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Abstract

This paper presents explicit constants for the upper bound for the logarithm of the

Riemann zeta-function in the critical line, while assuming the Riemann hypothesis.

This requires two considerations. First, we need an upper bound for the logarithm

of the Riemann zeta-function when we are close to the critical line. We follow

section 13.2 “Estimates for the zeta function” in “Multiplicative Number Theory I.

Classical Theory” by Montgomery and Vaughan (2006) to obtain this. Second, we

must implement a lower bound for the logarithmic derivative of the Riemann zeta-

function, which is given in a result by Carneiro, Chirre and Milinovich (2019). We

integrate this bound over an interval with length approaching zero. We optimize

the argument by determining what interval length gives the best result.
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Sammendrag

Denne oppgaven bestemmer eksplisitte konstanter for den øvre begrensningen av

logaritmen til Riemann zeta-funksjonen p̊a den kritiske linja, under antakelsen av

Riemann-hypotesen. Dette krever to betraktninger. Vi finner først en øvre be-

grensning for logaritmen til Riemann zeta-funksjonen n̊ar vi er nær den kritiske

linja. Dette gjør vi ved å følge seksjon 13.2 ”Estimates for the zeta function” i

“Multiplicative Number Theory I. Classical Theory” av Montgomery og Vaughan

(2006). Deretter benytter vi oss av et resultat fra Carneiro, Chirre og Milinovich

(2019) som gir en nedre begrensning for den logaritmiske deriverte av Riemann

zeta-funksjonen. Vi integrerer denne over et intervall med lengde som g̊ar mot null.

Vi optimaliserer argumentet ved å avgjøre hvilken lengde p̊a intervallet som gir det

beste resultatet.
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1. Introduction

Let ζ(s) denote the Riemann zeta-function, where s = σ + it. It is defined by

ζ(s) =

∞∑
n=1

n−s,

which is absolutely convergent for σ > 1. From integration by parts one can get

the integral representation formula, as Eq.(1.24) in [2]

ζ(s) =
s

s− 1
− s

∫ ∞

1

(u− [u])us−1 du,

which holds for σ > 0. From this half-plane of convergence, the function can

be continued analytically to the whole complex plane via its functional equation,

except at the simple pole s = 1. The function is non-zero for σ ≥ 1. For σ ≤ 0,

the trivial zeros are situated at the negative even integers. This leaves only the

non-trivial zeros that lie in the critical strip, i.e. where 0 < σ < 1. The Riemann

hypothesis, hereby referred to as RH, states that the non-trivial zeros of ζ(s) all

lie on the line σ = 1
2 . A classical result of Littlewood [6] states that, under the

assumption of RH, there is a constant C > 0 such that

(1.1) log |ζ( 12 + it)| ≤ C
log t

log log t
,

for t > 0 sufficiently large. For simplicity, we let log2(t) and log3(t) denote log log t

and log log log t, respectively. The order of magnitude has not been improved over

the last ninety years, and the endeavors have since been concentrated in optimizing

the value of C. While improving his own work [8] and building on the works of

Ramachandra and Sankaranarayanan [7], Soundararajan together with Chandee [3]

established in 2009 that

(1.2) log |ζ( 12 + it)| ≤ log 2

2

log t

log2 t
+O

(
log t log3 t

(log2 t)
2

)
.

This is the best up-to-date result for C in the upper bound of the Riemann zeta-

function in the critical line. Going further, Carneiro and Chandee [4] improved the

second order term on the right-hand side in (1.2), proving that

(1.3) log |ζ( 12 + it)| ≤ log 2

2

log t

log2 t
+O

(
log t

(log2 t)
2

)
.
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The proofs in [4] and [3] rely on the use of the Hadamard product, the Guinand-

Weil explicit formula and the construction of a certain extremal minorant for the

function

log

(
4 + x2

(σ − 1
2 )

2 + x2

)
, where 1

2 ≤ σ ≤ 1 and x ∈ R.

The purpose of this paper is to establish a version of (1.3) with explicit constants.

We have reached the following result.

Theorem 1. Assume RH. For t ≥ 101295, we have

(1.4)

log |ζ( 12 + it)| ≤ log 2

2

log t

log2 t
+ 2

log t

(log2 t)
2
+ 0.696500

log t

(log2 t)
3
+ 375.5451

log t

(log2 t)
4
.

We will follow in the footsteps of Carneiro, Chirre and Milinovich and their proof

of (1.3) in [1]. The idea is given in two steps, where the first step will be to obtain

an explicit bound for log |ζ(σ + it)|, when σ = δ := 1
2 +

log3 t
log2 t . One can acquire this

by following the proof of Corollary 13.16 in [2], where the starting point will be a

formula due to Selberg. The second step is lower bounds for

ℜζ
′

ζ
(σ + it), when

1

2
< σ ≤ δ.

It can be obtained, by following the proof of Theorem 2 (i) from [1] and computing

the error terms explicitly. This proof depends on the use of the Guinand-Weil

explicit formula and the construction of an extremal minorant for the Poisson kernel

mβ =
β

β2 + x2
.

This extremal function is explicitly given, and it is easy to work with. Then we

have to integrate over the lower bound from 1
2 to δ. Note that it is possible to

optimize this argument. By choosing

δλ :=
1

2
+ λ

log3 t

log2 t

and optimizing over λ > 0, will give the best possible result.



3

2. Estimates for the zeta-function via the Selberg moment formula

As already stated, we will follow the proof of Corollary 4 in [1]. We start off

with the following integral∫ δ

1/2

ℜζ
′

ζ
(σ + it) dσ = log|ζ(δ + it)| − log|ζ( 12 + it)|

which we can rearrange as follows

log|ζ( 12 + it)| = −
∫ δ

1/2

ℜζ
′

ζ
(σ + it) dσ + log|ζ(δ + it)|.(2.1)

Our choice of δ will be δλ = 1
2 + λ log3 t

log2 t . So the problem is to find a lower bound

for ℜ ζ′

ζ (σ + it) and an upper bound for log|ζ(δ + it)|. This section will deal with

the latter of the two. We will use the proof of the following result, Corollary 13.16

from [2], that while assuming RH, we have

log|ζ(σ + it)| ≤ log
1

1− σ
+O

(
(log t)2−2σ

(1− σ) log2 t

)
(2.2)

uniformly for 1/2+1/ log2 t ≤ σ ≤ 1−1/ log2 t and t ≥ 3. We will retrace the steps

in the proof, and get an estimate for log|ζ(σ + it)| when σ = δ. This corollary is

proved by Corollary 13.15, which again is proved by Theorem 13.13 in [2].

We will begin with identifying a few important components which we will need

later. The Riemann ξ-function, which is defined by

(2.3) ξ(s) =
1

2
s(s− 1)ζ(s)Γ(s/2)π−s/2,

is an entire function of order 1. It would be remiss not to mention, that it also

satisfies the functional equation ξ(s) = ξ(1 − s) for all s. It carries significant

information since the zeros of ξ(s) are exactly the non-trivial zeros of ζ(s). We can

write ξ as an Hadamard product over these zeros, as in Theorem 10.12 in [2]

ξ(s) =
1

2
eBs

∏
ρ

(
1− s

ρ

)
es/ρ.

By taking the logarithmic derivative of the product and applying the functional

equation, one can find that B is given by

B = −
∑
ρ

ℜ1

ρ
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If we now also take the logarithmic derivative of the right hand side in (2.3), we can

establish the following relevant formula. First note that 1/2 sΓ(s/2) = Γ(s/2 + 1),

then

(2.4)
ζ ′

ζ
(s) +

1

s− 1
+

1

2

Γ′

Γ
(s/2 + 1)− 1

2
log π = B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
.

We also introduce here the von Mangoldt function. It is denoted by Λ(n) and

defined by

Λ(n) =

log p if n = pk for some prime p and some integer k ≥ 1,

0 otherwise.

Then let ψ(z) denote the function which sums over the von-Mangoldt function, i.e.

ψ(z) =
∑
n≤z

Λ(n).

Then, for σ > 1 we have the following relation

(2.5) |log ζ(s)| ≤
∞∑

n=1

Λ(n)

nσ log n
.

We start by proving Theorem 13.13 from [2], which asserts

(2.6)

∣∣∣∣ζ ′ζ (s)
∣∣∣∣ ≤ ∑

n≤(log t)2

Λ(n)

nσ
+O

(
(log t)2−2σ

)
uniformly for 1/2 + 1/ log2 t ≤ σ ≤ 3/2. It will be necessary to find an explicit

constant in front of the error term, because this will eventually lead to a contribution

in the third-order term in our result. Eq.(13.35) in [2], which has been referred to

as the Selberg moment formula, states that for x ≥ 2 and y ≥ 2∑
n≤xy

w(n)
Λ(n)

ns
= −ζ

′

ζ
(s) +

(xy)1−s − x1−s

(1− s)2 log y

−
∑
ρ

(xy)ρ−s − xρ−s

(ρ− s)2 log y
−

∞∑
k=1

(xy)−2k−s − x−2k−s

(2k − s)2 log y
,

where ρ = β + iγ are the non-trivial zeros of the Riemann zeta-function and w(u)

is defined as

w(u) =


1 if 1 ≤ u ≤ x,

1− log(u/x)
log y if x ≤ u ≤ xy,

0 if u ≥ xy.
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From this, we see that |w(n)| ≤ 1 for n ≤ xy. After rearranging, we get

ζ ′

ζ
(s) = −

∑
n≤xy

w(n)
Λ(n)

ns
+
∑
ρ

xρ−s − (xy)ρ−s

(ρ− s)2 log y
(2.7)

+
(xy)1−s − x1−s

(1− s)2 log y
+

∞∑
k=1

x−2k−s − (xy)−2k−s

(2k − s)2 log y
.

In [2], x and y are chosen to be

y = exp
( 1

σ − 1/2

)
, x = (log t)2/y

This is where we assume RH, and estimate the sum over the non-trivial zeros.∣∣∣∣∑
ρ

xρ−s − (xy)ρ−s

(ρ− s)2 log y

∣∣∣∣ ≤∑
ρ

x
1
2−σ(1 + y

1
2−σ)

|s− ρ|2 log y
=
∑
γ

x
1
2−σ(1 + e−1)(σ − 1

2 )

(σ − 1
2 )

2 + (t− γ)2
.(2.8)

By taking real parts in (2.4), we get∑
γ

(σ − 1
2 )

(σ − 1
2 )

2 + (t− γ)2
= ℜζ

′

ζ
(s) +

1

2
ℜΓ′

Γ

(s
2
+ 1
)
− 1

2
log π +

σ − 1

(σ − 1)2 + t2

≤ ℜζ
′

ζ
(s) +

1

2
ℜΓ′

Γ

(s
2
+ 1
)
,(2.9)

for t sufficiently large. Here we use an explicit bound by Chandee [5] which states

that ℜ(Γ′/Γ)(s) ≤ log|s|, for σ ≥ 1
4 . Thus

1

2
ℜΓ′

Γ

(s
2
+ 1
)
≤ 1

2
log
∣∣∣s
2
+ 1
∣∣∣ = 1

4
log

((σ
2
+ 1
)2

+
( t
2

)2)
=

1

2
log
( t
2

)
+

1

4
log

((2
t

(σ
2
+ 1
))2

+ 1

)
≤ 1

2
log t− 1

2
log 2 +

1

t2

(σ
2
+ 1
)2

≤ 1

2
log t,

for t sufficiently large. Combining what we have shown above, we get∣∣∣∣∑
ρ

xρ−s − (xy)ρ−s

(ρ− s)2 log y

∣∣∣∣ ≤ (1 + e−1)x
1
2−σℜζ

′

ζ
(s) +

(1 + e−1)

2
x
1
2−σ log t(2.10)

= (e+ 1)(log t)1−2σℜζ
′

ζ
(s) +

(e+ 1)

2
(log t)2−2σ.

In the last line we used that x1/2−σ = (log t)1−2σyσ−1/2 = (log t)1−2σe . We also

have to estimate the two last terms in (2.7). These are substantially smaller in

magnitude so we allow ourselves to be more crude.∣∣∣∣ (xy)1−s − x1−s

(1− s)2 log y

∣∣∣∣ ≤ (σ − 1
2 )(xy)

1−σ(1 + yσ−1)

t2
≤ (1 + e1/2)

(log t)2−2σ

t2
.
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The sum is a bit more intricate.∣∣∣∣ ∞∑
k=1

x−2k−s − (xy)−2k−s

(2k − s)2 log y

∣∣∣∣ ≤ x−2−σ + (xy)−2−σ

log y

∞∑
k=1

1

|2k − s|2

≤
(σ − 1

2 )(y
2+σ + 1)

(xy)2+σ

∫ ∞

1

dx

(2x− σ)2 + t2

≤

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
(log2 t)

2λ (log t)5 t2

∫ ∞

1

dx

((2x− σ)/t)2 + 1

≤
π

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
4 (log2 t)

2λ (log t)5 t
.

We can now insert these bounds into (2.7), and it can now be written as∣∣∣∣ζ ′ζ (s)
∣∣∣∣ ≤ −

∑
n≤xy

w(n)
Λ(n)

ns
+ |θ| (e+ 1)(log t)1−2σ

∣∣∣ℜζ ′
ζ
(s)
∣∣∣+ (e+ 1)

2
(log t)2−2σ

+ (1 + e1/2)
(log t)2−2σ

t2
+

π

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
4 (log2 t)

2λ (log t)5 t
,(2.11)

where θ is a complex number such that |θ| ≤ 1, according to [2]. As long as we

ensure that

(e+ 1)(log t)1−2σ ≤ (e+ 1)(log t0)
1−2σ < 1,

we can write(
1− e+ 1

(log t)2σ−1

)
·
∣∣∣ζ ′
ζ
(s)
∣∣∣ ≤ ∣∣∣ ∑

n≤xy

w(n)
Λ(n)

ns

∣∣∣+ (e+ 1)

2
(log t)2−2σ

+ (1 + e1/2)
(log t)2−2σ

t2
+

π

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
4 (log2 t)

2λ (log t)5 t
.(2.12)

We now turn to the sum in the line above. For σ ≥ 1/2, we have∣∣∣ ∑
n≤xy

w(n)
Λ(n)

ns

∣∣∣ ≤ ∑
n≤xy

Λ(n)

n1/2
.

When integrating this sum by parts, it turns out to be useful to apply the following

bound, also from Chandee [5], which says that for T ≥ 2

∑
n≤T

Λ(n) ≤ (1.006)T.
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Then ∑
n≤xy

Λ(n)

n1/2
= ψ(xy) · (xy)−1/2 − ψ(2−) · 2−1/2 −

∫ xy

2

ψ(t)(t−1/2)′ dt

≤ (1.006)(xy)1/2 +
1.006

2

∫ xy

2

t−1/2 dt

= 2.012 log t− 1.006 · 21/2.

If we now insert this into (2.12), the right hand side becomes

2.012 log t− 1.006 · 21/2 + (e+ 1)

2
(log t)2−2σ

+ (1 + e1/2)
(log t)2−2σ

t2
+

π

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
4 (log2 t)

2λ (log t)5 t

≤ 2.012 log t+
(e+ 1)

2
(log t)2−2σ = log t

(
2.012 +

(e+ 1)

2
(log t)1−2σ

)
,

for t sufficiently large. This means that∣∣∣ℜζ ′
ζ
(s)
∣∣∣ ≤ ∣∣∣ζ ′

ζ
(s)
∣∣∣ ≤ log t

((
1− e+ 1

(log t)2σ−1

)−1(
2.012 +

(e+ 1)

2
(log t)1−2σ

))
,

and we finally insert this into (2.11). Then

∣∣∣∣ζ ′ζ (s)
∣∣∣∣ ≤ ∑

n≤(log t)2

Λ(n)

nσ
+ (log t)2−2σ

[ (e+ 1)
(
2.012 +

(e+ 1)

2 (log2 t)
2λ

)
(
1− e+ 1

(log2 t)
2λ

)

+
(e+ 1)

2
+

(1 + e1/2)

t2
+

π

(
e · exp

(
5 log2 t
2λ log3 t

)
+ 1

)
4 (log t)6 t

]
,(2.13)

which proves the theorem and gives us a candidate for the constant in front of the

error term. Let m(t, λ) denote the expression inside the brackets in the line above.

In one of the succeeding corollaries, Corollary 13.15 in [2], it is shown that

(2.14) |log ζ(s)| ≤
∑

n≤(log t)2

Λ(n)

nσ log n
+O

( (log t)2−2σ

log2 t

)
,

where 1
2 + 1

log2 t ≤ σ ≤ 3
2 . The proof originates from the line

|log ζ(σ + it)| ≤ |log ζ( 32 + it)|+
∫ 3/2

σ

∣∣∣∣ζ ′ζ (σ + it)

∣∣∣∣ dσ,
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which we can now work on explicitly. Using the bound in (2.13), we have

(2.15) |log ζ(σ + it)| ≤
∑

n≤(log t)2

Λ(n)

log n

(
n−σ − n−3/2

)
+m(t, λ)

(log t)2−2σ

log2 t
,

By the relation in (2.5), the right hand side is equal to

(2.16)
∑

n≤(log t)2

Λ(n)

nσ log n
+

∑
n>(log t)2

Λ(n)

n3/2 log n
+m(t, σ)

( (log t)2−2σ

log2 t

)
,

We will see that the second sum is of lesser order than that of the error term. Here

we will introduce another helpful bound. Since we are assuming RH, we are able

to apply the following explicit bound due to Schoenfeld, Eq.(6.5) in [9],

(2.17) |ψ(x)− x| ≤ 1

8π
x1/2(log x)2 for x ≥ 59.

Lemma 2. For t > ee
2

,

(2.18)
∑

n>(log t)2

Λ(n)

n3/2 log n
≤ 1

log t log2 t
·
(
1 +

(log2 t)
2

8π log t
+

5

16π

log2 t

log t

)
.

Proof. We consider the sum over z = (log t)2 < n ≤ Y , and let Y → ∞. As before,

we use integration by parts with respect to ψ(x). We use the trick of adding and

subtracting a factor of z in order to use the bound in (2.17).∑
z<n≤Y

Λ(n)

n3/2 log n
= −

(
ψ(z)− z

log z · z3/2

)
− z−1/2

log z·

−
∫ Y

z

(ψ(t)− t)
((

log t · t3/2
)−1
)′
dt−

∫ Y

z

t ·
((

log t · t3/2
)−1
)′
dt

≤ − log z

8πz
− z−1/2

log z
+

1

8π

∫ Y

z

1

t2

(
1 +

3

2
log t

)
dt+

∫ Y

z

1

(log t)2 t3/2

(
1 +

3

2
log t

)
dt

= − log z

8πz
− 1

log z · z1/2
+

1

8π

(
5

2 · z
+

3 log z

2z

)
+

3

log z · z1/2
−
∫ Y

z

2

(log t)2 t3/2
dt

≤ 2

log z · z1/2
+

1

16π

log z

z
+

5

16π · z
=

1

log t log2 t
+

log2 t

8π(log t)2
+

5

16π(log t)2
.

□

The idea in Corollary 13.16 in [2] is to consider the finite sum when n ≤ z and

z = (log t)2 and integrate by parts with respect to ψ. Then by Eq. (13.45) in [2]

∑
n≤z

Λ(n)

nσ log n
=

∫ z

2

du

uσ log u
+
ψ(z)− z

zσ log z
+
21−σ

log 2
+

∫ z

2

ψ(u)− u

uσ+1 log u

(
σ +

1

log u

)
du.

(2.19)
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The first integral, with the substitution v = u1−σ becomes li(z1−σ)−li(21−σ), where

li(x) =

∫ x

2

du

log u

is the logarithmic integral-function. The first of these two terms is what will give

the greatest contribution when σ is close to 1
2 . Here we can apply a bound by

Rosser, given in [10], which states that

li(x) <
x

log x

(
1 +

3

2 log x

)
,

for x ≥ e8. This restriction on x is very strict with respect to how large t = t0

needs to be chosen for this to hold. In our case, we have

x = z1−σ = (log t)2−2σ =
log t

(log2 t)
2λ
.

We will investigate how far down we can push x, if we substitute the 3
2 with a

greater constant. This is described in the following lemma.

Lemma 3.

(2.20) li(x) <
x

log x

(
1 +

1.785

log x

)
, x > 1.

Proof. We only have to consider the interval (1, e8), otherwise we are covered by

the bound by Rosser. Differentiating the difference and solving

d

dx

(
x

log x

(
1 +

1.785

log x

)
− li(x)

)
= 0

gives the minimum point for the difference at x = 94.421679 and the difference

evaluated at this point is 0.004064132923. □

Now that we have a bound valid for x > 1, we can check when our x satisfies

this. We let t ≥ t0 := ee
ea

, for some a > 0, thus

x =
log t0

(log2 t0)
2λ

=
ee

a

e2aλ
= e(e

a−2aλ) > elog 1.

Hence we get the following restriction for λ

(2.21) λ <
ea

2a
.
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We use the bound in Lemma 3 for li(z1−σ).

li(z1−σ) ≤ log t

(log2 t)
2λ

· 1(
log2 t− 2λ log3 t

)(1 + 1.785(
log2 t− 2λ log3 t

))
=

log t

(log2 t)
3
· 1

(log2 t)
2(λ−1)

(
1− 2λ log3 t

log2 t

)
+

log t

(log2 t)
4
· 1.785

(log2 t)
2(λ−1)

(
1− 2λ log3 t

log2 t

)2 .
li(21−σ) is problematic when σ is close to 1 since the function 1/ log u has a sin-

gularity at u = 1. Also, on the interval (1, 21/2], li(x) is negative and increasing,

thus

− li(21−σ) ≤ li(21/2−λa/ exp a).

We apply the bound in (2.17) again, and get an explicit bound for the second term

in (2.19)

ψ(z)− z

zσ log z
≤ 1

8π
z1/2−σ log z =

1

8π
(log t)1−2σ 2 log2 t =

1

4π(log2 t)
2λ−1

.

Similarly, for the fourth term in (2.19), we get∫ z

2

ψ(u)− u

uσ+1 log u

(
σ +

1

log u

)
du ≤ 1

8π

(∫ z

2

σ u−σ− 1
2 log u du+

∫ z

2

u−σ− 1
2 du

)
≤ 1

8π

(( log2 t

λ log3 t

)2
+

1

λ

(
1 +

log 2

2

) log2 t

log3 t
+ log 2

)
.

The third term is only bounded by a constant, since

21−σ

log 2
≤ 21/2

log 2
.

For bookkeeping purposes, we will summarize our findings.

log|ζ(δλ + it)| ≤ log t

(log2 t)
3
· 1

(log2 t)
2(λ−1)

·

(
1(

1− 2λ log3 t
log2 t

) +m(t, λ)

)

+
log t

(log2 t)
4
· 1.785

(log2 t)
2(λ−1)

(
1− 2λ log3 t

log2 t

)2(2.22)

+
1

8π

(( log2 t

λ log3 t

)2
+

1

λ

(
1 +

log 2

2

) log2 t

log3 t
+ log 2

)
+ li(21/2−a/ exp a) +

21/2

log 2
+

1

4π(log2 t)
2λ−1

+
1

log t log2 t
·
(
1 +

(log2 t)
2

8π log t
+

5

16π

log2 t

log t

)
.
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3. Estimates via bandlimited approximations

The lower bound we will use in this section is due to Carneiro, Chirre and

Milinovich, given by Theorem 2 in [1], which states

ℜζ
′

ζ
(σ + it) ≥ (log t)2−2σ

(
1

1 + (log t)1−2σ
+

2σ − 1

σ(1− σ)

)
+O

(
(σ − 1

2 )
( log2 t

π

)4)
+O

(
min{1, (σ − 1

2 ) log2 t}
)

(3.1)

+O

(
(σ − 1

2 )
( log2 t

π

)2
log t

1 + t log2 t

)
.

When we integrate over the bound in (3.1) we will retrieve the constant log 2/2 in

front of the first-order term. The search for the constant in front of the second-order

term becomes easier than anticipated due to the fact that it also follows directly

from this integral. As seen in the previous section, the second term in (2.1) only

contributes to the third-order- and lower-order terms. To evaluate the integral

over the first term in the expression above, we make the substitution u = log t−2σ.

Hence, we get

∫ δ

1/2

(log t)2−2σ

1 + (log t)1−2σ
dσ = − (log t)2

2 log2 t

∫ (log t)−2δ

(log t)−1

d u

1 + (log t)u

=
(log t)2

2 log2 t

(
log(1 + (log t)u)

log t

)∣∣∣∣(log t)−1

(log t)−2δ

(3.2)

=
log 2

2

log t

log2 t
− log

(
1 +

1

(log2 t)
2

) log t

log2 t
.

In the last line we used that (log t)−2 log3 t/ log2 t = (log2 t)
−2, which is a relation

that will appear in some form several times in the proceeding calculations.

When inspecting the second term in (2.2) it might be tempting to perform a partial

fraction decomposition, although this will result in two terms involving li(x), which

will be hard to compare to each other. A solution to this obstacle will be to make

the substitution 2σ − 1 = α, which will prove fruitful. Thus∫ δ

1/2

2σ − 1

σ(1− σ)
(log t)2−2σ dσ =

1

2

∫ 2δ−1

0

α

( 1+α
2 )( 1−α

2 )
(log t)1−α dα

= 2 log t

∫ 2δ−1

0

α

1− α2
(log t)−α dα.
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We remark that we can write 1
1−α2 as a geometric series, then the integral becomes

2 log t

∫ 2δ−1

0

α (1 + α2 + α4 + . . . ) (log t)−α dα.

One can find a general formula, e.g. for n ≥ 1∫ 2δ−1

0

α2n−1(log t)−α dα =
(2n− 1)!

(log2 t)
2n

−
2n−1∑
k=0

2k

k!

(log3 t)
k

(log2 t)
2(n+1)

.

One method to obtain this is to integrate quite a few terms and recognizing the

pattern appearing, and then prove the formula by induction on n. There are also

literature, in which this could be found explicitly. This gives us some insight about

the behaviour of each term. The only non-negative term comes from the evaluation

at 0 in the final integral after 2n − 1 successive rounds of integration by parts.

We can ignore terms where there is a (log3 t)
k in the numerator, unless we have

something to gain from a cancellation. We decide it is unnecessary to include too

many terms, so instead we write 1
1−α2 = 1 + α2

1−α2 and get∫ 2δλ−1

0

α (log t)−α dα = − α

log2 t
(log t)−α

∣∣∣2δλ−1

0
+

1

log2 t

∫ 2δλ−1

0

(log t)−α dα

= − (2δλ − 1)

log2 t
(log t)1−2δλ −

( 1

(log2 t)
2
(log t)−α

)∣∣∣2δλ−1

0

= − 2λ log3 t

(log2 t)
2(λ+1)

− 1

(log2 t)
2(λ+1)

+
1

(log2 t)
2
.

Also∫ 2δλ−1

0

α3

1− α2
(log t)−α dα ≤ 1

1−
(

2λ log3 t
log2 t

)2 ∫ 2δλ−1

0

α3(log t)−α dα

=
1

1−
(

2λ log3 t
log2 t

)2(−
(
8 (λ log3 t)

3 + 12 (λ log3 t)
2 + 12λ log3 t+ 6

)
(log2 t)

4+2λ
+

6

(log2 t)
4

)

≤ 1

1−
(

2λ log3 t
log2 t

)2 · 6

(log2 t)
4
.

Summarizing, we have∫ δλ

1/2

2σ − 1

σ(1− σ)
(log t)2−2σdσ = 2 log t

∫ 2δ−1

0

α

1− α2
(log t)−α dα

≤ 2 log t

(log2 t)
2
+

(
12

1−
(

2λ log3 t
log2 t

)2 − 2

(log2 t)
2(λ−1)

)
log t

(log2 t)
4
.(3.3)
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We will require λ > 1 to ensure that 1
/
(log2 t)

2(λ−1) is a decreasing function. Let

us now consider the error terms from the bound on ℜ ζ′

ζ . A brief introduction to

the notation used in [1] is in order. We have β = σ − 1/2, where 0 < β < 1/2. ∆

is a real parameter, later chosen to be such that π∆ = log2 t. Also denote by m−
∆

the extremal minorant which is obtained for the Poisson kernel. By Lemma 9 in

[1], this is given by

m−
∆(z) =

(
β

β2 + z2

)(
e2πβ∆ + e−2πβ∆ − 2 cos(2π∆z)

(eπβ∆ + e−πβ∆)2

)
.

The first error term comes from

∑
n≤x

Λ(n)

n1/2

(
xβ

nβ
− nβ

xβ

)
=

2βx
1
2 − 2

1
2−βxβ( 12 + β)2 + 2

1
2+βx−β( 12 − β)2

( 14 − β2)

+O

(
βxβ(log x)4

)
,

where x = e2π∆. We have found an explicit bound for the sum in the following

lemma.

Lemma 4.

∑
n≤x

Λ(n)

n1/2

(
xβ

nβ
− nβ

xβ

)
≤

2βx
1
2 − 2

1
2−βxβ( 12 + β)2 + 2

1
2+βx−β( 12 − β)2

( 14 − β2)

+
1

24π
·
(
(log x)3 − (log 2)3

)
·
(
( 12 + β)xβ − ( 12 − β)x−β

)
Proof. We start by writing∑

n≤x

Λ(n) ·
(
n−(1/2+β)xβ − n−(1/2−β)x−β

)
Integration by parts gives

ψ(x)
(
x−(1/2+β)xβ − x−(1/2−β)x−β

)
−
∫ x

2

ψ(t)
(
t−(1/2+β)xβ − t−(1/2−β)x−β

)′
dt,

and ψ(2−) = 0. The first term is 0, and to apply the bound by Schoenfeld [9] again,

we write the integral as∫ x

2

(ψ(t)− t) ·
(
t−(1/2−β)x−β − t−(1/2+β)xβ

)′
dt

+

∫ x

2

t ·
(
t−(1/2−β)x−β − t−(1/2+β)xβ

)′
dt
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By (2.17), we have that this is less than or equal to

1

8π

∫ x

2

t1/2(log t)2 ·
(
( 12 + β)t−(3/2+β)xβ − ( 12 − β)t−(3/2−β)x−β

)
dt

+

∫ x

2

t ·
(
( 12 + β)t−(3/2+β)xβ − ( 12 − β)t−(3/2−β)x−β

)
dt

We simplify the two integrands, and get∫ x

2

(
( 12 + β)t−(1/2+β)xβ − ( 12 − β)t−(1/2−β)x−β

)
dt

+
1

8π

∫ x

2

(log t)2 ·

(
( 12 + β)xβ

t(1+β)
−

( 12 − β)x−β

t(1−β)

)
dt

The first integral we compute explicitly, and for the second integral we use the

mean value theorem for the function r → ( 12 + r)x
r, as in Lemma B.4. in [1]. Then

the two integrals are less than or equal to

( 12 + β)xβ
(
x1/2−β

1/2− β
− 21/2−β

1/2− β

)
−
(
( 12 − β)x−β

(
x1/2+β

1/2 + β
− 21/2+β

1/2 + β

))
+

1

8π

∫ x

2

(log t)2 ·

(
( 12 + β)xβ

t
−

( 12 − β)x−β

t

)
dt

After simplifying the first line, and using that
(
(log t)3/3

)′
= (log t)2/t to compute

the final integral, we have the result. □

We have that x = e2π∆ = (log t)2 and β = σ−1/2, so the integral over this error

term becomes(
8(log2 t)

3 − (log 2)3

24π

)∫ δλ

1/2

(
σ(log t)2σ−1 + (σ − 1)(log t)1−2σ

)
dσ

≤ (log2 t)
4

12π
+
λ (log2 t)

3 log3 t

6π
(3.4)

for t sufficiently large. This is the most problematic error term, since when we want

to compare this to the fourth-order term in our result, the function (log2 t)
8/ log t

is decreasing when t > ee
8

, which is roughly 101295. The second error term in (3.1)

comes from the Fourier transform of the minorant evaluated at 0, and by Eq.(3.4)

in [1] this is

m̂∆(0) = π

(
eπβ∆ − e−πβ∆

eπβ∆ + e−πβ∆

)
= π tanh(πβ∆) ≤ πmin{1 , β∆}.
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Thus

(3.5)∫ δλ

1/2

π min{1, (σ − 1
2 ) log2 t/π} dσ ≤ π min{1, λ log3 t/π}

∫ δλ

1/2

dσ =
π λ log3 t

log2 t
,

for t > π
λ · eee . The third error term in (3.1) comes from∣∣∣m−

∆(t−
1
2i ) +m−

∆(t+
1
2i )
∣∣∣,

and by Eq.(3.8) and Eq.(3.21) in [1], this is∣∣∣∣ β∆2e2π∆1/2

1 + ∆ · |t+ 1
2i |

+
β∆2e2π∆1/2

1 + ∆ · |t+ 1
2i |

∣∣∣∣ = β∆2eπ∆

|∆((t2/4) + 1)1/2 + 1|
≤ β∆2eπ∆

∆t+ 1
.

Hence

(3.6)

∫ δλ

1/2

(σ − 1
2 )
(
log2 t/π

)2
log t

1 + t log2 t/π
dσ =

λ2

2π
· log t(log3 t)

2

(t log2 t+ π)
.
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4. Proof of Theorem 1

First we summarize the results from the two previous sections. By (2.1), (2.22),

(3.2), (3.3), (3.4), (3.5) and (3.6), we have

log|ζ( 12 + it)| = −
∫ δλ

1/2

ℜζ
′

ζ
(σ + it) dσ + log|ζ(δλ + it)|.

≤ log 2

2

log t

log2 t
+

2 log t

(log2 t)
2
+

(
12

1−
(

2λ log3 t
log2 t

)2 − 2

(log2 t)
2(λ−1)

)
log t

(log2 t)
4

+
(log2 t)

4

12π
+
λ (log2 t)

3 log3 t

6π
+
π λ log3 t

log2 t
+
λ2

2π
· log t(log3 t)

2

(t log2 t+ π)

+
log t

(log2 t)
3
· 1

(log2 t)
2(λ−1)

·

(
1(

1− 2λ log3 t
log2 t

) +m(t, λ)

)

+
log t

(log2 t)
4
· 1.785

(log2 t)
2(λ−1)

(
1− 2λ log3 t

log2 t

)2
+

1

8π

(( log2 t

λ log3 t

)2
+

1

λ

(
1 +

log 2

2

) log2 t

log3 t
+ log 2

)
+ li(21/2−λa/ exp a) +

21/2

log 2
+

1

4π(log2 t)
2λ−1

+
1

log t log2 t
·
(
1 +

(log2 t)
2

8π log t
+

5

16π

log2 t

log t

)
,

for t > ee
e3 log 2

. We choose λ = 1.7540. Then

(4.1)

log |ζ( 12 + it)| ≤ log 2

2

log t

log2 t
+ 2

log t

(log2 t)
2
+ 0.696500

log t

(log2 t)
3
+ 375.5451

log t

(log2 t)
4
.
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