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Picard groups and duality for Real Morava E-theories
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We show, at the prime 2, that the Picard group of invertible modules over EhC2
n is cyclic.

Here, En is the height n Lubin–Tate spectrum and its C2 -action is induced from the formal
inverse of its associated formal group law. We further show that EhC2

n is Gross–Hopkins
self-dual and determine the exact shift. Our results generalize the well-known results when
n = 1.

1 Introduction

Let En be the height-n Lubin–Tate spectrum with coefficient ring

π∗(En) ∼= W(Fpn)[[u1, . . . , un−1]][u±1].

This spectrum is constructed by using the theory of formal groups (see Section 2.1 for more
details). For this paper, we will focus on the case when the prime p is 2. At p = 2, the spectrum
En has a C2 -action that is induced from the formal inverse of its associated formal group law via
the Goerss–Hopkins–Miller theorem [13, 35]. Our main object of interest in this work will be
the homotopy fixed point spectrum EhC2

n .

When n = 1, there is an equivalence between EhC2
1 and KO∧2 , the 2-completed real K -theory.

The real Bott periodicity implies that EhC2
1 is 8-periodic. In [32], Mathew and Stojanoska have

shown that the Picard group Pic(EhC2
1 ) of invertible EhC2

1 -modules is generated by the suspension
ΣEhC2

1 and is isomorphic to Z/8.

Using C2 -equivariant homotopy theory, Hahn and Shi [20] have recently computed the homotopy
fixed point spectral sequence of EhC2

n for all heights n ≥ 1. In particular, they show that the
spectrum EhC2

n is 2n+2 -periodic.

In this paper, we generalize the Picard group result in [32] to all higher heights. This is the first
systematic result that applies for all heights.

Theorem 3.12 For n ≥ 1, the Picard group Pic(EhC2
n ) ∼= Z/2n+2 and is generated by ΣEhC2

n .
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In [26], Gross and Hopkins investigated a certain type of duality in the K(n)-local category that
is analogous to the Grothendieck–Serre duality in algebraic geometry. Namely, for a K(n)-local
spectrum X , define

IX = F(MnX, IQ/Z).

Here, MnX denotes the n-th monochromatic layer of X and IQ/Z is the Brown–Comenetz
dualizing spectrum. When n = 1, it is well-known that IEhC2

1 ' Σ5EhC2
1 (see [23, Sec. 9] for

example). Using Theorem 3.12, we show that more generally, IEhC2
n is always self-dual up to

a shift. More specifically, we prove that IEhC2
n ' Σ4+nEhC2

n . In fact, this equivalence can be
refined to a C2 -equivariant equivalence:

Theorem 4.15 The Gross–Hopkins dual IEn is C2 -equivariantly equivalent to Σ4+nEn .

In the process of proving Theorem Theorem 4.15, we compute the Morava module of IEhF
n for

any finite subgroup F of the Morava stabilizer group. Our computation is valid for all primes
p. Although we do not use this in our main computations, we include this as it may be of
independent interest to the readers.

Finally, in Section 6, we show that our computations, when combined with work of Beaudry–
Goerss–Hopkins–Stojanoska [5] and Barthel–Beaudry–Goerss–Stojanoska [3], imply that the
exotic part of the K(n)-local Picard group is always non-trivial when p = 2, see Theorem 6.6,
and that the group has an element whose order has a lower bound that grows exponentially with
respect to n.

Outline of proof

We now provide an outline of proof for our main theorems. To compute the Picard group, we
use the techniques that are developed by Mathew and Stojanoska in [32]. More specifically,
there is a descent spectral sequence that is associated to the Galois extension EhC2

n → En . Using
this spectral sequence, we compute the homotopy groups of a certain Picard spectrum pic(EhC2

n ),
which has the property that π0pic(E

hC2
n ) ∼= Pic(EhC2

n ). In a certain range, the Picard spectral
sequence concides with the usual homotopy fixed point spectral sequence for EhC2

n . Moreover,
Mathew and Stojanoska have shown that in a more restricted range, differentials can be imported
from the homotopy fixed point spectral sequence to the Picard spectral sequence.

In the additive spectral sequence, there are n non-trivial differentials. Using formulas in [32], we
see that each of these differentials has kernel Z/2 in the 0-stem of the Picard spectral sequence.
This, together with some low dimensional calculations, shows that the Picard group has order at
most 2n+2 . However, we also know that this is the lower bound by periodicity. Therefore, the
Picard group must have order exactly 2n+2 .

We will then give two proofs for the Gross–Hopkins dual IEhC2
n . The first proof relies extensively

on techniques from C2 -equivariant homotopy theory, as well as a general result, which states
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that I(EhF
n ) ∈ Pic(EhF

n ) for any finite subgroup of the Morava stabilizer group (Proposition 4.4).
The second proof is more computational in nature. We set up a series of spectral sequences and
completely compute the homotopy fixed point spectral sequence for IEhC2

n . This computation
uses a technique called the “geometric boundary theorem”, which has been studied by Behrens
in Appendix A.
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2 Background

We begin with the necessary background on Lubin–Tate spectra, Gross–Hopkins duality, and
C2 -equivariant homotopy theory.

2.1 Lubin–Tate spectra and chromatic homotopy

We recall (e.g., from [36]) that given a perfect field k of characteristic p > 0 and a formal group
F over k of height n, then there exists a Lubin–Tate spectrum E(k,F) with formal group the
universal deformation of F . The coefficients of E(k,F) are given by

π∗E(k,F) ∼= W(k)[[u1, . . . , un−1]][u±1]

where |ui| = 0 and |u| = 2, and W(k) denotes the Witt vectors of the field k . Note that this is
a complete local ring with maximal ideal In = (p, u1, . . . , un−1). For concreteness, we always
work with k = Fpn and F the Honda formal group law with p-series [p](x) = xpn

. We denote
the associated spectrum by En . Note that our results are easily generalized to other forms of
Lubin–Tate spectra as well because any E(k,F) admits a Real-orientation by [20]. As a result, its
C2 -homotopy fixed point spectral sequence is always regular in the sense of [33, Definition 6.1].

Let Sn denote the group of automorphisms of the Honda group law over Fpn , and let Gn =

Sn o Gal(Fpn/Fp). Lubin–Tate theory implies that Gn acts on (En)∗ and the Goerss–Hopkins–
Miller theorem improves this to show that Gn acts on the spectrum En via E∞ -ring maps [13].
In this paper we are particularly interested in the C2 -action on En when p = 2, arising from the
formal inverse of the Honda formal group law, and the associated homotopy fixed point spectrum
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EhC2
n . Here the C2 -action on (En)∗ is particularly simple; if we let τ denote the generator of

C2 , then τ∗(ui) = ui and τ∗(uk) = (−1)kuk (see for example the proof of [8, Lemma 1.33]). As
noted in the introduction, when n = 1 there is an equivalence between EhC2

1 and the 2-complete
real K -theory.

Let Ln denote the Bousfield localization functor with respect to En . The Bousfield class 〈En〉
admits a decomposition

〈En〉 = 〈K(0) ∨ K(1) ∨ · · · ∨ K(n)〉
where K(n) denotes the n-th Morava K -theory [29]. Given a K(n)-local spectrum X , the natural
version of homology to define is

(E∨n )∗X = π∗LK(n)(En ⊗ X),

This is not always In -adically complete as an (En)∗ -module (although see [12, Sec. 2] for
conditions that ensure this), but it is always L-complete, see [29, Prop. 8.4], where L-completion
denotes the zero-th derived functor of In -adic completion. It also obtains an action of Gn via the
action on (En)∗ , which is twisted, in the sense that if g ∈ Gn , a ∈ (En)∗ and x ∈ (E∨n )∗X , then

g(ax) = g(a)g(x).

We call any such L-complete (En)∗ -module with this twisted Gn -action a Morava module, see
[12, Sec. 2].

If M is a Morava module, we let mapcts(Gn,M) denote the group of continuous maps from
Gn → M , with (En)∗ -action given by

(aφ)(x) = aφ(x)

for a ∈ (En)∗ and φ : Gn → M . If we give mapcts(Gn,M) the diagonal Gn -action defined by

(gφ)(x) = gφ(g−1x)

then this obtains the structure of a Morava module. For example, there is an isomorphism
(E∨n )∗En ∼= mapcts(Gn, (En)∗) of Morava modules, see [11, Thm. 2]. In fact, more generally, we
have (E∨n )∗(EhF

n ) ∼= mapcts(Gn/F, (En)∗), see [11, Prop. 6.3].

Remark 2.1 If M is an (En)∗ -module with a compatible action of a finite subgroup F ⊂ Gn ,
we say that M is an (En)∗[F]-module. For consistency, we could also call Morava modules
(En)∗[[Gn]]-modules, but the terminology Morava module seems well-established by now, and
so we stick with that.

2.2 Gross–Hopkins duality

Let IQ/Z denote the Brown–Comenetz spectrum [9], and let IQ/ZX = F(X, IQ/Z) denote the
Brown–Comenetz dual of a spectrum X , characterized by π∗IQ/ZX ∼= Hom(π−∗X,Q/Z). For
a K(n)-local spectrum X , the Gross–Hopkins dual of X , denoted IX , is defined as IX =
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F(MnX, IQ/Z), i.e., as the Brown–Comenetz dual of MnX , where MnX is the fiber of the natural
map LnX → Ln−1X . We write I = IS0 ; it follows that IX = F(X, I). Following Gross and
Hopkins, Strickland [37] has studied the properties of I in some detail. In order to state what we
need, we recall that there is a determinant map

det : Gn → Z×p ,

see [12, Sec. 1.3]. If M is a Morava module, then we write M〈det〉 for the same (En)∗ -module
with the Gn -action twisted by det. With this is mind, we have the following [37, Thm. 2], which
relies extensively on the work of Gross and Hopkins [26].

Theorem 2.2 (Strickland) There is an isomorphism of Morava modules

(E∨n )∗I ∼= Σn2−n(En)∗〈det〉.

This implies that I is invertible in the K(n)-local category. In fact, when p� n, this implies that
I ' Σn2−nS〈det〉, where S〈det〉 is the determinantal sphere, a K(n)-locally invertible spectrum
with (E∨n )∗S〈det〉 ∼= (En)∗〈det〉. We return to this connection more in Section 6.

Remark 2.3 Note that for any finite subgroup F ⊂ Gn there is an equivalence I(EhF
n ) ' (IEn)hF .

Indeed, since the Tate spectrum EtF
n vanishes K(n)-locally, see [19], and because I is K(n)-local,

we obtain the following chain of equivalences:

I(EhF
n ) ' F(EhF

n , I) ' F((En)hF, I) ' F(En, I)hF ' (IEn)hF.

Therefore, there is no ambiguity if we simply write IEhF
n .

We will also need to know that there is an isomorphism

(2–4) π∗IEn ∼= Σ−n(En)∗〈det〉,
which is proved by Strickland [37].

In [2, Prop. 2.1] the authors show that the homotopy fixed point spectral sequence computing
π∗(IQ/ZX)hH is Pontryagin dual to the homotopy orbits spectral sequence computing π∗(XhH).
We restate this here, where DQ/Z(−) denotes the Pontryagin dual of an abelian group.

Lemma 2.5 (Barthel–Beaudry–Stojanoska) Let G be a finite group and X a G-spectrum.
Then the homotopy fixed point spectral sequence of IQ/ZX is Pontryagin dual to the homotopy
orbit spectral sequence of X . More precisely, let E∗,∗r be the rth page of the HFPSS((IQ/ZX)hG)
with differentials

dr : E s,t
r → E s+r,t+r−1

r ,

and E r
∗,∗ be the rth page of HOSS(XhG) with differentials

dr : E r
s,t → E r

s−r,t+r−1.

Then there is a natural isomorphism between each page and between all the differentials:

E s,t
r
∼= DQ/Z(E r

s,−t), DQ/Z(dr) = dr.
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2.3 The monochromatic layer of the sphere and Morava E-theory

Recall that the Gross–Hopkins dual of Morava E-theory is the Brown–Comenetz dual of MnEn .
In this section, we give an alternative description of the monochromatic layer of E-theory.

To begin, let Ik be the ideal (p, v1, . . . , vk−1) in (En)∗ , where

vk =


p k = 0

uku1−pk
1 ≤ k < n

u1−pn
k = n.

We make the convention that I0 is the zero ideal, so that En/I0 ' En .

We recall that we can inductively define spectra En/I∞k by cofiber sequences

(2–6) En/I∞k → v−1
k En/I∞k → En/I∞k+1

Applying Mn to these cofiber sequences, and noting that Mn(v−1
k En/I∞k ) ' ∗ is trivial for k < n,

and that Mn(En/I∞n ) ' E/I∞n , we obtain an equivalence Σ−nEn/I∞n
'−→ MnEn . The main goal

of this section is to prove that this is an equivariant equivalence.

Proposition 2.7 There is an equivalence

Σ−nEn/I∞n
'−→ MnEn

compatible with the Gn -action on both sides.

To make this precise, we need to specify how Gn acts. We will in fact show that MnEn '
En ⊗MnS0 and Σ−nEn/I∞n ' Σ−nEn ⊗ S0/I∞n , where S0/I∞n is defined as the homotopy limit
of the generalized Moore spectra of type n (see [29, Sec. 4.1]). Here the action of Gn is given
by acting only on En , where it acts in the usual way. Moreover, the map will be the identity on
En , and hence equivariant.

Proof of Proposition 2.7 By construction, the spectrum S0/I∞n fits into the telescope tower of
the p-local sphere spectrum S0 as follows:

S0 S0/p∞ S0/(p∞, v∞1 ) S0/I∞3 S0/I∞4 · · ·

p−1S0 v−1
1 S/p∞ v−1

2 S/(p∞, v∞1 ) v−1
3 S0/I∞3 v−1

3 S0/I∞4

In this diagram, each sequence

S0/I∞k → v−1
k S0/I∞k → S0/I∞k+1

is a cofiber sequence, so that the dashed arrows indicate that there is a map from the source to a
suspension of the target.
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After applying π∗(En ⊗ −) to these cofiber sequences, we claim that all the connecting ho-
momorphisms induced by the dashed arrows in the telescope tower are trivial. This is be-
cause the connecting homomorphisms are maps of (En)∗ -modules from a vk -torsion (En)∗ -
module to a vk -torsion free (En)∗ -module (0 6 k < n). An inductive computation shows that
π∗(En ⊗ S0/I∞n ) ∼= (En)∗/I∞n . Thus, En/I∞n ' En ⊗ S0/I∞n .

Since Mn(v−1
k S0/I∞k ) ' ∗ for k < n, after applying the n-th monochromatic layer we have

Mn(S0/I∞k ) = Σ−1Mn(S0/I∞k+1) for k < n. Hence, we have a weak equivalence

t : Σ−nMn(S0/I∞n )→ MnS0.

After smashing with En , we produce a Gn -equivariant map

t ⊗ idEn : Σ−nMn(S0/I∞n )⊗ En → MnS0 ⊗ En,

where the action is entirely on En . Because Ln is a smashing localization, we have Σ−nMn(S0/I∞n )⊗
En ' Σ−nMn(S0/I∞n ⊗ En). The latter is Σ−nMn(En/I∞n ) = Σ−nEn/I∞n . Therefore, t ⊗ idEn

gives the desired Gn -equivariant equivalence

Σ−nEn/I∞n
'−→ MnEn.

2.4 C2 -equivariant homotopy

Our first proof of the Gross–Hopkins dual of EhC2
n will rely on techniques from C2 -equivariant

homotopy theory, and so we begin by giving some background on what we will require. More
general references include [24, App. A], [30], [25, Sec. 2], [17], and [16].

We will work in the category of genuine C2 -spectra. It follows that for a C2 -spectrum X we
can define homotopy groups πC2

x+yσX indexed on RO(C2) = {x + yσ | x, y ∈ Z}, where σ

denotes the sign representation of C2 . We will use Hu and Kriz’s convention of writing πC2
? X

for RO(C2)-graded homotopy groups, and πC2
∗ X when we grade only over the integers. We

denote by πe
∗X the underlying homotopy groups of X if there is any potential confusion. We also

recall that the equivariant and non-equivariant homotopy groups can be combined into a Mackey
functor, which we write as π∗X .

Following Hill–Meier [25, Def. 3.1] we say that a C2 -spectrum X is strongly even if πkρ−1X = 0,
and πkρX is a constant Mackey functor for all k ∈ Z, where ρ = 1 + σ denotes the real regular
representation. As in [18] if X is strongly even, and e ∈ πe

2kX , we let ē denote its counterpart in
πC2

kρX , i.e., the preimage of e under the isomorphism

πC2
kρX

∼=−→ πe
kρX ∼= πe

2kX.

Example 2.8 Let MUR denote the real bordism spectrum considered by Araki and Hu–Kriz
[30]. This is a strongly even C2 -spectrum [25, App. A]. Similarly, as a C2 -spectrum, En is
strongly even, see the proof of Theorem 6.7 of [20]. The key input for this is the existence of a
C2 -equivariant map MUR → En , see [20, Thm. 1.2].
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The following lemma of Greenlees [16, Lem. 1.2] will prove useful. For this, we say that a
C2 -spectrum X is underlying even if πe

2k−1X = 0 for all k ∈ Z.

Lemma 2.9 (Greenlees) A C2 -spectrum X is strongly even if and only if it is underlying even
and πC2

∗ρ−iX = 0 for i = 1, 2, 3.

Consider the contractible free C2 -space EC2 and the join ẼC2 ' S0 ∗EC2 , which fit together in
a cofiber sequence

EC2+ → S0 → ẼC2.

We can then construct the following diagram of cofiber sequences for any C2 -spectrum X

Xh X XΦ

Xh Xh Xt.

'

where1

Xh = F(EC2+,X)

Xh = EC2+ ⊗ X

Xt = F(EC2+,X)⊗ ẼC2

XΦ = X ⊗ ẼC2.

Here the notation XΦ is justified because C2 has prime order, and hence the C2 -fixed points
of XΦ compute the geometric fixed points.2 We have also used that the map EC2+ ⊗ X →
EC2+ ⊗ F(EC2+,X) induced by EC2+ → S0 is always an equivalence of C2 -spectra, see [17,
Proposition I.1.2].

Passing to C2 -fixed points we obtain the following diagram of cofiber sequences

(2–10)

XhC2 XC2 XΦC2

XhC2 XhC2 XtC2

'

where the bottom cofiber sequence is the norm sequence.

Definition 2.11 A C2 -spectrum X is cofree if the map X → Xh = F(EC2+,X) is an equivalence.

1In [16] Greenlees calls this the Scandinavian notation.
2In general, the geometric fixed points of a G-spectrum X are defined in the following way. Let ẼF

be the G-CW complex defined as the cofiber of the map from EF+ → S0 , where EF is the universal
space associated to the family of proper subgroups of G . Then, the geometric fixed points of X are the
G-fixed points of ẼF ⊗ X , see [24, Sec. 2.5.2]. In the particular case of C2 , we have ẼF ' ẼC2 , and
the claim follows.
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As explained in [25, Sec. 2.2.1] if X is simply a spectrum with a C2 -action (i.e., an object of
the functor category Fun(BC2,Sp)), then F(EC2+,X) is a genuine equivariant spectrum. In fact,
by [25, Thm. 2.4] if X is a commutative ring spectrum with a C2 -action via commutative ring
maps, then F(EC2+,X) is an equivariant commutative ring spectrum. The conditions on X are
satisfied when X = En by the Goerss–Hopkins–Miller theorem [13]. We use this to view En as
a genuine C2 -equivariant spectrum.

Definition 2.12 The genuine C2 -equivariant Lubin–Tate spectrum En is defined to be to cofree
C2 -spectrum F(EC2+,En).

By construction, this has the property that

(2–13) EC2
n
∼= EhC2

n .

Associated to the norm sequence are spectral sequences

Hs(C2, πtX) =⇒ πt+sXhC2

Hs(C2, πtX) =⇒ πt−sXhC2

Ĥs(C2, πtX) =⇒ πt−sXtC2 .

In fact, these can be made into RO(C2)-graded spectral sequences computing πC2
? Xh , πC2

? Xh

and πC2
? Xt , respectively. By looking only at the integer degrees of these spectral sequence, we

recover the standard spectral sequences. Although this seems like more work, it may be the
case that the differentials are easier to describe, or to compute, in the RO(C2)-grading. This is
especially true in light of the large work on computation in C2 -equivariant homotopy theory,
pioneered by Hu and Kriz [30], and later by Hill, Hopkins, and Ravenel [24].

3 The Picard group of EhC2
n

In this section we use the descent techniques of Mathew and Stojanoska to compute the Picard
group Pic(EhC2

n ).

3.1 The RO(C2)-graded homotopy fixed point spectral sequence for En

Once again, we let En denote Morava E-theory at the prime 2. Hahn and Shi have shown [20,
Thm. 1.2] that there is a equivariant map from MUR → En , which induces a map of spectral
sequences

C2- HFPSS(MUR)→ C2- HFPSS(En).

Using this Hahn and Shi [20, Thm. 6.2] were able to fully compute the RO(C2)-graded HFPSS
for En .
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Theorem 3.1 (Hahn–Shi) (1) The E2 -term of the RO(C2)-graded homotopy fixed point
spectral sequence for En is

E s,t
2 = W(F2n)[[ū1, ū2, . . . , ūn−1]][ū±1]⊗ Z[u±1

2σ , aσ]/(2aσ).

Here the classes have bidegrees |ūi| = (0, 0), |ū| = (ρ, 0), |u2σ| = (2 − 2σ, 0) and
|aσ| = (−σ, 1).

(2) The classes ū1 , . . ., ūn−1 , ū±1 , and aσ are permanent cycles. All the differentials in the
spectral sequence are determined by the differentials

d2k+1−1(u2k−1

2σ ) = ūkū2k−1a2k+1−1
σ , 1 ≤ k ≤ n− 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n,

and multiplicative structures.

Remark 3.2 Working non-equivariantly it is not hard to compute the E2 -term of the homotopy
fixed point spectral sequence computing EhC2

n , however determining the differentials directly
seems difficult. The use of RO(C2)-grading is helpful in determining these, as the differentials
in the spectral sequence for MUR are fully understood by work of Hu and Kriz [30].

Remark 3.3 We observe that the d2k+1−1 -st differential is 2k+2 -periodic, with periodicity
generator u2k

2σū2k+1
.

Corollary 3.4 The homotopy groups π∗E
hC2
n are 2n+2 -periodic.

Proof The invertible class ū2n+1
u2n

2σ survives the homotopy fixed point spectral sequence.

We demonstrate this spectral sequence for n = 2 in Figure 1. The case of n = 3 can be found
in [20]. We note that in both these cases we have πkEhC2

n = 0 for k ≡ −3,−2,−1 (mod 2n+2).
This holds for arbitrary n, and is in fact the only such gap in the spectral sequence.

Proposition 3.5 We have πkEhC2
n = πk+1EhC2

n = πk+2EhC2
n = 0 if and only if k ≡ −3

(mod 2n+2).

Proof By Example 2.8 En is strongly even as a C2 -spectrum. We can now apply Lemma 2.9
and (2–13) to deduce that πC2

k En ∼= πkEhC2
n = 0 for k = −3,−2,−1. It remains to show

that, modulo periodicity, this is the only such gap of three zero terms. Note that πkEhC2
n 6= 0

for k ≡ 0 (mod 4) because the classes uk
2σū2k in bidegree (4k, 0) are permanent cycles in the

spectral sequence, so this is the longest such possible gap of zeros.

We will show that there is no such other gap by exhibiting permanent cycles in the homotopy
fixed point spectral sequence. We make the following observations, which are the essential point
to the proof:
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u2σu
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2σu
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uaσ
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Figure 1: The homotopy fixed point spectral sequence for EhC2
2 . Here the squares denote copies of

W(F4)[[u1]], black circles denote F4[[u1]], and red circles F4 . The top image shows the E2 -page along
with all d3 and d7 differentials. The bottom image shows the E∞ -page, which is 16-periodic on the class
u4

2σ ū8 .

Observation (1): The classes ūiai
σ are the targets of between 0 and n differentials, depending on

the filtration degree (the class in filtration degree 2k+1 − 1 is the target of k-differentials), with
differentials determined by

d2k+1−1(u2k−1

2σ ū2k
) = ūkū2k+1−1a2k+1−1

σ , 1 ≤ k ≤ n

where ūn = 1.

Algebraic & Geometric Topology XX (20XX)



1012 Drew Heard, Guchuan Li and XiaoLin Danny Shi

Observation (2): The classes ū2n+iai
σu2n−1

2σ are the targets of between 0 and n − 1 differentials,
depending on the filtration degree (the class in filtration degree 2k+2 − 1 is the target of k-
differentials), with differentials determined by

d2k+1−1(u2n−1+k
2σ ū2n+2k) = ūkū2n−1+k

2σ ū2n+2k+1−1a2k+1−1
σ , 1 ≤ k ≤ n− 1.

Observation (3): In general, for 1 ≤ j ≤ n, the classes ei
j,n = (ūaσ)iū(2j−1−1)·2n+2−j

u(2j−1−1)·2n+1−j

2σ
are the targets of between 0 and n− j differentials, depending on the filtration degree (the class
in filtration degree 2k+j+1 − 1 is the target of k-differentials), with differentials determined by

d2k+1−1(ū(2j−1−1)·2n+2−j+ku(2j−1−1)·2n+1−j+2k
2σ ) =

ūkū(2j−1−1)·2n+2−j+2k+1−1u(2j−1−1)·2n+1−j

2σ a2k+1−1
σ , 1 ≤ k ≤ n− j.

We now break the proof down into a number of steps.

(1) First, we observe that every class in positive filtration in the E2 -page of the spectral sequence
is of the form

F2n[[ū1, ū2, . . . , ūn−1]][ū±1]ūαuβ2σaγσ.

It follows from Theorem 3.1 that the classes ūkak
σ for 1 ≤ k ≤ 2n+1 − 2 all survive to give

permanent cycles in πkEhC2
n . Note that we do not claim that these classes are not involved in

differentials. Indeed this is false, and from Observation (1) we see that these classes are the
target of between 0 and n − 1 differentials, depending on the filtration degree. For example,
consider the topmost class ū2n+1−2a2n+2−2

σ . This is the target of n − 1 non-trivial differentials,
where the d2k+1−1 -differential (for 1 ≤ k ≤ n − 1) quotients out by the principal ideal (ūk). It
follows that a single copy of F2n survives the spectral sequence at this point. (In Figure 1 one
can see this when n = 2; the red class in bidegree (6,6) is precisely the claimed copy of F4 .)
We deduce that there can be no such gap for 1 ≤ k ≤ 2n+1 .

(2) Similarly, we claim that the classes ū2n+iai
σu2n−1

2σ for 1 ≤ i ≤ 2n − 2 survive and give
permanent cycles in πkEhC2

n for 2n+1 + 1 ≤ k ≤ 3 · 2n − 2. Once again, we do not claim that
these classes are not involved in differentials. Using Observation (2), we see that these classes are
the target of at most n−2 non-trivial differentials, where each differential quotients out by some
(ūk). In this case, the classes ū2n+iai

σu2n−1

2σ also support a non-trivial differential, determined by

d2n+1−1(ū2n+iu2n−1

2σ ai
σ) = ū2n+1+i−1a2n+1+i−1

σ .

However, the targets of these differentials are always copies of F2n , because they have already
supported n− 1 non-trivial differentials (indeed, they are exactly the classes considered in Step
(1)). It follows that these differentials always have non-trivial kernel, and so there are non-trivial
classes in these bidegrees as claimed. Because we always have non-zero classes for k ≡ 0
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(mod 4) we see that there is no gap for 0 ≤ k ≤ 3 · 2n .

(3) In general, for 1 ≤ j ≤ n, the classes ei
j,n = (ūaσ)iū(2j−1−1)·2n+2−j

u(2j−1−1)·2n+1−j

2σ for 1 ≤ i ≤
2n+2−j − 2 survive, and contribute non-zero classes in πkEhC2

n for

(2j−1 − 1) · 2n+3−j + 1 ≤ k ≤ (2j − 1) · 2n+2−j − 2.

One can see this by arguing similarly to as done previously, which considered the cases where
j = 1 and 2. Depending on the filtration degree, we see from Observation (3) that these classes
are the target of between 0 and n− j non-trivial differentials.

For j > 1, we claim that the ei
j,n are also the source of a d2n+3−j−1 -differential. To see this,

observe that

(2j−1 − 1) · 2n+1−j = (2j−2 − 1) · 2n+2−j + 2n+1−j

Using the periodicity of the differentials (Remark 3.3) it then follows there is a differential

d2n+3−j−1(ei
j,n) = ūn+2−j(ūaσ)iu(2j−2−1)·2n+1−j

2σ a2n+3−j−1
σ ū(2j−2+1)·2n+2−j

where we again make the convention that ūn = 1. Observe that the target of this differential is
simply ūn+2−jei

j−1,n . Moreover, using Observation (3), we see that this target supports at most
n− j+1 differentials, depending on the filtration degree. In fact, comparing the filtration degrees
of the source and target, we see that the target always supports one more differential than the
source; in particular, the d2n+3−j−1 -differential above has non-trivial kernel, and hence gives a
permanent cycle (it is the last non-trivial differential involving this class).

Inductively, we see there is no gap in πkEhC2
n for 0 ≤ i ≤ (2j − 1) · 2n+2−j . In particular, taking

n = j, we see there is no gap for 0 ≤ i ≤ (2n − 1) · 4, i.e, from 0 ≤ i ≤ 2n+2 − 4. By the
2n+2 -periodicity of π∗E

hC2
n we are done.

Remark 3.6 It may be useful to give the following visual guide to identifying these permanent
cycles. For j = 1 we have a line of slope 1 and length 2n+1 − 2 beginning from position (1, 1)
in the spectral sequence. For j = 2 we have a line of slope 1 and length 2n − 2 beginning in
position (2n+1 + 1, 1). For j = 3 we have a line of slope 1, and length 2n−1 − 2 beginning in
position (3 · 2n + 1, 1), and so on. See Figure 1 for the case n = 2 and [20, Fig. 7] for the case
n = 3.

This gives rise to the following important corollary.

Corollary 3.7 Suppose that X ' Σ`EhC2
n for some integer ` (which is only uniquely determined

modulo 2n+2 ). If πjX = πj+1X = πj+2X = 0, then ` = j + 3.
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3.2 The Picard spectral sequence

We briefly review the techniques introduced in [32] which we will use to compute the Picard
group of EhC2

n -modules, which we denote Pic(EhC2
n ). We recall that for any E∞ -ring spectrum

R, there exists a connective spectrum pic(R) with the property that

πipic(R) ∼=


Pic(R) i = 0

π0(R)× i = 1

πi−1(R) i ≥ 2.

There is a faithful C2 -Galois extension EhC2
n → En , see [22, Prop. 3.6], and the techniques of

[32] then apply to show that there is an equivalence of connective spectra

pic(EhC2
n ) ' τ≥0pic(En)hC2 ,

where τ≥0 denotes the connective cover. In particular, there is a Picard spectral sequence

E s,t
2,×
∼= Hs(C2, πtpic(En)) =⇒ πt−spic(En)hC2

for s, t ≥ 0, whose abutment for t = s is the Picard group Pic(EhC2
n ). Note that for t ≥ 2 the

E2 -term of the Picard spectral sequence is just a shift of the ordinary integer graded homotopy
fixed point spectral sequence. We call this the stable range of the spectral sequence. In fact,
even more is true; by the comparison tool of Mathew and Stojanoska [32, 5.2.4], whenever
2 ≤ r ≤ t − 1 we have an equality of differentials ds,t

r,× = ds,t−1
r , where dr,× denotes the r-th

differential in the Picard spectral sequence, and dr the r-th differential in the ordinary homotopy
fixed point spectral sequence.

Since we are interested in terms contributing to π0pic(En)hC2 , we should look at classes in the
(−1)-stem of the additive spectral sequence. By degree reasons these must have the form

F2n[[u1, . . . , un−1]]ū2`−1u−`2σ a4`−1
σ .

in bidegree (−1, 4`− 1), where ` ≥ 1. The reader should compare the following to the proof of
[20, Lemma. 6.9].

Proposition 3.8 The only classes in the stable range that can contribute to π0(pic(EhC2
n )) are in

filtration degree 2k − 1 for 1 ≤ k ≤ n.

Proof (1) The d3 -differentials are generated by

d3(u2σ) = ū1ūa3
σ.

In particular, if ` ≡ 1 (mod 2), then

d3(ū2`−1u−`2σ a4`−1
σ ) = ū1ū2`u−`−1

2σ a4`+2
σ

and hence all the classes of the form

ū2`−1u−`2σ a4`−1
σ , ` ≡ 1 (mod 2)
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die on the E3 -page of the additive spectral sequence. By the comparison tool [32, 5.2.4] we
can import these d3 -differentials whenever the classes lie in filtration degree greater than 4, i.e.,
when 4` − 1 ≥ 4. We conclude we can import all these d3 -differentials except the differential
originating in filtration degree 3 (corresponding to ` = 1).

The classes
ū2`−1u−`2σ a4`−1

σ , ` ≡ 0 (mod 2)

are the targets of the d3 -differential

d3(ū2`−2u−`+1
2σ a4`−4

σ ) = ū1ū2`−1u−`2σ a4`−1
σ

By the comparison tool we can import a d3 differential whenever the source has t ≥ 4. Here the
source has degree 4`− 4, and so we can import these whenever 4`− 4 ≥ 4, i.e. ` ≥ 2. Since
` ≥ 1 and ` ≡ 0 (mod 2), we can import all these differentials. The differential quotients by
the principal ideal (ū1), and hence the remaining classes in the stable range that can contribute
have the form

F2n[[ū2, . . . , ūn−1]]ū2`−1u−`2σ a4`−1
σ .

with ` ≡ 0 (mod 2) and ` ≥ 1.

(2) The d7 -differentials are generated by

d7(u2
2σ) = ū2ū3a7

σ.

In particular, if ` ≡ 2 (mod 4), then

d7(ū2`−1u−`2σ a4`−1
σ ) = ū2ū2`+2u−`−2

2σ a4`+6
σ .

and hence all the classes of the form

ū2`−1u−`2σ a4`−1
σ , ` ≡ 2 (mod 4)

die on the E7 -page of the additive spectral sequence. By the comparison tool we can import
these d7 -differentials whenever the classes lie in filtration degree greater than 8, i.e., when
4` − 1 ≥ 8. We conclude we can import all these d7 -differentials except the differential
originating in filtration degree 7 (corresponding to ` = 2).

The remaining classes
ū2`−1u−`2σ a4`−1

σ , ` ≡ 0 (mod 4)

are the targets of the d7 -differential

d7(ū2`−4u−`+2
2σ a4`−8

σ ) = ū2ū2`−1u−`2σ a4`−1
σ

By the comparison tool we can import a d7 differential whenever the source has t ≥ 8. Here the
source has degree 4`− 8, and so we can import these whenever 4`− 8 ≥ 8, i.e. ` ≥ 4. Since
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` ≥ 1 and ` ≡ 0 (mod 4), we can import all these d7 -differentials. The differential quotients
by the principal ideal (ū2), and hence the remaining classes have the form

F2n[[ū3, . . . , ūn]]ū2`−1u−`2σ a4`−1
σ .

with ` ≡ 0 (mod 4).

(3) For 0 < k < n, the d2k+1−1 -differentials are generated by

d2k+1−1(u2k−1

2σ ) = ūkū2k−1a2k+1−1
σ .

In particular, if ` ≡ 2k−1 (mod 2k), then

d2k+1−1(ū2`−1u−`2σ a4`−1
σ ) = ūkū2`+2k−2u−`−2k−1

2σ a4`+2k+1−2
σ

and hence the classes
ū2`−1u−`2σ a4`−1

σ , ` ≡ 2k−1 (mod 2k)

die on the E2k+1−1 -page of the additive spectral sequence. By the comparison tool we can import
these d2k+1−1 -differentials whenever the classes lie in filtration degree greater than 2k+1 , i.e.,
when 4` − 1 ≥ 2k+1 . We conclude we can import all these d2k+1−1 -differentials except the
differential originating in filtration degree 2k−1 (corresponding to ` = 2k−1 ).

The classes of the form
ū2`−1u−`2σ a4`−1

σ , ` ≡ 0 (mod 2k).

are the targets of a d2k+1−1 -differential

d2k+1−1(ū2`−2k
ū`+2k−1

2σ a4`−2k+1

σ ) = ūkū2`−1u−`2σ a4`−1
σ

By the comparison tool we can import a d2k+1−1 -differential whenever the source has t ≥ 2k+1 .
Here the source has degree 4`− 2k+1 , and so we can import these whenever 4`− 2k+1 ≥ 2k+1 ,
i.e. ` ≥ 2k . Since ` ≥ 1 and ` ≡ 0 (mod 2k), we can import all these d2k+1−1 -differentials.
The differential quotients by the principal ideal (ūk), and hence the remaining classes have the
form

F2n[[uk+1, . . . , un]]ū2`−1u−`2σ a4`−1
σ .

with ` ≡ 0 (mod 2k).
(4) The d2n+1−1 -differentials are generated by

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ .

In particular, if ` ≡ 2n−1 (mod 2n), then

d2n+1−1(ū2`−1u−`2σ a4`−1
σ ) = ū2`+2n−2u−`−2n−1

2σ a4`+2n+1−2
σ

and hence the classes
ū2`−1u−`2σ a4`−1

σ , ` ≡ 2n−1 (mod pn)

die on the E2n+1−1 -page of the additive spectral sequence. By the comparison tool we can import
these d2n+1−1 -differentials whenever the classes lie in filtration degree greater than 2n+1 , i.e.,
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when 4` − 1 ≥ 2n+1 . We conclude we can import all these d2n+1−1 -differentials except the
differential originating in filtration degree 2n (corresponding to ` = 2n−1 ).

The classes
ū2`−1u−`2σ a4`−1

σ , ` ≡ 0 (mod 2n)

are the targets of a d2n+1−1 -differential,

d2n+1−1(ū2`−2n
ū`+2n−1

2σ a4`−2n+1

σ ) = ū2`−1u−`2σ a4`−1
σ .

By the comparison tool we can import a d2n+1−1 differential whenever the source has t ≥ 2n+1 .
Here the source has degree 4`− 2n+1 , and so we can import these whenever 4`− 2n+1 ≥ 2n+1 ,
i.e. ` ≥ 2n . Since ` ≥ 1 and ` ≡ 0 (mod 2n), we can import all these d2n+1−1 -differentials.
Using (3) above the targets are just copies of F2n and hence die after these differentials.

It follows that the only possible contributions to the Picard spectral sequence in the stable range
are those classes in filtration degree 2k − 1 for 1 ≤ k ≤ n as claimed.

We now determine the differentials for these classes in the Picard spectral sequence.

Proposition 3.9 In the zero stem, and the stable range of the Picard spectral sequence for
pic(En)hC2 , there is a group of order at most 2 in filtration degree 2k+1 − 1 for 1 ≤ k ≤ n.

Proof We recall from [32, Thm. 6.1.1] that the first differential outside the stable range in the
Picard spectral sequence is given by

(3–10) dPic
r (x) = dr(x) + x2, x ∈ E r,r

r,Pic

where we abuse notation and denote by x the same class in the Picard and additive homotopy
fixed point spectral sequences.

Let f = f (uk, . . . , un−1) ∈ F2n[[uk, . . . , un−1]]. For 1 ≤ k ≤ n − 1 the additive differential that
we could not import is given by

d2k+1−1(f ū2k−1u−2k−1

2σ a2k+1−1
σ ) = f ūkū2k+1−2u−2k

2σ a2k+2−2
σ .

By (3–10) the corresponding differential in the Picard spectral sequence is given by

dPic
2k+1−1(f ū2k−1u−2k−1

2σ a2k+1−1
σ ) = f ūkū2k+1−2u−2k

2σ a2k+2−2
σ + f 2ū2k+1−2u−2k

2σ a2k+2−2
σ

= (ūkf + f 2)ū2k+1−2u−2k

2σ a2k+2−2
σ .

This is zero whenever ūkf + f 2 = 0. Since ūkf + f 2 = f (ūkf + 1), we see that there are precisely
two solutions, namely f = 0 and f = ūk , and hence the kernel generates a group of order 2.

The final differential is similar. The additive differential we can not import originates on a copy
of F2n . Explicitly, letting ξ ∈ F2n the additive differential is

d2n+1−1(ξū2n−1u−2n−1

2σ a2n+1−1
σ ) = ξū2n+1−2u−2n

2σ a2n+2−2
σ

Algebraic & Geometric Topology XX (20XX)



1018 Drew Heard, Guchuan Li and XiaoLin Danny Shi

The corresponding differential in the Picard spectral sequence is given by

dPic
2n+1−1(ξū2n−1u−2n−1

2σ a2n+1−1
σ ) = ξū2n+1−2u−2n

2σ a2n+2−2
σ + ξ2ū2n+1−2u−2n

2σ a2n+2−2
σ

= (ξ + ξ2)(ū2n+1−2u−2n

2σ a2n+2−2
σ ).

This is zero whenever ξ + ξ2 = 0, i.e, when ξ = 0 or ξ = 1. The kernel is thus Z/2, as
claimed.

We have now computed the stable range of the Picard spectral sequence. We are left with
computing H0(C2,Pic(En)) and H1(C2,E×0 ). The former is Z/2, as computed by Baker and
Richter [1, Thm. 8.8]. We thank Achim Krause for explaining the following.

Lemma 3.11 There is an isomorphism H1(C2,E×0 ) ∼= Z/2.

Proof The usual periodic resolution shows that for any abelian group A, the first group coho-
mology H1(C2,A), where C2 acts trivially on A, is given by the 2-torsion elements of A. A
simple computation shows that in any integral domain R, the only non-trivial element with multi-
plicative order 2 is −1. Indeed, suppose x is such an element, then (x−1)(x + 1) = x2−1 = 0,
so that x = 1 or x = −1. In particular, in the multiplicative group of units R× , the only
non-trivial 2-torsion element is −1, so that H∗(C2,R×) ∼= Z/2 generated by −1. The lemma
then follows by taking R = E0 .

Putting this altogether, we obtain the calculation of Pic(EhC2
n ).

Theorem 3.12 At the prime 2, and for any height n, there is an isomorphism

Pic(EhC2
n ) ∼= Z/2n+2,

generated by ΣEhC2
n .

Proof Recall that EhC2
n is 2n+2 -periodic, so that this is a minimum bound on the order of the

Picard group. On the other hand, we have computed that we have at most:

• A group of order 2 in filtration degree 0.

• A group of order 2 in filtration degree 1.

• A group of order 2 in filtration degrees 2k − 1 for 1 ≤ k ≤ n.

Together we see that we have a group of order at most 2n+2 . Since this is also a lower bound,
we conclude that Pic(EhC2

n ) ∼= Z/(2n+2) generated by ΣEhC2
n .

We demonstrate the Picard spectral sequence for n = 2 in Figure 2.

Remark 3.13 The previous theorem applies the following result. Let Sn = Aut(Γn) be the
group of automorphisms of the Honda formal group law, so that Gn = Sn o Gal(Fpn/Fp). If
F ⊂ Gn is a finite subgroup of the Morava stabilizer group such that F ∩ Sn has 2-Sylow
subgroup isomorphic to C2 , then Pic(EhF

n ) is cyclic, generated by the suspension ΣEhF
n . This

follows from Theorem 3.12 by applying [22, Propositions 3.10 and 3.11].
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Figure 2: The E3 , E7 , and E∞ pages for the Picard spectral sequence of pic(EhC2
2 ) (some low dimensional

non-contributing classes have been omitted). Here the squares denote copies of W(F4)[[u1]], black circles
denote F4[[u1]], red circles F4 , crosses Z/2, and black boxes (E0)× . The differentials shown in red are
those that cannot be imported from the additive spectral sequence.

4 The Gross–Hopkins dual of EhC2
n - first proof

In this section we calculate the Gross–Hopkins dual IEhC2
n . We begin with an analysis of the

Morava module of EhF
n for any finite subgroup F ⊆ Gn . We then show that EhC2

n is self-dual up
to a shift. By Corollary 3.7 to determine this shift we must find the gap in the homotopy groups
of IEhC2

n . We do this by showing that a certain C2 -equivariant spectrum is strongly even.
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4.1 The Morava module of IEhF
n

In this section we calculate (E∨n )∗IEhF
n as a Morava module, at any height n and for any finite

subgroup F ⊂ Gn . We will not actually use this in our main computation, but include it as it
may be of independent interest. In fact, under some conditions, one can use this to determine
that IEhF

n is self-dual up to some suspension (as well as giving some control over what that
suspension is), see Corollary 4.8 below.

To begin, we need the following results regarding homotopy fixed points and orbits in the K(n)-
local category. Recall that the K(n)-local category has colimits, and they are given by taking the
colimit in spectra, and then applying K(n)-localization again.

Lemma 4.1 Let G be a finite group, and let X be a spectrum with a G-action.

(1) There is an equivalence LK(n)(XhG) ' LK(n)((LK(n)X)hG).

(2) If X is En -local, then there is an equivalence LK(n)(XhG) ' (LK(n)X)hG .

(3) If X is En -local, then the norm map

(LK(n)X)hG → (LK(n)X)hG

induces equivalences LK(n)(XhG) ' (LK(n)X)hG ' LK(n)(XhG).

Proof (1) Recall that XhG can be defined as the colimit XhG = colimG X . The result then
follows from the fact that K(n)-localization is left adjoint to the inclusion of K(n)-local
spectra in all spectra, and the description of colimits in the K(n)-local category above.

(2) By [7, Cor. 6.1.3], for any diagram {Xi} of En -local spectra, there is an equivalence
LK(n)(lim Xi) ' lim(LK(n)Xi). The result follows from the observation that XhG is defined
as the limit XhG = limG X .

(3) It is a consequence of [19] that if Y is a K(n)-local spectrum, then the norm map

YhG → YhG

is a K(n)-local equivalence. Taking Y = LK(n)X and applying (1) and (2) then gives the
result.

Lemma 4.2 There is an equivalence of Morava modules

(E∨n )∗(IEn) ' Σ−n mapcts(Gn, (En)∗〈det〉) ' Σ−n(E∨n )∗E〈det〉.

Proof Since I is dualizable in the K(n)-local category (see the proof of Prop. 17 of [37]), we
have that IEn ' LK(n)(DEn ⊗ I), where DEn = F(En,LK(n)S0) denotes the K(n)-local Spanier–
Whitehead dual. It follows that (E∨n )∗(IEn) ' (E∨n )∗(DEn ⊗ I) ' Σ−n2

(E∨n )∗(E ⊗ I), where
we have used the equivalence DEn ' Σ−n2

En [37, Prop. 16]. Note that this equivalence is
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Gn -equivariant in the homotopy category, and hence that this is an isomorphism of Morava
modules.

By Theorem 2.2 we have (E∨n )∗I ∼= Σn2−n(En)∗〈det〉. It follows from [29, Prop. 8.4] that (as a
K∗ -module) K∗I ∼= (E∨n )∗I/(p, u1, . . . , un−1) ∼= Σn2−nK∗ is concentrated in even degrees. By
[12, Prop. 2.4] we deduce that there is an isomorphism of Morava modules (E∨n )∗(E ⊗ I) ∼=
mapcts(Gn, (E∨n )∗I). Together with Theorem 2.2 we see that

(E∨n )∗(IEn) ∼= Σ−n2
mapcts(Gn, (E∨n )∗I) ∼= Σ−n mapcts(Gn, (En)∗〈det〉).

Finally, since (E∨n )∗E ∼= mapcts(Gn, (En)∗), we see that (E∨n )∗E〈det〉 ∼= mapcts(Gn, (En)∗)〈det〉,
which is equivalent to mapcts(Gn, (En)∗〈det〉), where mapcts(Gn, (En)∗) is always given the
diagonal Gn -action.

Proposition 4.3 For any finite subgroup F ⊂ Gn , there is an equivalence of Morava modules

(E∨n )∗(IEhF
n ) ∼= Σ−n mapcts(Gn/F, (En)∗〈det〉) ∼= Σ−n((E∨n )∗EhF

n )〈det〉

Proof Consider the homotopy fixed point spectral sequence

H∗(F, (E∨n )∗(IEn)) =⇒ π∗(LK(n)(E ⊗ IEn))hF,

where the F -action is on IEn .

Let us identify the abutment (LK(n)(E ⊗ IEn))hF more carefully. Using Lemma 4.1 and the fact
that homotopy orbits commute with smash product, there are equivalences

(LK(n)(E ⊗ IEn))hF ' LK(n)((E ⊗ IEn)hF)

' LK(n)((E ⊗ (IEn)hF))

' LK(n)((E ⊗ LK(n)(IEn)hF))

' LK(n)(E ⊗ IEhF
n ).

This identifies the abutment as (E∨n )∗(IEhF
n ).

By Lemma 4.2 there is an isomorphism of Morava modules (E∨n )∗(IEn) ' Σ−n mapcts(Gn, (En)∗〈det〉).
This identifies the E2 -term of the above spectral sequence as

Hs(F,mapcts(Gn,Σ
−nE∗〈det〉)).

By the proof of [11, Lem. 4.20], this vanishes for s > 0, and so the spectral sequence collapses
to show that

(E∨n )∗(IEhF
n ) ' Σ−n mapcts(Gn/F, (En)∗〈det〉).

Now using [11, Prop. 6.3] there is an equivalence

Σ−n((E∨n )∗EhF)〈det〉 ∼= Σ−n mapcts(Gn/F, (En)∗)〈det〉 ' Σ−n mapcts(Gn/F, (En)∗〈det〉)
where the last equivalence follows because we give mapcts(Gn/F, (En)∗) the diagonal Gn -
action.
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We now prove that the Gross–Hopkins duality of EhF
n is always an invertible EhF

n -module. We
thank Lennart Meier for the idea of how to show this. Before we begin the proof, we make the
following standard observation. Let (C,⊗,1) be a closed symmetric monoidal category with
internal hom FC(M,N) for M,N ∈ C . Then, there is a canonical evaluation map

ε : FC(M,N)⊗M → N.

given as the adjoint to the identity map on FC(M,N).

Let DC(M) = FC(M,1). Now suppose that M is invertible, so that there exists M−1 such that
M−1⊗M ' 1. Then, it is necessarily the case that M−1 ' DC(M), and that ε : DC(M)⊗M → 1

is an isomorphism. The proof follows easily from the fact that invertible objects are dualizable,
see e.g., [28, Prop. A.2.8].

Proposition 4.4 For any finite subgroup F ⊂ Gn , we have IEhF
n ∈ Pic(EhF

n ).

Proof We first observe that this is true when F is the trivial group, i.e., that IEn ∈ Pic(En).
Indeed, since Pic(En) is algebraic, in the sense that Pic(En) ∼= Pic((En)∗), the Picard group
of (graded) (En)∗ -modules (see [1, Theorem 9.1]), it suffices to show that π∗IEn ∼= (En)∗ as
E∗ -modules, up to suspension. This is a consequence of (2–4), since E∗〈det〉 ∼= E∗ , as an
E∗ -module.

For any finite subgroup F ⊂ Gn , the morphism EhF
n → En is a faithful Galois extension, see

[22, Prop. 3.6]. We recall that we consider En as a cofree F -spectrum. In this case, there
is a symmetric monoidal equivalence between the homotopy categories of EhF

n -modules, and
the homotopy category of genuine F -equivariant En -modules. Here the equivalence takes an
equivariant En -module M , to the homotopy fixed point spectrum MhF . Moreover, a map in
the category of F -equivariant En -modules is an equivalence if it is an underlying equivalence
of non-equivariant spectra. In particular, there is an equivalence PicF(En) ∼= Pic(EhF

n ) between
the Picard group of F -equivariant En -modules, and the Picard group of EhF

n -modules, given by
taking homotopy fixed points. These claims can be found in the last paragraph of Section 6.1
of [25], and are a consequence of Galois descent, first shown in this form by Meier [31, Lemma
6.1.4 and Proposition 6.2.6]. We also refer the reader to [4, Section 3], in particular Proposition
3.1 and Corollary 3.2.

Let DEn(M) denote the dual of an En -module M in the category of En -module spectra, so that
DEn(M) = FEn(M,En). As noted above IEn ∈ Pic(En), so that in particular the evaluation map
ε : DEn(IEn) ⊗En IEn → En is an equivalence. By naturality, this map is a map in the category
of F -equivariant En -modules, and is an underlying equivalence, and hence by the discussion
above we see that IEn ∈ PicF(En). It follows from the equivalence PicF(En) ∼= Pic(EhF

n ) that
(IEn)hF ∼= I(EhF

n ) ∈ Pic(EhF
n ) (recall Remark 2.3 - it does not matter if we take the homotopy

fixed points inside or outside of the Gross–Hopkins dual). This completes the proof.
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4.2 The case F = C2

We now specialize to the case of interest, where the prime is 2, and F = C2 . In this section,
we show that IEhC2

n is self dual up to a shift, which is congruent to n (mod 4). We begin by
showing that it is self-dual up to some shift.

Proposition 4.5 The Gross–Hopkins dual IEhC2
n ' ΣkEhC2

n for some integer k , which is only
uniquely determined modulo 2n+2 .

Proof Combine Proposition 4.4 with Theorem 3.12.

By (2–4) we have π∗IE ∼= Σ−n(En)∗〈det〉 as Morava modules. We wish to know the structure
of (En)∗〈det〉 as a (En)∗[C2]-module.

Lemma 4.6 As (En)∗[C2]-modules, (En)∗〈det〉 ∼= Σ1−(−1)n
(En)∗ .

Proof Let τ denote the generator of C2 , then det(τ ) = (−1)n (it can be computed as the
determinant of a n×n diagonal matrix with -1 along the diagonal). It follows that, in (En)∗〈det〉,
we have

τ∗(uk) = (−1)n+kuk

In particular, if n ≡ 0 (mod 2), then C2 is in the kernel of the determinant, so that the equivalence
(En)∗〈det〉 ∼= (En)∗ is C2 -equivariant.

On the other hand, if n ≡ 1 (mod 2), then u is invariant under the C2 -action. Multiplication by
u then gives the C2 -equivariant equivalence (En)∗〈det〉 ∼= Σ2(En)∗ .

By Proposition 4.3 we deduce the following.

Proposition 4.7 There is an equivalence of (En)∗[C2]-modules

(E∨n )∗(IEhC2
n ) ' Σ−n+1−(−1)n

(E∨n )∗(EhC2
n ).

Corollary 4.8 The Gross–Hopkins dual IEhC2
n ' ΣkEhC2

n for some integer k ≡ n (mod 4),
which is only uniquely determined modulo 2n+2 .

Proof Recall again that (E∨n )∗(EhC2) ' mapcts(Gn/C2, (En)∗). An argument similar to that
given on the bottom of page 286 of [14] shows that the element (u2σū2)j ∈ H0(C2, (En)∗) gives
rise to an isomorphism (E∨n )∗(EhC2) ∼= (E∨n )∗(Σ4jEhC2) of (En)∗[C2]-modules, for j ∈ Z.

We know that IEhC2
n ' ΣkEhC2

n for some k ∈ Z. By Proposition 4.7 and the previous paragraph
we deduce that k ≡ −n+1−(−1)n (mod 4). A simple calculation shows that−n+1−(−1)n ≡ n
(mod 4), and we are done.
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Remark 4.9 Let p be odd, n = p − 1, and let F ⊂ Gp−1 denote the maximal finite subgroup
of Gp−1 . In [2, Prop. 4.13] it is shown that there is an isomorphism of (En)∗[F]-modules
(En)∗〈det〉 ∼= Σ2pj(En)∗ , where j = −n/2(n− 2). Using the same type of arguments above, and
the computation of the Picard group of EhF

n -modules [22], one can deduce that IEhF
n ' ΣkEhF

n
where k ≡ −n − pn(n − 2) (mod 2pn2), a result also obtained in [2]. In [2, Thm. 4.18] it is
shown that k = np2 + n2 , and indeed we have that −n− pn(n− 2) + 2pn2 = np2 + n2 .

4.3 The calculation of the Gross–Hopkins dual

In this section we will compute the Gross–Hopkins dual I(EhC2
n ). By the previous section we

know that it is self-dual up to some suspension. Since K(n)-locally the norm map (En)hC2 → EhC2
n

is an equivalence, it follows that (IEn)hC2 ' I(EhC2
n ). Hence, by Proposition 3.5 it suffices to

find j such that πj(IEn)hC2 = πj+1(IEn)hC2 = πj+2(IEn)hC2 = 0. It follows immediately from the
definitions that

πt(IEn)hC2 ∼= DQ/Z(π−t(MnEn)hC2)

so it suffices to find when π−j(MnEhC2) = π−j−1(MnEhC2) = π−j−2(MnEhC2) = 0.

We recall previously that we have constructed En/I∞k inductively by cofiber sequences

En/I∞k−1 → v−1
k En/I∞k−1 → En/I∞k .

Our key computational input is the following.

Proposition 4.10 As a cofree C2 -spectrum, En/I∞n is strongly even, and hence πi(En/I∞n )hC2
∼=

πi(En/I∞n )hC2 = 0 for i = −3,−2,−1.

The proof of this relies on the following lemma, which is due to Lennart Meier.

Lemma 4.11 (Meier) Suppose that f : X → Y is a morphism of strongly even C2 -spectra,
with cofiber C . If f e

∗ : πe
∗X → πe

∗Y is injective, then C is strongly even as well.

Proof Recall that we must show that πkρ−1C = 0 and that πkρC is a constant Mackey functor
for all k ∈ Z. We observe that by Lemma 2.9 we have that X and Y are underlying even (i.e.,
πe

2k−1X = πe
2k−1Y = 0 for all k ∈ Z) and πC2

∗ρ−iX and πC2
∗ρ−iY are zero for i = 1, 2, 3.

We first show that π∗ρ−1C = 0, i.e., that πC2
∗ρ−1C and πe

∗ρ−1C are both trivial. The long exact
sequence in homotopy and that the fact that X and Y are strongly even, so that in particular
πC2
∗ρ−2X = 0, shows that πC2

∗ρ−1C = 0, so we just need to show that πe
∗ρ−1C ∼= πe

2∗−1C = 0.
This follows from the long exact sequence in homotopy, and the assumption that f e

∗ : πe
2∗−2X →

πe
2∗−2Y is injective. Finally, to see that π∗ρC is a constant Mackey functor, we observe that it is

the cokernel of the induced map f∗ : π∗ρX → π∗ρY .
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Proof of Proposition 4.10 We prove inductively that En/I∞k is strongly even for 0 ≤ k ≤ n.
The base case is the claim that En is strongly even, which is proved by Hahn and Shi, see
Example 2.8. Assume inductively that En/I∞k−1 is strongly even. The property of being strongly
even is closed under filtered colimits, and so v−1

k−1En/I∞k−1 is also strongly even. The cofiber
sequence

En/I∞k−1 → v−1
k−1En/I∞k−1 → En/I∞k

induces the short exact sequence

0→ (En)∗/I∞k−1 → v−1
k−1(En)∗/I∞k−1 → (En)∗/I∞k → 0

on underlying homotopy groups. We see that the conditions of Lemma 4.11 are satisfied, and so
the cofiber En/I∞k is strongly even as a C2 -spectrum.

The claim about the homotopy fixed points then follows from Lemma 2.9 and Equation (2–13) in
the case k = n. We also claim that (En/I∞n )tC2 ' ∗, so that the norm (En/I∞n )hC2 ' (En/I∞n )hC2

is an equivalence, completing the proof. This follows because it is a module over the spectrum
EtC2

n , which is easily seen to be contractible, for example by the nilpotence of aσ in πC2
∗ En .

Using Proposition 2.7 we see that the homotopy orbit spectral sequence for (MnEn)hC2 is just a
shift by −n of the homotopy orbit spectral sequence for (En/I∞n )hC2 , so we obtain the following
corollary.

Corollary 4.12 We have πi(MnEn)hC2 = 0 for i = −3− n,−2− n,−1− n.

Putting this altogether we obtain our computation of IEhC2
n .

Theorem 4.13 The Gross–Hopkins dual IEhC2
n ' Σ4+nEhC2

n .

Proof By Corollary 4.12 we have πi(MnEn)hC2 = 0 for i = −3 − n,−2 − n,−1 − n. We
observe that

πiIEhC2
n
∼= πi(IQ/ZMnEn)hC2 ∼= πiIQ/Z((MnEn)hC2) ∼= DQ/Zπ−i(MnEn)hC2 ,

so that π1+nIEhC2
n ∼= π2+nIEhC2

n ∼= π3+nIEhC2
n = 0. By Proposition 4.5 and Corollary 3.7 we

deduce that IEhC2
n ' Σ4+nEhC2

n .

Remark 4.14 Note that 4 + n ≡ n (mod 4) as we expected from Corollary 4.8.

This has an equivariant refinement.

Theorem 4.15 The Gross–Hopkins dual IEn is C2 -equivariantly equivalent to Σ4+nEn .
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Proof This is essentially the same argument as given in [23, Thm. 8.2]. By (2–4) and periodicity
there is a non-equivariant equivalence π∗(Σ4+nEn) ∼= π∗(IEn). In the usual way, see for example
[23, Prop. 2.2], there is non-equivariant equivalence of spectra Σ4+nEn

'−→ IEn , which is
nonetheless an En -module map. Let d : S4+n → IEn be the spectrum map adjoint to this.

Now consider the C2 -cofiber sequence

C2+ → S0 → Sσ,

which gives rise to an exact sequence

[S4+n, IEn]C2 → [S4+n, IEn]→ [S3+n+σ, IEn]C2 .

It suffices to show that d ∈ [S4+n, IEn] maps to zero in [S3+n+σ, IEn]C2 . But by periodicity and
Equation (2–13)

πC2
3+n+σIEn ∼= πC2

2+nIEn ∼= π2+nIEhC2
n .

By Theorem 4.13 this group is isomorphic to π−2EhC2
n which is trivial by Proposition 3.5.

5 The Gross–Hopkins dual of EhC2
n - second proof

In this section, we give a second proof for the computation of IEhC2
n . We do this by completely

computing the C2 -homotopy fixed point spectral sequence of IEn . More specifically, we will
compute IEhC2

n by first computing the C2 -Tate spectral sequence of En/I∞k inductively on k .
This approach has the advantage that it does not require knowledge of the Picard group of EhC2

n -
modules. The base case, when k = 0, is a direct consequence of the calculations of Hahn and
Shi given in Theorem 3.1. For the inductive step, we will transport differentials along maps of
spectral sequences that are induced from the cofiber sequence

En/I∞k −→ v−1
k En/I∞k −→ En/I∞k+1.

To transport these differentials, we prove a version of the generalized geometric boundary
theorem of Mark Behrens in the appendix (see Theorem A.5). The theorem is tailored for our
purposes and we prove it by universal model methods, which is different from Behrens’ original
diagram chasing approach.

Once we have computed the C2 -Tate spectral sequence of En/I∞n , we can immediately determine
the C2 -homotopy fixed point spectral sequence of InEn by using Lemma 2.5 and Proposition 2.7.
The computation of the HFPSS(IEhC2

n ), together with the EhC2
n -module structure on IEhC2

n , will
imply that IEhC2

n ' Σn+4EhC2
n .

5.1 Computations

We will work with the Tate spectral sequence, which has the form

Ĥs(C2, πtEn) =⇒ πt−sEtC2
n ,
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where Ĥ∗(C2, π∗En) denotes the Tate cohomology of C2 with coefficients in π∗En . We will
import the RO(C2)-graded result from Theorem 3.1 and then focus on the integer graded part.
There are maps of spectral sequences

Hs(C2, πtEn) Ĥs(C2, πtEn) H−s−1(C2, πtEn)

πt−sE
hC2
n πt−sE

tC2
n πt−s−1(En)hC2

HFPSS Tate SS HOSS

such that the first map is multiplicative [17]. The maps in the top row of the diagram (i.e.,
the maps between E2 -pages) are isomorphisms when s > 0 and s < −1, respectively. For
s = 0,−1, we have the exact sequence

0→ Ĥ−1(C2, πtEn)→ H0(C2, πtEn) N−→ H0(C2, πtEn)→ Ĥ0(C2, πtEn)→ 0

where N is the algebraic norm map. In particular, the differentials in the HFPSS and the HOSS
will be completely determined by the differentials in the Tate SS in this case.

Proposition 5.1 (1) The E2 -page of the RO(C2)-graded Tate spectral sequence for En is

E s,t
2 = W(F2n)[[ū1, ū2, . . . , ūn−1]][ū±1]⊗ Z[u±1

2σ , a
±1
σ ]/(2aσ).

Here, the bidegrees of the classes are as follows: |ūi| = (0, 0) for all 1 ≤ i ≤ n − 1,
|ū| = (ρ, 0), |u2σ| = (2− 2σ, 0) and |aσ| = (−σ, 1).

(2) The classes ū1 , . . ., ūn−1 , ū±1 , and aσ are permanent cycles. All the differentials in the
spectral sequence are determined by the differentials

d2k+1−1(u2k−1

2σ ) = ūkū2k−1a2k+1−1
σ , 1 ≤ k ≤ n− 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n,

and multiplicative structures.

Proof The E2 -page is obtained by a direct computation. Under the spectral sequence map from
the HFPSS(EhC2

n ) to the Tate SS(EtC2
n ), the elements

ūi, ū, u2σ, aσ

on the E2 -page of the HFPSS map to the elements

ūi, ū, u2σ, aσ

on the E2 -page of the Tate SS, respectively. By Theorem 3.1, in the HFPSS we have the
differentials

d2k+1−1(u2k−1

2σ ) = ūkū2k−1a2k+1−1
σ , 1 ≤ k ≤ n− 1,

d2n+1−1(u2n−1

2σ ) = ū2n−1a2n+1−1
σ , k = n.
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By the naturality of the spectral sequence map, we deduce the desired differentials in the Tate SS.
Furthermore, since the classes ū1 , . . ., ūn−1 , ū±1 , and aσ are permanent cycles in the HFPSS,
their images in the Tate SS are also permanent cycles.

The Tate SS is multiplicative and all the elements are of the form uk
2σ times a permanent cycle.

This, combined with the differentials above, give all the differentials in the Tate SS. After these
differentials, the spectral sequence will vanish on the E2n+1 -page.

Taking the integer-graded part of the above spectral sequence, we obtain the following corollary.

Corollary 5.2 Let u2 := u2σū2 and α := aσū. The E2 -page of the integer-graded C2 -Tate
spectral sequence of En is

E s,t
2 = (π0En/2)[u±2, α±1],

where the bidegrees (t − s, s) of the elements are the following:

|u2| = (4, 0),

|α| = (1, 1).

All the differentials are determined via multiplicative structures by the differentials

d2l+1−1(u2l
) = ulα

2l+1−1, 1 ≤ l ≤ n− 1,

d2n+1−1(u2n
) = α2n+1−1.

Remark 5.3 The element u2 coincides with the square of u where u ∈ (En)2 .

Remark 5.4 The previous two computations show that EtC2
n ' ∗. As noted previously, this is

also a consequence of the fact that EhC2
n → En is a faithful Galois extension [22, Prop. 3.6].

This will be our starting point to compute the C2 -Tate spectral sequence for En/2∞ = En/I∞1 ,
which is the k = 1 case of the main theorem in this section (Theorem 5.11, computing the Tate
SS for En/I∞k ). We make the convention un = 1 so that the differentials can be described as

d2l+1−1(u2l
) = ulα

2l+1−1, 1 ≤ l ≤ n.

To describe the E2 -page of the Tate SS for En/I∞k , we pause here to introduce some algebraic
notations.

Definition 5.5 Let R be a commutative ring, and r a nonzero divisor in R. We denote the
cokernel of R ↪→ r−1R by R/r∞ .

The cokernel R/r∞ is a non unital ring and an R-module. An element of R/r∞ can be
represented as a

rk , where a ∈ R is not divisible by r and k > 0. The multiplication is given by
a

rk1
· b

rk2
= ab

rk1+k2
. For the module structure, given a ∈ R, b

rk ∈ R/r∞ , then a · b
rk = ab

rk . Suppose
that a = a′rk′ where a′ is not divisible by r , then ab

rk = a′b
rk−k′ . Note that if k′ > k , then a′b

rk−k′ = 0
in R/r∞ .
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Example 5.6 At prime 2, (En)∗/2∞ is the cokernel of (En)∗ ↪→ 2−1(En)∗ and (En)∗/(2∞, u∞1 )
is the cokernel of (En)∗/2∞ ↪→ u−1

1 (En)∗/2∞ . We denote (En)∗/(2∞, u∞1 ) by (En)∗/I∞2 . In
(En)∗/I∞2 , the element 2 · u2

2u1
is zero because it is equal to u2

20u1
, and the power of 2 in the

denominator is 0, which is not positive. Recall that in Section 2.3, we denote En ⊗ S0/I∞k by
En/I∞k . The homotopy groups π∗(En/I∞k ) (also denoted by (En/I∞k )∗ ) are

(En)∗/I∞k = (En)0/(2∞, u∞1 , · · · , u∞k−1)[u±1].

In particular, they are (En)∗ -modules.

Since the spectrum En/I∞k is an En -module, the C2 -Tate spectral sequence for En/I∞k is a
module over the the C2 -Tate spectral sequence of En . In particular, the E2 -page of the C2 -Tate
spectral sequence of En/I∞k is a module over the E2 -page of the C2 -Tate spectral sequence of
En (which we denote by E2(EtC2

n )). For a E2(EtC2
n )-module M , we use the notation M · u for the

module that is isomorphic to M , and every element is named as mu where m ∈ M and u ∈ (En)2 .

Lemma 5.7 For 1 ≤ k ≤ n, the E2 -page of the C2 -Tate spectral sequence for En/I∞k is

E∗,∗2 = Ĥ∗(C2, (En/I∞k )∗) = ((En/2)0/(u∞1 , · · · , u∞k−1)[α±1, u±2]) · u
where the (t − s, s)-bidegree of u is (2, 0) and the (t − s, s)-bidegree of α is (1, 1).

Proof We compute the E2 -page inductively on k . The base case is the E2 -page of the C2 -Tate
spectral sequence for En/I∞0 , which is just En , and is stated in Corollary 5.2. Now, assume that
the statement is true for k − 1 < n. The short exact sequence

En/I∞k−1 −→ u−1
k−1En/I∞k−1 −→ En/I∞k

induces the long exact sequence

· · · Ĥs(C2, (En/I∞k−1)∗)
i−→ Ĥs(C2, (u−1

k−1En/I∞k−1)∗)
p−→ Ĥs(C2, (En/I∞k )∗)

∂−→ Ĥs+1(C2, (En/I∞k−1)∗)→ · · · .
Because, as an (En)∗ -module, (En/I∞k−1)∗ is uk−1 -torsion free, where uk−1 ∈ (En)0 , the second
term in the long exact sequence above is

Ĥs(C2, (u−1
k−1En/I∞k−1)∗) = u−1

k−1Ĥs(C2, (En/I∞k−1)∗)

and the map i is the inclusion into the uk−1 -localization. This implies that in the long exact
sequence above, the map ∂ is the zero map in all degrees, and the long exact sequence splits into
short exact sequences. In the short exact sequence

(5–8) 0→ E s,t
2 ((En/I∞k−1)tC2)→ E s,t

2 ((u−1
k−1En/I∞k−1)tC2)→ E s,t

2 ((En/I∞k )tC2)→ 0,

the first map is the inclusion map

i : E s,t
2 ((En/I∞k−1)tC2) ↪−→ u−1

k−1E
s,t
2 ((En/I∞k−1)tC2),

so the third term is

(5–9) E s,t
2 ((En/I∞k )tC2) = coker(i) = E s,t

2 ((En/I∞k−1)tC2)/u∞k−1.
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By the inductive assumption, we have

E s,t
2 ((En/I∞k−1)tC2) = ((En/2)0/(u∞1 , · · · , u∞k−2)[α±1, u±2]) · u.

Therefore, from (5–9), the E2 -page of the C2 -Tate spectral sequence of En/I∞k is

E s,t
2 = ((En/2)0/(u∞1 , · · · , u∞k−1)[α±1, u±2]) · u.

This proves the claim for k and completes the inductive step.

Remark 5.10 If we only want the additive structure (and not the E2(EtC2
n )-module structure),

we can compute Ĥs(C2, (En/I∞k )t) directly. Since C2 acts trivially on (En/I∞k )t when t = 4m
and acts as multiplication by (−1) on (En/I∞k )t when t = 4m + 2, the C2 -Tate cohomology of
En/I∞k is

Ĥs(C2, (En/I∞k )t) =


ker(En/I∞k

×2−−→ En/I∞k )t for odd s and 4 | t;
ker(En/I∞k

×2−−→ En/I∞k )t for even s and 2 | t but 4 - t;

0 else.

The kernel ker(En/I∞k
×2−−→ En/I∞k ), as a set, is{
x

2u`1
1 · · · u

`k−1
k−1

| x ∈ En, and not divisible by 2, u1, · · · , uk−1

}
.

As a non unital ring and En -module, it is

ker(En/I∞k
×2−−→ En/I∞k ) ∼= (En/2)0/(u∞1 , · · · , u∞k−1).

Denote 1
2u1···uk−1

by xk . With this notation, we can write any element in En/I∞k as yxm
k where

y ∈ En and m > 0 ∈ Z. For example, the element

u3

2u2
1
∈ ker(En/I∞2

×2−−→ En/I∞2 )

is 2u3x2
2 . In particular, any element in ker(En/I∞k

×2−−→ En/I∞k ) will have the format 2m−1yxm
k

where y ∈ En and m a positive integer. Let

xk(m) = 2m−1xm
k .

With this notation, elements on the E2 -page of the C2 -Tate spectral sequence of En/I∞k can be
written as yxk(m).

Theorem 5.11 Let j be an integer and m be a positive integer. All the nonzero differentials
in the C2 -Tate spectral sequence for En/I∞k are (En/2)0[α]-linear and are determined by the
following differentials:
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(1) for 1 6 l < k ,

d2l+1−1

(
u2l+1j+2l+1−1xk(m)

)
= ulα

2l+1−1u2l+1j+2l−1xk(m);

(2) for k 6 l 6 n,

d2l+1−1

(
u2l+1j+2l+2k−1xk(m)

)
= ulα

2l+1−1u2l+1j+2k−1xk(m).

Before giving the proof, note that setting k = n in Lemma 5.7 and Theorem 5.11 produces the
following corollary:

Corollary 5.12 The C2 -Tate spectral sequence of En/I∞n has E2 -page

E s,t
2 = (En/2)0/(u∞1 , · · · , u∞n−1)[α±1, u±2] · u.

All the nonzero differentials are (En/2)0[α]-linear and are determined by the differentials

d2l+1−1

(
u2l+1j+2l+1−1xn(m)

)
= ulu2l+1j+2l−1α2l+1−1xn(m), 1 6 l 6 n,

where j,m ∈ Z, m > 0.

Remark 5.13 Despite the complexity of the formulas, the differentials are obtained by repeat-
edly using Theorem A.5 to transport differentials from the C2 -Tate spectral sequence of En/I∞k−1
to the Tate spectral sequence of En/I∞k . They form a regular pattern. This pattern can be seen
in Example 5.14, where the entire computation is given for the case n = 2.

Proof of Theorem 5.11 We have computed the E2 -page in Lemma 5.7. To prove the differen-
tials, we will use induction on k . Note that the C2 -Tate spectral sequence of En/I∞k is a module
over the C2 -Tate spectral sequence of En , and (En)0[α] are permanent cycles in the C2 -Tate
spectral sequence of En . Therefore, all differentials in the C2 -Tate spectral sequence of En/I∞k
are (En)0[α]-linear.

The base case, when k = 1, can be deduced from Corollary 5.2 as follows. Consider the cofiber
sequence

En → 2−1En → En/I∞1 .

By Corollary 5.2, the differentials in the C2 -Tate spectral sequence of En are determined by the
differentials

d2l+1−1(u2l
) = ulα

2l+1−1, 1 6 l 6 n

and multiplicative structures. In particular, α is a permanent cycle and the differentials are
α-linear. The E2 -pages form a long exact sequence with connecting morphism ∂ as follows:

· · · → E s,t
2 (EtC2

n )→ E s,t
2 ((2−1En)tC2)→ E s,t

2 ((En/I∞1 )tC2) ∂→ E s+1,t
2 (EtC2

n )→ · · · .
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By the classical geometric boundary theorem, e.g., Theorem A.5 with r = 1, we deduce the
differentials

∂
(

d2l+1−1

(
u2l+1x1

))
= d2l+1−1

(
∂
(

u2l+1x1

))
= d2l+1−1(αu2l

)

= ulα
2l+1

= ∂
(

ulα
2l+1−1ux1

)
, 1 6 l 6 n

Note that in the formula above, x1 is 1
2 by definition.

Because everything on the E2 -page of the C2 -Tate spectral sequence of En is 2-torsion, the
E2 -page of the C2 -Tate spectral sequence of 2−1En vanishes at the E2 -page, and the connecting
morphism ∂ is an isomorphism. Therefore, from the differential above, we obtain the differentials

d2l+1−1

(
u2l+1x1

)
= ulα

2l+1−1ux1, 1 6 l 6 n

in the C2 -Tate spectral sequence of En/I∞1 . With the same argument, we have the differentials

d2l+1−1

(
u2l+1j+2l+1x1(m)

)
= ulu2l+1j+1α2l+1−1x1(m), 1 6 l 6 n

in the C2 -Tate spectral sequence of En/I∞1 . For degree reasons, these differentials determine all
the nonzero differentials by (En/2)0[α]-linearity. This finishes the computation for the k = 1
case.

Now, suppose that Theorem 5.11 holds for k (where k < n). To prove the claim for k + 1,
consider the cofiber sequence

En/I∞k → u−1
k En/I∞k → En/I∞k+1.

The differentials in the C2 -Tate spectral sequence of En/I∞k are given by the inductive hypoth-
esis. By naturality, we can deduce the following differentials in the Tate spectral sequence of
u−1

k En/I∞k :

d2l+1−1

(
u2l+1j+2l+1−1xk(m)

)
= ulu2l+1j+2l−1α2l+1−1xk(m), 1 6 l 6 k.

For degree reasons, the above differentials determines all the nonzero differentials in the Tate
spectral sequence for u−1

k En/I∞k by (En/2)0[α]-linearity. The Er -page (r < 2k+1 ) of the
spectral sequences consists of lines of slope 1 passing (4m + 2, 0) and each line either supports
differentials to another line or is hit by differentials from another line. Hence, there is no room for
other dr -differentials for r < 2k+1 . At the E2k+1−1 -page, all the dots that are left are free rank one
(u−1

k En/(2, u1, · · · , uk−1))0 -modules. The d2k+1−1 -differentials are multiplication by uk . Since
uk is invertible in (u−1

k En/(2, u1, · · · , uk−1))0 , all the d2k+1−1 -differentials are isomorphisms
from the sources to the targets. On the E2k+1−1 -page, every line is either supporting or hit
by a differential which is an isomorphism. Therefore, after these differentials, the E2k+1 -page
vanishes and the spectral sequence collapses.
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By naturality, the following differentials exist in the Tate spectral sequence of En/I∞k+1 :

d2l+1−1

(
u2l+1j+2l+1−1xk(m)

)
= ulu2l+1j+2l−1α2l+1−1xk(m), 1 6 l 6 k.

These differentials are (En/2)0[α]-linear in the C2 -Tate spectral sequence of En/I∞k+1 . In
particular, the above differentials determine all the nonzero differentials up to the E2k+1 -page.
This proves the differentials in (1).

To prove the differentials in (2), note that by the inductive hypothesis, we have the following
differentials in the Tate spectral sequence of En/I∞k :

d2l+1−1

(
u2l+1j+2l+2k−1xk(m)

)
= ulu2l+1j+2k−1α2l+1−1xk(m), k + 1 6 l 6 n.

We will now apply Theorem A.5 to the sequence

En/I∞k
i−→ u−1

k En/I∞k
p−→ En/I∞k+1,

with r = 2k+1 − 1, r′ = 2l+1 − 1, and

x = uku2l+1j+2l+2k−1xk(m),

x′ = uluku2l+1j+2k−1α2l+1−1xk(m),

y′1 = uku2l+1j+2l+2k−1xk(m),

y1 = u2l+1j+2l−1α−2k+1+1xk(m),

y′2 = uluku2l+1j+2k−1α2l+1−1xk(m),

y2 = ulu2l+1j+2k+1−1α2l+1−2k+1
xk(m),

z = u2l+1j+2l+2k+1−1α−2k+1+1xk+1(m),

z′ = ulu2l+1j+2k+1−1α2l+1−2k+1
xk+1(m).

It is straightforward to check that

dr′x = x′,

dry1 = y′1,

dry2 = y′2,

i∗(x) = y′1,

i∗(x′) = y′2,

p∗(y1) = z,

p∗(y2) = z′.

It follows from Theorem A.5 that dr′z = z′ . Therefore, we have the differentials

d2l+1−1

(
u2l+1j+2l+2k+1−1α−2k+1+1xk+1(m)

)
= ulu2l+1j+2k+1−1α2l+1−2k+1

xk+1(m)

for k + 1 ≤ l ≤ n. One can multiply everything by powers of α and run the same argument to
prove that all these differentials are α-linear. The differentials in (2) follow directly from these
differentials by multiplying both sides by α2k+1−1 . This completes the inductive step.
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Figure 3: The E3 -page of C2 -Tate spectral sequence of E2/2∞ . The d3 -differentials are multiplication
by u1 and have nontrivial cokernel.

Example 5.14 In this example, we will demonstate the inductive computation from the C2 -Tate
spectral sequence of E2 to the C2 -Tate spectral sequence of E2/2∞ = E2/I∞1 , and then from
the C2 -Tate spectral sequence of E2/I∞1 to the C2 -Tate spectral sequence of E2/I∞2 . The input
is the C2 -Tate spectral sequence of E2 (see the n = 2 case in Corollary 5.2). We use charts
to show the computational results. The meaning of the dots should be clear from the formula
in Theorem 5.11 (e.g., the black dots in Figure 3 denote copies of (π0(E2)/2∞)[[u1]] while
black dots in Figure Figure 5 denote copies of π0(E2)[[u1, u−1

1 ]]). The charts of this height 2
computations will show the shifting pattern of differentials.

The first step is to compute C2 -Tate spectral sequence of E2/2∞ via the cofiber sequence

E2 −→ 2−1E2 −→ E2/2∞.

The connecting homomorphism on the E2 -page is an isomorphism and all the differentials
follows from the classical geometric boundary theorem. The resulting differentials are shown in
Figure 3 and Figure 4. The spectral sequence vanishes from the E8 -page.

The next step is to compute the C2 -Tate spectral sequence of E2/(2∞, u∞1 ) via the cofiber
sequence

E2/2∞ −→ u1
−1E2/2∞ −→ E2/(2∞, u∞1 ).

The C2 -Tate spectral sequence of the first term (E2/p∞ ) is computed in the first step, and the
C2 -Tate spectral sequence of the second term (v1

−1E2/2∞ ) follows from the naturality of the
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Figure 4: The E7 -page of C2 -Tate spectral sequence of E2/p∞ . The d7 -differentials are multiplication
by u2 and are isomorphisms. In particular, the E8 -page vanishes.

spectral sequence map induced by E2/2∞ → u1
−1E2/2∞ . We show the result in Figure 5; note

that it vanishes from the E4 -page (this is because d3 is multiplication by u1 , and u1 becomes a
unit in u1

−1E2/2∞ ).

From the naturality of the spectral sequence map induced by u1
−1E2/2∞ → E2/(2∞, u∞1 ), we

have the d3 -differential as claimed in Theorem 5.11, which is shown in Figure 6. However,
neither the naturality nor the connecting morphism on the E2 -page gives the desired d7 . Here
we need to apply Theorem A.5 for r = 3 to prove the desired d7 . We show the result in Figure 7.
We mark the corresponding x , x′ in Figure 3 and Figure 4, y1 , y′1 , y2 , y′2 in Figure 5, and z, z′

in Figure 6 and Figure 7.

5.2 The homotopy orbit spectral sequence for (MnEn)hC2

The description of the Tate cohomology groups immediately implies an identification of the
E2 -term of the homotopy orbit spectral sequence via the isomorphism (not as rings)

(5–15) Ĥs(C2, πtX) ∼= H−s−1(C2, πtX)

for s ≤ −2.

Unfortunately, unlike the Tate spectral sequence, the homotopy fixed points spectral sequence is
not multiplicative. We will name elements on E2 -page of the homotopy orbit spectral sequence
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Figure 5: The E3 -page of C2 -Tate spectral sequence of u−1
1 E2/p∞ . The d3 -differentials are multiplication

by u1 and are an isomorphisms. In particular, the E4 -page vanishes.
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Figure 6: The E3 -page of C2 -Tate spectral sequence of E2/I∞2 . The d3 -differentials are multiplication
by u1 and have nontrivial kernels.
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Figure 7: The E7 -page of C2 -Tate spectral sequence of E2/I∞2 . The d7 -differentials are multiplying by
u2 and are isomorphisms. In particular, the E8 -page vanishes.

by their names on the E2 -page of the Tate spectral sequence via the above isomorphisms. To
emphasise that it is not multiplicative, we introduce the following notation to state the E2 -page
of the homotopy orbit spectral sequence as a bigraded Z-module. Given an abelian group A
and a set S of bigraded elements, we denote the bigraded Z-module ⊕

s∈S
A by AS . This is the

bigraded Z-module such that for all elements s in the set S , there is a copy of A at the bidegree
of s. In our case,

A = ((En)0/I∞n ) or (En/2)0/(u∞1 , · · · , u∞n−1),

S =
{
α−1u2j+1 | j ∈ Z

}
or
{
αsu2j+1 | for s < −1, j ∈ Z

}
.

Proposition 5.16 The homotopy orbit spectral sequence for En/I∞n has E2 -page

E2
0,∗ = ((En)0/I∞n )

{
α−1u2j+1 | j ∈ Z

}
E2

s,∗ = (En/2)0/(u∞1 , · · · , u∞n−1)
{
α−s−1u2j+1 | for s < −1, j ∈ Z

}
where the (t + s, s)-bidegree of αsu2j+1 is (4j + s + 1,−s− 1).
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Proof We can compute

Hs(C2, π∗(En/I∞n )t) =


En/I∞n for s = 0 and 4 | t;
(En/2)0/(u∞1 , · · · , u∞n−1) for s > 0 even and 4 | t;
(En/2)0/(u∞1 , · · · , u∞n−1) for s > 0 odd, and 2 | t but 4 - t;

0 else.

We name elements in the homotopy orbit spectral sequence by the same names of their corre-
sponding elements the Tate spectral sequence via the isomorphism (5–15). There is a reindexing
process from the (t − s, s) Tate spectral sequence grading to the (t + s, s) homotopy orbit
spectral sequence grading. Let x be an element in (En/2)0/(u∞1 , · · · , u∞n−1). The element
asu2j+1x ∈ Ĥs(C2, (En/I∞n )2s+4j+2) corresponds to an element in H−s−1(C2, (En/I∞n )2s+4j+2)
under the isomorphism (5–15). The (t + s, s) grading is (4j + 1 + s,−s − 1). This gives the
desired result.

Theorem 5.17 All the nonzero differentials in the homotopy orbit spectral sequence for En/I∞n
are:

d2l+1−1

(
αsu2l+1j+2l+1−1yxn(m)

)
= ulu2l+1j+2l−1αs+2l+1−1yxn(m),

where s < −2l+1 , 1 6 l 6 n, m > 0, and y ∈ (En/2)0 .

Proof By Corollary 5.12, we have the following differentials in the Tate spectral sequence:

d2l+1−1

(
αsu2l+1j+2l+1−1yxn(m)

)
= ulu2l+1j+2l−1αs+2l+1−1yxn(m), s ∈ Z, 1 6 l 6 n.

When s < −2l+1 , both the source and the target have nonzero preimage in the homotopy
orbit spectral sequence under the isomorphism map in this range. By naturality we obtain the
differentials in the homotopy orbit spectral sequence. There is no room for any more nonzero
differentials by degree reasons.

Remark 5.18 From the result, we could organize the homotopy orbit spectral sequence as
follows: let R1 be the non unital ring (En)0/(2∞, u∞1 , · · · , u∞n−1) and m be the ideal generated
by (1/4, 1/8). Note that m = (1/4, 1/8, 1/16, · · · ). Then R1/m consists of all order 2 elements
in R1 , and is isomorphic to the non unital ring (En/2)0/(u∞1 , · · · , u∞n−1). Denote the bigraded
(t, s)-ring R1/m[α−1] by R, where elements in R1 have bidegree (0, 0) and |α−1| = (−2, 1).
By the module structure on the E2 -page of the Tate spectral sequence for En/I∞n , the E2 -page of
homotopy orbit spectral sequence for En/I∞n is a free rank one R[u±2]-module on one generator
in degree (0, 0). More specifically, the E2 -page of the homotopy orbit spectral sequence for
En/I∞n , as a R[u±2]-module, is R[u±2]{x} (where |x| = (0, 0)). All the differentials are
R-linear.

Note that Theorem 5.17 also determines the homotopy orbit spectral sequence of (MnEn)hC2 , as
the two spectral sequences differ by a shift of −n by Proposition 2.7. Since we have a complete
description of the homotopy fixed point spectral sequence of (IEn)hC2 , we can apply Lemma 2.5
to give our second proof of Theorem 4.13. We will use the following lemma from [2]:
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Lemma 5.19 (Lemma 4.7 in [2]) Suppose M∗,∗∗ is a spectral sequence of modules over a
spectral sequence E∗,∗∗ of algebras. Assume additionally thatM∗,∗2 is free of rank one on a class
x , and x survives to the E∞ -page, then the spectral sequence M∗,∗∗ is, up to a shift, isomorphic
to the spectral sequence of E∗,∗∗ .

Theorem 5.20 The E2 -page of the homotopy fixed points spectral sequence for IEn , as a
En[α, u±2]/2α-module, is free of rank one on a generator {x} in (n + 4, 0) with the (t − s, s)
grading.

All the differentials are En[α]/2α-linear and are determined by the differentials

d2l+1−1(u2l+1m+2l
x) = ulα

u2l+1m+2l+1−1
x, m ∈ Z, 1 ≤ l ≤ n.

In particular, x is permanent cycle and there is an equivalence IEhC2
n ' Σ4+nEhC2

n .

Proof From (2–4) we know that C2 acts trivially on πn+4kIEn and acts by (−1) on πn+4k+2IEn

for k ∈ Z. Therefore, the E2 -page of the homotopy fixed points spectral sequence for IEn is a
shift of the E2 -page of the homotopy fixed points spectral sequence for En by n + 4k . Taking a
generator x ∈ πn+4IEn , we can write the E2 -page as

(
En[α, u±2]/2α

)
{x}.

Note that HFPSS(IEhC2
n ) is a module over HFPSS(EhC2

n ). We will show that x is a permanent
cycle and then Lemma 5.19 will imply that HFPSS(IEhC2

n ) is a (n + 4)-shift of HFPSS(EhC2
n ).

By Proposition 2.7, we know that the HOSS((MnEn)hC2 ) is a n-shift of the HOSS((En/I∞n )hC2 ).
We have computed the latter in Theorem 5.17. The differentials are

d2l+1−1

(
αsu2l+1j+2l+1−1yxn(m)

)
= ulu2l+1j+2l−1αs+2l+1−1yxn(m),

where s < −2l+1 , 1 6 l 6 n, m > 0, and y ∈ (En/2)0 .

Note that |y| = |xn(m)| = (0, 0). The (t + s, s) grading of the differentials hitting the (t + s)-axis
(the horizontal axis) are

d3 : (−n− 7 + 8k, 3) −→ (−n− 8 + 8k, 0)

d7 : (−n− 11 + 16k, 7) −→ (−n− 12 + 16k, 0)
...

dl+1
2 − 1: (−n− 2l+1 − 3 + 2l+2k, 2l+1 − 1) −→ (−n− 2l+1 − 4 + 2l+2k, 0).

In particular, there are no nonzero differentials hitting the bidegree (−n− 4, 0). By Lemma 2.5,
the homotopy fixed points spectral sequence for IEn has differentials Pontryagin dual to the
differentials in the homotopy orbit spectral sequence for MnEn . Therefore, all differentials from
classes in bidegree (n + 4, 0) are 0. In particular, x is a permanent cycle.

By Lemma 5.19, the HFPSS(IEhC2
n ) is a (n + 4)-shift of the HFPSS(EhC2

n ). We have computed
that π∗IE

hC2
n ∼= π∗E

hC2
n {x} as a π∗E

hC2
n -module, where x is in stem (n + 4). This implies that

LK(n)(EhC2
n ⊗ Sn+4)

LK(n)(id⊗x)−−−−−−→ LK(n)(EhC2
n ⊗ IEhC2

n ) −→ IEhC2
n

is a weak equivalence (the last map uses the fact that IEhC2
n is a EhC2

n -module). Therefore, we
have the equivalence IEhC2

n ' Σ4+nEhC2
n .
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Remark 5.21 Suppose that F ⊂ Gn is a finite subgroup of the Morava stabilizer group, and let
F0 = F ∩ Sn . Suppose that the canonical map F/F0 → Gn/Sn is an isomorphism, and that F0

has 2-Sylow subgroup equal to C2 , then we claim that InEhF0
n ' Σ4+nEhF0

n as well, and similarly
for EhF

n . We consider the case of F0 first. There is a spectral sequence

Hs(F0, πt(IEn)) =⇒ πt−sIEhF0
n .

The assumption on F0 implies that the Lyndon–Hochschild–Serre spectral sequence associated
to the extension 1→ C2 → F0 → F0/C2 → 1 collapses to give an isomorphism

H∗(F0, πt(IEn)) ∼= H∗(C2;πt(IEn))F0/C2 .

Using the map of spectral sequences obtain from the map IEhF0
n → IEhC2

n and the above isomor-
phism, one sees that the spectral sequence for IEhF0

n is isomorphic to the spectral sequence of
EhF0

n up to a shift by n + 4. An argument similar to Theorem 5.20 shows that this implies that
IEhF0

n ' EhF0
n .

The argument for EhF
n is very similar; we just need to know that the spectral sequence for F can

be obtained from that of F0 by taking Galois invariants. The assumption on F/F0 along with
[8, Lemma 1.32] show that this holds, and we are done.

6 The exotic part of the K(n)-local Picard group

In this section, we outline one reason for being interested in the calculation of the Gross–Hopkins
dual of EhC2

n , which is to prove that, when combined with work of Beaudry, Goerss, Hopkins,
and Stojanoska [5] and Barthel, Beaudry, Goerss, and Stojanoska [3], we can see that there are
non-trivial ’exotic’ elements in the K(n)-local Picard group.

Remark 6.1 Here we rely strongly on forthcoming work of Beaudry, Goerss, Hopkins, and
Stojanoska [5]. Of course, the cautious reader may therefore want to consider Theorem 6.6
below as conditional until this result has appeared.

Remark 6.2 In this section, we work K(n)-locally, so that all spectra are K(n)-localized, and
M ⊗ N = LK(n)(M ⊗ N).

Let Picn denote the Picard group of K(n)-locally invertible spectra. A remarkable result, proved
in [27], is that a K(n)-local spectrum X is in Picn if and only if (E∨n )∗X ∼= (En)∗ as (En)∗ -
modules (up to suspension). We can then consider the subgroup κn ⊂ Picn of those invertible
spectra for which there is an isomorphism of Morava modules (E∨n )∗X ∼= (En)∗ . An argument
with the K(n)-local Adams spectral sequences shows that whenever p � n, κn is trivial - if
(E∨n )∗X ∼= (En)∗ as Morava modules, then we must have X ' LK(n)S0 .

In other cases however, it is possible that κn 6= 0. For example, when n = 1 and p = 2, then
κ1 ∼= Z/2, generated by Σ2LK(1)DQ, where LK(1)DQ is the K(1)-localization of the dual of the

Algebraic & Geometric Topology XX (20XX)



Picard groups and duality for Real Morava E-theories 1041

question-mark complex, see [15, p. 650]. In fact, using the calculation of I1EhC2
1 , we can prove

that there must be some non-trivial element in κ1 (of course, this does not identify it explicitly).
In order to explain this, we recall that (E∨n )∗I ∼= Σn2−n(E∨n )∗〈det〉 as Morava modules. When
n = 1, this simplifies to the statement that (E∨n )∗I ∼= Σ2(En)∗ . It follows that we must have that
I ' S2 ⊗ P, where P ∈ κ1 (recall that we work K(1)-locally, so S2 really means LK(1)S2 and ⊗
refers to the K(1)-local tensor product). The computation of IEhC2

1 implies that κ1 6= 0, as we
now explain.

Example 6.3 The n = 1 version of our main theorem is that IEhC2
1 ' Σ5EhC2

1 . Since I is
K(n)-locally invertible, it is in particular dualizable in the K(n)-local category, so that IEhC2

1 '
Σ5EhC2

1 ' I ⊗DEhC2
1 , where DEhC2

1 denotes the K(1)-local dual of EhC2
1 . The latter is known to

be equivalent to Σ−1EhC2
1 , see [21, Lem. 8.16], so that I ⊗ EhC2

1 ' Σ6EhC2
1 .

Now suppose that there were no exotic elements in the K(1)-local Picard group when n =

1, p = 2, so that we would have I ' S2 . This would imply that I ⊗ EhC2
1 ' Σ2EhC2

1 , which
contradicts the calculation in the previous paragraph because EhC2

1 is 8-periodic. We see that we
must have I ' Σ2X , where X ∈ κ1 is an exotic element in the K(1)-local Picard group such that
X ⊗ EhC2

1 ' Σ4EhC2
1 ; indeed, X ' LK(1)DQ has this property.

Our calculation of IEhC2
n is the first step in generalizing these methods to higher heights. The

problem of determining the duals DEhF
n for finite subgroups F ⊂ Gn is under investigation by

Beaudry, Goerss, Hopkins, and Stojanoska [5].3 In the case of F = C2 they prove the following
(which is known when n = 1, see Example 6.3 above).

Theorem 6.4 (Beaudry–Goerss–Hopkins–Stojanoska) The K(n)-local dual DEhC2
n ' Σ−n2

EhC2
n .

When p is odd it is well-known how to produce a spectrum S〈det〉 such that (En)∗S〈det〉 ∼=
(En)∗〈det〉 see e.g., [15]. In the case p = 2 such a spectrum has been constructed by Barthel,
Beaudry, Goerss, and Stojanoska [3] with the following properties.

Theorem 6.5 (Barthel–Beaudry–Goerss–Stojanoska) There is a spectrum S〈det〉 such that
(E∨n )∗S〈det〉 ∼= (En)∗〈det〉. Moreover, we have EhC2

n ⊗ S〈det〉 ' Σ1−(−1)n
EhC2

n .

Proof The spectrum S〈det〉 is constructed in [3, Def. 3.2] and the Morava module structure is
proved in [3, Thm. 3.1]. In the case that n is even, C2 is in the kernel of the determinant, and so
[3, Cor. 3.1] shows that EhC2

n ⊗ S〈det〉 ' EhC2
n .

When n is odd, C2 is not in the kernel of the determinant, and to calculate EhC2
n ⊗S〈det〉, we need

to understand the construction of S〈det〉. The construction relies on a Gn -equivariant spectrum
S(1), the Tate sphere, whose underlying spectrum is the p-complete sphere. This is equipped

3The interested reader can find a talk by Hopkins online at https://youtu.be/Ix4pg87LKVk.
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with a continuous action of Z×p , which is extended to an action of Gn via the determinant map
det : Gn → Z×p . The determinantal sphere is then defined as

S〈det〉 = (En ⊗ S(1))hGn ,

where the right-hand side has the diagonal action.

Because S〈det〉 is dualizable and has trivial C2 action, we have

EhC2
n ⊗ S〈det〉 ' (En ⊗ S〈det〉)hC2 .

By [3, Thm. 3.1], there is a canonical Gn -equivariant equivalence

f : En ⊗ S〈det〉 → En ⊗ S(1),

and hence
(En ⊗ S〈det〉)hC2 ' (En ⊗ S(1))hC2 .

When n is odd, C2 ⊂ Gn maps isomorphically to {±1} ⊂ Z×2 under the determinant map, and
this determines the C2 -action on S(1). In the proof of [3, Prop. 4.3] the authors show that, C2 -
equivariantly, S(1) is the cofiber of the transfer S0 → Σ∞+ C2 . By taking the Spanier–Whitehead
dual of the cofiber sequence

Σ∞+ C2 → S0 → Sσ

we see that, as a C2 -spectrum, this gives an equivalence S(1) ' S1−σ . It follows that

EhC2
n ⊗ S〈det〉 ' (En ⊗ S(1))hC2 ' (Σ2En)hC2 ' Σ2EhC2

n ,

where we have used that En is ρ = 1 + σ -periodic as a C2 -spectrum.

With these two results and our main result, we easily see that κn 6= 0.

Theorem 6.6 When p = 2, κn 6= 0 and has an element whose order is at least 2n+2−v2(2n+3+(−1)n)

where v2(−) is the 2-adic valuation.

Proof This is similar to Example 6.3. We know I ' Σn2−nS〈det〉 ⊗ P where P ∈ κn . Since
IEhC2

n ' I⊗DEhC2
n ' Σ4+nEhC2

n , using Theorem 6.4 we deduce that I⊗EhC2
n ' Σ4+n+n2

EhC2
n . On

the other hand, Theorem 6.5 implies that Σn2−nS〈det〉⊗EhC2
n ' Σn2−n+1−(−1)n

EhC2
n . This implies

that P ⊗ EhC2
n ' Σ2n+3+(−1)n

EhC2
n . The periodicity of EhC2

n is 2n+2 and 2n + 3 + (−1)n 6= 0
in Z/2n+2 . Hence, the element P ∈ κn is nontrivial. In particular, if P has finite order k ,
then Pk ⊗ EhC2

n = Σ(2n+3+(−1)n)kEhC2
n ' EhC2

n . So 2n+2|(2n + 3 + (−1)n)k and k is at least
2n+2−v2(2n+3+(−1)n) .

Remark 6.7 If one view κn as a measure how non-algebraic the K(n)-local category is, the
previous result shows that at prime 2, the size of the non-algebraic part is growing at least
exponentially with respect to the height n (note that κn could have infinite order as well). The
fast growth has been seen in examples at height 1 and 2, where |κ1| = 2 and |κ2| = 29 (as
computed in forthcoming work of Beaudry–Bobkova–Goerss–Henn).
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A Generalized geometric boundary theorem

To compute the homotopy fixed points spectral sequence of En/I∞n (Corollary 5.12), we will
inductively compute the homotopy fixed points spectral sequence of En/I∞k for k 6 n, see
Theorem 5.11. During our inductive step, we will make precise and prove the following claim,
which is a tailored version of case 3 in the Generalized Geometric Boundary Theorem of Behrens
[6, Lem. A.4.1]. Our proof uses universal models, which is different from Behrens’ proof based
on diagram chasing.

Let X i→ Y
p→ Z be a fiber sequence with compatible filtration towers (this will be made precise

in the theorem below). In the spectral sequences associated with these towers, if there are
non-trivial differentials

dsx = x′, dry1 = y′1, dry2 = y′2

and
i(x) = y′1, i(x′) = y′2, p(y1) = z, p(y2) = z′,

then z′ is non-zero in Er+1 and there is a non-trivial differential

dsz = z′.

The following diagram provides a visualization of the situation:

x′ y′2

y2 z′

x y′1

y1 z

i

dr

p

ds

i

dr

p

ds

We will prove this version of the Generalized Geometric Boundary Theorem using the universal
model method for differentials. Note that our proof is different from the proof in [6], which
requires extensive diagram chasing. Throughout our formulation and proof of the claim, we will
work in the category of bounded below towers.

Definition A.1 Denote the category of towers indexed over nonnegative integers by T . An
object in T is a tower

X• = {X0
α0← X1

α1← X2
α2← · · · }

of spectra. Here, Xi ’s are spectra and the αk ’s are morphisms of spectra. A morphism

f• = (f0, f1, . . . ) : X• → Y•
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in T is a collection of morphisms fi : Xi → Yi that satisfies the following commutative diagram:

X0 X1 X2 · · ·

Y0 Y1 Y2 · · · .
f0

α0 α1

f1

α2

f2
α′0 α′1 α′2

Definition A.2 Given towers X•,Y•,Z• ∈ T , a sequence X• → Y• → Z• in T is a fiber sequence
if the level wise maps Xk → Yk → Zk are fiber sequences in the category of spectra for all k ≥ 0.

Let the cofiber of Xi+1 → Xi be Xi/Xi+1 , and the spectral sequence associated to the tower
X• ∈ T be SS(X), with the r th page Es,t

r (X). Then

Es,t
1 (X) = πt(Xs/Xs+1)⇒ πt−sX.

This is an Adams type spectral sequence. A morphism f• : X → Y in T induces a map
f∗ : SS(X)→ SS(Y) of the associated spectral sequences. Denote the induced map

Xr/Xr+1 → Yr/Yr+1

on the cofibers by fr/r+1 .

We will introduce a universal model for a dr -differential as an object in T . We will see that in
the spectral sequence associated to this object, there is a universal dr -differential.

Consider the tower D(s, r) = (D(s, r)0,D(s, r)1, . . . ) ∈ T given by
D(s, r)0 = · · · = D(s, r)s = D1,

D(s, r)s+1 = · · · = D(s, r)s+r = S0,

D(s, r)k = ∗ for k > s + r.

The tower corresponding to D(s, r) is

D1 S0 · · · S0 ∗

S1 S0

id id

In the spectral sequence SS(D(s, r)), we have

Es,1
1 = π1(D(s, r)r/D(s, r)r+1) = π1(D1/S0) = π1S1

and
Es+r,0

1 = π0(D(s, r)s+r/D(s, r)s+r+1) = π0(S0/∗) = π0S0.

Let a be the generator of Es,1
1 and b be the generator of Es+r,0

1 such that

dr(a) = b

in SS(D(s, r)). This differential is our universal dr -differential. It has the following universal
property.
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Proposition A.3 (Universal property) Let X• ∈ T . Suppose there is a nontrivial dr -differential

drx = x′

in SS(X•). Then there is a morphism

ΣtD(s, r)
f•→ X•

in T such that f∗(a) = x and f∗(b) = x′ .

Proof This follows directly from our construction of D(s, r).

Remark A.4 In Proposition A.3, the choice of the map f : ΣtD(s, r) → X• is not unique.
More specifically, the map is determined by a choice of lifts of x to x̃ ∈ πt−1Xs+r and of x′ to
x̃′ ∈ πt(Xs/Xs+r). By a standard procedure, we can find representatives (x1, x′1) of (x, x′) on the
E1 -page. Given these representatives, there is a bijection between lifts x̃ of x1 and

im(πt(Xs+1/Xs+r)→ πt(Xs/Xs+r)).

Similarly, there is a bijection between lifts x̃′ of x′1 with

im(πt(Xs+r+1)→ πt(Xs+r)) ∩ ker(πtXs+r → πtXs).

This provides an algebraic description of the choices of f .

Theorem A.5 (Generalized Geometric Boundary Theorem) Let X•

i−→ Y•

p−→ Z• be a fiber
sequence in T . Suppose there are nontrivial differentials

dr′x = x′ (in SS(X)),

dry1 = y′1 (in SS(Y)),

dry2 = y′2 (in SS(Y)),

and

i(x) = y′1,

i(x′) = y′2,

p(y1) = z,

p(y2) = z′.

Then there is a nontrivial differential dr′z = z′ in SS(Z).

Remark A.6 When r = 1, Theorem A.5 is the classical Geometric Boundary Theorem (see
[10] and [34, Pro. 2.3.4 and Lem. 2.3.7]). The most generalized version has been studied by
Behrens, see [6, Lem. A.4.1]. In particular, Theorem A.5 is Case 3 of Behrens’s generalized
version, however the proof we present is different from that given by Behrens.
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Proof of Theorem A.5 We will construct a map

u• : DX −→ DY

which captures the conditions of the theorem. For the simplicity, we will assume that the
(s, t)-degree of x is (s, 1) (if |x| = (s, t), we can just suspend our map by t).

Let D1 ∈ T be the constant tower with (D1)∗ = D1 for all ∗, and all maps the identity maps.
Let DX be the tower D(s + r, r′) that captures the differential

dr′x = x′.

More precisely, Dx is the tower such that there is a map

f• : Dx −→ X•

with f∗(aX) = x , f∗(bX) = x′ and dr(aX) = bX . Define the tower DY as follows:

(DY )∗ =


D(s, r)∗ ∗ 6 s + r
(D1)∗ s + r < ∗ 6 r′

D(s + r′, r)∗ r′ < ∗
The maps are all identity maps except for the maps

(DY )r+1 ↪→ (DY )r,

which is i+ : D1 ↪→ S1 , the embedding of D1 into the upper hemisphere and

(DY )r′+1 ↪→ (DY )r′ ,

which is S0 ↪→ D1 , the embedding of the boundary. Denote the universal differential in the
D(s, r) part as

dr(aY,1) = bY,1

and the universal differential in the D(s + r′, r) part as

dr(aY,2) = bY,2.

The map u• : DX → DY is defined as follows:

u∗ =



∗ 6 s : D1 i−−→ S1 ↪→ D2 (i− is the embedding into the bottom hemishpere)

s < ∗ 6 s + r : D1 i−−→ S1

s + r < ∗ 6 s + r′ : S0 ↪→ D1

s + r′ < ∗ 6 s + r + r′ : S0 id−→ S0

s + r + r′ < ∗ : ∗ id−→ ∗

Given this map, one can directly check that the level-wise cofiber of u• is D(s, r′). We will
denote the universal differential in this D(s, r′) by

dr′(aZ) = bZ.
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We will show that there exist maps f• : DX → X and g• : DY → Y such that the diagram

DX X

DY Y

D(s, r′) Z.

f•

g•

h•

is commutative and the following relations hold:

f∗(aX) = x,

f∗(bX) = x′,

g∗(aY,1) = y1,

g∗(bY,1) = y′1,

g∗(aY,2) = y2,

g∗(bY,2) = y′2.

Once we have shown this, the induced map

h• : D(s, r′)→ Z•

on the cofibers will send the universal differential dr′(aZ) = bZ to the desired differential
dr′(z) = z′ .

The map f• can be easily constructed from the universal property of D(s, r′). To construct the
map g• , we need to construct the following maps:

gs+r+r′ : (DY )s+r+r′ = S0 → Ys+r+r′ ,

gs+r′ : (DY )s+r′ = D1 → Ys+r′ ,

gs+r : (DY )s+r = S1 → Ys+r,

gs : (DY )s = D2 → Ys.

By an abuse of notation, we will denoted the above four maps by g1, · · · , g4 , respectively. We
will construct g1, · · · , g4 such that the following diagram is commutative:

S0 Ys+r+r′

D1 Ys+r′

S1 Ys+r

D2 Ys.

g1

g2

i+

g3

g4
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The map g1 can be constructed by using u• and f• :

Xs+r+r′ Ys+r+r′

S0 S0

us+r+r′

fs+r+r′

id

g1 .

The condition i∗(x′) = y′2 guarantees that g∗(bY,2) = y′2

To construct g2 , notice that in this part, DY agrees with D(s + r′, r). By the universal property
of D(s + r′, r), there exists g2 such that g∗(aY,2) = y2 . This map is determined up to a choice
of the lift of y2 .

The map g3 is determined by the following diagram:

Ys+r′

S0 D1

Xs+r Ys+r

D1 S1

αY
s+r

g2

us+r

i−

fs+r g3

i+

Since S1 = D1 ∪ D1 , the map g3 : S1 → Ys+r is determined by the maps

D1 i+−→ Ys+r′
αY

s+r−−→ Ys+r,

D1 i−−→ Xs+r
αY

s+r−−→ Ys+r.

The condition i∗(x) = y′1 guarantees that g∗(bY,1) = y′1 .

Finally, a choice of the lift of y1 would produce g4 by the universal property of D(s, r). This
completes the proof of the theorem.
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