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Abstract
Assuming the Riemann hypothesis we establish explicit bounds for the modulus of the log-
derivative of Riemann’s zeta-function in the critical strip.

Keywords Zeta-function · Riemann hypothesis · Critical strip · Beurling–Selberg extremal
problem · Bandlimited functions · Exponential type

Mathematics Subject Classification 11M06 · 11M26 · 41A30

1 Introduction

Let ζ(s) be the Riemann zeta-function. In this paper we are interested in its log-derivative

ζ ′

ζ
(s) =

∑

n≥1

�(n)

ns
(Re s > 1)

and its growth behaviour in the strip 1/2 < Re s < 1 (above �(n) is the von Mangoldt
function). Let ρ denote the zeros of ζ(s) in the critical strip. The Riemann hypothesis (RH)
states that the zeros are aligned: ρ = 1

2 + iγ with γ ∈ R. Assuming RH, a classical estimate
for the log-derivative of ζ(s) (see [12, Theorem 14.5]) establishes that

ζ ′

ζ
(σ + i t) = O

(
(log t)2−2σ )

,

uniformly in 1
2 +δ ≤ σ ≤ 1−δ, for any fixed δ > 0. The purpose of this paper is to establish

this bound in explicit form.
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1042 A. Chirre, F. Gonçalves

Theorem 1 Assume RH. Then
∣∣∣∣
ζ ′

ζ
(σ + i t)

∣∣∣∣ ≤ Bσ

σ (1 − σ)
(log t)2−2σ + O

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2 log log t

)
,

uniformly in the range

1

2
+ λ0 + c

log log t
≤ σ ≤ 1 − c√

log log t
and t ≥ 3, (1.1)

for any fixed small c > 0, where λ0 = 0.771 . . . is such that 2λ0 tanh(λ0) = 1 and

Bσ =
√

(3σ 4 − 17σ 3 + 19σ 2 + 4σ − 4)(−σ 2 + 3σ − 1)

σ (2 − σ)
.

In particular
∣∣∣∣
ζ ′

ζ
(σ + i t)

∣∣∣∣ ≤
(

Bσ

σ (1 − σ)
+ o(1)

)
(log t)2−2σ , for 1

2 + δ ≤ σ ≤ 1 − δ.

We believe that λ0 is simply a by-product of our proof, although it is curious that such a
number appears. It turns out that when (σ − 1/2) log log t is too small, our main technique
delivers a bound of the form Aσ (log t)/log log t , however the calculations are lengthy and
convoluted, and this it not the purpose of this note. Moreover, a conjecture of Ki [10], related
to the distribution of the zeros of ζ ′(s), states that the bound O((log t)2−2σ ) still holds in the
range σ ≥ 1/2+c/ log t , but this lies outside ofwhat this technique can accomplish. Theorem
1 is derived by combining Theorem 2 and estimates for the real part of the log-derivative of
ζ(s) obtained in [4, Theorem 2]:

∣∣∣∣Re
ζ ′

ζ
(σ + i t)

∣∣∣∣ ≤
(−σ 2 + 3σ − 1

σ(1 − σ)

)
(log t)2−2σ + O

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2 log log t

)
,

uniformly in the range (1.1) (in fact λ0 + c can be replaced by just c).

Theorem 2 Assume RH. Then
∣∣∣∣Im

ζ ′

ζ
(σ + i t)

∣∣∣∣ ≤ Cσ

σ (1 − σ)
(log t)2−2σ + O

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2 log log t

)
,

uniformly in the range (1.1), where

Cσ =
√
2(−σ 2 + 5σ − 2)(−σ 2 + 3σ − 1)(−σ 2 + σ + 1)

σ (2 − σ)
.

Theorem 2 is obtained using a known interpolation technique [4, Section 6]. Essentially,
to bound the asymptotic growth of Im ζ ′

ζ
(s) one can bound instead its primitive log |ζ(s)|

(see [1, Theorems 1 and 2]) and its derivative (Theorem 3).

Theorem 3 Assume RH . Then

Re

(
ζ ′

ζ

)′
(σ + i t) ≤

(−2σ 2 + 2σ + 2

σ(1 − σ)

)
log log t (log t)2−2σ + O

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2

)
,
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Bounding the log-derivative of the zeta-function 1043

and

Re

(
ζ ′

ζ

)′
(σ+i t) ≥ −

(−2σ 2 + 6σ − 2

σ(1 − σ)

)
log log t (log t)2−2σ +O

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2

)
,

uniformly in the range

1

2
+ λ0

log log t
≤ σ ≤ 1 − c√

log log t
and t ≥ 3,

for any fixed c > 0.

The main technique to prove these theorems revolves in bounding a certain sum over the
ordinates of zeta-zeros

∑

γ

f (γ − t),

where f is some explicit real function that varies according to the problem of study. The
key idea is to replace f by explicit bandlimited majorants and minorants that are in turn
admissible for the Guinand–Weil explicit formula (Proposition 5). From there estimating the
sum is usually easier. This bandlimited approximation idea originates in theworks ofBeurling
and Selberg (see [14, Introduction]), and was first employed in this form by Goldston and
Gonek [8], and Chandee and Soundararajan [6], but many others after them (see [1–4,7] to
name a few). In our specific case, f = fa as in (2.1), which has zero mass and therefore is
not in the scope of the machinery developed in [5], nor its close relatives (the constructions
in [5] are regarded as the most general thus far and have been used widely). Nevertheless,
we are able to overcome this difficulty with a very simple optimal construction which, in the
majorant case, requires some basic results in the theory of de Branges spaces.

We recall that, without assuming RH, explicit bounds for ζ ′
ζ
(s) are given by Trudgian [13]

in a zero-free region for ζ(s).

2 Lemmata

For a given a > 0 we let

fa(x) = x2 − a2
(
x2 + a2

)2 . (2.1)

Lemma 4 (Representation lemma) Assume RH. We have

Re

(
ζ ′

ζ

)′
(σ + i t) =

∑

γ

fσ−1/2(γ − t) + O

(
1

t2

)
,

for 1
2 < σ ≤ 1 and t ≥ 3, where the above sum runs over the ordinates of the non-trivial

zeros ρ = 1
2 + iγ of ζ(s).

Proof Let s = σ + i t and t ≥ 3. From the partial fraction decomposition for ζ ′(s)/ζ(s) (cf.
[12, Eq. 2.12.7]), we have

ζ ′

ζ
(s) =

∑

ρ

(
1

s − ρ
+ 1

ρ

)
− 1

2

	′

	

(
s

2
+ 1

)
+ B + 1

2
logπ − 1

s − 1
,
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1044 A. Chirre, F. Gonçalves

with B = −∑
ρ Re (1/ρ). Differentiating and taking its real part we get

Re

(
ζ ′

ζ

)′
(σ + i t) =

∑

γ

fσ−1/2(γ − t) − 1

4
Re

(
	′

	

)′(σ

2
+ 1 + i t

2

)
+ O

(
1

t2

)
.

Using Stirling’s formula, that guarantees the 	 term is O(1/t2), we conclude.

As always, the crucial tool to work with sums as in Lemma 4 is the Guinand–Weil explicit
formula (see [4, Lemma 8]), which for even functions reads as follows.

Proposition 5 (Guinand–Weil explicit formula) Let h(s) be analytic in the strip |Im s| ≤
1
2 + ε, for some ε > 0, such that |h(s)| � (1 + |s|)−(1+δ), for some δ > 0. Assume further
that h is even. Then

∑

ρ

h

(
ρ − 1

2

i

)
= 1

2π

∫ ∞

−∞
h(u)Re

	′

	

(
1 + 2iu

4

)
du + 2 h

(
i

2

)
− logπ

2π
ĥ(0)

− 1

π

∑

n≥2

�(n)√
n

ĥ

(
log n

2π

)
,

where ρ = β + iγ are the non-trivial zeros of ζ(s) and

ĥ(y) =
∫ ∞

−∞
h(x)e−2π i xydx

is the Fourier transform1 of h.

2.1 Bandlimited approximations

Lemma 6 (Minorant) For a, > 0 let

La,(z) = z2 − a2 − (Az2 + Ba2) sin2(πz)

(z2 + a2)2

where

A = 2λ coth(λ) − 1

sinh2(λ)
, B = 2λ coth(λ) + 1

sinh2(λ)
,

and λ = πa. Then:

(1) The inequality

La,(x) ≤ fa(x)

holds for all real x, La, ∈ L1(R) and its Fourier transform is supported in [−,]
(i.e. La, is of exponential type at most 2π);

(2) We have

L̂a,(0) = 1



∑

n∈Z
fa(n/) = − π2

sinh2(πa)
, (2.2)

and any other function F 	= La, having the same properties as La, in item (1) has
integral strictly less than the integral of La,.

1 We shall use this definition of the Fourier transform throughout the paper.
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Bounding the log-derivative of the zeta-function 1045

Proof Note first that the constants A, B were chosen so the numerator of La, vanishes
doubly at z = ±ia. We then see that La, is entire, of exponential type at most 2π and
belongs to L1(R). Therefore, the Paley-Wiener Theorem guarantees its Fourier transform
is supported in [−,]. Since B > A > 0 we have La,(x) ≤ fa(x) for all real x . This
proves item (1). We now prove item (2). Suppose F is an L1(R)-function, F(x) ≤ fa(x) for
all real x and F̂ is supported in [−,]. Poisson summation implies

F̂(0) = 1



∑

n∈Z
F(n/) ≤ 1



∑

n∈Z
fa(n/) = 1



∑

n∈Z
La(n/) = L̂a,(0),

where the last identity is due to the fact that La, interpolates (in second order) fa in
1

Z. Equality is attained if and only if F(x) = La,(x) in second order for all x ∈ 1


Z.

However, this completely characterizes F = La, (see [14, Theorem 9]). Finally, using that
f̂a(y) = −2π2|y|e−2πa|y|, identity (2.2) can easily be derived using Poisson summation
over 1


Z.

It turns out that because fa(x) has a localmaximumat x = √
3 a, the bandlimitedmajorant

of fa with minimal total mass will have to be adjusted when πa is small. This adjustment
will require some de Branges spaces theory.

Lemma 7 (Majorant) For a, > 0 let

Ua,(z) = z2 − a2 + (Cz2 + Da2)(cos(πz) − Eπz sin(πz))2

(z2 + a2)2
,

where

(C, D, E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2λ tanh(λ) − 1

cosh2(λ)
,
2λ tanh(λ) + 1

cosh2(λ)
, 0

)
if λ ≥ λ0,

(
0,

1

2

(
2λ + tanh(λ)

sinh(λ) + λ sech(λ)

)2

,
1 − 2λ tanh(λ)

2λ2 + λ tanh(λ)

)
if λ < λ0,

λ = πa and λ0 = 0.771 . . . is such that 2λ0 tanh(λ0) = 1. Then:

(1) The inequality

fa(x) ≤ Ua,(x)

holds for all real x, Ua, ∈ L1(R) and its Fourier transform is supported in [−,]
(i.e. Ua, is of exponential type at most 2π);

(2) We have

Ûa,(0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π2

cosh2(λ)
if λ ≥ λ0,

π2

sinh2(λ)

(
2λ + sinh(2λ)

8λ

(
2λ + tanh(λ)

sinh(λ) + λ sech(λ)

)2

− 1

)
if λ < λ0.

Moreover, any other function F 	= Ua, having the same properties as Ua, in item (1)
has integral strictly greater than the integral of Ua,.

Proof Note that the constants (C, D, E) are chosen so thatUa, is entire, that is, its numerator
vanishes doubly at z = ±ia. Since Ua, is visibly of exponential type at most 2π and
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1046 A. Chirre, F. Gonçalves

belongs to L1(R), the Paley–Wiener Theorem guarantees its Fourier transform is supported
in [−,]. Noting that C, D ≥ 0 we have fa(x) ≤ Ua,(x) for all real x , and this proves
item (1). We now show item (2). Suppose F is an L1(R)-function, F(x) ≥ fa(x) for all real
x and F̂ is supported in [−,]. We now apply the generalized Poisson summation formula
of Littmann for bandlimited functions [11, Theorem 2.1] for γ = (πE)−1 with E > 0. It
translates to

F̂(0) = 1



∑

B(t)=0

(
1 − πE

π(π2E2t2 + 1) + πE

)
F(t/)

≥ 1



∑

B(t)=0

(
1 − πE

π(π2E2t2 + 1) + πE

)
fa(t/)

= 1



∑

B(t)=0

(
1 − πE

π(π2E2t2 + 1) + πE

)
Ua,(t/)

= Ûa,(0),

whereB(z) = cos(π z)−Eπ z sin(π z). Note when E = 0, that is, λ ≥ λ0, this is the classical
Poisson summation over 1


( 12+Z). Equality is attained if and only if F(t/) = Ua,(t/) in

second order for all real t with B(t) = 0. We claim this completely characterizes F = Ua,.
The trick is to use the theory of de Branges spaces and the interpolation formula [9, Theorem
A] (the introduction of [9] gives a solid short background on the necessary de Branges spaces
theory which we will use here without much explanation). First we note that the function
E(z) = (i + πEz)e−π i z is of Hermite–Biehler class (i.e. |E(z)| < |E(z)| for all z with
Im z > 0) and therefore the de Branges space H(E2) exists, and it consists of all entire
functions of exponential type at most 2π belonging to L2(R, dx/(1 + E2π2x2)). Note also
that B(z) = i(E(z) − E(z))/2. Moreover, it is not hard to show that all conditions of [9,
Theorem A] are satisfied by E(z), and thus we conclude that any function G ∈ H(E2) is
completely characterized by its values G(t) and G ′(t) for all real t with B(t) = 0. Now it is
simply a matter to note that (i + πEz)2F(z/) and (i + πEz)2Ua,(z/) both belong to
H(E2), and so they must be equal.2

Finally, in the case λ ≥ λ0 one can use Poisson summation over 1


( 12 +Z) to evaluate the
integral of Ua, and obtain

Ûa,(0) = π2

cosh2(πa)
.

If λ < λ0 then we can use Poisson summation over 1

Z to obtain

Ûa,(0) = 1



∑

n∈Z

(
fa(n/) + Da2

(n2/2 + a2)2

)

= −2π2
∑

n∈Z
|n|e−2λ|n| + Dπ2

∑

n∈Z
(|n| + 1

2λ )e−2λ|n|

= − π2

sinh2(λ)
+ Dπ2

2λ + sinh(2λ)

4λ sinh2(λ)

= π2

sinh2(λ)

(
2λ + sinh(2λ)

8λ

(
2λ + tanh(λ)

sinh(λ) + λ sech(λ)

)2

− 1

)
.

2 Note when E = 0 this argument reduces to classical Paley-Wiener space theory and Poisson summation.
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Bounding the log-derivative of the zeta-function 1047

Above we used that f̂a(y) = −2π2|y|e−2πa|y| and the Fourier transform of a2

(x2+a2)2
is

π2
(|y| + 1

2πa

)
e−2πa|y|.

Lemma 8 The functions defined in Lemmas 6 and 7 satisfy the following inequalities for
− < y < :

L̂a,(y) < 0

and, if πa ≥ λ0,

Ûa,(y) > f̂a(y).

Proof First we deal with the minorant. Using that f̂a(y) = −2π2|y|e−2πa|y| and the Fourier
transforms of 1

x2+a2
and a2

(x2+a2)2
are

π

a
e−2πa|y| and π2

(
|y| + 1

2πa

)
e−2πa|y|,

respectively, we obtain

L̂a,(y) = −2π2|y|e−2πa|y| − 2 Id − T − T−

4

[
π2

(
B + A

2πa
+ (B − A)|y|

)
e−2πa|y|

]
,

where Th is the operator of translation by h and Id is the identity operator. These operators
come from the (distributional) Fourier transform of sin2(πx). We claim that the function
e2πay L̂a,(y) is convex in the range 0 < y < , which would show that L̂a,(y) is negative
in the same range since it is negative at y = 0 and vanishes at y = . For 0 < y <  we
have

d2

dy2
[
e2πay L̂a,(y)

] = d2

dy2

[
π2

4

(
B + A

2πa
+ (B − A)( − y)

)
e2πa(2y−) + linear

]

= (A + πa(B − A)( − y)) 4aπ3e2πa(2y−)

> 0,

because B > A > 0. The majorant case is simpler, since if λ = πa ≥ λ0 a similar
computation leads to

Ûa,(y) = −2π2|y|e−2πa|y| + 2 Id + T + T−

4

[
π2

(
C + D

2πa
+ (D − C)|y|

)
e−2πa|y|

]
,

and so the desired inequality follows because D > C ≥ 0.

3 Proof of Theorem 3

Let 12 < σ < 1 and > 0. Throughout the rest of the paper we set a = σ − 1
2 and λ = πa.

Using Lemma 4 and the evenness of the zeta-zeros we obtain

Re

(
ζ ′

ζ

)′
(σ + i t) =

∑

γ

( 1
2 fa(γ − t) + 1

2 fa(γ + t) + fa(γ )
) + O(1),
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1048 A. Chirre, F. Gonçalves

as t → ∞, where we have used that fa(x) = O(1/x2) uniformly for |x | ≥ 1 and 0 < a <

1/2, hence
∑

γ fa(γ ) = O(1). We then apply Lemmas 6 and 7 to get

∑

γ

Mt La,(γ ) + O(1) ≤ Re

(
ζ ′

ζ

)′
(σ + i t) ≤

∑

γ

MtUa,(γ ) + O(1), (3.1)

where Mt = 1
2Tt + 1

2T−t + Id. Note that for each t ≥ 0 the functions Mt La, and MtUa,

are even and admissible for the Guinand–Weil explicit formula (Proposition 5). We use the
operator Mt because its Fourier transform is the operator that multiplies by 2 cos2(π t x),
which is nonnegative. This will allow us to simply discard (or easily bound) the sum over
primes in the explicit formula.

3.1 Proof of the lower bound

Applying Proposition 5 and Lemmas 6 and 8 we obtain

∑

γ

Mt La,(γ ) = 1

2π

∫ ∞

−∞
Mt La,(u)Re

	′

	

(
1 + 2iu

4

)
du + 2Mt La,

(
i

2

)

− 2

π

∑

n≥2

�(n)√
n

L̂a,

(
log n

2π

)
cos2( 12 t log n) − logπ

π
L̂a,(0)

≥ 1

2π

∫ ∞

−∞
Mt La,(u)Re

	′

	

(
1 + 2iu

4

)
du + 2Mt La,

(
i

2

)
.

In this part we assume that λ ≥ c for some given fixed c > 0. We now analyze the terms on
the right-hand side above. The function La, depends on the parameters A and B, but both
behave like (since λ ≥ c)

8λe−2λ + O(e−2λ).

Hence |La,(x)| ≤ K (x2 +a2)−1 for some K > 0. Since (s2 +a2)La,(s) has exponential
type 2π and it is bounded on the real line, a routine application of the Phragmén–Lindelöf
principle implies that

|La,(s)| ≤ K
e2π|Im s|

|s2 + a2| , s ∈ C (3.2)

(alternatively, one could derive such bound by direct computation). Using the bounds for A
and B it follows that

2Mt La,

(
i

2

)
= 4πae(1−2a)π

a2 − 1
4

+ O

(
e(1−2a)π

(a2 − 1
4 )

2
+ eπ

t2

)
.

Using that Mt is self-adjoint and applying Stirling’s approximation to obtain

MtRe
	′

	

(
1 + 2iu

4

)
= log t + O(log(2 + |u|)),

123



Bounding the log-derivative of the zeta-function 1049

we deduce that

1

2π

∫ ∞

−∞
Mt La,(u)Re

	′

	

(
1 + 2iu

4

)
du = π log t

2 sinh2(πa)
+ O

(
1

a

)

= −2πe−2πa log t + O
(
1
a + e−4πa log t

)

= −2πe−2πa log t + O

(
1 + e−2πa log t

a

)
.

Combining the above bounds we obtain

∑

γ

Mt La,(γ − t) ≥ −2πe−2πa log t + 4πae(1−2a)π

a2 − 1
4

+ O

(
e(1−2a)π

(a2 − 1
4 )

2
+ eπ

t2
+ 1

a

(
1 + e−2πa log t

)
)

.

Choosing π = log log t (which is the optimal choice) and using (3.1) we obtain

Re

(
ζ ′

ζ

)′
(σ +i t) ≥ −

(−2σ 2 + 6σ − 2

σ(1 − σ)

)
log log t (log t)2−2σ +Oc

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2

)

for π(σ − 1/2) log log t ≥ c. This proves the desired result.

3.2 Proof of the upper bound

Using Proposition 5 and Lemma 7 we obtain

∑

γ

MtUa,(γ ) ≤ 1

2π

∫ ∞

−∞
MtUa,(u)Re

	′

	

(
1 + 2iu

4

)
du + 2MtUa,

(
i

2

)

− 2

π

∑

n≥2

�(n)√
n

Ûa,

(
log n

2π

)
cos2( 12 t log n).

When λ ≥ λ0 the computations are very similar to the lower bound and we just indicate them
here. We still have both C and D behaving like 8λe−2λ + O(e−2λ), and a bound similar to
(3.2) holds. Using Stirling’s formula and Lemma 7 we get

1

2π

∫ ∞

−∞
MtUa,(u)Re

	′

	

(
1 + 2iu

4

)
du = π log t

2 cosh2(πa)
+ O

(
1

a

)

= 2πe−2πa log t + O

(
1 + e−2πa log t

a

)
.

Using the estimates for C and D it follows that

2MtUa,

(
i

2

)
= 4πae(1−2a)π

a2 − 1
4

+ O

(
e(1−2a)π

(a2 − 1
4 )

2

)
+ O

(
eπ

t2

)
.

Since Ûa, is supported in [−,], we estimate the sum over primes (which we cannot
discard as before) using Lemma 8 and that f̂a(y) = −2π2|y|e−2πa|y| to get

123



1050 A. Chirre, F. Gonçalves

− 2

π

∑

n≥2

�(n)√
n

Ûa,

(
log n

2π

)
cos2( 12 t log n) ≤ 2

∑

2≤n≤e2π

�(n)

na+1/2 log n

= 4πe(1−2a)π

1
2 − a

+ O

(
e(1−2a)π

( 1
2 − a

)2 + 3

a

)
.

The above estimate follows from the prime number theorem (see [4, Eq. (B.2)]). Choosing
π = log log t and using (3.1) we obtain

Re

(
ζ ′

ζ

)′
(σ + i t) ≤

(−2σ 2 + 2σ + 2

σ(1 − σ)

)
log log t (log t)2−2σ + Oc

(
(log t)2−2σ

(σ − 1
2 )(1 − σ)2

)

in the range (σ − 1/2) log log t ≥ λ0 and (1 − σ)
√
log log t ≥ c for some fixed c > 0; note

that 3 = Oc
(
(1/2 − a)−2(log t)1−2a

)
. This finishes the proof. ��

4 Proof of Theorem 2

Toobtain the bounds for the imaginary part of the log-derivative ζ(s)wewill employ the inter-
polation technique of [4, Section 6] for functions with slow growth, which we conveniently
state in the form of a lemma.

Lemma 9 (Interpolation) Let ϕ : (t0,∞) → R be twice differentiable, t0 > 0, and assume
that

−β0(t) ≤ ϕ(t) ≤ α0(t) and − β2(t) ≤ ϕ′′(t) ≤ α2(t),

for some differentiable functions α0, β0, α2, β2 : (t0,∞) → (0,∞). Suppose the numbers

L = sup
t>t0

2(α2(t) + β2(t))(α0(t) + β0(t))

3α2(t)β2(t)
,

Mi = sup
t>t0

|α′
i (t)| and Ni = sup

t>t0
|β ′

i (t)| (i = 0, 2)

are finite. Then, for t > t0 + √
3L we have

|ϕ′(t)| ≤
√
2α2(t)β2(t)(α0(t) + β0(t))

α2(t) + β2(t)
+ M0 + N0 + (M2 + N2)L.

Proof Since the bound is symmetric whenwe interchange α0, β0 and α2, β2 (i.e. we change ϕ

by−ϕ), it is enough to prove that ϕ′(t) is bounded above by the desired bound. An application
of the mean value theorem easily gives that3

ϕ′(t) − ϕ′(t − h) = ϕ′′(t∗)h
≤ h+α2(t

∗) + (−h)+β2(t
∗)

≤ h+α2(t) + (−h)+β2(t) + (M2 + N2)|h|2.‘
Averaging in h in the interval [−ν(1 − A), νA], for some ν > 0 (with t − ν > t0) and
0 < A < 1, we obtain

ϕ′(t)

3 The notation h+ means max(h, 0).
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≤ 1
ν

(ϕ(t + (1 − A)ν) − ϕ(t − Aν)) + ν
2

(
A2α2(t) + (1 − A)2β2(t)

) + ν2

3 (M2 + N2)

≤ 1
ν

(α0(t + (1 − A)ν) + β0(t − Aν)) + ν
2

(
A2α2(t) + (1 − A)2β2(t)

) + ν2

3 (M2 + N2)

≤ 1
ν

(α0(t) + β0(t)) + ν
2

(
A2α2(t) + (1 − A)2β2(t)

) + M0 + N0 + ν2

3 (M2 + N2).

Minimizing the main term above as a function of ν and A, we must set

ν =
√
2(α2(t) + β2(t))(α0(t) + β0(t))

α2(t)β2(t)
and A = β2(t)

α2(t) + β2(t)
,

which gives, for t > t0 + √
3L , that

ϕ′(t) ≤
√
2α2(t)β2(t)(α0(t) + β0(t))

α2(t) + β2(t)
+ M0 + N0 + (M2 + N2)L.

The lemma follows.

We will apply this lemma for

ϕ(t) = −log |ζ(σ + i t)|

noting that

ϕ′(t) = Im
ζ ′

ζ
(σ + i t) and ϕ′′(t) = Re

(
ζ ′

ζ

)′
(σ + i t).

Theorem 3 and [1, Theorems 1 and 2] establish respectively that

−β0(t) ≤ ϕ(t) ≤ α0(t) and − β2(t) ≤ ϕ′′(t) ≤ α2(t),

in the range

1

2
+ λ0

log log t
≤ σ ≤ 1 − c

√
λ0/(λ0 + c)√
log log t

and t ≥ 3, (4.1)

where c > 0,

α2(t) = −2σ 2 + 2σ + 2

σ(1 − σ)
�−1,σ (t) + Oc

(
�0,σ (t)

(σ − 1
2 )(1 − σ)2

)
,

β2(t) = −2σ 2 + 6σ − 2

σ(1 − σ)
�−1,σ (t) + Oc

(
�0,σ (t)

(σ − 1
2 )(1 − σ)2

)
,

α0(t) = β0(t) = −σ 2 + 5σ − 2

2σ(1 − σ)
�1,σ (t) + Oc

(
�2,σ (t)

(1 − σ)2

)

and �n,σ (t) = (log t)2−2σ (log log t)−n . We can then apply Lemma 9 with t0 = t0(σ, c)
equals to the smallest t such that (4.1) is not vacuous. A routine computation shows that√
3L = Oc(1) and that M0, M2, N0, N2 are Oc((σ − 1

2 )
−1(1 − σ)−2). We obtain
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∣∣∣∣Im
ζ ′

ζ
(σ + i t)

∣∣∣∣ ≤
√
2α2(t)β2(t)(α0(t) + β0(t))

α2(t) + β2(t)
+ Oc

(
1

(σ − 1
2 )(1 − σ)2

)

=
√
2(−σ 2 + 5σ − 2)(−σ 2 + 3σ − 1)(−σ 2 + σ + 1)

σ 3(1 − σ)2(2 − σ)
�0,σ (t)

+ Oc

(
�1,σ (t)

(σ − 1
2 )(1 − σ)2

)

if t ′ = t − √
3L ≥ t0. Letting t1(c) be such that log log t ′

log log t ≥ λ0
λ0+c if t ≥ t1(c), we conclude

that the above estimate holds in the range

1

2
+ λ0 + c

log log t
≤ σ ≤ 1 − c√

log log t
and t ≥ t2(c),

where t2(c) = max(t1(c), 3+ √
3L). To finish the proof we note that if 3 ≤ t ≤ t2(c) then a

simple compactness argument gives the full desired range. ��
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