

SiteCast is an example of a project where several businesses have come together to
find solutions to increase efficiency and reduce cost. Specifically, the SiteCast project
seeks to solve challenges with site casting of concrete, which is when a concrete
element is cast at the construction site. The other typical way of constructing with
concrete is by using precast concrete, where the elements are cast in a factory and
then transported to the construction site. Areas of investigation for the project are
coordination, materials, engineering, planning, and use of sensor technology. The
end goal is to reduce time consumption with 30% and cost by 15% compared to
what was the level at the start of the project, in 2017. At the time of writing, the
project is still ongoing [7, 8, 9].

1.1.3 Sensor system for slump test of concrete

Finding a digital solution for consistency measurements of fresh concrete is one of
the things being investigated as part of the SiteCast project. The basic idea is to
use sensor technology to replace an already existing method, called slump test. A
sensor system must give measurements at least as accurate as the slump test, but it
should be easier and faster to perform. Knowing the consistency of fresh concrete is
important for construction workers to know if a specific batch of concrete delivered to
the construction site is usable. Whether it is usable or not depends on the structural
elements that are intended to be cast with the concrete. For example, casting a floor
requires a different consistency of the concrete than casting a wall.

1.2 Client

This thesis is carried out on the request from SINTEF and Unicon AS. SINTEF
is one of Europe’s largest independent research organizations, with head office in
Trondheim, Norway [10]. SINTEF is organised as an enterprise group consisting of
six research institutes [10]: SINTEF Community, SINTEF Digital, SINTEF Energy,
SINTEF Industry, SINTEF Manufacturing and SINTEF Ocean [11]. My contact
person at SINTEF, and for the SiteCast project, is Gunrid Kjellmark, research
manager at SINTEF Community [12]. Unicon AS is Norway’s leading concrete
supplier and is a wholly owned subsidiary of the Italian Cementir Group [13].

Page 2 of 57

CHAPTER 1. INTRODUCTION

1.3 Problem description

The goal of this master’s thesis is to develop a measurement concept, using sensors,
which can replace the slump test. A prototype will then be designed based on the
measurement concept; to test if it can work as an equivalent to the slump test.
Some prerequisites for the sensor system are: It needs to deliver results of at least
the same accuracy as the slump test; it needs to be easy to use; it should require
less equipment to carry out than the slump test; and it needs to be faster to perform
than the slump test. The thesis is a continuation of a project that has been worked
on for three semesters already.

1.4 Delimitation

Creating a sensor system based on a measurement concept, of which no existing
research can be found, requires extensive knowledge of what is to be measured.
In this case, this is the consistency of fresh concrete. The consistency is just one
of many interacting properties of concrete, which complexity means that the entire
master’s thesis could go into only learning about concrete. Without existing research
to use as a basis for the sensor system, a prototype would have to be constructed
to test whether or not the measurement concept works to measure the consistency.
The time limitations of the thesis requires the work from the previous semesters to
be used as the basis for creating a prototype to test the measurement concept. No
time will be spent on developing other measurement concepts, even if the existing
one might not be the ideal solution.

1.5 Report Structure

This report presents the work done on the master’s thesis, including the most im-
portant parts of the work previously done on the project. The report is built up of
four main parts. These are Chapter 2: Theory, Chapter 3: Methodology, Chapter
4: Results, and Chapter 5: Discussion. In Chapter 2: Theory, the basics of con-
crete and an explanation of some methods for measuring the consistency of concrete
are presented to explain what the sensor system is supposed to do, and what it is
supposed to replace. It mainly consists of revised work from previous semesters. In
Chapter 3: Methodology, an explanation of how the problem was approached and
attempted solved is presented. Section 3.1 is the part of this chapter that presents
work mostly done in previous semesters. In Chapter 4 Results, the results from
testing are presented. Chapter 5: Discussion shows the analysis of the results, the
lessons learned, and reflections about the project, as well as ideas and thoughts
relevant for possible further work on the project.

Page 3 of 57

CHAPTER 2. THEORY

Chapter 2

Theory

2.1 Basics of concrete

Concrete is the second-most-used substance in the world after water, and is an
artificial composite material made from cement, aggregates, and water. Typical
aggregates are sand, crushed stone, and gravel. The larger aggregates like crushed
stone and large gravel are generally referred to as coarse aggregates and the smaller
aggregates like small gravel and sand are generally referred to as fine aggregates.
Admixtures in the form of powder or fluids can be added to a concrete mixture
to give it certain characteristics. Some examples of admixtures are: accelerators,
which speeds up the setting/hardening process of the concrete; plasticizers and
superplasticizers, which increase the workability of the fresh concrete, allowing it to
be placed more easily; and pigments, which alter the color of the concrete, used for
aesthetic purposes [14, 15, 16, 17].

Combining cement and water creates a glue-like substance called cement-paste,
which binds the aggregates together. The Amount of water content in the paste
is the main factor affecting the workability of a concrete mixture and its strength.
A simplified explanation of the effect water content has on the workability and the
strength is that high water content gives high workability but low strength, while
low water content gives low workability and high strength. With the correct admix-
tures however, it is possible to get a concrete mixture with high strength and high
workability with the use of little water, which is the perfect scenario [14, 15, 16, 17,
18, 19].

The mixing ratio between cement-paste and aggregates, and the types of aggregates
used, vary depending on what will be constructed with the mixture. Regardless
of the application for a concrete mixture, the degree of compaction is of great im-
portance, especially for the strength of the concrete. Compaction of concrete is
an operation with the goals of expelling voids, i.e., entrapped air, in freshly placed
concrete, and packing aggregates together to increase the density of the concrete.
Increased density gives increased strength. Concrete is usually compacted by the
means of vibrating or ramming [14, 15, 16, 17, 18, 20, 21].

Page 4 of 57

CHAPTER 2. THEORY

2.2 Workability and consistency of fresh concrete

Workability is best defined as the amount of work needed to achieve full compac-
tion. Another more quantitative definition of workability is that: Workability is a
property determining the effort required to manipulate a freshly mixed quantity of
concrete with minimum loss of homogeneity. Concrete mixture homogeneity is a
percentage according to the given composition of components, with a mixture being
considered homogeneous if samples taken from different places in the mixer contain
the components of the mixture in equal percentages [22]. Another term used to
describe the state of fresh concrete is consistency. Consistency of concrete is best
defined as the relative mobility or ability of freshly mixed concrete to flow. In a
way, it describes the degree of wetness of a concrete mixture. Within limits, wet
concrete mixtures are more workable than dry concrete mixtures. There exists more
definitions of workability and consistency than presented above [17, 19, 21, 23, 24].

As described by A. M. Neville:

Technical literature abounds with variations of the definitions of work-
ability and consistency but they are all qualitative in nature and more
reflections of a personal viewpoint rather than of scientific precision [21].

2.3 Tests for measuring consistency and workab-

ility of fresh concrete

2.3.1 Slump test

Slump test of fresh concrete is one of the most used on-site tests carried out to
determine the consistency and the workability of a concrete mixture. The necessary
equipments for conducting a slump test are: A quadratic metal plate with side
lengths of 700 mm; a hollow cone with a height of 300 mm and opening widths of
100 mm and 200 mm; a metal rod with a length of 380 mm measuring 16 mm in
diameter; and something to measure length/height [19, 21, 25, 26, 27, 28].

A slump test is then performed with the following procedure, according to [19, 21,
25, 26, 27, 29]:

1. The inside and base, the 200 mm opening, of the cone is moisturized to reduce
any surface friction which might influence the measurement.

2. The cone is placed atop the metal plate, in the center of it, with the base
facing down.

3. A sample of fresh concrete is extracted from the batch that is to be examined.

4. The concrete is poured into the cone in 3 rounds, each round filling about 1/3
of the cone’s height. Between each round the concrete is tamped 25 times with
the rod.

Page 5 of 57

CHAPTER 2. THEORY

5. When the cone is filled, any concrete reaching above the height of the cone,
and any concrete that has dropped down on the metal plate, is removed.

6. The cone is lifted vertically up, without sideways movement or twisting, over
the course of 2 to 5 seconds.

7. The concrete will then slump. Figure 2.1 shows different examples of slump
that might occur. True slump indicates the test was successful, and the meas-
urement can be taken. Zero slump and collapsed slump indicates that the
workability/consistency is outside the limits of the test. A shear slump indic-
ates that the test went wrong and must be redone. If shear slump persists it
is an indication of lack of cohesion in the mix, which means that aggregates
may separate, and that the mixture is of unsatisfactory quality.

8. In the case of true slump, the decrease in the height of the slumped concrete,
from the cone’s height, is measured to the nearest 10 mm. This is the slump
value.

9. The measured slump value is then compared with a table given in for example
standard NS-EN 206 [30]. The standard used may vary from country to coun-
try. This table is shown in Table 2.1 and assigns the measured slump to a
slump class ranging from S1 to S5. S1 equals low workability and consistency,
and S5 equals high workability and consistency.

Figure 2.1: Different types of slump [19].

Table 2.1: Slump classes [29].

Slump Class Slump (mm)

S1 10 to 40
S2 50 to 90
S3 100 to 150
S4 160 to 210
S5 ≥ 220

Although the slump test is described to measure the workability of concrete, it
does not measure it directly. The same slump value can be measured for concrete
mixtures with different workabilities, depending on the composition of aggregates in
the mixture. It is still a useful on the site check on the batch-to-batch or hour-to-
hour variation in the materials being fed into the mixer [21].

Page 6 of 57

CHAPTER 2. THEORY

2.3.2 Slump flow test

The slump flow test of fresh concrete is similar to the slump test. It is usually
performed on concrete that will show collapsed slump with the slump test, i.e., on
concrete with consistency/workability higher than what can be measured with the
slump test. The necessary equipment for carrying out the slump flow test is: A
quadratic metal plate with side lengths of 700 mm; A hollow cone with a height of
200 mm and opening widths of 130 mm and 200 mm; and something to measure
length/height [31].

A slump flow test is then performed with the following procedure, according to [31]:

1. Place the cone atop the metal plate, in the center of it, with the base facing
down.

2. A sample of fresh concrete is extracted from the batch that is to be examined.

3. The concrete is poured into the cone.

4. When the cone is filled, any concrete reaching above the height of the cone,
and any concrete that has dropped down on the metal plate, is removed.

5. The cone is lifted vertically up, without sideways movement or twisting.

6. The concrete will flow out on the plate as in Figure 2.2.

7. The largest diameter, and the diameter perpendicular to that, are measured
and the average of them is calculated. This is the flow value.

8. The flow value is then compared with a table given by for example standard
NS-EN 206 [29]. The standard used may vary from country to country. This
table is shown in Table 2.2 and assigns the measured flow value to a flow class
ranging from F1 to F6. F1 equals low workability and consistency, and F6
equals high workability and consistency.

Table 2.2: Flow classes [29].

Flow Class Flow (mm)

F1 ≤ 340
F2 350 to 410
F3 420 to 480
F4 490 to 550
F5 560 to 620
F6 ≥ 630

Page 7 of 57

CHAPTER 2. THEORY

Figure 2.2: Slump flow test concrete spread.

2.3.3 Kelly ball test

The Kelly ball test, or ball penetration test, is a test that is similar to the slump
test, serving as a simple on-site check of the consistency for control purposes. It
is rarely used outside the United States. Necessary equipment for carrying out the
test is the Kelly ball, see Figure 2.3, with its name stemming from the inventor of
the test, J. W. Kelly. It consists of a 13.6 kg metal ball with a diameter of 152 mm
attached to a stem which slides through a metal frame. When testing, the apparatus
is placed on a larger surface of fresh concrete with the frame resting on the concrete.
The ball’s weight will make it sink into the concrete, and the penetration depth is
what is used as a measurement of the consistency and the workability. Because it
requires less equipment and can be carried out in the concrete form, it is faster and
simpler than the slump test [19, 21].

Figure 2.3: Kelly ball [21].

Page 8 of 57

CHAPTER 3. METHODOLOGY

Chapter 3

Methodology

3.1 Developing the measurement concept

The first step in creating a sensor system was to develop a measurement concept.
Through the literature study it was not discovered any existing concept for meas-
uring consistency of fresh concrete with sensors in situ. Methods that use sensors
exist but are all limited to being performed in a laboratory. Research into exist-
ing concrete sensors used in situ only showed sensors used for monitoring concrete
during the hardening period or already hardened concrete, see [32] and [33] for ex-
amples. This meant that a measurement concept had to be made from scratch. An
attempt to dive into the properties defining fresh concrete only gave insight into
how complex a material it is. Advice from concrete experts was needed to limit the
workload of acquiring sufficient knowledge about concrete to be able to say what
can be measured from it. The main teaching from the counseling was that there are
no single or few parameters that can be measured directly to define the consistency
of fresh concrete. Based on the definition presented in section 2.2, this makes sense:

Consistency of concrete is best defined as the relative mobility or ability
of freshly mixed concrete to flow. In a way, it describes the degree of
wetness of a concrete mixture.

The definitions for consistency of fresh concrete discovered through the literature
study were all vague like the one above. Existing tests for measuring the consistency
and the workability of fresh concrete do not measure it directly. The slump test,
slump flow test and Kelly ball test presented in section 2.3 are all based on the
observed behavior of fresh concrete. Consulting with professionals gave the impres-
sion that experience is the main factor for determining whether a batch of fresh of
concrete has the required consistency or not. A concrete laboratory and a concrete
factory were visited to gain experience that could help with developing a measure-
ment concept. Both gave valuable insight that could not have been gained through
mere reading, but raised more questions than provide solutions to already existing
issues.

Page 9 of 57

CHAPTER 3. METHODOLOGY

Going back to the basis of the project, the goal was to create a sensor system that
could replace the slump test. The deep dive into the properties of concrete showed
that looking at the problem from a simplified perspective was needed to be able to
create anything at all. Developing a method that could be tested and correlated
with the slump test was deemed a good direction for the project. Based on this, a
concept was developed where the idea was to have a sensor system that could be
dropped into the fresh concrete. The resulting characteristic of the impact created
by the sensor system landing in the concrete would be correlated with the slump test
to determine the consistency. Exactly which part of the characteristic that could be
used must be found through testing.

In an ideal complete solution, the sensor system can be controlled via an application
on a phone or a tablet using Bluetooth to connect with it. Measurements would be
carried out in the following way:

1. A sample of fresh concrete is extracted from the batch that is to be examined.

2. The concrete is placed in a 20 L bucket.

3. The sensor system is activated with the app.

4. The sensor system is dropped into the fresh concrete. Figure 3.1 shows an
illustration of the measurement setup.

5. Results from the measurement is shown in the app.

6. The sensor system is deactivated with the app.

If this way of measuring the consistency of fresh concrete is possible, it will be much
simpler and more efficient than the slump test and slump flow test. It is important
to note that a finished solution would probably look different from the one presented
above, as it is just a concept.

Figure 3.1: Illustration of measurement setup for ideal complete sensor solution.

Page 10 of 57

CHAPTER 3. METHODOLOGY

3.2 Making a prototype

3.2.1 Hardware

Choosing components

The next step in the process was to choose components for constructing a proto-
type. Prerequisites for the prototype were that it must be able to measure the
force of an impact and transmit raw data to a PC. Transmitting the data to a PC
was needed because there was still uncertainty connected to how the measurement
would be used to correlate with the slump test measurements. Because the sensor
system would be dropped into the fresh concrete, a wired connection to a PC would
be impractical. Therefore, it was decided that the data should be transmitted via
Bluetooth. Based on this, a complete prototype of the sensor system would con-
sist of an accelerometer, for measuring the impact; a microcontroller board with a
Bluetooth radio, for controlling the system and transmitting data; and necessary
parts for powering the system with a battery.

Arduino Nano 33 BLE

A microcontroller board that met the mentioned requirements was the Arduino
Nano 33 BLE. It is based on the nRF52840 microcontroller, see [34]. The datasheet
for the Nano 33 BLE can be found at [35]. A full pinout diagram can be found at
[36]. Noteworthy specifications are shown in Table 3.1.

Table 3.1: Noteworthy specifications for Arduino Nano 33 BLE [37].

Parameter Value / Note

Operating voltage 3.3 V
Input voltage 5 - 21 V
Clock speed 64 MHz

CPU flash memory 1 MB
SRAM 256 kB

Numb. of digital I/O pins 14
PWM pins All digital pins
UART Yes
SPI Yes
I2C Yes

Numb. of analog input pins 8 (ADC 12 bit 200 ksamples)
Analog output pins Only through PWM (no DAC)
External interrupts All digital pins

USB Native to nRF52840 processor
Length 45 mm
Width 18 mm

An operating voltage of 3.3 V limits the accompanying accelerometer to be sufficient

Page 11 of 57

CHAPTER 3. METHODOLOGY

with a supply voltage of 3.3 V. The Nano has a 5 V output pin, but it can only be
used if it is powered via the USB port. Other than that, the availability of both
analog and digital input pins, and the built in SPI and I2C, opened up for a vast
number of accelerometers to be used. The small size of the board helps with keeping
the system as small as possible.

EVAL-ADXL372Z

An accelerometer that met the requirements was the ADXL372. The datasheet can
be found at [38]. The evaluation board variant of the accelerometer, the EVAL-
ADXL372Z, was chosen to simplify hooking up the sensor system, eliminating the
need for a PCB. A user guide for the EVAL-ADXL372Z can be found at [39]. Note-
worthy specifications are shown in Table 3.2.

Table 3.2: Noteworthy specifications for ADXL372 [38].

Parameter Value / Note

Measurement range ± 200 g
Cross axis sensitivity ± 2.5 %
Output resolution 12 Bits

Scale factor 100 mg/LSB
RMS noise (normal operation) 3.5 LSB
RMS noise (low noise mode) 3 LSB

ODR 400 - 6400 Hz
HPF, -3 dB corner 0.24 - 30.48 Hz
LPF, -3 dB corner 200 - (ODR / 2) Hz

Operating voltage range 1.6 - 3.5 V
SPI Yes
I2C Yes

The EVAL-ADXL372Z is equipped with three factory-installed capacitors for by-
pass, see Figure 3.2 for reference: two 0.1 µF capacitors, C1 and C2, and a 10 µF
capacitor, C3. C2 and C3 are VS bypass capacitors for reducing analog supply noise
and C1, located between VIO and GND, is for reducing digital clocking noise. It
also has readied holes for installing headers. High specifications for the measure-
ment range and output data range were good, given the uncertainty connected to
the peak acceleration and frequency of the impact [38].

Figure 3.2: Top layout of EVAL-ADXL372Z, snippet from [39].

Page 12 of 57

CHAPTER 3. METHODOLOGY

Battery setup

A PowerBoost 500C accompanied with a 250 mAh 3.7 V LiPo battery made up
the battery setup for powering the system. This was chosen to keep the system
small and practical, with the PowerBoost allowing for recharging the battery, as
well as boosting the voltage to the necessary 5 V needed for powering the Arduino.
Even though the PowerBoost comes with a battery connector, it did not fit with the
connector on the acquired battery. Therefore, a separate connector was added to
the circuit. More information about the PowerBoost can be found at [40, 41, 42].

Complete circuit

With all the necessary components acquired, the system was connected on a perf-
board. Figure 3.3 shows the finished circuit without the battery, which was connec-
ted with a strong double-sided tape after the picture was taken. Figure 3.4 shows
a circuit diagram of the wire-connections. A resistor, shown as R1 in the circuit
diagram, was added to reduce noise on the accelerometer, as recommended in the
datasheet. The added separate connector can be seen in green, placed between the
Nano and the PowerBoost, in Figure 3.3.

Figure 3.3: Picture of sensor system circuit, without battery.

3.2.2 Software

Software for the sensor system was divided into two main programs: One program
that manages the sampling of data on the accelerometer and transmits the raw data
via Bluetooth to an external device for processing; and one program that receives
said data and processes it. Henceforth these will be referred to as the sampling

Page 13 of 57

CHAPTER 3. METHODOLOGY

Figure 3.4: Circuit diagram of sensor system wire-connections.

program and the processing program, respectively. Since an Arduino microcontroller
is used to interface with the accelerometer, the sampling program is written in C++.
Python has several Bluetooth libraries available which simplifies the programming
work, making Python a good choice for writing the processing program.

Sampling program

In total, the sampling program consists of three scripts: A main script, a script with
functions for setting up the accelerometer, and a header file for the accelerometer
functions script; all respectively shown in Appendix A, Appendix B and Appendix
C. The ADXL372 has a vast amount of settings, which alter the functionality of
the accelerometer. It can, for example, be set up to detect an impact and measure
the peak acceleration, or just sample continuously. Because the proper way to set
up the accelerometer for impact testing was unknown, the accelerometer functions
script was created to be as general as possible, allowing for quick adjustments of the
settings. See [38] for all possible settings.

Figure 3.5a shows a flowchart of how the sampling main script works. For testing
purposes, it was set up to sample continuously for a given time. The sampling time is
defined by the output data rate of the accelerometer and the “NUMB OF BYTES”

Page 14 of 57

CHAPTER 3. METHODOLOGY

constant, line 24 in Appendix A, with the constant being a multiple of the output
data rate. The constant must also be multiplied by 2 to correct for the fact that each
sample is represented as a 16-bit value, i.e., 2 bytes. For example: If the ODR is set
to 3200 Hz, a sample time of 4 seconds is achieved by setting “NUMB OF BYTES”
to 25 600.

Processing program

The processing program can be split into two parts. One part handles the Bluetooth
connection with the Arduino, and the other part processes the received data, saves it
into a CSV file and plots a graph of it. For testing purposes, the processing program
was setup up to save the raw data of the accelerometer. The Arduino transmits the
data as bytes, meaning the calculation into g-force is done in the processing program.
Figure 3.5b shows a flowchart of how the processing program works, and it can be
viewed in its entirety in Appendix D. It is important to note that the flowchart is
a simplified explanation of how the program works. In addition, some parts of the
code shown in Appendix D are redundant but have not been removed because of a
lack of time.

3.2.3 Designing the housing

Dropping the sensor system into fresh concrete requires a robust housing to protect
the electronics. It also needs to be able to handle a pH-value of 13. For the sake of
simplicity, it was determined that a generic marking buoy would serve as the starting
point of creating the housing, see Figure 3.6. It was split in two and polished to
remove bumps on the surface. Two aluminum rings that could be screwed together
were made in a CNC milling machine and glued to each part of the buoy. An O-
ring was installed at the point where the aluminum rings were squeezed together
to prevent fresh concrete from getting to the inside of the housing and possibly
damaging the electronics. The finished housing is seen in Figure 3.7a.

3.3 Finished prototype

After the housing was complete, the sensor circuit shown in Figure 3.3 was attached
to it using divinycell [43], metal thread inserts glued into holes made in the divinycell,
and nylon screws. Figure 3.7b and Figure 3.8 shows the finished prototype when
open. Figure 3.9 shows the prototype when closed.

Page 15 of 57

CHAPTER 3. METHODOLOGY

(a) Sampling program flowchart

(b) Processing program flowchart

Figure 3.5: Flowcharts for both programs.

Page 16 of 57

CHAPTER 3. METHODOLOGY

Figure 3.6: Marking buoy used as starting point for sensor housing.

(a) Picture of sensor housing. (b) Picture of finished prototype
when split.

Figure 3.7: Pictures of sensor housing and finished prototype

Page 17 of 57

CHAPTER 3. METHODOLOGY

Figure 3.8: Picture of finished prototype, circuit half.

Figure 3.9: Picture of prototype when closed.

3.4 Testing

With the prototype complete, testing could commence. Because of limited time left
on the project, only two days of testing took place. The location for testing was
SINTEF’s concrete testing laboratory, see [44]. On both days, prototype testing was
performed at the same time as other testing was carried out in the laboratory. This
resulted in not getting the ideal setup for testing the prototype.

Page 18 of 57

CHAPTER 3. METHODOLOGY

3.4.1 Sensor setup

As mentioned in Section 3.2.2, the accelerometer was configured to sample continu-
ously for a given time. More specifically, it was set to sample for 3 seconds. The
settings for the accelerometer can be seen in the accelerometer setup function start-
ing on line 171 in the main script, see Appendix A. Relevant settings can also be
seen in Table 3.3. Some of the settings need to be explicitly set because of how
the script is set up, but do not affect this specific type of measurement in any way.
“NUMB OF BYTES” is set to 9600 to achieve 3 seconds sampling time with the
mentioned settings.

Table 3.3: Relevant accelerometer settings for testing setup.

Setting Value / Note

FIFO mode Bypassed
ODR 1600 Hz

Low noise mode On
Bandwidth 800 Hz

High pass filter corner Corner 3 (0.99 Hz at ODR 1600 Hz)
Low pass filter Enabled
High pass filter Enabled

Mode of operation Full bandwidth measurement mode

3.4.2 Testing day 1

Testing day 1 consisted mainly of general testing of the prototype, given this was
the first time it was dropped into fresh concrete. Because testing of the prototype
took place at the same time as other testing was happening at the lab, only seven
drop tests were performed. This came mainly because of a prototype test requiring
two people: One person controlling it from a nearby laptop and one person dropping
it. This made doing a test possible only when one of the workers at the laboratory
was available to help.

The concrete used for the tests was of such a high consistency that it was beyond the
limits of the slump test, meaning the slump flow test was used instead. At first, the
concrete consisted of the different ingredients mentioned in Section 2.1. Later, fiber
was added into the mixture in three stages, with testing being performed between
each mixing stage. An explanation of what effects fiber has on a concrete mixture
is beyond the scope of this report. See [45] for information about fiber reinforced
concrete. For all drop tests, the prototype was dropped directly into the mixer, see
Figure 3.10. The height it was dropped from varied, but was not recorded.

3.4.3 Testing day 2

Testing day 2 consisted mainly of testing how the height the prototype was dropped
from affected the measured peak acceleration of the impact. The goal was to see if

Page 19 of 57

CHAPTER 3. METHODOLOGY

Figure 3.10: Picture of concrete mixer the prototype was dropped into during test-
ing.

any linearity between the height and peak acceleration could be found. For this day,
14 tests were performed. Of these, the first 6 were drops directly into the mixer,
see Figure 3.10, and the rest into a 20 L bucket, see Figure 3.11. Unlike the mixer
drops, the bucket drops were carried out by one person. The concrete used was the
same type as for testing day 1. For the drops into the mixer, the prototype was
dropped from about 22 cm above the concrete, measured from the bottom of the
housing. Drops into the bucket were performed at different heights. Table 3.4 shows
the drop height for the bucket tests.

Table 3.4: Testing day 2 bucket drops height for the 8 last tests of the day.

Drop number Height dropped from

7 20 cm
8 20 cm
9 30 cm
10 30 cm
11 40 cm
12 40 cm
13 40 cm
14 40 cm

Page 20 of 57

CHAPTER 3. METHODOLOGY

Figure 3.11: Picture of 20 L bucket with fresh concrete the prototype was dropped
into during testing.

Page 21 of 57

CHAPTER 4. RESULTS

Chapter 4

Results

4.1 Results from testing day 1

Testing day 1 gave no measurement that is worth presenting with graphs, but gave
good insight into the weaknesses of the prototype and possible improvements that
could be made to make testing go smoother. Although seven drop tests were per-
formed, only 5 of them were successful. During test number five and test number
seven the sensor system disconnected during the drop. No explanation was found
for the disconnection on test number 5. For test number 7 it was discovered to be
because of low power on the battery.

As mentioned in Section 3.2.1, an accelerometer with a ± 200 g measurement range
was chosen to have some leeway with regards to the peak acceleration of the impact.
For the developed ideal complete solution presented in Section 3.1, the drop height
was thought to be about 1 m. To get an idea of the peak acceleration this would
give, test number 6 was performed from a height of about 1 m, resulting in a peak
acceleration on the z-axis of about − 35 g.

After the testing day was complete, it was discovered that the O-ring had detached
in some areas, and that concrete residue had managed to slip into the threads, des-
troying the aluminum slightly. This resulted in the prototype needing some repairs
before more testing could be performed. Possible improvements to the prototype,
the test setup, and the general execution of the tests are presented in Section 5.

4.2 Results from testing day 2

From testing day 2, only the measurements of the bucket drops are worth presenting
as graphs. Results from test number 7 to 14 can be seen in Figure 4.1 to Figure 4.8.
They all show the total acceleration across all axis, calculated with this equation:

atot =
√

a2x + a2y + a2z (4.1)

Page 22 of 57

CHAPTER 4. RESULTS

where atot is the total acceleration, ax is the measured acceleration on the x-axis, ay
is the measured acceleration on the y-axis, and az is the measured acceleration on
the z-axis, all representing measurements from one sample. The x-axis on Figure 4.1
to Figure 4.8 has been cut to mostly include the impact and not the full 3 seconds
of sampling. The graphs should be viewed in correlation with Table 3.4.

Getting a consistent result from drops from the same height is the first step in trying
to find a possible relationship between the drop height and peak acceleration. Only
tests 11, 12, 13 and 14 can be used to say anything about this given these are the
only ones were several drops were taken from the same height. Test 11 and 12 shows
the same measurement, but test 13 and 14 are nowhere near. Other than that, it
does not appear to be a significant change in peak acceleration when the height is
increased by 10 cm.

Figure 4.1: Total acceleration measured on test 7, testing day 2.

Page 23 of 57

CHAPTER 4. RESULTS

Figure 4.2: Total acceleration measured on test 8, testing day 2.

Figure 4.3: Total acceleration measured on test 9, testing day 2.

Page 24 of 57

CHAPTER 4. RESULTS

Figure 4.4: Total acceleration measured on test 10, testing day 2.

Figure 4.5: Total acceleration measured on test 11, testing day 2.

Page 25 of 57

CHAPTER 4. RESULTS

Figure 4.6: Total acceleration measured on test 12, testing day 2.

Figure 4.7: Total acceleration measured on test 13, testing day 2.

Page 26 of 57

CHAPTER 4. RESULTS

Figure 4.8: Total acceleration measured on test 14, testing day 2.

Page 27 of 57

CHAPTER 5. DISCUSSION

Chapter 5

Discussion

5.1 Lessons learned from testing

Making any sort of conclusion on whether this measurement concept might work
or not is difficult given the few amounts of tests that were done. Testing was only
possible on days when other tests took place at the concrete laboratory. Few days of
this combined with national holidays made the available days of testing even more
limited. However, the tests gave valuable insight into how further testing should be
carried out and possible improvements that could be made to the concept and proto-
type. Much time at the start of the project was spent on investigating concrete and
its properties to develop a concept that could work for consistency measurements.
At one point, it was concluded that the only way to achieve enough knowledge to de-
velop a working concept was to get hands on experience with concrete. This became
even more evident during the testing days. The more tests that were performed, the
more questions arose.

One of the questions was related to how the cohesion of the concrete mixture would
affect the measurements. It is natural to think that if the sensor system were to
fall in an area with a large concentration of coarse aggregates, the peak acceleration
and general characteristic of the impact would be different than if it was to land in
an area with few coarse aggregates. Researching this further would be required to
see if it would set limitations to the concept or straight up disprove if the concept
could work.

The cohesiveness of a concrete mixture is one of the things looked at when perform-
ing the slump test and slump flow test. It is a subjective qualitative perception
rather than a measured variable of the concrete, meaning there is no way for the
sensor system to measure it. Hypothetically, if the sensor system could measure the
consistency of fresh concrete with the same accuracy as the slump test, it would
not be possible to get a perception of the cohesiveness, which would be a major
drawback.

Another question was: How does the way the system is dropped affect the impact?
Dropping the system in the exact same way every drop was nearly impossible when

Page 28 of 57

CHAPTER 5. DISCUSSION

the tests were carried out by just one person, i.e., the bucket tests. The drops into
the mixer were not observed properly to see how similar the way of dropping was
for each drop. The question here is related to what can only be described as a lazy
drop, where the ball slides out of your fingers, or a sudden drop, where the ball
is instantaneously let go from your hands. It is thinkable that a lazy drop might
slow down the acceleration of the ball, making it have a lower speed when it hits
the concrete than with a sudden drop, ultimately changing the characteristics of the
impact.

Looking at the physics behind the force of the impact, we know that there are two
variables that we are in control of which would affect the peak acceleration. These
are the height the sensor system is dropped from and the weight of the system,
both of which there was no existing data for how heavily they would affect the peak
acceleration. The idea was to identify this through testing.

Dropping the system from different heights is easily done. The weight of the system,
on the other hand, would require alterations to the housing. Combined, these two
variables would decide the required measurement range on the accelerometer. Seeing
the − 35 g from the test when the system was dropped from about 1 m gives the
impression that ± 200 g is more than needed for a system of this weight. The
complete prototype weighed in at 737 grams. This means that an accelerometer
with a lower range would probably be a better option, given the weight is not
altered. A lower range will in most cases mean a better resolution, making it easier
to see small differences in the measured acceleration.

During testing on day number 2 it was realized that consistent measurements for
drops from the same height is the first step of testing the measurement concept.
Without consistent results from tests with the same drop height in concrete of one
specific consistency, there could be no possible way of measuring a difference in
the consistency of fresh concrete. The expectation beforehand was that consistent
results would occur, but after several drop tests from the same height it was rejected.
Results from the four drops from 40 cm, see Figure 4.5 to Figure 4.8, showed almost
the same peak acceleration for the first two drops, but the last two were far off.
As mentioned previously, the way the system was dropped might have affected the
measurements.

Another aspect of uncertainty that might have affected the measurements is the fact
that if the concrete is not continuously in motion, it starts hardening. In fact, the
reason for no additional tests on day two was that the concrete became too stiff.
Hardened concrete essentially affects the consistency. It was expected that the peak
acceleration would increase as the concrete hardened, which was the opposite of
what happened with the two last bucket drops from 40 cm.

An important note from the bucket drops is that for the later drops the concrete
was stirred slightly to keep it from hardening. Which drop this was started at was
not noted down. The possibility that a change in concentration of aggregates took
place between the drops from the same height is highly present, which might have
caused the difference in peak acceleration. As this is neither measurable nor possible
to observe, it makes it impossible to test if it has any impact on the measurements.

Page 29 of 57

CHAPTER 5. DISCUSSION

5.2 Test setup

Controlling all uncertainty aspects related to the tests would be a must to test
the measurement concept thoroughly. A contraption that would ensure the sensor
system was dropped in the same way every test would exclude any impact imprecise
human hands might have on the measurements. Such a contraption could also give
an exact measure of the height the system was dropped from. Dropping the ball
into the mixer instead of in a bucket of concrete would make it possible to keep the
concrete from hardening. This would allow for several tests to be performed on a
batch without the consistency changing and affecting the measurements. However,
this would still not make it possible to have a sense for the cohesion of the mixture
or control if the sensor system was dropped into an area with a relatively high or
low concentration of coarse aggregates. A possible workaround for the latter would
be to do drops in several places in the mixer instead of just in one place.

Using a phone application to control the sensor system and save the test data would
be preferable over bringing a laptop to the lab. This is because the concrete labor-
atory is a harsh environment for a computer. If more testing was to be carried out
then either a phone application should be developed or a laptop must be set up in
a proper place and used by a person who does not handle the concrete.

5.3 Analyzing the results

Because of a lack of time, the results from the tests were not properly analyzed.
Only the peak acceleration was looked at. The first step in analyzing the data
would be to filter it. The results from the bucket drops, see Figure 4.1 to Figure
4.8, have a lot of noise. Processing the data in Python was investigated, giving the
impression that creating a Python script for filtering the data would take a lot of
time. Finding software designed for analyzing impact measurements was considered
as an alternative. A program called “VibrationData Toolbox”, which is specified as
a signal analysis and structural dynamics software, looked promising at first glance,
albeit no extensive investigation into the software’s capabilities was performed. The
mentioned software can be checked out at [46].

5.4 Housing

The housing was designed to be as simple as possible to create. As long as it
served its purpose of protecting the electronics, it was good enough. Of possible
improvements that could be made to the housing, the notable part would be a
possibility to alter the weight of the system. If a new prototype were to be built
with this in mind, it would have to be larger. Making a housing out of metal instead
of plastic is an alternative. It would increase weight but might cause the system to
be unable to connect with an external device over Bluetooth.

Page 30 of 57

CHAPTER 5. DISCUSSION

5.5 Software

The software was developed to make the system ready for testing. For a finished
solution the code would need to undergo substantial changes, especially the pro-
cessing program. As it is set up right now, the sampled data from the accelerometer
is saved on the Arduino before transferring to the PC. This means that with the
current settings, a total of 28.8 kB of data is saved on the Arduino. This was only
possible because the Nano has 256 kB of RAM. The full 2 Mbit speed advertised
for the Bluetooth was not achieved, for unknown reasons. Continuous transfer was
attempted at first, but tests showed a loss of about 30% of the data. The indicate
mode was chosen instead of the standard read mode to ensure all data would come
through. A simplified explanation of the modes is that the indicate mode is where
the receiver must acknowledge that it has read the package before the transmit-
ter sends a new one, while the read mode is where the transmitter sends out data
as fast as possible and the receiver must try and catch it before a new package is
transmitted.

Transfer speeds went down to about 7 to 8 transfers a second in indicate mode.
Because of this the decision was made to transfer the data after the sample time
was complete and not continuously while sampling. An investigation was done into
why the transfer speed was so slow and possible ways to improve it, to no prevail.
Suggestions were found that there could be possible limitations in the Arduino BLE
library, but this has not been confirmed. All functions for the Bluetooth setup in
the sampling program were from this library.

Transmitting the data to the PC with indicate mode took up to twenty seconds. If
the sampling speed or sampling time were to be increased, the transmission time
would be even longer. The amount of RAM on the Arduino also limits the amount
of data that can be sampled with the current setup.

Sending the accelerometer data without processing was decided as the best solution
because of limitations in the Arduino BLE library. This was also the only way to
achieve a transmission time that was not unpractically long and to make it possible
to separate the different samples from each other. To expand on the latter: The
data in a Bluetooth package is represented as a byte-array. With a maximum of
244 bytes of data in 1 package, a total of 122 samples can be sent per package.
Each sample is a 12-bit value but needs to be represented as a 16-bit value. As
122 samples are sent as a neatly packed byte-array, which are all signed values, the
processing program needs to separate the samples into 1 and 1 byte and then handle
the MSBs and LSBs of the values individually to get the sign correct. To clarify:
The values from the accelerometer are represented as two’s complement values. The
MSBs and LSBs are then combined and converted to g-force.

The biggest drawback with the current processing program is that it must disconnect
from the sensor system to save data in a CSV file. Preferably, the sensor would
send a keyword indicating all data has been transmitted so that the processing
program could save it to a CSV file and prepare for a new test without disconnecting.
Connecting to the sensor system took up to twenty seconds. Without disconnecting
between tests, more tests could be performed in a shorter time.

Page 31 of 57

CHAPTER 5. DISCUSSION

5.6 Chosen components

Questions can be asked about whether the components chosen for the prototype were
the best-suited ones. The accelerometer showed noise above what was specified
as typical noise performance in the datasheet, see [38]. Possible causes for this
are many, and no investigation was done to identify exactly what caused it. It is
suspected that the main cause for the noise was the power supply from the Nano, but
this needs to be examined. Other than the noise, there were no significant drawbacks
to the ADXL372. A vast number of operation modes and settings gives great freedom
to the user. However, it is best suited for impact detection. I.e., applications
with focus on the peak acceleration. For detailed characterization of an impact, an
accelerometer with a higher resolution is suggested. If a new accelerometer was to
be used for further testing of the measurement concept, it would need to be able to
capture the peak acceleration and have a high sampling rate, allowing for all fine
details of the impact characteristic.

Using an Arduino Nano 33 BLE was initially decided on to simplify the programming
work. In hindsight, it might have made it too simple, but nothing can be said
confidently without diving into how the Arduino BLE library functions work. If
the issues regarding the transfer speed were known when choosing a microcontroller
board, more research would have gone into it before deciding. It was lucky the Nano
had enough RAM to store many samples from the accelerometer so that it could
transfer all of them after the sampling time had finished, as this was not considered
when choosing a microcontroller board.

5.7 Taking inspiration from the Kelly ball test

When attempting to find inspiration for developing the measurement concept, the
Kelly ball test was discovered, see Section 2.3.3. This test supported the idea of
measuring the consistency by dropping something into the concrete. As the Kelly
ball test is not used here in Norway, it was impossible to observe it in practice. An
idea for further development of the measurement concept for the sensor system is
to imitate the Kelly ball test. One could create a sensor system that weighed the
same as the Kelly ball and had an accelerometer with higher resolution and lower
measurement range, which would base the consistency on the characteristic of the
system sinking into the concrete. This idea has not been appropriately researched
and is merely an idea presented for possible further work on the project.

5.8 Source criticism

All sources used to support the claim of low productivity in the construction industry
compared to other industries, as presented in the background for the master thesis in
Section 1.1, are from 2016 – 2018. No newer articles were found about this subject,
albeit not a substantial amount of time went into researching this. The important

Page 32 of 57

CHAPTER 5. DISCUSSION

thing to note is that things have most likely changed over the past couple of years,
but in which direction is unknown as no newer studies were found. The study from
Statistics Norway also showed severe uncertainties connected to the calculations,
related to how prizes were calculated and the definition of “construction industry”.
To expand on the latter: Results showed an increase in productivity when the
definition for “construction industry” was expanded to include all business areas
connected to the work at a construction site; not a decrease. These discoveries are
relevant to this thesis in the way that they raise questions about the reason and
background for the project itself.

5.9 General reflections on the project

Most of the total four semesters on this project were spent learning about concrete
and developing a measurement concept. Concrete is such a complex material that
identifying and understanding its relevant and important characteristics would be
impossible in the limited period of the project. Trying to limit it to only learning
the parts that were needed for developing a measurement concept was impossible
because in a way everything was relevant. At a certain point, further investigation
into the theory of concrete was halted in favor of trying to develop something that
could be the basis of a master’s thesis. The developed measurement concept was
presented to experts on concrete and the feedback was positive. This was the de-
ciding factor as to why this exact measurement concept was chosen to investigate
further by developing a prototype and testing.

In hindsight, I should have been more effective with the literature study and research
into the theory of concrete. Getting to the prototype development and testing part
took much longer than it should have. The blame mainly falls on inadequate and
unsystematic work methods, but some blame can be pointed to the difficulty in
finding and getting in contact with people that could help. The COVID-19 pandemic
is responsible for the latter because the university was in full or partial lockdown
for much of the 1st year worked on the project.

Page 33 of 57

CHAPTER 6. CONCLUSION

Chapter 6

Conclusion

Results from the few tests that were performed is little to go by when trying to
conclude if the developed measurement concept will work as an equivalent to the
slump test. Without getting consistent results from identical drops, there is not
any possibility of getting measurements that can be correlated with slump tests
measurements. If further testing is to be carried out, alterations must be made to
the testing setup to exclude any influence uncertainties might have on the results.
In addition, if the measurement concept was to be tested to the fullest, one would
have to perform tests with all possible types of concrete mixtures to see what effect
they would have. If further testing is performed, and the results does not meet the
prerequisites for the system, the measurement concept should be abandoned.

Creating the prototype took longer than expected, but managed to serve its purpose
as a device created for testing the measurement concept, although it is far from
ideal in its functionality. Making changes to the software will help make testing
go smoother and is easy to do. Creating a different housing with capabilities of
adjusting the weight of the system would take time, but is highly doable. Although
a new circuit must be constructed if the existing one cannot be inserted into it.
Creating a circuit with different parts would require a rework of both the housing
and the software. Abandoning the developed measurement concept for a new one
would require a new prototype to be made.

Working on a project like this have given me valuable knowledge in concept devel-
opment. Given the experience gained, I am certain that if the project had been
started on today, getting to the prototype and testing part would go substantially
faster.

For possible further work, I recommend running more tests with identical drops to
see if consistent results can be achieved. If consistent results are achieved, the next
step will be to plan for testing of the sensor system in correlation with the slump
and slump flow test. Many of the ideas and thoughts presented in Chapter 5 can
also be researched further.

Page 34 of 57

BIBLIOGRAPHY

Bibliography

[1] Statistisk sentralbyr̊a. url: https://www.ssb.no/. (accessed May 12, 2022).

[2] Produktivitetsfall i bygg og anlegg. url: https://www.ssb.no/bygg-bolig-og-
eiendom/artikler-og-publikasjoner/produktivitsfall- i-bygg-og-anlegg. (accessed
May 12, 2022).

[3] S. Chandrasekaran R. Agarwal and M. Sridhar. Imagining construction’s di-
gital future. url: https://www.mckinsey.com/business- functions/operations/
our-insights/imagining-constructions-digital-future. (accessed May 12, 2022).

[4] J. Koeleman, M. J. Ribeirinho, D. Rockhill, E. Sjödin and G. Strube. Decod-
ing digital transformation in construction. url: https://www.mckinsey.com/
business- functions/operations/our- insights/decoding-digital-transformation- in-
construction. (accessed May 12, 2022).

[5] F. Barbosa et al. Reinventing construction: A route to higher productivity.
url: https://www.mckinsey.com/∼/media/McKinsey/Business%20Functions/
Operations/Our%20Insights/Reinventing%20construction%20through%20a%
20productivity%20revolution/MGI-Reinventing-construction-A-route-to-higher-
productivity-Full-report.pdf. (accessed May 12, 2022).

[6] Digitalisering. url: https://www.bnl.no/politikk/politiske-saker/digitalisering/.
(accessed May 12, 2022).

[7] Y. M. Anton. Introduksjon. url: https://www.sintef.no/projectweb/sitecast/.
(accessed May 12, 2022).

[8] M. F. Mogos. SiteCast. url: https://www.sintef.no/prosjekter/2018/sitecast/.
(accessed May 12, 2022).

[9] Y. M. Anton. Samarbeider for å gjøre plasstøping mer lønnsomt. url: https:
//www.sintef .no/siste- nytt/2019/samarbeider- for- a- gjore- plasstoping-mer-
lonnsomt/. (accessed May 12, 2022).

[10] About SINTEF - Applied research, technology and innovation. url: https :
//www.sintef.no/en/sintef-group/this-is-sintef/. (accessed Jun. 8, 2022).

[11] SINTEF research institutes. url: https://www.sintef.no/en/sintef- research-
institutes/. (accessed Jun. 8, 2022).

[12] Gunrid Kjellmark. url: https://www.sintef.no/en/all- employees/employee/
gunrid.kjellmark/. (accessed Jun. 8, 2022).

[13] Om Unicon. url: https://www.unicon.no/om-unicon/unicon-norge/. (accessed
Jun. 8, 2022).

Page 35 of 57

https://www.ssb.no/
https://www.ssb.no/bygg-bolig-og-eiendom/artikler-og-publikasjoner/produktivitsfall-i-bygg-og-anlegg
https://www.ssb.no/bygg-bolig-og-eiendom/artikler-og-publikasjoner/produktivitsfall-i-bygg-og-anlegg
https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/business-functions/operations/our-insights/decoding-digital-transformation-in-construction
https://www.mckinsey.com/business-functions/operations/our-insights/decoding-digital-transformation-in-construction
https://www.mckinsey.com/business-functions/operations/our-insights/decoding-digital-transformation-in-construction
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Operations/Our%20Insights/Reinventing%20construction%20through%20a%20productivity%20revolution/MGI-Reinventing-construction-A-route-to-higher-productivity-Full-report.pdf
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Operations/Our%20Insights/Reinventing%20construction%20through%20a%20productivity%20revolution/MGI-Reinventing-construction-A-route-to-higher-productivity-Full-report.pdf
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Operations/Our%20Insights/Reinventing%20construction%20through%20a%20productivity%20revolution/MGI-Reinventing-construction-A-route-to-higher-productivity-Full-report.pdf
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Operations/Our%20Insights/Reinventing%20construction%20through%20a%20productivity%20revolution/MGI-Reinventing-construction-A-route-to-higher-productivity-Full-report.pdf
https://www.bnl.no/politikk/politiske-saker/digitalisering/
https://www.sintef.no/projectweb/sitecast/
https://www.sintef.no/prosjekter/2018/sitecast/
https://www.sintef.no/siste-nytt/2019/samarbeider-for-a-gjore-plasstoping-mer-lonnsomt/
https://www.sintef.no/siste-nytt/2019/samarbeider-for-a-gjore-plasstoping-mer-lonnsomt/
https://www.sintef.no/siste-nytt/2019/samarbeider-for-a-gjore-plasstoping-mer-lonnsomt/
https://www.sintef.no/en/sintef-group/this-is-sintef/
https://www.sintef.no/en/sintef-group/this-is-sintef/
https://www.sintef.no/en/sintef-research-institutes/
https://www.sintef.no/en/sintef-research-institutes/
https://www.sintef.no/en/all-employees/employee/gunrid.kjellmark/
https://www.sintef.no/en/all-employees/employee/gunrid.kjellmark/
https://www.unicon.no/om-unicon/unicon-norge/

BIBLIOGRAPHY

[14] Concrete. url: https://en.wikipedia.org/wiki/Concrete#Composition. (accessed
May 4, 2022).

[15] Scientific Principles. url: http://matse1.matse.illinois.edu/concrete/prin.html.
(accessed May 4, 2022).

[16] C. R. Gagg. ‘Cement and concrete as an engineering material: An historic
appraisal and case study analysis’. In: Engineering Failure Analysis 40 (May
2014), pp. 114–140. doi: https://doi.org/10.1016/j.engfailanal.2014.02.004.

[17] R. Rajapakse. ‘Chapter 3 - Concrete Construction’. In: Construction Engineer-
ing Design Calculations and Rules of Thumb. Butterworth-Heinemann, 2017.
Chap. 3, pp. 15–70. doi: https://doi.org/10.1016/B978-0-12-809244-6.00003-2.

[18] M. I. Hamakareem. Compaction of concrete - methods and results of improper
vibration of concrete. url: https://theconstructor.org/concrete/compaction-of-
concrete-methods/14028/. (accessed May 4, 2022).

[19] E. P. Koehler and D. W. Fowler. Summary of concrete workability test methods.
Aug. 2003.

[20] Compaction of Concrete. url: https://www.boral.com.au/sites/default/files/
media/field document/Compaction%20of%20Concrete.pdf. (accessed May 4,
2022).

[21] A. M. Neville. ‘Fresh concrete’. In: Properties of concrete. Vol. 5. Pearson,
2012. Chap. 4, pp. 186–203. isbn: 978-0-273-75580-7.

[22] T. A. Fedorovich and A. Drozdov. ‘Automatic control of the concrete mixture
homogeneity in cycling mixers’. In: vol. 317. Mar. 2018. doi: 10.1088/1757-
899X/317/1/012043.

[23] G. Mishra. Workability of concrete - Types and effects on concrete strength.
url: https : / / theconstructor . org / concrete / workability - of - concrete - types -
strength/11739/. (accessed May 4, 2022).

[24] What is workability of concrete? Types, mechanism. url: https://civiltoday.
com/civil-engineering-materials/concrete/93-workability-of-concrete-definition-
types-details. (accessed May 4, 2022).

[25] Concrete slump test. url: https://en.wikipedia.org/wiki/Concrete slump test#
cite note-Gambhir-1. (accessed May 4, 2022).

[26] What is concrete slump test? step-by-step procedure. url: https://civiltoday.
com/civil - engineering -materials/concrete/79- concrete - slump- test - standard -
equipment-procedures-cautions. (accessed May 4, 2022).

[27] G. Mishra. Different properties of fresh concrete for construction works. url:
https://theconstructor.org/concrete/properties-of- fresh-concrete/6490/. (ac-
cessed May 4, 2022).

[28] Testing fresh concrete - Part 1: Sampling and common apparatus. NS-EN
12350-1. 2019.

[29] Testing fresh concrete - Part 2: Slump test. NS-EN 12350-2. 2019.

[30] Concrete — Specification, performance, production and conformity. NS-EN
206. 2013.

Page 36 of 57

https://en.wikipedia.org/wiki/Concrete#Composition
http://matse1.matse.illinois.edu/concrete/prin.html
https://doi.org/https://doi.org/10.1016/j.engfailanal.2014.02.004
https://doi.org/https://doi.org/10.1016/B978-0-12-809244-6.00003-2
https://theconstructor.org/concrete/compaction-of-concrete-methods/14028/
https://theconstructor.org/concrete/compaction-of-concrete-methods/14028/
https://www.boral.com.au/sites/default/files/media/field_document/Compaction%20of%20Concrete.pdf
https://www.boral.com.au/sites/default/files/media/field_document/Compaction%20of%20Concrete.pdf
https://doi.org/10.1088/1757-899X/317/1/012043
https://doi.org/10.1088/1757-899X/317/1/012043
https://theconstructor.org/concrete/workability-of-concrete-types-strength/11739/
https://theconstructor.org/concrete/workability-of-concrete-types-strength/11739/
https://civiltoday.com/civil-engineering-materials/concrete/93-workability-of-concrete-definition-types-details
https://civiltoday.com/civil-engineering-materials/concrete/93-workability-of-concrete-definition-types-details
https://civiltoday.com/civil-engineering-materials/concrete/93-workability-of-concrete-definition-types-details
https://en.wikipedia.org/wiki/Concrete_slump_test#cite_note-Gambhir-1
https://en.wikipedia.org/wiki/Concrete_slump_test#cite_note-Gambhir-1
https://civiltoday.com/civil-engineering-materials/concrete/79-concrete-slump-test-standard-equipment-procedures-cautions
https://civiltoday.com/civil-engineering-materials/concrete/79-concrete-slump-test-standard-equipment-procedures-cautions
https://civiltoday.com/civil-engineering-materials/concrete/79-concrete-slump-test-standard-equipment-procedures-cautions
https://theconstructor.org/concrete/properties-of-fresh-concrete/6490/

BIBLIOGRAPHY

[31] SINTEF. ‘Kvalitetskontroll av fersk betong’. In: Byggforskserien (May 2015).
issn: 2387-6328. Art. no. 520.027.

[32] Concrete sensors. url: https ://www.hilti . com/content/hilti /W1/US/en/
business/business/trends/concrete-sensors.html. (accessed May 30, 2022).

[33] A. R. Alizadeh. The best concrete sensor in 2020. url: https://www.giatecscientific.
com/education/the-best-concrete-sensors-2020/. (accessed May 30, 2022).

[34] nRF52840. Product specification. url: https : / / content . arduino . cc / assets /
Nano BLE MCU-nRF52840 PS v1.1.pdf. (accessed Jun. 1, 2022).

[35] Arduino Nano 33 BLE. Product reference manual. url: https://docs.arduino.
cc/resources/datasheets/ABX00030-datasheet.pdf. (accessed Jun. 1, 2022).

[36] Arduino Nano 33 BLE. url: https : / / content . arduino . cc / assets / Pinout -
NANOble latest.pdf. (accessed Jun. 1, 2022).

[37] Arduino Nano 33 BLE. url: https://store.arduino.cc/products/arduino-nano-
33-ble. (accessed Jun. 1, 2022).

[38] ADXL372. url: https://www.analog.com/media/en/technical-documentation/
data-sheets/ADXL372.pdf. (accessed Jun. 1, 2022).

[39] EVAL-ADXL372Z user guide. url: https : / /www . analog . com/media / en /
technical-documentation/user-guides/EVAL-ADXL372Z-UG-1113.pdf. (accessed
Jun. 1, 2022).

[40] lady ada. Adafruit PowerBoost 500 + Charger. Overview. url: https://learn.
adafruit.com/adafruit-powerboost-500-plus-charger. (accessed Jun. 1, 2022).

[41] lady ada. Adafruit PowerBoost 500 + Charger. Downloads. url: https://learn.
adafruit.com/adafruit-powerboost-500-plus-charger/downloads. (accessed Jun.
1, 2022).

[42] lady ada. Adafruit PowerBoost 500 + Charger. Pinouts. url: https://learn.
adafruit.com/adafruit-powerboost-500-plus-charger/pinouts. (accessed Jun. 1,
2022).

[43] Divinycell - PVC core materials. url: https://www.diabgroup.com/products-
services/divinycell-pvc/. (accessed Jun. 7, 2022).

[44] Betonglaboratorier. url: https://www.sintef.no/laboratorier/betonglaboratorier/.
(accessed Jun. 4, 2022).

[45] G. Mishra. Fiber reinforced concrete - types, properties and advantages of fiber
reinforced concrete. url: https://theconstructor.org/concrete/fiber-reinforced-
concrete/150/. (accessed Jun. 5, 2022).

[46] VibrationData toolbox. url: https://endaq.com/pages/vibration-shock-analysis-
software - vibrationdata - toolbox ? hssc=9408618 . 2 . 1594775292510& hstc=
9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.
1594775292510.397& hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-
9352 - 05992fa2b87d%7Cd0292227 - 6a7b - 49a7 - 8ef0 - eb5e8e1b9158. (accessed
Jun. 7, 2022).

Page 37 of 57

https://www.hilti.com/content/hilti/W1/US/en/business/business/trends/concrete-sensors.html
https://www.hilti.com/content/hilti/W1/US/en/business/business/trends/concrete-sensors.html
https://www.giatecscientific.com/education/the-best-concrete-sensors-2020/
https://www.giatecscientific.com/education/the-best-concrete-sensors-2020/
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://docs.arduino.cc/resources/datasheets/ABX00030-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/ABX00030-datasheet.pdf
https://content.arduino.cc/assets/Pinout-NANOble_latest.pdf
https://content.arduino.cc/assets/Pinout-NANOble_latest.pdf
https://store.arduino.cc/products/arduino-nano-33-ble
https://store.arduino.cc/products/arduino-nano-33-ble
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL372.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL372.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/EVAL-ADXL372Z-UG-1113.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/EVAL-ADXL372Z-UG-1113.pdf
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger/downloads
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger/downloads
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger/pinouts
https://learn.adafruit.com/adafruit-powerboost-500-plus-charger/pinouts
https://www.diabgroup.com/products-services/divinycell-pvc/
https://www.diabgroup.com/products-services/divinycell-pvc/
https://www.sintef.no/laboratorier/betonglaboratorier/
https://theconstructor.org/concrete/fiber-reinforced-concrete/150/
https://theconstructor.org/concrete/fiber-reinforced-concrete/150/
https://endaq.com/pages/vibration-shock-analysis-software-vibrationdata-toolbox?__hssc=9408618.2.1594775292510&__hstc=9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.1594775292510.397&__hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-9352-05992fa2b87d%7Cd0292227-6a7b-49a7-8ef0-eb5e8e1b9158
https://endaq.com/pages/vibration-shock-analysis-software-vibrationdata-toolbox?__hssc=9408618.2.1594775292510&__hstc=9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.1594775292510.397&__hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-9352-05992fa2b87d%7Cd0292227-6a7b-49a7-8ef0-eb5e8e1b9158
https://endaq.com/pages/vibration-shock-analysis-software-vibrationdata-toolbox?__hssc=9408618.2.1594775292510&__hstc=9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.1594775292510.397&__hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-9352-05992fa2b87d%7Cd0292227-6a7b-49a7-8ef0-eb5e8e1b9158
https://endaq.com/pages/vibration-shock-analysis-software-vibrationdata-toolbox?__hssc=9408618.2.1594775292510&__hstc=9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.1594775292510.397&__hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-9352-05992fa2b87d%7Cd0292227-6a7b-49a7-8ef0-eb5e8e1b9158
https://endaq.com/pages/vibration-shock-analysis-software-vibrationdata-toolbox?__hssc=9408618.2.1594775292510&__hstc=9408618.446179f56627e5f366b7be3b5441ab4a.1566482603586.1594750104586.1594775292510.397&__hsfp=569979075&hsCtaTracking=d7e8af39-c2c6-45ce-9352-05992fa2b87d%7Cd0292227-6a7b-49a7-8ef0-eb5e8e1b9158

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

Appendix A

Sampling program - Main script

1 /**

2 ***

3 Main program for handling sampling of data on an ADXL372 accelerometer

4 and sending the data via Bluetooth to a PC where it is to be analyzed and

5 processed.

6 @file Drop_Test.ino

7 @author T. Thorvaldsen

8 @version 1.1 2022-05-06 (yyyy-mm-dd)

9 @par Revision History:

10 - Version 1.0, April 2022: Inital version.

11 - Version 1.1, May 2022: Removed redundant code lines.

12 ***

13 */

14

15 /******************************* Include Files *******************************/

16 #include <ArduinoBLE.h>

17 #include <SPI.h>

18 #include "ADXL372.h"

19

20 /********************************* Constants *********************************/

21

22 // General constants //

23 const int BUFFER_SIZE = 244;

24 const int NUMB_OF_BYTES = 9600;

25 const int NUMB_OF_TRANSMISSIONS = (NUMB_OF_BYTES / BUFFER_SIZE) +

26 (NUMB_OF_BYTES % BUFFER_SIZE != 0);

27 const bool FIXED_LENGTH = false;

28 const char KEYWORD[] = "run";

29

30 // Bluetooth UUIDs //

31 const char*const service_UUID = "6e8ec787-7016-4312-9ce7-a1976b8c5c24";

32 const char*const x_data_char_UUID = "1d3478a3-59db-4f59-8c27-a00a3a2a7a8e";

33 const char*const y_data_char_UUID = "08e2eead-cc49-45f8-a24a-c0118ce005a2";

34 const char*const z_data_char_UUID = "3fab2d16-53e2-46e8-bbe2-b171f12f5564";

35 const char*const read_char_UUID = "a23be471-deb8-4fa2-8d22-10537858bbf3";

36

37 /***************************** Global Variables ******************************/

38

39 // Flags used to control sampling and packing of data //

40 bool sample_data = false;

41 bool data_packed = false;

Page 38 of 57

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

42 bool keyword_recieved = true;

43

44 // Array used for transmitting 244 bytes of data per transmission //

45 uint8_t x_data_send_buffer[BUFFER_SIZE];

46 uint8_t y_data_send_buffer[BUFFER_SIZE];

47 uint8_t z_data_send_buffer[BUFFER_SIZE];

48

49 // Arrays used to store sampled data //

50 uint8_t x_data_bytes[NUMB_OF_BYTES];

51 uint8_t y_data_bytes[NUMB_OF_BYTES];

52 uint8_t z_data_bytes[NUMB_OF_BYTES];

53

54 // Structure type used to store one data sample //

55 AccelerBytes_t accel_data;

56

57 /*************************** Bluetooth Attributes ****************************/

58

59 // BLE Service //

60 BLEService testService(service_UUID);

61

62 /** BLE x-data, y-data and z-data characteristics with custom 128-bit UUIDs.

63 Read and indicate properties available to central. Size of characteristic

64 buffer is 244 bytes, but buffer size can vary.

65 */

66 BLECharacteristic x_data_char(x_data_char_UUID, BLERead | BLEIndicate,

67 BUFFER_SIZE, FIXED_LENGTH);

68 BLECharacteristic y_data_char(y_data_char_UUID, BLERead | BLEIndicate,

69 BUFFER_SIZE, FIXED_LENGTH);

70 BLECharacteristic z_data_char(z_data_char_UUID, BLERead | BLEIndicate,

71 BUFFER_SIZE, FIXED_LENGTH);

72

73 /** BLE read characteristic with custom 128-bit UUID. Write and write without

74 response properties available to central. Size of characteristic buffer

75 is 244 bytes, but buffer size can vary.

76 */

77 BLECharacteristic read_char(read_char_UUID, BLEWriteWithoutResponse | BLEWrite,

78 BUFFER_SIZE, FIXED_LENGTH);

79

80 /********************************* Functions *********************************/

81

82 /**

83 Packs the sampled accelerometer data into arrays.

84 @param x_msb_val - The 8 most significant bits of the x-axis value.

85 @param x_lsb_val - The 4 least significant bits of the x-axis value.

86 @param y_msb_val - The 8 most significant bits of the y-axis value.

87 @param y_lsb_val - The 4 least significant bits of the y-axis value.

88 @param z_msb_val - The 8 most significant bits of the z-axis value.

89 @param z_lsb_val - The 4 least significant bits of the z-axis value.

90 */

91 void pack_Data(uint8_t x_msb_val, uint8_t x_lsb_val, uint8_t y_msb_val,

92 uint8_t y_lsb_val, uint8_t z_msb_val, uint8_t z_lsb_val){

93 static unsigned int bytes_counter = 0;

94

95 x_data_bytes[bytes_counter] = x_msb_val;

96 x_data_bytes[bytes_counter + 1] = x_lsb_val;

97 y_data_bytes[bytes_counter] = y_msb_val;

98 y_data_bytes[bytes_counter + 1] = y_lsb_val;

99 z_data_bytes[bytes_counter] = z_msb_val;

Page 39 of 57

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

100 z_data_bytes[bytes_counter + 1] = z_lsb_val;

101

102 bytes_counter += 2;

103

104 // Check if sampling is completed.

105 if(bytes_counter == NUMB_OF_BYTES){

106 sample_data = false;

107 data_packed = true;

108 bytes_counter = 0;

109 }

110 }

111

112 /**

113 Callback function for Bluetooth event handler that checks if the

114 characteristic has been written too and if the written value matches the

115 keyword that indicates that sampling of data should be carried out.

116 @param central - The connected bluetooth central.

117 @param characteristic - The bluetooth characteristics.

118 */

119 void read_Value_Updated(BLEDevice central, BLECharacteristic characteristic){

120 static byte rx_buffer[BUFFER_SIZE];

121 static int data_length = read_char.readValue(rx_buffer, BUFFER_SIZE);

122

123 for(int i = 0; i < 3; i++){

124 if(rx_buffer[i] != KEYWORD[i]){

125 keyword_recieved = false;

126 break;

127 }

128 }

129

130 if(keyword_recieved){

131 sample_data = true;

132 }

133 }

134

135 /**

136 Setup for Bluetooth.

137 */

138 void init_BLE(void){

139 // Start initialization of Bluetooth LE.

140 if(!BLE.begin()){

141 while(1); // If initialization fails, run forever.

142 }

143

144 // Set advertised local name.

145 BLE.setLocalName("Drop Test Device");

146

147 // Set Advertised service UUID.

148 BLE.setAdvertisedService(testService);

149

150 // Add the characteristics to the service:

151 testService.addCharacteristic(x_data_char);

152 testService.addCharacteristic(y_data_char);

153 testService.addCharacteristic(z_data_char);

154 testService.addCharacteristic(read_char);

155

156 // Add service to device.

157 BLE.addService(testService);

Page 40 of 57

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

158

159 // Initialize callback function for write event on read characteristic.

160 read_char.setEventHandler(BLEWritten, read_Value_Updated);

161

162 // Start advertising.

163 BLE.advertise();

164 }

165

166 /**

167 Setup for ADXL372 accelerometer.

168 See datasheet for proper understanding:

169 @see(https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL372.pdf)

170 */

171 void accel_setup(void){

172 set_Pwr_Ctrl_Reg(LOW_THRESH, SETTLE_TIME_370ms, LPF_DISABLE,

173 HPF_DISABLE, STANDBY);

174

175 set_FIFO(XYZ_FIFO, BYPASSED);

176

177 set_Timing_Ctrl_Reg(ODR_1600Hz, WUR_52ms);

178

179 set_Measurement_Ctrl_Reg(AUTOSLEEP_OFF, DEFAULT_MODE, LOW_NOISE, BW_800Hz);

180

181 set_High_Pass(CORNER_3);

182

183 set_Pwr_Ctrl_Reg(LOW_THRESH, SETTLE_TIME_370ms, LPF_ENABLE,

184 HPF_ENABLE, FULL_BW);

185 }

186

187 /**

188 Main setup.

189 */

190 void setup() {

191 // Initialize Serial communication.

192 Serial.begin(9600);

193

194 // Initialize SPI bus.

195 SPI.begin();

196 SPI.beginTransaction(SPISettings(10000000, MSBFIRST, SPI_MODE0));

197

198 // Run setup function for Bluetooth LE.

199 init_BLE();

200

201 // Set blue LED in output mode.

202 pinMode(LEDB, OUTPUT);

203

204 // Set pin 2 in output mode.

205 pinMode(CS_PIN, OUTPUT);

206

207 // Set inital value for the blue LED and pin 2:

208 digitalWrite(LEDB, HIGH);

209 digitalWrite(CS_PIN, HIGH);

210

211 // Run get device ID function to check if accelerometer is functioning.

212 get_Device_ID();

213

214 // Run accelerometer setup function.

215 accel_setup();

Page 41 of 57

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

216 }

217

218 /**

219 Main loop

220 */

221 void loop() {

222 // Variable used to store status register value.

223 static byte status_reg;

224

225 // Listen for Bluetooth LE peripherals to connect.

226 BLEDevice central = BLE.central();

227

228 // If a central is connected.

229 if(central){

230 // Turn on the ble LED.

231 digitalWrite(LEDB, LOW);

232

233 // While the central is connected to the peripheral:

234 while(central.connected()){

235 // If the sample data flag = true, sampling should commence.

236 if(sample_data){

237 // Check value of status register.

238 status_reg = check_Status();

239

240 // If data ready bit in status register is 1, save and pack data:

241 if((status_reg &= 0b00000001) == 1){

242 get_Data(&accel_data);

243

244 pack_Data((uint8_t)accel_data.x_msb, (uint8_t)accel_data.x_lsb,

245 (uint8_t)accel_data.y_msb, (uint8_t)accel_data.y_lsb,

246 (uint8_t)accel_data.z_msb, (uint8_t)accel_data.z_lsb);

247 }

248 }

249

250 // If sampling complete and data packed, send data to central:

251 if(data_packed){

252 int send_counter = 0;

253 int correction_val = 0;

254

255 for(int i = 0; i < NUMB_OF_TRANSMISSIONS; i++){

256 for(int j = 0; j < BUFFER_SIZE; j++){

257 x_data_send_buffer[j] = x_data_bytes[j + send_counter];

258 y_data_send_buffer[j] = y_data_bytes[j + send_counter];

259 z_data_send_buffer[j] = z_data_bytes[j + send_counter];

260 }

261

262 if(NUMB_OF_BYTES - send_counter < BUFFER_SIZE){

263 correction_val = NUMB_OF_BYTES - send_counter;

264 x_data_char.writeValue(x_data_send_buffer, correction_val);

265 y_data_char.writeValue(y_data_send_buffer, correction_val);

266 z_data_char.writeValue(z_data_send_buffer, correction_val);

267 }

268 else{

269 x_data_char.writeValue(x_data_send_buffer, BUFFER_SIZE);

270 y_data_char.writeValue(y_data_send_buffer, BUFFER_SIZE);

271 z_data_char.writeValue(z_data_send_buffer, BUFFER_SIZE);

272 }

273

Page 42 of 57

APPENDIX A. SAMPLING PROGRAM - MAIN SCRIPT

274 send_counter += BUFFER_SIZE;

275 }

276

277 // Reset flags to prepare for new sampling.

278 data_packed = false;

279 keyword_recieved = true;

280 }

281 }

282

283 // Turn off blue LED.

284 digitalWrite(LEDB, HIGH);

285 }

286 }

Page 43 of 57

APPENDIX B. SAMPLING PROGRAM - ACCELEROMETER FUNCTIONS

Appendix B

Sampling program -
Accelerometer functions

1 /**

2 ***

3 Program with all functions for controlling the ADXL372.

4 @file ADXL372.cpp

5 @author T. Thorvaldsen

6 @version 1.1 2022-05-06 (yyyy-mm-dd)

7 @par Revision History:

8 - Version 1.0, April 2022: Inital version.

9 - Version 1.1, May 2022: Removed redundant code lines.

10 ***

11 */

12

13 /******************************* Include Files *******************************/

14 #include <SPI.h>

15 #include "Arduino.h"

16 #include "ADXL372.h"

17

18 /********************************* Functions *********************************/

19

20 /**

21 Read and returns the value of a specific register on the accelerometer.

22 @param address - Address of the register that is to be read.

23 @return Value of read register.

24 */

25 unsigned int read_Reg(byte address){

26 int return_val;

27

28 address = ((address << 1) | READ);

29

30 digitalWrite(CS_PIN, LOW);

31

32 SPI.transfer(address);

33 return_val = SPI.transfer(0x00);

34

35 digitalWrite(CS_PIN, HIGH);

36

37 return(return_val);

38 }

Page 44 of 57

APPENDIX B. SAMPLING PROGRAM - ACCELEROMETER FUNCTIONS

39

40 /**

41 Writes a value to a specific register on the accelerometer.

42 @param address - Address of the register that is to be read.

43 @param data - Value to be written to register.

44 */

45 void write_Reg(byte address, byte data){

46 address = ((address << 1) | WRITE);

47

48 digitalWrite(CS_PIN, LOW);

49

50 SPI.transfer(address);

51 SPI.transfer(data);

52

53 digitalWrite(CS_PIN, HIGH);

54 }

55

56 /**

57 Packs data to be written to FIFO register.

58 Then calls write function, sending packed fifo value and fifo register

59 address.

60 @param format - Chosen format.

61 @param mode - Chosen mode.

62 */

63 void set_FIFO(FIFO_FORMAT format, FIFO_MODE mode){

64 byte data = ((format << 3) | (mode << 1));

65

66 write_Reg(FIFO_CTL, data);

67 }

68

69 /**

70 Calls write function, sending reset value and reset register address.

71 */

72 void reset(void){

73 write_Reg(SRESET, 0x52);

74 }

75

76 /**

77 Calls write function, sending offset values and offset register addresses.

78 @param x_offset - Chosen offset for x-axis.

79 @param y_offset - Chosen offset for y-axis.

80 @param z_offset - Chosen offset for z-axis.

81 */

82 void set_Offset(unsigned int x_offset, unsigned int y_offset,

83 unsigned int z_offset){

84 write_Reg(OFFSET_X, x_offset);

85 write_Reg(OFFSET_Y, y_offset);

86 write_Reg(OFFSET_Z, z_offset);

87 }

88

89 /**

90 Calls write function, sending interrupt value and interrupt register address.

91 @param setting - Chosen interrupt setting.

92 */

93 void set_Interrupts(unsigned int setting){

94 write_Reg(INT1_MAP, setting);

95 }

96

Page 45 of 57

APPENDIX B. SAMPLING PROGRAM - ACCELEROMETER FUNCTIONS

97 /**

98 Packs data to be written to timing control register.

99 Then calls write function, sending packed timing control value and timing

100 control register address.

101 @param odr - Chosen output data rate.

102 @param wur - Chosen wake up rate.

103 */

104 void set_Timing_Ctrl_Reg(OUTPUT_DATA_RATE odr, WAKEUP_RATE wur){

105 byte data = ((odr << 5) | (wur << 2));

106

107 write_Reg(TIMING, data);

108 }

109

110 /**

111 Packs data to be written to measurement control register.

112 Then calls write function, sending packed measurement control value and

113 measurement control register address.

114 @param enable - Autosleep enable/disable value (1 or 0).

115 @param link_mode - Chosen link/loop mode.

116 @param noise_setting - Chosen noise mode.

117 @param bw - Chosen bandwith.

118 */

119 void set_Measurement_Ctrl_Reg(AUTOSLEEP enable, LINKLOOP link_mode,

120 NOISE_OP noise_setting, BANDWIDTH bw){

121 byte data = ((enable << 6) | (link_mode << 4) | (noise_setting << 3) | bw);

122

123 write_Reg(MEASURE, data);

124 }

125

126 /**

127 Packs data to be written to power control register.

128 Then calls write function, sending packed power control value and

129 power control register address.

130 @param threshold - Chosen instant on threshold value.

131 @param settle_time - Chosen filter settling time value.

132 @param low_pass_toggle - Low pass filter on or off.

133 @param high_pass_toggle - High pass filter on or off.

134 @param mode - Chosen operation mode.

135 */

136 void set_Pwr_Ctrl_Reg(INSTANT_ON_THRESH threshold, FILTER_SETTLE settle_time,

137 LPF_TOGGLE low_pass_toggle, HPF_TOGGLE high_pass_toggle,

138 OP_MODE mode){

139 byte data = ((threshold << 5) | (settle_time << 4) | (low_pass_toggle << 3)

140 |(high_pass_toggle << 2) | mode);

141

142 write_Reg(POWER_CTL, data);

143 }

144

145 /**

146 Calls write function, sending high pass filter corner value and high pass

147 filter address.

148 @param corner - High pass filter

149 */

150 void set_High_Pass(HPF_CORNER corner){

151 write_Reg(HPF, corner);

152 }

153

154 /**

Page 46 of 57

APPENDIX B. SAMPLING PROGRAM - ACCELEROMETER FUNCTIONS

155 Reads value of status register 1.

156 @return Value of status register 1

157 */

158 int check_Status(void){

159 return read_Reg(STATUS_1);

160 }

161

162 /**

163 Reads values of the data registers for all axis.

164 @param accel_data - Struct for holding data.

165 */

166 void get_Data(AccelerBytes_t *accel_data){

167 static short tmp;

168

169 accel_data->x_msb = read_Reg(X_DATA_H);

170 tmp = read_Reg(X_DATA_L);

171 accel_data->x_lsb = (tmp &= 0b11110000);

172

173 accel_data->y_msb = read_Reg(Y_DATA_H);

174 tmp = read_Reg(Y_DATA_L);

175 accel_data->y_lsb = (tmp &= 0b11110000);

176

177 accel_data->z_msb = read_Reg(Z_DATA_H);

178 tmp = read_Reg(Z_DATA_L);

179 accel_data->z_lsb = (tmp &= 0b11110000);

180 }

181

182 /**

183 Reads values of the device ID register. If device doesn't check out

184 there might be something wrong with the accelerometer so it goes into

185 an infinite loop.

186 */

187 void get_Device_ID(void){

188 static byte device_ID;

189 device_ID = read_Reg(DEVID);

190

191 if(device_ID != DEVID_VAL){

192 while(1);

193 }

194 }

195

196 /**

197 Self test function to check if the accelerometer works as it should.

198 */

199 void sf_Test(void){

200 static byte check = 0;

201

202 set_Pwr_Ctrl_Reg(LOW_THRESH, SETTLE_TIME_370ms, LPF_ENABLE,

203 HPF_DISABLE, FULL_BW);

204

205 write_Reg(SELF_TEST, 1);

206

207 Serial.println("Self test in progress");

208

209 while(check != 2){

210 check = read_Reg(SELF_TEST);

211 check &= 0b00000010;

212 }

Page 47 of 57

APPENDIX B. SAMPLING PROGRAM - ACCELEROMETER FUNCTIONS

213

214 check = read_Reg(SELF_TEST);

215 check &= 0b00000100;

216 if(check == 4){

217 Serial.println("Self test PASSED");

218 }

219 else{

220 Serial.println("Self test FAILED");

221 }

222

223 set_Pwr_Ctrl_Reg(LOW_THRESH, SETTLE_TIME_370ms, LPF_DISABLE,

224 HPF_DISABLE, STANDBY);

225 }

Page 48 of 57

APPENDIX C. SAMPLING PROGRAM - ADXL372.CPP HEADER FILE

Appendix C

Sampling program - ADXL372.cpp
header file

1 /**

2 ***

3 Header file for ADXL372.cpp.

4 @file ADXL372.h

5 @author T. Thorvaldsen

6 @version 1.1 2022-05-06 (yyyy-mm-dd)

7 @par Revision History:

8 - Version 1.0, April 2022: Inital version.

9 - Version 1.1, May 2022: Removed redundant code lines.

10 ***

11 */

12

13 #ifndef ADXL372_H_

14 #define ADXL372_H_

15

16 #include <stdio.h>

17 #include <stdbool.h>

18 #include <string.h>

19

20 #include "Arduino.h"

21

22 #ifdef __cplusplus

23 extern "C"{

24 #endif

25

26 /* Register addresses */

27 #define ADI_DEVID 0x00u /* Analog Devices, Inc., accelerometer ID */

28 #define MST_DEVID 0x01u /* Analog Devices MEMS device ID */

29 #define DEVID 0x02u /* Device ID */

30 #define REVID 0x03u /* product revision ID*/

31 #define STATUS_1 0x04u /* Status register 1 */

32 #define STATUS_2 0x05u /* Status register 2 */

33 #define FIFO_ENTRIES_2 0x06u /* Valid data samples in the FIFO */

34 #define FIFO_ENTRIES_1 0x07u /* Valid data samples in the FIFO */

35 #define X_DATA_H 0x08u /* X-axis acceleration data [11:4] */

36 #define X_DATA_L 0x09u /* X-axis acceleration data [3:0] | dummy LSBs */

37 #define Y_DATA_H 0x0Au /* Y-axis acceleration data [11:4] */

38 #define Y_DATA_L 0x0Bu /* Y-axis acceleration data [3:0] | dummy LSBs */

39 #define Z_DATA_H 0x0Cu /* Z-axis acceleration data [11:4] */

40 #define Z_DATA_L 0x0Du /* Z-axis acceleration data [3:0] | dummy LSBs */

41 #define X_MAXPEAK_H 0x15u /* X-axis MaxPeak acceleration data [15:8] */

42 #define X_MAXPEAK_L 0x16u /* X-axis MaxPeak acceleration data [7:0] */

43 #define Y_MAXPEAK_H 0x17u /* X-axis MaxPeak acceleration data [15:8] */

44 #define Y_MAXPEAK_L 0x18u /* X-axis MaxPeak acceleration data [7:0] */

45 #define Z_MAXPEAK_H 0x19u /* X-axis MaxPeak acceleration data [15:8] */

46 #define Z_MAXPEAK_L 0x1Au /* X-axis MaxPeak acceleration data [7:0] */

47 #define OFFSET_X 0x20u /* X axis offset */

48 #define OFFSET_Y 0x21u /* Y axis offset */

Page 49 of 57

APPENDIX C. SAMPLING PROGRAM - ADXL372.CPP HEADER FILE

49 #define OFFSET_Z 0x22u /* Z axis offset */

50 #define X_THRESH_ACT_H 0x23u /* X axis Activity Threshold [15:8] */

51 #define X_THRESH_ACT_L 0x24u /* X axis Activity Threshold [7:0] */

52 #define Y_THRESH_ACT_H 0x25u /* Y axis Activity Threshold [15:8] */

53 #define Y_THRESH_ACT_L 0x26u /* Y axis Activity Threshold [7:0] */

54 #define Z_THRESH_ACT_H 0x27u /* Z axis Activity Threshold [15:8] */

55 #define Z_THRESH_ACT_L 0x28u /* Z axis Activity Threshold [7:0] */

56 #define TIME_ACT 0x29u /* Activity Time */

57 #define X_THRESH_INACT_H 0x2Au /* X axis Inactivity Threshold [15:8] */

58 #define X_THRESH_INACT_L 0x2Bu /* X axis Inactivity Threshold [7:0] */

59 #define Y_THRESH_INACT_H 0x2Cu /* Y axis Inactivity Threshold [15:8] */

60 #define Y_THRESH_INACT_L 0x2Du /* Y axis Inactivity Threshold [7:0] */

61 #define Z_THRESH_INACT_H 0x2Eu /* Z axis Inactivity Threshold [15:8] */

62 #define Z_THRESH_INACT_L 0x2Fu /* Z axis Inactivity Threshold [7:0] */

63 #define TIME_INACT_H 0x30u /* Inactivity Time [15:8] */

64 #define TIME_INACT_L 0x31u /* Inactivity Time [7:0] */

65 #define X_THRESH_ACT2_H 0x32u /* X axis Activity2 Threshold [15:8] */

66 #define X_THRESH_ACT2_L 0x33u /* X axis Activity2 Threshold [7:0] */

67 #define Y_THRESH_ACT2_H 0x34u /* Y axis Activity2 Threshold [15:8] */

68 #define Y_THRESH_ACT2_L 0x35u /* Y axis Activity2 Threshold [7:0] */

69 #define Z_THRESH_ACT2_H 0x36u /* Z axis Activity2 Threshold [15:8] */

70 #define Z_THRESH_ACT2_L 0x37u /* Z axis Activity2 Threshold [7:0] */

71 #define HPF 0x38u /* High Pass Filter */

72 #define FIFO_SAMPLES 0x39u /* FIFO Samples */

73 #define FIFO_CTL 0x3Au /* FIFO Control */

74 #define INT1_MAP 0x3Bu /* Interrupt 1 mapping control */

75 #define INT2_MAP 0x3Cu /* Interrupt 2 mapping control */

76 #define TIMING 0x3Du /* Timing */

77 #define MEASURE 0x3Eu /* Measure */

78 #define POWER_CTL 0x3Fu /* Power control */

79 #define SELF_TEST 0x40u /* Self Test */

80 #define SRESET 0x41u /* Reset */

81 #define FIFO_DATA 0x42u /* FIFO Data */

82

83 #define ADI_DEVID_VAL 0xADu /* Analog Devices, Inc., accelerometer ID */

84 #define MST_DEVID_VAL 0x1Du /* Analog Devices MEMS device ID */

85 #define DEVID_VAL 0xFAu /* Device ID */

86 #define REVID_VAL 0x02u /* product revision ID*/

87

88 /* Constants */

89 #define CS_PIN 2u

90 #define READ 1u

91 #define WRITE 0u

92 #define INT_PIN 3u

93

94 /* Type definitions */

95 typedef struct{

96 byte x_msb;

97 byte x_lsb;

98 byte y_msb;

99 byte y_lsb;

100 byte z_msb;

101 byte z_lsb;

102 } AccelerBytes_t;

103

104 typedef enum{

105 CORNER_0 = 0,

106 CORNER_1,

107 CORNER_2,

108 CORNER_3

109 } HPF_CORNER;

110

111 typedef enum{

112 XYZ_FIFO = 0,

113 X_FIFO,

114 Y_FIFO,

115 XY_FIFO,

116 Z_FIFO,

117 XZ_FIFO,

118 YZ_FIFO,

119 XYZ_PEAK_FIFO

120 } FIFO_FORMAT;

121

Page 50 of 57

APPENDIX C. SAMPLING PROGRAM - ADXL372.CPP HEADER FILE

122 typedef enum{

123 BYPASSED = 0,

124 STREAM_MODE,

125 TRIGGER_MODE,

126 OLDEST_SAVE

127 } FIFO_MODE;

128

129 typedef enum{

130 ODR_400Hz = 0,

131 ODR_800Hz,

132 ODR_1600Hz,

133 ODR_3200Hz,

134 ODR_6400Hz

135 } OUTPUT_DATA_RATE;

136

137 typedef enum{

138 WUR_52ms = 0,

139 WUR_104ms,

140 WUR_208ms,

141 WUR_512ms,

142 WUR_2048ms,

143 WUR_4096ms,

144 WUR_8192ms,

145 WUR_24576ms

146 } WAKEUP_RATE;

147

148 typedef enum{

149 AUTOSLEEP_OFF = 0,

150 AUTOSLEEP_ON,

151 } AUTOSLEEP;

152

153 typedef enum{

154 DEFAULT_MODE = 0,

155 LINKED_MODE,

156 LOOPED_MODE

157 } LINKLOOP;

158

159 typedef enum{

160 NORMAL_OP = 0,

161 LOW_NOISE

162 } NOISE_OP;

163

164 typedef enum{

165 BW_200Hz = 0,

166 BW_400Hz,

167 BW_800Hz,

168 BW_1600Hz,

169 BW_3200Hz

170 } BANDWIDTH;

171

172 typedef enum{

173 LOW_THRESH = 0,

174 HIGH_THRES

175 } INSTANT_ON_THRESH;

176

177 typedef enum{

178 SETTLE_TIME_370ms = 0,

179 SETTLE_TIME_16ms

180 } FILTER_SETTLE;

181

182 typedef enum{

183 STANDBY = 0,

184 WAKE_UP,

185 INSTANT_ON,

186 FULL_BW

187 } OP_MODE;

188

189 typedef enum{

190 LPF_ENABLE = 0,

191 LPF_DISABLE,

192 } LPF_TOGGLE;

193

194 typedef enum{

Page 51 of 57

APPENDIX C. SAMPLING PROGRAM - ADXL372.CPP HEADER FILE

195 HPF_ENABLE = 0,

196 HPF_DISABLE,

197 } HPF_TOGGLE;

198

199 /* Function declerations */

200 unsigned int read_Reg(byte address);

201 void write_Reg(byte address, byte data);

202 void set_FIFO(FIFO_FORMAT format, FIFO_MODE mode);

203 void reset(void);

204 void set_Offset(unsigned int x_offset, unsigned int y_offset, unsigned int z_offset);

205 void set_Interrupts(unsigned int setting);

206 void set_Timing_Ctrl_Reg(OUTPUT_DATA_RATE odr, WAKEUP_RATE wur);

207 void set_Measurement_Ctrl_Reg(AUTOSLEEP enable, LINKLOOP link_mode,

208 NOISE_OP noise_setting, BANDWIDTH bw);

209 void set_Pwr_Ctrl_Reg(INSTANT_ON_THRESH threshold, FILTER_SETTLE settle_time,

210 LPF_TOGGLE low_pass_toggle, HPF_TOGGLE high_pass_toggle, OP_MODE mode);

211 void set_High_Pass(HPF_CORNER corner);

212 int check_Status(void);

213 void get_Data(AccelerBytes_t *accel_data);

214 void get_Device_ID(void);

215 void sf_Test(void);

216

217 #ifdef __cplusplus

218 } /* Extern "C" */

219 #endif

220

221 #endif /* ADXL372_H_ */

Page 52 of 57

APPENDIX D. PROCESSING PROGRAM

Appendix D

Processing program

1 ##

2 #

3 # Program for controlling the drop test device and saving received data.

4 #

5 ##

6 #

7 # This program is an altered version of a program found at:

8 # https://github.com/Ladvien/arduino_ble_sense/blob/master/app.py

9 #

10 # The below license stems form the original program.

11 #

12 ##

13 #

14 # MIT License

15 #

16 # Copyright (c) 2020 Thomas Brittain

17 #

18 # Permission is hereby granted, free of charge, to any person obtaining a copy

19 # of this software and associated documentation files (the "Software"), to deal

20 # in the Software without restriction, including without limitation the rights

21 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

22 # copies of the Software, and to permit persons to whom the Software is

23 # furnished to do so, subject to the following conditions:

24 #

25 # The above copyright notice and this permission notice shall be included in all

26 # copies or substantial portions of the Software.

27 #

28 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

29 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

30 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

31 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

32 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

33 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

34 # SOFTWARE.

35 #

36 ##

37

38 # Library imports #

39 import os

40 import asyncio

41 import matplotlib.pyplot as plt

42 from datetime import datetime

43 from typing import Callable, Any

44 from aioconsole import ainput

45 from bleak import BleakClient, discover

46

47

48 # Output file path #

49 output_file = "C:/Users/tobbe/OneDrive - NTNU/3S Project/Programmering/Drop_Test/drop_test_python/"

50

51

Page 53 of 57

APPENDIX D. PROCESSING PROGRAM

52 # Sensor system device name #

53 DEVICE_NAME = "Drop Test Device"

54

55

56 # Function to get input of test name for data saving purposes #

57 def get_output_file_name():

58 global output_file

59 test_name = str(input("Test name: "))

60 output_file += (test_name + ".csv")

61

62

63 # Class for saving data to CSV and plotting data #

64 class DataToFile:

65 column_names = ["time", "x-data", "y-data", "z-data"]

66

67 # Class initialization function - Defines write path for output file #

68 def __init__(self, write_path):

69 self.path = write_path

70

71 # Function for writing data to CSV file #

72 def write_to_csv(self, x_values: [Any], y_values: [Any], z_values: [Any]):

73

74 # Calculations from byte to g #

75 x_data = [(round((float((x_values[i] << 8) | x_values[i + 1]) / 160), 1)) for i in

76 range(0, len(x_values) - 1, 2)]

77 y_data = [(round((float((y_values[i] << 8) | y_values[i + 1]) / 160), 1)) for i in

78 range(0, len(y_values) - 1, 2)]

79 z_data = [(round((float((z_values[i] << 8) | z_values[i + 1]) / 160), 1)) for i in

80 range(0, len(z_values) - 1, 2)]

81 times = [i for i in range(len(x_data))]

82

83 # Raise exception if not all data lists are the same length #

84 if len({len(x_data), len(y_data), len(z_data)}) > 1:

85 raise Exception("Not all data lists are the same length")

86

87 # Save data to CSV file #

88 with open(self.path, "a+") as f:

89 if os.stat(self.path).st_size == 0:

90 f.write(",".join([str(name) for name in self.column_names]) + ",\n")

91 else:

92 for i in range(len(times)):

93 f.write(f"{times[i]},{x_data[i]},{y_data[i]},{z_data[i]},\n")

94

95 # Function for plotting data #

96 def plot_data(self, x_values: [Any], y_values: [Any], z_values: [Any]):

97

98 # Calculates from byte to g #

99 x_data = [(round((float((x_values[i] << 8) | x_values[i + 1]) / 160), 1)) for i in

100 range(0, len(x_values) - 1, 2)]

101 y_data = [(round((float((y_values[i] << 8) | y_values[i + 1]) / 160), 1)) for i in

102 range(0, len(y_values) - 1, 2)]

103 z_data = [(round((float((z_values[i] << 8) | z_values[i + 1]) / 160), 1)) for i in

104 range(0, len(z_values) - 1, 2)]

105 times = [i for i in range(len(x_data))]

106

107 # Plots data of all axis in one figure #

108 plt.figure()

109 plt.plot(times, x_data, 'r', label='x-data')

110 plt.plot(times, y_data, 'g', label='y-data')

111 plt.plot(times, z_data, 'b', label='z-data')

112 plt.title("Accelerometer data")

113 plt.xlabel("Time [s]")

114 plt.ylabel("Acceleration [g]")

115 plt.legend()

116 plt.show()

117

118

119 # Class for handling Bluetooth connection #

120 class Connection:

121 client: BleakClient = None

122

123 # Class initialization function #

124 def __init__(

Page 54 of 57

APPENDIX D. PROCESSING PROGRAM

125 self,

126 x_data_characteristic: str,

127 y_data_characteristic: str,

128 z_data_characteristic: str,

129 write_characteristic: str,

130 data_handler: Callable[[Any], None],

131 data_plotter: Callable[[Any], None]

132):

133

134 # Define class variables #

135 self.x_data_characteristic = x_data_characteristic

136 self.y_data_characteristic = y_data_characteristic

137 self.z_data_characteristic = z_data_characteristic

138 self.write_characteristic = write_characteristic

139 self.data_handler = data_handler

140 self.data_plotter = data_plotter

141

142 self.connected = False

143 self.connected_device = None

144

145 self.x_data = []

146 self.y_data = []

147 self.z_data = []

148 self.delays = []

149

150 # Function for what happens when disconnected from device #

151 def on_disconnect(self, client):

152 self.connected = False

153 self.data_handler(self.x_data, self.y_data, self.z_data)

154 self.data_plotter(self.x_data, self.y_data, self.z_data)

155 self.clear_lists()

156 print(f"Disconnected from {self.connected_device.name} at {datetime.now()}!")

157

158 # Function for properly ending Bluetooth connection #

159 async def cleanup(self):

160 if self.client:

161 await self.client.stop_notify(self.x_data_characteristic)

162 await self.client.stop_notify(self.y_data_characteristic)

163 await self.client.stop_notify(self.z_data_characteristic)

164 await self.client.disconnect()

165

166 # Function for initializing connection over Bluetooth #

167 async def manager(self):

168 print("Starting connection manager")

169 while True:

170 if self.client:

171 await self.connect()

172 else:

173 await self.select_device()

174 await asyncio.sleep(15.0)

175

176 # Function for setting up connection with Bluetooth peripheral device #

177 async def connect(self):

178 if self.connected:

179 return

180 try:

181 await self.client.connect()

182 self.connected = await self.client.is_connected()

183 if self.connected:

184 print(f"Connected to {self.connected_device.name} at {datetime.now()}")

185 self.client.set_disconnected_callback(self.on_disconnect)

186 await self.client.start_notify(self.x_data_characteristic,

187 self.notification_handler_x,

188 force_indicate=True)

189 await self.client.start_notify(self.y_data_characteristic,

190 self.notification_handler_y,

191 force_indicate=True)

192 await self.client.start_notify(self.z_data_characteristic,

193 self.notification_handler_z,

194 force_indicate=True)

195

196 while True:

197 if not self.connected:

Page 55 of 57

APPENDIX D. PROCESSING PROGRAM

198 break

199 await asyncio.sleep(3.0)

200 else:

201 print(f"Failed to connect to {self.connected_device.name}")

202 except Exception as e:

203 print(e)

204

205 # Function for selecting which Bluetooth peripheral to connect with #

206 async def select_device(self):

207 print("Bluetooth LE hardware warming up...")

208 await asyncio.sleep(2.0) # Wait for BLE to initialize

209 devices = await discover()

210

211 device_number = -1

212

213 for i, device in enumerate(devices):

214 if device.name == DEVICE_NAME:

215 device_number = i

216 break

217

218 if device_number != -1:

219 print(f"Connecting to {devices[device_number].name}")

220 self.connected_device = devices[device_number]

221 self.client = BleakClient(devices[device_number].address)

222 else:

223 print(f"No device was found with the name: {DEVICE_NAME}")

224

225 # Function for clearing variable lists #

226 def clear_lists(self):

227 self.x_data.clear()

228 self.y_data.clear()

229 self.z_data.clear()

230 self.delays.clear()

231

232 # Function for handling what happens when notification occurs on x-data characteristic #

233 def notification_handler_x(self, sender: str, _data_: Any):

234 tmp_list_x = [_data_[i:i + 1] for i in range(len(_data_))]

235 for i in range(len(tmp_list_x)):

236 if i == 0 or i % 2 == 0:

237 self.x_data.append(int.from_bytes(tmp_list_x[i], byteorder="little", signed=True))

238 else:

239 self.x_data.append(int.from_bytes(tmp_list_x[i], byteorder="little", signed=False))

240 print(f"X-data notification event happened at {datetime.now()}")

241

242 # Function for handling what happens when notification occurs on y-data characteristic #

243 def notification_handler_y(self, sender: str, _data_: Any):

244 tmp_list_y = [_data_[i:i + 1] for i in range(len(_data_))]

245 for i in range(len(tmp_list_y)):

246 if i == 0 or i % 2 == 0:

247 self.y_data.append(int.from_bytes(tmp_list_y[i], byteorder="little", signed=True))

248 else:

249 self.y_data.append(int.from_bytes(tmp_list_y[i], byteorder="little", signed=False))

250 print(f"Y-data notification event happened at {datetime.now()}")

251

252 # Function for handling what happens when notification occurs on z-data characteristic #

253 def notification_handler_z(self, sender: str, _data_: Any):

254 tmp_list_z = [_data_[i:i + 1] for i in range(len(_data_))]

255 for i in range(len(tmp_list_z)):

256 if i == 0 or i % 2 == 0:

257 self.z_data.append(int.from_bytes(tmp_list_z[i], byteorder="little", signed=True))

258 else:

259 self.z_data.append(int.from_bytes(tmp_list_z[i], byteorder="little", signed=False))

260 print(f"Z-data notification event happened at {datetime.now()}")

261

262

263 ###############

264 # Loops

265 ###############

266

267 # Function for sending string to Bluetooth peripheral #

268 async def user_console_manager(connection: Connection):

269 while True:

270 if connection.client and connection.connected:

Page 56 of 57

APPENDIX D. PROCESSING PROGRAM

271 input_str = await ainput("Enter string: ")

272 bytes_to_send = bytearray(map(ord, input_str))

273 await connection.client.write_gatt_char(write_characteristic_uuid, bytes_to_send)

274 print(f"Sent: {input_str}")

275 else:

276 await asyncio.sleep(2.0)

277

278

279 ###############

280 # App main

281 ###############

282

283 # Bluetooth characteristic UUIDs #

284 x_data_characteristic_uuid = "1d3478a3-59db-4f59-8c27-a00a3a2a7a8e"

285 y_data_characteristic_uuid = "08e2eead-cc49-45f8-a24a-c0118ce005a2"

286 z_data_characteristic_uuid = "3fab2d16-53e2-46e8-bbe2-b171f12f5564"

287 write_characteristic_uuid = "a23be471-deb8-4fa2-8d22-10537858bbf3"

288

289 # Main #

290 if __name__ == "__main__":

291

292 get_output_file_name()

293

294 # Create the event loop

295 loop = asyncio.get_event_loop()

296

297 data_to_file = DataToFile(output_file)

298 data_to_file.write_to_csv([0], [0], [0])

299

300 connection = Connection(

301 x_data_characteristic_uuid,

302 y_data_characteristic_uuid,

303 z_data_characteristic_uuid,

304 write_characteristic_uuid,

305 data_to_file.write_to_csv,

306 data_to_file.plot_data

307)

308 try:

309 asyncio.ensure_future(connection.manager())

310 asyncio.ensure_future(user_console_manager(connection))

311 loop.run_forever()

312 except KeyboardInterrupt:

313 print()

314 print("User stopped program")

315 finally:

316 print("Disconnecting...")

317 loop.run_until_complete(connection.cleanup())

Page 57 of 57

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Tobias Thorvaldsen

Design of sensor system for slump
test of fresh concrete

Master’s thesis in Electronic Systems Design
Supervisor: Dag Roar Hjelme
Co-supervisor: Dominik Osinski
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Background
	Digital transformation in the construction industry
	SiteCast
	Sensor system for slump test of concrete

	Client
	Problem description
	Delimitation
	Report Structure

	Theory
	Basics of concrete
	Workability and consistency of fresh concrete
	Tests for measuring consistency and workability of fresh concrete
	Slump test
	Slump flow test
	Kelly ball test

	Methodology
	Developing the measurement concept
	Making a prototype
	Hardware
	Software
	Designing the housing

	Finished prototype
	Testing
	Sensor setup
	Testing day 1
	Testing day 2

	Results
	Results from testing day 1
	Results from testing day 2

	Discussion
	Lessons learned from testing
	Test setup
	Analyzing the results
	Housing
	Software
	Chosen components
	Taking inspiration from the Kelly ball test
	Source criticism
	General reflections on the project

	Conclusion
	Bibliography
	Sampling program - Main script
	Sampling program - Accelerometer functions
	Sampling program - ADXL372.cpp header file
	Processing program

