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a b s t r a c t 

Biological structural systems such as plant seedcoats, beak of woodpeckers or ammonites shells are characterized 
by complex wavy and re-entrant interlocking features. This allows to mitigate large deformations and deflect or 
arrest cracks, providing remarkable mechanical performances, much higher than those of the constituent materi- 
als. Nature-inspired engineering interlocking joints has been recently proved to be an effective and novel design 
strategy. However, currently the design space of interlocking interfaces relies on relatively simple geometries, of- 
ten built as a composition of symmetric circular or elliptical sutured lines. In the present contribution it is shown 
that deep-learning (DL) methods can be leveraged to enlarge the design space. Accurate and fast assessments of 
stiffness, strength and toughness of interlocking interfaces, generated through a cellular automaton-like method, 
can be obtained using a convolutional neural network trained on a limited number of finite element results. A 

simple application of a DL model for the recognition of interlocking mechanisms in 2-D interfaces is introduced. 
It is also shown that DL models, pre-trained on small resolution geometries, can accurately predict structural 
properties on larger design spaces with relatively small amounts of new training data. This work is addressed to 
give new insights into the study and design of a new generation of advanced and novel interlocked structures 
through data-driven methods. 
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. Introduction 

Millions of years of evolution have selected biological structures able
o efficiently exploit the available resources whilst achieving high func-
ional performance ( Ortiz and Boyce, 2008; Wegst and Ashby, 2004;

egst et al., 2015 ). Unique combinations of strength, stiffness, tough-
ess, energy absorption and deformability emerge from specific hier-
rchical architectures and geometries, such as those observed in the
ooth enamel ( Bajaj et al., 2010 ), the bone ( Koester et al., 2008 ), the
acre ( Barthelat et al., 2007 ) or the turtle carapace ( Krauss et al., 2009 ).
pecifically, this latter, the beak of woodpeckers ( Lee et al., 2014 ), and
he human skull ( Miura et al., 2009 ), represent examples of biological
utures, in which two mechanically interdigitated stiff skeletal compo-
ents, i.e. hard building blocks, interlock together through a compliant
oft interface, determining biological and mechanical functions, such
s growth, respiration, locomotion and energy dissipation ( Chen et al.,
015; Jaslow, 1990 ). Complex wavy geometries and re-entrant local fea-
ures allow to mitigate the effect of large deformations via sliding and/or
otation of the constitutive building blocks ( Gao et al., 2018; Mirkha-
af et al., 2018 ), dissipate energy through large volumes ( Barthelat
t al., 2016 ), and deflect or arrest cracks, enhancing fracture toughness
 Liu et al., 2020 ). In particular, interlocking geometrical features are
hemselves able to improve the mechanical response of suture joints,
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ncreasing simultaneously strength, toughness and energy dissipation
 Lin et al., 2014; Malik and Barthelat, 2018; Malik et al., 2017 ), and
voiding also catastrophic failure of inherent brittle base components,
uch as glass and ceramics ( Mirkhalaf et al., 2016; 2018 ). 

In the last decade research has been focused on the physical under-
tanding and on the structure-property relationships of biological su-
ures and interlocked micro-structures ( Fig. 1 A), obtaining various an-
lytical models ( Gao and Li, 2019; Li et al., 2011; 2013; Malik et al.,
017 ) which can assess effective mechanical properties of simple geome-
ries, such as triangular, rectangular, trapezoidal and anti-trapezoidal
hapes. Pull-out response of symmetric and periodic jigsaw-like inter-
ocked features has been studied via analytical and numerical model-
ng ( Malik and Barthelat, 2018; Malik et al., 2017 ), demonstrating the
elative contribution of geometry and friction coefficient on the pull-
ut strength and energy absorption. In addition, bi-stable interlocking
nd multi-locking geometries ( Malik and Barthelat, 2018; Mirkhalaf and
arthelat, 2017 ) have highlighted the possibility to enrich the design
pace by adding other interlocking features, i.e., increasing the number
f parameters necessary to define the geometry itself. Simultaneously,
ractal-like interlocking architectures, occurring often in biological sys-
ems ( Krauss et al., 2009; Li et al., 2012 ), have been observed to sig-
ificantly enhance the effective mechanical performances ( Khoshhesab
nd Li, 2018; Li et al., 2012; Wang et al., 2020 ), without adding other
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eometrical parameters other than the fractal hierarchy. Stimulated
rom recent breakthroughs in machine learning (ML), specifically deep
earning (DL) ( LeCun et al., 2015 ), in this work the aim is to explore and
nlarge new design spaces for structures based on the interlocking mech-
nism via a deep-learning approach, overcoming the limits of geometric
implicity and restricted number of parameters required from analyti-
al models to assess the mechanical response as well as the impossibility
o numerically simulate all the possible combinations in a specific de-
ign space. It is fundamental to emphasize that this approach may be
xtended to all engineered architectured material systems, for which
eometric features and patterns are the main controllable engineering
ariables, as nature-inspired design, and more recently the lithomimet-
cs ( Beygelzimer et al., 2021 ), have shown to the scientific community.
t is well known that it is impossible to mimic some aspects of natural
tructures transferring them to real man-made structures. For example,
elf-healing and regeneration mechanisms typical of bones can be only
artially captured and reproduced in a real structure. However, geo-
etrical aspects play a role which is not less important and they can be

ompletely controlled with the advances of new design and manufac-
uring technologies. Fatigue failures, for example, are strongly affected
y the local geometry of the structure, which is in many cases the most
ritical aspect. Taking therefore inspiration from natural structures (not
ompletely mimicking them) can lead to new design opportunities that
ill be discussed in the present contribution. 

Exploiting of the increase in the amount of computational power
nd available data, deep-learning techniques, and ML as a whole, have
hown to dramatically improve the state-of-the-art of various fields,
uch as image and speech recognition, object detection, drug discov-
ry and protein structure prediction ( LeCun et al., 2015; Senior et al.,
020; Zhavoronkov et al., 2019 ). Since the early results on the universal
pproximation theorems, proving the capability of multilayer feedfor-
ard neural networks with just one hidden layer to approximate (under

ome measure) any function (in some domain) ( Hornik, 1991; Lin and
egelka, 2018 ), it has been known that machine-learning methods allow
o approximate complex input-output functional relationships, detecting
atterns in raw data given as input, through a learning process. Deep-
earning computational models, specifically, are composed of succes-
ive layers, able to automatically discover intricate patterns and capture
eatures with multiple levels of representation, directly from raw data
 LeCun et al., 2015 ). Given, for example, an input x 𝑖 ∈ ℝ 

𝑛 , 1 ⩽ 𝑛 < ∞,
epresenting some data 𝑖 sampled from a probability distribution 𝑃 ( x ) ,
nd associated labels y 𝑖 ∈ ℝ 

𝑑 , 1 ⩽ 𝑑 < ∞, a deep-learning model is able
o infer either the conditional 𝑃 ( y ∣ x ) , 𝑃 ( x ∣ y ) , or the joint 𝑃 ( x , y ) prob-
bility distribution, depending on the specific model ( Alpaydin, 2020 ). 

Successful applications of DL in the fields of mechanics of solids, ma-
erials science and materials design have demonstrated its potentialities
n the characterization of microstructures, prediction of material proper-
ies and inverse design problem ( Bock et al., 2019; Chen and Gu, 2020 );
t is worth mentioning just few significative examples. Zijiang Yang et al.
mplemented deep-learning models, linking the composite material mi-
rostructure to its macroscopic effective stiffness ( Yang et al., 2018 ).
harles Yang et al. proved the ability of convolutional neural networks
CNN) to accurately predict the stress-strain curves and the mechanical
roperties of two-dimensional binary composite materials, reducing the
roblem complexity through principal component analysis (PCA) ( Yang
t al., 2019; 2020 ). Along this path, Grace X. Gu et al. proposed new
L-based approaches for the design of hierarchical and binary compos-

te systems ( Gu et al., 2018a; 2018b ), showing the capabilities of CNNs
o classify and rank geometric designs, based only on limited informa-
ion, such as “good ” or “bad ” design variables. Despite various reports of
L methods for studying composite materials can be found, to the best
f our knowledge, the interlocking mechanism has never been studied
n a DL-based framework. 

In this work, we study the 2-D topological interlocking mechanism
etween two solid phases i.e., two separated parts, discretized through
uilding blocks ( Fig. 2 ), by designing a DL algorithm, able to accurately
2 
nd rapidly predict the effective stiffness ( 𝐸), strength ( 𝜎) and toughness
 Γ), hence, providing a powerful tool to enlarging the design space of
-D interlocked features. In Fig. 1 the basic idea behind this work is un-
erlined. Starting from the observation of how some biological systems
e.g. the exoskeleton of the Phloeodes diabolicus ( Rivera et al., 2020 ))
ave evolved peculiar (interlocking) features, our DL model is designed
o generalize the structure-property relationships (mechanical proper-
ies in this case) in any interlocking interface. We also report how a DL
pproach can easily unveil the interlocking mechanism along any ar-
itrary direction in the simple case of a single interface between two
hases by means of the effective stiffness value, being this latter ∼ 0 in
ase of “unlocked ” structure, or > 0 in case of interlocked structure. In
ddition, the ability of the DL models to make generalizations from lim-
ted data is demonstrated by predicting mechanical properties of and
lassifying interlocked geometries sampled from larger design spaces
.e., higher resolution in the geometry generation method (details in
he Methods section), despite having the models been trained mainly
n smaller resolution architectures. Thus, we prove that DL models can
earn additional patterns from larger design spaces, “remembering ” from
revious training on smaller geometry resolutions, in a transfer-learning
ashion. 

. Methods 

.1. Geometry generation 

To generate 2-D interlocked configurations systematically under fi-
ite 𝑀 ×𝑁 design space, a cellular automaton-like method is devel-
ped as shown in Fig. 2 . The design space is composed by two phases
black and grey phase shown in Fig. 2 A-B). Each phase is generated by
rranging building blocks in a 𝑀 by 𝑁 grid ( Fig. 2 B), represented by
 matrix. A single building block can assume the value either 0 or 1,
orresponding to the black and grey phase, respectively. In analogy to
ellular automata models of biological systems, the generation of inter-
ocked configurations is based on growth rules (see Supporting Informa-
ion and Fig. A.1). However, the rules are not applied simultaneously in
he whole grid, rather, a decision is made element-by-element, sequen-
ially in each row. In Fig. 2 A a sequence of steps during a geometry
eneration is shown. Starting from the base configuration, in which the
lack phase covers only the first row, a permutation of the second row
y black cells is performed. From this point, the growth rules are sequen-
ially enforced to each subsequent row. The resulting configurations can
e interpreted as a gradual growth of the black phase towards the grey
ne. 

In addition to the application of growth rules, the generation of in-
erlocking systems needs also to meet the following constraints: (i) local
nd (ii) global constraints. (i) Since only two phases are required, the
ath continuity constraint is imposed, indicating that for each two build-
ng blocks in the same state (0 or 1), arbitrarily taken, it must be possi-
le to reach one of them by tracing a continuous path, starting from the
ther one. Note that the admissible paths are only those constituted of
ertical and horizontal segments, thus moving from one building block
o its diagonal neighbors is not allowed. Examples of clusters i.e., cases
f path continuity violation, are shown in Supporting Information Fig.
.1. Every geometry is also verified for topological interlocking at the
uilding block level. For each column, the number of interfaces between
he black and grey building blocks is determined. A minimum of three
nterfaces along one column (i.e., along the loading direction) guaran-
ees interlocking. (ii) Volume fraction i.e., the volume of one of the two
hases with respect to the total volume, 𝑓 1 and 𝑓 2 = (1 − 𝑓 1 ) , is con-
rolled during the generation process. To reduce the number of possible
ombinations, a constant volume fraction, 𝑓 1 = 𝑓 2 = 0 . 5 , is imposed for
ll the generated structures. 

Three geometrical parameters are also employed to characterize the
enerated interlocking systems: interlocking area , total contact area , and
obeyness ( Fig. 2 E). The interlocking area is defined as the area of the
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Fig. 1. Overview of the approach adopted in 
this work, starting from observation of biolog- 
ical systems naturally evolved, up to gener- 
ating more complex interlocking features by 
a cellular automaton-like method, classifying 
them and predicting their mechanical prop- 
erties through DL methods. (A) Characteris- 
tic interlocking features in the medial suture 
of some beetles: A.verrucosus , P.diabolicus , and 
E.grandicollis , from left to right, respectively 
(adapted from ( Rivera et al., 2020 )). Scale bar 
100 μm. (B) Top 12 high- strength and tough- 
ness interlocking geometries in the top and bot- 
tom box, respectively, generated by the cel- 
lular automaton-like algorithm. The structures 
are sorted along the columns in descending or- 
der, for each row. (C) Stress-strain curves cor- 
responding to the geometries in (B) . (D) Inter- 
locking classification results from the DL model 
compared to the FE-based ground truth for a 
training data density of ∼ 20 %. (E) Large de- 
sign space for stiffness, strength and toughness. 
The circles in the plots represent the mechani- 

cal properties computed from the curves shown in C . Geometries from the 10 by 10 system. 

Fig. 2. (A) A sequence of generation of an in- 
terlocking feature by our cellular automaton- 
like method. (B) Building blocks composing 
an interlocking structure and boundary con- 
ditions of the FE model. Each building block 
is in turn discretized in the FE model, in 
which the uniform mesh size is 1∕4 of the sin- 
gle block size, assumed to be unitary. Grey 
and black represent the distinct interlocking 
parts. (C) Top 3 high-strength geometries and 
corresponding stress-strain curves. Note that 
the second best geometry in the top box of 
Fig. 1 B is not considered in the top 3 rank 
since it has same properties, being the com- 
plementary version of the best one. (D) Top 3 
high-toughness geometries and corresponding 
stress-strain curves. (E) Definition of the geo- 
metric parameters considered in this work. Ge- 
ometries from the 10 by 10 system. 

i  

i  

T  

fi  

a  

t  

r  

t  

g  

a  

s
 

u  

d  

fl  

c  

F  

s  

t  

t  

o

2

 

m  

1  

a  

g  

t  

i  

i  

a  

t  
nterlocked surfaces (i.e., transmitting load). The total contact area is
dentified by the all area in contact between the black and grey phase.
he lobeyness is a parameter borrowed from ( Sapala et al., 2018 ), de-
ned as the ratio between the perimeter of the boundaries of one phase
nd the length of its convex hull. Note that in the context of 2-D struc-
ures, the area of interfaces is equivalent to their length except for a
escaling factor (i.e., the out-of-plane thickness). Being such parame-
ers unconstrained during data generation, they are considered as our
eometric design variables. Nevertheless, they do not uniquely identify
 geometry ( Fig. 1 E), proving the need to use DL methods to discover
tructure-property relationships. 

To generate all the possible combinations of 2-D interlocking config-
rations in a finite design space a brute-force algorithm is adopted; the
etails of the algorithm are explained in Supporting Information and a
ow-chart is shown in Fig. A.2. For a 𝑀 ×𝑁 design space, the possible
ombinations arise from the 2 12 growth rules (Supporting Information
ig A.1), the 2 𝑁 permutations of the second row, and the imposed con-
3 
traints ((i) and (ii) previously described). In this work, all the combina-
ions are computed only for the 10 by 10 system. For higher resolutions,
o limit the computational cost, a fixed number of random permutations
f the second row is instead chosen. 

.2. Database generation 

To generate a data set for training and testing the DL model for
echanical properties prediction under finite 10 × 10 design space,
8,594 interlocked configurations were generated by using the cellular
utomaton-like method. Removing the interlocking constraint, 19,946
eometries (including also the previous 18,594 interlocked configura-
ions) were generated from the same design space, for training and test-
ng the DL model for interlocking classification (i.e., identification of
nterlocked and unlocked geometries). In addition, 2,991 interlocked
nd 2,964 unlocked higher resolution geometries were generated from
he 20 by 20 system with 100 random permutations of the second row
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ith and without the interlocking constraint, respectively. They consti-
ute the data set used for training and testing the pre-trained (on 10 by
0 configurations) models by transfer learning. 

.3. Finite element model 

To simulate highly nonlinear interlocking phenomena together with
rack initiation and growth, 3-D finite element (FE) models were built
y using the commercial FE software Abaqus 2017 (Abaqus/Explicit
olver). Due to the different size of the required geometrical configura-
ions, the dimensions of the FE model were 10 mm by 10 mm and 20 mm
y 20 mm for the 10 by 10 and 20 by 20 system, respectively ( Fig. 2 B).
he out-of-plane thickness is set to 0.25 mm for both cases. Eight-node
rick elements (C3D8R) with reduced integration and a mesh size of
.25 mm were used in the simulations. We also adopted a continuum
lastic-perfectly plastic J2 model together with the definition of dam-
ge initiation and evolution (linear) to model the elasticity, initial yield-
ng, plastic flow, and damage initiation and evolution of the base mate-
ial (Young’s modulus 4 GPa, Poisson’s ratio 0.3, yield strength 30 MPa,
racture plastic strain 1%, plastic displacement at failure 0.05 mm). We
ssumed same material and damage properties for the two interlocking
hases since only geometry effects were investigated. To model the con-
act of interlocking structures, a Coloumb friction model via the penalty
ontact method was used. The friction coefficient was set to 0.1. Dis-
lacement controlled boundary conditions were applied on interlock-
ng structures as depicted in Fig. 2 B. Specifically, the bottom face was
onstrained along the 𝑦 -direction while the displacement along the 𝑦 -
irection was applied on the top face to achieve an effective maximum
train of 15%. The left and right faces were constrained along the 𝑥 -
irection. In addition, the out-of-plane displacements ( 𝑧 -direction) were
onstrained. 

We obtained the mechanical behavior of the 2-D interlocking struc-
ures from the FE simulations and extracted the effective stiffness,
trength and toughness from the stress-strain curves. The effective in-
lane unidirectional stress and strain, indicated simply as stress and
train, were defined as the corresponding average values along the load-
ng direction. Here, the stiffness was defined as the slope of the stress-
train curve at 0.01% of strain, the strength as the peak stress, and the
oughness as the area underneath the curve. FE results are here consid-
red as the ground truth when comparing them to the DL outcomes. 

.4. Deep-learning methods 

The DL models used in this work are implemented in the machine-
earning framework TensorFlow ( Abadi et al., 2016 ). Two fundamental
asks are performed by the DL models: interlocking classification and
echanical properties prediction. For DL computations the geometry

ystems are represented by binary images, corresponding to the input
f our DL models. The pixel resolution can be either equal to the sys-
em size (e.g. to a 10 by 10 geometry corresponds a 10 by 10 binary
atrix) or resized to higher resolutions by a scale factor (e.g. to a 10 by
0 geometry could correspond a 20 by 20 binary matrix). Image resize
s applied when the DL models are mainly pre-trained on smaller reso-
ution geometries (10 by 10), and other data from larger design spaces
e.g. 20 by 20) are provided to the model for further training. The DL
odels implemented in this work are convolutional neural networks

 LeCun et al., 2015 ), whose basic architecture is schematically shown
n Fig. 3 B. 

.4.1. Interlocking classification model 

This model has a binary output, 0 or 1, for unlocked or interlocked
eometry, respectively. Based on the stiffness value obtained by the FE
odel, a binary label (ground truth) is correspondingly associated to

ach image (geometry). Three convolutional blocks form the central
art of the neural network after the input layer. Each block contains
ne convolutional layer, which consists of 32 filters computed using
4 
 by 3 patches, with unitary stride, and ReLu activation function. To
egularize the training process and to reduce the problem dimension-
lity exploiting of the translation-invariance property of convolutional
etworks ( Kauderer-Abrams, 2017 ), a batch normalization and a 2 by
 average pooling layer are subsequently stacked after the first convo-
utional layer. The second block includes only a convolutional layer,
n which zero padding is also performed. The last convolutional layer
s followed by a batch normalization, whose output is then flattened
nto a vector. A fully-connected layer, with 64 neurons and Relu acti-
ation function, is next linked to the final classification layer, in which
 sigmoid activation function maps the value into the range [0,1], rep-
esenting in our case the probability of the input geometry being in-
erlocked. The network is stochastically trained using Adam optimizer
a stochastic gradient descent method) for minimizing a binary cross-
ntropy loss function, with learning rate of 0.01 and batch size of 64.
o avoid overfitting, early stopping regularization technique is imple-
ented: the training process is stopped after 10 epochs in which the val-

dation loss function does not decrease anymore, and the best network’s
eights are considered. We randomly split the 19,946 combinations of

he 10 by 10 system into varying proportions of training, validation and
est data. The influence of the training data density, varying from about
.5 to 80%, was investigated (Supporting Information Fig. A.7A). Vali-
ation and test data densities were consequently equally split from the
emaining data. Accuracy, precision and recall are used as metrics for
erformance evaluation, in which 0.5 is assumed as the threshold in the
robability output for binary classification. Here accuracy is the fraction
f predictions which match the ground-truth labels. Indicating with pos-

tive and negative , interlocking and unlocking classification, respectively,
recision ( 𝑃 𝑅 ) is defined by Eq. (1) : 

 𝑅 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑃 
(1) 

here 𝑇 𝑃 and 𝐹 𝑃 represent the number of true and false positives, re-
pectively. Thus, it quantifies in our context the fraction of correctly
dentified interlocked geometries with respect to all the positive predic-
ions. Recall ( 𝑅𝐸) is defined by (2) : 

𝐸 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

(2) 

here 𝐹 𝑁 are the false negatives. 𝑅𝐸 measures the ability of the DL
odel to correctly classify actual interlocking geometries. Due to the

implicity of the single contact interface interlocking classification, tun-
ng of hyperparameters, such as number and type of hidden layers, and
umber of filters, patch and stride size for convolutional layers, was not
erformed. 

.4.2. Mechanical properties regression model 

The second DL model outputs three scalar values, which corre-
pond to the stiffness, strength and toughness of the input geometry
 Fig. 3 B). Due to the different scales and probability distributions, as
re-processing step, the mechanical property values (from FE model) are
ormalized into the range 0 − 1 , subtracting the corresponding mini-
um value and dividing by the corresponding range of variation i.e., the
ifference between the greatest and the lowest property value. The DL
utput values are then inversely rescaled to obtain the original physical
nits. Stochastic training using Adam optimizer is adopted to minimize a
ean squared error (MSE) loss function (between predicted and FE val-
es), with learning rate of 0.01 and batch size of 64. As for interlocking
lassification, early stopping regularization technique is adopted. Only
nterlocking combinations were included in the data set for the 10 by
0 system (18,594 geometries). To increase the performances of the DL
odel, the training data are augmented (by a factor of 4) by rotating

he geometries (images) of 180 ◦ and reflecting them with respect to the
wo orthogonal in-plane directions ( 𝑥 - and 𝑦 -direction). Other rotations
nd reflections are not considered, to keep the information of loading
irection unchanged. As for the interlocking classification model, the
nfluence of training data density was investigated (Supporting Infor-
ation Fig. A.7B) with the same proportions. Next to the MSE, other
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Fig. 3. (A) DL model predictions in order, for stiffness, strength and toughness, respectively, on test data (85:15 training-(validation-test) split). (B) Basic conceptual 
architecture of our DL models. (C) Visualization of 9 filters from the first convolutional layer of the DL model for mechanical properties prediction, corresponding 
to the best-toughness interlocking structure. (D) Analogous filters as in C , but from the second convolutional layer. Geometries from the 10 by 10 system. 
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etrics are considered for performance evaluation: the mean absolute
rror (MAE), which has the same unit of measure of the corresponding
echanical property, the relative MAE, which is the ratio between the
AE and the target property range, and the coefficient of determination

 𝑅 

2 ) i.e., the squared of the Pearson coefficient. In addition, we define
 prediction accuracy by Eq. (3) : 
∑𝑁 𝑡𝑑 

𝑗=1 { 𝑗 ∶ |�̂� 𝑗 − 𝑦 𝑗 | < 𝑘 
(
max 𝑗 ( 𝑦 𝑗 ) − min 𝑗 ( 𝑦 𝑗 ) 

)
} 

𝑁 𝑡𝑑 

(3) 

hich quantifies the fraction of number of predictions �̂� 𝑗 whose absolute
istance from the target values 𝑦 𝑗 does not exceed a percentage 𝑘 × 100
f the target property range 

(
max 𝑗 ( 𝑦 𝑗 ) − min 𝑗 ( 𝑦 𝑗 ) 

)
. 𝑁 𝑡𝑑 indicates the to-

al number of test data. 𝑘 determines the arbitrary accepted error. We
rovide prediction accuracy values for 𝑘 = 0 . 05 and 0.1. All the metrics
re computed by averaging the results of 15 trials (with 95% confidence
evel), if not otherwise stated. To investigate possible high-performing
etwork architectures on the 10 by 10 system, tuning of some hyper-
arameters (i.e., parameters of a DL model that govern the learning
rocess without being updated during training) was performed. 24 dif-
erent architectures were examined (Supporting Information Fig. A.5).
ach model was characterized by a sequence of convolutional blocks, a
atten layer, and a fully connected layer with 256 neurons. A convolu-
ional block was in turn composed of a 2-D convolutional layer, a batch
ormalization, and a 2 by 2 average pooling layer. The hyperparameters
o be varied were the number of convolutional blocks ( 𝑐), the number
f filters ( 𝑓 ), and the patch size ( 𝑝 ) in each convolutional layer. 24 com-
inations of models arise from considering 𝑐 = 1 , 2 , 3 , 𝑓 = 8 , 32 , 64 , and
 = (3 , 3) , (5 , 5) , excluding the combination with 𝑐 = 1 and 𝑝 = (5 , 5) , for
ach 𝑓 . The number of convolutional filters was limited up to 64 to
alancing computational costs and accuracy during the tuning process,
n which relative increments in performances are important. The best
 models among the 24 architectures were chosen evaluating MAE, 𝑅 

2 

nd prediction accuracy (for 𝑘 = 0 . 05 ). Note that the same data set was
sed for the evaluation of each model, setting the training data density
o 85% and the validation and test data to 7.5% each. A further op-
imization was performed between the resulting 2 best models, whose
5 
erformances were evaluated for 𝑓 = 64 and 128 (Supporting Informa-
ion Fig. A.6), leading to one optimized model. 

.4.3. Transfer-learning approach 

To evaluate the capabilities of the DL models to make predictions
n larger design spaces, a transfer-learning approach was furthermore
dopted both for interlocking classification and mechanical properties
rediction: geometries from the 20 by 20 system were fed into the pre-
rained (on the data set from the 10 by 10 system) network for further
raining in varying proportion, from 0.5% to 70% with a step of 5%, and
rom 0.5% to 80% with a step of 10%, for classification and properties
rediction, respectively. The data set was composed of 2,991 interlocked
nd 2,964 unlocked configurations; the regression model was trained
nly with interlocked geometries. Metrics variations were consequently
valuated for each training data density. 

. Results 

Analytical models allow to have a clear and powerful representation
f materials’ behavior and properties, however, only relatively simple
eometries can be studied. Numerical physics-based models, such as FE
odeling, can instead overcome such issue, at the cost of introducing

omputational limitations when dealing with large design spaces. Here
e show how DL methods can tackle these problems, helping to accu-

ately and rapidly recognize interlocking mechanism and predict me-
hanical properties of 2-D interlocking interfaces. 

.1. Enlarging the design space 

To enlarge the design space of 2-D interlocking interfaces/joints,
 cellular automaton-like method (described in Methods section and
upporting Information Fig. A.1 and A.2) was implemented. Stiffness,
trength and toughness, solved by FE modeling, of all the combinations
f the 10 by 10 system are plotted against the fraction of interlocking
rea with respect to the total contact area of the interface in Fig. 1 E; the
haded area represents the maximum design space area covered by the
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Table 1 

Performances of the optimized DL model for mechanical properties prediction for the 10 by 10 system over 15 trials with a 85:15 train- 
(validation-test) split. The scores’ mean values are provided together with their corresponding 95% confidence intervals. Accuracy 5 and 
accuracy 10 correspond to the accuracy computed with 𝑘 = 0 . 05 and 𝑘 = 0 . 10 , respectively, from Eq. (3) . 

MSE MAE Relative MAE (%) 𝑅 2 Accuracy 5 (%) Accuracy 10 (%) 

Stiffness (MPa) 654 . 6 ± 71 . 38 17 . 43 ± 1 . 039 1 . 130 ± 0 . 0674 0 . 9899 ± 0 . 0010 98 . 17 ± 0 . 2558 99 . 78 ± 0 . 0742 
Strength (MPa) 0 . 07487 ± 0 . 005409 0 . 1869 ± 0 . 007366 1 . 328 ± 0 . 0523 0 . 9684 ± 0 . 0019 93 . 88 ± 0 . 9569 99 . 02 ± 0 . 1919 
Toughness (MJ/m 

3 ) (64 . 03 ± 6 . 784) × 10 −6 (4 . 298 ± 0 . 1) × 10 −3 2 . 088 ± 0 . 0486 0 . 8315 ± 0 . 0160 88 . 35 ± 1 . 496 96 . 77 ± 0 . 5750 
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echanical properties for the specific geometry resolution. It is worth
oting that the highest mechanical property values are reached for a
eometric ratio of ∼ 0 . 2 , instead of the maximum value ( ∼ 0 . 4 ) as intu-
tively expected. To investigate the possible correlations, the mechanical
roperties are also plotted one against each other, as shown in Support-
ng Information Fig. A.4A. A correlation ( 𝑅 

2 = 0 . 66 ) is found for strength
nd stiffness. Additionally, the three geometric parameters adopted to
escribe the geometries are also found to be partially correlated (Sup-
orting Information Fig. A.4B). Specifically, lobeyness has a coefficient
f determination 𝑅 

2 = 0 . 93 with respect to the contact area, leading to
he fact that only two out of three geometric parameters are statistically
independent ”. The other two combinations of parameters show only
pper and lower bounds. The top 12 geometries for exhibiting the high-
st strength and toughness (from FE modeling) are shown in Fig. 1 B in
he upper and lower box, respectively. The corresponding stress-strain
urves are displayed in Fig. 1 C. It is clear that two distinct classes of
eometries appear from the cellular automaton-like generation method
or the 10 by 10 system: the geometries performing better in terms
f strength or toughness show similar corresponding patterns for the
wo phases. Small and distributed interlocking surfaces generate higher
trength due to a local compression loading transmission between the
wo solids. Instead, geometries exhibiting the highest toughness trans-
it load via local bending, allowing for larger deformations and strains.
ith similar patterns to the high-strength interlocking configurations,

he top 12 high-stiffness geometries are shown in Supporting Informa-
ion Fig. A.8. In Fig. 2 C-D we report the best 3 geometries for the two
lasses (from FE modeling), highlighting the corresponding stress-strain
urves. We want to specify that the inverted geometries (first two ar-
hitectures in Fig. 1 B) i.e., black and grey phases are inverted, obtained
utomatically from the algorithm, have same effective properties (un-
er the assumption of identical base material). It is interesting to observe
ow high-strength geometries display a smaller nonlinear/plastic part
han the high-toughness ones, which, in some cases, exhibit both soften-
ng and hardening before failure (top 1 and 2 in Fig. 2 D). Therefore, the
aze-like pattern of high-toughness geometries makes possible the lo-

al bending loading transmission, determining larger nonlinear/plastic
egions, while the tree-like shape of high-strength interfaces promotes
he local compression transmission mechanism, inducing a brittle-like
ehavior. A large design space is thus possible by implementing a cel-
ular automaton-like approach. However, trade-off limitations between
trength and toughness appear to be crucial for further optimization
tudies, which are beyond the scope of this work. 

.2. Interlocking classification 

Nature exploits of the resources it has at hand, organizing them in
 favorable way for better performances, which allow them to survive.
opological interlocking is one of the mechanisms of loading transmis-
ion between different solid constituents that have arisen from natural
election, allowing for high-performing designs (see for example Rivera
t al., 2020 in Fig. 1 A). To investigate how DL methods can aid in recog-
izing interlocking structures, a DL model was implemented (described
n Methods section). Non-interlocked (unlocked) geometries exhibit ob-
iously ∼ 0 elastic stiffness (friction can produce small perturbations
f average stress), whereas interlocked structures are able to transmit
oad via topological interlocking of their constituents, leading to stiff-
6 
ess values much greater than 0, as previous sections have shown. The
eometry’ stiffness values were mapped into binary values, correspond-
ng to 0 or 1 for unlocked or interlocked structures, respectively, and
rovided to the DL model for training. As shown in Fig. 1 D, really high
ccuracy is reached by the DL model only for ∼ 20 % of training data
ensity, demonstrating that the DL model is able to almost perfectly
apture the interlocking mechanism even with only a few thousands of
raining samples. The sensitivity of accuracy, precision and recall to the
raining data density is reported in Supporting Information Fig. A.7A,
onfirming the high performances of the model with small percentages
f training data. Note how the ability of the model to recognize ac-
ual interlocking structures (i.e., the recall) is almost invariant with the
raining data density within the tested range ( ∼ 99 . 99 % for training data
ensity ∼ 0 . 5 %), probably due to the smaller fraction of unlocked struc-
ures (1352 out of a total of 19,946 geometries). Despite the simplicity
f the structures (i.e., single 2-D interlocking interface), these results
rove that DL methods can be used to design materials based on the in-
erlocking mechanism. Indeed, the proposed DL approach could easily
e extended to more complex architectures for materials design or study
f natural systems, which exploit the interlocking scheme. 

.3. Mechanical properties prediction 

To investigate the structure-property relationships in 2-D interlock-
ng interfaces, a DL model was implemented. The predicted mechanical
roperty values of a 10 by 10 system are compared to the FE values
ground truth) in Fig. 3 A, in which ideal predictions are represented
y the 45 ◦-inclined line (predicted values equal to target values). High
oefficients of determination can be reached by the predicted values
or each mechanical property, however, decreasing performances from
tiffness to toughness prediction are captured from the plots. It is ev-
dent how the stiffness is more easily predictable than the other two
roperties. Analogous conclusions can be drawn by looking at all the
onsidered metrics in Table 1 . We attribute such behavior to the high
onlinearity of the problem, which represents a greater source of uncer-
ainty for the FE modeling itself. Specifically, being the toughness values
omputed as the area underneath the effective stress-strain curve, they
re more sensitive to numerical fluctuations in the FE solver solution.
n addition, the stress singularities in the elastic region of the base ma-
erial at the angular corners of the interlocking structures induce an
ntrinsic approximation in the FE modeling; further improvements to-
ards large-scale smooth structures are left for future works. Neverthe-

ess, relative MAE values (with respect to the target property range) of
1 − 2 % as well as high accuracy levels with values > 96% for every
aterial property are obtained, as reported in Table 1 . As an example

the closest one available), previous pioneering works of Charles Yang
t al. (2019, 2020) on prediction of 2-D composite properties beyond
he elastic limit using ML methods reached maximum 𝑅 

2 values ∼ 0 . 91
or strength and much lower values for stiffness and toughness. It must
e underlined, however, that their ML models were not optimized for
he specific task and limits of the models were not investigated. Instead,
ur results ( Table 1 ) refer to a DL model obtained by tuning some of its
yperparameters. More in detail, in Supporting Information Fig. A.5, the
omparison between the different models in terms of MAE, 𝑅 

2 and accu-
acy, highlights how increasing the number of convolutional filters tend
o improve the overall performances, at the expense of computational
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Fig. 4. (A) Probability histograms of DL and FE mechanical properties evaluated on test data. DL values are obtained by the tuned DL model with 85:15 training- 
(validation-test) split in a trial. (B) Comparison top 12 high-performing geometries sorted in descending order by column, for each row, from FE simulations and DL 
model predictions for strength and toughness. Geometries from the 10 by 10 system. 
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osts. The best two models arising from Fig. A.5 were subsequently se-
ected by doubling their number of filters (Supporting Information Fig.
.6). The optimized architecture consists of three convolutional blocks,
ith 128 filters and patch size (3,3), and a fully-connected layer with
56 neurons (not further optimized in order to balance the trade-off
etween accuracy and computational costs). Analogously to the inter-
ocking classification model, the sensitivity of the model performances
o the training data density was investigated, as reported in Supporting
nformation Fig. A.7B. After a training data density of ∼ 50%, the metrics
alues converge to a plateau, demonstrating that with only ∼ 9000 train-
ng data our DL model is able to accurately solve the structure-property
elationship problem. Finally, to have a global statistical picture of the
L model accuracy, a comparison of the probability distributions of FE
nd DL stiffness, strength and toughness values is displayed in Fig. 4 A
or test data from the 10 by 10 system. The shape of the histograms for
he three mechanical property values predicted by our DL model glob-
lly matches that of the target values (FE), covering also the same range
f magnitudes. 

.3.1. Patterns learned by the DL model 

Opening the “black-box ” is crucial to understand which features and
atterns does the DL model learn. In Fig. 3 C, 9 convolutional filters from
he first layer associated to the highest-toughness geometry in the 10 by
0 system are shown. It is clear how the model can recognize some por-
ions of a single phase, assuming uniform values in the resulting image.
n the other hand, it seems mainly to be capturing some geometric fea-

ures, intuitively related to the contact regions between the two phases.
hus, each first-layer filter appears to relate specific contact features to
he considered mechanical properties. As deeper layers are considered,
he level of abstraction tends to increase. Fig. 3 D displays such concept
ore clearly: after the first convolutional layer, the filters’ size is de-

reased by the average pooling layer, leading to 5 × 5 pixel representa-
ions, which lack of an intuitive human interpretability. Due to the small
ize ( 2 × 2 ), the third-layer filters are not shown. Despite the difficulty
7 
o interpret the learned representations of the last two convolutional
locks, the hyperparameters tuning proved their importance to accu-
ately predict the mechanical properties of interlocking interfaces. Such
rade-off between intelligibility of the learning process and accuracy of
redictions arises as a great challenge for future work. 

To demonstrate the ability of our DL model to relate specific geo-
etric patterns to specific mechanical property ranges, we compare in

ig. 4 B the top 12 high-performing interlocked geometries for strength
nd toughness obtained by the FE and DL model. The ranks performed
y the DL predictions do not perfectly match those from the FE mod-
ling, however, our DL model is able to predict the same interlocking
atterns for the two classes of structures. Specifically, almost all the
igh-strength and high-toughness top 12 geometries ranked by the FE
odel are recognized also by the DL model. Since the best geometries

re characterized by small geometric differences (for some cases only
ne building block changes), they also exhibit close mechanical prop-
rty values, thus leading to small variations in the DL ranks compared
o the FE results. Same conclusions can be drawn by looking at the top
2 high-stiffness geometries, shown in Supporting Information Fig. A.8.

.4. Predictions on larger design spaces via transfer learning 

One of the limitations of our DL approach might be found on the
eometry resolution: if the DL model is trained on a small resolution
esign space, will it be able to predict the interlocking mechanism and
he mechanical properties of interlocking structures sampled from larger
esolution design spaces ? To answer this question, our DL models were
rst pre-trained on the 10 by 10 system data set (random 85:15 train-test
plit), resizing the input images by a factor of 2 i.e., training the mod-
ls with 20 × 20 pixel images; thus, the design space was equally scaled
long the 𝑥 - and 𝑦 -direction. In this way, we took advantage from the
act that the 10 by 10 geometries represent simply a subset of the 20
y 20 system. From the ∼ 3000 interlocked and ∼ 3000 unlocked ge-
metries, which represent a subset of all the combinations of the 20 by
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Fig. 5. DL models performances evaluation ex- 
ploiting of a transfer learning approach i.e., 
feeding the pre-trained DL models with new 

data from a larger design space (20 by 20 sys- 
tem in this case). (A) Interlocking classifica- 
tion metrics for increasing training data density 
values from a larger design space. (B) Relative 
MAE, 𝑅 

2 , and accuracy ( 𝑘 = 0 . 05 ) for mechan- 
ical properties prediction evaluated at increas- 
ing training data density values from a larger 
design space. The tuned DL model for proper- 
ties prediction is adopted for these computa- 
tions, without loss of generality. 
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0 system, only a percentage was used to further training the models,
hereas the other data were employed as test data to investigate the DL
odels’ ability to generalize from a few new examples. Fig. 5 A shows

he variation of the metrics relative to interlocking classification, when
ew training data are provided from larger resolution geometries, at
ifferent densities (from 0.05% to 70% with a step of 5%). Accuracy
nd recall start with low values, however, approach very fast the upper
ound, stabilizing at values around 99.98% as the training data den-
ity attains values around ∼ 20%. Precision seems to be initially not
eally sensitive to new training data, however, it reaches a plateau at
 density of ∼ 40%. Similar results are also obtained for the prediction
f mechanical properties. The performances of the DL model in terms
f relative MAE, 𝑅 

2 , and accuracy ( 𝑘 = 0 . 05 ) tend to improve as more
arger resolution geometries are fed into the network for training. At a
raining data density of ∼ 60%, the performances seem to be attaining
onstant values, slightly worse than those reported in Table 1 . The only
nexpected behavior can be observed for the accuracy of the toughness
rediction, which basically oscillates around a value of 75%, without
n effective improving trend. This may arise from the sensitivity of the
oughness values (as the area under the stress-strain curve) to numerical
uctuations in the FE solver, thus leading to a greater unpredictability.

. Discussion 

The results of this work can be globally seen as the proof of the pos-
ibility to apply DL methods for the design of 2-D interlocking features.
L approaches may indeed become unavoidable to enlarging the design

pace. Since complex geometries arise usually from a large number of
ossible combinations of smaller parts (as in our method we use basic
uilding blocks), typical physics-based modeling approaches, such as FE
odeling, tend to loose their attraction due to the required high com-
utational costs. Not only the geometric complexity but also the high
onlinearity of the problem (specifically for material properties predic-
ion) makes DL methods a suitable strategy for the design of interlocking
tructures (which could be considered just as an example). Our cellular
utomaton-like method together with DL methods represent thus only
ne possible way of enlarging the design space of 2-D interlocking struc-
ures. 

Despite our trivial application of interlocking classification, more
omplex structures, such as strong plant shells appearing to gain
trength and toughness via interlocking features, could be studied using
he same approach, without generality restrictions. At the same way,
8 
L models for mechanical properties predictions may be extended to
ore complex systems or integrated in algorithms for materials inverse
esign. In addition, our attempts to open the “black-box ” and to have
odels able to learn from just a few examples are in the direction of
nderstanding and leveraging, respectively, the current DL methods to
ncrease their accuracy (reliability) and to decrease their computational
osts. 

. Conclusions 

In this work, we use for the first time DL methods to study the in-
erlocking mechanism and to predict the mechanical properties of 2-D
nterlocking features. We show how the design of interlocking inter-
aces/joints can leverage the powerful abilities of DL methods to (1)
nveiling the interlocking mechanism; (2) quickly and accurately pre-
icting material properties in high nonlinear problems, such as contact,
lastic behavior, and damage initiation and evolution; and (3) enlarging
he design space. Besides, we prove that DL models have “memory ” of
he previous recognized patterns in smaller design spaces, thus leading
o the possibility to exploring larger design spaces (for example, increas-
ng the resolution in our cellular automaton-like method) with relative
ittle extra computational effort. Our work could pave the way for fu-
ure applications of DL methods to better understanding the peculiar
echanical properties of interdigitated features in biological systems,

nd design of engineered novel interlocked materials. 
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