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Abstract: Polypropylene (PP) is an engineered thermoplastic polymer widely used in various appli-
cations. This work aims to enhance the properties of PP with the introduction of titanium dioxide
(TiO2) nanoparticles (NPs) as nanofillers. Novel nanocomposite filaments were produced at 0.5, 1, 2,
and 4 wt.% filler concentrations, following a melt mixing extrusion process. These filaments were
then fed to a commercially available fused filament fabrication (FFF) 3D printer for the preparation
of specimens, to be assessed for their mechanical, viscoelastic, physicochemical, and fractographic
properties, according to international standards. Tensile, flexural, impact, and microhardness tests, as
well as dynamic mechanical analysis (DMA), Raman, scanning electron microscopy (SEM), melt flow
volume index (MVR), and atomic force microscopy (AFM), were conducted, to fully characterize the
filler concentration effect on the 3D printed nanocomposite material properties. The results revealed
an improvement in the nanocomposites properties, with the increase of the filler amount, while
the microstructural effect and processability of the material was not significantly affected, which is
important for the possible industrialization of the reported protocol. This work showed that PP/TiO2

can be a novel nanocomposite system in AM applications that the polymer industry can benefit from.

Keywords: additive manufacturing (AM); three-dimensional (3D) printing; nanocomposites;
polypropylene (PP); titanium dioxide (TiO2); tensile test; flexural test; Charpy’s impact test; Vickers
microhardness; scanning electron microscopy (SEM)

1. Introduction

Additive manufacturing (AM) currently has a major role in developing a sustainable
economy, with several research projects focusing on sustainability being either AM-based
or AM related [1]. Most of the materials used in AM applications are either enhanced
polymers, i.e., polymer blends, polymer/small molecule as viscosity modifiers, etc., or
polymer-based composite materials [2,3], with the main stock materials being thoroughly
studied in the literature [4–6]. Research is being conducted regarding the development
of polymer-based composite materials, to be employed in advanced applications, using
AM. Additive manufacturing, and especially fused filament fabrication (FFF) technology,
has great potential in the development of a sustainable society [7]. Relatively, research
in AM has been conducted on recycling processes of polymers [8–11] and on mechanical,
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thermal, electrical and/or other property enhancements, using a wide variety of fillers and
nanofillers dispersed in the polymer matrix [12–17].

Among the wide variety of polymers utilized in AM, polypropylene (PP) is of great
interest for its high mechanical and thermal stability, making it a proper material for
engineering applications, as well as a thermoplastic material that exhibits a great process-
ability via melt-mixing and related compounding processes [18]. PP is widely used by
the industry in applications such as operational parts [19] and in the food industry [20].
Specifically, PP is characterized as a high-grade engineering material for AM, but it is only
recommended for advanced AM users [21] because it warps easily during the FFF process,
and the developed thermal stresses attributed to (i) the 3D printing extruder shear induced
crystallization, and (ii) the PP macromolecular chains’ inherent tendency to form crystals
on the material coming from the melt to the solid state, resulting in a semi-crystalline
polymer [22]. Hence, research has been conducted into the improvement of PP’s print-
ability [17,23] and their mechanical, thermal, and other properties [17]. It could be easily
realized that polypropylene has a high potential in FFF AM applications; therefore, it was
chosen herein as the polymer matrix material for the development of nanocomposites with
enhanced 3D printed specimens’ properties.

Titanium dioxide (TiO2) was selected for the current study as the nanofiller for the
preparation of nanocomposite materials, as its spherical shape, surface chemistry, and
ceramic nature have been proven in the literature to enhance the properties of various
polymers [13,16,24]. For instance, titanium dioxide has been investigated, e.g., (i) as
nanofiller in order to improve the UV stability of polymers, because of its wide bang
gap semiconductor properties and its exceptional UV absorption properties [25], (ii) as
a pigment for whitening [26], and (iii) to improve and endow antibacterial properties
of polymers and/or other nanoparticles [27]. Research has also been conducted with
polymers and TiO2 as a filler, focusing on additive manufacturing FFF technology [28–30],
but no similar research has yet been presented in the literature focusing on PP/TiO2
nanocomposites that have been 3D printed with the FFF AM process and fully characterized.
Nanocomposites were prepared in various concentrations in order to investigate the effect
of the nanofiller in the polymer matrix properties and to specifically highlight the process–
structure–property relationship.

In this study, nanocomposite materials were developed with a thermomechanical melt
mixing process, using polypropylene (PP) and titanium dioxide (TiO2) at various filler
loadings. The produced nanocomposite filaments were utilized in the AM FFF process for
the manufacturing of specimens suitable for testing, according to international standards.
The TiO2 filler effect on the PP polymer’s mechanical, viscoelastic, flow, physicochemical,
and fractographic properties has been thoroughly investigated. Low filler concentrations
were selected to determine the sensitivity of the polymer matrix to this specific nanofiller
loading. According to authors’ knowledge and a meticulous literature survey, no similar
research has been conducted so far. Detailed mechanical testing, i.e., tensile, flexural,
impact, microhardness, and dynamic mechanical analysis (DMA), demonstrated the effect
of the nanofiller on the mechanical properties of the polymer matrix. Scanning electron
microscopy (SEM) was employed to analyze the microstructure of the fractured surfaces
after tensile tests as well as the side surfaces of the 3D printed nanocomposites. Atomic
force microscopy (AFM) analysis showed that the extruded filaments’ surface roughness
increased in general with the increase of the TiO2 filler loading. Raman spectroscopy proved
the nanocomposite specific responses, while melt flow volume index (MVR) analysis
revealed the effect of the nanofiller on the flow properties of the polymer matrix. It was
found that, overall, the properties of the polymer matrix improved with the increase in the
filler concentration, up to the maximum concentration studied in this work, while the filler
had no significant effect on the printability of PP. The nanocomposites in this study were
prepared with a versatile, scalable, and industrial ready process, suitable for advanced
engineering applications. Additionally, the mechanisms and the effect of the filler on the
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matrix material were thoroughly investigated, analyzed, and presented so as to ensure the
reliability of the results.

2. Materials and Methods
2.1. Materials

Polypropylene (PP) in a powder form was procured from Hellenic Petroleum S.A.
(Athens, Greece), and was used throughout this work, under the trademark of Ecolen
PP. According to the supplier technical specification data sheet, the PP was an isotactic
homopolymer thermoplastic material. Titanium dioxide (TiO2) was procured from Degussa
Evonik P25 (Essen, Germany) in the form of nanoscale particles (NPs), with a mean
diameter in the range of 25–50 nm. In order to investigate the effect of the titanium dioxide
nanofiller in the polypropylene matrix, nanocomposite materials were fabricated at four (4)
different filler’s concentrations, i.e., 0.5 wt.%, 1 wt.%, 2 wt.%, and 4 wt.%. The pure PP’s
properties were also studied and evaluated with respect to the PP/TiO2 nanocomposites
prepared at the different concentrations.

2.2. Methods

The methodology and a brief presentation of each step followed in this study are
shown in Figure 1. The methodology is described in detail in the following sections.
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Figure 1. Flow chart of the methodology steps followed in this study and the representative pictures
captured during the individual processes.

2.2.1. Filament Fabrication

Pure PP and all of the nanocomposite’s concentrations in this work were fabricated
under same conditions, initially in filament form. Each material was weighted and mixed,
with the filler’s percentage calculated per weight (wt.%). The mechanical mixing procedure
was conducted in a closed chamber to reduce the loss of the TiO2 filler, because of its high
hovering behavior. Before starting the mixing process, PP and TiO2 were dried for 24 h at
80 ◦C in a laboratory oven. After homogenization, each mixture was further dried for 5 h
at 80 ◦C in the same oven before proceeding to the filament extrusion step.

In order to produce filaments as feedstock for the AM process in this study, a 3D Evo’s
(3D Evo B.V., NL) Composer 450 single screw extruder was employed. In this extruder,
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a total of four (4) heating zones were used for the polymer’s melting and extrusion. The
rotational speed of the screws could be adjusted by the user and an adjustable built-in
winder regulated the winding speed with feedback from the built-in filament’s diameter
measurement sensor. A real time, during the extrusion process, filament diameter measure-
ment diagram provided quality control measurements to evaluate whether the 1.75 mm
filament diameter required by the 3D printers was retained.

All of the materials were extruded under the same conditions (pure PP and four
nanocomposites), and a mean deviation of 0.08 mm was achieved for the filaments’ diame-
ters throughout the process. The extrusion temperature settings were 195 ◦C at heat zone 4
(closer to the hopper), 210 ◦C at heat zone 3 and heat zone 2 (melt-mixing stage), and 205 ◦C
at heat zone 1 (closer to the extruder’s nozzle). Extruder’s screw rotational speed was
adjusted to 3.5 rpm and fans (built-in) utilized for cooling were adjusted to 40%. A special
duct was designed and manufactured (through AM) for the purposes of this study. This
duct was designed to direct air from the extruder fans to the extruded material in the 3D
Evo’s nozzle, so as to improve the air flow around this area. This was deemed necessary for
these specific materials of the study. In this way, a smoother cooling process was achieved
for the extruded material, and the filament showed a higher roundness, leading to an
improved 3D printing quality. Filament’s diameter and roundness were further measured
manually with a high-quality caliper prior to the 3D printing process, as an additional
measure, in order to ensure the quality of the extruded filament.

2.2.2. Tensile Specimens’ Fabrication and Testing

Fused filament fabrication (FFF) additive manufacturing (AM) technology was chosen
for the specimens’ fabrication. Intamsys Funmat HT 3D printer (Intamsys Technology
Co. Ltd., Shangai, China) was used with a 0.4 mm nozzle setup. In Figure 2, the 3D
printing process settings are shown. Additionally, the nozzle’s fans were closed during the
fabrication procedure. Intamsys Funmat HT is a total-closed chamber 3D printer able to
achieve a thermal stability in the 3D printing process, which is crucial for PP’s 3D printing,
without intense warping problems. The settings of the FFF process not shown in Figure 2
were set to default, according to the Intamsuite slicer software used for the purposes of the
current study. The default values were set by choosing PP as the material from Intamsuite’s
materials list. The same parameters were used in all of the specimens manufactured in the
study.
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Tensile tests were conducted according to the American Society for Testing and the
Materials (ASTM) D638-02a international standard. Five type V specimens with a 3.2 mm
thickness were fabricated for each material, according to the standard. An Imada MX2
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(Imada Inc., Northbrook, IL, USA) apparatus was used for the tensile tests. The elonga-
tion speed was adjusted to 10 mm/min and all of the tests were conducted under room
temperature conditions (22 ◦C, ~50% RH).

2.2.3. Flexure Specimens Fabrication and Testing

The same procedure and settings were followed for the flexural test specimens’ fabri-
cation. ASTM D790-10 was the international standard followed for the flexural tests. Five
specimens were fabricated, with a thickness of 3.2 mm, for each material tested. A total
of 25 specimens were tested in a three-point bending setup in the same device described
above (Section 2.2.2), according to the standard. The bending speed was set to 10 mm/min,
while room temperature conditions prevailed during testing (22 ◦C, ~50% RH).

2.2.4. Charpy’s Impact Specimens Fabrication and Testing

The impact test of Charpy’s notched process was conducted for the purposes of the
current study. The ASTM D6110-04 standard was followed, while the specimens’ dimen-
sions were 80 mm length, 10 mm width, and 8 mm height. Specimens were fabricated with
the exact same parameters described above (Section 2.2.2). A Terco MT220 Charpy (Terco
AB, Kungens Kurva, Sweden) impact test machine was used in the current study. Ham-
mer’s release height was the same for all of the tests conducted (367 mm). Charpy’s impact
notched tests were carried out under room temperature conditions (22 ◦C, ~50% RH).

2.2.5. Micro-Hardness Measurements

Microhardness is a very important material property, related to the plasticity of the
material, which is directly connected with the material mechanical response [31]. Vickers
microhardness measurements were also conducted for all of the materials fabricated in this
study. The ASTM E384-17 standard was followed for the testing procedures. Measurements
were conducted on randomly selected areas in the tensile, flexure, and impact specimens.
The specimen surfaces were fully polished prior to each set of measurements. Tests were
carried out on an Innova Test 300-Vickers machine (Innovatest Europe BV, Maastricht, The
Netherlands). The applied force for indentations was set to 300 gF, while the duration
for the indentation was set to 10 s. Five measurements of imprints were conducted for
each nanocomposite material and pure PP. The indentations were carried out at room
temperature conditions (22 ◦C, ~50% RH).

2.2.6. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical analysis (DMA) was conducted on the specimens of all of the
materials fabricated for this study. The apparatus used for this test was a TA Instruments
DMA850 instrument (TA Instruments, New Castle, DE, USA).

Prior to testing, the samples were dried at a temperature of 30 ◦C for a minimum of
48 h. Because of the samples having rough side edges from the manufacturing process, the
samples were polished in two steps using 240 and 400 grain sandpaper under water flow.

The DMA testing procedure consisted of a temperature ramp from room temperature
to 130 ◦C (and in some cases up to 135 ◦C), at a rate of 3 ◦C min−1. Testing was conducted
using the three-point bending fixture. The samples were preloaded to 0.1 N. A sinusoidal
displacement was applied to the samples with a constant amplitude of 30 µm and a
frequency of 1 Hz throughout the tests. The data were collected by the instrument at
a sampling rate of 0.33 Hz. The recorded parameters were the storage modulus, loss
modulus, tan δ, temperature, time, and oscillation angular frequency.

2.2.7. Characterization Techniques

Raman spectroscopic analysis was carried out for the pure 3D printed PP, as well as the
PP/TiO2 nanocomposite specimens acquiring spectra from the top 3D printed layer surface.
All of the spectra were obtained using a Labram HR-Horiba (Kyoto, Japan) scientific micro-
Raman system, while all of the spectra were treated with a baseline correction through the



Materials 2021, 14, 3076 6 of 17

subtraction of a linear or polynomial fit of the baseline from the raw spectra, in order to
remove the tilted baseline caused by various noises, i.e., fluorescent background, etc. For
all of the Raman experiments, an optical microscope equipped with a 50× long working
distance objective was used for delivering both the excitation light, as well as for collecting
the back-scattering Raman activity. An Ar+ ion laser line at a 514.5 nm wavelength with
1.5 mW power at the focal plane was utilized for the Raman excitation.

Scanning electron microscopy (SEM) microstructural investigations were performed
using a JEOL JSM 6362LV (Jeol Ltd., Peabody, MA, USA) electron microscope in high-
vacuum mode at 20 kV acceleration voltage on sputtered-gold coated samples. The images
from the side surface and the fracture area of the randomly selected tensile test samples
from all of the filler loadings tested in this study were captured at various magnifications.

The filaments’ surface topology was studied using atomic force microscopy (AFM) in
tapping mode (TM-AFM). The AFM images (height data) were recorded with a scanning
probe microscope (MicroscopeSolver P47H Pro, NT-MDT, Moscow, Russia) in air at room
atmosphere and a temperature of 22 ◦C, at a resonant frequency of about 300 kHz. Com-
mercially available silicon cantilevers were used with a scanning frequency of 1 Hz, a tip
cone angle of 20◦, a cantilever spring constant of 35 N/m, and a tip radius of about 10 nm.

The flow properties of the PP and PP/TiO2 nanocomposites were tested using an
Instron CEAST MF20 Melt Flow Tester (Instron Corp., Norwood, MA, USA). The tests were
conducted following ASTM D1238-10, on all of the samples, employing dead weights of
2.16 kg.

3. Results and Discussion
3.1. Mechanical Properties Results
3.1.1. Tensile Test Results

In Figure 3, the results from the tensile tests conducted on the specimens of all of
the materials produced for the current study are depicted. In Figure 3a, a representative
stress–strain graph of each sample case is shown. The average tensile stress values at break
(MPa) are presented in Figure 3b, while in Figure 3c, the calculated average tensile modulus
of elasticity (MPa) is shown with respect to the filler’s percentage for all of the materials
tested in this study.
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As shown in Figure 3b, regarding the maximum tensile stress developed during the
tensile test, titanium dioxide increased by approximately 10% of the tensile strength of
the pure PP at a filler’s loading of 0.5 wt.%, and overall, all of the filler’s concentrations
tested in this work improved the tensile strength of pure PP. The filler’s percentage also
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revealed an effect on the ductility of the materials tested (Figure 3a). Low concentrations
of 0.5 wt.% and 1 wt.% revealed a more intense ductile behavior after the yield point,
while TiO2 concentrations of 2 wt.% and 4 wt.% shifted the material behaviors to being
more brittle. Interestingly, both the tensile strength and stiffness exhibited an increase for
0.5 wt.%, then a drop for 1 wt.%, which subsequently changed again exhibiting higher
strength and stiffness values for 2 wt.% and 4 wt.%, respectively. The tensile strength and
modulus of the elasticity results of this study are in agreement with the results from the PP
composites presented in the literature [17]. A similar behavior of using TiO2 nanoparticles
as a filler to enhance the tensile properties of the polymer matrices is also reported in the
literature for two different polymers and similar filler concentrations [1,16].

3.1.2. Flexural Test Results

In Figure 4, the results from the flexural tests conducted are presented. Figure 4a
shows a representative stress (MPa) to strain graph for each material tested in this study. A
maximum strain of 0.05 (5%) is shown for all of the materials tested, according to the ASTM
D790-10 standard instructions, as no break occurred at the specimens. In Figure 4b, the
average maximum flexural stress (MPa) calculated at 5% strain is shown with respect to the
material’s filler percentage, while Figure 4c presents the corresponding average calculated
flexural modulus of elasticity (MPa) values.
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Figure 4. Flexural test results: (a) representative specimen’s flexural stress (MPa) to strain graphs, (b) average maximum
flexural stress values calculated (MPa) and the respective deviations in comparison with the filler’s concentration for each
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As Figure 4b depicts, the highest value for the flexural stress at a 5% strain was
observed for 4 wt.% TiO2. The calculated value at this concentration is 15% higher than
the pure PP. It should be mentioned that the flexural test was terminated at the 5% strain,
according to the ASTM D790-10, and no break occurred for any of the specimens. A similar
trend to tensile testing was observed for the flexure testing, which revealed a generally
increasing response to nanofiller loading, apart from the case of 1 wt.% TiO2.

3.1.3. Impact and Microhardness Test Results

Charpy’s notched impact test result are shown in Figure 5a. The impact strength
(kJ/m2) is presented for each material fabricated in the study. Figure 5b presents the
corresponding microhardness (HV) calculated values from the imprint’s measurements.
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The impact strength (Figure 5a) of the polymer was found to not be significantly
affected by the filler’s concentration, although a similar trend to the other tests was ob-
served. This agrees with the literature findings [8,24,32], which report that fillers have
a low effect on the impact strength of polymers. A similar trend was observed for the
microhardness measurements, with respect to the filler’s ratio (Figure 5b). PP is a well-
known ductile material, so a low TiO2 filler loading is not expected to affect the PP’s surface
microhardness.

3.2. DMA Results

In Figure 6, all of the measured data retrieved through DMA are shown. The storage
modulus (MPA) curve (left Y axis) to temperature range of test (X axis) is presented for all
of the materials tested during the current study. In the same figure (Figure 6) and at the
right Y axis, tan(d) is shown for all of the materials as a function of temperature (X axis).
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In the DMA thermomechanical analyses, the effects of the filler type and concentration
on the storage modulus and tan(d) values, have been examined. In general, storage
modulus values at very low temperature levels (~30 ◦C) are indicative of the flexural
modulus of the material, while tan(d) corresponds to damping.

The storage modulus reveals a decreasing tendency, at a high rate, which changes
before 70 ◦C. On the other hand, tan(d) exhibits an oscillation in the data, which becomes
prominently significant at high temperature ranges (>100 ◦C).

In the case of titanium dioxide, the storage moduli generally increased with higher
filler fractions, at low temperatures, which confirms the response of the material to flexure
(Figure 4). The 0.5 wt.% filler fraction case revealed a lower storage modulus than the
reference case values, while the converse was true for the 1, 2, and 4 wt.% groups.

With regards to tan(d), the filler loading generally increased the damping of the
investigated nanocomposites, apart from the case of 4 wt.%. The trend of the tan(d) curve
was found to be similar for all of the samples, i.e., it increased with a steady rate that
became asymptotic after 70 ◦C, especially for the cases of 0.5, 1, and 2 wt.%. Furthermore,
oscillations recorded at higher temperatures are indicative of softening. This effect was
not pronounced in the case of 4 wt.% because of the brittleness of the material, as was
demonstrated by the tensile and flexural tests. In addition, this effect might be indicative
of potential filler agglomeration at high loadings.

3.3. Raman Results

Figure 7 shows the Raman spectra of the corresponding 3D printed samples, namely
the pure PP, as well as the PP/TiO2 nanocomposites at different filler loadings. Specif-
ically, Figure 7a shows the whole acquired Raman spectrum in the spectral region of
250–3000 cm−1, while Figure 7b shows the whole acquired Raman spectrum in the spectral
region of 300–700 cm−1. All of the peaks attributed to the PP matrix macromolecular
chains’ chemistry, i.e., the polymer chain backbone and the side groups, are depicted with
continuous lines, while the specific bands assigned to the TiO2 NPs are illustrated with
dashed lines in Figure 7a,b, respectively.
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Figure 7. Raman spectra of the 3D printed samples, namely the pure polypropylene (PP) and the PP/TiO2 nanocomposites
at different filler loadings, in the spectral region of (a) 250–3000 cm−1 and (b) 300–700 cm−1, respectively.

The characteristic PP Raman peaks could be clearly seen at different band positions as
being in good agreement with other reported PP spectra in the literature [4]. More specifi-
cally, the characteristic fingerprints of PP are located at ca. 385, 810, 868, 967, 1036, 1168,
and 1221 cm−1 (C–C stretching vibration); 1250 and 1320 cm−1 (CH deformation vibration);
1334 and 1454 cm−1 (–CH2 of the PP backbone macromolecular chains); 1361–1385 cm−1

(–CH3 deformation vibrations of PP chains, as well as the –CH3 side group rocking vibra-
tion) [33]; and 2721, 2837, 2875, and 2962 cm−1 (CH3 symmetric and asymmetric stretching
vibration) [34]. The spectra of the PP/TiO2 nanocomposites at the different TiO2 wt.%
filler loadings exhibited some additional peaks attributed to the TiO2 nano crystallites’
vibrational modes, indicated more clearly in Figure 7b. Namely, the peaks at ca. 513 cm−1

and 639 cm−1, as well as the enhanced peak intensity of the band at ~400 cm−1, which
increased for all of the nanocomposites compared with the pure PP peak intensity, are all
attributed to the characteristic TiO2 anatase (A) phase vibrational modes (shown with black
dashed lines), as reported elsewhere [16].

It is known that anatase (A) and rutile (R) are the most common crystalline phases of
TiO2, which exhibit characteristic and different Raman active modes [13]. The anatase main
peaks are located at 395 (B1g), 513 (A1g), and 639 cm−1 (Eg), while the rutile peaks are located
at 442 and 605 cm−1, respectively [35]. It is worth mentioning that the TiO2 NPs utilized
herein as the nanocomposite reinforcement fillers consist mainly of the anatase phase;
however, a small fraction of rutile phase (R) was detected, due to the peaks appearing at ca.
442 and 605 cm−1, more precisely shown in Figure 7b (red dashed lines). Moreover, it could
be observed, and it is worth mentioning, that the characteristic Raman peak intensities
corresponding to the blended TiO2 NPs in the PP matrix increased with the increased filler
loading, shown more clearly in Figure 7b.

3.4. Microstructural Analysis
3.4.1. SEM Analysis

In Figure 8, the side surface of the randomly selected tensile test specimens is shown
in different magnifications as a means to quantitatively evaluate the samples’ interlayer
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fusion, interlayer defects and inhomogenities, etc. Specifically, in Figure 8a,b, the side
surface images in magnification of ×30 (a) and ×150 (b) are shown for PP/TiO2 0.5 wt.%.,
respectively; Figure 8c,d shows the side surface of PP/TiO2 2 wt.%, respectively; and
Figure 8e,f shows the side surface of PP/TiO2 4 wt.%, respectively.
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Figure 8 shows that the nanocomposite materials were 3D printed in an appropriate
and optimum 3D printing protocol. The layer deposition was of a fine quality as the
layers did not exhibit a high variation in their positioning. From the high magnification
images (Figure 8b,d,e), a well interlayer fusion is observed, without any observed voids,
discontinuities, and inhomogenities. Some of the tiny defects shown in Figure 8b can
likely be attributed to some local malfunction in the extrusion process during 3D printing
(probably a tiny remnant inside nozzle), while PP/TiO2 0.5 wt.% performed mechanically
soundly, as presented earlier.

Figure 9 shows the PP/TiO2 3D printed nanocomposite specimens’ fractured surfaces
(acquired from the representative tensile test fractured samples). In Figure 9a,b, the
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PP/TiO2 0.5 wt.% specimen’s fractured surface is shown at two different magnifications,
of ×30 (Figure 9a) and ×1000 (Figure 9b). Figure 9c,d depicts PP/TiO2 2 wt.% at the
same magnifications, while Figure 9e,f depict PP/TiO2 4 wt.% at the same magnifications,
respectively.
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Figure 9. SEM captures of specimens’ fracture area as: (a) ×30 magnification of PP/TiO2 0.5 wt.% (b) ×1000 mag-
nification of PP/TiO2 0.5 wt.% (c) ×30 magnification of PP/TiO2 2 wt.% (d) ×1000 magnification of PP/TiO2 2 wt.%
(e) ×30 magnification of PP/TiO2 4 wt.% (f) ×1000 magnification of PP/TiO2 4 wt.%.

It can be seen in Figure 9 that the 3D printing process was of an exceptional quality,
as the specimens seemed to present no visible porosity because of the inherent nature
of the FFF 3D printing filamentous deposition AM process. In this way, the anisotropic
effects that are usually observed in 3D printing were minimized. In the images, a somehow
ductile fracture area can be observed in Figure 9a, which corresponds to 0.5 wt.%, as
opposed to the other cases that correspond to a more brittle failure that agrees with the
measured tensile tests results (only in Figure 9a,b, some filaments were found to be pulled
out from the fractured surface, indicating some ductile fracture mechanism, unlikely for the
other samples). No micro-aggregates can be observed and/or are visible in the 3D printed
specimens’ fractured surfaces, even up to the highest nanocomposite’s concentration, i.e.,
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at 4 wt.% (Figure 9e,f). Finally, for all of the nanocomposites processed through the filament
extrusion and consecutive FFF 3D printing AM process, overall, (i) a rather good dispersion
of nanoparticles was observed (not aggregating phenomena occurred for instance during
the melt mixing/processing steps) and a (ii) low porosity between the adjacent filaments
with a good interface between the filaments was achieved.

3.4.2. AFM Analysis

The surface topology and roughness measurements conducted on the extruded fila-
ments’ surface are shown in Figure 10. Namely, the PP/TiO2 0.5 wt.% filament is presented
in Figure 10a, while Figure 10b,c shows the surface topology and roughness of PP/TiO2 2
wt.% and 4 wt.%, respectively.
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The AFM analysis showed that the extruded filament surface was of an outstanding
quality. In Figure 10, the worst scenario shows rather low roughness values of approxi-
mately 1 µm, which is almost 0.0006% of the filament diameter. Although the filaments
produced for the purposes of this study had an overall smooth surface, the measurements
(Figure 10) showed that the filler concentration had an effect on the filament roughness,
as an increase in Rz was observed when moving from 0.5 wt.% (Figure 10a) to 4 wt.%
(Figure 10c). The roughening effect is benchmarking the response to damping from the
dynamic mechanical analysis, which implies agglomeration at high filler loadings.

3.4.3. Melt Flow Volume Index (MVR) of Neat PP and PP/TiO2 Nanocomposites

In this study, the MVR was determined (Figure 11) for the neat PP and the PP/TiO2
nanocomposites in order to perceive a clear view onto the thermoplastic materials process-
ability, as well as to elaborate any potential processing problems that may be encountered
during the 3D filamentous extrusion printing process. In other words, the MVR reflects
the ease of flow of a melted thermoplastic polymer, thus providing a quality control in-
dex, which is quite important, especially for the FFF 3D printing manufacturing method.
Figure 11a illustrates the experimental setup for the MVR measurements, while Figure 11b
shows the MVR values for the neat PP and the PP/TiO2 nanocomposites at the different
filler loadings.

As can be observed, MVR values with the increase of the filler concentration exhibited
a constant decrease from ~34 cm3/10 min for the neat PP to ~30 cm3/10 min for the
PP/TiO2 (2 wt.%), while for the case of the PP/TiO2 (4 wt.%) nanocomposite, the MVR
value showed an increase to ~32.5 cm3/10 min, which was still lower, but close to the pure
PP value. This drop in MVR values was expected, as the filler content was expected to
increase the viscosity of the polymer melt, denoting the 2 wt.% filler loading as the level
of maximum intermolecular interactions between the filler and/or TiO2/PP. However, as
was indicated from DMA and AFM, potential filler agglomeration is likely to occur for the
case of PP/TiO2 4 wt.%, which affects the density change of the polymer melt or might
be causing density inconsistencies. The high amount of filler is also likely to cause both
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a retarding effect on TiO2 on the PP crystals and the physical hindrance of the particles
to the motion of the molecular chains. At the same time, the accumulated heat at high
filler loadings is transferred to the surrounding polymer, causing potential chain cuts. All
of these effects at PP/TiO2 4 wt.% are likely to have a cumulative adverse effect on the
viscosity, and correspondingly lead to an increase in MVR values, compared with the 0.5, 1,
and 2 wt.% filler loadings [36–38].
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Figure 11. (a) Melt flow volume index (MVR) measurement setup, and (b) MVR values for the neat PP and PP/TiO2

nanocomposite at different filler loadings.

4. Conclusions

The study herein focused on the effect of TiO2 as a nanofiller in low weight-to-weight
concentrations on the properties of the PP polymer material. Four nanocomposite types
were fabricated and tested for the characterization of the mechanical, viscoelastic, physic-
ochemical, and fractographic properties of the materials and for the evaluation of the
nanofiller effect when compared with the pure polymer material. Figure 12 summarizes
the mechanical properties of the pure PP and the nanocomposites fabricated in the current
study. The highest values measured or calculated are marked on the right side of Figure 12.
As was shown, TiO2 as a filler affects the mechanical properties of pure PP, with an increase
observed in all of the cases studied. Specifically, the 0.5 wt.% sample showed a more
improved tensile strength, while the 2 wt.% sample had the highest impact strength and
microhardness values, and the 4 wt.% sample showed the highest strength in bending.
Titanium dioxide seems to have no significant effect regarding the inherent structural
characteristics of the composites. As was shown, the homogeneity of the material was kept
constant under all of the filler percentages, while the increase of the filament roughness
with the increase of the TiO2 concentration had little effect on the processability of the
nanomaterials. Finally, filler ratio in the nanocomposite materials showed an effect regard-
ing crystallinity; higher ratios increased the crystallinity existence in the nanocomposite
materials.

Overall, the results of the current study showed a great potential for the PP/TiO2
nanocomposite to be used in AM applications. The nanomaterials were fabricated with
an easy industrial ready thermomechanical process and their mechanical properties were
improved when compared with the pure PP polymer, while the processability was not sig-
nificantly affected, even at high loadings. As a future work, higher nanofiller concentrations
could be prepared and tested, and further mixing possibilities with other nanoparticles
could also be considered.
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