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Abstract

In the coming years, electricity demand and non-dispatchable power production
are projected to increase. Improved consumer flexibility is needed to address the
increase in production volatility. A peak power tariff will be introduced for res-
idential electricity consumers in Norway in 2022. This tariff creates an economic
incentive for residential consumers to reduce their peak power demand.

Research in model predictive control (MPC) methods for residential building
power use mostly focus on reductions in total power use and cost. This thesis
investigates model predictive control methods for reducing the combined peak
power consumption in groups of houses by controlling heat-pump use. A dis-
tributed MPC approach, based on dual decomposition, allows for both parallel
computation and coordination between houses to reduce joint power peaks while
mostly preserving the privacy and independence of each house.

Simulation of the control schemes show that the distributed MPC managed to
reduce momentary and hourly peak power, but at the expense of comfort in the
houses. Further research should refine the peak reduction formulations, imple-
ment a more realistic room temperature model, and investigate the feasibility of
residential power coalitions.
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Sammendrag

I de kommende årene anslås elektrisitetsetterspørselen og andelen ikke-kontrollerbar
kraftproduksjon å øke. Forbedret forbrukerfleksibilitet er nødvendig for å imøtekomme
økt produksjonsvolatilitet. I Norge i 2022 skal et nytt ‘kapasitetsledd’ erstatte det
tidligere fastleddet i nettleia. Dette gir husstander et økonomisk insentiv til å re-
dusere toppstrømbehovet deres.

Forskning i modellprediktiv kontroll (MPC) av energibruk i boliger fokuserer
i hovedsak på reduksjoner i totalt energibruk og kostnader. Denne oppgaven un-
dersøker modellprediktive kontrollmetoder for å redusere det kombinerte maksi-
male strømforbruket i grupper av hus ved å kontrollere varmepumpebruken. En
distribuert MPC-tilnærming, basert på ‘dual decomposition’, tillater både paral-
lelle utregninger og koordinering mellom hus for å redusere felles effekttopper,
samtidig som privatvern og uavhengigheten til hvert hus tas hensyn til.

Simulering av kontrollmetodene viser at den distribuerte MPC klarte å red-
usere momentant og timesmessing toppforbruk, men på bekostning av komforten
i husene. Videre forskning bør videreutvikle toppreduksjonsformuleringene, im-
plementere en mer realistisk romtemperaturmodell og undersøke gjennomførbar-
heten av kombinerte strømavtaler for flere boliger.
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Chapter 1

Introduction

1.1 Problem Description

This thesis investigates control methods to reduce peak power consumption in res-
idential power coalitions. The control methodologies employed are centralized-
, decentralized-, and distributed model predictive control, where the distributed
control formulation is obtained using dual decomposition. A residential power co-
alition is an imagined scenario where multiple residential homes band together to
negotiate a common agreement with a power provider. Crucially, the peak power
cost would be calculated from the highest combined power consumption in the
coalition.

1.2 POWIOT

This thesis expands upon the control aspect of the ’POWIOT’ project, led by Prof.
Sebastien Gros. The aim of the POWIOT project is to implement a model predictive
control (MPC) algorithm to control home heating in a way that reduces power
consumption and power costs, feeding the MPC with data collected by a Raspberry
Pi using smart-home IoT technology. Information about the daily electricity spot
market and a temperature model of the house allows the algorithm to exploit the
inherent thermal capacity of the house to e.g. pre-heat the home prior to a spike
in electricity prices. Large-scale adoption of such a solution might help spread out
total energy consumption close to spikes since heating accounts for a significant
portion of energy usage.

Figure 1.1 shows an overview of the system currently in place in Trondheim,
in the professor’s house. A Raspberry Pi collects information about power con-
sumption, spot prices, indoor temperature, heat pump settings, and weather fore-
casts. This data is accessed by another computer running a moving horizon es-
timator (MHE) and the MPC. The computer, as of now the professor’s laptop,
sends commands to the heat pump. Access to the heat pumps, which also in-
cludes indoor temperature measurements, is provided by two Sensibo Sky gate-

1



2 Axel Tveiten Bech: Distributed MPC for Peak Power Reduction in Smart Homes

Mitsubishi
Heat Pumps

Smarthouse connectors

Tibber Pulse Sensibo Sky

Raspberry Pi

User requests
Measurements

Measurements,
status

PC

Data

Commands

Commands

Data Collector

MPC / MHE

Real time power consumption
Electricity spot price Heat pump data

MET
API

Weather forecasts

Mill Senseair
Air quality

Figure 1.1: Hardware overview of the system

ways. A Tibber Pulse gateway makes the real-time power consumption available
through an application programmable interface (API). The same API is used to
access daily electricity prices but does not depend on the Tibber Pulse device. The
MET API provides weather forecasts from The Norwegian Meteorological Insti-
tute. The model used in the MPC has been generated using system identification
methods (SYSID).

1.3 Motivation

1.3.1 Challenges in Power Markets

The electrical grid consists of two parts. The transmission grid is where the power
is produced and transported. The voltage is higher because for transporting the
same amount of power, a higher electrical current gives more losses than high
voltage. The power distribution grid is where the electricity is distributed to con-
sumers. It has a lower voltage, closer to that of most electrical appliances. In Nor-
way, the power consumption of especially residential consumers varies much with
both time of year and time of day [1]. If consumer demands are not met during
peak power consumption, brown-outs or black-outs can occur. Because of this, the
electrical grid is typically oversized compared to the average consumption.

Buildings account for 40 % of energy consumption in the EU [2]. Household
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energy demands are likely to increase with more electric cars and increased use
of electric heating solutions like heat pumps. Energy demands in industry and
the transportation sector are also projected to increase [3]. Additionally, power
production in most countries is shifting towards renewable energy sources. Some
of these, like solar and wind power, can have a fluctuating output that depends on
weather conditions. The fluctuations in consumption and power production make
the need for smart solutions to ensure energy demands do not exceed production.

A Statnett report from 2018 details some predicted developments in the Nor-
dic power market [4]. The widespread adoption of advanced metering systems
(AMS), increased automation, and more aggressive price signaling will make it
more attractive for power consumers to adapt to the production of power instead
of the other way round. At the moment, however, consumer flexibility is under-
utilized as a solution to discrepancies between power production and consump-
tion. They also note that space-heating accounts for 64 % of household power con-
sumption in Norway, which in addition to the many available options for thermal
energy storage, makes heating an ideal source of household consumer flexibility.

1.3.2 New Capacity Cost

Transmission system operators (TSOs) are responsible for transmission grids in
a region of a country. These companies are different from electricity providers,
which users pay for the electricity itself. In Norway, users pay a ’nettleie’, grid
cost, to use the power infrastructure their local TSO is responsible for. The grid
cost consists of a fixed cost (fastleddet), as well as a cost based on consumption
(energileddet). The consumption cost is fixed per kWh, and independent of the
spot-price-based cost paid to an electricity provider.

From July 2022, Norwegian transmission system operators will change their
price models. The previous fixed cost will be replaced by a ’kapasitetsledd’, a capa-
city cost [5]. Figure 1.2 shows an example of the new pricing model. The energy
cost stays mostly the same in the new pricing model but is now cheaper at night.
The new day-night shift is not included in the models in this thesis. The capacity
cost is calculated each month, based on the hour the household consumed the
most energy. That is, momentarily high power consumption may not put a house-
hold in a higher price group, but maintaining high consumption over the course
of an hour will. In the example, consuming between 5-10 kWh in an hour will
put a household in capacity price group 2, which is 115 kr more expensive per
month than group 1. Crucially, this new model gives users an economic incentive
to reduce peak power consumption.

1.3.3 Residential Power Coalitions

In many countries, large-scale power consumers have power agreements in which
distribution costs are based on their maximum peak load. This incentivizes peak
shaving, in which power peaks are reduced. This means less money has to be spent
on expanding the power distribution network to accommodate peak demand. The
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Figure 1.2: New power price model [6]

Statnett report [4] predicts smaller power consumers may join together in aggreg-
ates to improve sway over markets. In a scenario in which a coalition of multiple
homes, or an apartment complex, can prove they have the same control over total
power consumption as a typical large industrial consumer, they may be granted
an agreement with power distribution networks similar to that of e.g. large indus-
trial consumers. In that case, they could employ similar peak shaving strategies
to reduce distribution costs. Their aggregated peak cost may be similar to the ca-
pacity tariff being introduced to Norwegian homes in 2022, where cost is based
on the highest hourly power consumption(s). Or it may be similar to how larger
power customers pay for their peaks, which considers momentary peaks.



Chapter 2

Background

2.1 Review

2.1.1 Model Predictive Control in Home Energy Management

Early research on home energy control employed simple control algorithms like
proportional-integral-derivative- (PID) and on-off controllers. On-off controllers
are still very common in thermostats. They deploy temperature hysteresis, where
they don’t switch to on or off until the temperature has changed a little past the
set point. The oscillations this causes means that the temperature will overshoot
the desired temperature, and will not stabilize completely [7]. PID controllers are
better, but still have difficulties handling the non-linear and noisy behaviour of
indoor temperature [7]. They also do not consider desired comfort levels in their
environments, and possess no information about the system they control.

More recent projects typically favour model predictive control (MPC) algorithms
[7]. Using a plant model that can be obtained through e.g. system identification
(SYSID), MPC algorithms iteratively solve a constrained finite-horizon optimiza-
tion problem based on the system model. This allows it to provide optimal control
for the current time step while taking into account the future behaviour of the sys-
tem. The working principles of model predictive control is described in more de-
tail in 2.2.1. Following its introduction in the 1980s, model predictive control was
mostly used in petro-chemical processes. This was because the processes ideally
operated close to the systems limits, or constraints, which MPC handles well [8].
Figure 2.1 shows the working principle of the algorithm.

Model predictive control is very well suited for building heating control [9].
Multiple demands, like comfort level, operating costs, and peak demand can be
accounted for as optimization criteria or constraints. Additionally, its predictive
nature allows it to take into consideration the inherent thermal storage properties
of buildings, allowing it to plan hours or even days ahead. Advances in the avail-
ability of both processing power and information collected from buildings further
compound the usability of the solution. However, one risks disenfranchising the
inhabitants of a building if they are not given a say in how the system should

5
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operate, or informed what it is planning [9].

Building management systems, which automate many facets of a building,
including heating, ventilation, and air conditioning (HVAC) systems, are mostly
deployed in large buildings. The research on MPC for HVAC reflects this, but there
is increasing research on deploying the system in residential smart buildings [10].
The same review also states that the performance of the MPC can be improved by
better estimation and prediction of disturbances such as humidity and solar irradi-
ation. In one Italian study not dissimilar to the POWIOT project, modern IoT and
ICT solutions were used to deploy an MPC on the HVAC systems in a smart build-
ing [11]. This included using a cloud based architecture for the system design, as
well as taking advantage of external application programmable interfaces (APIs)
to collect e.g. weather data. This allows the system to be accessed from anywhere.

2.1.2 Distributed Model Predictive Control

The centralized, decentralized, and distributed MPC approaches are presented
and discussed in [12]. The traditional, centralized approach includes all inform-
ation and model parameters in one place. This can be problematic if the formu-
lation includes an increasing number of subsystems, or agents, as the optimiza-
tion problem can become computationally infeasible. The original problem may
in some cases be split into several sub-problems pertaining to each agent, and
solved independently by local controllers. This is known as decentralized MPC.
The decentralized approach may be less optimal than the centralized approach
since the independent agents do not cooperate or take into account their effect on
the larger system. Distributed MPC is a middle ground between the centralized
and decentralized approach, where there is some limited communication between
agents. The information exchange may give better global performance, at best the
same as the centralized approach.

A recent paper investigates these MPC strategies in the context of energy man-
agement in buildings and energy hubs [13], with a particular focus on the dis-
tributed and centralized approach. The privacy of the building occupants as well
as computational feasibility and robustness are their main motivations for a dis-
tributed approach over a centralized one. In the distributed approach, the local
controllers are derived from performing dual decomposition on the original prob-
lem, where a shared variable couples the systems. The shared variables are the
amount of heat taken from a shared water storage tank. In terms of temperature
violation and heating efficiency, the distributed and centralized approach have
nearly identical performance. The decentralized approach performs significantly
worse in those regards. The distributed approach is only more computationally ef-
ficient than the centralized approach when the number of agents is large, around
50 or more.
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2.1.3 Peak Power Reduction

One paper incorporates incentives to make homes consume power in a grid-friendly
way [14]. This is achieved by designing and introducing a special tariff that reflects
the cost of providing the end-user with electricity at any given time. Additionally,
a MPC scheme is introduced so the climate control takes the new tariffs into ac-
count. The resulting scheme reduces peak power demand primarily by shifting
electricity demands associated with the thermal load. One disadvantage of their
approach is that the total electricity consumed increases due to the load shifting.
They also note that some consumption cannot realistically be shifted, like lighting.
This limits the efficacy of the approach.

Another paper proposes optimization models to manage energy load for single-
and multi-house cases, while taking into account distributed energy sources and
batteries [15]. The single-house optimization model introduces a fixed limit on
the amount of energy purchased at each time slot. The multi-house optimization
model introduces a similar constraint, but the limit applies to the sum of purchased
energy by the houses at each time slot. Test show that the multi-user optimiza-
tion model produces much lower peak electricity demand compared to using the
single-user model on the same number of homes.

2.2 Theory

2.2.1 Model Predictive Control

Model predictive control (MPC) is a control method that employs a model of the
target system to decide the best course of action. MPC algorithms solve a con-
strained finite-horizon optimization problem based on the system model. At each
time step, the solution to the optimization problem will be a sequence of inputs,
as well as the system states that would result from that sequence of inputs. The
first input/action in the solution sequence is applied to the real system, and the
process repeats itself at the next time step. This allows the MPC to provide optimal
control for the current time step while taking into account the future behaviour of
the system. Figure 2.1 shows the working principle of the algorithm. As time pro-
gresses, the optimization window moves forward so that it starts at the current
time step. The optimization problem the MPC solves at each new optimization
window can be written as follows:

min
x ,u

J(x , u) =
N−1
∑

i=0

l(x i , u i) + V (x N ) (2.1a)

subject to x i+1 = f (x i , u i) i = 0,1, ...N − 1 (2.1b)

x 0 = x̄ 0 (2.1c)

g(x i , u i)≤ 0 i = 0,1, ...N − 1 (2.1d)

h(x i , u i) = 0 i = 0,1, ...N − 1 (2.1e)
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Figure 2.1: An illustration showing the working principle of model predictive
control [16]
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Equation (2.1) is a generic MPC formulation. The subscript i represents the
prediction steps for the current optimization horizon, with a prediction horizon
of N steps.

x is the state vector for the system. It describes the state of the system the MPC
is trying to control. u is the input vector, which contains the inputs the MPC has to
control the system. Equation (2.1a) shows the cost function to be minimized. The
function l(x i , u i) is known as the stage cost and V (x N ) is known as the terminal
cost, which applies to the last state in the optimization horizon. Together these
define the cost function J(x , u). Equation (2.1b) are the dynamics constraints of
the system. The dynamics constraints ensure continuity between steps i+1 and i
in terms of the system model. Equation (2.1c) is a constraint on the initial state
of the system, which is set to be equal to an estimate of the initial state x̄ 0. Any
additional inequality or equality constraints in the system are included in (2.1d)
and (2.1e).

(2.1) is a so-called optimal control problem (OCP), ’optimal’ because the solu-
tion provides an (usually) optimal way to control the system with respect to the
provided cost function and constraints. This generalized form may represent non-
linear functions. Model predictive control with non-linear constraints or cost func-
tions is known as non-linear model predictive control (NMPC).

2.2.2 Numerical Optimal Control

CasADi [17] is a symbolic framework for optimal control, among other things. For
nonlinear programming (NLP), it solves problems of the following form.

min
z

f (z, p)

zl b ≤ z ≤ zub

gl b ≤ g(z, p)≤ gub

(2.2)

Where z is the decision variable and p is a known parameter vector. zl b and
zub are bounds on the decision variable. g(z, p) contains the constraint functions
for the problem, and may encompass both equality and inequality constraints. gl b
and gub are the bounds on the constraint functions, and are equal when g(z, p)
is an equality constraint. To utilize CasADi to solve the MPC problem, (2.1) must
be reformulated to fit the NLP solver in CasADi (see (2.2)). First, the constraints
in (2.1) may be reformulated as follows:

min
x ,u

J(x , u) (2.3a)

subject to 0≤ x i+1 − f (x i , u i)≤ 0 i = 0, 1, ...N − 1 (2.3b)

x̄ 0 ≤ x 0 ≤ x̄ 0 (2.3c)

−∞≤ g(x i , u i)≤ 0 i = 0, 1, ...N − 1 (2.3d)

0≤ h(x i , u i)≤ 0 i = 0, 1, ...N − 1 (2.3e)
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Equation (2.3b) is the rewritten form of the dynamics constraints (2.1b). The
upper and lower bounds are the same because it is an equality constraint. The
constraint (2.3c) is based on the initial state equality constraint (2.1c). The initial
state estimate x̄ 0 is set as the upper and lower bound on the initial state x 0. The
equality constraint (2.1e) is rewritten as (2.3e), where once again the upper and
lower bounds are the same. (2.1d) is an inequality constraint, and as such it is
written as (2.3d). Since it only has an upper bound of 0, its ’lower bound’ is set
to negative infinity to fit with the NLP solver.

In addition to rewriting the constraints as (2.3b)-(2.3e), the states x and inputs
u from may be both be included as decision variables. Then the MPC formulation
(2.1) may be written in the same form as the CasADi NLP, (2.2):

y =

�

x
u

�

(2.4a)

min
y

J(y , p) (2.4b)

y l b ≤ y ≤ yub (2.4c)

g l b ≤ g (y , p)≤ g ub (2.4d)

The cost function (2.4a) equates to the MPC cost function (2.1a). In the con-
text of (2.1), contents of p may be weights for the cost function, model para-
meters, external data, or other information. The dynamics constraints (2.3b),
inequality constraints (2.3d), and equality constraints (2.3e) are all part of the
constraint functions (2.4d). The initial state constraint is a part of the decision
variable bounds (2.4c).

2.2.3 Dual Decomposition

Decomposition methods break up large problems into smaller ones to be solved
separately. This has the advantage of reducing problem complexity as well as mak-
ing it possible to compute the problems in parallel. In the context of model pre-
dictive control, the problems may be solved by separate controllers at different
locations.

A problem may be separable, in which case the subproblems are independent
of each other and the solution to the original problem can be re-assembled from
the solutions to the subproblems [18]. The following is an example of a separable
problem:

min
x1,x2

f1(x1) + f2(x2)

x1 ∈ C1

x2 ∈ C2

(2.5)

Equation (2.5) is a two-variable example of a separable problem. Both the ob-
jective function and constraints are decoupled, and the problem may be solved
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separately. The function f1 and the constraints C1 constitute the subproblem per-
taining to x1. f2 and the constraints C2 constitute the subproblem pertaining to
x2:

min
x1

f1(x1)

x1 ∈ C1

(2.6)

min
x2

f1(x2)

x2 ∈ C2

(2.7)

The solutions to problem (2.6) and (2.7) can be combined for the solution to
the original problem. Decomposition methods come into play when problems are
not separable:

min
x1,x2

f1(x1) + f2(x2)

x1 ∈ C1

x2 ∈ C2

h1(x1) + h2(x2)≤ h0

(2.8)

The problem in (2.8) has a coupling constraint h1(x1) + h2(x2) ≤ h0, and
cannot be trivially separated into subproblems without decomposition. To per-
form dual decomposition on this example, the first step is forming the Lagrangian
function:

L(x1, x2,µ) = f1(x1) + f2(x2) +µ (h1(x1) + h2(x2)− h0) (2.9)

As shown in (2.9) the Lagrangian relaxation entails penalizing violation of the
inequality constraint in the objective function, while removing the inequality as
a hard constraint. The Lagrange multiplier µ dictates how expensive constraint
violations should be.

Using (2.9), the dual function d(µ) for (2.8) is

d(µ) = min
x1,x2

L(x1, x2,µ)

x1 ∈ C1

x2 ∈ C2

(2.10)

The primal problem (2.8) is a minimization problem, and as such its dual
problem is a maximization problem:

max
µ

d(µ)

s.t. µ≥ 0
(2.11)

(2.11) is known as the dual problem. The weak duality theorem states that an
optimal solution to the dual problem provides a lower bound on the optimal value
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of the original primal problem [19], in this case, (2.8). If the original problem is
non-convex, the solution provides a local (or possibly global) maximizer of the
dual problem.

The difference between the optimal value of the original and dual problem is
known as the duality gap. If the primal problem is convex and satisfies a constraint
qualification, the duality gap is zero. A duality gap of zero is known as strong
duality, where the optimal value of the dual problem is the same as the optimal
value of the primal problem. The next step is to rewrite the Lagrangian.

L(x1, x2,µ)

= f1(x1) + f2(x2) +µ
�

h1(x1) + h2(x2)− h0

�

=
�

f1(x1) +µ h1(x1)
�

+
�

f2(x2) +µ h2(x2)
�

−µ h0

(2.12)

Equation (2.12) is separable in x1 and x2, and by fixing µ a subproblem for
each variable is obtained:

d1(µ) =min
x1

f1(x1) +µ h1(x1)

x1 ∈ C1

(2.13)

d2(µ) =min
x2

f2(x2) +µ h2(x2)

x2 ∈ C2

(2.14)

d(µ) = g1(µ) + g2(µ)−µh0 (2.15)

Where (2.13) and (2.14) are the dual problems for x1 and x2, referred to as
d1(µ) and d2(µ). The function (2.15) is the dual function that is maximized in the
dual problem (2.11).

The dual problem (2.11) can be solved with a projected subgradient method
[20] if the dual function d(µ) is not differentiable. If the dual function is differen-
tiable, a projected gradient method suffices. Starting from some initial point µ0,
at each iteration the method updates the dual variable µ in the direction of the
(sub)gradient at the current point. This update is then projected to stay feasible:

µk+1 = P
�

µk +αk∇d(µk)
�

(2.16)

(2.16) shows the gradient method.∇d(µk) is the gradient of the dual function
at µk. Since the dual problem (2.11) is a maximization problem, the direction
of ascent is used (+∇d(µk)). P is a projection function for the dual variable µ
to ensure iterates are feasible. αk is the step size at iteration k. If we consider
the gradient method (2.16) on the dual problem (2.11) (with the dual function
defined as (2.15), the dual variable µ will be updated as follows:
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µk+1 =
�

µk +αk∇d(µk)
�

+

=
�

µk +αk∇
�

d1(µk) + d2(µk)− h0 µk

�

�

+

=
�

µk +αk

�

h1(x1
∗) + h2(x2

∗)− h0

�

�

+

(2.17)

(2.17) shows how the dual variables are updated at each iteration. h1(x∗1) and
h2(x∗2) are the values of the constraint functions at the solution of the minimiz-
ation problems (2.13) and (2.14). The projection function ()+ ensures the dual
variable iterates stay positive, in line with the positivity constraint µ≥ 0 in (2.11).





Chapter 3

Method

In the POWIOT project, heat pumps are used to control the temperature in three
rooms in a house in Trondheim. The power use of the heat pumps is directed by a
controller in a way that saves money in electricity costs and considers preferences
for room temperature.

A simplified house control formulation, based on the one currently in use in
Trondheim, is developed in 3.1. This simplified formulation is expanded upon
in 3.3 to include peak power reduction. Based on those peak power reduction
formulations, three formulations are presented in 3.5. In chapter 4 those three
formulations are tested in a variety of simulation scenarios to determine their
performance.

Data collection software installed in the house in Trondheim collects data used
by the control algorithm that controls its heat pumps. Much of this same data is
used in the simulations in this thesis. An overview of the external data used in the
simulations can be found in section 3.2.

3.1 House Control Formulation

An MPC formulation that controls the room temperature in a house needs a tem-
perature model. Figure 3.1 shows how the temperature model for a single room
in a building. It is a simplified version of the room temperature model used by
the MPC that controls the house in Trondheim. It is the basis of the dynamics
constraints (3.3a) and (3.3b).

Toutdoor is the outdoor temperature, Twall is the temperature in the wall, and
Troom is the temperature in the room. PHP is the power output from the heat pump
in the room, and COP is the coefficient of power for that heat pump. The COP tells
how much heating power is produced per power provided to the heat pump. If the
COP is 3.5, then if the heat pump is provided with 1 kW of power, it will produce
3.5 kW of heating. The coefficient of power depends on operating conditions,
especially outdoor temperature. ρout and ρin are parameters that represent how
well heat travels between the wall and the outside, and between the wall and the
room.

15
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Toutdoor

Twall
Troom

ρout ρin

Php

COP

Figure 3.1: Temperature model of room used in control algorithm. Red lines rep-
resent energy transfer.

The MPC formulation in use on the house in Trondheim, including its tem-
perature model, is developed by Prof. Sebastien Gros. It considers multiple
heat pumps installed in multiple rooms. In this thesis, a simplified version
of that MPC formulation is developed, where each house is assumed to have
one room with a single heat pump.

The input u of the system is the heat pump power, and the state x of the system
is the wall- and room temperature. In the real system the heat pump measure room
temperature with a sampling time of 5 minutes. As such the length between each
prediction step i is 5 minutes. The total prediction length, represented by N , is 24
hours. The states and inputs are defined as follows:

x T
i =
�

Troom,i , Twall,i , Tslack,i

�

i = 0, ..., N (3.1a)

u i =
�

PHP, i

�

i = 0, ..., N − 1 (3.1b)

The state vector for each step i, x i , contains a slack temperature Tslack,i that
helps keep the room temperature above some limit Tmin. The following is the
simplified MPC formulation:

min
x ,u
Φ(x , u)

=min
x ,u

N−1
∑

i=1

li(x i , u i) + V (x N )
(3.2a)

li(x i , u i) = wpower · Ccost,i · P(ui)

+wcomf or t · C2
comf or t,i+1 +wslack · T2

slack,i+1

(3.2b)

V (x N ) =wcomf or t · C2
comf or t,N +wslack · T2

slack,N (3.2c)

subject to the constraints
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Troom,i+1 = Troom,i +
�

ρin · (Twall,i − Troom,i) + COP · PHP, i

�

(3.3a)

Twall,i+1 = Twall,i +
�

ρin · (Troom,i − Twall,i) +ρout · (Toutdoor,i − Twall,i)
�

(3.3b)

x 0 = x̄ (3.3c)

Tmin,i ≤ Troom,i + Tslack,i (3.3d)

0≤ Tslack,i (3.3e)

0≤ PHP,i ≤ Pmax (3.3f)

where

Ccost,i = Spot market pricei · VAT

Ccomf or t,i = Troom,i − Tre f erence,i

P(ui) = PHP,i + Pex t,i

(3.4)

Table 3.1: House MPC model parameters

Parameter Value
COP 2.50
ρin 0.37
ρout 0.018

Equation (3.2) shows the cost function for the house control problem. (3.2b)
is the stage cost for each prediction step i, and (3.2c) is the terminal cost associ-
ated with the last state x N . Ccost is the cost associated with power consumption.
It only considers spot price, omitting any fixed grid costs. Ccomf or t is a term that
represents the cost of deviations from the reference temperature Tre f erence. Tmin is
the minimum room temperature. The minimum room temperature is not enforced
through a hard constraint, and is instead strongly penalized using the slack vari-
able Tslack. Equations (3.3d) and (3.3e) are the constraints on Tslack.

P(ui) is the power consumption as a function of the system input u. It is the
sum of the heat pump power PHP and ’external’ power use Pex t , like lighting or
appliances. The external power is not controllable by the MPC. PHP is the only
element of the input u. Direct control over the heat pump power PHP , stated in
(3.1b), is another simplification. In reality, the heat pumps take a temperature
reference as input, and the resulting power output must be estimated with some
power model. Equation (3.3f) shows the constraints on the heat pump power,
where Pmax is the maximum power output of a heat pump, in our case 1.5 kW.
Since thesis only considers houses with a single heat pump and a single room,
Pex t (obtained from a large house) is scaled down to emulate a smaller house in
the tests in chapter 4.
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The constraint (3.3c) states that the start state x 0 must be equal to some
current state estimate x̄ . Typically an estimator is employed to produce a state
estimate. For this thesis the prediction models are assumed to be exact, and the
estimate x̄ is simply set to the second optimal state x ∗1 from the optimization
results of the previous time step t − 1.

The parameter values for the room temperature model in table 3.1 were ob-
tained using system identification methods in a previous POWIOT project. They
are provided to the dynamics constraints (3.3a) and (3.3b). The heat pump coeffi-
cient of power (COP) varies depending on the outdoor temperature. In this case,
it is simplified and given a relatively low, fixed value, representative of the low
outside temperature considered in the test case. ρin and ρout are parameters that
model the effects of thermal conduction through the building envelope. In other
words, they determine how fast temperature propagates between the room, the
wall, and the outside. The discrete temperature model (see (3.3a) and (3.3b) is
based on the 5-minute sampling time of the heat pumps in the POWIOT project.
As such, each prediction horizon step i represents a 5-minute window. The hori-
zon length, represented by N , is 24 hours. The same temperature model is used
for all the houses.

By gathering the equality and inequality constraints we formulate the follow-
ing optimization problem:

min
x ,u
Φ(x , u) (3.5a)

s.t. x i+1 = f (x i , u i) (3.5b)

x 0 = x̄ (3.5c)

Tmin,i − Tslack,i ≤ Troom,i (3.5d)

0≤ Tslack,i (3.5e)

0≤ PHP, i ≤ Pmax (3.5f)

where

x T
i =
�

Troom,i , Twall,i , Tslack,i

�

i = 0, ..., N (3.6a)

u i =
�

PHP, i

�

i = 0, ..., N − 1 (3.6b)

The constraint (3.5b) contains the dynamics constraints (3.3a) and (3.3b).

3.1.1 Centralized MPC

The formulation (3.5) formulation considers a single home. To consider multiple
houses, as in the proposed residential power coalitions, we introduce a subscript h
for each house in the coalition, with H total houses. By including all houses in the
same optimization problem, we formulate a centralized optimization problem. In
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this centralized formulation, the cost functions and constraints from each house
are considered together:

min
x ,u

H
∑

h=1

Φh(x h, uh) (3.7a)

s.t. x i+1,h = fh(x i,h, u i,h) (3.7b)

x 0,h = x̄ h (3.7c)

Tmin,i,h − Tslack,i,h ≤ Troom,i,h (3.7d)

0≤ Tslack,i,h (3.7e)

0≤ PHP,i,h ≤ Pmax (3.7f)

The state and input vectors for each house are defined as:

x T
i,h =
�

Troom,i,h, Twall,i,h, Tslack,i,h

�

i = 0, ..., N h= 1, ..., H (3.8a)

uT
i,h =
�

PHP, i,h

�

i = 0, ..., N − 1 h= 1, ..., H (3.8b)

such that the total state vector x and input vector u consist of the state x h and
input uh vectors from each house:

x T =
�

x T
1 , ..., x T

H

�

(3.9a)

uT =
�

uT
1 , ..., uT

H

�

(3.9b)

The problem (3.7) is the centralized optimization problem for the power coali-
tion as a whole. This centralized formulation does not have any coupling between
the houses, and can therefore be trivially decomposed into a problem pertaining
to each house (see the decentralized formulation in 3.1.2). However, this central-
ized formulation is used as the basis of the formulations in 3.3, which explores
formulations to reduce the peak total power among all the houses. In those formu-
lations, there are coupling constraints between the houses, and they can therefore
not be trivially decomposed to a problem for each house.

Figure 3.2 shows how the centralized formulation could be implemented in
practice. A centralized controller receives state measurements x h and external
parameters ph from each house, and in turn gives commands to the heat pumps,
uh.

3.1.2 Decentralized MPC

Since there are no coupling constraints or states between the houses, the problem
(3.7) may be decomposed and solved using separate controllers on a per-house
basis:
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House H

uh x h, ph

House 1

u1 x 1, p1

Centralized
controller

Figure 3.2: Principle of centralized MPC for house control

min
x h,uh

Φh(x h, uh) (3.10a)

s.t. x i+1,h = fh(x i,h, u i,h) (3.10b)

x 0,h = x̄ h (3.10c)

Tmin,i,h − Tslack,i,h ≤ Troom,i,h (3.10d)

0≤ Tslack,i,h (3.10e)

0≤ PHP,i,h ≤ Pmax (3.10f)

Note that this is just the single-home formulation (3.5) with the added sub-
script h to indicate which house it is. This formulation is the decentralized version
of (3.7), and solving the sub-problems for each house h will yield the same solu-
tion as its centralized equivalent. Figure 3.3 shows how this formulation could be
implemented in practice. A controller in each house receives state measurements
and external parameters from their house, and in turn gives commands to the
heat pumps. Compare this to a centralized approach, shown in figure 3.2, where
a single controller collects data from and sends commands to all houses in the
system.

The decentralized approach is based on the formulation (3.10). The de-
centralized approach is used as a benchmark in chapter 4 which the various
centralized and distributed formulations for peak power reduction from sec-
tion 3.5 are compared against. It emulates a scenario where each home has
a local controller for heating control, and the controllers do not coordinate
with each other.
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House H

uh x h, ph

Controller H

House 1

u1 x 1, p1

Controller 1

Figure 3.3: Principle of decentralized MPC for house control

3.2 External Factors

The data collection software that is installed in the house in Trondheim collects
information that is relevant to the estimation and control of power and indoor
temperature. The collected data includes power consumption, weather forecasts
for the area, and spot prices for the Trondheim day ahead market. Data has been
collected for a total time span of roughly a year and is the source of spot price,
outdoor temperature, and external power use data used in the simulations in this
thesis.

Figure 3.4 shows the spot prices in Trondheim on November 29 and November
30, 2021. The spot prices reached their highest points during these days in 2021,
with significant fluctuations from hour to hour. They represent a sort of worst-
case scenario for power prices. The prices are retrieved from Nord Pool [21], a
European power exchange. Figure 3.5 shows the outdoor temperature in Trond-
heim from November 29 through November 30, 2021. The data has an hourly
resolution and is retrieved from the Norwegian Meteorological Institute [22].

Figure 3.6 shows the power consumption of the house in Trondheim, exclud-
ing the heat pumps, from November 29 through November 30, 2021. Power use
in the mornings and evenings is especially high. The power data is collected using
a Tibber Pulse device [23], which connects to smart meters in homes and tracks
power consumption in real-time. Unlike spot prices and weather, there are no ex-
isting forecasts for external power consumption. It can be assumed, however, that
power consumption profiles from previous days provide reasonable predictions
for the following days. Figure 3.7 shows a smoothed average of non-heat pump
power consumption from 18 different days.



22 Axel Tveiten Bech: Distributed MPC for Peak Power Reduction in Smart Homes

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

100

200

300

400

ør
e/
kW

h

Spot Prices

Figure 3.4: Spot price in Trondheim November 29 and November 30, 2021
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Figure 3.5: Outdoor temperature in Trondheim November 29 and November 30,
2021
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Figure 3.6: Non-heat pump power use in house November 29 and November 30,
2021
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Figure 3.7: Smoothed average of 18 days of non-heat pump power use
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3.3 Peak Power Reduction Formulations

The house control problem (3.5) is designed to take the electricity spot price into
account when deciding the heat pump power usage. It is not designed with peak
power reduction in mind. Therefore, this thesis extends the current control al-
gorithm to systematically handle peak power consumption. This section proposes
several formulations to implement this feature. It investigates whether the for-
mulations are fit for dual decomposition, and consequently distributed control.
To keep the formulations short, we rewrite the constraints (3.7b)-(3.7f) for the
following centralized problem:

min
x ,u

H
∑

h=1

Φh(x h, uh) (3.11a)

s.t. hh(x h, uh) = 0 (3.11b)

gh(x h, uh)≤ 0 (3.11c)

The equality constraints (3.11b) contain the dynamics constraints (3.7b) and
initial state constraints (3.7c). The inequality constraints (3.11c) contain the slack
state constraints (3.7d) and (3.7e), and heat pump power constraints (3.7f).

3.3.1 Fixed Power Limit

The most simple approach to reducing peak power is to simply introduce a con-
straint on the sum of power consumption for each time step:

H
∑

h=1

Ph(u i,h)≤ Pl im (3.12)

Note that if the sum of uncontrollable powers is larger than the total power
limit Pl im, the constraint (3.12) cannot be satisfied and the problem becomes in-
feasible. We may remedy this by including a slack variable for the power consump-
tion:

H
∑

h=1

Ph(u i,h)≤ Pl im + Pslack,i (3.13a)

Pslack,i ≥ 0 (3.13b)

By adding this constraint to (3.11) and adding a cost associated with the new
slack variable Pslack, we obtain a centralized formulation with a fixed limit on the
total power consumed by the houses:

min
x ,u

H
∑

h=1

Φh(x h, uh) +
N−1
∑

i=0

wPslack
Pslack,i (3.14a)
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s.t. hh(x h, uh) = 0 (3.14b)

gh(x h, uh)≤ 0 (3.14c)
H
∑

h=1

Ph(u i,h)≤ Pl im + Pslack,i (3.14d)

Pslack,i ≥ 0 (3.14e)

The slack variable Pslack ensures that the constraint (3.13) is met, even if the
sum of uncontrollable powers is larger than the limit Pl im. The weight on the
power slack wPslack

is set very high so that the fixed power constraint is always
enforced if it is feasible to do so. We may transform the slack variable Pslack into
a ’localized’ version for each house:

Pslack,i =
H
∑

h=1

Pslack,i,h (3.15)

Then the power slack constraints (3.13) become

− Pl im +
H
∑

h=1

�

Ph(u i,h)− Pslack,i,h

�

≤ 0 (3.16a)

Pslack,i,h ≥ 0 (3.16b)

We can ’dualize’ (move into the cost function) constraint (3.16a). This is the
first step of the dual decomposition described in section 2.2.3. The problem (3.14)
may then be rewritten as

d(µ) =min
x ,u

N−1
∑

i=0

µi

�

− Pl im +
H
∑

h=1

�

Ph(u i,h)− Pslack,h

�

�

+
H
∑

h=1

�

Φh(x h, uh) +
N−1
∑

i=0

wPslack
Pslack,i,h

�

(3.17a)

s.t. hh(x h, uh) = 0 (3.17b)

gh(x h, uh)≤ 0 (3.17c)

Pslack,i,h ≥ 0 (3.17d)

Where µ is the dual variable vector associated with constraint (3.16a). We
seek the solution to the dual problem

max
µ

d(µ) (3.18a)

s.t. µ≥ 0 (3.18b)
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We may decompose (3.17) to be solved on a per-house basis. This is the next
step of the dual decomposition:

dh(µ) = min
x h,uh

N−1
∑

i=0

µi

�

Ph(u i,h)− Pslack,i,h

�

+Φh(x h, uh) +
N−1
∑

i=0

wPslack
Pslack,i,h

(3.19a)

s.t. hh(x h, uh) = 0 (3.19b)

gh(x h, uh)≤ 0 (3.19c)

Pslack,i,h ≥ 0 (3.19d)

The cost of each slack variable Pslack,i,h in the minimization problem in (3.19a)
is

wPslack
Pslack,i,h −µi Pslack,i,h (3.20)

Since there is no upper bound on the slack variables Pslack,i,h, the problem
(3.19) may be unbounded if the dual variables are larger than the slack weight
wPslack

.

dh(µ) = −∞ for µi > wPslack
(3.21)

With Pslack =∞. One the other hand, if the weight is larger than the dual
variable, the minimization problem will produce an optimal slack variable of zero,
Pslack,i,h = 0.

If the ’correct’ value of Pslack,i,h (solution of original problem) is not 0, the dual
problem will consequently produce an incorrect result. As such (3.14) is unfit for
dual decomposition in its current form.

3.3.2 Momentary Peak State

The last approach formulated a constraint on the sum of power consumption
between the homes. A less direct approach to try to reduce peak power is to
introduce new states that in some way represent the peak power consumption
and penalize them. For this formulation, we consider a single peak state s, that
represents the highest total power consumption between the homes at any given
prediction step. To enforce this representation, we introduce the constraint:

H
∑

h=1

Ph(u i,h)≤ s (3.22)

The constraint (3.22) ensures that the peak state s is larger than the highest
sum of powers for all prediction steps i. In other words, the peak state s represents
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the peak sum of powers in the current prediction horizon. Including (3.22) in
(3.11) with a cost on the peak state s yields:

min
x ,u,s

ϕ(s) +
H
∑

h=1

Φh(x h, uh) (3.23a)

s.t. hh(x h, uh) = 0 (3.23b)

gh(x h, uh)≤ 0 (3.23c)
H
∑

h=1

Ph(u i,h)≤ s (3.23d)

Where ϕ(s) is the cost function associated with the peak state s. Because peak
power consumption is penalized but not constrained, a controller that considers
(3.23) always has the flexibility to let the peak total power consumption increase
if other demands (such as a freezing room temperature) are more pressing.

Dualizing (3.22) in (3.23) yields:

d(µ) = min
x ,u,s

ϕ(s)−
N−1
∑

i=0

µi · s

+
H
∑

h=1

�

Φh(x h, uh) +
N−1
∑

i=0

µi · Ph(u i,h)
�

(3.24a)

s.t. hh(x h, uh) = 0 (3.24b)

gh(x h, uh)≤ 0 (3.24c)

We may decompose (3.24) into a house- and peak state component:

dh(µ) = min
x h,uh

Φh(x h, uh) +
N−1
∑

i=0

µi · Ph(u i,h) (3.25a)

s.t. hh(x h, uh) = 0 (3.25b)

gh(x h, uh)≤ 0 (3.25c)

and

ds(µ) =min
s
ϕ(s)−
� N−1
∑

i=0

µi

�

· s (3.26)

Equation (3.26) solved for s by satisfying:
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ϕ′(s)−
N−1
∑

i=0

µi = 0 (3.27)

Note that for a linear peak cost ϕ(s), (3.26) is unbounded or ill-posed.
Indeed, for

ϕ(s) = w · s (3.28)

problem (3.26) yields

ds(µ) = −∞ for w−
N−1
∑

i=0

µi ̸= 0 (3.29)

with s =∞ for w<
∑N−1

i=0 µi and s = −∞ for w>
∑N−1

i=0 µi . We have

ds(µ) = 0 for w−
N−1
∑

i=0

µi = 0 (3.30)

with s undefined. The function ds(µ) is therefore discontinuous, but requires
that

w−
N−1
∑

i=0

µi = 0 (3.31)

in order to be maximized. The dual problem

max
µ

ds(µ) +
H
∑

h=1

dh(µ)

s.t. µ≥ 0

(3.32)

then translates into

max
µ

H
∑

h=1

dh(µ) (3.33a)

s.t. w=
N−1
∑

i=0

µi (3.33b)

µ≥ 0 (3.33c)

The constraint (3.33b) is analogous to marginal-cost pricing in economics,
which is the practice of setting the price of a product to equal the extra cost
of producing an extra unit of that product. The peak state s may be viewed as
the product, w the cost of producing an extra unit of s (the marginal cost), and
∑N−1

i=0 µi the ’price’ of s.
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The (total) derivatives of dh(µ) are given by:

d
dµ

dh(µ) =
∂Lh

∂ µ
(3.34)

where Lh is the Lagrange function associated with (3.25), evaluated at the
primal-dual solutions of (3.25) and given by:

Lh = λ0 · (x 0,h − x̄ h) +Φh(x h, uh)

+
N−1
∑

i=0

�

µi · Ph(u i,h) +λi+1

�

x i+1,h − f h(x i,h, u i,h)
�

�

(3.35)

Then its partial derivative w.r.t. µ reads as:

∂Lh

∂ µ
=





Ph(u0,h)
...

Ph(uN ,h)





⊤

(3.36)

Hence the gradient of the cost (3.33a) reads as:

∇µi

H
∑

h=1

dh(µ) =
H
∑

h=1

Ph(u i,h) (3.37)

Problem (3.33) is well suited for a proximal gradient method, where the gradi-
ent step on the cost is projected in the Euclidian sense onto the feasible domain
of the problem. In the case of (3.33), this projection reads as:

min
µ⊥

1
2
||µ⊥ −µ+||

2 (3.38a)

s.t. w− 1⊤µ⊥ = 0

µ⊥ ≥ 0
(3.38b)

where µ+ is the "free" gradient step:

µ+ = µ+α · ∇µi

H
∑

h=1

dh(µ) (3.39)

and µ⊥ is the projected gradient step.

3.3.3 Quadratic Peak Cost

To formulate the peak state s without the advanced projection of 3.3.2, we again
consider (3.23), but with ϕ(s) as a quadratic function:

ϕ(s) = w s2 (3.40)
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and

ds(µ) =min
s

w s2 −
� N−1
∑

i=0

µi

�

· s (3.41)

Then (3.27) becomes:

2 w s−
N−1
∑

i=0

µi = 0 (3.42)

Which can be solved for s. The dual problem (3.32) can then be solved without
transforming the problem ds(µ) to a constraint. The gradient of (3.32) is then
defined as:

∇µi
d(µ) =∇µi

�

ds(µ) +
H
∑

h=1

dh(µ)
�

= −s+
H
∑

h=1

Ph(u i,h) (3.43)

3.3.4 Hourly Peak State

The peak state s penalizes momentary peak states. The new capacity cost, outlined
in section 1.3.2 penalizes high hourly consumption. Although this capacity cost
will be applied to homes individually, it is still interesting to consider in the context
of the residential power coalitions presented in section 1.3.3.

Unlike momentary power use, which is used to reduce peak power in 3.3.2,
we do not directly control hourly power. The controller needs a way to ’see’ hourly
power consumption, and reduce its highest value if need be. In line with the hourly
consumption-based capacity cost, we formulate a new centralized optimization
problem with a single peak hourly power consumption state E:

min
x ,u,E

ϕ(E) +
H
∑

h=1

Φh(x h, uh) (3.44a)

s.t. hh(x h, uh) = 0 (3.44b)

gh(x h, uh)≤ 0 (3.44c)

E ≥ e j ∀ j (3.44d)

The constraint (3.44d) states that E must be larger than the hourly power con-
sumption e j for all hours j. In other words, the peak state E represents the highest
hourly consumption for the group of houses. We define the power consumption
at hour j as follows:
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Prediction horizon

eacc

e0 e1 e2

08:00 09:00 11:00 12:00

Ptot(t)

t

Figure 3.8: Principle of hourly power consumptions e j and accumulated power
for the first hour eacc

e j =
H
∑

h=1

∑

i∈Θ j

Ph(u i,h) ∀ j ̸= 1

e0 = eacc +
H
∑

h=1

∑

i∈Θ0

Ph(u i,h)

(3.45)

The index j represents every whole hour in the horizon N , including the cur-
rent hour. Θ j is the set of all prediction steps i that fall into the hour j. Since
the prediction horizon moves one 5-minute step forward at each iteration, some
prediction steps i will fall into the next whole hour at the new iteration. As such,
each set Θ j will change at each new iteration of the MPC.

The variable eacc is the total power consumed so far in the current hour. It
must be added to the first total hourly power consumption e0 so that it actually
represents the total power consumption for that hour, including power consump-
tion from earlier that hour. Figure 3.8 shows how each variable e j represents the
power consumed for each whole hour, and how eacc represents the power con-
sumption for the first hour that falls outside the prediction horizon. eacc is updated
by the following rules:

eacc = eacc +
H
∑

h=1

P(u0,h) after each time step

eacc = 0 when a new hour begins

(3.46)

In other words the first computed power use is added to eacc at each time step
until a new hour is reached, at which point it is set back to zero. Since the energy
consumed in the current hour includes previous consumption, the accumulated
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power consumption for the current hour eacc is added to e0. By dualizing the
constraint (3.44d) we obtain:

d(µ) = min
x ,u,E

ϕ(E) +
H
∑

h=1

Φh(x h, uh)

+
∑

j

µ j

�

e j − E
�

(3.47a)

s.t. hh(x h, uh) = 0 (3.47b)

gh(x h, uh)≤ 0 (3.47c)

We seek the solution of

max
µ

d(µ) (3.48a)

s.t. µ≥ 0 (3.48b)

We want to decompose the dual problem into multiple sub-problems:

max
µ

dE(µ) +
H
∑

h=1

dh(µ) (3.49a)

s.t. µ≥ 0 (3.49b)

Where dE(µ) is the problem associated with the hourly peak state, and dh(µ)
is the problem associated with house h. To do this, we first consider the hourly
power consumption e j on a per-house basis:

e j =
H
∑

h=1

e j,h ∀ j

e j,h =
∑

i∈Θ j

Ph(u i,h) ∀ j ̸= 1

e0,h = eacc,h +
∑

i∈Θ0

Ph(u i,h)

eacc,h = eacc,h + Ph(u0,h) after each time step

eacc,h = 0 at each new hour

(3.50)

Where eacc,h is the accumulated hourly power consumption for house h. Using
(3.50) we may consider (3.47) on a per-house basis:

dh(µ) =min
x ,u
Φ(x h, uh) +
∑

j

µ je j,h (3.51a)
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s.t. hh(x h, uh) = 0 (3.51b)

gh(x h, uh)≤ 0 (3.51c)

and a problem for the peak hourly power consumption E

dE(µ) =min
E
ϕ(E)−
∑

j

µ j · E (3.52)

Where the gradient of the dual function is given by

∇µ j
d(µ) =∇µ j

�

dE(µ) +
H
∑

h=1

dh(µ)
�

= −E +
H
∑

h=1

e j,h (3.53)

Judging from the pitfalls detailed in 3.3.2, a linear cost may not be the best
choice for ϕ(E). A quadratic peak cost similar to 3.3.3 is likely a better candidate:

ϕ(E) = E2 (3.54)

In which case (3.52) is a well-posed optimization problem, and does not re-
quire any additional modification to work with a distributed approach.

3.4 Distributed MPC

Figure 3.9 shows how a distributed model predictive control approach might be
implemented in the case of house control. Note the similarity with figure 3.3,
which shows a decentralized house control approach. In both cases there is a
controller for each house, so a failure in a controller only affects one house. The
houses do not need to share all their information with some centralized controller,
as for the centralized approach, shown in figure 3.2.

Unlike the decentralized approach, the distributed approach uses a coordin-
ator to update the dual variablesµ associated with the coupling constraints between
the houses. Also note that in addition to the controllers for each house, the final
formulations described in 3.5.2 and 3.5.2 require a separate controller for the
peak states s and E.

3.4.1 DMPC Algorithm

Algorithm 1 shows the algorithmic formulation of the DMPC approach used in
this thesis. The algorithm is designed to perform dual decomposition on a Model
Predictive Control problem with a coupling constraint. Pex t is the external power
use, which we do not control and only know for the current time step. Tout is the
outdoor temperature. Tre f is the temperature reference.

wl b and wub are the lower and upper bounds on the optimization state w. T
is the total simulation time, and t is the current time step. k is the current dual
decomposition step, fdi f f and µdi f f are the changes in the sum of cost functions



36 Axel Tveiten Bech: Distributed MPC for Peak Power Reduction in Smart Homes

House H

uh x h, ph

Controller H

House 1

u1 x 1, p1

Controller 1

Coordinator

∇d1(µ) ∇dH(µ)µ µ

Figure 3.9: Principle of distributed MPC for house control

and dual variables, respectively. ftol , µtol and kmax form the termination criteria
for the dual decomposition.
µ contains the dual variables. f ∗i and w∗i is the local optimal value and optimal

state for controller i. cµ is a constant based on any constant values in the coupling
constraint, e.g. h0 in (2.8). µ+i (w

∗
i ) is the gradient update contribution to µ from

controller i, computed using the optimal local state w∗i . α is some step size for
the gradient method, and P is a function for projecting the updated µ onto its
feasible region. This will typically be a function to set all negative values to zero,
associated with the constraint µ ≥ 0, though it may be some other function (see
section 3.3.2).
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Algorithm 1 Distributed model predictive control

t = 0
while t < T do

Controllers prepare Pex t , Tout , Tre f
Controllers prepare state constraints wl b, wub
k = 0
while
�

fdi f f > ftol or µdi f f > µtol

�

and k < kmax do
Submit dual variable µ to controllers
Controllers compute local solutions w∗i , f ∗i given µ
µ+ = cµ +
∑

i µ
+
i (w
∗
i ) ▷ Dual gradient from local solutions

µ= P
�

µ+αµ+
�

▷ Projected gradient method
fsum =
∑

i f ∗i
µdi f f = ||µ−µlast ||, fdi f f = | fsum − fsum,last |
µlast = µ, fsum,last = fsum, k = k+ 1

end while
Controllers apply solution and move to next time step
t = t + 1

end while

3.5 Final Formulations

These are the formulations that are implemented. They are based on the peak
reduction formulations in 3.3. Each formulation has a centralized version, and a
corresponding distributed version obtained from dual decomposition. Both ver-
sions are simulated in chapter 4.

3.5.1 Formulation 1

Formulation 1 is based on the formulation detailed in section 3.3.2, a momentary
peak state s with a linear cost. The centralized formulation is as follows:

min
x ,u,s

wl in s+
H
∑

h=1

Φh(x h, uh) (3.55a)

s.t. hh(x h, uh) = 0 (3.55b)

gh(x h, uh)≤ 0 (3.55c)
H
∑

h=1

Ph(u i,h)≤ s (3.55d)

And the dual decomposition-based distributed formulation is

max
µ

H
∑

h=1

dh(µ) (3.56a)
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s.t. wl in −
N−1
∑

i=0

µi = 0 (3.56b)

µ≥ 0 (3.56c)

where

dh(µ) = min
x h,uh

Φh(x h, uh) +
N−1
∑

i=0

µi · Ph(u i,h) (3.57a)

s.t. hh(x h, uh) = 0 (3.57b)

gh(x h, uh)≤ 0 (3.57c)

At each new iteration of a gradient method used to maximizeµ, the constraints
(3.56b) and (3.56c) are enforced using a proximal gradient method:

min
µ⊥

1
2
||µ⊥ −µ+||

2 (3.58a)

s.t. w− 1⊤µ⊥ = 0

µ⊥ ≥ 0
(3.58b)

whereµ⊥ is the projected gradient step. In the context of the distributed model
predictive control algorithm presented in section 3.4.1, the dual variable projec-
tion step, represented with the function P, amounts to solving this optimization
problem. µ+ is the "free", unprojected, gradient step:

µ+ = µ+α · ∇µ
H
∑

h=1

dh(µ) (3.59)

The gradient of (3.56a), which is used in a gradient method to obtain µ+, is
given by

∇µi

H
∑

h=1

dh(µ) =
H
∑

h=1

Ph(u
∗
i,h) (3.60)

Where Ph(u∗i,h) is the optimal power output at time step i for the controller
for house h, given a fixed dual variable µ. It is obtained from the solution of the
minimization problem in (3.57).

3.5.2 Formulation 2

Formulation 2 is based on the formulation detailed in section 3.3.3, a momentary
peak state s with a quadratic cost. The centralized formulation is as follows:

min
x ,u,s

wquad s2 +
H
∑

h=1

Φh(x h, uh) (3.61a)
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s.t. hh(x h, uh) = 0 (3.61b)

gh(x h, uh)≤ 0 (3.61c)
H
∑

h=1

Ph(u i,h)≤ s (3.61d)

And the distributed formulation is

max
µ

ds(µ) +
H
∑

h=1

dh(µ)

s.t. µ≥ 0

(3.62)

where

ds(µ) =min
s

wquad s2 −
N−1
∑

i=0

µi s (3.63)

and

dh(µ) = min
x h,uh

Φh(x h, uh) +
N−1
∑

i=0

µi · Ph(u i,h) (3.64a)

s.t. hh(x h, uh) = 0 (3.64b)

gh(x h, uh)≤ 0 (3.64c)

Updating the dual variable µ is done as follows:

µ=
�

µ+α∇µd(µ)
�

+
(3.65)

Where []+ is the dual variable projection that ensures the positivity constraint
µ≥ 0 is satisfied, and the gradient of the dual function is given by

∇µi
d(µ) =∇µi

�

ds(µ) +
H
∑

h=1

dh(µ)
�

= −s∗ +
H
∑

h=1

Ph(u
∗
i,h) (3.66)

Where Ph(u∗i,h) is obtained from each house-controller solving (3.64), and s∗

is obtained through solving (3.63).

3.5.3 Formulation 3

Formulation 3 is based on the formulation detailed in section 3.3.4, an hourly
peak state E with a quadratic cost. The centralized formulation is as follows:

min
x ,u,E

whourl y E2 +
H
∑

h=1

Φh(x h, uh) (3.67a)
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s.t. hh(x h, uh) = 0 (3.67b)

gh(x h, uh)≤ 0 (3.67c)

E ≥ e j ∀ j (3.67d)

The hourly peak state E and the variables representing the power consumption
for each whole hour, e j , as well as its decomposition, are explained in more detail
in 3.3.4. The distributed formulation is

max
µ

dE(µ) +
H
∑

h=1

dh(µ) (3.68a)

s.t. µ≥ 0 (3.68b)

where

dE(µ) =min
E

whourl y E2 −
∑

j

µ j · E (3.69)

and

dh(µ) = min
x h,uh

Φh(x h, uh) +
∑

j

µ je j,h (3.70a)

s.t. hh(x h, uh) = 0 (3.70b)

gh(x h, uh)≤ 0 (3.70c)

Similarly to 3.5.2, updating the dual variable µ is done as follows:

µ=
�

µ+α∇µd(µ)
�

+
(3.71)

The gradient of the dual function is given by

∇µ j
d(µ) =∇µ j

�

dE(µ) +
H
∑

h=1

dh(µ)
�

= −E∗ +
H
∑

h=1

e∗j,h (3.72)
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Results

The results were generated on an Intel i7-9700k 8-core desktop processor. Parallel
computation is necessary to properly evaluate the computational performance of
the decentralized and distributed approaches since parallelism is a key feature
(see 2.1.2). Parallel computation was achieved using the multiprocessing module
in Python.

The proposed centralized and distributed peak reduction formulations are val-
idated in two scenarios: one considering a coalition of 2 houses and one consid-
ering a coalition of 8 houses, respectively. The scenarios simulate 24 hours at a
resolution of 5 minutes. The MPCs have a prediction horizon of 24 hours. The high
spot prices and low outdoor temperature provided to the simulations represent a
challenging validation scenario.

Each house is assumed to have one room with one heat pump. We assume that
the houses register the same outdoor temperature, spot price, reference temper-
ature, and predicted external power use. Each house will differ in its real external
power use. The real external power is provided based on real data collected from
the house in Trondheim at various two-day intervals. To fit the validation scenario,
the external power use is scaled down to account for the smaller size of the house
model considered in the simulations compared to the large residential home from
which the external power use is gathered. It is scaled by 0.33.

This thesis proposes a decentralized approach with MPC formulation (3.10),
which has no formulations for peak reduction (details are outlined in section
3.1.2). For validation purposes, the centralized and distributed MPC formulations
are compared to the same decentralized MPC formulation.

For each scenario, the formulations and MPC approaches are validated on their
peak reduction capabilities, their ability to keep the room temperature at desired
levels and keep power costs down, as well as their computational performance.
The performance measures for peak reduction are the highest aggregated mo-
mentary and hourly power consumption. Performance with respect to comfort is
measured in total deviations in room temperature from the reference temperat-
ure. Power use performance is measured in both total power use as well as total
power costs. Computational performance is measured in average MPC iteration
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time.
The results presented in this chapter are discussed in chapter 5

4.1 Formulation 1

This section shows the results of implementing the formulation in 3.5.1, which
contains a single peak state s that represents the highest momentary power con-
sumption in a prediction horizon. This peak state s is penalized with a linear cost.

4.1.1 2 Houses

Table 4.1 shows the highest hourly total power consumption in the centralized,
distributed, and decentralized approaches, with two houses. The centralized and
distributed approaches have similar results, slightly lower than the decentralized
approach.

Table 4.1: Max hourly power consumption, formulation 1, 2 houses

Max hourly power consumption [kWh]
Centralized MPC 1.564

Decentralized MPC 1.793
Distributed MPC 1.580

Table 4.2 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with two houses. The central-
ized and distributed approaches have slightly lower values than the decentralized
approach.

Table 4.2: Max power consumption, formulation 1, 2 houses

Max power consumption [kW]
Centralized MPC 2.070

Decentralized MPC 2.367
Distributed MPC 2.070

Table 4.3 shows the total temperature deviations in the same scenario. The
decentralized approach has by far the lowest temperature deviations, and the dis-
tributed approach has slightly higher temperature deviations than the centralized
approach.

Table 4.4 shows the total cost from heat pump power use. The results are quite
similar for all three approaches.

Table 4.5 shows the total heat pump power use. The decentralized approach
uses a little more power in total than the centralized and distributed approach.

Figure 4.1 shows the power use, including external power, for the three ap-
proaches. The distributed approach follows the centralized approach well, and
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Table 4.3: Room temperature deviation, formulation 1, 2 houses

Room temperature deviation [°Ch]
Centralized MPC 25.573

Decentralized MPC 16.464
Distributed MPC 24.281

Table 4.4: Heat pump power consumption cost, formulation 1, 2 houses

Heat pump power consumption cost [kr]
Centralized MPC 26.669

Decentralized MPC 26.492
Distributed MPC 26.697

Table 4.5: Total heat pump power consumption, formulation 1, 2 houses

Total heat pump power consumption [kWh]
Centralized MPC 9.813

Decentralized MPC 10.108
Distributed MPC 9.833

certain spikes in power use that are present in the decentralized approach are
slightly reduced in the centralized and distributed approaches.
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Figure 4.1: Comparison of total power use, formulation 1, 2 houses

Figure 4.2 shows the room temperature in the 2 houses for the three ap-
proaches. The distributed approach mostly follows the centralized approach, with
some discrepancies around the time 18-20. These approaches are also further from
the temperature reference than the centralized approach at certain points of time.

Figure 4.3 shows the energy consumption at each hour of the day. All three ap-
proaches are largely similar, but the highest value at 6-7 in the morning is smaller
for the centralized and decentralized approaches.
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Figure 4.2: Room temperature comparison, formulation 1, 2 houses

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

0.6

0.8

1.0

1.2

1.4

1.6

1.8

kW
h

Linear Peak Cost, 2 Houses: Total Hourly Energy Consumption
centralized
decentralized
distributed

Figure 4.3: Hourly total power consumption, formulation 1, 2 houses

4.1.2 8 Houses

These are the results using formulation 1, simulating on 8 houses. Table 4.6 shows
the highest hourly total power consumption in the centralized, distributed, and
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decentralized approaches, with two houses. The centralized and distributed ap-
proaches have nearly identical results, slightly lower than the decentralized ap-
proach.

Table 4.6: Max hourly power consumption, formulation 1, 8 houses

Max hourly power consumption [kWh]
Centralized MPC 5.266

Decentralized MPC 5.739
Distributed MPC 5.265

Table 4.7 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with two houses. The central-
ized and distributed approaches have around half the max power consumption of
the decentralized approach, with the distributed approach having a little higher
max power consumption than the centralized approach.

Table 4.7: Max power consumption, formulation 1, 8 houses

Max power consumption [kW]
Centralized MPC 5.357

Decentralized MPC 11.232
Distributed MPC 5.390

Table 4.8 shows the total temperature deviations in the same scenario. The
decentralized approach has lower temperature deviations than the centralized
and distributed approaches.

Table 4.8: Room temperature deviation, formulation 1, 8 houses

Room temperature deviation [°Ch]
Centralized MPC 78.008

Decentralized MPC 65.857
Distributed MPC 77.360

Table 4.9 shows the total cost from heat pump power use. The results are
nearly identical for all three approaches, with slightly lower costs in the decent-
ralized approach.

Table 4.10 shows the total heat pump power use. All three approaches are
nearly identical.

Figure 4.4 shows the power use, including external power, for the three ap-
proaches. The distributed approach follows the centralized approach nearly per-
fectly, and they both have lower power peaks than the decentralized approach.

Figure 4.5 shows the energy consumption at each hour of the day. Again the
distributed approach follows the centralized approach nearly perfectly. The three
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Table 4.9: Heat pump power consumption cost, formulation 1, 8 houses

Heat pump power consumption cost [kr]
Centralized MPC 105.399

Decentralized MPC 104.657
Distributed MPC 105.445

Table 4.10: Total heat pump power consumption, formulation 1, 8 houses

Total heat pump power consumption [kWh]
Centralized MPC 39.316

Decentralized MPC 39.755
Distributed MPC 39.364
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Figure 4.4: Comparison of total power use, formulation 1, 8 houses

approaches are nearly identical, with the exception of 18-19 in the evening when
the decentralized approach has higher hourly energy consumption.
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Figure 4.5: Hourly total power consumption, formulation 1, 8 houses

4.2 Formulation 2

This section shows the results of implementing the formulation in 3.5.2, which
contains a single peak state s that represents the highest momentary power con-
sumption in a prediction horizon. This peak state s is penalized with a quadratic
cost.

4.2.1 2 Houses

Table 4.11 shows the highest hourly total power consumption in the centralized,
distributed, and decentralized approaches, with two houses. The centralized and
distributed approaches have similar results, slightly lower than the decentralized
approach.

Table 4.11: Max hourly power consumption, formulation 2, 2 houses

Max hourly power consumption [kWh]
Centralized MPC 1.670

Decentralized MPC 1.793
Distributed MPC 1.690

Table 4.12 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with two houses. The central-
ized and distributed approaches have slightly lower values than the decentralized
approach. These results are identical to formulation 1.

Table 4.13 shows the total temperature deviations in the same scenario. The
decentralized approach has the lowest temperature deviations, with the central-
ized and distributed approaches a few °Ch higher.

Table 4.14 shows the total cost from heat pump power use. The results are
nearly identical for all three approaches.
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Table 4.12: Max power consumption, formulation 2, 2 houses

Max power consumption [kW]
Centralized MPC 2.070

Decentralized MPC 2.367
Distributed MPC 2.070

Table 4.13: Room temperature deviation, formulation 2, 2 houses

Room temperature deviation [°Ch]
Centralized MPC 19.820

Decentralized MPC 16.464
Distributed MPC 18.579

Table 4.15 shows the total heat pump power use. The decentralized approach
uses a little more power in total than the centralized and distributed approach,
which are nearly identical.

Figure 4.6 shows the power use, including external power, for the three ap-
proaches. The distributed approach follows the centralized approach well, and
many spikes in power use that are present in the decentralized approach are
slightly reduced in the centralized and distributed approaches.
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Figure 4.6: Comparison of total power use , formulation 2, 2 houses

Figure 4.7 shows the room temperature in the 2 houses for the three ap-
proaches. The room temperature is very similar for all three approaches, with
the notable exception that the centralized and distributed approaches have lower
room temperatures around 7-8 in the morning.

Figure 4.8 shows the energy consumption at each hour of the day. All three ap-
proaches are largely similar, but the highest value at 6-7 in the morning is smaller
for the centralized and decentralized approaches.
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Table 4.14: Heat pump power consumption cost, formulation 2, 2 houses

Heat pump power consumption cost [kr]
Centralized MPC 26.564

Decentralized MPC 26.492
Distributed MPC 26.582

Table 4.15: Total heat pump power consumption, formulation 2, 2 houses

Total heat pump power consumption [kWh]
Centralized MPC 9.878

Decentralized MPC 10.108
Distributed MPC 9.906
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Figure 4.7: Room temperature comparison, formulation 2, 2 houses
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Figure 4.8: Hourly total power consumption, formulation 2, 2 houses
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4.2.2 8 Houses

These are the results using formulation 2, simulating on 8 houses. Table 4.16
shows the highest hourly total power consumption in the centralized, distributed,
and decentralized approaches, with eight houses. The centralized and distributed
approaches have similar results, slightly lower than the decentralized approach.

Table 4.16: Max hourly power consumption, formulation 2, 8 houses

Max hourly power consumption [kWh]
Centralized MPC 5.257

Decentralized MPC 5.739
Distributed MPC 5.255

Table 4.17 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with eight houses. The cent-
ralized and distributed approaches have around half the max power consumption
of the decentralized approach, with the distributed approach having a little higher
max power consumption than the centralized approach.

Table 4.17: Max power consumption, formulation 2, 8 houses

Max power consumption [kW]
Centralized MPC 5.340

Decentralized MPC 11.232
Distributed MPC 5.474

Table 4.18 shows the total temperature deviations in the same scenario. The
decentralized approach has lower temperature deviations than the centralized
and distributed approaches.

Table 4.18: Room temperature deviation, formulation 2, 8 houses

Room temperature deviation [°Ch]
Centralized MPC 78.501

Decentralized MPC 65.857
Distributed MPC 75.571

Table 4.19 shows the total cost from heat pump power use. The results are
nearly identical for all three approaches, with slightly lower costs in the decent-
ralized approach.

Table 4.20 shows the total heat pump power use. All three approaches are
nearly identical.

Figure 4.9 shows the power use, including external power, for the three ap-
proaches. Similar to formulation 1, the distributed approach follows the central-
ized approach nearly perfectly, and they both have lower power peaks than the
decentralized approach.
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Table 4.19: Heat pump power consumption cost, formulation 2, 8 houses

Heat pump power consumption cost [kr]
Centralized MPC 105.409

Decentralized MPC 104.657
Distributed MPC 105.541

Table 4.20: Total heat pump power consumption, formulation 2, 8 houses

Total heat pump power consumption [kWh]
Centralized MPC 39.308

Decentralized MPC 39.755
Distributed MPC 39.417
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Figure 4.9: Comparison of total power use, formulation 2, 8 houses

Figure 4.10 shows the energy consumption at each hour of the day. Once again
the results are very similar to formulation 1. The three approaches are nearly
identical, with the exception of 18-19 in the evening when the decentralized ap-
proach has higher hourly energy consumption.
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Figure 4.10: Hourly total power consumption, formulation 2, 8 houses

4.3 Formulation 3

This section shows the results of implementing the formulation in 3.5.3, which
contains a single peak state E that represents the highest hourly power consump-
tion in a prediction horizon. This peak state E is penalized with a quadratic cost.

4.3.1 2 Houses

Table 4.21 shows the highest hourly total power consumption in the centralized,
distributed, and decentralized approaches, with two houses. The centralized and
decentralized approaches have a significantly lower hourly peak.

Table 4.21: Max hourly power consumption, formulation 3, 2 houses

Max hourly power consumption [kWh]
Centralized MPC 1.472

Decentralized MPC 1.793
Distributed MPC 1.481

Table 4.22 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with two houses. The central-
ized and distributed approaches have a much higher maximum power consump-
tion.

Table 4.22: Max power consumption, formulation 3, 2 houses

Max power consumption [kW]
Centralized MPC 3.734

Decentralized MPC 2.367
Distributed MPC 3.734
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Table 4.23 shows the total temperature deviations in the same scenario. The
centralized and distributed approaches have significantly higher temperature de-
viations than the decentralized approach.

Table 4.23: Room temperature deviation, formulation 3, 2 houses

Room temperature deviation [°Ch]
Centralized MPC 41.105

Decentralized MPC 16.464
Distributed MPC 41.543

Table 4.24 shows the total cost from heat pump power use. The results nearly
identical for all three approaches.

Table 4.24: Heat pump power consumption cost, formulation 3, 2 houses

Heat pump power consumption cost [kr]
Centralized MPC 27.235

Decentralized MPC 26.492
Distributed MPC 27.235

Table 4.25 shows the total heat pump power use. The decentralized approach
uses a little more power in total than the centralized and distributed approach,
which are nearly identical.

Table 4.25: Total heat pump power consumption, formulation 3, 2 houses

Total heat pump power consumption [kWh]
Centralized MPC 9.813

Decentralized MPC 10.108
Distributed MPC 9.838

Figure 4.11 shows the power use, including external power, for the three ap-
proaches. The distributed approach follows the centralized approach well, but
they both have more power spikes than the decentralized approach and seem to
oscillate every hour.

Figure 4.12 shows the room temperature in the 2 houses for the three ap-
proaches. The room temperature in the centralized and distributed approach is
very different from the room temperature in the decentralized approach at many
points, especially between 18-21 in the evening, where the temperature is as high
as 5 degrees higher than the reference temperature.

Figure 4.13 shows the energy consumption at each hour of the day. The three
approaches are somewhat similar, but the centralized and distributed approaches
have a much smaller hourly consumption than the decentralized approach at 6-7
in the morning.
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Figure 4.11: Comparison of total power use, formulation 3, 2 houses
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Figure 4.12: Room temperature comparison, formulation 3, 2 houses
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Figure 4.13: Hourly total power consumption, formulation 3, 2 houses
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4.3.2 8 Houses

These are the results using formulation 3, simulating on 8 houses. Table 4.26
shows the highest hourly total power consumption. The centralized and distrib-
uted approaches are very similar, both lower than the decentralized approach.

Table 4.26: Max hourly power consumption, formulation 3, 8 houses

Max hourly power consumption [kWh]
Centralized MPC 4.328

Decentralized MPC 5.739
Distributed MPC 4.327

Table 4.27 shows the highest momentary total power consumption in the cent-
ralized, distributed, and decentralized approaches, with eight houses.

Table 4.27: Max power consumption, formulation 3, 8 houses

Max power consumption [kW]
Centralized MPC 13.991

Decentralized MPC 11.232
Distributed MPC 13.883

Table 4.28 shows the total temperature deviations in the same scenario. The
temperature deviations are much lower in the decentralized approach compared
to the centralized and distributed approaches.

Table 4.28: Room temperature deviation, formulation 3, 8 houses

Room temperature deviation [°Ch]
Centralized MPC 209.440

Decentralized MPC 65.857
Distributed MPC 212.319

Table 4.29 shows the total cost from heat pump power use. The results are
nearly identical for all three approaches.

Table 4.30 shows the total heat pump power use. The decentralized approach
uses slightly more power than the centralized and distributed approaches.

Figure 4.14 shows the power use, including external power, for the three ap-
proaches. The hourly oscillations present in the 2-house scenario for the central-
ized and distributed approaches are also present when simulating with 8 houses.

Figure 4.15 shows the energy consumption at each hour of the day. The cent-
ralized and distributed approaches have a much more even hourly energy con-
sumption than the decentralized approach.
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Table 4.29: Heat pump power consumption cost, formulation 3, 8 houses

Heat pump power consumption cost [kr]
Centralized MPC 104.189

Decentralized MPC 104.657
Distributed MPC 103.755

Table 4.30: Total heat pump power consumption, formulation 3, 8 houses

Total heat pump power consumption [kWh]
Centralized MPC 36.343

Decentralized MPC 39.755
Distributed MPC 37.060
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Figure 4.14: Comparison of total power use, formulation 3, 8 houses
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Figure 4.15: Hourly total power consumption, formulation 3, 8 houses
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4.4 Computational Performance

To determine the computational performance of the formulations and MPC ap-
proaches, their average iteration time during the simulations is considered. The
average iteration time is calculated by dividing the total simulation time by the
number of time steps. It expresses how much time, on average, the various ap-
proaches needed to complete one time step.

The centralized and distributed approach are compared for all the simulation
scenarios; formulations 1, 2, and 3 for 2 and 8 houses. The performance of the
decentralized approach is also calculated.

Figure 4.16 shows the average iteration time using formulation 1, for the cent-
ralized and distributed approaches. The centralized approach is around 4 times
slower for 8 houses compared to 2 houses. The distributed approach is slightly
faster for 8 houses compared to 2 houses. The distributed approach is slower
overall, but the difference between the approaches is far larger for 2 houses than
8 houses.
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Figure 4.16: Average iteration time in milliseconds, formulation 1

Figure 4.17 shows the average iteration time using formulation 2, for the cent-
ralized and distributed approaches. The centralized approach is again around 4
times slower for 8 houses compared to 2 houses. The distributed approach is
slightly slower for 8 houses compared to 2 houses. The distributed approach is
much slower than the centralized approach for 2 houses but slightly faster for 8
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houses.
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Figure 4.17: Average iteration time in milliseconds, formulation 2

Figure 4.18 shows the average iteration time using formulation 3, for the cent-
ralized and distributed approaches. The centralized approach is around 4 times
slower for 8 houses compared to 2 houses. The centralized performance is very
similar for all three approaches. The distributed approach is nearly identical for 8
houses compared to 2 houses. For both 2 and 8 houses, the distributed perform-
ance is far worse than the centralized performance, but whereas the centralized
performance decreases as the number of houses increases, the distributed per-
formance stays largely the same when the number of houses increases.

Figure 4.19 shows the average iteration time for the decentralized approach.
The decentralized approach (see 3.1.2) has far better performance than the cent-
ralized and distributed approaches,
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Figure 4.18: Average iteration time in milliseconds, formulation 3
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Chapter 5

Discussion

5.1 Limitations of Formulations

Section 3.1 mentions many of the simplifications in the house control formulation,
chief of which is only considering one heat pump and one room for each house. In
a real implementation, a house may have multiple heat pumps and several rooms
that need heating. In addition to different external power use, larger houses also
need different models. The current model considers the heat conduction between
one room and the outdoors, as well as the heat generated by a heat pump. In a
larger house, the heat convection between rooms would need to be considered;
the temperature in one room might affect the temperature in another room. The
effect of solar irradiation on room temperature is also not considered.

Additionally, the MPC approaches consider the predictions from the models to
be perfect estimates. Though the discrepancy between model and real value may
be small in some systems, it is very hard to model the temperatures of a house
correctly. Consequently, in a real house control system, the decisions a controller
makes will likely be based on estimates and predictions which are incorrect.

This, along with the various other simplifications, limits the validity of the
results. For this reason, expanding the models and formulations used in the sim-
ulation would be crucial in any future work.

5.2 Residential Power Coalitions

Residential power coalitions would require multiple households/homes to agree
to share a joint cost agreement. How exactly the cost is then divided can be de-
termined according to the individual consumption of each household. Addition-
ally, each home would have to agree to have their heating controlled by one of the
control approaches mentioned in this thesis, instead of manual heating control.

For a centralized approach, this is a hard sell, since the users would have
to accept that some centralized controller elsewhere, collects all their data and
simply sends commands to their local heating control.

63
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A decentralized approach is easier to justify to a house owner since the con-
troller operates locally, but the lack of coordination between houses detracts from
the justification for a power coalition in the first place. If the coalition cannot re-
duce their joint peak power, the electricity provider has less incentive to give them
a better deal.

In a distributed approach, users would be able to consider the virtual ’price’ of
pushing on some peak power constraint, in this case represented by µ, and then
decide if they want to use more power regardless. In this scenario, it would be
practical to devise some scheme to associate a real cost with the virtual one, to
indirectly incentivize coordination for peak power reduction.

5.3 Simulation Results

5.3.1 Hourly Peak Power Reduction

The new capacity based cost introduced in 1.3.2 is based on the hour with the
highest consumption. As such, peaks in hourly consumption is a natural way to
judge the peak power reduction abilities of the different approaches.

Simulating with two houses, figures 4.3 and 4.8 show the hourly power con-
sumption for formulation 1, which has a linear momentary peak cost, and for-
mulation 2, which has a quadratic momentary peak cost. Table 4.1 and table 4.11
show the corresponding maximum hourly power consumption. Formulation 1 per-
forms better than formulation 2 in this regard, with a decrease of about 0.2 kWh
compared to 0.1 kWh for formulation 2. It is unclear why formulation 1 performs
better than formulation 2 in terms of maximum hourly consumption, as it does
not so for the 8-house scenario when considering the same metric. In both cases,
the results in the distributed approach are nearly identical to the centralized ap-
proach.

Figure 4.13 shows the hourly power consumption for formulation 3, which
has a quadratic hourly peak cost. Table 4.21 shows the corresponding maximum
hourly power consumption. The distributed approach is nearly identical to the
centralized approach. The hourly peak approach had an improvement over the
decentralized approach of 0.3 kWh for the highest hourly consumption. Slightly
better peak power reduction is achieved compared to formulations 1 and 2, which
consider momentary peak electricity.

When simulating with 8 houses, the differences between the formulations in
terms of hourly peak reduction are larger. Figure 4.15 shows the hourly power
consumption for formulation 3. The figure shows that the hourly consumption
never increases much over 4 kWh. Compare that with 4.5 and 4.10 for the mo-
mentary peak formulations 1 and 2. Their hourly consumption is above 5 kWh
from 17:00-21:00, which is similar to the results of the decentralized approach.

From table 4.6 and table 4.16, the max hourly power consumption for for-
mulation 1 and 2, were about 0.5 kWh lower than the decentralized approach.
The max hourly power consumption for formulation 3, found in table 4.26, was
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around 1.4 kWh lower than the decentralized approach.
Formulation 3 performs well in terms of hourly peak reduction. This can be

attributed to its direct penalization of the peak hourly consumption. In this regard,
formulation 3 works as intended. Formulations 1 and 2 exhibit limited hourly peak
reduction capabilities. Their penalization of momentary power peaks evidently
does not correlate to significant reductions in peak hourly consumption.

5.3.2 Momentary Peak Power Reduction

When considering a larger amount of consumers together, in this case multiple
houses in a power coalition, their combined momentary peaks in demand may
have an impact on the performance of their local distribution grid. If power de-
mand suddenly peaks, the supply of power must be increased to avoid brownouts
or blackouts. As such these momentary peaks are another way to judge the peak
power reduction abilities of the different approaches.

Simulating with two houses, figure 4.1 and 4.6 show the total power con-
sumption for formulation 1 and formulation 2. Table 4.2 and table 4.12 show the
corresponding maximum momentary power consumption. The results are nearly
identical, with both centralized and distributed momentary peak formulations giv-
ing a decrease of about 15 % in maximum momentary power consumption com-
pared to the decentralized approach.

On the other hand, figure 4.11 shows the total power consumption for for-
mulation 3. Table 4.22 shows the corresponding maximum momentary power
consumption. For this scenario, the results are very different from formulations 1
and 2, with the centralized and distributed approaches using 60 % more power
than the decentralized approach.

The superior performance of the momentary peak formulations (formulation
1 and 2) compared to the hourly peak formulation (formulation 3) for reducing
momentary power peaks are much more prevalent in the 8-house simulations. Fig-
ure 4.4 and figure 4.9 show the total power consumption between the 8 houses
for formulation 1 and formulation 2. Comparing them to the results from formula-
tion 3, figure 4.14, the momentary peak approaches have much lower peaks than
formulation 3. From table 4.7, table 4.17, and table 4.27, we see that the highest
momentary peak for formulation 3 (around 13.9 kW) is almost three times as
large as for formulation 1 and 2 (both around 5.4 kW).

While the penalization of momentary power peaks in Formulations 1 and 2
does little to decrease hourly peaks, the momentary peaks are greatly reduced.
This seems to indicate that the added peak state s does a good job of represent-
ing the peak in momentary power consumption since its penalization leads to a
reduction in momentary peaks.

It is not clear why formulation 3 performs worse in terms of momentary peaks
than the decentralized approach. The highest momentary peaks produced by for-
mulation 3 appear around whole hours. Whole hours are the start and end points
of the sets Θ j , which define which hour momentary power use falls into. As such
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the high momentary peaks produced by formulation 3 may be the byproduct of
some intangible feature of the hourly peak formulation. If formulation 3 is to be
considered in future work, its issues with producing high momentary peaks would
need to be remedied.

5.3.3 Temperature Deviations and Power Consumption

Figure 4.2 shows the room temperature for formulation 1, and figure 4.7 for for-
mulation 2, simulated on 2 houses. In both cases, the distributed approach has
nearly identical results to the centralized approach. Formulation 1 produces a
large dip in room temperature for both houses around 07:00-09:00, which is much
less prevalent for formulation 2. This dip is not present in the decentralized ap-
proach. In this regard, formulations 1 and 2 yield more different results than their
fairly similar power use.

Figure 4.12 shows the room temperature for formulation 3, simulated on 2
houses. The distributed and centralized approaches have very similar results, both
very different from the decentralized approach. The deviations from the reference
temperature for formulation 3 are problematically large, with room temperatures
as high as 27 degrees. It is not clear why formulation 3 produces such high tem-
peratures. It should incur a high cost for both temperature deviations and power
use. Such results would not be acceptable in a real scenario.

Table 4.3 and table 4.8, the total temperature deviations using formulation
1, and table 4.13 and table 4.18, the total temperature deviations using formula-
tion 2, are very similar. The similarity is likely due to temperature deviations being
penalized the same for all formulations, and formulations 1 and 2 both penalizing
momentary peak consumption (albeit with different costs). Granted, the temper-
ature trajectories produced by formulations 1 and 2 are more different than the
similar total temperature deviations indicate.

Considering the results, both room temperature trajectories and total temper-
ature deviations, the decentralized approach performs better than all formulations
in terms of tracking the room temperature reference. All formulations had the
same cost associated with temperature deviations and power use, but the decent-
ralized approach does not have any additional peak state formulations that might
further penalize power use at the expense of temperature reference tracking.

Indeed, compared to the decentralized approach, all formulations had lower
total power use. Table 4.5, 4.15, and 4.25 show the total power for all three for-
mulations, simulating with 2 houses. Table 4.10, 4.20, and 4.30 show the total
power for all three formulations, simulating with 8 houses. In all 6 cases, both
centralized and distributed approaches had less total power use than the decent-
ralized approach.

Despite this, the monetary cost associated with power consumption was higher
for all formulations compared to the decentralized approach. Table 4.4, 4.14,
and 4.24 show the total power cost for all three formulations, simulating with
2 houses. Table 4.9, 4.19, and 4.29 show the total power cost for all three formu-
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lations, simulating with 8 houses. In all 6 cases, both centralized and distributed
approaches had higher power use costs than the decentralized approach. While
the peak state formulations may lead to reduced total power use, they also seem
to make it harder for the controller to schedule power use based on spot prices,
increasing total costs in that regard.

5.4 Comparing MPC Methods

5.4.1 Computational Performance

Section 4.4 shows the computational performance of the centralized and distrib-
uted MPC approaches for formulations 1, 2, 3, as well as the decentralized ap-
proach, during simulations.

Figure 4.16 shows the average iteration time for 2 and 8 houses, using formu-
lation 1, a momentary peak state with a linear cost. The centralized approach has a
longer average iteration time as the number of houses increases due to increased
problem complexity. Interestingly, the average iteration time for the distributed
approach is lower for 8 houses than for 2 houses. This is most likely due to differ-
ent termination criteria for the dual decomposition (see ftol and µtol in algorithm
1), which may cause it to terminate earlier and move to the next iteration, result-
ing in a lower average iteration time.

Figure 4.17 shows the average iteration time for 2 and 8 houses, using formu-
lation 2, a momentary peak state with a quadratic cost. The 8-house simulation
scenario using formulation 2 is the only case where the distributed approach is
faster than the centralized approach. Formulation 2 has the best distributed per-
formance of all three formulations. There may be multiple reasons for this. The
distributed formulation 2 has a much simpler projection P(µ) than formulation 1,
simply ensuring positivity of the dual variables µ, which means less overhead at
each dual decomposition step.

Figure 4.18 shows the average iteration time for 2 and 8 houses, using formu-
lation 3, an hourly peak state with a quadratic cost. Formulation 3 has a similar
centralized performance to formulations 1 and 2. However, it has the worst dis-
tributed performance of all three formulations, around twice as slow. The likely
culprit is the computation of the dual function gradient for each house ∇dh(µ).
This computation is done at each dual decomposition step and requires the pro-
jection of each prediction step i to their corresponding hour j. This calculation is
not complicated but has a lot of overhead. Fortunately, the average iteration time
does not increase much from 2 houses to 8 houses.

Parallelism

The decentralized computational performance, shown in figure 4.19, is much bet-
ter than the centralized and distributed performance. The average iteration time
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also does not increase much from 2 to 8 houses. This is because the decentralized
problems pertaining to each house can be run in parallel.

The distributed approach can also be run in parallel, but for the dual decom-
position to converge, the parallel controllers may need to repeatedly solve the
problem for the current prediction horizon. As such the average iteration time for
the distributed approach is around 8-20 times higher than for the decentralized
approach. That being said, a crucial property shared by the decentralized and dis-
tributed approaches is that the average iteration time does not change much as
the number of houses increases. Although the simulations in this thesis only con-
sider 2 and 8 houses, it is a fair assumption that the average iteration time would
not increase by much if the number of houses was increased (see the review of
[13] in section 2.1.2). This is a big advantage for a residential power coalition
with many homes.

5.4.2 Distributed Convergence to Centralized Approach

The results in chapter 4 show that for all three formulations, there is little dif-
ference between the distributed and centralized approaches. This is the desired
outcome, as the dualized problems the distributed approach solves, which are
a result of the dual decomposition, are ideally identical to the primal problems
which they are based upon. These primal problems are the ones that are solved
by the centralized MPC approaches.

The implementation and performance of the distributed MPC approach is a
central aspect of the thesis. Section 3.3 outlines several formulations for peak re-
duction, but only those where applying dual decomposition yielded a reasonable
result work for the distributed approach. With that being said, it could be inter-
esting to include and test formulations that would not work with a distributed
MPC approach. In that case, only the centralized MPC approach would be used in
simulations.

5.4.3 Privacy Concerns

One of the main motivations for choosing a distributed MPC approach over a
centralized MPC approach is privacy. In the context of house heating, each sub-
system represents not only an individual control scenario but a home whose in-
habitants require comfort and privacy. Though these concerns are harder to price
than power use, it is obvious that they must be considered when designing any
control scheme that affects them. Privacy becomes an important design point if a
centralized controller for multiple homes is considered.

In the centralized formulations, a single central controller needs to know not
only the user preferences of all the houses but also their power consumption pro-
files, external and heat-pump based, as well as room temperatures. Though such
information is not as sensitive as, say, location information collected from a smart-
phone, a power coalition between houses would require all its members to accept
sharing this data with some central entity.



Chapter 5: Discussion 69

In a decentralized control approach, an in-house controller, physically access-
ible by its inhabitants, may be used to host both control algorithms and data col-
lection. In this approach, information collected for use in the controller stays in
the house it is installed in (technically this is not true when the IoT solutions used
to collect data from smart devices are based on external databases, but in practice,
it is nearly impossible for someone else to gain access to the information).

In the distributed approach, some information is shared from each house to
coordinate the coupling constraints. In formulations 1 and 2, this information
is the optimal power use for the current prediction horizon, P(uh). If gathered
over multiple time steps, this information gives the power use of a home with a
resolution of 5 minutes. In formulation 3, the shared information is the optimal
hourly power use for the current prediction horizon. e j,h for each hour j. This
information can be used to create the power use of a house with a resolution of
one hour. In both cases, the power use information does not distinguish between
external and heat pump power use.

Earlier formulations for peak power reduction, since omitted from 3.3, in-
cluded a formulation where the peak state itself was decomposed on a per house
basis, in which case a separate peak state problem ds(µ) was not needed. For
that approach, the information needed to coordinate the coupling constraint was
the localized peak state itself, which is less invasive than power use. The formu-
lation was not used due to infeasibility in the resulting distributed formulation.
Formulations where the users would not have to share their power use would be
preferable, and should be considered in future work.

5.4.4 Improvements for Decentralized Approach

The decentralized approach, based on the formulation in 3.1.2, is what the three
peak power reduction formulations described in 3.5 are compared against. Unlike
those formulations, the decentralized formulation does not contain any elements
that specifically target peak power use.

An alternative decentralized formulation could contain some of the peak power
reduction formulations described in 3.3 but on a completely localized level. De-
centralized formulations that penalize momentary or hourly power peaks might
have provided a better benchmark to compare the centralized and distributed ap-
proaches against.





Chapter 6

Conclusion

From the simulations, formulations 1 and 2, which penalize momentary power
peaks, work well for reducing momentary peaks but have a smaller impact on the
highest hourly consumption. Formulation 3, which penalizes the highest hourly
power consumption, is far better at reducing the highest hourly power consump-
tion but has higher momentary peaks than the decentralized approach, which
does not penalize peaks at all. Additionally, formulation 3 produced very high
deviations from the reference room temperature. For all scenarios, the distrib-
uted MPC approach performed very similarly to the centralized MPC approach,
which means the decomposed variants of the formulations were reasonable. Ad-
ditionally, the distributed MPC approach scaled better than the centralized MPC
approach in terms of computational performance when the number of houses was
larger.

Future work should refine the formulations to improve their peak reduction
capabilities, both momentary and hourly, while maintaining an acceptable room
temperature and power costs. A more realistic temperature model and power
model should be implemented. A real-life implementation could be considered
if simulation results are promising enough. The idea of a residential power coali-
tion should be investigated further.
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