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1 Introduction

Most of the cryptosystems used today bases its security on one of three math-
ematically hard problems: the factorization of large integers, computing a
discrete logarithm, or computing an elliptic curve discrete logarithm. While
these problems are hard for classical computers, they have been shown to be
easily solved using a quantum computer. Since quantum computing is still
in its early stages, there is no immediate threat to our current cryptosys-
tems, but post quantum secure candidates to replace them has already been
created.

One of the top candidates(“NIST”, 2020) to replace current cryptosys-
tems is NTRU, which is not known to be vulnerable to attacks on quantum
computers. NTRU is an asymmetric cryptosystem, which means that it has
pairs of keys, one public and one private to encrypt and decrypt data.

The GPV (Gentry, Peikert, Vaikuntanathan) (Peikert, 2008) framework
is a description of how to generate secure signatures from a private and a
public key represented as bases for a lattice space in matrix form. When
a ciphertext is sent, the recipient needs a way to ensure the identity of the
sender. This is done by creating a signature s. We want the signature to be
as short as possible to minimize the time it takes to create it, but not too
short, or an attacker might be able to guess a valid signature.

In this paper we will describe how NTRU public and private keys are
created and how they are used to encrypt and decrypt messages. We will
then look at how they are instantiated in the GPV framework, which will
use the NTRU keys to generate signatures for encrypted messages.

1.1 Notation

• O denotes the big-o notation, which is the worst case run time of an
algorithm.

• Ω denotes the big-omega notation, unless stated otherwise, which is
the best case run time of an algorithm.

• The spectral norm ofB is denoted ||B||2 = (maximum eigenvalue of B∗B)1/2,
where B∗ is the conjugate transpose of B.

2 NTRU

NTRU is an asymmetric cryptosystem that is based on the NP-hard SVP
(Shortest Vector Problem) and CVP (Closest Vector Problem) in lattices. In
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contrast to the current RSA cryptosystem that is based on the hardness of
solving factorization problems, NTRU has keys built on polynomials trans-
lated to lattices.

In this chapter we will describe how to create public and private keys and
how to encrypt and decrypt with them. We will also look at some ways to
attack this encryption scheme.

2.1 Preliminaries

A lattice can be described as a free abelian group over a vector space Rn,
such that the dimension of the lattice is n, and that coordinate wise addition
and subtraction of lattice points is still a point in the lattice. Consider the

basis B =

([
1
0

]
,

[
0
1

])
in Z2 which generates a lattice over R2. The lattice is

now an infinite grid over R2 with points on every integer. When creating an
NTRU lattice, the basis is created from the coefficients of randomly generated
polynomials, with several hundred dimensions.

When we combine polynomials in a ring R, we use convolution, denoted
with ∗.

Definition 1 The convolution of two polynomials a(x) and b(x) in a poly-
nomial ring is defined as

a(x) ∗ b(x) =
N−1∑
k=0

( ∑
i+j≡k mod N

aibj

)
xk.

where ai and bj are the coefficients of a(x) and b(x), and N − 1 is the largest
degree of any variable in the polynomials.

Definition 2 For a positive integer N, the ring of convolution polynomials
is the quotient ring

R = Z[x]/(xN − 1)

such that all polynomials in the ring has integer coefficients and no variable
of degree larger than N-1.

2.2 Design

For encryption of a message m to begin, a public and private key will have
to be generated. These keys are generated by the public parameters

(p, q,N, d) ∈ Z+
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and a Lift operator, that takes a polynomial a ∈ Rq or Rp and center-lifts it
to a polynomial in R. When choosing the public parameters, we ensure that
gcd(N, q) = 1 and gcd(p, q) = 1. The proof for the choice of parameters will
follow in the next section. N − 1 is the maximum degree of any polynomial
used. The co-prime parameters p and q are used to generate the convolution
polynomial rings Rp, Rq such that

Rp = Zp[x]/(x
N − 1)

and

Rq = Zq[x]/(x
N − 1)

are R = Z[x]/(xN − 1) reduced by modulo p and modulo q respectively.
The parameter d is used to describe the coefficients of the polynomials

f and g. The operator T (d1, d2) calls an algorithm that outputs a random
polynomial a(x) ∈ R with d1 coefficients equal to 1, d2 coefficients equal to
-1, and the rest equal to 0. If T has only one input, the number of coefficients
equal to 1 and -1 are equal.

We can now make two polynomials

f ∈ T (d+ 1, d) and g ∈ T (d, d)

where f will be used to calculate its inverses

Fp(x) = f−1(x) ∈ Rp

and

Fq(x) = f−1(x) ∈ Rq.

When these operations are done, the public key used for encryption is

h(x) = Fq(x) ∗ g(x) ∈ Rq.

If f has been chosen so that no inverse exists, the process is restarted with
new polynomials. The plaintext to be encrypted is a polynomial

m(x) ∈ R

with coefficients that satisfies (−1
2
p < mi <

1
2
p). To encrypt a message, we

add m(x) to the recipients public key multiplied by a random polynomial,
that is used to generate noise in the ciphertext

e(x) ≡ p · h(x) ∗ r(x) +m(x) ∈ Rq,

4



where r(x) is a random polynomial generated from T (d, d).
When the ciphertext is recieved, the recipient can use their private poly-

nomial f(x) to compute a new polynomial

a(x) ≡ f(x) ∗ e(x) mod q

and then use the Lift operator in the public parameters to take a(x) out of Rq

into R, and then take the resulting polynomial into Rp. This new polynomial
is

b(x) ≡ Fp(x) ∗ a(x) mod p

which is equal to the plain text m(x), given that the parameters have been
chosen such that q > (6d+ 1)p. This is because a(x) can be written as

a(x) ≡ f(x) ∗ e(x) mod q

≡ f(x) ∗ (p · h(x) ∗ r(x) +m(x)) mod q

≡ p · f(x) ∗ Fq(x) ∗ g(x) ∗ r(x) + f(x) ∗m(x) mod q

≡ p · g(x) ∗ r(x) + f(x) ∗m(x) mod q

If we now ensure that the coefficients of the polynomial a(x), are all less
than q, so that when a(x) is lifted to R, no information is lost from having
it computed modulo q, we get the plaintext m(x).

For the polynomials g(x) and r(x), both in T (d, d), the worst case scenario
is if the 1 and -1 coefficients match up. This would lead to the largest
coefficient in g(x) ∗ r(x) being 2d. Now consider f(x) ∈ T (d + 1, d) and the
plaintext m(x) whose coefficients mn are

−1

2
p < mn <

1

2
p.

The largest possible coefficient of the product f(x) ∗ m(x) is (2d + 1) · 1
2
p.

Now we can look at the equation

a(x) ≡ p · g(x) ∗ r(x) + f(x) ∗m(x) mod q.

The largest possible coefficient for a(x) is

p · 2d+ (2d+ 1)
1

2
p = (3d+

1

2
)p =

1

2
(6d+ 1)p,

which means that any coefficient of a(x) is smaller than 1
2
q, given that p, q

are chosen such that q > (6d + 1)p. This ensures that the polynomial a(x)
mod q = a(x) in R.
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The plaintext m(x) can now be recovered:

b(x) ≡ Fp(x) ∗ a(x) mod p

≡ Fp(x) ∗ f(x) ∗ e(x) mod p

≡ Fp(x) ∗ f(x) ∗ (p · h(x) ∗ r(x) +m(x)) mod p

≡ m(x) mod p

Because this equation is reduced mod p, the product p ·h(x)∗r(x) becomes
0 and Fp(x)∗f(x) = 1 ≡ m(x) mod p. The following theorem is now proven.

Theorem 1 Let f ∈ T (d + 1, d) and g ∈ T (d, d). The polynomials f, g and
their inverses modulo p and modulo q can be used to generate public and
private keys that can be used to encrypt and decrypt a message.

The proofs for the valid choice of parameters f,g,N,p,q will follow in the next
section.

2.3 Choice of parameters

The way the NTRU-parameters are chosen is crucial for the speed and secu-
rity of the algorithm. The polynomials f and g are generated randomly by
using an algorithm called NTRUGen, which outputs f,g,F,G. A public key
can only be generated from f and g iff f is invertible modulo q, which is true
iff NTT(f ) has no coefficient equal to zero. To give a definition of NTT, we
first need to define the Fast Fourier Transform.

Definition 3 The Fast Fourier Transform (FFT): Let f ∈ Q[x]/(ϕ). Let
Ωϕ be the set of complex roots of ϕ, ζ ∈ Ωϕ, and suppose the polynomial ϕ
is monic with distinct roots over C, so that ϕ(x) = Πζ∈Ωϕ

. The Fast Fourier
transform of f with respect to ϕ is:

FFTϕ(f) = (f(ζ))ζ∈Ωϕ

When ϕ is clear from context we note FFT (f).

Definition 4 NTT (Number Theoretic Transform) is the analog of the FFT
in the field Zp, where p is a prime such that p ≡ 1 mod 2n. The polynomial
ϕ now has exactly n roots (ωi) over Zp. We can now represent any polynomial
f ∈ Zp/(ϕ) as f(ωi).

Having a polynomial represented in its NTT form allows for faster comput-
ing of binary operations addition, subtraction, multiplication and division,
because they can be done element wise.
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When we generate the parameters p and q, we require that gcd(p, q) = 1,
or an attacker can easily get the plain text from the cipher text e(x).

Proof: Proof by contradiction:
case 1: p=q:
If p=q then

Rp =
Z/pZ[x]
xN − 1

= Rq =
Z/qZ[x]
xN − 1

the cipher text

e(x) ≡ p · h(x) ∗ r(x) +m(x) mod q

≡ m(x)

since p = q and p mod p ≡ 0, e(x) ≡ m(x) mod q
Case 2: p|q

e(x) ≡ p · h(x) ∗ r(x) +m(x) mod q

Apply the Lift-function:

Lift(e(x)) ≡p · h(x) ∗ r(x) +m(x) + n · q
n · q mod p ≡ 0

p · h(x) ∗ r(x) mod p = 0

Lift(e(x)) mod p ≡ m(x)

We have now proved that p=q and p|q breaks the encryption, so to achieve
any security, we should choose p,q such that gcd(p,q)=1. ■

We also have the requirement that gcd(q,N) = 1. If q|N , then the lattice
problems are reducible from Zq/(X

N−1) down to Zq/(X
q−1). When solving

lattice problems, they are easier to do in a smaller lattice, so if we can reduce
a lattice to a smaller lattice, equivalent problems become easier to solve.

When generating the polynomial f, the parameters of T cannot be (d, d),
or f will never have an inverse. Proof:

Let f(x) ∈ T (d, d)

Now, since f has equal amounts of coefficients equal equal to 1 as -1,

f(1) =
∑

fi = 0

7



Assume, for the sake of contradiction, that f−1(x) = b(x)

f(x) ∗ b(x) ≡ 1 (mod xn − 1)

⇒ f(x) ∗ b(x) + c(x)(Xn − 1) = 1

Now, let x = 1. This gives us

f(1) ∗ b(1) + c(1)(1n − 1) = 1

0 = 1

This is a contradiction, hence we can conclude that we need at least one
more coefficient equal to 1 than -1 such that f ∈ T (d+1, d) for f to have an
inverse.■

2.4 Attacks on NTRU

When the public key h(x) has been made public, there is a hidden relationship

f(x) ∗ h(x) ≡ g(x) mod q.

An attacker can now try to break the NTRU encryption system by solving
the NTRU key recovery problem.

The NTRU Key Recovery Problem: Given h(x), find ternary polynomials
f(x) and g(x) satisfying f(x) ∗ h(x) ≡ g(x) mod q

Definition 5 A ternary polynomial has coefficients equal to 1, 0 or -1.

While one solution to this problem is the polynomials (f(x), g(x)), the ro-
tations of these polynomials are also solutions to the problem, because the
coefficients of f(x) and g(x) have been rotated by k positions.

(xk · f(x), xk · g(x)), for 0 ≤ k < N.

A solution that is rotated yields the rotated plain text xk ·m(x). If an attacker
tries to extract the private key from solving the NTRU key recovery problem
by brute force, they will have to check every polynomial in T (d + 1, d), and
since all rotations of the solution is also a solution, the number of solutions
are given by #T (d+1, d)/N . The size of the set T (d1, d2) is given by choosing
d1 coefficients to be 1, and d2 of the remaining N − d1 coefficients to be -1,
as follows:

#T (d1, d2) =

(
N

d1

)(
N − d1

d2

)
.

8



We now chose the NTRU public parameters (N, p, q, d) to be (509, 3, 1024, 56),
so that (6d− 1) · 3 = 1005 < q = 1024. The number of possible solutions for
the NTRU key recovery problem is

1

1024

(
1024

57

)(
968

56

)
≈ 8.25185.

2.5 NTRU Lattice

The public key h(x), and the parameter q can be used to express NTRUEn-
crypt as a lattice cryptosystem, where h(x) is a polynomial of degree N − 1
and can be written as

h(x) = h0 + h1x+ ...+ hN−1x
N−1.

We can now use h(x) and q to express the NTRU lattice LNTRU
h in terms of

linearly independent basis vectors in the 2N-dimensional matrix

MNTRU
h =

[
I h
0 qI

]
,

where h is all cyclical permutations of the coefficients of the public key h(x).
The private key is the matrix

PNTRU =

[
f g
F G

]
,

where the entries in the matrix are all cyclical permutations of the polyno-
mials f, g, F and G and has to satisfy the NTRU equation

fG− gF = q mod xN − 1. (1)

While the public key matrix MNTRU
h and the private key matrix gener-

ate the same lattice, PNTRU consists of small polynomials, which allows for
solving lattice problems for the lattice generated from these matrices. When
MNTRU

h is made public, an attacker could theoretically extract

h(x) = Fq(x) ∗ g(x) ∈ Rq

to find Fq and g(x). The hardness of computing small polynomials f ′, g′

such that h = g′ ∗ (f ′)−1 constitutes the inversion version of the NTRU
assumption. The decisional version of the NTRU assumption states that h
is indistinguishable from g′ ∗ (f ′)−1 or a uniformly random polynomial in the
same ring.

The lattice LNTRU
h can be viewed as a a grid with vertices in Zn over Rn.

The fundamental domain F of LNTRU
h is the volume of the space within the

grid.
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Definition 6 For a lattice L, the fundamental domain F of L is n-dimensional
and is called the determinant of L, denoted det(L).

In figure 1, F is represented as the shaded parallelogram in between the
vectors.

v1

v2

v1 + v2

2v1 + v2

Figure 1: A simple illustration of a 2-D lattice space

This volume can be calculated by

det(LNTRU
h ) = Vol{t1v1 + t2v2 + ...+ tnvn | 0 ≤ ti < 1}

10



2.5.1 Lattice problems

The LNTRU
h lattice can be used as a basis for a cryptographic algorithm be-

cause of a collection of NP-hard problems called the Shortest vector problem
and the Closest vector problem.

Definition 7 Shortest Vector Problem (SVP): Finding the shortest non-zero
vector in the lattice L, denoted λ(L) = min

v∈L/{0}
||v||N .

Definition 8 Closest Vector Problem (CVP): Finding the closest vector v ∈
L to a given vector w /∈ L

When the long public basis is made public, it is possible for an adversary to
reduce the vectors in this basis using the LLL-algorithm(Deng, 2016). It is
a way to reduce a basis for a lattice to more easily solve SVP. The algorithm
works by orthogonalizing a basis B to a basis B† for a lattice L and reducing
it.

Definition 9 (Gram-Schmidt Orthogonalization method) Let bn = {b1, b2, ..., bi}
be a basis for a subspace Si ∈ Rn. The orthogonal basis b†n = {b†1, b

†
2, ..., b

†
n}

is defined:

b†1 = b1

b†2 = b2 −
b2b

†
1

∥b†1∥2
b1

...

b†n = bi − Σi<n

bib
†
n

∥b†n∥2
bi

Definition 10 Let bn = {b1, b2, ..., bn} be a basis for a n-dimensional lat-
tice L and let b†n = {b†1, b

†
2, ..., b

†
n} be the Gram-Schmidt orthogonalized basis

for L. Let

ui,k =
bkbi

b†ib
†
i

bn is a LLL reduced basis if two conditions are met:

1. ∀i ̸= k, ui,k ≤ 1
2

2. For each i, ∥b†i+1 + ui,i+1b
†
i∥2 ≥ 3

4
∥b†i∥2

11



Algorithm 1 LLL algorithm

Input:{b1, b2, . . . , bn}
Step 1: Gram-Schmidt orthogonalization

for i = 1 to n do
for k = i− 1 to 1 do

m← nearest integer of uk,i

bi ← bi −mbk

Step 2: Check Condition 2, and swap

for i = 1 to n− 1 do
if ||b†i+1 + ui,i+1b

†
i ||2 < 3

4
||b†i ||2 then

swap bi+1 and bi
go to step 1

Being able to reduce a lattice gives a potential attacker more efficient ways
of breaking the system. If the LLL-algorithm manages to reduce a basis,
the resulting basis is more orthogonal than the original. To measure the
orthogonality of a basis we use the Hadamard ratio.

Definition 11 The Hadamard ratio 0 ≤ H(b) ≤ 1 of a basis b = {v1,v2, · · ·vn}
is defined as

H(b) =
(

detL

∥v1∥∥v2∥ · · · ∥vn∥

)1/n

where n is the dimension of the lattice generated from the basis b.

The higher the Hadamard ratio, the more orthogonal the vectors.
For small dimension lattices, reducing the basis for the public key can

reveal the coefficients in the polynomials used to create the secret key. To
show this, we choose the NTRU public parameters (N, p, q, d) = (7, 3, 41, 2),
so that 41 = q > (6d + 1)p = 39. We now choose our private polynomials f
and g so that f ∈ T (3, 2) and g ∈ T (2, 2):

f(x) = x6 − x4 + x3 + x2 − 1 and g(x) = x6 + x4 − x2 − x

The public key is h(x) = Fq(x) · g(x) and the private key is (f(x), Fp(x)).
Using h(x) to create a basis for the NTRU lattice

MNTRU
h =

[
I h
0 qI

]

12



we can apply the LLL-algorithm to reduce it to the basis MNTRU
LLL , so that

the vectors are smaller and to increase its Hadamard ratio. Calculating the
Hadamard ratio of the two bases gives

H(MNTRU
h ) = 0.1184 and H(MNTRU

LLL ) = 0.8574.

The smallest row vector in the reduced basis is

(1, 0,−1, 1, 0,−1,−1,−1, 0,−1, 0, 1, 1, 0),

which we now split in two, and use each piece as the coefficients for the
polynomials f ′ and g′ so that

f ′(x) = 1− x2 + x3 − x5 − x6

g′(x) = −1− x2 + x4 + x5.

These polynomials are not the private polynomials f and g chosen at the
beginning, but simple rotations of them. Simply rotating f by −x3 we get

−x3 · f(x) = −x3 · (x6 − x4 + x3 + x2 − 1) = −x9 + x7 − x6 − x5 + x3

Since we are in the ring Zq[x]/(x
N − 1) where N = 7,

−x3 · f(x) ≡ 1− x2 + x3 − x5 − x6 = f ′(x)

and doing the same with g, we get

−x3 · g(x) =− x3 · (x6 + x4 − x2 − x) = −x9 − x7 + x5 + x4

≡x5 + x4 − x2 − 1 = g′(x)

We have now successfully applied the LLL-algorithm to get the private poly-
nomials used to create the private key, breaking the encryption. While the
LLL-algorithm can easily reduce a basis with only 2N = 14 dimensions,
it is less efficient at reducing higher dimensional bases(Nguyen & Stehlé,
2009), such as 500 < N < 1000 that is used in actual implementations of
NTRU(Chen et al., 2019).

3 GPV-Framework

The GPV framework describes a way to obtain secure lattice based signa-
tures. It is instantiated by a short (private) and a long (public) basis for a
lattice space, and an algorithm that can compute short signatures based on
the information in the short basis. There are many available choices for both
lattices and signature generation algorithms when instantiating the GPV
framework, but in this text we will focus primarily on NTRU lattices and
two different choices for signature algorithms.

13



3.1 Instantiation

Using the NTRU-lattices generated by the public and private key polynomials
h(x) and (f(x), Fp(x)), we can instantiate the GPV framework with its public
basis

A =

[
I h
0 qI

]
∈ Zn×m

q

and the private basis

B =

[
f g
F G

]
∈ Zm×m

q ,

where m > n. These matrices are orthogonal, such that (∀a ∈ A∃b ∈ B| <
a, b >= 0), so that the lattice generated from B is orthogonal to the lattice
generated from A.

Sending an encrypted message requires a signature to verify the identity
of the sender. When signing a message m, the signature is a short value
s ∈ Zm

q . To compute this signature, a preimage c0 ∈ Zm
q is computed which

satisfies

c0A
t = H(m),

where H(m) is a hash function H : {0, 1}∗ → Zn
q .

The private key

B =

[
f g
F G

]
is now used to compute a vector v ∈ PNTRU which is close to c0. The
signature s is the difference s = c0 − v.

To compute the vector v, a trapdoor sampler is used because they leak
no information about the private key B. A trapdoor is a function f : D → R
where f can be efficiently computed, but the inverse f−1 : R → D is hard
to compute unless an attacker can obtain some secret information about the
trapdoor y, so that given f(x) and y, one can easily compute x. The trapdoor
function

fA(s) = As mod q

where A ∈ Zn×m
q , m > n, s ∈ Zm

q , is many-to-one, which means that it is
impossible to find an inverse of this function.

A trapdoor sampler outputs a short vector v such that vtA = c0, given
an input of a matrix A, a trapdoor T and a target c0.
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3.1.1 GGH and NTRUSign

GGH and NTRUSign are both public-key cryptosystems based on lattices,
and NTRUSign can be viewed as a variant of GGH instantiated with NTRU
lattices.

The challenging part about signature generation is the computation of
the vector v. While the high level description of computing v is the same,
the deterministic algorithms of GGH and NTRUSign frameworks works by
expressing c0 as a real linear combination of the rows of the private key B,
and then rounding these vectors coefficient wise before multiplying them by
B again, using a round off algorithm:

v ← ⌊c0B−1⌉B

When this procedure is done, s = v − c0 is guaranteed to be in the paral-
lelepiped [−1

2
, 1
2
]m ×B, which guarantees that the norm ||s|| has the same

Ω and O which means that the norm of s is tightly bound. While GGH
and NTRUSign both produce valid signatures s, since s lies in [−1

2
, 1
2
]m×B,

information about the secret basis B will gradually leak, making these sig-
nature generation procedures unsafe. This problem is known as The Hidden
Paralellepiped Problem (Nguyen & Regev, 2006).

3.1.2 Generating v using Klein’s algorithm

Klein’s algorithm (Klein, 2000) is a randomized version of the round-off algo-
rithm used in GGH and NTRUSign. It uses an input vector x and the vectors
b1, · · · , bn from the NTRU private key B to find a vector y in the lattice
L(b1, · · · , bn) that minimizes the distance |x − y|. If we provide the input
parameter x = c0, and the vectors b1, · · · , bn being the basis vectors for
PNTRU , this algorithm will, with high probability, return the closest lattice
vector y = v ∈ PNTRU to our input c0.

The first part in describing Klein’s algorithm is a procedure for rounding
a rational number to an integer, called randRoundc(r):

Algorithm 2 randRoundc(r)

r = p+ a , p ∈ Z, 0 ≤ a ≤ 1
b = 1− a
s = Σi≥0e

−c(a+i)2 + Σi≥0e
−c(b+i)2

Randomly choose Q ∈ Z from:
for i ≥ 0 do

P [Q = r − (a+ i)] = e−c(a+i)2/s and P [Q = r + (b+ i)] = e−c(b+i)2/s
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The input r ∈ Q is first split into an integer p ∈ Z and a decimal a, 0 ≤
a ≤ 1. Then, b = 1−a so that 0 ≤ b ≤ 1. The output integer Q is now chosen
from the stated probability distribution. This probabilistic procedure rounds
a rational number to an integer based on a spherical Gaussian distribution,
so the output will most likely be an integer close to the input, but it may also
output an integer far from the input, or even round an integer to another
integer.

The next procedure is nearA(x, d), which is used to determine the nearest
lattice vector to a vector x. This procedure uses the probabilistic randRoundc
procedure (Algorithm 2). Since the rounding in this procedure is random-
ized, we need to call the procedure many times so that the nearest vector
returned will most likely be the nearest lattice vector if the number of calls
are large enough. Let the Gram-Schmidt orthogonalized vectors correspond-
ing to a basis b1, · · · , bn be the vectors b†1, · · · , b†n, where b

†
d is the projection

of bd orthogonal to the vector space V (b1, · · · , bd−1). For this algorithm, we
assume that the input vector x lies in V (b1, · · · , bd).

Algorithm 3 nearA(x, d)

if d = 0 then ▷ It is the zero vector
return x

else
Let rdb

†
d be the projection of x in the direction of b†d

Let cd = A|b†d|2
Let λd = randRoundcd(rd)
Let x′ = x+ (λd − rd)b

†
d

Return nearA(x
′ − λdbd, d− 1) + λdbd

Lemma 1 The recursion parameter x′−λdbd in near is a vector in V (b1, · · · , bd−1).

Assuming x lies in V (b1, · · · , bd), we know that x′ = x + (λd − rd)b
†
d and

x′−λdbd also lies in V (b1, · · · , bd), since b†d and bd must lie in V (b1, · · · , bd).
Now, since b†d is the projection of bd orthogonal to V (b1, · · · , bd−1), and the
projection of x′−λdbd in the direction of b†d is the zero vector, x′−λdbd lies
in V (b1, · · · , bd−1).

When this algorithm has been called sufficiently many times, we can
output the nearest vector returned by these calls. The returned vector is the
vector v that will be used in the signature generation.

The key difference between Algorithm 3 and the algorithms used by GGH
and NTRUSign is that Algorithm 3 utilizes a random rounding of real num-
bers, instead of using Babai’s Round-off algorithm, which prevents the basis
B from leaking.
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When the near algorithm is called, the probability that it will return a
vector in the lattice L, and therefore the number of calls we need to ensure a
usable output, depends on the choice of the constant A, the distance from our
input vector x to the lattice vector y, and the product of the terms 1/s(·),
as given in the following lemma.

Lemma 2 Let ŷ be a vector in the lattice L(b1, · · · , bd). Let x be a vector
in V (b1, · · · , bd). The probability that nearA(x, d) returns ŷ is(∏

i≤d

1/s(A|b†i |2)

)
exp(−A|y − x|2)

Proof: To prove this probability we will use mathematical induction
Let ŷ = (δ1b1, δ2b2, · · · , δdbd)
Base Case: d = 1
The function nearA(x, d) returns ŷ only if randRoundA|b†1|2

(r1) = δ1, which,

by definition of randRound, happens with a probability

1

s(A|b†1|2)
exp (−A|b†1|2|r1 − δ1|2) =

1

s(A|b†1|2)
exp (−A|x′ − ŷ|2).

Induction step:
Suppose the formula holds up to d − 1, show that it also holds for d. The
probability that nearA(x, d) returns ŷ is

P (λd = δd) · P (nearA(x+ (λd − rd)b
†
d − λdbd, d− 1) = ŷ − δdbd).

The first probability is

P (λd = δd) =
1

s(A|b†d|2)
exp (−A|b†d|

2(rd − δd)
2).

The second probability is(∏
i<d

(1/s(A|b†i |2))

)
exp (−A|(x′ − δdbd)− (ŷ − δdbd)|2).

When we multiply them together, we get the first part

1

s(A|b†d|2)
·
∏
i<d

1

s(A|b†i |2)
=
∏
i≤d

1

s(A|b†i |2)
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and the second part

exp (−A|b†d|
2(rd − δd)) · exp (−A|(x′ − δdbd)− (ŷ − δdbd)|2).

Since x′ − ŷ ∈ V (b1, · · · , bd−1) and b†d are orthogonal to V (b1, · · · , bd−1),

we have that |x′ − ŷ|2 + |b†d|2(rd − δd)
2 = |x − ŷ|2. From nearA: x′ =

x+ (λd − rd)b
†
d, and since in this case, λd = δd:

|(x′ + (rd − δd)b
†
d)− ŷ|2 = |(x′ + (rd − λd)b

†
d)− ŷ|2

= |(x′ − (λd − rd)b
†
d)− ŷ|2

= |x− ŷ|2

Putting it all together, the probability is∏
i≤d

1

s(A|b†i |2)
exp (−A|x− ŷ2|),

which is the same as is stated in the lemma. ■

3.2 Verification

When a signed ciphertext is recieved, we can decrypt the message with our
private key, since it has been encrypted by using our public key. The signa-
ture has been computed with the senders private key, so we can check if it is a
valid signature by using their public key. Since s = c0−v, and c0A

t = H(m)

c0A
t = sAt + vAt,

and since v ∈ B, the product vAt = 0, which leads to

c0A
t = sAt.

Verifying that s is a valid signature is done by checking if s is short and
that

sAt = H(m).
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